WO2020063286A1 - 一种测量方法及设备 - Google Patents

一种测量方法及设备 Download PDF

Info

Publication number
WO2020063286A1
WO2020063286A1 PCT/CN2019/104419 CN2019104419W WO2020063286A1 WO 2020063286 A1 WO2020063286 A1 WO 2020063286A1 CN 2019104419 W CN2019104419 W CN 2019104419W WO 2020063286 A1 WO2020063286 A1 WO 2020063286A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
terminal
information
positioning
base station
Prior art date
Application number
PCT/CN2019/104419
Other languages
English (en)
French (fr)
Inventor
达人
任斌
全海洋
李辉
高雪媛
高秋彬
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to JP2021516895A priority Critical patent/JP7331091B2/ja
Priority to EP19867537.3A priority patent/EP3860192B1/en
Priority to US17/275,660 priority patent/US11201715B2/en
Priority to KR1020217012418A priority patent/KR102525483B1/ko
Publication of WO2020063286A1 publication Critical patent/WO2020063286A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0236Assistance data, e.g. base station almanac
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/008Transmission of position information to remote stations using a mobile telephone network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a measurement method and device.
  • OTDOA Observed Time Difference of Arrival
  • TP transmission points
  • RTD reference signal time difference
  • the positioning server In the OTDOA positioning process, the positioning server must first obtain the OTDOA auxiliary information associated with the cell from the base station (Base station, BS) through the positioning protocol specified by 3GPP, such as: physical cell ID, antenna position of the cell, and PRS configuration. Then, the UE obtains the OTDOA auxiliary information for supporting the RSTD measurement from the positioning server through the positioning protocol specified by 3GPP; the UE performs the OTDOA measurement according to the OTDOA auxiliary information to obtain the RSTD measurement value.
  • the NR (5G New Radio) system is a multi-beam transmission signal system, and the existing method for performing OTDOA measurement by the UE cannot be directly applied to the NR system.
  • the present application provides a measurement method and device, which are used to solve the problem that there is no specific solution for OTDOA measurement by a terminal in an existing NR system.
  • an embodiment of the present application provides a measurement method, the method includes: the terminal determines a first beam reference signal detected by the terminal, and sends a request message to a local management function (LMF) entity, where The request message includes first beam information of the first beam reference signal, so that the LMF entity determines, based on the first beam information, a second beam reference signal sent by a neighboring base station that can be detected by the terminal. Second beam information; the terminal receiving first positioning assistance data including the second beam information sent by the LMF entity; the terminal responding to the first positioning assistance data of the neighboring base station according to the first positioning assistance data Two-beam reference signals are measured.
  • LMF local management function
  • the first beam reference signal is a beam communication reference signal (DL-RS) for supporting data communication and / or a beam positioning reference signal (PRS) for supporting positioning;
  • the second beam reference signal PRS is a positioning reference signal used to support positioning.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the terminal further includes: the terminal determines the positioning information obtained by the measurement; the Sending, by the terminal, the positioning information and second beam information of a second beam reference signal used for measurement to the LMF entity, so that the LMF entity according to the positioning information and the second beam used for measurement
  • the second beam information of the reference signal determines the position of the terminal.
  • the determining, by the terminal, the first beam reference signal detected by the terminal includes: when the terminal needs to acquire the first positioning assistance data, determining the first beam reference signal detected by the terminal.
  • the terminal may Before the measurement of the second beam reference signal of the base station, the method further includes: receiving, by the terminal, a positioning request message sent by the LMF entity.
  • an embodiment of the present application provides a measurement method.
  • the method includes: an LMF entity receiving a request message sent by a terminal; wherein the request message includes a first beam of a first beam reference signal detected by the terminal Information; the LMF entity determines, according to the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that the terminal can detect; the LMF entity sends to the terminal including the second beam information The first positioning assistance data of the beam information, so that the terminal measures the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the LMF entity further includes: receiving, by the LMF entity, positioning information sent by the terminal, and according to the positioning The information determines the location of the terminal; wherein the positioning information is obtained by the terminal measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the LMF entity before determining the second beam reference signal sent by an adjacent base station that can be detected by the terminal, the LMF entity further includes: receiving, by the LMF entity, a third beam reported by each base station and including the third beam sent by the base station The second positioning assistance data of the third beam information of the reference signal.
  • the determining, by the LMF entity, the second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect includes: the LMF entity detects the second beam information according to the terminal included in the request message.
  • the first beam information of the first beam reference signal and the second positioning assistance data determine second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for supporting positioning; and the second beam reference signal is a beam for supporting positioning Positioning reference signal PRS.
  • the third beam reference signal is a DL-RS used to support data communication and / or a PRS used to support positioning.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the third beam information includes part or all of the following information: PRS beam identification, PRS beam direction, PRS beam width, DL-RS beam identification, DL-RS beam direction, DL-RS beam width, DL -QCL correlation between RS beam and PRS beam.
  • the method further includes: receiving, by the LMF entity, second beam information of a second beam reference signal used by the terminal for measurement, and determining the location of the terminal according to the positioning information, The method includes: determining, by the LMF entity, a location of the terminal according to the positioning information and second beam information of a second beam reference signal used for measurement.
  • an embodiment of the present application provides a terminal including a processor, a memory, and a transceiver; wherein the processor is configured to read a program in the memory and execute: determine a first detected by itself; A beam reference signal, and sending a request message to an LMF capable entity, wherein the request message includes first beam information of the first beam reference signal, so that the LMF entity determines the terminal according to the first beam information Capable of detecting the second beam information of the second beam reference signal sent by the adjacent base station; receiving the first positioning assistance data including the second beam information of the second beam reference signal sent by the LMF entity; The first positioning assistance data measures the second beam reference signal of the neighboring base station.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for supporting positioning; and the second beam reference signal is a positioning for supporting positioning Reference signal PRS.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the processor is further configured to: after measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data, determine positioning information obtained by the measurement; and Sending the positioning information and the second beam information of the second beam reference signal used for measurement to the LMF entity, so that the LMF entity according to the positioning information and the first beam reference signal of the second beam reference signal used for measurement
  • the two-beam information determines the location of the terminal.
  • the processor is specifically configured to: when it is necessary to acquire the first positioning assistance data, determine the first beam reference signal detected by itself.
  • the processor is further configured to: after receiving the first positioning assistance data including the second beam information of the second beam reference signal sent by the LMF entity, pairing the data according to the first positioning assistance data Before measuring the second beam reference signal of the neighboring base station, a positioning request message sent by the LMF entity is received.
  • an embodiment of the present application provides an LMF entity, the LMF entity includes: a processor, a memory, and a transceiver; wherein the processor is configured to read a program in the memory and execute: receiving a request sent by a terminal A message; wherein the request message includes first beam information of a first beam reference signal detected by the terminal; and determining, according to the first beam information, a second beam reference sent by an adjacent base station that the terminal can detect Second beam information of the signal; and sending to the terminal first positioning assistance data including second beam information of the second beam reference signal, so that the terminal may The second beam reference signal of the base station is measured.
  • the processor is further configured to: receive positioning information sent by the terminal, and determine a position of the terminal according to the positioning information; wherein the positioning information is the terminal according to the first positioning
  • the auxiliary data is obtained by measuring the second beam reference signal of the neighboring base station.
  • the processor is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the first report from each base station that includes the first beam sent by the base station.
  • the second positioning assistance data of the third beam information of the three-beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the first report from each base station that includes the first beam sent by the base station.
  • the second positioning assistance data of the third beam information of the three-beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the first report from each base station that includes the first beam sent by the base station.
  • the second positioning assistance data of the third beam information of the three-beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the first
  • the processor is specifically configured to determine the terminal according to the first beam information of the first beam reference signal detected by the terminal and the second positioning assistance data included in the request message.
  • the second beam information of the second beam reference signal sent by the neighboring base station can be detected.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam positioning reference signal PRS for supporting positioning; and the second beam reference signal is for supporting Positioned beam positioning reference signal PRS.
  • the third beam reference signal is a DL-RS used to support data communication and / or a PRS used to support positioning.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the third beam information includes part or all of the following information: PRS beam identification, PRS beam direction, PRS beam width, DL-RS beam identification, DL-RS beam direction, DL-RS beam width, DL -QCL correlation between RS beam and PRS beam.
  • the processor is further configured to: receive second beam information of a second beam reference signal used by the terminal for measurement and sent by the terminal; and the processor is specifically configured to: according to the positioning information and the Measuring the second beam information of the second beam reference signal used to determine the position of the terminal.
  • an embodiment of the present application further provides a terminal.
  • the terminal includes: a first sending module, configured to determine a first beam reference signal detected by the terminal, and send a request message to an LMF entity, where the request message is Including first beam information of the first beam reference signal, so that the LMF entity determines, according to the first beam information, a second beam of a second beam reference signal sent by a neighboring base station that can be detected by the terminal Information; a receiving module for first positioning assistance data including second beam information of the second beam reference signal sent by the LMF entity; and a measuring module for comparing the phase according to the first positioning assistance data. The second beam reference signal of the neighboring base station is measured.
  • an embodiment of the present application further provides an LMF entity.
  • the device includes: a second receiving module configured to receive a request message sent by a terminal; wherein the request message includes a first beam detected by the terminal First beam information of a reference signal; a determining module, configured to determine, according to the first beam information, second beam information of a second beam reference signal sent by an adjacent base station that can be detected by a terminal; a second sending module, configured to: Sending the first positioning assistance data including the second beam information of the second beam reference signal to the terminal, so that the terminal sends the second beam of the neighboring base station according to the first positioning assistance data Reference signal for measurement.
  • an embodiment of the present application provides a computer-storable medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method described in the first aspect, or implements the first aspect Steps of the method.
  • the LMF entity determines the neighbors that the terminal can detect.
  • the second beam reference signal sent by the base station and the terminal receiving the first positioning assistance data sent by the LMF entity include the second beam information of the second beam reference signal, so that the terminal can perform OTDOA measurement according to the first positioning assistance data, thereby ensuring
  • the LMF entity can accurately provide positioning assistance data to the UE according to the first beam information of the first beam reference signal; and because the first positioning assistance data includes the second beam information of the second beam reference signal, the terminal can make the terminal according to the second beam
  • the information quickly detects the beam reference signal, reducing the time and power consumption of the terminal searching for the second beam reference signal, and further improving system performance.
  • FIG. 1 is a schematic structural diagram of a system for measuring and positioning according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a method for determining a second beam reference signal by an LMF entity according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a method for positioning a terminal by an LMF entity according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a first terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first type of LMF entity according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a second terminal according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a second LMF entity according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a first measurement method according to an embodiment of the present application.
  • FIG. 11 is a flowchart of a first measurement method according to an embodiment of the present application.
  • the network architecture and service scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that with the network The evolution of the architecture and the emergence of new business scenarios. The technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the terminal device is a device with a wireless communication function, and can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; it can also be deployed on the water (such as a ship); it can also be deployed in the air ( Such as airplanes, balloons, and satellites).
  • the terminal device may be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, the terminal device of virtual reality (VR), the terminal device of augmented reality (AR) 1.
  • the wireless terminal device in industrial control, the wireless terminal device in self driving, the wireless terminal device in remote medical, and smart grid.
  • the network-side device is a device that provides wireless communication functions for the terminal device, including but not limited to: gNB in 5G, radio network controller (RNC), and node B (node B, NB) ), Base station controller (BSC), base transceiver station (BTS), home base station (e.g., home nodeB, or home nodeB, HNB), baseband unit (BBU), Transmission point (TRP), transmission point (TP), mobile switching center, etc.
  • the base station in this application may also be a device that provides a wireless communication function for the terminal device in other communication systems that may appear in the future.
  • the measurement methods provided in the embodiments of the present application are applicable to an NR system using multi-beam transmission signals.
  • the NR system supports transmission of multiple signal beams in different directions in all frequency ranges.
  • SSB Synchronization Signal Block
  • the terminal does not include information about the downlink reference signal beam, such as beam identification, beam direction, beam width, and the like.
  • the terminal After receiving the OTDOA auxiliary information that does not contain beam related information, the terminal cannot accurately search the downlink reference signal, which increases the time and power consumption for the terminal to search for the downlink reference signal.
  • a measurement system includes a terminal 10 and an LMF entity 20.
  • the terminal 10 is configured to determine a first beam reference signal detected by the terminal 10 and send a request message to a Local Management Function (LMF) entity, where the request message includes a first of the first beam reference signal.
  • LMF Local Management Function
  • Beam information so that the LMF entity determines, according to the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that can be detected by the terminal; The first positioning assistance data of the second beam information; and measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the LMF entity 20 is configured to receive a request message sent by a terminal; wherein the request message includes first beam information of a first beam reference signal detected by the terminal; and it is determined according to the first beam information that the terminal can detect The second beam information of the second beam reference signal sent by a neighboring base station of the second base station; and sending the first positioning assistance data including the second beam information of the second beam reference signal to the terminal, so that the terminal
  • the first positioning assistance data measures the second beam reference signal of the neighboring base station.
  • Terminals in the RRC_CONNECTED state need to periodically measure the first beam reference signal from the serving base station and neighboring base stations, for example, perform radio resource management (RRM) measurement, or perform beam management (Beam management) , BM) measurement.
  • RRM radio resource management
  • Beam management Beam management
  • the first beam reference signal may be a Downlink Reference Signal (DL-RS) for supporting data communication and / or a Positioning Reference Signal (PRS) for supporting positioning; the first beam information It includes some or all of the following information: DL-RS beam identification, DL-RS signal strength, and PRS beam identification.
  • DL-RS Downlink Reference Signal
  • PRS Positioning Reference Signal
  • the DL-RS beam identifier is the SSB index or Channel State Indication Reference Signal (CSI-RS) index detected by the UE during BM / RRM measurement;
  • the DL-RS signal strength is Reference signal received power (RSRP) measurement value obtained when the UE performs BM / RRM measurement;
  • the PRS beam identifier is an identifier of a beam that has previously detected a PRS for the UE.
  • the terminal performs periodic RRM measurement on the first beam reference signal, the first beam reference signal and the signal strength of the first beam reference signal can be obtained; after detecting the first beam reference signal, the terminal sends a request message to the LMF entity
  • the request message is used to request positioning assistance data from the LMF entity.
  • the request message sent by the terminal to the LMF entity includes first beam information of the first beam reference signal.
  • the request message sent by the terminal to the LMF entity also contains other information that is the same as that in the prior art. For details, refer to the information in the request message sent by the terminal to the positioning server in the prior art, which is not described in detail here. .
  • the terminal determines the first beam reference signal detected by itself at the following timing: when the terminal needs to acquire the first positioning assistance information, it determines the first beam reference signal detected by itself.
  • the LMF entity receives the second positioning assistance data reported by each base station and including the third beam information of the third beam reference signal sent by the base station.
  • each base station may actively report the second positioning assistance data including the third beam information of the third beam reference signal sent by the base station to the LMF entity; or after each base station receives the auxiliary data request message issued by the LMF entity , Reporting to the LMF entity the second positioning assistance data including the third beam information of the third beam reference signal sent by the base station.
  • the LMF entity sends an OTDOA information request message to each base station; after receiving the OTDOA information request message, each base station reports the third beam information including the third beam reference signal sent by the base station to the LMF entity through the OTDOA information response message. Second positioning assistance data.
  • the third beam reference signal is a DL-RS used to support data communication and / or a PRS used to support positioning.
  • the third beam information includes some or all of the following information: PRS beam identification, PRS beam direction, PRS beam width, DL-RS beam identification, DL-RS beam direction, DL-RS beam width, DL-RS beam, and Quasi Co-Located (QCL) association relationship between PRS beams.
  • PRS beam identification PRS beam direction
  • PRS beam width PRS beam width
  • DL-RS beam identification DL-RS beam direction
  • DL-RS beam width DL-RS beam
  • DL-RS beam Quasi Co-Located
  • the PRS information included in the second positioning assistance data where the PRS information includes the third beam information of the third beam reference signal.
  • the PRS information includes, in addition to the third beam information of the third beam reference signal, other information in the prior art that is the same as the prior art. For details, refer to the “NRPPa The information in the "OTDOA Information Response" message will not be described in detail here.
  • the LMF entity receives the second positioning assistance data reported by each base station, and does not distinguish the sequence between the second positioning assistance data and the request message sent by the receiving terminal.
  • the LMF entity After receiving the second positioning assistance data reported by each base station and the request message sent by the terminal, the LMF entity determines the second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect.
  • the LMF entity determines, based on the first beam information of the first beam reference signal detected by the terminal and the second positioning assistance data included in the request message, the neighbors that the terminal can detect.
  • the second beam information of the second beam reference signal sent by the base station.
  • the second beam reference signal sent by the neighboring base station that can be detected by the terminal determined by the LMF entity is the second beam sent by the neighboring base station that is theoretically determined by the terminal that the LMF entity can detect.
  • Reference signal; the second beam reference signal sent by the neighboring base station that can be detected by the terminal determined by the LMF entity may be the same as or different from the second beam reference signal sent by the neighboring base station that the terminal can actually detect.
  • the LMF entity After the LMF entity determines the second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect, the LMF entity sends the first positioning assistance data including the second beam information of the second beam reference signal to the terminal;
  • the two-beam reference signal is a PRS used to support positioning;
  • the second beam information includes a PRS beam identifier.
  • the PRS information included in the first positioning assistance data includes the second beam information of the second beam reference signal; in addition, the PRS information includes the second beam information of the second beam reference signal, It also contains other information in the prior art that is the same as the prior art. For details, refer to the information in the “Providing Positioning Assistance Data” message sent by the positioning server to the terminal in the prior art, which is not described in detail here.
  • the following describes a method for the LMF entity to determine the second beam reference signal that can be detected by the terminal according to the embodiment of the present application with reference to FIG. 2.
  • the terminal periodically measures the first beam reference signal from the serving base station and the neighboring base stations, for example, measures DL-RS to support RRM, and determines that DL-RS1 and DL-RS from the base station BS2; and DL-RS2 from the base station BS1 is detected on the DL-RS beam x, and DL-RS from the base station BS2 is detected on the DL-RS beam y. Then the terminal uses the signal strength of the DL-RS beam x, DL-RS beam y, DL-RS1 and / or DL-RS2 as the detected first beam information of the DL-RS, and sends a request including the first beam information The message is sent to the LMF entity.
  • the LMF entity receives the second positioning assistance data including the second beam information of the third beam reference signal reported by each base station; for example, the LMF entity receives the PRS from the base station BS3, and the PRS information includes the BS3 beam identifier and each Beam direction, width, etc.
  • the LMF entity determines that the terminal is located between the base station BS1 and the base station BS2 according to the beam information (DL-RS beam x, DL-RS beam y) carried in the request message; the LMF entity determines that the terminal is located according to the PRS information including the beam information reported by the base station.
  • the PRS from the base station BS3 in the area between the base stations BS2 is used as the second beam reference signal, and the information of the PRS beam b is added to the PRS information of the second beam reference signal and transmitted to the terminal.
  • the LMF entity can determine the distance between the terminal and the base station transmitting the beam reference signal (PRS), and thereby determine the time window for the terminal to search for the beam reference signal (PRS) beam, thereby reducing the terminal's search for the beam reference signal ( PRS) time and power consumption.
  • PRS beam reference signal
  • the terminal may measure the second beam reference signal in the following ways:
  • the positioning request message sent by the LMF entity to the terminal correspondingly, after receiving the positioning request message, the terminal measures a second beam reference signal of a neighboring base station according to the first positioning assistance data.
  • Method 2 terminal trigger.
  • the terminal actively reports the positioning information obtained by measuring the second beam reference signal of the neighboring base station to the LMF entity.
  • the terminal may measure the second beam reference signal immediately after receiving the first positioning assistance data sent by the LMF entity, or the terminal may measure the second beam reference signal at a preset timing.
  • the terminal after the terminal measures the second beam reference signal of the neighboring base station according to the first positioning assistance data, the terminal determines positioning information obtained by performing the measurement; and uses the positioning information and The second beam information of the second beam reference signal is sent to the LMF entity.
  • the LMF entity receives the second beam information of the second beam reference signal used for measurement sent by the terminal, and determines a location based on the positioning information and the second beam information of the second beam reference signal used for measurement. The location of the terminal.
  • the positioning information may be a positioning measurement value, and may specifically be an RSTD measurement value.
  • the PRS from the base station BS1, the PRS from the base station BS2, and the PRS from the base station BS3 are measured to obtain the RSTD measurement value; and the PRS from the BS1 is detected on the PRS beam x , PRS from BS2 is detected on PRS beam y, and PRS from BS3 is detected on PRS beam b.
  • the second beam information of the second beam reference signal used by the terminal for measurement includes PRS beam x, PRS beam y, The information of the PRS beam b; then the LMF entity determines the location of the terminal according to the RSTD measurement value of the terminal and the information of the PRS beam x, PRS beam y, and PRS beam b, thereby improving the accuracy and reliability of OTDOA positioning.
  • FIG. 4 a first OTDOA positioning flowchart according to an embodiment of the present application.
  • the terminal establishes a connection with the base station and is in an RRC connection state.
  • Step 401 The LMF entity requests the positioning capability of the terminal.
  • the LMF entity requests the terminal to report a positioning function supported by the terminal.
  • Step 402 The terminal reports its positioning capability to the LMF entity.
  • the terminal reports the positioning capability to the LMF entity, it indicates that the terminal supports the NG-RAN OTDOA positioning capability.
  • Step 403 When downlink positioning assistance data is needed, the terminal determines a first beam reference signal detected by the terminal.
  • the first beam reference signal is a PRS and / or a DL-RS.
  • Step 404 The terminal sends a request message to the LMF entity.
  • the request message includes first beam information of a first beam reference signal.
  • Step 405 The LMF entity sends an OTDOA information request message to the base station.
  • Step 406 The base station reports the second positioning assistance data including the third beam information of the third beam reference signal sent by the base station to the LMF entity through the OTDOA information response message.
  • the third beam reference signal is a PRS and / or a DL-RS.
  • Step 407 The LMF entity determines, according to the first beam information, the second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect.
  • the second beam reference signal is a PRS.
  • Step 408 The first positioning assistance data including the second beam information of the second beam reference signal sent by the LMF entity to the terminal.
  • Step 409 The positioning request message sent by the LMF entity to the terminal.
  • Step 410 The terminal measures the second beam reference signal of the neighboring base station according to the first positioning assistance data, and determines positioning information obtained by the measurement.
  • the positioning information may be a RSTD measurement value.
  • Step 411 The terminal sends the positioning information and the second beam information of the second beam reference signal used for measurement to the LMF entity.
  • Step 412 The LMF entity determines the location of the terminal according to the positioning information and the second beam information of the second beam reference signal used for measurement.
  • steps 401 to 404 are not distinguished from the order of steps 405 and 406, and steps 401 to 404 may be executed first, and then steps 405 and 406 may be executed first; or steps may be executed first. Steps 405 and 406 are followed by steps 401 to 404; or steps 401 to 404 and steps 405 and 406 are performed simultaneously.
  • the terminal establishes a connection with the base station and is in an RRC connection state.
  • Step 501 The LMF entity requests the positioning capability of the terminal.
  • the LMF entity requests the terminal to report a positioning function supported by the terminal.
  • Step 502 The terminal reports its positioning capability to the LMF entity.
  • the terminal reports the positioning capability to the LMF entity, it indicates that the terminal supports the NG-RAN OTDOA positioning capability.
  • Step 503 When downlink positioning assistance data is needed, the terminal determines a first beam reference signal detected by the terminal.
  • the first beam reference signal is a PRS and / or a DL-RS.
  • Step 504 The terminal sends a request message to the LMF entity.
  • the request message includes first beam information of a first beam reference signal.
  • Step 505 The LMF entity sends an OTDOA information request message to the base station.
  • Step 506 The base station reports the second positioning assistance data including the third beam information of the third beam reference signal sent by the base station to the LMF entity through the OTDOA information response message.
  • the third beam reference signal is a PRS and / or a DL-RS.
  • Step 507 The LMF entity determines, according to the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that can be detected by the terminal.
  • the second beam reference signal is a PRS.
  • Step 508 The first positioning assistance data including the second beam information of the second beam reference signal sent by the LMF entity to the terminal.
  • Step 509 The terminal measures the second beam reference signal of the neighboring base station according to the first positioning assistance data, and determines positioning information obtained by performing the measurement.
  • the positioning information may be a RSTD measurement value.
  • Step 510 The terminal sends the positioning information and the second beam information of the second beam reference signal used for measurement to the LMF entity.
  • Step 511 The LMF entity determines the location of the terminal according to the positioning information and second beam information of a second beam reference signal used for measurement.
  • data is forwarded through the access network node (such as a base station) and the access and mobility management function (AMF) entity.
  • the access network node such as a base station
  • AMF access and mobility management function
  • the terminal sends a request message including the first beam information of the first beam reference signal to the LMF entity
  • the terminal sends the request message to the serving base station
  • the serving base station forwards the request message to the AMF entity
  • the AMF entity then The request message is forwarded to the LMF entity.
  • the first terminal of the embodiment of the present application includes a processor 600, a memory 601, a transceiver 602, and a bus interface.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 601 may store data used by the processor 1000 when performing operations.
  • the transceiver 603 is configured to receive and transmit data under the control of the processor 600.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 600 and various circuits of the memory represented by the memory 601 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 601 may store data used by the processor 600 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 600 or implemented by the processor 600.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 600 or an instruction in the form of software.
  • the processor 600 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 601, and the processor 600 reads the information in the memory 601 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 600 is configured to read a program in the memory 601 and execute the program: the terminal determines a first beam reference signal detected by the terminal and sends a request message to an LMF entity, where the request message includes the first First beam information of a beam reference signal, so that the LMF entity determines, according to the first beam information, second beam information of a second beam reference signal sent by an adjacent base station that can be detected by the terminal; the terminal Receiving first positioning assistance data including the second beam information sent by the LMF entity; and measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for supporting positioning; and the second beam reference signal is a positioning for supporting positioning Reference signal PRS.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the processor 600 is further configured to: after measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data, determine positioning information obtained by the measurement; Sending the positioning information and the second beam information of the second beam reference signal used for measurement to the LMF entity, so that the LMF entity according to the positioning information and the second beam reference signal used for measurement The second beam information determines the position of the terminal.
  • the processor 600 is specifically configured to: when it is necessary to acquire the first positioning assistance data, determine the first beam reference signal detected by itself.
  • the processor 600 is further configured to: after receiving the first positioning assistance data including the second beam information of the second beam reference signal and sent by the LMF entity, according to the first positioning assistance data Before measuring the second beam reference signal of the neighboring base station, a positioning request message sent by the LMF entity is received.
  • the first type of LMF entity in this embodiment of the present application includes a processor 700, a memory 701, and a transceiver 702.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 may store data used by the processor 700 when performing operations.
  • the transceiver 702 is configured to receive and transmit data under the control of the processor 700.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 700 and various circuits of the memory represented by the memory 701 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 700 is responsible for managing the bus architecture and general processing, and the memory 701 may store data used by the processor 700 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 700, or implemented by the processor 700.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 700 or an instruction in the form of software.
  • the processor 700 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 701, and the processor 700 reads the information in the memory 701 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 700 is configured to read a program in the memory 701 and execute: receiving a request message sent by a terminal; wherein the request message includes first beam information of a first beam reference signal detected by the terminal Determining, according to the first beam information, second beam information of a second beam reference signal sent by an adjacent base station that can be detected by the terminal; and sending the second beam information including the second beam reference signal to the terminal. First positioning assistance data, so that the terminal measures the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the processor 700 is further configured to: receive positioning information sent by the terminal, and determine a location of the terminal according to the positioning information; wherein the positioning information is the terminal according to the first
  • the positioning assistance data is obtained by measuring the second beam reference signal of the neighboring base station.
  • the processor 700 is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the information reported by each base station and includes the information sent by the base station.
  • the second positioning assistance data of the third beam information of the third beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the information reported by each base station and includes the information sent by the base station.
  • the second positioning assistance data of the third beam information of the third beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the information reported by each base station and includes the information sent by the base station.
  • the second positioning assistance data of the third beam information of the third beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the information reported by each base station and includes the
  • the processor 700 is specifically configured to determine the first beam information of the first beam reference signal detected by the terminal and the second positioning assistance data included in the request message.
  • the terminal can detect the second beam information of the second beam reference signal sent by the neighboring base station.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for supporting positioning; and the second beam reference signal is a beam for supporting positioning Positioning reference signal PRS.
  • the third beam reference signal is a DL-RS used to support data communication and / or a PRS used to support positioning.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the third beam information includes part or all of the following information: PRS beam identification, PRS beam direction, PRS beam width, DL-RS beam identification, DL-RS beam direction, DL-RS beam width, DL -QCL correlation between RS beam and PRS beam.
  • the processor 700 is further configured to: receive the second beam information of the second beam reference signal used by the terminal for measurement and sent by the terminal; and the processor 700 is specifically configured to: The second beam information of the second beam reference signal used for measurement is used to determine the position of the terminal.
  • the second terminal in this embodiment of the present application includes:
  • a first sending module 801 is configured to determine a first beam reference signal detected by itself and send a request message to an LMF entity, where the request message includes first beam information of the first beam reference signal, so that all The LMF entity determines, according to the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that can be detected by the terminal;
  • a first receiving module 802 configured to receive first positioning assistance data including second beam information of the second beam reference signal sent by the LMF entity;
  • a measurement module 803 is configured to measure the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for positioning support; and the second beam reference signal is a PRS for positioning support .
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the measurement module 803 is further configured to: after measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data, determine the positioning information obtained by the measurement; Sending the positioning information and the second beam information of the second beam reference signal used for measurement to the LMF entity, so that the LMF entity according to the positioning information and the second beam reference signal used for measurement The second beam information determines the position of the terminal.
  • the first sending module 801 is specifically configured to determine a first beam reference signal detected by itself when it needs to acquire first positioning assistance data.
  • the first receiving module 802 is further configured to: after receiving the first positioning assistance data including the second beam information of the second beam reference signal sent by the LMF entity, according to the first positioning Before the auxiliary data measures the second beam reference signal of the neighboring base station, it receives a positioning request message sent by the LMF entity.
  • the second type of LMF entity in this embodiment of the present application includes:
  • a second receiving module 901 configured to receive a request message sent by a terminal; wherein the request message includes first beam information of a first beam reference signal detected by the terminal;
  • a determining module 902 configured to determine, according to the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that the terminal can detect;
  • the second sending module 903 is configured to send the first positioning assistance data including the second beam information of the second beam reference signal to the terminal, so that the terminal sends the first positioning assistance data to the phase according to the first positioning assistance data.
  • the second beam reference signal of the neighboring base station is measured.
  • the second sending module 903 is further configured to: receive positioning information sent by the terminal, and determine a location of the terminal according to the positioning information; wherein the positioning information is the terminal according to the The first positioning assistance data is obtained by measuring the second beam reference signal of the neighboring base station.
  • the determining module 902 is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the report sent by each base station and includes the sent by the base station.
  • the second positioning assistance data of the third beam information of the third beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the report sent by each base station and includes the sent by the base station.
  • the second positioning assistance data of the third beam information of the third beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the report sent by each base station and includes the sent by the base station.
  • the second positioning assistance data of the third beam information of the third beam reference signal is further configured to: before determining the second beam information of the second beam reference signal sent by the neighboring base station that can be detected by the terminal, receive the report sent by each base station and includes the
  • the determining module 902 is specifically configured to determine the first beam information of the first beam reference signal detected by the terminal and the second positioning assistance data included in the request message.
  • the terminal can detect the second beam information of the second beam reference signal sent by the neighboring base station.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for supporting positioning; and the second beam reference signal is a beam for supporting positioning PRS.
  • the third beam reference signal is a DL-RS used to support data communication and / or a PRS used to support positioning.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the third beam information includes part or all of the following information: PRS beam identification, PRS beam direction, PRS beam width, DL-RS beam identification, DL-RS beam direction, DL-RS beam width, DL -QCL correlation between RS beam and PRS beam.
  • the second sending module 903 is further configured to receive second beam information of a second beam reference signal sent by the terminal for measurement; optionally, the second sending module 903 is specifically configured to: : Determining the location of the terminal according to the positioning information and second beam information of a second beam reference signal used for measurement.
  • An embodiment of the present application further provides a computer-storable medium on which a computer program is stored.
  • the program is executed by a processor, the steps of the foregoing terminal-side method or the steps of the foregoing LMF entity-side method are implemented.
  • a measurement method is also provided in the embodiment of the present application. Since the method corresponds to the terminal-side method in the measurement system of the embodiment of the present application, and the principle of solving the problem by the method is similar to the system, the method For implementation, please refer to the implementation of the system.
  • a measurement method includes:
  • Step 1001 The terminal determines a first beam reference signal detected by the terminal and sends a request message to the LMF entity, where the request message includes first beam information of the first beam reference signal, so that the LMF entity Determining, by the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that can be detected by the terminal;
  • Step 1002 The terminal receives first positioning assistance data including the second beam information sent by the LMF entity.
  • Step 1003 The terminal measures the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for positioning support; and the second beam reference signal is a PRS for positioning support .
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the terminal further includes: the terminal determines the positioning information obtained by the measurement; the Sending, by the terminal, the positioning information and second beam information of a second beam reference signal used for measurement to the LMF entity, so that the LMF entity according to the positioning information and the second beam used for measurement
  • the second beam information of the reference signal determines the position of the terminal.
  • the determining, by the terminal, the first beam reference signal detected by the terminal includes: when the terminal needs to acquire the first positioning assistance data, determining the first beam reference signal detected by the terminal.
  • the terminal may Before the measurement of the second beam reference signal of the base station, the method further includes: receiving, by the terminal, a positioning request message sent by the LMF entity.
  • an embodiment of the present application further provides a measurement method. Since the method corresponds to a method performed by an LMF entity in the measurement system of the embodiment of the present application, and the principle of the method to solve the problem is similar to the system, For the implementation of the method, refer to the implementation of the system.
  • a measurement method provided in an embodiment of the present application includes:
  • Step 1101 The LMF entity receives a request message sent by a terminal, where the request message includes first beam information of a first beam reference signal detected by the terminal;
  • Step 1102 The LMF entity determines, according to the first beam information, second beam information of a second beam reference signal sent by a neighboring base station that the terminal can detect;
  • Step 1103 The LMF entity sends first positioning assistance data including the second beam information to the terminal, so that the terminal sends the second positioning assistance data to the second base station according to the first positioning assistance data. Beam reference signals are measured.
  • the LMF entity further includes: receiving, by the LMF entity, positioning information sent by the terminal, and according to the positioning The information determines the location of the terminal; wherein the positioning information is obtained by the terminal measuring the second beam reference signal of the neighboring base station according to the first positioning assistance data.
  • the LMF entity before determining the second beam reference signal sent by an adjacent base station that can be detected by the terminal, the LMF entity further includes: receiving, by the LMF entity, a third beam reported by each base station and including the third beam sent by the base station The second positioning assistance data of the third beam information of the reference signal.
  • the determining, by the LMF entity, the second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect includes: the LMF entity detects the second beam information according to the terminal included in the request message.
  • the first beam information of the first beam reference signal and the second positioning assistance data determine second beam information of the second beam reference signal sent by the neighboring base station that the terminal can detect.
  • the first beam reference signal is a beam communication reference signal DL-RS for supporting data communication and / or a beam PRS for supporting positioning; and the second beam reference signal is a beam for supporting positioning PRS.
  • the third beam reference signal is a DL-RS used to support data communication and / or a PRS used to support positioning.
  • the first beam information includes part or all of the following information: a DL-RS beam identifier, a DL-RS signal strength, and a PRS beam identifier.
  • the second beam information includes a PRS beam identifier.
  • the third beam information includes part or all of the following information: PRS beam identification, PRS beam direction, PRS beam width, DL-RS beam identification, DL-RS beam direction, DL-RS beam width, DL -QCL correlation between RS beam and PRS beam.
  • the method further includes: receiving, by the LMF entity, second beam information of a second beam reference signal used by the terminal for measurement, and determining the location of the terminal according to the positioning information, The method includes: determining, by the LMF entity, a location of the terminal according to the positioning information and second beam information of a second beam reference signal used for measurement.
  • the application can also be implemented in hardware and / or software (including firmware, resident software, microcode, etc.). Still further, the present application may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code implemented in the medium for use by an instruction execution system or Used in conjunction with the instruction execution system.
  • a computer-usable or computer-readable medium may be any medium that can contain, store, communicate, transmit, or transfer a program for use by or in connection with an instruction execution system, apparatus, or device, Device or equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本申请涉及无线通信技术领域,特别涉及一种测量方法及设备,用以解决公开了一种现有技术中存在的NR***中还没有一种终端进行OTDOA测量的具体方案的问题。本申请实施例终端确定检测到的第一波束参考信号,并向LMF实体发送请求消息;接收LMF实体发送的包含第二波束参考信号的第二波束信息的第一定位辅助数据;根据第一定位辅助数据对相邻基站的第二波束参考信号进行测量。从而保证LMF实体根据第一波束参考信号的第一波束信息,能够准确给UE提供定位辅助数据,并减少终端搜索第二波束参考信号的时间和功耗,进一步提高***性能。

Description

一种测量方法及设备
本申请要求在2018年9月26日提交中国专利局、申请号为201811126838.X、发明名称为“一种测量方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别涉及一种测量方法及设备。
背景技术
下行到达时间观测差(Observed Time Difference of Arrival,OTDOA)是一种3GPP协议规范所定义的定位方法。OTDOA的基本原理是:用户终端(User Equipment,UE)测量从多个传输点(Transmission Point,TP)发送的下行链路参考信号,以获得到达UE的参考信号时间差(Reference Signal Time Difference measurement,RSTD)测量值,并将RSTD测量值上报给定位服务器以定位出UE的位置。
在OTDOA定位过程中,定位服务器需先从基站(Base station,BS)通过3GPP规定的定位协议,获得与小区相关联的OTDOA辅助信息,例如:物理小区ID、小区的天线位置和PRS配置等。然后,UE通过3GPP规定的定位协议,从定位服务器获得用于支持RSTD测量的OTDOA辅助信息;UE根据OTDOA辅助信息进行OTDOA测量,得到RSTD测量值。然而NR(5G New Radio,5G新空口)***为多波束传输信号的***,现有的UE进行OTDOA测量的方法无法直接适用于NR***。
综上所述,目前NR***中还没有一种终端进行OTDOA测量的具体方案。
发明内容
本申请提供一种测量方法及设备,用以解决现有技术中存在的NR***中还没有一种终端进行OTDOA测量的具体方案的问题。
基于上述问题,第一方面,本申请实施例提供一种测量方法,该方法包括:终端确定自身检测到的第一波束参考信号,并向本地管理功能(LMF)实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;所述终端接收所述LMF实体发送的包含所述第二波束信息的第一定位辅助数据;所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号(DL-RS)和/或用于支持定位的波束定位参考信号(PRS);所述第二波束参考信号为用于支持定位的定位参考信号PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述终端在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,还包括:所述终端确定进行测量得到的定位信息;所述终端将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
可选的,所述终端确定自身检测到的第一波束参考信号,包括:所述终端在需要获取第一定位辅助数据时,确定自身检测到的第一波束参考信号。
可选的,所述终端在接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据之后,在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之前,还包括:所述终端接收到所述LMF实体发送的定位请求消息。
第二方面,本申请实施例提供一种测量方法,该方法包括:LMF实体接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;所述LMF实体根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;所述LMF实体向所述终端发送包含所述第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述LMF实体在向所述终端发送包含所述第二波束信息的第一定位辅助数据之后,还包括:所述LMF实体接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
可选的,所述LMF实体在确定终端能够检测到的相邻基站所发送的第二波束参考信号之前,还包括:所述LMF实体接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
可选的,所述LMF实体确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息,包括:所述LMF实体根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的波束定位参考信号PRS。
可选的,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述第三波束信息包括下列信息中的部分或全部:PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的QCL关联关系。
可选的,该方法还包括:所述LMF实体接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;所述LMF实体根据所述定位信息确定所述终端的位置,包括:所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
第三方面,本申请实施例提供一种终端,该终端包括:处理器、存储器和收发机;其中,所述处理器,用于读取存储器中的程序并执行:确定自身检测到的第一波束参考信号,并向能LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据;根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的定位参考信号PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述处理器还用于:在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,确定进行测量得到的定位信息;将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
可选的,所述处理器具体用于:在需要获取第一定位辅助数据时,确定自身检测到的第一波束参考信号。
可选的,所述处理器还用于:在接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据之后,根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之前,接收到所述LMF实体发送的定位请求消息。
第四方面,本申请实施例提供一种LMF实体,该LMF实体包括:处理器、存储器和收发机;其中,所述处理器,用于读取存储器中的程序并执行:接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;向所述终端发送包含所述第二波束参考信号的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述处理器还用于:接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
可选的,所述处理器还用于:在确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息之前,接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
可选的,所述处理器具体用于:根据所述请求消息中包含的所述终端检测到的第一波 束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束定位参考信号PRS;所述第二波束参考信号为用于支持定位的波束定位参考信号PRS。
可选的,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述第三波束信息包括下列信息中的部分或全部:PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的QCL关联关系。
可选的,所述处理器还用于:接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;所述处理器具体用于:根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
第五方面,本申请实施例还提供一种终端,该终端包括:第一发送模块,用于确定自身检测到的第一波束参考信号,并向LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;接收模块,用于所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据;测量模块,用于根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
第六方面,本申请实施例还提供一种LMF实体,该设备包括:第二接收模块,用于接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;确定模块,用于根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;第二发送模块,用于向所述终端发送包含所述第二波束参考信号的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
第七方面,本申请实施例提供一种计算机可存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一方面所述的方法的步骤,或实现上述第而方面所述的方法的步骤。
由于本申请实施例终端确定自身检测到的第一波束参考信号,并将所述包含第一波束参考信号的第一波束信息的请求消息发送给LMF实体,LMF实体确定终端能够检测到的相邻基站所发送的第二波束参考信号,并且终端接收LMF实体发送的第一定位辅助数据中包含第二波束参考信号的第二波束信息,使得终端能够根据第一定位辅助数据进行OTDOA测量,从而保证LMF实体根据第一波束参考信号的第一波束信息,能够准确给UE提供定位辅助数据;并且由于第一定位辅助数据中包含第二波束参考信号的第二波束信息,能够使得终端根据第二波束信息快速检测到波束参考信号,减少终端搜索第二波束参考信号的时间和功耗,进一步提高***性能。
附图说明
图1为本申请实施例进行测量和定位的***结构示意图;
图2为本申请实施例LMF实体确定第二波束参考信号的方法示意图;
图3为本申请实施例LMF实体对终端进行定位的方法示意图;
图4为本申请实施例第一种定位流程图;
图5为本申请实施例第二种定位流程图;
图6为本申请实施例第一种终端的结构示意图;
图7为本申请实施例第一种LMF实体的结构示意图;
图8为本申请实施例第二种终端的结构示意图;
图9为本申请实施例第二种LMF实体的结构示意图;
图10为本申请实施例第一种测量方法流程图;
图11为本申请实施例第一种测量方法流程图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“***”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
其中,所述终端设备,是一种具有无线通信功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)所述终端设备、增强现实(augmented reality,AR)所述终端设备、工业控制(industrial control)中的无线所述终端设备、无人驾驶(self driving)中的无线所述终端设备、远程医疗(remote medical)中的无线所述终端设备、智能电网(smart grid)中的无线所述终端设备、运输安全(transportation safety)中的无线所述终端设备、智慧城市(smart city)中的无线所述终端设备、智慧家庭(smart home)中的无线所述终端设备等;还可以是各种形式的UE,移动台(mobile station,MS),所述终端设备(terminal device)。
所述网络侧设备,是一种为所述终端设备提供无线通信功能的设备,包括但不限于:5G中的gNB、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、 家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(BaseBand Unit,BBU)、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、移动交换中心等。本申请中的基站还可以是未来可能出现的其他通信***中为所述终端设备提供无线通信功能的设备。
本申请实施例给出的测量方法适用于采用多波束传输信号的NR***。NR***在所有频率范围内支持传输多个不同方向的信号波束。例如,协议规定一个同步块(Synchronization Signal block,SSB)集合(burst)可包含多达L个SSB(在3GHz以下频段,L=4,在3GHz和6GHz之间的频段,L=8,在6GHz以上频段,L=64),各个SSB的传输波束方向一般是不一样的。
由于目前终端、定位服务器和基站之间交互的OTDOA辅助信息中不包含下行链路参考信号波束有关的信息,例如波束标识、波束方向、波束宽度等。终端在接收到不包含波束有关信息的OTDOA辅助信息之后,无法准确搜索下行链路参考信号,增加终端搜索下行链路参考信号的时间和功耗。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
如图1所示,本申请实施例一种测量***,包括:终端10和LMF实体20。
终端10、用于确定自身检测到的第一波束参考信号,并向本地管理功能(Location Management Function,LMF)实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;接收所述LMF实体发送的包含所述第二波束信息的第一定位辅助数据;根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
LMF实体20,用于接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;向所述终端发送包含所述第二波束参考信号的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
处于RRC连接态(RRC_CONNECTED)状态的终端需要周期性地测量来自服务基站和相邻基站的第一波束参考信号,例如进行无线资源管理(Radio resource management,RRM)测量,或进行波束管理(Beam management,BM)测量。
其中,第一波束参考信号可以为用于支持数据通信的下行参考信号(Downlink Reference Signals,DL-RS)和/或用于支持定位的定位参考信号(Positioning Reference Signal,PRS);第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
这里需要说明的是,DL-RS波束标识为UE在进行BM/RRM测量时检测得到的SSB索引或信道状态指示参考信号(Channel State Indication Reference Signal,CSI-RS)索引;DL-RS信号强度为UE在进行BM/RRM测量时获得的参考信号接收功率(Reference Signal Receiving Power,RSRP)测量值;PRS波束标识为UE之前或现在已经检测到PRS的波束 的标识。
若终端对第一波束参考信号进行周期性的RRM测量,则可以获得第一波束参考信号以及第一波束参考信号的信号强度;终端在检测到第一波束参考信号之后,向LMF实体发送请求消息,该请求消息用于向LMF实体请求定位辅助数据;其中,终端向LMF实体发送的请求消息中包含第一波束参考信号的第一波束信息。
需要说明的是,终端向LMF实体发送的请求消息中还包含其他与现有技术相同的信息,具体可以参见现有技术中终端发送给定位服务器的请求消息中的信息,在此不再详细赘述。
可选的,终端在下列时机确定自身检测到的第一波束参考信号:所述终端在需要获取第一定位辅助信息时,确定自身检测到的第一波束参考信号。
另外,LMF实体接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
可选的,各个基站可以主动向LMF实体上报包含基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据;或者各个基站在接收到LMF实体下发的辅助数据请求消息后,向LMF实体上报包含基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
具体的,LMF实体向各个基站下发OTDOA信息请求消息;各个基站在接收到OTDOA信息请求消息之后,通过OTDOA信息响应消息向LMF实体上报包含基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
其中,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
所述第三波束信息包括下列信息中的部分或全部:PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的准共站址(Quasi Co-Located,QCL)关联关系。
具体的,第二定位辅助数据中包含的PRS信息,其中,该PRS信息中包含第三波束参考信号的第三波束信息。另外,PRS信息中除包含第三波束参考信号的第三波束信息之外,还包含现有技术中其他与现有技术相同的信息,具体可以参见现有技术中基站发送给定位服务器的“NRPPa OTDOA信息响应”消息中的信息,在此不再详细赘述。
这里需要说明的是,LMF实体接收各个基站上报的第二定位辅助数据,与接收终端发送的请求消息之间不区分先后顺序。
LMF实体在接收到各个基站上报的第二定位辅助数据,以及终端发送的请求消息后,确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
可选的,LMF实体根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
这里需要说明的是,LMF实体确定出的终端能够检测到的相邻基站所发送的第二波束参考信号,为LMF实体确定的理论上终端最大可能检测到的相邻基站所发送的第二波束参考信号;LMF实体确定出的终端能够检测到的相邻基站所发送的第二波束参考信号,与终端实际能够检测到的相邻基站所发送的第二波束参考信号可能相同或者不同。
LMF实体在确定出终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息之后,向终端发送包含第二波束参考信号的第二波束信息的第一定位辅助数据;第 二波束参考信号为用于支持定位的PRS;第二波束信息包括PRS波束标识。
具体的,第一定位辅助数据中包含的PRS信息,该PRS信息中包含第二波束参考信号的第二波束信息;另外,PRS信息中除包含第二波束参考信号的第二波束信息之外,还包含现有技术中其他与现有技术相同的信息,具体可以参见现有技术中定位服务器发送给终端的“提供定位协助数据”消息中的信息,在此不再详细赘述。
下面结合附图2,说明本申请实施例LMF实体确定终端能够检测到的第二波束参考信号的方法。
如图2所示,假设终端周期性地测量来自服务基站和相邻基站的第一波束参考信号,例如测量DL-RS来支持RRM,根据RRM测量结果确定检测到来自基站BS1的DL-RS1和来自基站BS2的DL-RS;并且是在DL-RS波束x上检测到来自基站BS1的DL-RS2,在DL-RS波束y上检测到来自基站BS2的DL-RS。则终端将DL-RS波束x、DL-RS波束y、DL-RS1和/或DL-RS2的信号强度作为检测到的DL-RS的第一波束信息,并将包含该第一波束信息的请求消息发送给LMF实体。
另外,LMF实体接收各个基站上报的包含第三波束参考信号的第二波束信息的第二定位辅助数据;例如,LMF实体接收到来自基站BS3的PRS,且PRS信息中包含BS3的波束标识及各个波束方向、宽度等。
LMF实体根据请求消息中携带的波束信息(DL-RS波束x、DL-RS波束y),确定终端位于基站BS1和基站BS2之间;LMF实体根据基站上报的包含波束信息的PRS信息,确定被发送到基站BS1和基站BS2之间区域的基站BS3波束,例如如图2中所示的基站BS3的PRS波束b能够发送到基站BS1和基站BS2之间区域;LMF实体将被发送到基站BS1和基站BS2之间区域的来自基站BS3的PRS作为第二波束参考信号,并将PRS波束b的信息添加至第二波束参考信号的PRS信息中发送给终端。
另外,LMF实体还可以确定出终端到发送波束参考信号(PRS)的基站之间的距离,并由此确定出终端搜索波束参考信号(PRS)波束的时间窗口,从而减少终端搜索波束参考信号(PRS)的时间和功耗。
终端在接收到LMF实体发送的第一定位辅助数据之后,可以采用下列方式对第二波束参考信号进行测量:
方式1、LMF实体触发。
LMF实体向终端发送的定位请求消息;相应的,终端在接收到定位请求消息后,根据所述第一定位辅助数据对相邻基站的第二波束参考信号进行测量。
方式2:终端触发。
终端主动向LMF实体上报对相邻基站的第二波束参考信号进行测量得到的定位信息。
具体的,终端可以在接收到LMF实体发送的第一定位辅助数据之后,立即对第二波束参考信号进行测量,或者终端可以在预设时机对第二波束参考信号进行测量。
可选的,终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,确定进行测量得到的定位信息;将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体。
相应的,LMF实体接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息,根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
其中,定位信息可以为定位测量值,具体可以为RSTD测量值。
如图3所示,假设终端在进行测量时,对来自基站BS1的PRS、来自基站BS2的PRS、来自基站BS3的PRS进行测量得到RSTD测量值;且在PRS波束x上检测到来自BS1的PRS,在PRS波束y上检测到来自BS2的PRS,PRS波束b上检测到来自BS3的PRS,其中终端进行测量使用的第二波束参考信号的第二波束信息中包含PRS波束x、PRS波束y、PRS波束b的信息;则LMF实体根据终端的RSTD测量值,以及PRS波束x、PRS波束y、PRS波束b的信息共同确定终端的位置,从而提高OTDOA定位的准确性和可靠性。
如图4所示,本申请实施例第一种OTDOA定位流程图。
其中,终端与基站建立连接,且处于RRC连接状态。
步骤401、LMF实体请求终端的定位能力。在步骤401中LMF实体请求终端上报终端所能支持的定位功能。
步骤402、终端向LMF实体上报自身的定位能力。在终端向LMF实体上报定位能力时,表示终端支持NG-RAN OTDOA定位能力。
步骤403、当需要下行定位辅助数据时,终端确定自身检测到的第一波束参考信号。其中,第一波束参考信号为PRS和/或DL-RS。
步骤404、终端向LMF实体发送请求消息。其中,该请求消息中包含第一波束参考信号的第一波束信息。
步骤405、LMF实体向基站下发OTDOA信息请求消息。
步骤406、基站通过OTDOA信息响应消息向LMF实体上报包含基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。其中,第三波束参考信号为PRS和/或DL-RS。
步骤407、LMF实体根据第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。其中,第二波束参考信号为PRS。
步骤408、LMF实体向终端发送的包含第二波束参考信号的第二波束信息的第一定位辅助数据。
步骤409、LMF实体向终端发送的定位请求消息。
步骤410、终端根据第一定位辅助数据对相邻基站的第二波束参考信号进行测量,并确定进行测量得到的定位信息。其中,该定位信息可以为RSTD测量值。
步骤411、终端将定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给LMF实体。
步骤412、LMF实体根据定位信息和进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
上述图4所示的流程图中,步骤401~步骤404,与步骤405、步骤406之间不区分先后顺序,可以先执行步骤401~步骤404,后执行步骤405、步骤406;或者先执行步骤405、步骤406,后执行步骤401~步骤404;或者同时执行步骤401~步骤404,和步骤405、步骤406。
需要说明的是,上述图4所示的定位流程中采用的LMF实体触发终端进行测量的方式;另外,本申请实施例还提供一种在定位流程中采用终端触发测量的方式,具体参见图5所示的定位流程图。
如图5所示,本申请实施例第二种OTDOA定位流程图。其中,终端与基站建立连接, 且处于RRC连接状态。
步骤501、LMF实体请求终端的定位能力。在步骤501中LMF实体请求终端上报终端所能支持的定位功能。
步骤502、终端向LMF实体上报自身的定位能力。在终端向LMF实体上报定位能力时,表示终端支持NG-RAN OTDOA定位能力。
步骤503、当需要下行定位辅助数据时,终端确定自身检测到的第一波束参考信号。其中,第一波束参考信号为PRS和/或DL-RS。
步骤504、终端向LMF实体发送请求消息。其中,该请求消息中包含第一波束参考信号的第一波束信息。
步骤505、LMF实体向基站下发OTDOA信息请求消息。
步骤506、基站通过OTDOA信息响应消息向LMF实体上报包含基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。其中,第三波束参考信号为PRS和/或DL-RS。
步骤507、LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。其中,第二波束参考信号为PRS。
步骤508、LMF实体向终端发送的包含第二波束参考信号的第二波束信息的第一定位辅助数据。
步骤509、终端根据第一定位辅助数据对相邻基站的第二波束参考信号进行测量,并确定进行测量得到的定位信息。其中,该定位信息可以为RSTD测量值。
步骤510、终端将定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给LMF实体。
步骤511、LMF实体根据定位信息和进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
需要说明的是,本申请实施例终端与LMF实体进行通信时,均是通过接入网节点(例如基站),以及接入和移动性管理功能(Access and Mobility Management Function,AMF)实体进行数据转发;例如,在终端向LMF实体发送包含第一波束参考信号的第一波束信息的请求消息时,终端将该请求消息发送给服务基站,服务基站将该请求消息转发给AMF实体,AMF实体再将该请求消息转发给LMF实体。
如图6所示,本申请实施例第一种终端,包括:处理器600、存储器601、收发机602以及总线接口。
处理器600负责管理总线架构和通常的处理,存储器601可以存储处理器1000在执行操作时所使用的数据。收发机603用于在处理器600的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器601代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器600负责管理总线架构和通常的处理,存储器601可以存储处理器600在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器600中,或者由处理器600实现。在实现过程中,信号处理流程的各步骤可以通过处理器600中的硬件的集成逻辑电路或者软件形式的指令完成。处理器600可以是通用处理器、数字信号处理器、专用集成电路、现场 可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器601,处理器600读取存储器601中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器600,用于读取存储器601中的程序并执行:终端确定自身检测到的第一波束参考信号,并向LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;所述终端接收所述LMF实体发送的包含所述第二波束信息的第一定位辅助数据;根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的定位参考信号PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述处理器600还用于:在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,确定进行测量得到的定位信息;将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
可选的,所述处理器600具体用于:在需要获取第一定位辅助数据时,确定自身检测到的第一波束参考信号。
可选的,所述处理器600还用于:在接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据之后,根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之前,接收到所述LMF实体发送的定位请求消息。
如图7所示,本申请实施例第一种LMF实体,该LMF实体包括处理器700、存储器701和收发机702。
处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。收发机702用于在处理器700的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器700代表的一个或多个处理器和存储器701代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器700负责管理总线架构和通常的处理,存储器701可以存储处理器700在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器700中,或者由处理器700实现。在实现过程中,信号处理流程的各步骤可以通过处理器700中的硬件的集成逻辑电路或者软件形式的指令完成。处理器700可以是通用处理器、数字信号处理器、专用集成电路、现场 可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器701,处理器700读取存储器701中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器700,用于读取存储器701中的程序并执行:接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;向所述终端发送包含所述第二波束参考信号的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述处理器700还用于:接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
可选的,所述处理器700还用于:在确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息之前,接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
可选的,所述处理器700具体用于:根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的波束定位参考信号PRS。
可选的,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述第三波束信息包括下列信息中的部分或全部:PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的QCL关联关系。
可选的,所述处理器700还用于:接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;所述处理器700具体用于:根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
如图8所示,本申请实施例第二种终端,包括:
第一发送模块801,用于确定自身检测到的第一波束参考信号,并向LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考 信号的第二波束信息;
第一接收模块802,用于所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据;
测量模块803,用于根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述测量模块803还用于:在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,确定进行测量得到的定位信息;将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
可选的,所述第一发送模块801具体用于:在需要获取第一定位辅助数据时,确定自身检测到的第一波束参考信号。
可选的,所述第一接收模块802还用于:在接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据之后,根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之前,接收到所述LMF实体发送的定位请求消息。
如图9所示,本申请实施例第二种LMF实体,包括:
第二接收模块901,用于接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;
确定模块902,用于根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
第二发送模块903,用于向所述终端发送包含所述第二波束参考信号的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述第二发送模块903还用于:接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
可选的,所述确定模块902还用于:在确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息之前,接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
可选的,所述确定模块902具体用于:根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的波束PRS。
可选的,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述第三波束信息包括下列信息中的部分或全部:PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的QCL关联关系。
可选的,所述第二发送模块903还用于:接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;可选的,所述第二发送模块903具体用于:根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
本申请实施例还提供一种计算机可存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述终端侧方法的步骤,或实现上述LMF实体侧方法的步骤。
基于同一发明构思,本申请实施例中还提供一种测量方法,由于该方法对应的是本申请实施例测量***中终端侧的方法,并且该方法解决问题的原理与该***相似,因此该方法的实施可以参见***的实施,重复之处不再赘述。
如图10所示,本申请实施例一种测量方法,该方法包括:
步骤1001、终端确定自身检测到的第一波束参考信号,并向LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
步骤1002、所述终端接收所述LMF实体发送的包含所述第二波束信息的第一定位辅助数据;
步骤1003、所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述终端在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,还包括:所述终端确定进行测量得到的定位信息;所述终端将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
可选的,所述终端确定自身检测到的第一波束参考信号,包括:所述终端在需要获取第一定位辅助数据时,确定自身检测到的第一波束参考信号。
可选的,所述终端在接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据之后,在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之前,还包括:所述终端接收到所述LMF实体发送的定位请求 消息。
基于同一发明构思,本申请实施例中还提供一种测量方法,由于该方法对应的是本申请实施例测量***中LMF实体执行的方法,并且该方法解决问题的原理与该***相似,因此该方法的实施可以参见***的实施,重复之处不再赘述。
如图11所示,本申请实施例提供的一种测量方法,该方法包括:
步骤1101、LMF实体接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;
步骤1102、所述LMF实体根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
步骤1103、所述LMF实体向所述终端发送包含所述第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
可选的,所述LMF实体在向所述终端发送包含所述第二波束信息的第一定位辅助数据之后,还包括:所述LMF实体接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
可选的,所述LMF实体在确定终端能够检测到的相邻基站所发送的第二波束参考信号之前,还包括:所述LMF实体接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
可选的,所述LMF实体确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息,包括:所述LMF实体根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
可选的,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束PRS;所述第二波束参考信号为用于支持定位的波束PRS。
可选的,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
可选的,所述第一波束信息包括下列信息中的部分或全部:DL-RS波束标识、DL-RS信号强度、PRS波束标识。
可选的,所述第二波束信息包括PRS波束标识。
可选的,所述第三波束信息包括下列信息中的部分或全部:PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的QCL关联关系。
可选的,该方法还包括:所述LMF实体接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;所述LMF实体根据所述定位信息确定所述终端的位置,包括:所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
以上参照示出根据本申请实施例的方法、装置(***)和/或计算机程序产品的框图和/或流程图描述本申请。应理解,可以通过计算机程序指令来实现框图和/或流程图示图的一个块以及框图和/或流程图示图的块的组合。可以将这些计算机程序指令提供给通用计算 机、专用计算机的处理器和/或其它可编程数据处理装置,以产生机器,使得经由计算机处理器和/或其它可编程数据处理装置执行的指令创建用于实现框图和/或流程图块中所指定的功能/动作的方法。
相应地,还可以用硬件和/或软件(包括固件、驻留软件、微码等)来实施本申请。更进一步地,本申请可以采取计算机可使用或计算机可读存储介质上的计算机程序产品的形式,其具有在介质中实现的计算机可使用或计算机可读程序代码,以由指令执行***来使用或结合指令执行***而使用。在本申请上下文中,计算机可使用或计算机可读介质可以是任意介质,其可以包含、存储、通信、传输、或传送程序,以由指令执行***、装置或设备使用,或结合指令执行***、装置或设备使用。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (33)

  1. 一种测量方法,其特征在于,该方法包括:
    终端确定自身检测到的第一波束参考信号,并向本地管理功能LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
    所述终端接收所述LMF实体发送的包含所述第二波束信息的第一定位辅助数据;
    所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
  2. 如权利要求1所述的方法,其特征在于,所述第一波束参考信号为用于支持数据通信的下行参考信号DL-RS和/或用于支持定位的定位参考信号PRS;
    所述第二波束参考信号为用于支持定位的定位参考信号PRS。
  3. 如权利要求2所述的方法,其特征在于,所述第一波束信息包括下列信息中的部分或全部:
    DL-RS波束标识、DL-RS信号强度、PRS波束标识。
  4. 如权利要求2所述的方法,其特征在于,所述第二波束信息包括PRS波束标识。
  5. 如权利要求1所述的方法,其特征在于,所述终端在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,还包括:
    所述终端确定进行测量得到的定位信息;
    所述终端将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
  6. 如权利要求1所述的方法,其特征在于,所述终端确定自身检测到的第一波束参考信号,包括:
    所述终端在需要获取第一定位辅助数据时,确定自身检测到的第一波束参考信号。
  7. 如权利要求1所述的方法,其特征在于,所述终端在接收所述LMF实体发送的包含所述第二波束参考信号的第二波束信息的第一定位辅助数据之后,在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之前,还包括:
    所述终端接收到所述LMF实体发送的定位请求消息。
  8. 一种测量方法,其特征在于,该方法包括:
    LMF实体接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;
    所述LMF实体根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
    所述LMF实体向所述终端发送包含所述第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
  9. 如权利要求8所述的方法,其特征在于,所述LMF实体在向所述终端发送包含所述第二波束信息的第一定位辅助数据之后,还包括:
    所述LMF实体接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
  10. 如权利要求8所述的方法,其特征在于,所述LMF实体在确定终端能够检测到的相邻基站所发送的第二波束参考信号之前,还包括:
    所述LMF实体接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
  11. 如权利要求10所述的方法,其特征在于,所述LMF实体确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息,包括:
    所述LMF实体根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
  12. 如权利要求8~11任一项所述的方法,其特征在于,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束定位参考信号PRS;
    所述第二波束参考信号为用于支持定位的波束定位参考信号PRS。
  13. 如权利要求10所述的方法,其特征在于,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
  14. 如权利要求12所述的方法,其特征在于,所述第一波束信息包括下列信息中的部分或全部:
    DL-RS波束标识、DL-RS信号强度、PRS波束标识。
  15. 如权利要求12所述的方法,其特征在于,所述第二波束信息包括PRS波束标识。
  16. 如权利要求13所述的方法,其特征在于,所述第三波束信息包括下列信息中的部分或全部:
    PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的准共站址QCL关联关系。
  17. 如权利要求9所述的方法,其特征在于,该方法还包括:
    所述LMF实体接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;
    所述LMF实体根据所述定位信息确定所述终端的位置,包括:
    所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
  18. 一种终端,其特征在于,该终端包括:处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    确定自身检测到的第一波束参考信号,并向本地管理功能LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
    接收所述LMF实体发送的包含所述的第二波束信息的第一定位辅助数据;根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
  19. 如权利要求18所述的终端,其特征在于,所述第一波束参考信号为用于支持数 据通信的波束通信参考信号DL-RS和/或用于支持定位的波束定位参考信号PRS;
    所述第二波束参考信号为用于支持定位的定位参考信号PRS。
  20. 如权利要求19所述的终端,其特征在于,所述第一波束信息包括下列信息中的部分或全部:
    DL-RS波束标识、DL-RS信号强度、PRS波束标识;
    所述第二波束信息包括PRS波束标识。
  21. 如权利要求18所述的终端,其特征在于,所述处理器还用于:
    在根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量之后,确定进行测量得到的定位信息;将所述定位信息、以及进行测量使用的第二波束参考信号的第二波束信息发送给所述LMF实体,以使所述LMF实体根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
  22. 一种LMF实体,其特征在于,该LMF实体包括:处理器、存储器和收发机;
    其中,所述处理器,用于读取存储器中的程序并执行:
    接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;
    根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
    向所述终端发送包含所述的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
  23. 如权利要求22所述的LMF实体,其特征在于,所述处理器还用于:
    接收所述终端发送的定位信息,并根据所述定位信息确定所述终端的位置;其中,所述定位信息为所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量得到的。
  24. 如权利要求22所述的LMF实体,其特征在于,所述处理器还用于:
    在确定终端能够检测到的相邻基站所发送的第二波束参考信号之前,接收各个基站上报的包含所述基站所发送的第三波束参考信号的第三波束信息的第二定位辅助数据。
  25. 如权利要求24所述的LMF实体,其特征在于,所述处理器具体用于:
    根据所述请求消息中包含的所述终端检测到的第一波束参考信号的第一波束信息,以及所述第二定位辅助数据,确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息。
  26. 如权利要求22~25任一项所述的LMF实体,其特征在于,所述第一波束参考信号为用于支持数据通信的波束通信参考信号DL-RS和/或用于支持定位的波束定位参考信号PRS;
    所述第二波束参考信号为用于支持定位的波束定位参考信号PRS。
  27. 如权利要求25所述的LMF实体,其特征在于,所述第三波束参考信号为用于支持数据通信的DL-RS和/或用于支持定位的PRS。
  28. 如权利要求26所述的LMF实体,其特征在于,所述第一波束信息包括下列信息中的部分或全部:
    DL-RS波束标识、DL-RS信号强度、PRS波束标识;
    所述第二波束信息包括PRS波束标识。
  29. 如权利要求27所述的LMF实体,其特征在于,所述第三波束信息包括下列信息中的部分或全部:
    PRS波束标识、PRS波束方向、PRS波束宽度、DL-RS波束标识、DL-RS波束方向、DL-RS波束宽度、DL-RS波束和PRS波束之间的QCL关联关系。
  30. 如权利要求22所述的LMF实体,其特征在于,所述处理器还用于:
    接收所述终端发送的进行测量使用的第二波束参考信号的第二波束信息;
    所述处理器具体用于:
    根据所述定位信息和所述进行测量使用的第二波束参考信号的第二波束信息确定所述终端的位置。
  31. 一种终端,其特征在于,该终端包括:
    第一发送模块,用于确定自身检测到的第一波束参考信号,并向本地管理功能LMF实体发送请求消息,其中所述请求消息中包含所述第一波束参考信号的第一波束信息,以使所述LMF实体根据所述第一波束信息确定所述终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
    第一接收模块,用于所述LMF实体发送的包含所述第二波束信息的第一定位辅助数据;
    测量模块,用于根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
  32. 一种LMF实体,其特征在于,该设备包括:
    第二接收模块,用于接收终端发送的请求消息;其中,所述请求消息中包含所述终端检测到的第一波束参考信号的第一波束信息;
    确定模块,用于根据所述第一波束信息确定终端能够检测到的相邻基站所发送的第二波束参考信号的第二波束信息;
    第二发送模块,用于向所述终端发送包含所述的第二波束信息的第一定位辅助数据,以使所述终端根据所述第一定位辅助数据对所述相邻基站的所述第二波束参考信号进行测量。
  33. 一种计算机可存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1~7任一所述方法的步骤,或如权利要求8~17任一所述方法的步骤。
PCT/CN2019/104419 2018-09-26 2019-09-04 一种测量方法及设备 WO2020063286A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021516895A JP7331091B2 (ja) 2018-09-26 2019-09-04 測定方法と装置
EP19867537.3A EP3860192B1 (en) 2018-09-26 2019-09-04 Measurement method and device
US17/275,660 US11201715B2 (en) 2018-09-26 2019-09-04 Measurement method and device
KR1020217012418A KR102525483B1 (ko) 2018-09-26 2019-09-04 측정 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811126838.X 2018-09-26
CN201811126838.XA CN110958630B (zh) 2018-09-26 2018-09-26 一种测量方法及设备

Publications (1)

Publication Number Publication Date
WO2020063286A1 true WO2020063286A1 (zh) 2020-04-02

Family

ID=69951069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104419 WO2020063286A1 (zh) 2018-09-26 2019-09-04 一种测量方法及设备

Country Status (7)

Country Link
US (1) US11201715B2 (zh)
EP (1) EP3860192B1 (zh)
JP (1) JP7331091B2 (zh)
KR (1) KR102525483B1 (zh)
CN (1) CN110958630B (zh)
TW (1) TWI720630B (zh)
WO (1) WO2020063286A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021247959A1 (en) * 2020-06-04 2021-12-09 Qualcomm Incorporated Location assistance data for wideband positioning
CN114051200A (zh) * 2020-07-24 2022-02-15 大唐移动通信设备有限公司 终端定位方法、lmf、终端和存储介质
CN114698098A (zh) * 2020-12-31 2022-07-01 大唐移动通信设备有限公司 定位方法、设备及计算机可读存储介质

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210345285A1 (en) * 2018-10-11 2021-11-04 Huawei Technologies Co., Ltd. Method and Device for User Equipment Positioning
US20200137715A1 (en) * 2018-10-31 2020-04-30 Qualcomm Incorporated System and methods for supporting uplink and downlink positioning procedures in a wireless network
GB2583063A (en) * 2019-02-15 2020-10-21 Samsung Electronics Co Ltd Methods and apparatus for enhancing the configurability of 5G new radio positioning reference signals
CN111601273B (zh) * 2019-02-20 2022-12-13 华为技术有限公司 用于侧行链路通信的调度方法、终端装置以及网络装置
CN113518301B (zh) * 2020-04-09 2022-10-21 大唐移动通信设备有限公司 一种定位参考信号配置方法、lmf、终端及基站
CN113518302B (zh) * 2020-04-09 2022-10-25 大唐移动通信设备有限公司 一种定位参考信号配置方法、lmf、基站及终端
CN113556669A (zh) * 2020-04-17 2021-10-26 维沃移动通信有限公司 处理定位信息的方法、终端设备和网络设备
CN113747340B (zh) * 2020-05-15 2023-04-11 大唐移动通信设备有限公司 信息发送、接收方法、装置及设备
WO2022016465A1 (zh) * 2020-07-23 2022-01-27 北京小米移动软件有限公司 定位测量方法、定位测量装置及存储介质
CN112672421B (zh) * 2020-12-28 2021-08-31 广州爱浦路网络技术有限公司 通信网络中对终端的定位方法、***、装置和存储介质
CN114765773A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 一种终端定位能力上报方法及设备
CN114765852A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 定位角度校准方法及装置
WO2022154642A1 (ko) * 2021-01-18 2022-07-21 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
US20220321300A1 (en) * 2021-03-31 2022-10-06 Apple Inc. On-Demand Reference Signals for Location Related Measurements
CN113853023B (zh) * 2021-10-28 2023-05-12 上海移远通信技术股份有限公司 无线通信的方法及装置
WO2023168143A1 (en) * 2022-03-04 2023-09-07 Qualcomm Incorporated Enhancements for non-terrestrial network (ntn) positioning
WO2023174148A1 (zh) * 2022-03-14 2023-09-21 华为技术有限公司 一种定位方法及通信装置
CN115190585A (zh) * 2022-07-26 2022-10-14 深圳艾灵网络有限公司 终端的定位方法、装置、以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200610A (zh) * 2013-03-19 2013-07-10 华为技术有限公司 定位测量的触发方法及装置、***
US20160195601A1 (en) * 2013-08-12 2016-07-07 Telefonaktiebolaget L M Ericsson Positioning in a Shared Cell
CN107852582A (zh) * 2015-07-08 2018-03-27 瑞典爱立信有限公司 通信网络中的位置信息
CN107925496A (zh) * 2015-08-25 2018-04-17 Lg 电子株式会社 在无线通信***中接收或发送用于位置确定的参考信号的方法及其设备
CN108064056A (zh) * 2016-11-08 2018-05-22 上海朗帛通信技术有限公司 一种ue、基站和服务中心的用于定位的方法和设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9277523B2 (en) 2009-11-05 2016-03-01 Qualcomm Incorporated Method and apparatus for assisted positioning in a wireless communication system
KR20140073677A (ko) * 2012-12-06 2014-06-17 한국전자통신연구원 다중 빔을 사용하는 통신 시스템에서 단말의 위치 결정 방법
CN103856894B (zh) * 2012-12-06 2019-05-07 北京三星通信技术研究有限公司 基于波束的定位方法及设备
WO2015027118A1 (en) * 2013-08-22 2015-02-26 Qualcomm Incorporated Utilizing a reference signal for indoor positioning
CN108702726B (zh) * 2016-03-24 2021-06-01 苹果公司 用于5g***的定位方法
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10649064B2 (en) 2017-02-02 2020-05-12 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal
US10440500B2 (en) * 2017-11-30 2019-10-08 Futurewei Technologies, Inc. System and method for configuring and managing on-demand positioning reference signals
JP7361757B2 (ja) * 2018-08-03 2023-10-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 参照信号の動的構成のための方法
CN110958685B (zh) * 2018-09-26 2022-09-09 华为技术有限公司 一种定位方法以及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200610A (zh) * 2013-03-19 2013-07-10 华为技术有限公司 定位测量的触发方法及装置、***
US20160195601A1 (en) * 2013-08-12 2016-07-07 Telefonaktiebolaget L M Ericsson Positioning in a Shared Cell
CN107852582A (zh) * 2015-07-08 2018-03-27 瑞典爱立信有限公司 通信网络中的位置信息
CN107925496A (zh) * 2015-08-25 2018-04-17 Lg 电子株式会社 在无线通信***中接收或发送用于位置确定的参考信号的方法及其设备
CN108064056A (zh) * 2016-11-08 2018-05-22 上海朗帛通信技术有限公司 一种ue、基站和服务中心的用于定位的方法和设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021247959A1 (en) * 2020-06-04 2021-12-09 Qualcomm Incorporated Location assistance data for wideband positioning
US11792666B2 (en) 2020-06-04 2023-10-17 Qualcomm Incorporated Location assistance data for wideband positioning
CN114051200A (zh) * 2020-07-24 2022-02-15 大唐移动通信设备有限公司 终端定位方法、lmf、终端和存储介质
CN114051200B (zh) * 2020-07-24 2023-04-18 大唐移动通信设备有限公司 终端定位方法、lmf、终端和存储介质
CN114698098A (zh) * 2020-12-31 2022-07-01 大唐移动通信设备有限公司 定位方法、设备及计算机可读存储介质

Also Published As

Publication number Publication date
EP3860192A4 (en) 2021-10-27
EP3860192A1 (en) 2021-08-04
TW202014020A (zh) 2020-04-01
JP2022501923A (ja) 2022-01-06
JP7331091B2 (ja) 2023-08-22
US20210328747A1 (en) 2021-10-21
CN110958630A (zh) 2020-04-03
EP3860192B1 (en) 2023-06-14
US11201715B2 (en) 2021-12-14
KR102525483B1 (ko) 2023-04-24
KR20210066869A (ko) 2021-06-07
TWI720630B (zh) 2021-03-01
CN110958630B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
WO2020063286A1 (zh) 一种测量方法及设备
WO2020164339A1 (zh) 定向发送定位参考信号的方法及装置
TWI735048B (zh) 一種上行到達時間差定位方法、定位伺服器、基地台、位置量測單元、通信裝置及電腦可讀存儲介質
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
WO2021008581A1 (zh) 用于定位的方法和通信装置
WO2019029422A1 (zh) 一种定位、测量上报方法及装置
US9572127B2 (en) Method and device using observed time difference of arrival for positioning mobile station
US11782121B2 (en) Method and device for positioning utilizing beam information
JP7382487B2 (ja) オンデマンド位置決め関連アプリケーションデータのための方法及びデバイス
US11706588B2 (en) Positioning method and apparatus for UE
CN115150937B (zh) 一种通信方法和装置
US20240089900A1 (en) Communication method and communication apparatus that are used for positioning
CN115398959A (zh) 先验信道信息传输的方法
CN115038034A (zh) 定位方法、定位装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217012418

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019867537

Country of ref document: EP

Effective date: 20210426