WO2020029438A1 - 无人机 - Google Patents

无人机 Download PDF

Info

Publication number
WO2020029438A1
WO2020029438A1 PCT/CN2018/112421 CN2018112421W WO2020029438A1 WO 2020029438 A1 WO2020029438 A1 WO 2020029438A1 CN 2018112421 W CN2018112421 W CN 2018112421W WO 2020029438 A1 WO2020029438 A1 WO 2020029438A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
frequency
antenna
parasitic
radiation unit
Prior art date
Application number
PCT/CN2018/112421
Other languages
English (en)
French (fr)
Inventor
吕超
李栋
魏建平
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880017076.1A priority Critical patent/CN110914155B/zh
Publication of WO2020029438A1 publication Critical patent/WO2020029438A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Definitions

  • the present application relates to the technical field of aircraft, and in particular, to an unmanned aerial vehicle.
  • An unmanned aerial vehicle is a non-manned aircraft operated by a radio remote control device or a remote control device to perform a mission.
  • a radio remote control device or a remote control device to perform a mission.
  • drones have been developed and applied in many fields, such as civil, industrial and military applications.
  • UAVs radiate and receive electromagnetic waves through antennas, enabling wireless communication with radio remote control equipment or remote control devices.
  • the present application is to provide an unmanned aerial vehicle whose antenna can effectively improve the problems of high frequency band nulling and low frequency band radiation direction tilt.
  • a drone which includes: a fuselage; a tripod; and an antenna.
  • the antenna includes: a base plate, which is mounted on the tripod; a radiation unit, which is fixed on the base plate, the radiation unit includes a high-frequency radiation unit and a low-frequency radiation unit, and the electromagnetic waves emitted by the low-frequency radiation unit are higher than the electromagnetic waves excited
  • the frequency of the electromagnetic wave excited by the frequency-radiation unit is low; a parasitic unit is fixed to the substrate with respect to the high-frequency radiation unit; and a reflection unit is separately provided from the substrate, the radiation unit, and the parasitic unit , Reflecting the electromagnetic wave radiated by the low-frequency radiation unit.
  • the radiation unit is located on one side of the substrate, and the parasitic unit is located on an opposite side of the substrate.
  • the distance between the parasitic unit and the radiating unit is greater than 0 and less than or equal to one third of the wavelength of the electromagnetic wave radiated by the high-frequency radiating unit.
  • a distance between the parasitic unit and the radiating unit is less than or equal to a quarter of a wavelength of an electromagnetic wave radiated from the high-frequency radiating unit.
  • the length of the parasitic unit is less than or equal to the length of the high-frequency radiation unit.
  • the length of the parasitic unit is greater than or equal to half of the length of the high-frequency radiation unit.
  • the reflection unit is suspended.
  • the length of the reflection unit is greater than or equal to one half of the wavelength of the electromagnetic wave radiated by the low-frequency radiation unit.
  • the radiating unit includes a radiating unit of a dipole antenna.
  • the drone includes an arm connected to the fuselage, and the reflection unit is located in the arm.
  • the antenna of the drone of the present application includes a parasitic unit and a reflective unit.
  • the parasitic unit is fixed to the substrate relative to the high-frequency radiating unit, which can effectively improve the problem of nulling in the high frequency band. Effectively improve the problem of low-frequency radiation direction tilt.
  • FIG. 1 is a schematic perspective view of an embodiment of a drone of the present application.
  • FIG. 2 is a schematic diagram of an embodiment of the antenna of the drone shown in FIG. 1.
  • FIG. 3 is a schematic diagram of the positional relationship between the antenna and the body of the drone shown in FIG. 2.
  • FIG. 4 is a schematic plan view of the antenna and the body of the drone shown in FIG. 3.
  • FIG. 5 is a radiation pattern diagram of high-frequency electromagnetic waves radiated by the antenna shown in FIG. 2.
  • FIG. 6 is a schematic diagram of another embodiment of an antenna of a drone.
  • FIG. 7 is a side view of the antenna shown in FIG. 6.
  • FIG. 8 is a radiation pattern diagram of high-frequency electromagnetic waves of the antenna shown in FIG. 6.
  • FIG. 9 is a comparative radiation pattern diagram of high-frequency electromagnetic waves of the antenna shown in FIG. 6 and the antenna shown in FIG. 2.
  • FIG. 10 is a radiation pattern diagram of low-frequency electromagnetic waves radiated by the antenna shown in FIG. 6.
  • FIG. 11 is a radiation pattern diagram of a low-frequency electromagnetic wave radiated by the antenna shown in FIG. 2.
  • FIG. 12 is a schematic diagram of an environment in which the antenna is located.
  • FIG. 13 is a schematic diagram of another embodiment of an antenna of a drone
  • FIG. 14 is a comparative radiation pattern of low-frequency electromagnetic waves of the antenna shown in FIG. 13 and the antenna shown in FIG. 6.
  • the drone of the embodiment of the present application includes a fuselage, a tripod, and an antenna.
  • the antenna includes a substrate, a radiation unit, a parasitic unit, and a reflection unit.
  • the substrate is mounted on a tripod.
  • the radiation unit is fixed to the substrate.
  • the radiating unit includes a high-frequency radiating unit and a low-frequency radiating unit, and the electromagnetic waves excited by the low-frequency radiating unit have a lower frequency than the electromagnetic waves excited by the high-frequency radiating unit.
  • the parasitic unit is fixed to the substrate with respect to the high-frequency radiation unit.
  • the reflecting unit is separately provided from the substrate, the radiating unit and the parasitic unit, and reflects the electromagnetic waves radiated from the low-frequency radiating unit.
  • the antenna of the drone includes a parasitic unit and a reflective unit.
  • the parasitic unit is fixed to the substrate relative to the high-frequency radiating unit, which can effectively improve the problem of high-frequency nulling.
  • the reflective unit reflects the electromagnetic waves radiated by the low-frequency radiating unit, which can effectively improve The radiation direction of the frequency band is tilted.
  • FIG. 1 is a schematic perspective view of an embodiment of a drone 100.
  • the drone 100 may be used for aerial photography, mapping, and monitoring, but is not limited thereto. In other embodiments, the drone 100 may also be used in agriculture, express delivery, providing network services, and the like.
  • the drone 100 includes a fuselage 101, a tripod 102, and an antenna (not shown).
  • the drone 100 further includes a boom 103 connected to the fuselage 101.
  • the antenna is located inside the drone 100, so it is not shown in FIG.
  • the drone 100 radiates and receives electromagnetic waves through an antenna, and realizes wireless communication with a radio remote control device or a remote control device.
  • the antenna can receive control signals from a radio remote control device or a remote control device, and can send images taken by the drone to the radio remote control device or the remote control device.
  • the body 101 can carry a load, such as a photographing device 104.
  • the shooting device 104 may be directly mounted on the head of the body 101.
  • the shooting device 104 is mounted on the head of the fuselage 101 through a pan / tilt.
  • the fuselage 101 can carry a load such as a spraying device, and is used for spraying water, pesticides, and the like.
  • the fuselage 101 may carry other loads.
  • the body 101 can be mounted with a battery 105, a controller (not shown), and the like.
  • the battery 105 provides power for the flight of the drone 100, and the controller can control the flight of the drone 100 and the like.
  • the fuselage 101 shown in FIG. 1 is substantially flat and elongated. In other embodiments, the fuselage 101 may have other shapes.
  • the stand 102 is mounted below the arm 103. In other embodiments, the tripod 102 is installed below the body 101. The tripod 102 supports and cushions the UAV 100 during take-off and landing, and prevents the fuselage 101, the arm 103, the load or other components from directly hitting the ground and being damaged.
  • the arm 103 is foldably mounted on the fuselage 101. During take-off, flight, and landing, the arm 103 is extended to extend outside the fuselage 101. When the drone 100 is not in use, the arm 103 can be folded on the side of the fuselage 101 for convenient carrying and storage. The arm 103 can be folded and unfolded automatically or manually. In other embodiments, the machine arm 103 is a fixed machine arm and is fixed to the outside of the fuselage 101.
  • a power component 106 is installed at the end of the arm 103 to drive the drone 100 to fly.
  • the power pack 106 may receive power from the battery 105.
  • the power pack 106 includes a motor 107 and a wing 108.
  • the battery 105 powers the motor 107, which drives the wings 108 to rotate.
  • the wing 108 is a rotor
  • the rotation shaft of the motor 107 is connected to the shaft of the wing 108
  • the motor 107 rotates
  • the motorized wing 108 rotates.
  • the controller can control the rotation speed and steering of the motor 107 to control the rotation of the wing 108, thereby controlling the flight of the drone 100.
  • FIG. 1 is only an example of the drone, and is not limited to the example shown in FIG. 1.
  • FIG. 2 shows a schematic diagram of an embodiment of the antenna 200.
  • the antenna 200 may radiate high-frequency electromagnetic waves (also referred to as “high-frequency band”, such as 5.8 GHz) and low-frequency electromagnetic waves (or referred to as “low-frequency band”, such as 2.4 GHz).
  • the antenna 200 may be a dual-band antenna or a multi-band antenna.
  • the antenna 200 includes a substrate 210 and a radiation unit 220, and the radiation unit 220 is fixed to the substrate 210.
  • the substrate 210 is mounted on the stand 102 of the drone 100.
  • the substrate 210 may include a PCB board on which a radio frequency chip (not shown) electrically connected to the radiation unit 220 may be mounted.
  • the radio frequency chip is electrically connected to the radiation unit 220 through a feeder, and the radio frequency signal generated by the radio frequency chip is transmitted to the radiation unit 220 through the feeder.
  • the radiating unit 220 receives power from the feeder, and is excited by the feeder to radiate electromagnetic waves.
  • the radiation unit 220 includes a high-frequency radiation unit 221 and a low-frequency radiation unit 222.
  • the electromagnetic waves excited by the low-frequency radiating unit 222 have a lower frequency than the electromagnetic waves excited by the high-frequency radiating unit 221.
  • the high-frequency radiation unit 221 emits a high-frequency electromagnetic wave of 5.8 GHz
  • the low-frequency radiation unit 222 emits a low-frequency electromagnetic wave of 2.4 GHz.
  • the antenna 200 may be a dipole antenna, may be a single dipole antenna, and may be a miniaturized dipole antenna.
  • the radiating unit 220 includes a radiating unit of a dipole antenna.
  • the radiation unit 220 has a symmetrical structure, and the low-frequency radiation unit 222 is connected to the high-frequency radiation unit 221.
  • the high-frequency radiation unit 221 has a pair of back-opened frame shapes, the frame-shaped three sides surround, and the openings are outward.
  • the low-frequency radiation unit 222 has a pair of horn shapes extending outward from the opening, and the horn mouth is outward.
  • FIG. 3 is a schematic diagram showing the positional relationship between the antenna 200 and the fuselage 101
  • FIG. 4 is a schematic plan view showing the antenna 200 and the fuselage 101.
  • one surface of the fuselage 101 is illustrated in a plane in FIG. 3 and FIG. 4, but in practice, the surface of the fuselage 101 may be a plane or a curved surface.
  • the body 101 reflects the electromagnetic waves radiated from the antenna 200, and the body 101 can be regarded as a reflection plate.
  • Electromagnetic wave propagation also has wave transmission characteristics. Electromagnetic waves are vectors, with amplitude and phase, superimposed in phase, and attenuated in opposite phases. When the electromagnetic wave is reflected on the metal body 101, the phase is reversed. When the distance D between the antenna 200 and the surface of the fuselage 101 is 1/4 wavelength, the reflection path is 1/4 wavelength, and the return path of the electromagnetic wave back to the antenna 200 is 1/2 wavelength, with a phase of 180 degrees. When the reflected electromagnetic wave reaches the antenna 200, it is in phase with the electromagnetic wave radiated forward by the antenna 200 at this time. The reflected electromagnetic wave and the electromagnetic wave radiated forward by the antenna 200 are superimposed in phase. Therefore, the radiation efficiency of the antenna 200 is the largest and the gain of the antenna 200 is the largest .
  • the distance D may be the shortest distance from the antenna 200 to the surface of the body 101.
  • the reflection path is 1/2 wavelength
  • the back and forth path is one wavelength
  • the phase is 360 degrees.
  • the reflected electromagnetic wave arrives at the antenna 200, it is opposite to the electromagnetic wave radiated forward by the antenna 200 at this time, and the reflected electromagnetic wave and the electromagnetic wave radiated forward by the antenna 200 are attenuated in the opposite phase.
  • the distance D is larger than 1/4 wavelength and smaller than 1/2 wavelength
  • the radiation pattern of the antenna 200 is gradually split.
  • the distance D is larger than 1/2 wavelength, the interference area of the electromagnetic wave radiated by the antenna 200 increases, and the number of nulls increases.
  • Some dual-frequency antennas or multi-frequency antennas emit large frequency ratios of low-frequency electromagnetic waves and high-frequency electromagnetic waves. For example, the frequency ratio of 5.8GHz high-frequency electromagnetic waves and 2.4GHz low-frequency electromagnetic waves is large.
  • the high-frequency electromagnetic wave has a shorter wavelength, and the distance D between the antenna 200 and the body 101 is longer than the high-frequency electromagnetic wave.
  • the distance D between the antenna 200 and the fuselage 101 is generally greater than one wavelength of the high-frequency electromagnetic wave. At this time, the zero point appears due to the reflection effect of the fuselage 101.
  • FIG. 5 is a radiation pattern diagram of high-frequency electromagnetic waves radiated by the antenna 200 shown in FIG. 2 to FIG. 4.
  • the distance D between the antenna 200 and the body 101 is about twice the wavelength of the high-frequency electromagnetic waves.
  • a solid line indicates a horizontal plane pattern
  • a dotted line indicates a pitch plane pattern. It can be seen from FIG. 5 that in the horizontal plane pattern, there are three zeros from 0 degrees to 90 degrees, and the zero dip is as deep as -15 dB. It can be seen that when the distance D from the antenna 200 to the fuselage 101 is greater than one wavelength of the high-frequency electromagnetic wave, there are many zeros appearing in the high frequency band, the nulls are serious, and the pattern is not round.
  • FIG. 6 is a schematic diagram showing another embodiment of the antenna 300
  • FIG. 7 is a side view of the antenna 300.
  • the antenna 300 shown in FIGS. 6 and 7 is similar to the antenna 200 of the embodiment shown in FIG. 2.
  • the antenna 300 shown in FIGS. 6 and 7 includes a substrate 310 and a radiating unit 320.
  • the substrate 310 is similar to the substrate 210 of the embodiment shown in FIG. 2;
  • the radiation unit 320 is similar to the radiation unit 220 of the embodiment shown in FIG. 2;
  • the radiation unit 320 includes a high-frequency radiation unit 321 and a low-frequency radiation unit 322, which are similar to The high-frequency radiation unit 221 and the low-frequency radiation unit 222 are not repeated here.
  • the antenna 300 shown in FIGS. 6 and 7 further includes a parasitic unit 330.
  • the parasitic unit 330 is fixed to the substrate 310 with respect to the high-frequency radiation unit 321.
  • the substrate 310, the radiation unit 320, and the parasitic unit 330 are all located in the tripod 102 of the drone 100.
  • the radiation unit 320 emits electromagnetic waves upon being excited, and the parasitic unit 330 generates an induced current, thereby radiating the electromagnetic waves.
  • the parasitic unit 330 reduces the amount of reflection in the high-frequency band, thereby improving the nulling of the high-frequency band and increasing the out-of-roundness of the pattern in the high-frequency band.
  • FIG. 8 is a radiation pattern diagram of high-frequency electromagnetic waves of the antenna 300 shown in FIGS. 6 and 7 in the environment shown in FIG. 3.
  • the distance D between the antenna 200 and the body 101 is about twice the wavelength of the high-frequency electromagnetic wave.
  • the solid line indicates the horizontal plane pattern, and the dotted line indicates the elevation plane pattern. It can be seen from FIG. 8 that the deepest nulling is on the order of 1 dB. Compared with the radiation pattern of the high-frequency electromagnetic wave of the antenna 200 without the parasitic unit in FIG. 5, the nulling in FIG. 8 is significantly improved.
  • FIG. 9 shows a comparison radiation pattern of the antenna 300 shown in FIG. 6 with the parasitic unit 320 and the antenna 200 shown in FIG. 2 without the parasitic unit.
  • the solid line is a horizontal plane pattern of the high-frequency electromagnetic wave radiated by the antenna 300
  • the dotted line is a horizontal plane pattern of the high-frequency electromagnetic wave radiated by the antenna 200. It can be seen from the figure that the deepest nulling improvement is 13dB. It can be seen that, setting the parasitic unit 330 on the substrate 310 relative to the high-frequency radiating unit 321 can effectively improve the nulling and increase the out-of-roundness of the pattern.
  • the parasitic unit 330 and the radiation unit 320 are both disposed on the substrate 310.
  • the wavelength is short and the distance between the parasitic unit 330 and the radiating unit 320 is very small, that is, the effect of improving the nulling can be achieved. Therefore, the thickness of the substrate 310 can meet the requirement of the distance between the parasitic unit 330 and the radiation unit 320. In this way, the parasitic unit 330 and the radiating unit 320 are both disposed on the substrate 310, which can improve the nulling and is beneficial to the miniaturization of the antenna.
  • the radiation unit 320 is located on one side of the substrate 310, and the parasitic unit 330 is located on the opposite side of the substrate 310.
  • the radiation unit 320 may be fixed to the front surface of the substrate 310, and the parasitic unit 330 may be fixed to the back surface of the substrate 310.
  • the distance between the parasitic unit 330 and the radiating unit 320 is greater than 0 and less than or equal to one third of the wavelength of the electromagnetic wave radiated by the high-frequency radiating unit 321. That is, the distance between the parasitic unit 330 and the high-frequency radiation unit 321 in the thickness direction of the substrate 310 is less than or equal to one-third of the wavelength of the high-frequency electromagnetic wave.
  • the distance between the parasitic unit 330 and the radiation unit 320 is less than or equal to a quarter of the wavelength of the electromagnetic wave radiated from the high-frequency radiation unit 321. That is, the distance between the parasitic unit 330 and the radiation unit 320 is less than a quarter of the high-frequency electromagnetic wave.
  • the length L1 of the parasitic unit 330 is less than or equal to the length L2 of the high-frequency radiating unit 321 to prevent the parasitic unit 330 from being too long and weakening the voltage standing wave ratio. In some embodiments, the length L1 of the parasitic unit 330 is greater than or equal to half the length L2 of the high-frequency radiation unit 321 to ensure the effect of improving the nulling. In some embodiments, the projection of the parasitic unit 330 on the front surface of the substrate 310 and the projection of the high-frequency radiation unit 321 on the front surface of the substrate 310 at least partially overlap. In the illustrated embodiment, the parasitic unit 330 is disposed biased to one side of the high-frequency radiation unit 221.
  • FIG. 10 is a radiation pattern diagram of low frequency electromagnetic waves radiated by the antenna 300 shown in FIG. 6, and FIG. 11 is a radiation pattern diagram of low frequency electromagnetic waves radiated by the antenna 200 without a parasitic unit shown in FIG. 2.
  • the solid line indicates the horizontal plane pattern, and the dotted line indicates the elevation plane pattern.
  • the horizontal plane pattern of the low-frequency electromagnetic waves in FIG. 10 is inclined to one side. After the parasitic unit 330 is provided, the radiation energy of low-frequency electromagnetic waves is radiated toward the parasitic side.
  • FIG. 12 is a schematic diagram showing an environment where the antenna 300 is located.
  • the antenna 300 is located in a tripod 102 below the motor 107, as shown in FIG. 1. Since the antenna 300 is close to the motor 107, the diameter of the motor 107 is close to the 1/4 wavelength of the low-frequency electromagnetic wave radiated by the antenna 300, so the motor 107 will guide the low-frequency electromagnetic wave, and the radiation pattern of the low-frequency electromagnetic wave will be guided by the motor 107, causing tilt.
  • the antenna 200 shown in FIG. 2 is placed in the environment shown in FIG. 12, and the radiation pattern of low-frequency electromagnetic waves will also be tilted.
  • FIG. 13 is a schematic diagram showing another embodiment of the antenna 400.
  • the antenna 400 is similar to the antenna 300 of the embodiment shown in FIGS. 6 and 7.
  • the antenna 400 includes the substrate 310, the radiating unit 320, and the parasitic unit 330 of the antenna 300 of the embodiment shown in FIG. 6 and FIG. 7, which are still denoted by reference numeral 300 in the figure and will not be described again here.
  • the antenna 400 shown in FIG. 13 further includes a reflection unit 440.
  • the reflection unit 440 is disposed separately from the substrate 310, the radiation unit 320, and the parasitic unit 330, and reflects the electromagnetic waves radiated from the low-frequency radiation unit 322.
  • the reflection unit 440 radiates low-frequency electromagnetic waves to improve the problem that the radiation direction of the low-frequency electromagnetic waves is tilted. In some embodiments, the reflection unit 440 is suspended.
  • the tilt characteristics of the pattern can be optimized by adjusting the lateral size and / or length of the reflection unit 440.
  • the length of the reflection unit 440 is greater than or equal to one half of the wavelength of the electromagnetic wave emitted by the low-frequency radiation unit 322. That is, the length of the reflection unit 440 is greater than or equal to 1/2 of the wavelength of the low-frequency electromagnetic wave to ensure the effect of improving the tilt of the pattern.
  • the reflection unit 440 is located in the arm 103 (as shown in FIG. 1), and can use the space in the arm 103.
  • the space in the arm 103 is larger than the space in the stand 102, and the arm 103 can accommodate the reflecting unit 440 with a larger size, so as to better improve the tilt of the pattern.
  • the reflection unit 440 may extend along the inner wall of the arm 103, make full use of the space of the arm 103, and make the lateral size of the reflection unit 440 as large as possible.
  • the length of the reflection unit 440 may be approximately equal to the length of the internal space of the arm 103.
  • FIG. 14 shows a comparative radiation pattern of the low-frequency electromagnetic waves of the antenna 400 with the reflection unit 400 in FIG. 13 and the antenna 300 without the reflection unit in FIG.
  • the length of the reflection unit 440 is 1 ⁇ 2 of the wavelength of the low-frequency electromagnetic wave.
  • the solid line is the elevation plane pattern of the low frequency electromagnetic wave radiated by the antenna 400
  • the dotted line is the elevation plane pattern of the low frequency electromagnetic wave radiated by the antenna 300. It can be seen from the figure that the beam width of 5dB, the beam of the low-frequency electromagnetic wave radiated by the antenna 400 is close to 30deg, and the reflection unit 440 has an obvious effect of improving the tilt of the pattern.
  • the attitude angle of the drone is between +35 degrees and -35 degrees.
  • the drone uses the antenna 400 provided with the reflection unit 440, which can ensure the required range of electromagnetic wave coverage.
  • the antenna 400 is provided with a parasitic unit 330 and a reflection unit 440, which can improve the nulling of the high-frequency electromagnetic wave pattern, and can also improve the tilt problem of the low-frequency electromagnetic wave pattern caused by the parasitic unit 330 and the motor 107, so as to ensure good wireless. Communication to ensure a good user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请提供一种无人机(100)。无人机(100)包括机身(101)、脚架(102)和天线。天线包括基板、辐射单元、寄生单元和反射单元。基板安装于脚架(102)。辐射单元固定于基板。辐射单元包括高频辐射单元和低频辐射单元,低频辐射单元受激辐射出的电磁波比高频辐射单元受激辐射出的电磁波的频率低。寄生单元相对于高频辐射单元固定于基板。反射单元与基板、辐射单元和寄生单元分离设置,反射低频辐射单元辐射出的电磁波。

Description

无人机 技术领域
本申请涉及飞行器技术领域,特别涉及一种无人机。
背景技术
无人机是一种由无线电遥控设备或者远程控制装置操纵以执行任务的非载人飞行器。近些年来,无人机在多个领域得到发展和应用,例如民用、工业应用和军事应用等。无人机通过天线辐射和接收电磁波,实现与无线电遥控设备或者远程控制装置的无线通信。
发明内容
本申请在于提供一种无人机,其天线可以有效改善高频段的零陷和低频段的辐射方向倾斜的问题。
根据本申请实施例的一个方面,提供一种无人机,其包括:机身;脚架;及天线。天线包括:基板,安装于所述脚架;辐射单元,固定于所述基板,所述辐射单元包括高频辐射单元和低频辐射单元,所述低频辐射单元受激辐射出的电磁波比所述高频辐射单元受激辐射出的电磁波的频率低;寄生单元,相对于所述高频辐射单元固定于所述基板;及反射单元,与所述基板、所述辐射单元和所述寄生单元分离设置,反射所述低频辐射单元辐射出的电磁波。
进一步地,所述辐射单元位于所述基板的一侧面,所述寄生单元位于所述基板的相对一侧面。
进一步地,所述寄生单元和所述辐射单元之间的距离大于0,且小于等于所述高频辐射单元辐射出的电磁波的波长的三分之一。
进一步地,所述寄生单元和所述辐射单元之间的距离小于等于所述高频辐射单元辐射出的电磁波的波长的四分之一。
进一步地,所述寄生单元的长度小于等于所述高频辐射单元的长度。
进一步地,所述寄生单元的长度大于等于所述高频辐射单元的长度的一半。
进一步地,所述反射单元悬空放置。
进一步地,所述反射单元的长度大于等于所述低频辐射单元辐射出的电磁波的波长的二分之一。
进一步地,所述辐射单元包括偶极子天线的辐射单元。
进一步地,所述无人机包括连接于所述机身的机臂,所述反射单元位于所述机臂内。
本申请的无人机的天线包括寄生单元和反射单元,寄生单元相对于高频辐射单元固定于基板,可以有效改善高频段的零陷的问题,反射单元反射低频辐射单元辐射出的电磁波,可以有效改善低频段的辐射方向倾斜的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请无人机的一个实施例的立体示意图。
图2是图1所示的无人机的天线的一个实施例的示意图。
图3是图2所示的天线与无人机的机身的位置关系示意图。
图4是图3所示的天线和无人机的机身的俯视示意图。
图5是图2所示的天线辐射的高频电磁波的辐射方向图。
图6是无人机的天线的另一个实施例的示意图。
图7是图6所示的天线的侧视图。
图8是图6所示的天线的高频电磁波的辐射方向图。
图9是图6所示的天线和图2所示的天线的高频电磁波的对比辐射方向图。
图10是图6所示的天线辐射的低频电磁波的辐射方向图。
图11是图2所示的天线辐射的低频电磁波的辐射方向图。
图12是天线所处环境的示意图。
图13是无人机的天线的另一个实施例的示意图
图14是图13所示的天线和图6所示的天线的低频电磁波的对比辐射方向图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。
本申请实施例的无人机包括机身、脚架和天线。天线包括基板、辐射单元、寄生单元和反射单元。基板安装于脚架。辐射单元固定于基板。辐射单元包括高频辐射单元和低频辐射单元,低频辐射单元受激辐射出的电磁波比高频辐射 单元受激辐射出的电磁波的频率低。寄生单元相对于高频辐射单元固定于基板。反射单元与基板、辐射单元和寄生单元分离设置,反射低频辐射单元辐射出的电磁波。无人机的天线包括寄生单元和反射单元,寄生单元相对于高频辐射单元固定于基板,可以有效改善高频段的零陷的问题,反射单元反射低频辐射单元辐射出的电磁波,可以有效改善低频段的辐射方向倾斜的问题。
下面结合附图,对本申请的无人机进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
图1所示为无人机100的一个实施例的立体示意图。无人机100可以用于航拍、测绘、监测,但不限于此。在其他一些实施例中,无人机100还可用于农业、快递送货、提供网络服务等。无人机100包括机身101、脚架102和天线(未图示)。无人机100还包括连接于机身101的机臂103。
天线位于无人机100内,因此图1中未显示出来。无人机100通过天线辐射和接收电磁波,实现与无线电遥控设备或者远程控制装置的无线通信。天线可以接收无线电遥控设备或者远程控制装置发出的控制信号,且可以将无人机拍摄的图像发送给无线电遥控设备或者远程控制装置。
机身101可承载负载,例如拍摄设备104等。在一些实施例中,拍摄设备104可以直接安装于机身101头部。在另一些实施例中,拍摄设备104通过云台挂载于机身101头部。在一些农用无人机的实施例中,机身101可承载喷洒装置等负载,用于喷洒水、农药等。在其他一些实施例中,机身101可承载其他负载。机身101可安装有电池105、控制器(未图示)等。电池105给无人机100的飞行提供电能,控制器可以控制无人机100的飞行等。图1所示的机身101大致呈扁平的纵长状。在其他实施例中,机身101可以呈其他形状。
在一些实施例中,脚架102安装于机臂103下方。在另一些实施例中,脚架102安装于机身101下方。脚架102在无人机100起飞和降落时起支撑和缓冲作用,避免机身101、机臂103、负载或其他部件直接撞地而损坏。
在图1所示的实施例中,机臂103可折叠地安装于机身101。起飞、飞行和降落时,机臂103展开,向机身101外延伸。无人机100不使用时,可以将机 臂103折叠在机身101的侧边,方便携带收纳。机臂103可以自动或者手动折叠和展开。在另一些实施例中,机臂103为固定机臂,固定于机身101的外侧。
机臂103的端部安装有动力组件106,驱动无人机100飞行。动力组件106可以接收电池105的电能。动力组件106包括电机107和机翼108。电池105给电机107供电,电机107驱动机翼108转动。在图示实施例中,机翼108为旋翼,电机107的转轴与机翼108的轴连接,电机107转动,带动机翼108旋转。控制器可以控制电机107的转速和转向,来控制机翼108的旋转,从而控制无人机100的飞行。图1仅是无人机的一个例子,并不限于图1所示的例子。
图2所示为天线200的一个实施例的示意图。天线200可以辐射高频电磁波(或称作“高频段”,例如5.8GHz)和低频电磁波(或称作“低频段”,例如2.4GHz)。天线200可以是双频天线或多频天线。
天线200包括基板210和辐射单元220,辐射单元220固定于基板210。基板210安装于无人机100的脚架102。基板210可以包括PCB板,其上可以安装与辐射单元220电连接的射频芯片(未图示)。射频芯片通过馈线与辐射单元220电连接,通过馈线将射频芯片产生的射频信号传输给辐射单元220。辐射单元220接收来自馈线的功率,受馈线激励辐射出电磁波。
辐射单元220包括高频辐射单元221和低频辐射单元222。低频辐射单元222受激辐射出的电磁波比高频辐射单元221受激辐射出的电磁波的频率低。例如,高频辐射单元221辐射出5.8GHz的高频电磁波,低频辐射单元222辐射出2.4GHz的低频电磁波。
在一些实施例中,天线200可以为偶极子天线,可以是单偶极子天线,为小型化的偶极子天线。辐射单元220包括偶极子天线的辐射单元。辐射单元220为对称结构,低频辐射单元222与高频辐射单元221连接。高频辐射单元221呈一对背对的开口框形,框形三边环绕,开口向外。低频辐射单元222呈一对从开口内向外延伸的喇叭状,喇叭口向外。
图3所示为天线200和机身101的位置关系示意图,图4所示为天线200和机身101的俯视示意图。仅为了图示说明的目的,图3和图4中以平面示意 机身101的一个表面,然实际中机身101的表面可以是平面或者曲面。机身101会反射天线200辐射出的电磁波,机身101可看作反射板。
电磁波传播本身也有波的传输特性,电磁波是矢量,具有幅度和相位,同相叠加,反相衰减。电磁波反射在金属的机身101上时,相位会反相。当天线200和机身101的表面之间的距离D为1/4波长时,反射路径为1/4波长,电磁波发出到反射回天线200的来回路径为1/2波长,180度相位。反射的电磁波到达天线200时与天线200此时前向辐射的电磁波同相,反射的电磁波和天线200前向辐射的电磁波同相叠加,因此,此时天线200的辐射效率最大,天线200的增益也最大。距离D可以是天线200到机身101的表面的最近距离。
当距离D等于1/2波长时,反射路径为1/2波长,来回路径为一个波长,360度相位。反射的电磁波到达天线200时与天线200此时前向辐射的电磁波反相,反射的电磁波和天线200前向辐射的电磁波反相衰减,从而出现零点,导致零陷。当距离D大于1/4波长且小于1/2波长时,天线200的辐射方向图逐渐***。当距离D大于1/2波长时,天线200辐射的电磁波的干涉区域变多,零陷的数量变多。
一些双频天线或多频天线辐射出的低频电磁波和高频电磁波的频比大,例如5.8GHz的高频电磁波和2.4GHz低频电磁波的频比大。高频电磁波的波长较短,天线200距离机身101的距离D相对于高频电磁波的波长较长。天线200距离机身101的距离D一般大于高频电磁波的一个波长,此时由于机身101的反射作用导致零点出现。
图5所示为图2-图4所示的天线200辐射的高频电磁波的辐射方向图,其中,天线200距离机身101的距离D约为高频电磁波的波长的两倍。图5中实线表示水平面方向图,虚线表示俯仰面方向图。从图5中可以看出,在水平面方向图中,0度到90度有三个零点,零陷最深达到-15dB。可见,天线200距离机身101的距离D大于高频电磁波的一个波长时,高频段出现的零点较多,零陷严重,方向图不圆。
图6所示为天线300的另一个实施例的示意图,图7所示为天线300的侧 视图。图6和图7所示的天线300类似于图2所示的实施例的天线200。图6和7所示的天线300包括基板310和辐射单元320。基板310类似于图2所示的实施例的基板210;辐射单元320类似于图2所示的实施例的辐射单元220;辐射单元320包括高频辐射单元321和低频辐射单元322,分别类似于高频辐射单元221和低频辐射单元222,在此不再赘述。
相对于图2所示的实施例的天线200,图6和图7所示的天线300进一步包括寄生单元330。寄生单元330相对于高频辐射单元321固定于基板310。基板310、辐射单元320和寄生单元330均位于无人机100的脚架102内。辐射单元320受激辐射出电磁波,寄生单元330产生感应电流,从而辐射出电磁波。通过寄生单元330减少高频段的反射量,从而改善高频段的零陷,提高高频段的方向图的不圆度。
图8所示为图6和图7所示的天线300位于图3所示的环境中的高频电磁波的辐射方向图。其中,天线200距离机身101的距离D约为高频电磁波的波长的两倍。实线表示水平面方向图,虚线表示俯仰面方向图。从图8可以看出,最深的零陷为1dB量级。相比较于图5未设置寄生单元的天线200的高频电磁波的辐射方向图,图8中零陷明显改善。
图9所示为图6所示的设置寄生单元320的天线300和图2所示的未设置寄生单元的天线200的对比辐射方向图。实线为天线300辐射的高频电磁波的水平面方向图,虚线为天线200辐射的高频电磁波的水平面方向图。从图中可以看出最深的零陷提升有13dB。如此可见,在基板310上相对于高频辐射单元321设置寄生单元330可以有效地改善零陷,提高方向图的不圆度。
继续参考图6和图7,寄生单元330和辐射单元320均设置于基板310。对于高频电磁波,其波长短,寄生单元330和辐射单元320之间间隔很小的距离,即能达到改善零陷的效果。因此,基板310的厚度能够满足寄生单元330和辐射单元320之间间隔的距离的需求。如此,寄生单元330和辐射单元320均设置于基板310上,能够实现改善零陷的同时,有利于天线的小型化。
在一个实施例中,辐射单元320位于基板310的一侧面,寄生单元330位 于基板310的相对一侧面。辐射单元320可以固定于基板310的正面,寄生单元330可以固定于基板310的背面。在一些实施例中,寄生单元330和辐射单元320之间的距离大于0,且小于等于高频辐射单元321辐射出的电磁波的波长的三分之一。即寄生单元330和高频辐射单元321在基板310厚度方向上的距离小于等于高频电磁波的波长的三分之一。在一些实施例中,寄生单元330和辐射单元320之间的距离小于等于高频辐射单元321辐射出的电磁波的波长的四分之一。即寄生单元330和辐射单元320之间的距离小于高频电磁波的四分之一。
在一些实施例中,寄生单元330的长度L1小于等于高频辐射单元321的长度L2,避免寄生单元330过长使电压驻波比弱化。在一些实施例中,寄生单元330的长度L1大于等于高频辐射单元321的长度L2的一半,以保证改善零陷的效果。在一些实施例中,寄生单元330在基板310的正面的投影与高频辐射单元321在基板310的正面的投影至少部分重叠。在图示实施例中,寄生单元330偏向高频辐射单元221的一侧设置。
图10所示为图6所示的天线300辐射的低频电磁波的辐射方向图,图11所示为图2所示的未设置寄生单元的天线200辐射的低频电磁波的辐射方向图。实线表示水平面方向图,虚线表示俯仰面方向图。相比较图11所示的辐射方向图,图10中低频电磁波的水平面方向图向一侧倾斜。设置寄生单元330后,低频电磁波的辐射能量朝寄生一侧辐射。
图12所示为天线300所处环境的示意图。在一些实施例中,天线300位于电机107下方的脚架102内,结合图1所示。由于天线300靠近电机107,电机107的直径与天线300辐射的低频电磁波的1/4波长接近,因此电机107会引导低频电磁波,低频电磁波的辐射方向图会被电机107引导,产生倾斜。图2所示的天线200放置于图12所示的环境中,低频电磁波的辐射方向图也会产生倾斜。
图13所示为天线400的另一个实施例的示意图。天线400类似于图6和图7所示实施例的天线300。天线400包括图6和图7所示的实施例的天线300的 基板310、辐射单元320和寄生单元330,图中仍以标号300标示,在此不再赘述。相比较天线300,图13所示的天线400进一步包括反射单元440。结合参考图6,反射单元440与基板310、辐射单元320和寄生单元330分离设置,反射低频辐射单元322辐射出的电磁波。反射单元440辐射低频电磁波,来改善低频电磁波的辐射方向倾斜的问题。在一些实施例中,反射单元440悬空放置。
可以通过调整反射单元440的横向尺寸和/或长度,优化方向图的倾斜特征。在一个实施例中,反射单元440的长度大于等于低频辐射单元322辐射出的电磁波的波长的二分之一。即反射单元440的长度大于等于低频电磁波的波长的1/2,以保证改善方向图倾斜的效果。
反射单元440位于机臂103(如图1所示)内,可以利用机臂103内的空间。机臂103内的空间相对于脚架102的空间大,机臂103可以容纳尺寸较大的反射单元440,从而可以更好地改善方向图的倾斜。反射单元440可以沿机臂103的内壁延伸,充分利用机臂103的空间,将反射单元440的横向尺寸做得尽可能大。反射单元440的长度可以大致等于机臂103内部空间的长度。
图14所示为图13中设置反射单元400的天线400和图6中未设置反射单元的天线300的低频电磁波的对比辐射方向图,该辐射方向图为俯仰面方向图。其中,反射单元440的长度是低频电磁波的波长的1/2。实线是天线400辐射的低频电磁波的俯仰面方向图,虚线是天线300辐射的低频电磁波的俯仰面方向图。从图中可以看出5dB波束宽度,天线400辐射的低频电磁波的波束回正接近30deg,反射单元440改善方向图倾斜的效果明显。
无人机的姿态角在+35度与-35度之间,无人机使用设置有反射单元440的天线400,可以保证电磁波覆盖所需的范围。天线400设置寄生单元330和反射单元440,可以改善高频电磁波的方向图的零陷,也可以改善寄生单元330和电机107等部件引起的低频电磁波的方向图的倾斜问题,从而保证良好的无线通信,保证用户的良好使用体验。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者 暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (10)

  1. 一种无人机,其特征在于,其包括:
    机身;
    脚架;及
    天线,包括:
    基板,安装于所述脚架;
    辐射单元,固定于所述基板,所述辐射单元包括高频辐射单元和低频辐射单元,所述低频辐射单元受激辐射出的电磁波比所述高频辐射单元受激辐射出的电磁波的频率低;
    寄生单元,相对于所述高频辐射单元固定于所述基板;及
    反射单元,与所述基板、所述辐射单元和所述寄生单元分离设置,反射所述低频辐射单元辐射出的电磁波。
  2. 根据权利要求1所述的无人机,其特征在于,所述辐射单元位于所述基板的一侧面,所述寄生单元位于所述基板的相对一侧面。
  3. 根据权利要求1所述的无人机,其特征在于,所述寄生单元和所述辐射单元之间的距离大于0,且小于等于所述高频辐射单元辐射出的电磁波的波长的三分之一。
  4. 根据权利要求3所述的无人机,其特征在于,所述寄生单元和所述辐射单元之间的距离小于等于所述高频辐射单元辐射出的电磁波的波长的四分之一。
  5. 根据权利要求1所述的无人机,其特征在于,所述寄生单元的长度小于等于所述高频辐射单元的长度。
  6. 根据权利要求1所述的无人机,其特征在于,所述寄生单元的长度大于等于所述高频辐射单元的长度的一半。
  7. 根据权利要求1所述的无人机,其特征在于,所述反射单元悬空放置。
  8. 根据权利要求1所述的无人机,其特征在于,所述反射单元的长度大于等于所述低频辐射单元辐射出的电磁波的波长的二分之一。
  9. 根据权利要求1所述的无人机,其特征在于,所述辐射单元包括偶极子 天线的辐射单元。
  10. 根据权利要求1所述的无人机,其特征在于,所述无人机包括连接于所述机身的机臂,所述反射单元位于所述机臂内。
PCT/CN2018/112421 2018-08-10 2018-10-29 无人机 WO2020029438A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880017076.1A CN110914155B (zh) 2018-08-10 2018-10-29 无人机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821290346.XU CN208596783U (zh) 2018-08-10 2018-08-10 无人机
CN201821290346.X 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020029438A1 true WO2020029438A1 (zh) 2020-02-13

Family

ID=65604721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112421 WO2020029438A1 (zh) 2018-08-10 2018-10-29 无人机

Country Status (2)

Country Link
CN (2) CN208596783U (zh)
WO (1) WO2020029438A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208596783U (zh) * 2018-08-10 2019-03-12 深圳市大疆创新科技有限公司 无人机
CN113745848B (zh) * 2020-05-29 2024-03-01 华为技术有限公司 一种天线及使用方法、通信基站
CN112909535A (zh) * 2021-03-30 2021-06-04 深圳市道通智能航空技术股份有限公司 一种无人机外置双频天线及无人机
WO2022241681A1 (zh) * 2021-05-19 2022-11-24 深圳市大疆创新科技有限公司 天线装置及无人机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204424449U (zh) * 2015-02-09 2015-06-24 深圳市大疆创新科技有限公司 双频段微带天线
CN106025554A (zh) * 2015-03-31 2016-10-12 韩国电子通信研究院 波束形成天线
CN206040978U (zh) * 2016-09-26 2017-03-22 深圳市大疆创新科技有限公司 天线和无人机
CN107112623A (zh) * 2016-11-24 2017-08-29 深圳市大疆创新科技有限公司 天线组件及无人飞行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8847823B2 (en) * 2012-01-09 2014-09-30 Lockheed Martin Corporation Dimensionally tolerant multiband conformal antenna arrays
CN208596783U (zh) * 2018-08-10 2019-03-12 深圳市大疆创新科技有限公司 无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204424449U (zh) * 2015-02-09 2015-06-24 深圳市大疆创新科技有限公司 双频段微带天线
CN106025554A (zh) * 2015-03-31 2016-10-12 韩国电子通信研究院 波束形成天线
CN206040978U (zh) * 2016-09-26 2017-03-22 深圳市大疆创新科技有限公司 天线和无人机
CN107112623A (zh) * 2016-11-24 2017-08-29 深圳市大疆创新科技有限公司 天线组件及无人飞行器

Also Published As

Publication number Publication date
CN208596783U (zh) 2019-03-12
CN110914155B (zh) 2022-03-22
CN110914155A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
WO2020029438A1 (zh) 无人机
US11101557B2 (en) Mechanically steered and horizontally polarized antenna for aerial vehicles, and associated systems and methods
CN105576368B (zh) 天线电磁辐射转向***
US10411359B2 (en) Flight interference apparatus
WO2020038287A1 (zh) 天线及无人飞行器
KR101715230B1 (ko) 회전체에 설치되는 무지향성 안테나
WO2020038288A1 (zh) 天线及无人飞行器
Boev Design and implementation antenna for small UAV
WO2020113418A1 (zh) 毫米波天线结构、微波旋转雷达及可移动平台
EP3017502B1 (en) Airborne antenna system with controllable null pattern
JP6281740B2 (ja) 電波欺瞞装置
WO2020134029A1 (zh) 一种天线及无人飞行器
CN110098483A (zh) 小型化全向圆柱共形微带天线
WO2022099577A1 (zh) 无人机
Chatterjee et al. Performance analysis and comparative study of microstrip patch antenna using aperture coupled and proximity coupled feeding methodology
WO2019148890A1 (zh) 天线及无人飞行器
CN114447603A (zh) 电子设备及电子设备控制方法
Giampietri et al. A compact annular ring microstrip antenna for unmanned aerial vehicles (UAVs) applications
CN215205340U (zh) 一种无人飞行器
CN216624563U (zh) 天线结构、天线组件及遥控设备
WO2021104012A1 (zh) 一种天线及飞行器
WO2022088410A1 (zh) 天线组件及无人机
Elboushi et al. Cavity-backed monopole antenna for UAV communication applications
CN216793979U (zh) 机翼装置和无人机
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929350

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929350

Country of ref document: EP

Kind code of ref document: A1