WO2020038288A1 - 天线及无人飞行器 - Google Patents

天线及无人飞行器 Download PDF

Info

Publication number
WO2020038288A1
WO2020038288A1 PCT/CN2019/100918 CN2019100918W WO2020038288A1 WO 2020038288 A1 WO2020038288 A1 WO 2020038288A1 CN 2019100918 W CN2019100918 W CN 2019100918W WO 2020038288 A1 WO2020038288 A1 WO 2020038288A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
substrate
antenna ground
radiating
ground portion
Prior art date
Application number
PCT/CN2019/100918
Other languages
English (en)
French (fr)
Inventor
向胜昭
孙忆业
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2020038288A1 publication Critical patent/WO2020038288A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/02Gyroplanes
    • B64C27/028Other constructional elements; Rotor balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the invention relates to the technical field of antennas, in particular to an antenna and an unmanned aerial vehicle.
  • UAV unmanned aerial vehicles
  • UAV which has the advantages of maneuverability, fast response, unmanned flight and so on.
  • Unmanned aerial vehicles are commonly used in military and civilian fields, and they are widely used in meteorology, agriculture, exploration, photography, transportation, and entertainment.
  • the UAV has an antenna, which transmits and receives signals through the antenna and transmits signals with the remote controller.
  • the existing built-in antennas of drones are generally installed in a tripod, which limits the size of the antenna.
  • the space of the drone arm is relatively large, the environment is more complex, which can easily affect the signal of the antenna and make the antenna It cannot work normally, and because the radiation is not generated on both sides of the substrate at the same time, and the radiation loss of the substrate itself makes the antenna performance very unstable.
  • the present invention provides an antenna and an unmanned aerial vehicle to improve the stability of the antenna.
  • the present invention provides an antenna applicable to an unmanned aerial vehicle.
  • the antenna includes:
  • a substrate having a first surface and a second surface opposite to each other;
  • the radiating unit includes a first radiating portion and a second radiating portion which are electrically connected to each other, wherein the first radiating portion is disposed on an edge of one side of a first surface of the substrate, and the second radiating portion is disposed on the edge On one side edge of the second side;
  • An antenna ground unit includes a first antenna ground portion and a second antenna ground portion electrically connected to each other, wherein the first antenna ground portion is disposed on an edge on the other side of the first surface, and the second antenna ground portion Disposed on the other side edge of the second surface;
  • the radiating unit and the antenna ground unit are fed by the feeding coaxial line, and the current path lengths of the first radiating portion and the second radiating portion are the same, and the first antenna ground portion The length of the current path is the same as that of the second antenna ground.
  • the antenna of the present invention is provided with a second antenna ground portion, so that internal cables such as a motor line, a light board line, and a coaxial line of other antennas in the drone have less influence on the antenna, so that the antenna can It works normally in a complex electromagnetic environment, that is, the antenna can be installed in a relatively large space and a complicated environment of the machine arm, and it is not necessary to be placed in a stand with a small space; in addition, the first side and the second side of the substrate Each surface has a radiating portion and is arranged on the edge of the substrate, that is, both sides of the substrate generate radiation, and the current path is also along the edge of the substrate, thereby greatly improving the radiation efficiency of the antenna and better ensuring the current direction, and Even if the thicknesses of the different positions of the substrate are not consistent during the production process, since both sides of the substrate of the antenna of the present invention have radiating portions and antenna ground portions with the same current path length, it is equivalent to having both sides of the substrate.
  • the antenna further includes:
  • a second through hole is used to penetrate the first antenna ground portion, the substrate, and the second antenna ground portion, and the first antenna ground portion and the second antenna ground portion are disposed in the second The metal parts in the through hole are connected.
  • first radiating portion and the second radiating portion, the first antenna ground portion and the second antenna ground portion are connected together, and the connection is made through the connection of the through holes. Convenient and reliable, and ensure the beauty of the antenna.
  • the feeding coaxial line includes an outer conductor and an inner conductor
  • the feed coaxial line is located on the first surface of the substrate, an outer conductor of the feed coaxial line is closely attached to the ground of the first antenna, and an inner conductor of the feed coaxial line extends to the first antenna.
  • the first radiation portion is electrically connected to the first radiation portion.
  • the first radiating portion and the second radiating portion each include a microstrip feed line, an antenna arm, and a ground return line;
  • the first end of the microstrip feed line is connected to the feed end of the feed coaxial line, and the second end of the microstrip feed line is connected to the antenna element arm;
  • the ground return lines are respectively connected to the antenna element and the antenna ground unit.
  • the antenna ground return line and the microstrip feed line are parallel to each other;
  • the antenna element arms are perpendicular to the ground return line and the microstrip feed line, respectively;
  • the antenna ground return line and the microstrip feed line form a U-shape, and the antenna element arm is perpendicular to the microstrip feed line.
  • the antenna element is disposed at an edge of the substrate along a length direction of the substrate.
  • the first antenna ground portion and the second antenna ground portion are disposed on the substrate along a length direction of the substrate, and a projection area of the second antenna ground portion on the substrate is Greater than or equal to the projected area of the motor wires and lamp board wires in the arm of the drone on the substrate.
  • the substrate is a substrate made of FR-4 grade material.
  • the working frequency of the antenna is 900 MHz.
  • a length of the first antenna ground portion along the substrate is shorter than a length of the feeding coaxial line.
  • the first radiation part and the second radiation part are integrally formed
  • the first antenna ground portion and the second antenna ground portion are integrally formed.
  • the outer contours of the first radiating portion and the second radiating portion are the same, and the outer contours of the first antenna ground portion and the second antenna ground portion are the same.
  • the present invention provides an unmanned aerial vehicle, including a fuselage, an airframe connected to the airframe, and the antenna described above, wherein the antenna is disposed in the airframe.
  • FIG. 1 is a schematic structural diagram of a first surface of an antenna according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a second surface of an antenna according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic perspective view of the antenna installed in the machine arm according to the first embodiment of the present invention.
  • Embodiment 4 is a standing wave parameter diagram of an antenna provided by Embodiment 1 of the present invention.
  • FIG. 5 is a directional diagram of the antenna provided on the horizontal plane and the vertical plane according to the first embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a body of an unmanned aerial vehicle provided in Embodiment 2 of the present invention.
  • orientations or positional relationships indicated by the terms “left”, “right”, “vertical”, and “lateral” are based on the orientations or positional relationships shown in the drawings, and only It is to facilitate the description of the invention and simplify the description, and does not indicate or imply that the device or element referred to must have a specific orientation, structure and operation in a specific orientation, so it cannot be understood as a limitation on the invention.
  • the terms “first”, “second”, “third”, “fourth”, etc. are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first”, “second”, “third”, “fourth”, etc. may explicitly or implicitly include one or more of the features.
  • the terms “installation”, “connected”, and “connected” should be understood in a broad sense unless otherwise specified and limited. For example, they may be fixed connections, or may be connected. Disassembly connection, or integral connection; it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
  • Disassembly connection, or integral connection it can be mechanical or electrical connection; it can be directly connected, or it can be indirectly connected through an intermediate medium, or it can be the internal communication of two elements.
  • the specific meanings of the above terms in the creation of the present invention can be understood through specific situations.
  • the antenna of the present invention and an unmanned aerial vehicle using the antenna will be described in detail through specific embodiments.
  • FIG. 1 is a schematic structural diagram of a first surface of an antenna according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a second surface of an antenna provided by Embodiment 1 of the present invention.
  • FIG. 3 is a schematic perspective view of the antenna installed in the machine arm according to the first embodiment of the present invention.
  • the present invention provides an antenna that can be applied to an unmanned aerial vehicle.
  • the antenna 10 includes a substrate 101, a radiating unit, an antenna ground unit, a feeding coaxial line 110, and a first antenna. Hole 111 and second through hole 112.
  • the substrate 101 has a first surface and a second surface opposite to each other.
  • the substrate 101 is a substrate made of a FR-4 grade material.
  • the substrate 101 may be a printed circuit board (PCB), that is, the antenna 10 in this embodiment may be a PCB antenna.
  • the radiating unit and the antenna ground unit may be made of a metal (such as a copper sheet) on the substrate 101.
  • the radiating unit includes a first radiating portion and a second radiating portion electrically connected to each other, wherein the first radiating portion is disposed on an edge of one side of the first surface of the substrate 101 and includes a microstrip feed line 102 and an antenna element arm 103 ⁇ Antenna back to ground line 104.
  • the second radiating portion is disposed on an edge of one side of the second surface of the substrate 101, and also includes a microstrip feed line 105, an antenna element arm 106, and an antenna return line 107.
  • the antenna ground unit includes a first antenna ground portion 108 and a second antenna ground portion 109 which are electrically connected to each other.
  • the first antenna ground portion 108 is disposed on the other side edge of the first surface of the substrate 101.
  • the second antenna ground portion 109 is provided on the other side edge of the second surface of the substrate 101.
  • the radiating unit and the antenna ground unit are both disposed along the edge of the substrate 101, so that the current direction can be better ensured.
  • the first end of the microstrip feed line 102 is connected to the feeding end of the feeding coaxial line 110
  • the second end of the microstrip feed line 102 is connected to the antenna element arm 103
  • the antenna return line 104 is respectively connected to the antenna element arm 103
  • the first antenna ground portion 108 is connected.
  • the first antenna ground portion 108 is also connected to a ground terminal of the feeding coaxial line 110.
  • the microstrip feed line 102 and the antenna back ground line 104 are parallel to each other, and the antenna element arm 103 is perpendicular to the antenna back ground line 104 and the microstrip feed line 102, respectively; or, in another embodiment, the microstrip feed line 102 and the antenna return ground line 104 form a U-shape, and the antenna element arm 103 is perpendicular to the microstrip feed line 102.
  • the antenna element arm 103 is disposed on the edge of the substrate 101 along the length direction of the substrate 101.
  • the feeding coaxial line 110 is closely adjacent to the first antenna ground portion 108, and the radiating unit and the antenna ground unit are fed by the feeding coaxial line 110.
  • the feeding coaxial line 110 has an outer conductor, an inner conductor, and an insulating dielectric layer located between the outer conductor and the inner conductor.
  • the inner conductor of the feeding coaxial line 110 protrudes as its feeding end.
  • the outer conductor of the electric coaxial line 110 is its ground terminal.
  • the first end of the microstrip feed line 105 is connected to the feed end of the feed coaxial line 110 through the first through hole 111, and the second end of the microstrip feed line 105 is connected to the antenna element arm 106.
  • the antenna return line 107 is connected to the antenna element arm 106 and the second antenna ground portion 109, respectively.
  • the second through hole 112 is used to penetrate the first antenna ground portion 108, the substrate 101, and the second antenna ground portion 109.
  • the first antenna ground portion 108 and the second antenna ground portion 109 pass through a metal member provided in the second through hole 112. connection.
  • the first antenna ground portion 108 and the second antenna ground portion 109 are respectively disposed on the first surface and the second surface of the substrate 101 along the length direction of the substrate 101, and the first antenna ground portion 108 and the second antenna ground portion 108 are
  • the projection area of the antenna ground portion 109 on the substrate 101 is greater than or equal to the projection area of the motor wires and the lamp board lines in the arm of the drone on the substrate 101. It can be understood that, in other embodiments, as long as the projected area of the second antenna ground portion 109 on the substrate 101 is greater than or equal to the projected area of the motor wire and the lamp board line in the arm of the drone on the substrate 101, It does not matter that the area of the first antenna ground portion 108 may be slightly smaller.
  • the second antenna ground portion 109, the motor wires and the light board wires in the arm of the drone are located at the lower edge of the substrate 101. It can be understood that in other embodiments, The specific structural setting of 10 changes the position of the second antenna ground portion 109, the motor wire and the light board wire in the arm of the drone on the substrate 101, such as being located on the upper edge or the middle of the substrate 101, as long as the first The two antenna ground portions 109 and the motor wires and the lamp board wires in the arm of the drone can be projected to overlap.
  • the outer contours of the first radiating portion and the second radiating portion are the same, and the outer contours of the first antenna ground portion 108 and the second antenna ground portion 109 are the same. That is, the uniformity of the current path length between the front and the back of the antenna is further ensured, thereby further ensuring that electromagnetic waves on both sides of the antenna can resonate at the same resonant frequency, thereby making the performance of the antenna more stable and facilitating the manufacture of the antenna.
  • the operating frequency of the antenna 10 is 900 MHz. It can be understood that, in other embodiments, the antenna 10 can also work in other frequency bands, which is not strictly limited here.
  • the length of the first antenna ground portion 108 along the substrate 101 is smaller than the length of the feeding coaxial line 110.
  • the antenna 10 of this embodiment can be specifically applied to an unmanned aerial vehicle. It can be understood that the body of the unmanned aerial vehicle is used in conjunction with a remote controller, and signals are transmitted and received through the antenna 10, thereby realizing the body of the unmanned aerial vehicle and the remote controller. Communication. It should be noted that the antenna 10 can also be applied to other devices that need to transmit and receive signals.
  • the antenna 10 provided in this embodiment has a second antenna ground portion, so that internal cables such as motor wires, lamp board lines, and coaxial lines of other antennas within the drone will have a smaller impact on the antenna, so that
  • the antenna can work normally in a complex electromagnetic environment, that is, the antenna can be installed in a relatively large space and a complicated environment of the machine arm, without being restricted to a small space tripod;
  • the first surface of the substrate and The second surface has a radiating portion, that is, both sides of the substrate generate radiation, thereby greatly improving the radiation efficiency of the antenna, and even if the thickness of different positions of the substrate is inconsistent during the production process, due to the
  • the electromagnetic wave can resonate at the same resonance frequency, so that the resonance frequency of the antenna will not be shifted, thereby reducing the radiation loss of the substrate
  • the feeding coaxial line 110 can be located on one side of the first surface of the substrate 101, and the outer conductor of the feeding coaxial line 110 can be in close contact with one side of the first antenna ground portion 108 and be in contact with the first antenna ground portion 108. Electrical connection.
  • the inner conductor of the feeding coaxial line 110 extends to the radiating unit and is electrically connected to the microstrip feeding line 102 of the radiating unit, so that the radiating unit and the antenna ground unit are fed through the feeding coaxial line 110.
  • the first antenna ground portion 108 is disposed on one side of the first surface of the substrate 101, and the first radiation portion is disposed on the other side of the first surface of the substrate 101.
  • the second antenna ground portion 109 is disposed on the second surface of the substrate 101 and is almost coincident with the first antenna ground portion 108, and the second radiation portion is disposed on the second surface of the substrate 101 and is almost identical to the first radiation portion. Coincident position.
  • a first pad may be provided at one end of the first antenna ground portion 108 near the microstrip feed line 102, and the first antenna ground portion 108 and the feeding coaxial line are provided through the first pad.
  • the outer conductors of 110 are welded together; a second pad may also be provided at one end of the microstrip feed line 102 near the first antenna ground portion 108, and the microstrip feed line 102 is connected to the feed coaxial line 110 through the second pad.
  • the inner conductors are welded together. It can be understood that in other embodiments, the point connection may be made directly at the connection between the first antenna portion 108 and the feeding coaxial line 110 and the connection between the microstrip feeding line 102 and the feeding coaxial line 110 without a pad. It is not strictly limited here.
  • the feeding coaxial line 110 may also be located on one side of the second surface of the substrate 101, that is, both the feeding end and the ground terminal of the feeding coaxial line 110 are located on the first side of the substrate 101. Two sides; or, the feeding end of the feeding coaxial line 110 is located on the first side of the substrate 101, and the ground end of the feeding coaxial line 110 is close to the second antenna ground portion 109, etc., which can also achieve the above function.
  • the antenna 10 further has a first through hole 111 penetrating through the first radiating portion, the substrate 101 and the second radiating portion, the first radiating portion and The second radiating portion is connected through a metal member provided in the first through hole 111. That is, the first radiating portion and the second radiating portion are connected through a through hole.
  • the antenna 10 further includes a second through hole 112 penetrating the first antenna ground portion 108, the substrate 101 and the second antenna ground portion 109, and the first antenna ground portion 108 and the second antenna ground portion 109. It is connected by a metal piece provided in the first through hole 111. That is, the first antenna ground portion 108 and the second antenna ground portion 109 are connected through a through-hole connection.
  • the metal part may also be a metal wire or a metal wire passing through the first through hole 111 and the second through hole 112.
  • first through holes 111 there may be multiple first through holes 111, for example, multiple first through holes 111 may be distributed at respective edge positions of the first radiation portion and the second radiation portion.
  • the plurality of second through holes 112 may be arranged along the edges of the first antenna ground portion 108 and the second antenna ground portion 109 near the radiation unit.
  • the path of the current on the front and back of the antenna 10 runs along the edges of the radiation unit and the antenna ground unit.
  • the second through hole 112 is arranged. Arranged along the edge of the antenna ground unit to ensure the direction of the current.
  • the number of the first through holes 111 and the second through holes 112 is not limited in the present invention, as long as at least a sufficient number of the first through holes 111 near the feeding end of the feeding coaxial line 110 is ensured, There may be a sufficient number of second through holes 112 near the ground end of the line 110 (near the position where the feeding coaxial line is provided in FIG. 3).
  • the outer contours of the first radiating portion and the second radiating portion may be the same, and the outer contours of the first antenna ground portion 108 and the second antenna ground portion 109 are the same, which ensures that the antenna 10th
  • the electromagnetic waves on one side and the second side can resonate at the same resonance frequency, which makes the performance of the antenna 10 more stable and facilitates the manufacture of the antenna.
  • the outer contours of the first radiating portion and the second radiating portion may not be completely consistent, and the outer contours of the first antenna ground portion 108 and the second antenna ground portion 109 may be incomplete.
  • first radiating portion and the second radiating portion may be integrally formed, and the first antenna ground portion 108 and the second antenna ground portion 109 are integrally formed, which makes the production more convenient and mutually Connection is more reliable.
  • the corresponding parts may also be subsequently electrically connected together.
  • FIG. 4 is an antenna standing wave parameter diagram provided by the first embodiment of the present invention.
  • the antenna 10 of this embodiment can work at 897 MHz to 935 MHz, and the bandwidth is 38 MHz, which can satisfy the coverage of the commonly used 900 MHz frequency band.
  • FIG. 5 is a directional diagram of the antenna provided on the horizontal plane and the vertical plane according to the first embodiment of the present invention. As shown in FIG. 5, the antenna 10 of this embodiment is at 900 MHz, and the horizontal direction (H-plane) can still maintain omnidirectional, and the vertical direction (E-plane) gain is large, that is, the antenna 10 can be at 900 MHz. Achieve omnidirectional coverage.
  • the antenna 10 of this embodiment is specifically formed as an inverted-F antenna.
  • monopole antennas, dipole antennas, etc. may also be used, which are not strictly limited here.
  • the antenna 10 when the antenna 10 is applied to an unmanned aerial vehicle, the antenna 10 is specifically installed in the arm 120 of the unmanned aerial vehicle.
  • the arm 120 has a radio frequency board, and the radio frequency board has a radio frequency interface.
  • the end of the axis 110 far from its feeding end is connected to the radio frequency interface, so as to realize signal transmission between the body of the unmanned aerial vehicle and the remote controller.
  • FIG. 6 is a schematic structural diagram of an unmanned aerial vehicle provided in Embodiment 2 of the present invention.
  • this embodiment provides an unmanned aerial vehicle 20 for communicating with a control terminal such as a remote controller to send information such as the flight speed, altitude, and position of the unmanned aerial vehicle 20, Obtain control instructions from the remote control to control the take-off, flight attitude, direction, landing, etc. of the UAV.
  • the unmanned aerial vehicle 20 includes a fuselage 121, and an organic arm 122 is connected to the fuselage 121.
  • a power unit may be provided at an end of the arm 122.
  • the power unit may specifically include a rotor (not shown in the figure) and a motor 123. 123 is used to drive the rotor to rotate, which provides power for unmanned aerial vehicle flight.
  • the antenna provided in the first embodiment is installed inside the arm 122.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明提供一种天线及无人飞行器,所述天线可应用在无人飞行器上,所述天线包括:基板,所述基板具有相背的第一面和第二面;辐射单元,包括相互电连接的第一辐射部和第二辐射部,其中第一辐射部设置在所述第一面的一侧边缘上,第二辐射部设置在所述第二面的一侧边缘上;天线地单元,包括相互电连接的第一天线地部和第二天线地部,其中第一天线地部设置在所述第一面的另一侧边缘上,第二天线地部设置在所述第二面的另一侧边缘上;馈电同轴线;其中,所述辐射单元和所述天线地单元通过所述馈电同轴线馈电,且所述第一辐射部和所述第二辐射部的电流路径长度相同,所述第一天线地部和所述第二天线地部的电流路径长度相同。本发明天线性能稳定。

Description

天线及无人飞行器
相关申请交叉引用
本申请要求于2018年8月20日申请的、申请号为201810949817.1、申请名称为“天线及无人飞行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及天线技术领域,尤其涉及一种天线及无人飞行器。
背景技术
随着科技的进步,无人飞行器受到了广泛的关注。无人飞行器简称:无人机,其具有机动灵活、反应快速、无人飞行等优点。无人飞行器通常应用于军事领域和民用领域,具体在气象、农业、勘探、摄影、输运、娱乐等领域应用非常广泛。无人飞行器上具有天线,通过天线进行信号的收发,与遥控器进行信号传送。
然而,现有的无人机内置天线,一般设置在脚架内,使得天线尺寸受限,而无人机机臂虽然空间尺寸相对较大,但环境较复杂,容易影响天线的信号,使天线无法正常工作,而且,因为基板两侧没有同时都产生辐射且基板本身对辐射的损耗,使得天线性能很不稳定。
发明内容
为了解决背景技术中提到的至少一个问题,本发明提供一种天线及无人飞行器,以提高天线的稳定性。
为了实现上述目的,第一方面,本发明提供一种天线,可应用在无人飞行器上,所述天线包括:
基板,所述基板具有相背的第一面和第二面;
辐射单元,包括相互电连接的第一辐射部和第二辐射部,其中所述第一 辐射部设置在所述基板的第一面的一侧边缘上,所述第二辐射部设置在所述第二面的一侧边缘上;
天线地单元,包括相互电连接的第一天线地部和第二天线地部,其中所述第一天线地部设置在所述第一面的另一侧边缘上,所述第二天线地部设置在所述第二面的另一侧边缘上;
馈电同轴线;
其中,所述辐射单元和所述天线地单元通过所述馈电同轴线馈电,且所述第一辐射部和所述第二辐射部的电流路径长度相同,所述第一天线地部和所述第二天线地部的电流路径长度相同。
本发明的天线,通过设置第二天线地部,使得无人机内部的电机线、灯板线及其他天线的同轴线等内部线缆对天线产生的影响较小,从而使所述天线能在复杂的电磁环境下正常工作,即天线可以设置在空间相对较大的、环境较复杂的机臂内,不用限制设置在空间较小的脚架内;另外,基板的第一面和第二面均具有辐射部且设置在基板的边缘上,即,基板的两侧均产生辐射,电流路径也是沿着基板的边缘,从而大大提高了天线的辐射效率、更好地保证了电流走向,而且即使在生产过程中基板的不同位置的厚度不一致,由于本发明的天线的基板的两个面上均有电流路径长度相同的辐射部和天线地部存在,相当于基板的两个面都有了金属,同时保证了天线基板两我没回家的电磁波能够在同一谐振频率下谐振,使天线的谐振频率不会偏移,从而可以减小基板对辐射的损耗、提高天线的辐射效率和性能。
在其中一个实施例中,所述天线还包括:
第一通孔,用于贯穿所述第一辐射部、所述基板和所述第二辐射部,所述第一辐射部和所述第二辐射部通过设置在所述第一通孔中的金属件连接;
第二通孔,用于贯穿所述第一天线地部、所述基板和所述第二天线地部,所述第一天线地部和所述第二天线地部通过设置在所述第二通孔中的金属件连接。
通过开设第一通孔和第二通孔,分别将第一辐射部和第二辐射部、第一天线地部和第二天线地部连接在一起,通过通孔相接的方式进行连接,连接方便、可靠,且保证了天线的美观度。
在其中一个实施例中,所述馈电同轴线包括外导体和内导体;
所述馈电同轴线位于所述基板的第一面,所述馈电同轴线的外导体紧贴所述第一天线地部,所述馈电同轴线的内导体延伸至所述第一辐射部与所述第一辐射部电连接。
在其中一个实施例中,所述第一辐射部和所述第二辐射部均包括微带馈线、天线振子臂、回地线;
其中,所述微带馈线的第一端与所述馈电同轴线的馈电端连接,所述微带馈线的第二端与所述天线振子臂连接;
所述回地线分别与所述天线振子臂、所述天线地单元连接。
在其中一个实施例中,所述天线回地线与所述微带馈线相互平行;
所述天线振子臂分别与所述回地线和所述微带馈线相互垂直;或者,
所述天线回地线与所述微带馈线组成U字型,所述天线振子臂与所述微带馈线垂直。
在其中一个实施例中,所述天线振子臂沿所述基板的长度方向设置在所述基板的边缘。
在其中一个实施例中,所述第一天线地部和第二天线地部沿所述基板的长度方向设置在所述基板上,且所述第二天线地部在所述基板上的投影面积大于或等于无人机的机臂内的电机线及灯板线在所述基板上的投影面积。
在其中一个实施例中,所述基板为由FR-4等级的材质制成的基板。
在其中一个实施例中,所述天线的工作频率为900MHz。
在其中一个实施例中,所述第一天线地部沿基板的长度小于所述馈电同轴线的长度。
在其中一个实施例中,所述第一辐射部和所述第二辐射部一体成型;
所述第一天线地部和所述第二天线地部一体成型。
在其中一个实施例中,所述第一辐射部和所述第二辐射部的外轮廓相同,所述第一天线地部和所述第二天线地部的外轮廓相同。
第二方面,本发明提供一种无人飞行器,包括机身、与所述机身连接的机臂以及上述的天线,其中所述天线设置在所述机臂内。
本发明的构造以及它的其他目的及有益效果将会通过结合附图而对优选实施例的描述而更加明显易懂。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的天线的第一面的结构示意图;
图2为本发明实施例一提供的天线的第二面的结构示意图;
图3为本发明实施例一提供的天线安装在机臂内的立体示意图;
图4为本发明实施例一提供的天线的驻波参数图;
图5为本发明实施例一提供的天线在水平面和垂直面上的方向图;
图6为本发明实施例二提供的无人飞行器的机体的结构示意图。
附图标记说明:
10—天线;101—基板;102、105—微带馈线;103、106—天线振子臂;104、107—天线回地线;108—第一天线地部;109—第二天线地部;110—馈电同轴线;111—第一通孔;112—第二通孔;20—无人飞行器;121—机身;120、122—机臂;123—电机。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明创造的描述中,需要理解的是,术语“左”、“右”、“竖向”、“横向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明创造和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明创造的限制。此外,术语“第一”、“第二”“第三”“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”“第三”“第四”等的特 征可以明示或者隐含地包括一个或者更多个该特征。
在本发明创造的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本发明创造中的具体含义。
下面通过具体的实施例对本发明的天线、应用该天线的无人飞行器进行详细说明。
实施例一
图1为本发明实施例一提供的天线的第一面的结构示意图。图2为本发明实施例一提供的天线的第二面的结构示意图。图3为本发明实施例一提供的天线安装在机臂内的立体示意图。参照图1至图3所示,本发明提供一种天线,可应用在无人飞行器上,所述天线10包括:基板101、辐射单元、天线地单元、馈电同轴线110、第一通孔111和第二通孔112。
基板101具有相背的第一面和第二面。基板101为由FR-4等级的材质制成的基板。其中,基板101可以是印制电路板(Printed Circuit Board,简称PCB),也就是说,本实施例的天线10具体可以是PCB板天线。具体地,所述辐射单元、所述天线地单元可以由位于基板101上的金属(如铜片)制成。
所述辐射单元包括相互电连接的第一辐射部和第二辐射部,其中所述第一辐射部设置在基板101的第一面的一侧边缘上,包括微带馈线102、天线振子臂103、天线回地线104。所述第二辐射部设置在基板101的第二面的一侧边缘上,其同样包括微带馈线105、天线振子臂106、天线回地线107。
所述天线地单元包括相互电连接的第一天线地部108和第二天线地部109,第一天线地部108设置在基板101的第一面的另一侧边缘上,第二天线地部109设置在基板101的第二面的另一侧边缘上。
所述辐射单元和所述天线地单元都沿着基板101的边缘设置,这样可以更好地保证电流的走向。
具体地,微带馈线102的第一端与馈电同轴线110的馈电端连接,微带 馈线102的第二端与天线振子臂103连接,天线回地线104分别与天线振子臂103、第一天线地部108连接。第一天线地部108还与馈电同轴线110的接地端连接。
在一个实施例中,微带馈线102与天线回地线104相互平行,天线振子臂103分别与天线回地线104和微带馈线102相互垂直;或者,在另一个实施例中,微带馈线102与天线回地线104组成U字型,天线振子臂103与微带馈线102垂直。
在一个实施例中,天线振子臂103沿基板101的长度方向设置在基板101的边缘。
馈电同轴线110紧贴第一天线地部108,所述辐射单元和所述天线地单元通过馈电同轴线110馈电。馈电同轴线110具有外导体、内导体以及位于所述外导体和所述内导体之间的绝缘介质层,其中,馈电同轴线110的内导体伸出作为其馈电端,馈电同轴线110的外导体为其接地端。
在基板101的第二面,微带馈线105的第一端通过第一通孔111与馈电同轴线110的馈电端连接,微带馈线105的第二端与天线振子臂106连接,天线回地线107分别与天线振子臂106、第二天线地部109连接。所述第二辐射部在基板101的第二面的排布方式、结构可参照所述第一辐射部在基板101第一面,这里不再赘述。
第二通孔112用于贯穿第一天线地部108、基板101和第二天线地部109,第一天线地部108和第二天线地部109通过设置在第二通孔112中的金属件连接。
在一个实施例中,第一天线地部108和第二天线地部109沿基板101的长度方向分别设置在基板101的第一面和第二面上,且第一天线地部108和第二天线地部109在基板101上的投影面积大于或等于无人机的机臂内的电机线及灯板线在基板101上的投影面积。可以理解,在其他实施例中,只要保证第二天线地部109在基板101上的投影面积大于或等于无人机的机臂内的电机线及灯板线在基板101上的投影面积即可,第一天线地部108面积可以略小也没有关系。
另外,图中示出的实施例,第二天线地部109、无人机的机臂内的电机线及灯板线都位于基板101下边缘,可以理解,在其他实施例中,可以根据 天线10的具体结构设置改变第二天线地部109、无人机的机臂内的电机线及灯板线在基板101上的位置,如可以位于基板101的上边缘或中间等,只要可以保证第二天线地部109、无人机的机臂内的电机线及灯板线能够投影重合即可。
在一个实施例中,所述第一辐射部和所述第二辐射部的外轮廓相同,第一天线地部108和第二天线地部109的外轮廓相同。即,进一步保证了天线正反面的电流路径长度的一致性,从而进一步保证了天线两侧的电磁波能够在同一谐振频率下谐振,从而使得天线的性能更加稳定,而且方便天线制作。
在一个实施例中,天线10的工作频率为900MHz。可以理解,在其他实施例中,天线10还可以工作在其他频段,这里不作严格限制。
在一个实施例中,第一天线地部108沿基板101的长度小于馈电同轴线110的长度。
本实施例的天线10具体可应用在无人飞行器上,可以理解的是,该无人飞行器的机体与遥控器配套使用,通过天线10进行信号的收发,从而实现无人飞行器的机体与遥控器之间的通信。需要说明的是,该天线10也可以应用在其他需要收发信号的装置上。
本实施例提供的天线10,通过设置第二天线地部,使得无人机内部的电机线、灯板线及其他天线的同轴线等内部线缆对天线产生的影响较小,从而使所述天线能在复杂的电磁环境下正常工作,即天线可以设置在空间相对较大的、环境较复杂的机臂内,不用限制设置在空间较小的脚架内;另外基板的第一面和第二面均具有辐射部,即,基板的两侧均产生辐射,从而大大提高了天线的辐射效率,而且,即使在生产过程中基板的不同位置的厚度不一致,由于本发明的天线的基板的相背的两个面上均有电流路径长度相同的辐射部和天线地部存在,相当于基板101的第一面和第二面都有了金属,同时保证了天线基板两我没回家的电磁波能够在同一谐振频率下谐振,使天线的谐振频率不会偏移,从而可以减小基板101对辐射的损耗、提高天线的辐射效率和性能。
其中,可使馈电同轴线110位于基板101的第一面的一侧,馈电同轴线110的外导体紧贴第一天线地部108的一侧,且与第一天线地部108电连接。馈电同轴线110的内导体延伸至所述辐射单元并与所述辐射单元的微带馈线 102电连接,从而使辐射单元与天线地单元通过馈电同轴线110馈电。
示例性的,如图1和图2所示,第一天线地部108设置在基板101的第一面的一侧,所述第一辐射部设置在基板101的第一面的另一侧。第二天线地部109设置在基板101的第二面且与第一天线地部108几乎重合的位置,所述第二辐射部设置在基板101的第二面且与所述第一辐射部几乎重合的位置。
参照图1至图3,具体实现时,第一天线地部108靠近微带馈线102一端处可设置第一焊盘,第一天线地部108通过所述第一焊盘与馈电同轴线110的外导体焊接在一起;微带馈线102靠近第一天线地部108的一端处也可以设置有第二焊盘,微带馈线102通过所述第二焊盘与馈电同轴线110的内导体焊接在一起。可以理解,在其他实施例中,也可以不用焊盘,直接在第一天线部108与馈电同轴线110的连接处、微带馈线102与馈电同轴线110的连接处进行点连接,这里不作严格限定。
需要说明的是,在其他实现方式中,馈电同轴线110也可以位于基板101的第二面的一侧,即馈电同轴线110的馈电端和接地端都位于基板101的第二面;又或者,馈电同轴线110的馈电端位于基板101的第一面,馈电同轴线110的接地端紧贴第二天线地部109等,同样可实现上述功能。
参照图1和图2所示,在本实施例中,天线10还具有贯穿所述第一辐射部、基板101和所述第二辐射部的第一通孔111,所述第一辐射部和所述第二辐射部通过设置在第一通孔111中的金属件连接。也就是说,所述第一辐射部和所述第二辐射部之间通过通孔相接的方式连接。
在本实施例中,所述天线10上还具有贯穿第一天线地部108、基板101和第二天线地部109的第二通孔112,第一天线地部108和第二天线地部109通过设置在第一通孔111中的金属件连接。也就是说,第一天线地部108和第二天线地部109之间通过通孔相接的方式连接。
具体实现时,在将第一通孔111和第二通孔112开设好之后,分别向第一通孔111和第二通孔112中熔融金属,熔融后的金属固化冷却后即可将所述第一辐射部和所述第二辐射部电连接在一起,将第一天线地部108和第二天线地部109电连接在一起。当然,金属件也可以为穿设在第一通孔111和第二通孔112中的金属丝或者金属线。
具体实现时,第一通孔111可以是多个,比如,多个第一通孔111可分布在所述第一辐射部和所述第二辐射部各个边缘位置。第二通孔112可以是多个,比如,多个第二通孔112可沿第一天线地部108和第二天线地部109上靠近辐射单元一侧的边缘排布。由于天线10在工作时,天线10正反面电流的路径是沿着辐射单元和天线地单元的边缘走向的,通过将第一通孔111沿着辐射单元的边缘排布,将第二通孔112沿着天线地单元的边缘排布,从而保证了电流的走向。
对于第一通孔111和第二通孔112的数量,本发明不作限定,只要至少保证在馈电同轴线110的馈电端附近有足够数量的第一通孔111、在馈电同轴线110的接地端附近(图3中馈电同轴线设置的位置附近)有足够数量的第二通孔112即可。
在一个实施例中,可使所述第一辐射部和所述第二辐射部的外轮廓相同,第一天线地部108和第二天线地部109的外轮廓相同,即保证了天线10第一面和第二面的电磁波能够在同一谐振频率下谐振,使得天线10的性能更加稳定,而且方便天线制作。可以理解,在其他实施例中,也可以是所述第一辐射部和所述第二辐射部的外轮廓不完全一致,第一天线地部108和第二天线地部109的外轮廓不完全一致,大致相同就可以了,即只要保证所述第一辐射部和所述第二辐射部的电流路径长度一致,第一天线地部108和第二天线地部109的电流路径长度大体一致即可。
在一个实施例中,可使所述第一辐射部和所述第二辐射部一体成型,第一天线地部108和第二天线地部109一体成型,这样使得制作更加方便,且相互之间的连接更加可靠。当然在其他实施方式中,各对应部分也可以是后续再电连接在一起。
图4为本发明实施例一提供的天线驻波参数图,如图4所示,本实施例的天线10可工作在897MHz~935MHz,带宽为38MHz,可满足常用的900MHz频段的覆盖。图5为本发明实施例一提供的天线在水平面和垂直面上的方向图。参照图5所示,本实施例的天线10在900MHz,水平方向上(H-plane)仍然能保持全向,在垂直方向上(E-plane)增益较大,即,该天线10在900MHz可实现全方向覆盖。
本实施例的天线10具体形成为倒F天线。当然,在其他实现方式中,也 可以是单极子天线、偶极子天线等等,这里不作严格限定。
如图3所示,当该天线10应用在无人飞行器上时,天线10具体安装在无人飞行器的机臂120内,机臂120内具有射频板,射频板上具有射频接口,馈电同轴线110远离其馈电端的一端与射频接口连接,从而实现无人飞行器的机体与遥控器之间的信号传送。
实施例二
图6为本发明实施例二提供的无人飞行器的结构示意图。结合图1至图5所示,本实施例提供一种无人飞行器20,用于与遥控器等控制终端之间进行通讯,以发送无人飞行器20的飞行速度、高度、位置等信息,并获取遥控器的控制指令以控制无人飞行器的起飞、飞行姿态、方向、降落等。
其中,无人飞行器20包括机身121,机身121上连接有机臂122,机臂122的端部可设置动力装置,动力装置具体可包括:旋翼(图中未示出)以及电机123,电机123用于驱动旋翼转动,从而为无人飞行器飞行提供动力。机臂122内部安装有实施例一中提供的天线。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种天线,可应用在无人飞行器上,其特征在于,所述天线包括:
    基板,所述基板具有相背的第一面和第二面;
    辐射单元,包括相互电连接的第一辐射部和第二辐射部,其中所述第一辐射部设置在所述基板的第一面的一侧边缘上,所述第二辐射部设置在所述第二面的一侧边缘上;
    天线地单元,包括相互电连接的第一天线地部和第二天线地部,其中所述第一天线地部设置在所述第一面的另一侧边缘上,所述第二天线地部设置在所述第二面的另一侧边缘上;
    馈电同轴线;
    其中,所述辐射单元和所述天线地单元通过所述馈电同轴线馈电,且所述第一辐射部和所述第二辐射部的电流路径长度相同,所述第一天线地部和所述第二天线地部的电流路径长度相同。
  2. 根据权利要求1所述的天线,其特征在于,还包括:
    第一通孔,用于贯穿所述第一辐射部、所述基板和所述第二辐射部,所述第一辐射部和所述第二辐射部通过设置在所述第一通孔中的金属件连接;
    第二通孔,用于贯穿所述第一天线地部、所述基板和所述第二天线地部,所述第一天线地部和所述第二天线地部通过设置在所述第二通孔中的金属件连接。
  3. 根据权利要求1所述的天线,其特征在于,所述馈电同轴线包括外导体和内导体;
    所述馈电同轴线位于所述基板的第一面,所述馈电同轴线的外导体紧贴所述第一天线地部,所述馈电同轴线的内导体延伸至所述第一辐射部与所述第一辐射部电连接。
  4. 根据权利要求1~3任一项所述的天线,其特征在于,所述第一辐射部和所述第二辐射部均包括微带馈线、天线振子臂、回地线;
    其中,所述微带馈线的第一端与所述馈电同轴线的馈电端连接,所述微带馈线的第二端与所述天线振子臂连接;
    所述回地线分别与所述天线振子臂、所述天线地单元连接。
  5. 根据权利要求4所述的天线,其特征在于,所述天线回地线与所述微 带馈线相互平行;
    所述天线振子臂分别与所述回地线和所述微带馈线相互垂直;或者,
    所述天线回地线与所述微带馈线组成U字型,所述天线振子臂与所述微带馈线垂直。
  6. 根据权利要求4所述的天线,其特征在于,所述天线振子臂沿所述基板的长度方向设置在所述基板的边缘。
  7. 根据权利要求1所述的天线,其特征在于,所述第一天线地部和第二天线地部沿所述基板的长度方向设置在所述基板上,且所述第二天线地部在所述基板上的投影面积大于或等于无人机的机臂内的电机线及灯板线在所述基板上的投影面积。
  8. 根据权利要求1所述的天线,其特征在于,所述基板为由FR-4等级的材质制成的基板。
  9. 根据权利要求1所述的天线,其特征在于,所述天线的工作频率为900MHz。
  10. 根据权利要求1所述的天线,其特征在于,所述第一天线地部沿基板的长度小于所述馈电同轴线的长度。
  11. 根据权利要求1所述的天线,其特征在于,所述第一辐射部和所述第二辐射部一体成型;
    所述第一天线地部和所述第二天线地部一体成型。
  12. 根据权利要求1所述的天线,其特征在于,所述第一辐射部和所述第二辐射部的外轮廓相同,所述第一天线地部和所述第二天线地部的外轮廓相同。
  13. 一种无人飞行器,其特征在于,包括机身、与所述机身连接的机臂以及如权利要求1~12任一项所述的天线;
    其中,所述天线设置在所述机臂内。
PCT/CN2019/100918 2018-08-20 2019-08-16 天线及无人飞行器 WO2020038288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810949817.1A CN108767435B (zh) 2018-08-20 2018-08-20 天线及无人飞行器
CN201810949817.1 2018-08-20

Publications (1)

Publication Number Publication Date
WO2020038288A1 true WO2020038288A1 (zh) 2020-02-27

Family

ID=63967305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100918 WO2020038288A1 (zh) 2018-08-20 2019-08-16 天线及无人飞行器

Country Status (2)

Country Link
CN (1) CN108767435B (zh)
WO (1) WO2020038288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540764A (zh) * 2021-08-09 2021-10-22 深圳市道通智能航空技术股份有限公司 一种天线及无人飞行器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767435B (zh) * 2018-08-20 2024-02-27 深圳市道通智能航空技术股份有限公司 天线及无人飞行器
CN108767434B (zh) * 2018-08-20 2024-04-19 深圳市道通智能航空技术股份有限公司 天线及无人飞行器
CN109494451B (zh) 2018-12-29 2024-05-17 深圳市道通智能航空技术股份有限公司 一种天线及无人飞行器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007469A1 (en) * 2006-07-07 2008-01-10 Hon Hai Precision Ind., Co., Ltd. Multi-band antenna
CN105811100A (zh) * 2016-04-29 2016-07-27 普联技术有限公司 一种插件天线、插件天线组件和通讯设备
CN108172983A (zh) * 2018-02-24 2018-06-15 深圳市道通智能航空技术有限公司 遥控器
CN108417978A (zh) * 2018-02-14 2018-08-17 深圳市道通智能航空技术有限公司 无人机内置双频天线及无人机
CN108565539A (zh) * 2018-05-30 2018-09-21 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108565540A (zh) * 2018-05-30 2018-09-21 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108574144A (zh) * 2018-05-30 2018-09-25 深圳市道通智能航空技术有限公司 天线、无人飞行器的遥控器及无人飞行器
CN108767435A (zh) * 2018-08-20 2018-11-06 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108767436A (zh) * 2018-08-20 2018-11-06 深圳市道通智能航空技术有限公司 天线及无人飞行器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2872624Y (zh) * 2006-03-02 2007-02-21 汉达精密电子(昆山)有限公司 平面倒f型天线
CN106033841A (zh) * 2015-03-19 2016-10-19 联想(北京)有限公司 天线装置、电子设备和用于天线装置的控制方法
CN206907919U (zh) * 2016-12-14 2018-01-19 深圳市道通智能航空技术有限公司 一种双频段微带天线及应用该天线的无人机
CN208637581U (zh) * 2018-08-20 2019-03-22 深圳市道通智能航空技术有限公司 天线及无人飞行器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080007469A1 (en) * 2006-07-07 2008-01-10 Hon Hai Precision Ind., Co., Ltd. Multi-band antenna
CN105811100A (zh) * 2016-04-29 2016-07-27 普联技术有限公司 一种插件天线、插件天线组件和通讯设备
CN108417978A (zh) * 2018-02-14 2018-08-17 深圳市道通智能航空技术有限公司 无人机内置双频天线及无人机
CN108172983A (zh) * 2018-02-24 2018-06-15 深圳市道通智能航空技术有限公司 遥控器
CN108565539A (zh) * 2018-05-30 2018-09-21 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108565540A (zh) * 2018-05-30 2018-09-21 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108574144A (zh) * 2018-05-30 2018-09-25 深圳市道通智能航空技术有限公司 天线、无人飞行器的遥控器及无人飞行器
CN108767435A (zh) * 2018-08-20 2018-11-06 深圳市道通智能航空技术有限公司 天线及无人飞行器
CN108767436A (zh) * 2018-08-20 2018-11-06 深圳市道通智能航空技术有限公司 天线及无人飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540764A (zh) * 2021-08-09 2021-10-22 深圳市道通智能航空技术股份有限公司 一种天线及无人飞行器

Also Published As

Publication number Publication date
CN108767435B (zh) 2024-02-27
CN108767435A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
WO2020038288A1 (zh) 天线及无人飞行器
WO2020038287A1 (zh) 天线及无人飞行器
WO2019228339A1 (zh) 天线及无人飞行器
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器
WO2019228336A1 (zh) 天线及无人飞行器
WO2018107965A1 (zh) 一种双频段微带天线及应用该天线的无人机
WO2021078260A1 (zh) 双频天线和飞行器
US11431093B2 (en) Unmanned aerial vehicle built-in dual-band antenna and unmanned aerial vehicle
US11095027B2 (en) Compressed closed circuit circularly polarized omni-directional antenna
WO2023016317A1 (zh) 一种天线及无人飞行器
JPH08307134A (ja) アンテナ
CN208637581U (zh) 天线及无人飞行器
CN208637583U (zh) 天线及无人飞行器
US20200335871A1 (en) Dipole antenna and unmanned aerial vehicle
WO2019029189A1 (zh) 天线组件及具有此天线组件的无线通信电子设备、遥控器
WO2020038369A1 (zh) 天线及无人飞行器
WO2020134029A1 (zh) 一种天线及无人飞行器
WO2023001037A1 (zh) 天线、无线信号处理设备及无人机
CN208637582U (zh) 天线及无人飞行器
WO2019161672A1 (zh) 遥控器
US20210104816A1 (en) Combination driven and parasitic element circularly polarized antenna
WO2021078200A1 (zh) 双频天线和飞行器
WO2019148890A1 (zh) 天线及无人飞行器
US20200373652A1 (en) Unmanned aerial vehicle built-in antenna and unmanned aerial vehicle
CN208507932U (zh) 天线及无人飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851581

Country of ref document: EP

Kind code of ref document: A1