WO2020024861A1 - 一种天线校准方法及装置 - Google Patents

一种天线校准方法及装置 Download PDF

Info

Publication number
WO2020024861A1
WO2020024861A1 PCT/CN2019/097551 CN2019097551W WO2020024861A1 WO 2020024861 A1 WO2020024861 A1 WO 2020024861A1 CN 2019097551 W CN2019097551 W CN 2019097551W WO 2020024861 A1 WO2020024861 A1 WO 2020024861A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam direction
channel
transmission
gain
receiving
Prior art date
Application number
PCT/CN2019/097551
Other languages
English (en)
French (fr)
Inventor
马静艳
王世华
段滔
伍坚
王杰丽
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to KR1020217006394A priority Critical patent/KR102363700B1/ko
Priority to JP2021505832A priority patent/JP7038899B2/ja
Priority to EP19844459.8A priority patent/EP3832912A4/en
Priority to US17/265,360 priority patent/US11171417B2/en
Publication of WO2020024861A1 publication Critical patent/WO2020024861A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0891Space-time diversity
    • H04B7/0897Space-time diversity using beamforming per multi-path, e.g. to cope with different directions of arrival [DOA] at different multi-paths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/29Performance testing

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to an antenna calibration method and device.
  • Large-scale active antenna array technology is the key enabling technology for 5G communication, ensuring the consistency of the amplitude and phase of each active channel, and is the prerequisite for the effective realization of the array beamforming function.
  • OTA over-the-air technology
  • the embodiments of the present application provide an antenna calibration method and device.
  • an antenna calibration method is provided.
  • a receiving beam direction range corresponding to a receiving channel beam weight matrix of an active antenna array is divided into multiple beam direction regions, and one beam direction region corresponds to at least one receiving beam direction.
  • At least one The beam direction area corresponds to a plurality of receiving beam directions; the method includes:
  • the active antenna array receives a receive calibration signal from a reference beam direction, obtains initial amplitude and phase error vectors of the N receiving channels of the active antenna array in the reference beam direction, and updates according to the initial amplitude and phase error vector.
  • a beam weight vector of each beam direction in the beam channel weight matrix of the receiving channel, and according to the beam weight vector of the reference beam direction in the updated beam channel matrix of the receiving channel, receiving a calibration signal for the reference beam direction Perform beam combining to obtain the first receiving channel beam gain corresponding to the reference beam direction; wherein a beam weight vector of a receiving beam direction includes beam weights of N receiving channels corresponding to the receiving beam direction, and N is greater than 1 An integer
  • the active antenna array receives a reception calibration signal from a first beam direction area, and uses a beam weight vector of a corresponding direction angle in a beam weight matrix of a receiving channel according to a direction angle corresponding to the first beam direction area.
  • the active antenna array performs:
  • the reception from the first beam direction area is performed. Aligning the calibration signals to obtain beam gains of the receiving channel corresponding to the first beam direction area;
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • the directional angle of the reference beam direction is different from the azimuth angle of any beam direction area.
  • an antenna calibration method is provided.
  • the transmit beam direction range corresponding to the transmit channel beam weight matrix of the active antenna array is divided into multiple beam direction regions.
  • One beam direction region corresponds to at least one transmit beam direction.
  • At least one The beam direction area corresponds to multiple transmit beam directions; the method includes:
  • the active antenna array sends a transmission calibration signal by using a beam weight vector of a reference beam direction in a beam weight matrix of a transmission channel, and obtains the initial amplitude and phase of the N transmission channels of the active antenna array according to a reception sequence of the transmission calibration signal.
  • An error vector updating a transmission calibration signal and a beam weight vector of each beam direction in a beam weight matrix of a transmission channel according to the initial amplitude and phase error vector, and using the reference beam direction in the updated beam weight matrix of the transmission channel And transmitting the updated transmission calibration signal according to the beam weight vector of the beam, and beam-synthesis the reception sequence of the updated transmission calibration signal according to the beam weight vector of the reference beam direction to obtain a first beam corresponding to the reference beam direction.
  • a transmission channel beam gain wherein a beam weight vector of a transmission beam direction includes beam weights of N transmission channels corresponding to the transmission beam direction, and N is an integer greater than 1;
  • the active antenna array sends a transmission calibration signal by using a beam weight vector corresponding to a direction angle of a first beam direction area, and uses a beam weight vector of a corresponding direction angle in a beam weight matrix of a transmission channel to transmit the transmission calibration signal.
  • Beam synthesis of the received sequence is performed to obtain the second transmission channel beam gain corresponding to the first beam direction region; if the gain error between the second reception channel beam gain and the first reception channel beam gain is greater than the gain error
  • the threshold the maximum number of K iterations of the transmission channel calibration is performed; where K is the maximum number of iterations, and the first beam direction area is one of the plurality of beam direction areas.
  • the active antenna array performs:
  • the beam weight vector of the directional angle corresponding to the beam direction area sends a transmission calibration signal and performs the next iteration process, otherwise the current iteration process ends.
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • the directional angle of the reference beam direction is different from the azimuth angle of any beam direction area.
  • an antenna calibration device which is applied to an active antenna array, and a receiving beam direction range corresponding to a receiving channel beam weight matrix of the active antenna array is divided into multiple beam direction regions, and one beam direction region Corresponding to at least one receiving beam direction, and at least one beam direction area corresponding to a plurality of receiving beam directions; the device includes:
  • An initial calibration module configured to obtain the initial amplitude and phase error vectors of the N receiving channels of the active antenna array in the reference beam direction according to the reception calibration signals received from the active beam array, Updating the beam weight vector of each beam direction in the receiving channel beam weight matrix according to the initial amplitude and phase error vector, and according to the beam weight vector of the reference beam direction in the updated receiving channel beam weight matrix, Performing beam synthesis on the received calibration signal in the reference beam direction to obtain a first receiving channel beam gain corresponding to the reference beam direction; wherein a beam weight vector of a receiving beam direction includes N receiving channels corresponding to the receiving beam direction Beam weight, N is an integer greater than 1;
  • the sub-area calibration module is configured to use a receiving channel beam weight matrix according to a receiving calibration signal received from the active antenna array from a first beam direction area and according to a directional angle corresponding to the first beam direction area. Beam-combination vector of the corresponding direction angle, beam-combining the received calibration signal in the first beam direction area to obtain the second receiving channel beam gain corresponding to the first beam direction area; if the second receiving channel beam If the gain error between the gain and the beam gain of the first receiving channel is greater than the gain error threshold, then a maximum of K receiving channel calibration iterative processes are performed according to the received calibration signal from the first beam direction area; where K is the maximum The number of iterations, the first beam direction region is one of the plurality of beam direction regions.
  • the sub-region calibration module executes:
  • the reception from the first beam direction area is performed. Aligning the calibration signals to obtain beam gains of the receiving channel corresponding to the first beam direction area;
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • a direction angle of the reference beam direction is different from an azimuth angle corresponding to any beam direction area.
  • an antenna calibration device which is applied to an active antenna array, and a transmission beam direction range corresponding to a transmission channel beam weight matrix of the active antenna array is divided into multiple beam direction regions, and one beam direction region Corresponding to at least one receiving beam direction, and at least one beam direction area corresponding to multiple transmitting beam directions; the device includes:
  • An initial calibration module configured to obtain an initial sequence of N transmission channels of the active antenna array according to a receiving sequence of a transmission calibration signal sent by an active antenna array using a beam weight vector of a reference beam direction in a beam weight matrix of a transmission channel; Amplitude and phase error vector, according to the initial amplitude and phase error vector, update the transmit calibration signal and the beam weight vector of each beam direction in the beam weight matrix of the transmission channel, and use the reference in the updated beam weight matrix of the transmission channel A beam weight vector in the beam direction transmits an updated transmission calibration signal, and beam reception is performed on the received sequence of the updated transmission calibration signal according to the beam weight vector in the reference beam direction to obtain the reference beam direction correspondence.
  • Beam gain of the first transmission channel wherein a beam weight vector of a transmission beam direction includes beam weights of N transmission channels corresponding to the transmission beam direction, and N is an integer greater than 1.
  • a sub-region calibration module is configured to: after the active antenna array sends a transmission calibration signal using a beam weight vector corresponding to a direction angle of a first beam direction region, use a beam weight value of a corresponding direction angle in a beam channel weight matrix of a transmission channel.
  • the sub-region calibration module executes:
  • the beam weight vector of the directional angle corresponding to the beam direction area sends a transmission calibration signal and performs the next iteration process, otherwise the current iteration process ends.
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • a direction angle of the reference beam direction is different from an azimuth angle corresponding to any beam direction area.
  • a communication device including: a processor, a memory, and a transceiver, the transceiver includes a transmission channel and a reception channel; and a range of reception beam directions corresponding to a beam weight matrix of the reception channel is divided into a plurality of beam directions. Area, one beam direction area corresponds to at least one receiving beam direction, and at least one beam direction area corresponds to multiple receiving beam directions;
  • the processor is configured to read a program in a memory and execute:
  • An initial amplitude and phase error vector of the N receiving channels of the active antenna array in the reference beam direction is obtained according to a reception calibration signal received from the reference beam direction, and according to the initial amplitude and phase,
  • the error vector updates the beam weight vector of each beam direction in the beam channel weight matrix of the receiving channel, and according to the beam weight vector of the reference beam direction in the updated beam channel matrix of the receiving channel, Receive the calibration signal and perform beam synthesis to obtain the beam gain of the first receiving channel corresponding to the reference beam direction; wherein a beam weight vector of a receiving beam direction includes beam weights of N receiving channels corresponding to the receiving beam direction, N Is an integer greater than 1;
  • the beam weight value of the corresponding direction angle in the beam weight matrix of the receiving channel is used Vector to beam combine the received calibration signals in the first beam direction area to obtain the second receive channel beam gain corresponding to the first beam direction area; if the second receive channel beam gain is equal to the first receive If the gain error between the channel beam gains is greater than the gain error threshold, a maximum of K receive channel calibration iterations are performed according to the received calibration signal from the first beam direction area; where K is the maximum number of iterations and the first beam direction The area is one of the plurality of beam direction areas.
  • the processor executes each iteration of the up to K receiving channel calibration iterations:
  • the reception from the first beam direction area is performed. Aligning the calibration signals to obtain beam gains of the receiving channel corresponding to the first beam direction area;
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • the directional angle of the reference beam direction is different from the azimuth angle of any beam direction area.
  • a communication device including: a processor, a memory, and a transceiver, the transceiver includes a transmission channel and a reception channel; and a transmission beam direction range corresponding to a beam weight matrix of the transmission channel is divided into multiple beam directions. Area, one beam direction area corresponds to at least one receive beam direction, and at least one beam direction area corresponds to multiple transmit beam directions;
  • the processor is configured to read a program in a memory and execute:
  • the initial amplitude and phase error vectors of the N transmit channels of the active antenna array are obtained according to the receiving calibration sequence of the transmit calibration signal sent by the active antenna array using the beam weight vector in the reference beam direction in the transmit channel beam weight matrix.
  • the initial amplitude and phase error vector updates a transmission calibration signal and a beam weight vector of each beam direction in a beam weight matrix of a transmission channel, and uses the beam weight in the reference beam direction in the updated beam channel weight matrix of the transmission channel.
  • a beam weight vector of a transmission beam direction includes beam weights of N transmission channels corresponding to the transmission beam direction, and N is an integer greater than 1;
  • the transceiver After the transceiver sends the transmission calibration signal by using the beam weight vector corresponding to the direction angle of the first beam direction area, the transceiver uses the beam weight vector of the corresponding direction angle in the beam weight matrix of the transmission channel to transmit the transmission calibration signal.
  • Beam synthesis of the received sequence is performed to obtain the second transmission channel beam gain corresponding to the first beam direction region; if the gain error between the second reception channel beam gain and the first reception channel beam gain is greater than the gain error
  • the threshold the maximum number of K iterations of the transmission channel calibration is performed; where K is the maximum number of iterations, and the first beam direction area is one of the plurality of beam direction areas.
  • the processor executes:
  • the beam weight vector of the directional angle corresponding to the beam direction area sends a transmission calibration signal and performs the next iteration process, otherwise the current iteration process ends.
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • a direction angle of the reference beam direction is different from an azimuth angle corresponding to any beam direction area.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing first aspects.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing second aspects.
  • FIG. 1 is a schematic diagram for comparing antenna calibration using the existing technology and the embodiment of the present application;
  • FIG. 2 is a schematic diagram of an antenna calibration environment according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a receiving channel calibration process according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a receiving channel calibration iterative process in a receiving channel calibration process according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a transmission channel calibration process according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a transmission channel calibration iterative process in a transmission channel calibration process according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an antenna calibration apparatus for implementing calibration of a receiving channel according to an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of an antenna calibration apparatus for implementing transmission channel calibration according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • the dimension is N ⁇ 1, which means that the array responds to the amplitude of the signal component of the k-th frequency point. It is customarily called the array steering vector of the signal.
  • the dimension of n (t) is N ⁇ 1, which represents the noise vector of the array.
  • Gaussian white noise is generally assumed.
  • the current beamforming is generally based on the narrowband model shown in equation (3), and phase adjustment of the corresponding beam orientation for each channel, that is, the beam weight vector
  • Figure 1 shows the phase difference characteristics of two channels before and after calibration using a narrow-band model under a 400M operating bandwidth of a large-scale antenna array system. It can be seen that the phase difference only at the center frequency point is small, and the phase difference at the edge frequency of the operating bandwidth is large.
  • [ ⁇ ] H represent the conjugate transpose operation, and the beamforming gain is available To show that because f k ⁇ f 0 , the beamforming gain will be greatly affected.
  • An embodiment of the present application provides an antenna calibration method, which can perform multi-channel broadband calibration for a large-scale active antenna array. This method is based on the OTA test environment to compensate the amplitude and phase errors of the channel antenna in a larger frequency bandwidth.
  • the solid line in FIG. 1 shows the phase difference characteristics of the two channels after being calibrated by using the calibration method provided in the embodiment of the present application.
  • the method provided in the embodiment of the present application can make the channel amplitude difference consistent within the entire system operating bandwidth, effectively guarantee the beamforming effect of large-scale antenna arrays on large-bandwidth signals, and ensure that the equipment is in production inspection. , The effective integrity of its shaping function.
  • phase difference between the channels is mainly composed of two parts: First, the initial phase difference of the center frequency caused by the channel difference, that is, the phase difference compensated by the narrowband calibration model; The second is that the phase difference caused by the frequency bandwidth changes with the phase, which can be effectively compensated by a broadband calibration model.
  • the channel phase difference is compensated and calibrated in two parts.
  • the initial phase difference corresponding to the center frequency point is compensated to the original theoretical beam weight table.
  • the phase difference caused by the signal frequency bandwidth is obtained by equalizing the amplitude and phase of a single channel. Calibration compensation.
  • a calibration environment is first established based on a device production scenario, and then the active antenna array is calibrated under the established calibration environment.
  • the production environment of the device can be appropriately modified to make the electromagnetic environment relatively stable and reach far-field test conditions, thereby obtaining the calibration environment used in the embodiments of the present application.
  • FIG. 2 exemplarily illustrates a calibration environment used in an embodiment of the present application.
  • the calibration environment includes an active antenna array to be tested and a test antenna for calibrating the active antenna array.
  • the distance between the test antenna and the active antenna array meets the far-field test conditions.
  • the test antenna may also be replaced by a terminal.
  • the embodiment of the present application describes the test antenna as an example.
  • test antennas There may be multiple test antennas, and the multiple test antennas may be placed at different positions on different planes.
  • the test antenna connected with the dotted line in FIG. 2 is placed on a horizontal plane (such as the XY plane in the figure), and the test antenna connected using a dotted line is placed on a vertical plane (such as the YZ plane in the figure).
  • the azimuth of a test antenna can use the azimuth in the horizontal plane And the elevation angle ⁇ on the vertical plane.
  • the receive channel beam weight matrix W of the active antenna array includes beam weight vectors corresponding to multiple receive beam directions (that is, multiple directional angles).
  • a beam weight vector of a receiving beam direction includes beam weights of N receiving channels corresponding to the receiving beam direction.
  • N is the number of active antenna array receiving channels, and N is an integer greater than 1.
  • the receiving channel beam weight matrix W includes Q (Q is an integer greater than 1) beam beam vector corresponding to the receiving beam directions (that is, Q direction angles), the position and number of the test antennas can be used to
  • the spatial range corresponding to the Q receiving beam directions is divided into L (L is an integer greater than 1, L ⁇ Q) beam direction regions.
  • L is an integer greater than 1, L ⁇ Q
  • Each beam direction area corresponds to at least one beam direction
  • at least one beam direction area in the L beam direction areas corresponds to a plurality of receiving beam directions.
  • the active antenna array can save the correspondence between each beam direction area and the reception beam direction.
  • the receiving beam channel weight matrix W includes 200 receiving beam directions.
  • a test antenna 0 ie, the standard test antenna A1 in the figure
  • the test antenna corresponding to the reference beam direction at the elevation angle ⁇ q 0 °
  • Antenna corresponding to 14 azimuth angles
  • 6 test antennas are placed in YZ vertical plane, corresponding to 6 pitch angles.
  • One test antenna corresponds to one beam direction area, and one beam direction area corresponds to one direction angle.
  • This direction angle is the direction angle of the corresponding test antenna.
  • the direction angle of the signal transmitted by the test antenna located in the beam direction area l is This beam direction area corresponds to all receiving beam directions within the following directional angle range: the azimuth range is The elevation range is Among them, P is the step size.
  • the directional angle of test antenna 1 in Figure 2 is The corresponding azimuth range of the beam area is [2.5 °, 7.5 °], and the elevation angle range is [-2.5 °, 2.5 °], that is, all the receiving beam directions in the directional angle range correspond to the area.
  • an initial beam weight matrix of the receiving channel can be formed based on the characteristics of the active antenna array.
  • the initial beam weight matrix of the receiving channel can be expressed as:
  • q is an integer, 1 ⁇ q ⁇ Q
  • Q represents the number of receiving beam directions in the receiving channel beam weight matrix Represents the beam weight vector corresponding to the qth receiving beam direction. such as, Represents the beam weight vector corresponding to the received beam direction 1, Represents the beam weight vector corresponding to beam direction 2, and so on.
  • Beam weight vector in the initial beam weight matrix W of the receiving channel The dimension is the number of channels.
  • the beam weight vector is a vector of all ones, and the beamforming implements the data addition operation of each channel.
  • FIG. 3 it is a schematic diagram of a calibration process of an active antenna array receiving channel according to an embodiment of the present application.
  • a sequence of receiving a calibration signal may be generated first, and the receiving calibration signal is sent by the test antenna to the active antenna array for calibrating the receiving channel of the active antenna array.
  • the time-domain sequence length of the calibration signal can be Since K ⁇ M, the frequency-domain sequence S RX (k) of the received calibration signal needs to be zero-added to a length M.
  • the process may include:
  • the active antenna array receives the receive calibration signal sent by the test antenna in the direction of the reference beam, obtains the amplitude and phase error of each receiving channel in the active antenna array, and updates the receiving channel beam weight matrix according to the amplitude and phase error of each receiving channel. .
  • the reference beam direction may correspond to the directional angle.
  • Direction angle Represents azimuth
  • the pitch angle ⁇ q 0 °.
  • the reference beam direction corresponds to the azimuth angle.
  • N is the number of receiving channels of the active antenna array
  • x n (t) in the received signal matrix x (t) represents the baseband data received by the nth receiving channel.
  • the amplitudes of the data received by each receiving channel in the active antenna array should be completely consistent, but the actual receiving of each receiving channel is caused by the amplitude and phase errors between the receiving channels. There are differences between the data, and the difference is the amplitude and phase error of the receiving channel corresponding to the reference beam direction.
  • the active antenna array determines the amplitude phase difference matrix between each receiving channel according to the data received by each receiving channel:
  • the amplitude difference h n can be obtained by the following methods:
  • E ⁇ represents a mathematical expectation operation
  • [ ⁇ ] * represents a conjugate calculation
  • Active antenna array based on reference beam direction corresponds to the receiving channel amplitude and phase error matrix h RX .
  • Multi-channel amplitude and phase error compensation is performed on the receiving channel beam weight matrix to obtain an updated receiving channel beam weight matrix:
  • the active antenna array performs beam synthesis on the received calibration signal in the reference beam direction according to the updated receiving channel beam weight matrix to obtain the receiving channel beam gain corresponding to the reference beam direction.
  • the active antenna array can determine the receiving channel beam gain according to the following formula:
  • the directional angle in the updated receiving channel beam weight matrix is Of the beam weight vector.
  • the active antenna array receives the receive calibration signal sent by the test antenna in the first beam direction area, and according to the direction angle of the receive calibration signal from the first beam direction area, the direction angle in the receive channel beam weight matrix is used to correspond to The beam weight vector is used to beam-synthesize the received calibration signal from the first beam direction area to obtain the receiving channel beam gain corresponding to the first beam direction area.
  • the “first beam direction region” may be any one of the L beam regions obtained by the division.
  • the directional angle corresponding to the first beam direction area is different from the directional angle corresponding to the reference beam direction.
  • the direction angle of the calibration signal sent by the test antenna is
  • the receiving channel beam gain corresponding to the l-th beam region is:
  • G RX1 represents the beam gain of the receiving channel corresponding to the first beam region; Represents the direction angle in the receive channel weight matrix Of the beam weight vector.
  • the test antenna 1 sends and receives a calibration signal
  • the direction angle of the received calibration signal is Active antenna array according to the direction angle in the beam weight matrix of the receiving channel
  • the beam weight vector is used to receive beam synthesis the receive calibration signal sent by the test antenna 1, and calculate the beam gain of the receive channel corresponding to the beam direction area l.
  • S304 The active antenna array determines the difference between the receive channel beam gain corresponding to the first beam direction region and the receive channel beam gain corresponding to the reference beam direction. If the difference is greater than the set gain error threshold, the process proceeds to S306. Otherwise, go to S305.
  • the gain error threshold can be set in advance.
  • the value of the gain error threshold can be determined according to the requirements of the calibration accuracy. The higher the calibration accuracy, the smaller the gain error threshold.
  • the active antenna array determines that the beam weight vector corresponding to the first beam direction area in the beam weight matrix of the receiving channel is calibrated.
  • the receiving channel error of the active antenna array is small, so the receiving beam weight vector corresponding to the first beam direction region in the beam channel weight matrix of the receiving channel can be kept unchanged, that is, there is no need to correspond in the first beam direction region. Perform error calibration on the receiving channel in the direction of the receiving beam.
  • the active antenna array performs up to K iterations of the receiving channel calibration process to update the beam weight vector corresponding to the direction angle of the received calibration signal from the first beam direction area in the receiving channel beam weight matrix, thereby The calibration of the receiving channel of the active antenna array is performed in the receiving beam direction corresponding to the first beam direction area.
  • the active antenna array receiving channel calibration can be performed in accordance with S303 to S306 in the above process, so that the receiving channel of the active antenna array can be calibrated in all receiving beam directions.
  • FIG. 4 it is a schematic flowchart of a receiving channel calibration iterative process according to an embodiment of the present application. As shown, the process can include:
  • the active antenna array obtains the amplitude and phase error vectors of the N receiving channels of the active antenna array in the first beam direction area according to the reception calibration signal from the first beam direction area.
  • the amplitude and phase error vectors of the N receiving channels of the active antenna array in the first beam direction region are:
  • the active antenna array updates the received beam weight vector of the received beam direction in the first beam direction area in the received channel beam weight matrix according to the amplitude and phase error vector determined by the iterative process.
  • the direction angle of the calibration signal received by the test antenna from the beam direction area is This beam direction area corresponds to all receiving beam directions within the following directional angle range: the azimuth range is The elevation range is Among them, P is the step size. Then, the active antenna array updates the beam weight vectors of all the received beams in the range in the received beam weight matrix according to the amplitude and phase error vectors determined by the iterative process.
  • the active antenna array uses the beam weight vector of the corresponding direction angle in the updated receive channel beam weight matrix according to the direction angle of the received calibration signal from the first beam direction area, and The received calibration signal is subjected to beam synthesis to obtain a receiving channel beam gain corresponding to the first beam direction region.
  • S404 The active antenna array judges whether the gain error of the receiving channel beam gain determined in this iterative process and the gain error between the receiving channel beam gain corresponding to the reference beam direction is greater than the gain error threshold. In the second iteration process, the calibration of the beam weight vector corresponding to the first beam direction region is completed.
  • S405 Determine whether the maximum number of iterations is reached. If it is reached, go to S407, otherwise go to S408.
  • the active antenna array receives the receiving calibration signal from the first beam direction area, and proceeds to S401 to enter the next iterative process.
  • the calibration signal is first sent and received through the test antenna 0, and the direction angle of the signal is
  • the active antenna array updates each beam weight vector in the beam weight matrix of the receiving channel according to S301 to S302 in FIG. 3, so that the directional angle is used as Receive calibration signal for initial calibration of the receive channel.
  • the calibration signal is sent and received through the test antenna 1, and the direction angle of the signal is
  • the active antenna array determines whether the directional angle range corresponding to the directional angle is required according to S303 to S304 in FIG. 3 Several beam weight vectors are updated within the range. If the update is needed, the iterative process of receiving channel calibration is performed according to the process shown in Figure 4 until the range of directional angles Several beam weight vector updates within are completed, or until the update fails. If no update is needed, keep the azimuth range Several beam weight vectors within are unchanged.
  • the corresponding calibration antennas are used to send and receive calibration signals in turn, and for each receive calibration signal sent by each test antenna, the process of receiving channel calibration is processed according to the calibration signal sent by test antenna 1. Until calibration of the receiving channel is completed for all beam direction regions.
  • the receiving channel calibration signal of the reference beam direction is used to initially update the receiving channel beam weight matrix, that is, the receiving channel is initially calibrated, and then updated for different beam direction regions.
  • the beam weight vectors of multiple beam directions within the range of the corresponding beam direction area, so that the beam weight vectors corresponding to the corresponding areas in the beam weight matrix of the receiving channel are updated on a regional basis, that is, the receiving channel is calibrated on a regional basis.
  • the receiving channel calibration method provided in the embodiment of the present application does not need to be performed in an anechoic chamber, which reduces the requirement standard and huge investment for the test site;
  • the receiving channel calibration method provided in the embodiment of the present application only needs to perform limited detection in the vertical and horizontal space dimensions, thereby improving production detection efficiency.
  • the receiving channel calibration method provided in the embodiment of the present application is independent from the transmitting channel calibration process, and can compensate the amplitude and phase errors between the transmitting and receiving channels and improve the performance of the beamforming function.
  • the method for calibrating the receiving channel provided in the embodiment of the present application is easy to implement by an algorithm and is beneficial to use in an actual production environment.
  • the embodiments of the present application also provide a method for calibrating a transmission channel of an active antenna array.
  • the transmit channel calibration process of the active antenna array and the receive channel calibration process can use the same calibration environment.
  • For the method of setting up the calibration environment reference may be made to the foregoing embodiment, which is not repeated here.
  • the transmit channel beam weight matrix W of the active antenna array includes beam weight vectors corresponding to multiple transmit beam directions (that is, multiple directional angles).
  • a beam weight vector of a transmission beam direction includes beam weights of N transmission channels corresponding to the transmission beam direction.
  • N is the number of active antenna array transmission channels, and N is an integer greater than 1.
  • the transmit channel beam weight matrix W includes Q (Q is an integer greater than 1) beam weight vectors corresponding to the transmit beam directions (that is, Q direction angles), the position and number of test antennas can be used to
  • the spatial range corresponding to the Q transmit beam directions is divided into L (L is an integer greater than 1, L ⁇ Q) beam direction regions.
  • L is an integer greater than 1, L ⁇ Q
  • Each beam direction area corresponds to at least one beam direction, and at least one of the L beam direction areas corresponds to a plurality of beam directions.
  • the active antenna array can save the correspondence between each beam direction area and the transmission beam direction.
  • FIG. 5 a schematic flowchart of an active antenna array transmission channel calibration process according to an embodiment of the present application is shown.
  • a sequence of transmission calibration signals may be generated first, and the transmission calibration signal is sent from the active antenna array to the test antenna for calibrating the transmission channel of the active antenna array.
  • N is the number of transmission channels.
  • the time-domain sequence length of the transmitted calibration signal can be set to
  • the process may include:
  • the active antenna array sends a transmission calibration signal by using a beam weight vector of a reference beam direction in a beam weight matrix of a transmission channel.
  • the reference beam direction may correspond to the directional angle.
  • Direction angle Represents azimuth
  • the pitch angle ⁇ q 0 °.
  • the reference beam direction corresponds to the azimuth angle.
  • the reference beam direction is used as the direction angle.
  • the active antenna array obtains a receiving sequence of the transmission calibration signal, obtains an initial amplitude and phase error vector of each transmitting channel in the active antenna array according to the receiving sequence, and updates the transmission according to the initial amplitude and phase error of each transmitting channel. Calibration signal and transmit channel beam weight matrix.
  • the synchronization and time-frequency domain conversion processing, and the process of sending the processed frequency-domain calibration sequence to the active antenna array may be performed by a test antenna or other equipment, which is not limited in this embodiment of the present application.
  • the active antenna array determines, according to the receiving sequence of the nth transmission channel, that the amplitude and phase errors that the transmission channel needs to compensate at the center frequency point f 0 are:
  • the amplitude and phase errors that each transmitting channel needs to compensate in the frequency domain are determined as:
  • each transmit channel is K, it is necessary to perform N times linear interpolation fitting on h n (k) to obtain the calibration vector of amplitude and phase errors that each transmit channel needs to compensate in the frequency domain bandwidth:
  • the active antenna array can use the following methods to update the transmission calibration signal according to the amplitude and phase errors of each transmission channel: the frequency domain sequence of the transmission calibration signal transmitted by each transmission channel and the amplitude and phase errors that each transmission channel needs to compensate within the frequency domain bandwidth Dot multiplication of each element in the calibration vector H n :
  • the updated time domain sequence of each transmission channel is obtained, where the time domain sequence of the nth transmission channel is expressed as:
  • the active antenna array performs channel amplitude and phase error compensation on the center channel f 0 of the beam weight matrix W TX of the transmitting channel, so that:
  • h TX [h 1 (f 0 ), h 2 (f 0 ), ..., h N (f 0 )] T briefly.. (25)
  • h TX is the error vector that needs to be compensated at the center frequency point f 0 for N transmission channels.
  • the active antenna array uses the updated beam weight vector in the reference beam direction in the transmit channel beam weight matrix to transmit the updated transmit calibration signal, and according to the beam in the reference beam direction in the transmit channel beam weight matrix, A weight vector is used to beam combine the received sequence of the updated transmission calibration signal to obtain the beam gain of the transmission channel corresponding to the reference beam direction.
  • the direction angle corresponding to the reference beam direction is As an example, active antenna arrays use beam weight vectors Send the updated transmit calibration signal at the rated nominal power P TX0 .
  • the time-domain sequence of the transmit calibration signal for each transmit channel is
  • Direction angle is The time-domain sequence of the signal received by the corresponding test antenna is The time domain sequence is returned to the active antenna array as a reception sequence for transmitting a calibration signal.
  • the active antenna array determines the transmit channel beam gain corresponding to the reference beam direction according to the reception sequence of the transmit calibration signal:
  • the directional angle in the updated transmit channel beam weight matrix is Of the beam weight vector.
  • the active antenna array sends a transmission calibration signal by using a beam weight vector corresponding to a direction angle of a first beam direction area, and uses the beam weight vector corresponding to the direction angle in a beam weight matrix of a transmission channel to calibrate the transmission.
  • the signal receiving sequence is beam-formed to obtain the beam-forming gain of the transmission channel corresponding to the first beam direction region.
  • the “first beam direction region” may be any one of the L beam regions obtained by the division.
  • the directional angle corresponding to the first beam direction area is different from the directional angle corresponding to the reference beam direction.
  • the active antenna array uses a directional angle.
  • Corresponding beam weight vector Send the updated transmit calibration signal.
  • the direction angle The corresponding test antenna receives the transmit calibration signal, and the time-domain sequence of the transmit calibration signal received by the test antenna is This time domain sequence is sent to the active antenna array as the end sequence of the transmission calibration signal.
  • Active antenna array according to the receive sequence of the transmit calibration signal Use direction angle Corresponding beam weight vector Correct Perform beam combining to obtain the receiving channel beam gain corresponding to the l-th beam region:
  • G TX1 represents the beam gain of the transmission channel corresponding to the first beam region; Represents the direction angle in the receive channel weight matrix Of the beam weight vector.
  • the active antenna array sends a transmission calibration signal, and the direction angle of the transmission calibration signal is
  • the test antenna 1 receives the transmission calibration signal, and the time-domain sequence of the transmission calibration signal received by the test antenna 1 is transmitted to the active antenna array.
  • Active antenna array according to the direction angle in the beam weight matrix of the receiving channel
  • the beam weight vector of the beam is used to perform the receive beam synthesis on the receive sequence for transmitting the calibration signal, and the beam gain of the receive channel corresponding to the beam direction region l is calculated.
  • S505 The active antenna array determines the difference between the transmission channel beam gain corresponding to the first beam direction area and the transmission channel beam gain corresponding to the reference beam direction. If the difference is less than or equal to the set gain error threshold, the system switches to In S506, if the difference is greater than the set gain error threshold, the process proceeds to S507.
  • the gain error threshold can be set in advance.
  • the value of the gain error threshold can be determined according to the requirements of the calibration accuracy. The higher the calibration accuracy, the smaller the gain error threshold.
  • the active antenna array determines that the beam weight vector corresponding to the first beam direction region in the beam weight matrix of the transmission channel is calibrated.
  • the transmission channel error of the active antenna array is small, so all beam weight vectors corresponding to the first beam direction area in the beam weight matrix of the transmission channel can be maintained, that is, there is no need to correspond in the first beam direction area. Perform error calibration on the receiving channel in the direction of the beam.
  • the active antenna array performs up to K transmission channel calibration iterative processes to update the beam weight vectors of all beam directions in the first beam direction area in the beam weight matrix of the transmission channel, thereby achieving the first beam direction.
  • the transmit channel of the active antenna array is calibrated in the beam direction corresponding to the area.
  • the active antenna array transmission channel calibration can be performed according to S504 to S507 in the above process, so as to achieve the calibration of the active antenna array transmission channel in all transmission beam directions.
  • FIG. 6 it is a schematic flowchart of a transmission channel calibration iterative process according to an embodiment of the present application. As shown, the process can include:
  • the active antenna array obtains the N calibration channels of the active antenna array in the first beam direction area according to the reception calibration sequence of the transmission calibration signal sent by using the beam weight vector corresponding to the direction angle of the first beam direction area. Amplitude and Phase Error Vector.
  • the active antenna array determines the directional angle of the transmission channel according to the reception sequence of the nth transmission channel.
  • the corresponding amplitude and phase error of the corresponding center frequency point f 0 is:
  • the active antenna array updates the transmission calibration signal according to the amplitude and phase error vector determined in this iterative process, and updates the beam weight vector of the beam direction in the first beam direction region in the beam weight matrix of the transmission channel.
  • the active antenna array can update the transmission calibration signal according to formula (22), and the time domain sequence of the transmission calibration signal of each updated transmission channel is Since the first beam direction region corresponds to the beam weight vectors of multiple beam directions in the beam weight matrix of the transmission channel, the active antenna array updates the beam weight vectors of all beam directions corresponding to the first beam direction region.
  • the corresponding direction angle is This beam direction area corresponds to all beam directions in the following direction angle range: the azimuth range is The elevation range is Among them, P is the step size. Then, the active antenna array updates the beam weight vectors of all beam directions in the range in the beam weight matrix of the transmission channel according to the amplitude and phase error vectors determined by this iterative process.
  • the active antenna array uses the beam weight vector corresponding to the direction angle of the first beam direction area to send the updated transmit calibration signal, and uses the beam weight vector corresponding to the direction angle in the updated receiving channel beam weight matrix. And performing beamforming on the reception sequence of the transmission calibration signal to obtain a beamforming gain of a transmission channel corresponding to the first beam direction region.
  • S604 The active antenna array judges whether the gain error between the transmit channel beam gain determined by this iteration process and the transmit beam synthesis gain corresponding to the reference beam direction is greater than the gain error threshold. If it is less than or equal to, the process proceeds to S605, otherwise Go to S606.
  • S606 Determine whether the maximum number of iterations has been reached, and if so, go to S607.
  • the active antenna array uses the beam weight vector of the directional angle corresponding to the first beam direction area to send a transmission calibration signal, and obtains a reception sequence of the transmission calibration signal, proceeds to S601, and enters the next iteration process.
  • the active antenna array first uses the directional angle.
  • the corresponding beam weight vector sends a transmission calibration signal, and each beam weight vector in the beam weight matrix of the transmission channel is updated according to S501 to S502 in FIG. 5, so that the directional angle is used as Receive calibration sequence of the transmit calibration signal to perform initial calibration on the transmit channel.
  • the calibration signal is sent and received through the test antenna 1, and the direction angle of the signal is
  • the active antenna array determines whether the directional angle range corresponding to the directional angle is required according to S503 to S504 in FIG. 5 Several beam weight vectors are updated within the range. If it is necessary to update, the iterative process of transmitting channel calibration is performed according to the process shown in FIG. 6 until the direction angle range is adjusted. Several beam weight vector updates within are completed, or until the update fails. If no update is needed, keep the azimuth range Several beam weight vectors within are unchanged.
  • the transmission calibration signal is sequentially transmitted by using the beam weight vector corresponding to the direction angle of the corresponding beam direction region, and according to the reception sequence of the transmission calibration signal, the transmission channel of the beam direction region 1 is calibrated in accordance with the above process The process is performed until the transmission channel calibration is completed for all beam direction regions.
  • the receiving sequence of the transmission calibration signal in the direction of the reference beam is used to initially update the transmission channel beam weight matrix, that is, the transmission channel is initially calibrated, and then for different beams Direction area, to update the beam weight vector of multiple beam directions within the corresponding beam direction area, so as to update the beam weight vector corresponding to the corresponding area in the beam weight matrix of the transmission channel by region, that is, the transmission channel is divided into regions. calibration.
  • the transmission channel calibration method provided in the embodiment of the present application does not need to be performed in an anechoic chamber, which reduces the requirement standard and huge investment for the test site;
  • the transmission channel calibration method provided in the embodiment of the present application only needs to perform limited detection in the vertical and horizontal space dimensions, thereby improving production detection efficiency.
  • the transmitting channel calibration method provided in the embodiment of the present application is independent of the receiving channel calibration process, and can compensate the amplitude and phase errors between the transmitting and receiving channels and improve the performance of the beamforming function.
  • the method for calibrating a transmission channel provided in the embodiment of the present application is easy to implement by an algorithm and is beneficial to use in an actual production environment.
  • an embodiment of the present application further provides an antenna calibration apparatus for calibrating a receiving channel of an active antenna array.
  • FIG. 7 it is a schematic structural diagram of an antenna calibration apparatus for implementing calibration of a receiving channel according to an embodiment of the present application.
  • the device is applied to an active antenna array, and a range of receiving beam directions corresponding to a receiving channel beam weight matrix of the active antenna array is divided into multiple beam direction regions, and one beam direction region corresponds to at least one receiving beam direction, and at least one The beam direction area corresponds to a plurality of receiving beam directions.
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • the direction angle of the reference beam direction is different from the azimuth angle corresponding to any beam direction region.
  • the device may include an initial calibration module 701 and a sub-region calibration module 702.
  • An initial calibration module 701 is configured to obtain initial amplitude and phase error vectors of the N receiving channels of the active antenna array in the reference beam direction according to the received calibration signals received from the active beam array. Updating the beam weight vector of each beam direction in the receiving channel beam weight matrix according to the initial amplitude and phase error vector, and the beam weight vector of the reference beam direction in the updated receiving channel beam weight matrix, Performing beam synthesis on the receiving calibration signal in the reference beam direction to obtain a first receiving channel beam gain corresponding to the reference beam direction; wherein a beam weight vector of a receiving beam direction includes N receiving signals corresponding to the receiving beam direction The beam weight of the channel. N is an integer greater than 1.
  • a sub-area calibration module 702 is configured to use a receive channel beam weight matrix according to a receive calibration signal received from the active antenna array from a first beam direction area, and according to a directional angle corresponding to the first beam direction area.
  • the sub-region calibration module 702 executes:
  • the reception from the first beam direction area is performed. Aligning the calibration signals to obtain beam gains of the receiving channel corresponding to the first beam direction area;
  • an embodiment of the present application further provides an antenna calibration apparatus for calibrating a transmission channel of an active antenna array.
  • FIG. 8 it is a schematic structural diagram of an antenna calibration apparatus for implementing transmission channel calibration according to an embodiment of the present application.
  • the device is applied to an active antenna array, and the transmission beam direction range corresponding to the transmission channel beam weight matrix of the active antenna array is divided into multiple beam direction regions, and one beam direction region corresponds to at least one receiving beam direction, and at least one The beam direction area corresponds to a plurality of transmission beam directions.
  • the azimuth and elevation angles of the reference beam direction are both zero degrees.
  • the direction angle of the reference beam direction is different from the azimuth angle corresponding to any beam direction region.
  • the device may include an initial calibration module 801 and a sub-region calibration module 802.
  • An initial calibration module 801 is configured to obtain the transmission sequence of the N transmission channels of the active antenna array according to the reception calibration sequence of the transmission calibration signal sent by the active antenna array using the beam weight vector of the reference beam direction in the beam weight matrix of the transmission channel.
  • the beam weight vector in the reference beam direction transmits an updated transmission calibration signal, and the received sequence of the updated transmission calibration signal is beam-combined according to the beam weight vector in the reference beam direction to obtain the reference beam direction.
  • the sub-region calibration module 802 is configured to: after the active antenna array sends a transmission calibration signal by using a beam weight vector corresponding to a direction angle of a first beam direction region, use a beam weight of a corresponding direction angle in a beam channel weight matrix of a transmission channel.
  • a value vector performing beam synthesis on the received transmission sequence of the transmission calibration signal to obtain the second transmission channel beam gain corresponding to the first beam direction area; if the second reception channel beam gain and the first reception channel If the gain error between the beam gains is greater than the gain error threshold, a maximum of K iterations of the transmission channel calibration are performed; where K is the maximum number of iterations, and the first beam direction region is one of the plurality of beam direction regions.
  • the sub-region calibration module 802 executes:
  • the beam weight vector of the directional angle corresponding to the beam direction area sends a transmission calibration signal and performs the next iteration process, otherwise the current iteration process ends.
  • an embodiment of the present application further provides a communication device, which can implement a receiving channel calibration process in the foregoing embodiment.
  • the communication device may include a processor 901, a memory 902, a transceiver 903, and a bus interface 904.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 may store data used by the processor 901 when performing operations.
  • the transceiver 903 is configured to receive and transmit data under the control of the processor 901.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 901 and various circuits of the memory represented by the memory 902 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface 904 provides an interface.
  • the processor 901 is responsible for managing the bus architecture and general processing, and the memory 902 may store data used by the processor 901 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 901, or implemented by the processor 901.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 901 or an instruction in the form of software.
  • the processor 901 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 902, and the processor 901 reads the information in the memory 902 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 901 is configured to read a program in the memory 902 and execute a calibration process of the receiving channel described in the foregoing embodiment. For the specific implementation of this process, reference may be made to the related description of the foregoing embodiment, which is not repeated here.
  • an embodiment of the present application further provides a communication device, which can implement a transmission channel calibration process in the foregoing embodiment.
  • the communication device may include a processor 1001, a memory 1002, a transceiver 1003, and a bus interface 1004.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the transceiver 1003 is configured to receive and transmit data under the control of the processor 1001.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1001 and various circuits of the memory represented by the memory 1002 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface 1004 provides an interface.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in the form of software.
  • the processor 1001 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1001 is configured to read a program in the memory 1002 and execute a calibration process of the transmission channel described in the foregoing embodiment. For the specific implementation of this process, reference may be made to the related description of the foregoing embodiment, which is not repeated here.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute the processes performed by the foregoing embodiments.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions may also be loaded on a computer or other programmable data processing device, so that a series of operation steps are performed on the computer or other programmable device to produce a computer-implemented process, and thus the computer or other programmable device executes the
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请公开了一种天线校准方法及装置。该方法中,在进行接收通道校准的过程中,首先使用基准波束方向的接收校准信号对接收通道波束权值矩阵进行初始更新,即对接收通道进行初始校准,然后分别针对不同的波束方向区域,更新相应波束方向区域范围内的多个波束方向的波束权值矢量,从而分区域对接收通道波束权值矩阵中相应区域对应的波束权值矢量进行更新,即对接收通道进行分区域校准。

Description

一种天线校准方法及装置
相关申请的交叉引用
本申请要求在2018年08月02日提交中国专利局、申请号为201810872421.1、申请名称为“一种天线校准方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种天线校准方法及装置。
背景技术
大规模有源天线阵列技术是5G通信的关键使能技术,保证各个有源通道幅度相位的一致性,是阵列波束赋形功能有效性实现的前提。
5G通信时代,大规模有源天线阵列技术已成为关键使能技术。现有大规模有源天线阵列***的幅相校准及波束赋形功能验证,往往需要在封闭电波暗室环境下进行校准,且一般使用单音信号(单一频率的信号)完成校准测试。在5G通信***覆盖较大带宽的应用背景下,大规模有源天线阵列需要在暗室中多次切换测试频点进行校准测试,成本较高,且不适用于生产及出厂校准。对于生产制造环节,如何进行***的快速校准测试,目前还没有一个较好的方案。
已有的针对大规模有源天线阵列***的校准及波束赋形等功能的检测,目前只能在封闭的电波暗室中进行,造价十分昂贵,校准成本高,一般仅适用于研发环节的实验室测试,无法应用于产品化生产的制造环境。且现有空中下载技术(over-the-air technology,OTA)校准测试方案一般为单频点校准测试,测试效率低,且由于天线收发复用,OTA校准一般也是对收发进行相同补偿,不考虑收发通道模拟链路上的幅相差异,会产生一定误差,影响波束赋形性能。
发明内容
本申请实施例提供了一种天线校准方法及装置。
第一方面,提供一种天线校准方法,有源天线阵列的接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个接收波束方向;所述方法包括:
有源天线阵列接收来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数;
所述有源天线阵列接收来自于第一波束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,在一种可能的实现方式中,所述最多K次接收通道校准迭代过程中的每次迭代过程,所述有源天线阵列执行:
根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的接收通道波束增益;
判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下次迭代过程,否则结束本次迭代过程。
在一种可能的实现方式中,所述基准波束方向的方位角和俯仰角均为零度。
在一种可能的实现方式中,所述基准波束方向的方向角,与任一波束方向区域的方位角不同。
第二方面,提供一种天线校准方法,有源天线阵列的发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个发射波束方向,至少一个波束方向区域对应多个发射波束方向;所述方法包括:
有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送发射校准信号,根据所述发射校准信号的接收序列得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数;
所述有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,在一种可能的实现方式中,所述最多K次发射通道校准迭代过程中的每次迭代过程,所述有源天线阵列执行:
根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
在一种可能的实现方式中,所述基准波束方向的方位角和俯仰角均为零度。
在一种可能的实现方式中,所述基准波束方向的方向角,与任一波束方向区域的方位角不同。
第三方面,提供一种天线校准装置,应用于有源天线阵列,所述有源天线阵列的接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束 方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个接收波束方向;所述装置包括:
初始校准模块,用于根据有源天线阵列接收到的来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数;
分区域校准模块,用于根据所述有源天线阵列接收到的来自于第一波束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,在一种可能的实现方式中,所述最多K次接收通道校准迭代过程中的每次迭代过程,所述分区域校准模块执行:
根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域 对应的接收通道波束增益;
判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下次迭代过程,否则结束本次迭代过程。
在一种可能的实现方式中,所述基准波束方向的方位角和俯仰角均为零度。
在一种可能的实现方式中,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
第四方面,提供一种天线校准装置,应用于有源天线阵列,所述有源天线阵列的发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个发射波束方向;所述装置包括:
初始校准模块,用于根据有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数;
分区域校准模块,用于在所述有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号后,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增 益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,在一种可能的实现方式中,所述最多K次发射通道校准迭代过程中的每次迭代过程,所述分区域校准模块执行:
根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
在一种可能的实现方式中,所述基准波束方向的方位角和俯仰角均为零度。
在一种可能的实现方式中,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
第五方面,提供一种通信装置,包括:处理器、存储器、收发机,所述收发机包括发射通道和接收通道;接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个接收波束方向;
所述处理器,用于读取存储器中的程序,执行:
根据有源天线阵列接收到的来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢 量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数;
根据所述有源天线阵列接收到的来自于第一波束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,在一种可能的实现方式中,所述最多K次接收通道校准迭代过程中的每次迭代过程,所述处理器执行:
根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的接收通道波束增益;
判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下 次迭代过程,否则结束本次迭代过程。
在一种可能的实现方式中,所述基准波束方向的方位角和俯仰角均为零度。
在一种可能的实现方式中,所述基准波束方向的方向角,与任一波束方向区域的方位角不同。
第六方面,提供一种通信装置,包括:处理器、存储器、收发机,所述收发机包括发射通道和接收通道;发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个发射波束方向;
所述处理器,用于读取存储器中的程序,执行:
根据有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数;
在所述收发机使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号后,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,在一种可能的实现方式中,所述最多K次发射通道校准迭代过程 中的每次迭代过程,所述处理器执行:
根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
在一种可能的实现方式中,所述基准波束方向的方位角和俯仰角均为零度。
在一种可能的实现方式中,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面中任一项所述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第二方面中任一项所述的方法。
附图说明
图1为采用现有技术与采用本申请实施例进行天线校准的对比示意图;
图2为本申请实施例中天线校准环境示意图;
图3为本申请实施例提供的接收通道校准流程示意图;
图4为本申请实施例提供的接收通道校准流程中接收通道校准迭代过程的流程示意图;
图5为本申请实施例提供的发射通道校准流程示意图;
图6为本申请实施例提供的发射通道校准流程中发射通道校准迭代过程的流程示意图;
图7为本申请实施例提供的用于实现接收通道校准的天线校准装置结构示意图;
图8为本申请实施例提供的用于实现发射通道校准的天线校准装置结构示意图;
图9为本申请实施例提供的通信装置的结构示意图;
图10为本申请另外的实施例提供的通信装置的结构示意图。
具体实施方式
一个N通道大规模有源天线阵列在对方位角
Figure PCTCN2019097551-appb-000001
俯仰角θ的宽带信号s(t)的接收模型可用下式表示:
Figure PCTCN2019097551-appb-000002
Figure PCTCN2019097551-appb-000003
其中,
Figure PCTCN2019097551-appb-000004
表示傅里叶反变换;[·] T表示矩阵转置运算;K表示信号中包括的单频信号分量的个数,f k表示第k个单频信号分量的频率;s(f k)表示第k个频点信号分量的频谱;
Figure PCTCN2019097551-appb-000005
的维数为N×1,表示阵列对第k个频点信号分量的幅相响应,习惯称为信号的阵列导向矢量;n(t)的维数为N×1,表示阵列的噪声矢量,为分析方便一般假设为高斯加性白噪声。为公式表达方便,将
Figure PCTCN2019097551-appb-000006
记为
Figure PCTCN2019097551-appb-000007
当信号为窄带信号,即式(1)中的K=1,f 0表示信号的中心载频,式(1)变为:
Figure PCTCN2019097551-appb-000008
现在的波束赋形一般是基于式(3)所示窄带模型,对各通道进行对应波束方位的相位调整,即令波束权矢量
Figure PCTCN2019097551-appb-000009
由于5G通信***中使用的信号绝对带宽远大于以往通信***中使用的信号带宽。图1所示为一个大规模天线阵列***在400M工作带宽下,使用窄带模型进行校准前后两个通道的相位差特性。可以看到,仅在中心频点处的相位差较小,工作带宽边缘频点的相位差较大。令[·] H表示共轭转置运算,波束赋形增益可用
Figure PCTCN2019097551-appb-000010
来表示,由于
Figure PCTCN2019097551-appb-000011
f k≠f 0,波束赋形增益会受到较大影响。
本申请实施例提出了一种天线校准方法,可针对大规模有源天线阵列进行多通道宽带校准。该方法基于OTA的测试环境对通道天线在较大频率带宽范围内的幅相误差进行补偿。图1中的实线所示为采用本申请实施例提供的校准方法校准后,两通道的相位差特性。相比于单音校准,本申请实施例提供的方法可以使通道幅相差在整个***工作带宽内保持一致,有效保证大规模天线阵列对大带宽信号的波束赋形效果,保证设备在生产检测时,其赋形功能的有效完整性。
从图1中所示的校准前后的相位差特性对比可以发现,通道间的相位差主要由两部分组成:一是通道差异造成中心频点的初始相位差,即窄带校准模型补偿的相位差;二是频率带宽造成随相位变化的相位差,需要通过宽带校准模型才能有效补偿。
本申请实施例将通道幅相差异分两部分进行补偿校准,中心频点对应的初始相位差补偿至原始的理论波束权值表,信号频率带宽造成的相位差通过对单通道的幅相均衡来校准补偿。
下面结合附图对本申请实施例进行详细描述。
本申请实施例中,首先基于设备生产场景搭建校准环境,然后在搭建的校准环境下对有源天线阵列进行校准。
可选地,可通过对设备生产环境进行适当改造,使得电磁环境相对稳定,并达到远场测试条件,从而得到本申请实施例中所使用的校准环境。
图2示例性地示出了一种本申请实施例所使用的校准环境。如图2所示,该校准环境中包括待测的有源天线阵列,还包括用于对该有源天线阵列进行校准的测试天线。测试天线与有源天线阵列之间的距离满足远场测试条件。其中,测试天线也可以用终端代替,本申请实施例以测试天线为例描述。
测试天线可以有多个,该多个测试天线可放置在不同平面上的不同位置。图2中使用点画线连接的测试天线,放置在水平平面(如图中的X-Y平面)上,使用虚线进行连接的测试天线,放置在垂直平面(如图中的Y-Z平面)上。一个测试天线的方向角可以使用水平平面上的方位角
Figure PCTCN2019097551-appb-000012
以及垂直平面上的俯仰角θ来表示。
有源天线阵列的接收通道波束权值矩阵W中,包括多个接收波束方向(即多个方向角)对应的波束权值矢量。其中,一个接收波束方向的波束权值矢量,包括该接收波束方向对应的N个接收通道的波束权值。N为有源天线阵列接收通道的数量,N为大于1的整数。
假设接收通道波束权值矩阵W中包括Q个(Q为大于1的整数)接收波束方向(即Q个方向角)所对应的波束权值矢量,则可以按照测试天线放置的位置和数量,将Q个接收波束方向对应的空间范围划分为L个(L为大于1的整数,L<Q)波束方向区域。每个波束方向区域对应至少一个波束方向,L个波束方向区域中至少有一个波束方向区域对应多个接收波束方向。有源天线阵列可保存每个波束方向区域与接收波束方向之间的对应关系。
例如,若接收波束通道权值矩阵W对应的接收波束方向总范围为:水平方向的方位角范围
Figure PCTCN2019097551-appb-000013
垂直方向的俯仰角范围θ∈[-15°,15°],且接收波束方向以0.5°为步径,则该接收波束通道权值矩阵W中包括200个接收波束方向。如图2所示,在方位角
Figure PCTCN2019097551-appb-000014
俯仰角θ q=0°的位置放置1个测试天线0(即图中的标准测试天线A1)作为基准波束方向对应的测试天线,并以 5°为步径,在X-Y水平平面放置14个测试天线,对应14个方位角;在Y-Z垂直平面放置6个测试天线,对应6个俯仰角。这样,可以将Q=200个接收波束方向对应的整个方向角范围划分为20个波束方向区域,即,L=20。其中,一个测试天线对应一个波束方向区域,一个波束方向区域对应一个方向角,该方向角即为相应测试天线的方向角。位于波束方向区域l的测试天线发射的信号的方向角为
Figure PCTCN2019097551-appb-000015
该波束方向区域对应以下方向角范围内的所有接收波束方向:方位角范围为
Figure PCTCN2019097551-appb-000016
俯仰角范围为
Figure PCTCN2019097551-appb-000017
其中,P为步径大小。
比如,图2中的测试天线1的方向角为
Figure PCTCN2019097551-appb-000018
对应的波束区域的方位角范围为[2.5°,7.5°],俯仰角范围为[-2.5°,2.5°],即该方向角范围内的所有接收波束方向与该区域对应。
在对有源天线阵列校准前,可基于有源天线阵列特性形成接收通道初始波束权值矩阵。该接收通道初始波束权值矩阵可表示为:
Figure PCTCN2019097551-appb-000019
其中,q为整数,1≤q≤Q,Q表示接收通道波束权值矩阵中接收波束方向的数量,
Figure PCTCN2019097551-appb-000020
表示第q个接收波束方向对应的波束权值矢量。比如,
Figure PCTCN2019097551-appb-000021
表示接收波束方向1对应的波束权值矢量,
Figure PCTCN2019097551-appb-000022
表示波束方向2对应的波束权值矢量,以此类推。
接收通道初始波束权值矩阵W中的波束权值矢量
Figure PCTCN2019097551-appb-000023
的维数为通道个数。
理论上有:
w(0°,0°)=1 N×1……………………………………………………(5)
即理论上,对于方位角和俯仰角均为0°的终端(测试天线),其波束权值矢量为一个全1的矢量,波束赋形实现的是各通道数据加和运算。
校准前,有源天线阵列的接收通道波束权值矩阵表示为W RX=W,即,在校准前,有源天线阵列的接收通道波束权值矩阵设置为与初始波束权值矩阵 W相同。
参见图3,为本申请实施例提供的有源天线阵列接收通道校准流程示意图。
在对接收通道校准开始前,可首先生成接收校准信号的序列,该接收校准信号由测试天线发送给有源天线阵列,用于对有源天线阵列的接收通道进行校准。
具体实施时,可根据***工作带宽BW生成接收校准信号的频域序列S RX(k),k=1,2,…K,以及接收校准信号的时域序列s RX(m),m=1,2,…M。
接收校准信号的时频序列与频域序列之间的变换关系为:
Figure PCTCN2019097551-appb-000024
Figure PCTCN2019097551-appb-000025
其中,
Figure PCTCN2019097551-appb-000026
表示快速傅里叶变化,
Figure PCTCN2019097551-appb-000027
表示快速傅里叶反变换。
为了在实现校准过程中,实现时频域快速傅里叶变换的运算简便,可以令校准信号的时域序列长度为
Figure PCTCN2019097551-appb-000028
由于K<M,需要对接收校准信号的频域序列S RX(k)进行补零至长度M。
如图3所示,该流程可包括:
S301:有源天线阵列接收基准波束方向的测试天线发送的接收校准信号,得到该有源天线阵列中各接收通道的幅相误差,并根据各接收通道的幅相误差更新接收通道波束权值矩阵。
其中,基准波束方向可对应于方向角
Figure PCTCN2019097551-appb-000029
方向角
Figure PCTCN2019097551-appb-000030
表示方位角
Figure PCTCN2019097551-appb-000031
且俯仰角θ q=0°。本申请实施例以基准波束方向对应于方位角
Figure PCTCN2019097551-appb-000032
且俯仰角θ q=0°为例进行描述。
该步骤中,通过方位角
Figure PCTCN2019097551-appb-000033
俯仰角θ q=0°位置放置的测试天线,以额定功率P RX0发射接收校准信号的时域序列s RX(m),m=1,2,…M。有源天线阵列的接收通道接收到N个基带数据,该N个基带数据可表示为接收信号矩阵x(t)=[x 1(t),x 2(t),…x N(t)] T。其中,N为有源天线阵列接收通道的个数,接收信号矩阵x(t)中的x n(t)表示第n接收通道接收到的基带数据。
理论上,时域同步后,有源天线阵列中各个接收通道接收到数据(即上述N个数据)之间的幅相应该完全一致,但是由于接收通道之间幅相误差导致各接收通道实际接收的数据之间存在差异,其差异值即为该基准波束方向对应的接收通道幅相误差。
基于此,有源天线阵列根据各接收通道接收到的数据,确定各接收通道的间的幅相差矩阵为:
h RX=[h 1,h 2,…h N] T……………………………………………(8)
其中,幅相差h n可通过以下方法得到:
Figure PCTCN2019097551-appb-000034
其中,E{·}表示数学期望运算,[·] *表示共轭计算。
有源天线阵列根据基准波束方向(方位角
Figure PCTCN2019097551-appb-000035
且俯仰角θ q=0°)对应的接收通道幅相误差矩阵h RX,对接收通道波束权值矩阵进行多通道幅相误差补偿,得到更新后的接收通道波束权值矩阵:
Figure PCTCN2019097551-appb-000036
Figure PCTCN2019097551-appb-000037
其中,
Figure PCTCN2019097551-appb-000038
表示向量中各元素点乘运算。
S302:有源天线阵列根据更新后的接收通道波束权值矩阵对该基准波束方向的接收校准信号进行波束合成,得到该基准波束方向对应的接收通道波束增益。
该步骤中,有源天线阵列可根据以下公式确定接收通道波束增益:
Figure PCTCN2019097551-appb-000039
其中,G RX0表示基准波束方向(方位角
Figure PCTCN2019097551-appb-000040
且俯仰角θ q=0°)对应的接收通道波束增益,
Figure PCTCN2019097551-appb-000041
表示更新后的接收通道波束权值矩阵中方向角为
Figure PCTCN2019097551-appb-000042
的波束权值矢量。
S303:有源天线阵列接收第一波束方向区域的测试天线发送的接收校准信号,并根据来自于第一波束方向区域的接收校准信号的方向角,使用接收通道波束权值矩阵中该方向角对应的波束权值矢量,对来自于第一波束方向区域的接收校准信号进行波束合成,得到第一波束方向区域对应的接收通道波束增益。
其中,“第一波束方向区域”可以是划分得到的L个波束区域中的任意一个波束区域。第一波束方向区域所对应的方向角与基准波束方向对应的方向角不同。
该步骤中,以第l波束区域为例,测试天线发送的接收校准信号的方向角为
Figure PCTCN2019097551-appb-000043
则第l波束区域对应的接收通道波束增益为:
Figure PCTCN2019097551-appb-000044
其中,G RXl表示第l波束区域对应的接收通道波束增益;
Figure PCTCN2019097551-appb-000045
表示接收通道权值矩阵中方向角
Figure PCTCN2019097551-appb-000046
的波束权值矢量。
以图2为例,若l=1,则测试天线1发送接收校准信号,该接收校准信号的方向角为
Figure PCTCN2019097551-appb-000047
有源天线阵列根据接收通道波束权值矩阵中该方向角
Figure PCTCN2019097551-appb-000048
的波束权值矢量,对测试天线1发送的接收校准信号进行接收波束合成,计算得到波束方向区域l对应的接收通道波束增益。
S304:有源天线阵列确定第一波束方向区域对应的接收通道波束增益与基准波束方向对应的接收通道波束增益之间的差值,若该差值大于设定增益误差阈值,则转入S306,否则转入S305。
其中,可以预先设置增益误差阈值。增益误差阈值的取值可根据校准精度的要求来确定,校准精度越高,则增益误差阈值越小。
S305:有源天线阵列确定接收通道波束权值矩阵中第一波束方向区域对应的波束权值矢量校准完成。
其中,若S304中判定第一波束区域对应的接收通道波束增益与基准波束方向对应的接收通道波束增益之间的差值小于设定增益误差阈值,则表明在第一波束方向区域对应的所有接收波束方向上,有源天线阵列的接收通道误差较小,因此可以保持接收通道波束权值矩阵中该第一波束方向区域对应的接收波束权值矢量不变,即无需在第一波束方向区域对应的接收波束方向上对接收通道进行误差校准。
S306:有源天线阵列进行最多K次接收通道校准迭代过程,以对接收通道波束权值矩阵中来自于第一波束方向区域的接收校准信号的方向角所对应的波束权值矢量进行更新,从而实现在第一波束方向区域对应的接收波束方向上对有源天线阵列的接收通道进行校准。
其中,接收通道校准迭代过程可参见图4。
对于每个波束方向区域,均可按照上述流程中的S303~S306进行有源天线阵列接收通道校准,从而实现对有源天线阵列的接收通道在所有接收波束方向上进行校准。
参见图4,为本申请实施例提供的接收通道校准迭代过程的流程示意图。如图所示,该流程可包括:
S401:有源天线阵列根据来自于第一波束方向区域的接收校准信号,得到该有源天线阵列的N个接收通道在该第一波束方向区域上的幅相误差矢量。
其中,以第l波束方向区域为例,有源天线阵列的N个接收通道在第l波束方向区域上的幅相误差矢量为:
Figure PCTCN2019097551-appb-000049
Figure PCTCN2019097551-appb-000050
S402:有源天线阵列根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中第一波束方向区域内的接收波束方向的接收波束权值矢量。
其中,以第l波束方向区域为例,来自于该波束方向区域的测试天线的接 收校准信号的方向角为
Figure PCTCN2019097551-appb-000051
该波束方向区域对应以下方向角范围内的所有接收波束方向:方位角范围为
Figure PCTCN2019097551-appb-000052
俯仰角范围为
Figure PCTCN2019097551-appb-000053
其中,P为步径大小。则有源天线阵列根据本次迭代过程确定出的幅相误差矢量,更新接收波束权值矩阵中该范围内的所有接收波束的波束权值矢量。
如果方位角范围
Figure PCTCN2019097551-appb-000054
且俯仰角范围
Figure PCTCN2019097551-appb-000055
对应的接收波束方向表示为
Figure PCTCN2019097551-appb-000056
的波束权值矢量表示为
Figure PCTCN2019097551-appb-000057
其中,i=1,2,…,R,R为上述方位角范围内的接收波束方向的数量,则针对该方位角范围内的每个接收波束方向的波束权值矢量,按照以下公式进行更新:
Figure PCTCN2019097551-appb-000058
S403:有源天线阵列根据来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对来自于第一波束方向区域的接收校准信号进行波束合成,得到第一波束方向区域对应的接收通道波束增益。
S404:有源天线阵列判断本次迭代过程确定的接收通道波束增益,与基准波束方向对应的接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则转入S405,否则结束本次迭代过程,第一波束方向区域对应的波束权值矢量校准完成。
S405:判断是否到达最大迭代次数,若达到,则转入S407,否则转入S408。
S407:结束本次迭代过程,进一步结束接收通道校准流程,并可发出接收通道校准异常的告警信息。
S408:有源天线阵列接收来自于第一波束方向区域的接收校准信号,转入S401,进入下一次迭代过程。
以图2所示的场景为例,在对有源天线阵列进行接收通道校准的过程中,首先通过测试天线0发送接收校准信号,该信号的方向角为
Figure PCTCN2019097551-appb-000059
有源天线阵列按照图3中的S301~S302,更新接收通道波束权值矩阵中每个波束 权值矢量,从而利用方向角为
Figure PCTCN2019097551-appb-000060
的接收校准信号对接收通道进行初始校正。
之后,通过测试天线1发送接收校准信号,该信号的方向角为
Figure PCTCN2019097551-appb-000061
有源天线阵列按照图3中的S303~S304判断是否需要对该方向角对应的方向角范围
Figure PCTCN2019097551-appb-000062
内的若干个波束权值矢量进行更新,若需要更新,则按照图4所示的流程执行接收通道校准迭代过程,直到对方向角范围
Figure PCTCN2019097551-appb-000063
内的若干个波束权值矢量更新完成,或者直到更新失败为止。若不需要更新,则保持方向角范围
Figure PCTCN2019097551-appb-000064
内的若干个波束权值矢量不变。
此后,针对其他波束方向区域,依次通过相应的测试天线发送接收校准信号,并针对每个测试天线发送的接收校准信号,均按照针对测试天线1发送的校准信号进行接收通道校准的处理流程进行处理,直到针对所有波束方向区域完成接收通道校准为止。
通过以上接收通道校准的实施例可以看出,首先使用基准波束方向的接收校准信号对接收通道波束权值矩阵进行初始更新,即对接收通道进行初始校准,然后分别针对不同的波束方向区域,更新相应波束方向区域范围内的多个波束方向的波束权值矢量,从而分区域对接收通道波束权值矩阵中相应区域对应的波束权值矢量进行更新,即对接收通道进行分区域校准。
采用本申请上述实施例提供的接收通道校准方法,可以在生产环境下,对大规模有源天线阵列的相关设备的波束赋形功能进行校准检测,相比于现有技术主要具有如下几方面优点:
(1)本申请实施例提供的接收通道校准方法,无需在电波暗室中进行,降低了对测试场地的要求标准及巨额投资;
(2)本申请实施例提供的接收通道校准方法,仅需在垂直与水平空间维度上进行有限检测,提高了生产检测效率。
(3)本申请实施例提供的接收通道校准方法,与发射通道校准过程相独 立,可以补偿收发通道之间的幅相误差,提高波束赋形功能性能。
(4)本申请实施例提供的接收通道校准方法,易于算法实现,利于在实际生产环境中使用。
本申请实施例还提供了针对有源天线阵列的发射通道进行校准的方法。
有源天线阵列的发射通道校准过程,以及接收通道的校准过程,可使用相同的校准环境。校准环境的搭建方法可参见前述实施例,在此不再重复。
有源天线阵列的发射通道波束权值矩阵W中,包括多个发射波束方向(即多个方向角)对应的波束权值矢量。其中,一个发射波束方向的波束权值矢量,包括该发射波束方向对应的N个发射通道的波束权值。N为有源天线阵列发射通道的数量,N为大于1的整数。
假设发射通道波束权值矩阵W中包括Q个(Q为大于1的整数)发射波束方向(即Q个方向角)所对应的波束权值矢量,则可以按照测试天线放置的位置和数量,将Q个发射波束方向对应的空间范围划分为L个(L为大于1的整数,L<Q)波束方向区域。每个波束方向区域对应至少一个波束方向,L个波束方向区域中至少有一个波束方向区域对应多个波束方向。有源天线阵列可保存每个波束方向区域与发射波束方向之间的对应关系。
校准前,有源天线阵列的发射通道波束权值矩阵表示为W TX=W,即,在校准前,有源天线阵列的发射通道波束权值矩阵设置为与初始波束权值矩阵W相同。
参见图5,为本申请实施例提供的有源天线阵列发射通道校准流程示意图。
在对发射通道校准开始前,可首先生成发射校准信号的序列,该发射校准信号由有源天线阵列发送给测试天线,用于对有源天线阵列的发射通道进行校准。
具体实施时,可根据***工作带宽BW,为每个发射通道生成发射校准信号的频域序列S n(k),k=1,2,…K′,n=1,2,…N,以及发射校准信号的时域序列s n(m),m=1,2,…M,,n=1,2,…N。其中,N为发射通道数量。
发射校准信号的时频序列与频域序列之间的变换关系为:
Figure PCTCN2019097551-appb-000065
Figure PCTCN2019097551-appb-000066
其中,
Figure PCTCN2019097551-appb-000067
表示快速傅里叶变化,
Figure PCTCN2019097551-appb-000068
表示快速傅里叶反变换。
为了在实现校准过程中,实现时频域快速傅里叶变换的运算简便,可以令发射校准信号的时域序列长度为
Figure PCTCN2019097551-appb-000069
如图5所示,该流程可包括:
S501:有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送发射校准信号。
其中,基准波束方向可对应于方向角
Figure PCTCN2019097551-appb-000070
方向角
Figure PCTCN2019097551-appb-000071
表示方位角
Figure PCTCN2019097551-appb-000072
且俯仰角θ q=0°。本申请实施例以基准波束方向对应于方位角
Figure PCTCN2019097551-appb-000073
且俯仰角θ q=0°为例进行描述。
该步骤中,以基准波束方向为方向角
Figure PCTCN2019097551-appb-000074
作为例子,有源天线阵列的各发射通道使用方向角
Figure PCTCN2019097551-appb-000075
的波束权值矢量w TX(0°,0°)中,在相应发射通道上的波束权值,以额定标称功率P TX0,发送相应发射通道对应的发射校准序列的时域序列s n(m),m=1,2,…M,n=1,2,…N。方向角
Figure PCTCN2019097551-appb-000076
对应的测试天线接收发射校准信号,接收到的信号表示为x TX(m),m=1,2,…M。
S502:有源天线阵列获得所述发射校准信号的接收序列,根据所述接收序列得到该有源天线阵列中各发射通道的初始幅相误差矢量,并根据各发射通道的初始幅相误差更新发射校准信号以及发射通道波束权值矩阵。
可对测试天线接收到的信号进行同步和时频域变换处理后,得到有源天线阵列各个发射通道对应的频域校准序列X n(k),k=1,2,…K′,n=1,2,…N,并将该频域校准序列作为接收序列发送给有源天线阵列。该同步和时频域变换处理,以及将处理后得到的频域校准序列发送给有源天线阵列的过程,可由测试天线执行,也可以其他设备执行,本申请实施例对此不作限制。
其中,有源天线阵列根据第n发射通道的接收序列,确定该发射通道在 中心频点f 0需要补偿的幅相误差为:
Figure PCTCN2019097551-appb-000077
并根据各发射通道在中心频点f 0需要补偿的幅相误差,确定各发射通道在频域需要补偿的幅相误差为:
Figure PCTCN2019097551-appb-000078
由于每个发射通道的发射校准频域序列长度为K,需要对h n(k)做N倍线性插值拟合,获得各发射通道需要在频域带宽内补偿的幅相误差校准矢量:
H n(k),k=1,2,…K,n=1,2,…N…………………………(21)
有源天线阵列可以采用以下方式,根据各发射通道的幅相误差,更新发射校准信号:将各发射通道发射的发射校准信号频域序列与各发射通道需要在频域带宽内补偿的幅相误差校准矢量H n中的各元素进行点乘运算:
Figure PCTCN2019097551-appb-000079
再经过傅立叶反变换,得到各个发射通道更新后的时域序列,其中,第n发射通道的时域序列表示为:
Figure PCTCN2019097551-appb-000080
有源天线阵列对发射通道波束权值矩阵W TX进行中心频点f 0的通道幅相误差补偿,即令:
Figure PCTCN2019097551-appb-000081
Figure PCTCN2019097551-appb-000082
h TX=[h 1(f 0),h 2(f 0),…,h N(f 0)] T………………(25)
其中,W TX是经过基准波束方向(比如θ q=0°,
Figure PCTCN2019097551-appb-000083
波束方向)幅相误差校准后更新得到的发射通道波束权值矩阵。h TX为N个发射通道在中心频点f 0需要补偿的误差矢量。
S503:有源天线阵列使用更新后的发射通道波束权值矩阵中基准波束方向的波束权值矢量,发射更新后的发射校准信号,并根据发射通道波束权值 矩阵中所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到基准波束方向对应的发射通道波束增益。
以基准波束方向对应的方向角为
Figure PCTCN2019097551-appb-000084
作为例子,有源天线阵列使用波束权矢量
Figure PCTCN2019097551-appb-000085
以额定标称功率P TX0发送更新后的发射校准信号,各发射通道的发射校准信号的时域序列为
Figure PCTCN2019097551-appb-000086
方向角为
Figure PCTCN2019097551-appb-000087
对应的测试天线接收到的信号时域序列为
Figure PCTCN2019097551-appb-000088
该时域序列作为发射校准信号的接收序列被返回给有源天线阵列。有源天线阵列根据发射校准信号的接收序列,确定基准波束方向对应的发射通道波束增益:
Figure PCTCN2019097551-appb-000089
其中,G TX0表示基准波束方向(方位角
Figure PCTCN2019097551-appb-000090
且俯仰角θ q=0°)对应的发射通道波束增益,
Figure PCTCN2019097551-appb-000091
表示更新后的发射通道波束权值矩阵中方向角为
Figure PCTCN2019097551-appb-000092
的波束权值矢量。
S504:有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号,并使用发射通道波束权值矩阵中该方向角对应的波束权值矢量,对所述发射校准信号的接收序列进行波束合成,得到第一波束方向区域对应的发射通道波束合成增益。
其中,“第一波束方向区域”可以是划分得到的L个波束区域中的任意一个波束区域。第一波束方向区域所对应的方向角与基准波束方向对应的方向角不同。
该步骤中,以第l波束区域为例,有源天线阵列使用方向角
Figure PCTCN2019097551-appb-000093
对应的波束权值矢量
Figure PCTCN2019097551-appb-000094
发送更新后的发射校准信号。该方向角
Figure PCTCN2019097551-appb-000095
对应的测试天线接收该发射校准信号,测试天线接收到的发射校准信号的时域序列为
Figure PCTCN2019097551-appb-000096
该时域序列被作为发射校准信号的结束序列发送给有源天线阵列。
有源天线阵列根据发射校准信号的接收序列
Figure PCTCN2019097551-appb-000097
使用方向角
Figure PCTCN2019097551-appb-000098
对应的波束权值矢量
Figure PCTCN2019097551-appb-000099
Figure PCTCN2019097551-appb-000100
进行波束合成,得到第l波束区域对应的接收通道波束增益:
Figure PCTCN2019097551-appb-000101
其中,G TXl表示第l波束区域对应的发射通道波束增益;
Figure PCTCN2019097551-appb-000102
表示接收通道权值矩阵中方向角
Figure PCTCN2019097551-appb-000103
的波束权值矢量。
以图2为例,若l=1,则有源天线阵列发送发射校准信号,该发射校准信号的方向角为
Figure PCTCN2019097551-appb-000104
测试天线1接收该发射校准信号,测试天线1接收到的该发射校准信号的时域序列被发送给有源天线阵列。有源天线阵列根据接收通道波束权值矩阵中该方向角
Figure PCTCN2019097551-appb-000105
的波束权值矢量,对发射校准信号的接收序列进行接收波束合成,计算得到波束方向区域l对应的接收通道波束增益。
S505:有源天线阵列确定第一波束方向区域对应的发射通道波束增益与基准波束方向对应的发射通道波束增益之间的差值,若该差值小于或等于设定增益误差阈值,则转入S506,若该差值大于设定增益误差阈值,则转入S507。
其中,可以预先设置增益误差阈值。增益误差阈值的取值可根据校准精度的要求来确定,校准精度越高,则增益误差阈值越小。
S506:有源天线阵列确定发射通道波束权值矩阵中第一波束方向区域对应的波束权值矢量校准完成。
其中,若S505中判定第一波束区域对应的发射通道波束增益与基准波束方向对应的发射通道波束增益之间的差值小于设定增益误差阈值,则表明在第一波束方向区域对应的所有发射波束方向上,有源天线阵列的发射通道误差较小,因此可以保持发射通道波束权值矩阵中该第一波束方向区域对应的所有波束权值矢量不变,即无需在第一波束方向区域对应的波束方向上对接收通道进行误差校准。
S507:有源天线阵列进行最多K次发射通道校准迭代过程,以对发射通道波束权值矩阵中第一波束方向区域内的所有波束方向的波束权值矢量进行更新,从而实现在第一波束方向区域对应的波束方向上对有源天线阵列的发射通道进行校准。
其中,发射通道校准迭代过程可参见图6。
对于每个波束方向区域,均可按照上述流程中的S504~S507进行有源天线阵列发射通道校准,从而实现对有源天线阵列的发射通道在所有发射波束方向上进行校准。
参见图6,为本申请实施例提供的发射通道校准迭代过程的流程示意图。如图所示,该流程可包括:
S601:有源天线阵列根据使用第一波束方向区域的方向角对应的波束权值矢量所发送的发射校准信号的接收序列,得到该有源天线阵列的N个发射通道在该第一波束方向区域上的幅相误差矢量。
其中,以第l波束方向区域为例,有源天线阵列根据第n发射通道的接收序列,确定该发射通道在方向角
Figure PCTCN2019097551-appb-000106
对应的中心频点f 0需要补偿的幅相误差为:
Figure PCTCN2019097551-appb-000107
并根据各发射通道在方向角
Figure PCTCN2019097551-appb-000108
对应的中心频点f 0需要补偿的幅相误差,确定各发射通道在频域需要补偿的幅相误差为:
Figure PCTCN2019097551-appb-000109
S602:有源天线阵列根据本次迭代过程确定的幅相误差矢量,更新发射校准信号,并更新发射通道波束权值矩阵中第一波束方向区域内的波束方向的波束权值矢量。
该步骤中,有源天线阵列可根据公式(22),更新发射校准信号,更新后的各个发射通道的发射校准信号的时域序列为
Figure PCTCN2019097551-appb-000110
由于第一波束方向区域对应于发射通道波束权值矩阵中的多个波束方向的波束权 值矢量,因此有源天线阵列更新该第一波束方向区域对应的所有波束方向的波束权值矢量。
其中,以第l波束方向区域为例,其对应的方向角为
Figure PCTCN2019097551-appb-000111
该波束方向区域对应以下方向角范围内的所有波束方向:方位角范围为
Figure PCTCN2019097551-appb-000112
俯仰角范围为
Figure PCTCN2019097551-appb-000113
其中,P为步径大小。则有源天线阵列根据本次迭代过程确定出的幅相误差矢量,更新发射通道波束权值矩阵中该范围内的所有波束方向的波束权值矢量。
如果方位角范围
Figure PCTCN2019097551-appb-000114
且俯仰角范围
Figure PCTCN2019097551-appb-000115
对应的波束方向表示为
Figure PCTCN2019097551-appb-000116
的波束权值矢量表示为
Figure PCTCN2019097551-appb-000117
其中,i=1,2,…,R,R为上述方位角范围内的所有波束方向的数量,则针对该方位角范围内的每个波束方向的波束权值矢量进行更新。
S603:有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用更新后的接收通道波束权值矩阵中该方向角对应的波束权值矢量,对所述发射校准信号的接收序列进行波束合成,得到第一波束方向区域对应的发射通道波束合成增益。
S604:有源天线阵列判断本次迭代过程确定的发射通道波束增益,与基准波束方向对应的发射波束合成增益之间的增益误差是否大于增益误差阈值,若小于或等于,则转入S605,否则转入S606。
S605:第一波束方向区域对应的波束权值矢量校准完成。
S606:判断是否到达最大迭代次数,若达到,则转入S607。
S607:结束本次迭代过程,进一步结束发射通道校准流程,并可发出发射通道校准异常的告警信息。
S608:有源天线阵列使用第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并获得该发射校准信号的接收序列,转入S601,进入下一次迭代过程。
以图2所示的场景为例,在对有源天线阵列进行发射通道校准的过程中,有源天线阵列首先使用方向角
Figure PCTCN2019097551-appb-000118
对应的波束权值矢量发送发射校准信号,并按照图5中的S501~S502,更新发射通道波束权值矩阵中每个波束权值矢量,从而利用方向角为
Figure PCTCN2019097551-appb-000119
的发射校准信号的接收序列,对发射通道进行初始校正。
之后,通过测试天线1发送接收校准信号,该信号的方向角为
Figure PCTCN2019097551-appb-000120
有源天线阵列按照图5中的S503~S504判断是否需要对该方向角对应的方向角范围
Figure PCTCN2019097551-appb-000121
内的若干个波束权值矢量进行更新,若需要更新,则按照图6所示的流程执行发射通道校准迭代过程,直到对方向角范围
Figure PCTCN2019097551-appb-000122
内的若干个波束权值矢量更新完成,或者直到更新失败为止。若不需要更新,则保持方向角范围
Figure PCTCN2019097551-appb-000123
内的若干个波束权值矢量不变。
此后,针对其他波束方向区域,依次使用相应波束方向区域的方向角对应的波束权值矢量发送发射校准信号,并根据发射校准信号的接收序列,按照上述流程中针对波束方向区域1的发射通道校准流程进行处理,直到针对所有波束方向区域完成发射通道校准为止。
通过以上发射通道校准的实施例可以看出,首先使用基准波束方向的发射校准信号的接收序列,对发射通道波束权值矩阵进行初始更新,即对发射通道进行初始校准,然后分别针对不同的波束方向区域,更新相应波束方向区域范围内的多个波束方向的波束权值矢量,从而分区域对发射通道波束权值矩阵中相应区域对应的波束权值矢量进行更新,即对发射通道进行分区域校准。
采用本申请上述实施例提供的发射通道校准方法,可以在生产环境下,对大规模有源天线阵列的相关设备的波束赋形功能进行校准检测,相比于现有技术主要具有如下几方面优点:
(1)本申请实施例提供的发射通道校准方法,无需在电波暗室中进行, 降低了对测试场地的要求标准及巨额投资;
(2)本申请实施例提供的发射通道校准方法,仅需在垂直与水平空间维度上进行有限检测,提高了生产检测效率。
(3)本申请实施例提供的发射通道校准方法,与接收通道校准过程相独立,可以补偿收发通道之间的幅相误差,提高波束赋形功能性能。
(4)本申请实施例提供的发射通道校准方法,易于算法实现,利于在实际生产环境中使用。
基于相同的技术构思,本申请实施例还提供了一种天线校准装置,用于对有源天线阵列的接收通道进行校准。
参见图7,为本申请实施例提供的用于实现接收通道校准的天线校准装置的结构示意图。该装置应用于有源天线阵列,所述有源天线阵列的接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个接收波束方向。
可选地,所述基准波束方向的方位角和俯仰角均为零度。
可选地,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
该装置可包括:初始校准模块701、分区域校准模块702。
初始校准模块701,用于根据有源天线阵列接收到的来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数。
分区域校准模块702,用于根据所述有源天线阵列接收到的来自于第一波 束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,可选地,所述最多K次接收通道校准迭代过程中的每次迭代过程,分区域校准模块702执行:
根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的接收通道波束增益;
判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下次迭代过程,否则结束本次迭代过程。
基于相同的技术构思,本申请实施例还提供了一种天线校准装置,用于对有源天线阵列的发射通道进行校准。
参见图8,为本申请实施例提供的用于实现发射通道校准的天线校准装置的结构示意图。该装置应用于有源天线阵列,所述有源天线阵列的发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个发 射波束方向。
可选地,所述基准波束方向的方位角和俯仰角均为零度。
可选地,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
该装置可包括:初始校准模块801、分区域校准模块802。
初始校准模块801,用于根据有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数。
分区域校准模块802,用于在所述有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号后,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
其中,可选地,所述最多K次发射通道校准迭代过程中的每次迭代过程,分区域校准模块802执行:
根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通 道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可实现前述实施例中的接收通道校准流程。
参见图9,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器901、存储器902、收发机903以及总线接口904。
处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。收发机903用于在处理器901的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器901代表的一个或多个处理器和存储器902代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口904提供接口。处理器901负责管理总线架构和通常的处理,存储器902可以存储处理器901在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器901中,或者由处理器901实现。在实现过程中,信号处理流程的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。处理器901可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或 者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器901,用于读取存储器902中的程序执行前述实施例中描述的接收通道的校准流程。该流程的具体实现可参见前述实施例的相关描述,在此不再重复。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可实现前述实施例中的发射通道校准流程。
参见图10,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器1001、存储器1002、收发机1003以及总线接口1004。
处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。收发机1003用于在处理器1001的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1004提供接口。处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1001中,或者由处理器1001实现。在实现过程中,信号处理流程的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1001可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器 件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1001,用于读取存储器1002中的程序执行前述实施例中描述的发射通道的校准流程。该流程的具体实现可参见前述实施例的相关描述,在此不再重复。
基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行前述实施例所执行的流程。
本申请是参照根据本申请实施例的方法、设备(***)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (26)

  1. 一种天线校准方法,其特征在于,有源天线阵列的接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个接收波束方向;所述方法包括:
    有源天线阵列接收来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数;
    所述有源天线阵列接收来自于第一波束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
  2. 如权利要求1所述的方法,其特征在于,所述最多K次接收通道校准迭代过程中的每次迭代过程,所述有源天线阵列执行:
    根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
    根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中 所述第一波束方向区域内的波束方向的波束权值矢量;
    根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的接收通道波束增益;
    判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下次迭代过程,否则结束本次迭代过程。
  3. 如权利要求1所述的方法,其特征在于,所述基准波束方向的方位角和俯仰角均为零度。
  4. 如权利要求1所述的方法,其特征在于,所述基准波束方向的方向角,与任一波束方向区域的方位角不同。
  5. 一种天线校准方法,其特征在于,有源天线阵列的发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个发射波束方向,至少一个波束方向区域对应多个发射波束方向;所述方法包括:
    有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送发射校准信号,根据所述发射校准信号的接收序列得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数;
    所述有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量 发送发射校准信号,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
  6. 如权利要求5所述的方法,其特征在于,所述最多K次发射通道校准迭代过程中的每次迭代过程,所述有源天线阵列执行:
    根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
    根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
    使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
    判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
  7. 如权利要求5所述的方法,其特征在于,所述基准波束方向的方位角和俯仰角均为零度。
  8. 如权利要求5所述的方法,其特征在于,所述基准波束方向的方向角,与任一波束方向区域的方位角不同。
  9. 一种天线校准装置,其特征在于,应用于有源天线阵列,所述有源天线阵列的接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方 向区域对应多个接收波束方向;所述装置包括:
    初始校准模块,用于根据有源天线阵列接收到的来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数;
    分区域校准模块,用于根据所述有源天线阵列接收到的来自于第一波束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
  10. 如权利要求9所述的装置,其特征在于,所述最多K次接收通道校准迭代过程中的每次迭代过程,所述分区域校准模块执行:
    根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
    根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
    根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的接收通道波束增益;
    判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下次迭代过程,否则结束本次迭代过程。
  11. 如权利要求9所述的装置,其特征在于,所述基准波束方向的方位角和俯仰角均为零度。
  12. 如权利要求9所述的装置,其特征在于,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
  13. 一种天线校准装置,其特征在于,应用于有源天线阵列,所述有源天线阵列的发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个发射波束方向;所述装置包括:
    初始校准模块,用于根据有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数;
    分区域校准模块,用于在所述有源天线阵列使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号后,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代 次数,第一波束方向区域为所述多个波束方向区域中的一个。
  14. 如权利要求13所述的装置,其特征在于,所述最多K次发射通道校准迭代过程中的每次迭代过程,所述分区域校准模块执行:
    根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
    根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
    使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
    判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
  15. 如权利要求13所述的装置,其特征在于,所述基准波束方向的方位角和俯仰角均为零度。
  16. 如权利要求13所述的装置,其特征在于,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
  17. 一种通信装置,其特征在于,包括:处理器、存储器、收发机,所述收发机包括发射通道和接收通道;接收通道波束权值矩阵对应的接收波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个接收波束方向;
    所述处理器,用于读取存储器中的程序,执行:
    根据有源天线阵列接收到的来自于基准波束方向的接收校准信号,得到所述有源天线阵列的N个接收通道在所述基准波束方向上的初始幅相误差矢量,根据所述初始幅相误差矢量更新接收通道波束权值矩阵中每个波束方向 的波束权值矢量,并根据更新后的接收通道波束权值矩阵中所述基准波束方向的波束权值矢量,对所述基准波束方向的接收校准信号进行波束合成,得到所述基准波束方向对应的第一接收通道波束增益;其中,一个接收波束方向的波束权值矢量包括该接收波束方向对应的N个接收通道的波束权值,N为大于1的整数;
    根据所述有源天线阵列接收到的来自于第一波束方向区域的接收校准信号,根据所述第一波束方向区域对应的方向角,使用接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的第二接收通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则根据来自于所述第一波束方向区域的接收校准信号进行最多K次接收通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
  18. 如权利要求17所述的装置,其特征在于,所述最多K次接收通道校准迭代过程中的每次迭代过程,所述处理器执行:
    根据来自于所述第一波束方向区域的接收校准信号,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
    根据本次迭代过程确定的幅相误差矢量,更新接收通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
    根据所述来自于第一波束方向区域的接收校准信号的方向角,使用更新后的接收通道波束权值矩阵中相应方向角的波束权值矢量,对所述来自于第一波束方向区域的接收校准信号进行波束合成,得到所述第一波束方向区域对应的接收通道波束增益;
    判断本次迭代过程确定的接收通道波束增益与所述第一接收通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,接收来自于所述第一波束方向区域的接收校准信号,并进行下次迭代过程,否则结束本次迭代过程。
  19. 如权利要求17所述的装置,其特征在于,所述基准波束方向的方位角和俯仰角均为零度。
  20. 如权利要求17所述的装置,其特征在于,所述基准波束方向的方向角,与任一波束方向区域的方位角不同。
  21. 一种通信装置,其特征在于,包括:处理器、存储器、收发机,所述收发机包括发射通道和接收通道;发射通道波束权值矩阵对应的发射波束方向范围被划分为多个波束方向区域,一个波束方向区域对应至少一个接收波束方向,至少一个波束方向区域对应多个发射波束方向;
    所述处理器,用于读取存储器中的程序,执行:
    根据有源天线阵列使用发射通道波束权值矩阵中基准波束方向的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个发射通道的初始幅相误差矢量,根据所述初始幅相误差矢量更新发射校准信号以及发射通道波束权值矩阵中每个波束方向的波束权值矢量,并使用更新后的发射通道波束权值矩阵中所述基准波束方向的波束权值矢量发射更新后的发射校准信号,根据所述基准波束方向的波束权值矢量,对所述更新后的发射校准信号的接收序列进行波束合成,得到所述基准波束方向对应的第一发射通道波束增益;其中,一个发射波束方向的波束权值矢量包括该发射波束方向对应的N个发射通道的波束权值,N为大于1的整数;
    在所述收发机使用第一波束方向区域的方向角对应的波束权值矢量发送发射校准信号后,使用发射通道波束权值矩阵中相应方向角的波束权值矢量,对所发送的发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的第二发射通道波束增益;若所述第二接收通道波束增益与所述第一接收通道波束增益之间的增益误差大于增益误差阈值,则进行最多K次发射通道校准迭代过程;其中,K为最大迭代次数,第一波束方向区域为所述多个波束方向区域中的一个。
  22. 如权利要求21所述的装置,其特征在于,所述最多K次发射通道校准迭代过程中的每次迭代过程,所述处理器执行:
    根据使用第一波束方向区域的方向角对应的波束权值矢量发送的发射校准信号的接收序列,得到所述有源天线阵列的N个接收通道在所述第一波束方向区域上的幅相误差矢量;
    根据本次迭代过程确定的幅相误差矢量,更新发送校准信号以及发射通道波束权值矩阵中所述第一波束方向区域内的波束方向的波束权值矢量;
    使用第一波束方向区域的方向角对应的波束权值矢量发送更新后的发射校准信号,并使用该方向角对应的波束权值矢量,对发射校准信号的接收序列进行波束合成,得到所述第一波束方向区域对应的发射通道波束增益;
    判断本次迭代过程确定的发射通道波束增益与所述第一发射通道波束增益之间的增益误差是否大于增益误差阈值,若大于,则在未到达最大迭代次数的情况下,使用所述第一波束方向区域对应的方向角的波束权值矢量发送发射校准信号,并进行下次迭代过程,否则结束本次迭代过程。
  23. 如权利要求21所述的装置,其特征在于,所述基准波束方向的方位角和俯仰角均为零度。
  24. 如权利要求21所述的装置,其特征在于,所述基准波束方向的方向角,与任一波束方向区域对应的方位角不同。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1至4中任一项所述的方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求5至8中任一项所述的方法。
PCT/CN2019/097551 2018-08-02 2019-07-24 一种天线校准方法及装置 WO2020024861A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217006394A KR102363700B1 (ko) 2018-08-02 2019-07-24 안테나 교정 방법 및 장치
JP2021505832A JP7038899B2 (ja) 2018-08-02 2019-07-24 アンテナの校正方法および装置
EP19844459.8A EP3832912A4 (en) 2018-08-02 2019-07-24 ANTENNA CALIBRATION DEVICE AND METHOD
US17/265,360 US11171417B2 (en) 2018-08-02 2019-07-24 Method and apparatus for calibrating antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810872421.1A CN110798253B (zh) 2018-08-02 2018-08-02 一种天线校准方法及装置
CN201810872421.1 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020024861A1 true WO2020024861A1 (zh) 2020-02-06

Family

ID=69231390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097551 WO2020024861A1 (zh) 2018-08-02 2019-07-24 一种天线校准方法及装置

Country Status (6)

Country Link
US (1) US11171417B2 (zh)
EP (1) EP3832912A4 (zh)
JP (1) JP7038899B2 (zh)
KR (1) KR102363700B1 (zh)
CN (1) CN110798253B (zh)
WO (1) WO2020024861A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491455A (zh) * 2021-02-05 2021-03-12 电子科技大学 一种基于阵列单元位置修正的鲁棒性波束赋形方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109309533B (zh) * 2018-09-04 2021-05-18 华为技术有限公司 一种校准方法及设备
GB2579175B (en) * 2018-11-01 2021-01-06 Leonardo Mw Ltd An active array antenna with sub-arrays and a method for its calibration
CN111447017B (zh) * 2020-04-09 2021-04-30 广州通则康威智能科技有限公司 阵列天线波束赋形快速测试装置及其测试方法
CN111463575B (zh) * 2020-04-20 2022-02-11 上海磐启微电子有限公司 基于均匀矩形平面阵的幅相误差自校正装置及方法
US11789118B2 (en) * 2020-10-23 2023-10-17 Nxp Usa, Inc. Calibration of a phased array
US11984659B2 (en) * 2021-06-23 2024-05-14 Qualcomm Incorporated Phase pre-compensation for misalignment
US11777618B2 (en) * 2021-09-14 2023-10-03 Hughes Network Systems, Llc Amplitude and phase calibration for phased array antennas
US20230275632A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Methods for beam coordination in a near-field operation with multiple transmission and reception points (trps)
CN115588851B (zh) * 2022-12-12 2023-04-11 中国电子科技集团公司第十研究所 球面相控阵天线的阵元通道相位标校的有效性验证方法
CN115833972B (zh) * 2023-02-17 2023-04-28 华清瑞达(天津)科技有限公司 对阵列馈电***输出的目标角位置进行校准的***及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188009A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 信号接收方法及装置
US20170048009A1 (en) * 2008-05-23 2017-02-16 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
CN107809273A (zh) * 2016-09-05 2018-03-16 中兴通讯股份有限公司 一种多天线补偿方法及其装置、射频设备
CN109495189A (zh) * 2017-09-11 2019-03-19 大唐移动通信设备有限公司 一种阵列天线校准方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522563C2 (sv) * 2000-02-01 2004-02-17 Ericsson Telefon Ab L M Kalibreringsmetod för en adaptiv gruppantenn
US7272364B2 (en) * 2002-12-30 2007-09-18 Motorola, Inc. Method and system for minimizing overlap nulling in switched beams
US20090093222A1 (en) 2007-10-03 2009-04-09 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
WO2014169934A1 (en) * 2013-04-15 2014-10-23 Nokia Solutions And Networks Oy Antenna system calibration
GB2517218B (en) * 2013-08-16 2017-10-04 Analog Devices Global Communication unit and method of antenna array calibration
KR20170137074A (ko) 2015-04-10 2017-12-12 미쓰비시덴키 가부시키가이샤 통신 시스템
US9967081B2 (en) * 2015-12-04 2018-05-08 Hon Hai Precision Industry Co., Ltd. System and method for beamforming wth automatic amplitude and phase error calibration
CN106324573A (zh) * 2016-08-24 2017-01-11 中国电子科技集团公司第三十八研究所 一种适用于平板端射阵列天线的幅相误差校正方法
US20180062260A1 (en) * 2016-08-26 2018-03-01 Analog Devices Global Antenna array calibration systems and methods
CN106371055B (zh) * 2016-10-26 2018-11-09 黑龙江大学 远近场宽带混合信号超分辨测向阵列幅相误差估计方法
US10680689B2 (en) 2017-01-05 2020-06-09 Futurewei Technologies, Inc. Beam management techniques for beam calibration
CN110401470B (zh) * 2017-11-17 2020-07-07 华为技术有限公司 通信方法及装置,计算机可读存储介质
CN108155958A (zh) * 2017-11-22 2018-06-12 西南电子技术研究所(中国电子科技集团公司第十研究所) 大规模mimo天线阵列远场校准***
US11177567B2 (en) * 2018-02-23 2021-11-16 Analog Devices Global Unlimited Company Antenna array calibration systems and methods
JP2021528650A (ja) * 2018-06-22 2021-10-21 フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン 方法、測定環境および被試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170048009A1 (en) * 2008-05-23 2017-02-16 Qualcomm Incorporated Calibration and beamforming in a wireless communication system
CN103188009A (zh) * 2011-12-31 2013-07-03 中兴通讯股份有限公司 信号接收方法及装置
CN107809273A (zh) * 2016-09-05 2018-03-16 中兴通讯股份有限公司 一种多天线补偿方法及其装置、射频设备
CN109495189A (zh) * 2017-09-11 2019-03-19 大唐移动通信设备有限公司 一种阵列天线校准方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832912A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491455A (zh) * 2021-02-05 2021-03-12 电子科技大学 一种基于阵列单元位置修正的鲁棒性波束赋形方法
CN112491455B (zh) * 2021-02-05 2021-06-01 电子科技大学 一种基于阵列单元位置修正的鲁棒性波束赋形方法

Also Published As

Publication number Publication date
JP2021524721A (ja) 2021-09-13
KR20210040113A (ko) 2021-04-12
CN110798253B (zh) 2021-03-12
JP7038899B2 (ja) 2022-03-18
CN110798253A (zh) 2020-02-14
EP3832912A4 (en) 2021-08-25
EP3832912A1 (en) 2021-06-09
US11171417B2 (en) 2021-11-09
KR102363700B1 (ko) 2022-02-15
US20210257730A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2020024861A1 (zh) 一种天线校准方法及装置
JP7022201B2 (ja) アレイアンテナをキャリブレーションする方法および装置
AU2015385427B2 (en) Beam forming using an antenna arrangement
US10432281B2 (en) Communication beam determining method and corresponding apparatus
US11563480B2 (en) Beam forming using an antenna arrangement
WO2020006748A1 (zh) 相控阵天线的校准方法及相关装置
US10348381B2 (en) Antenna system configuration
US10615855B2 (en) Method and device for determining codebook
WO2021169696A1 (zh) 一种线序检测方法以及多天线网络设备
CN112929962B (zh) 定位方法、装置、计算机设备和存储介质
CN108075811A (zh) 用于混合预编码的方法以及通信设备
US10432273B1 (en) Antenna arrangement for transmitting reference signals
WO2020088549A1 (zh) 一种天线校正方法及装置
WO2016154923A1 (zh) 波束信息获取方法、装置以及通信***
WO2016183957A1 (zh) 一种天线通道的降阶方法及装置
Wang et al. On efficient non-stationary channel emulation in conductive phase matrix setup for massive MIMO performance testing
US11356862B2 (en) Measuring method and measuring device
WO2022089073A1 (zh) 波束赋形的处理方法、装置及可读存储介质
Jiang et al. Comparison between NU-CNLMS and GA for antenna array failure correction
WO2024140706A1 (zh) 通信方法及装置
CN116418634A (zh) 级联信道估计方法、设备及存储介质
CN115378478A (zh) 信道校准方法、装置、基站及存储介质
BR112017018125B1 (pt) Método para formação de feixe usando um arranjo de antena
CN114062793A (zh) 阵列天线***的校正方法、装置、设备和存储介质
OA18405A (en) Beam forming using an antenna arrangement.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844459

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021505832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019844459

Country of ref document: EP

Effective date: 20210302