WO2020006748A1 - 相控阵天线的校准方法及相关装置 - Google Patents

相控阵天线的校准方法及相关装置 Download PDF

Info

Publication number
WO2020006748A1
WO2020006748A1 PCT/CN2018/094804 CN2018094804W WO2020006748A1 WO 2020006748 A1 WO2020006748 A1 WO 2020006748A1 CN 2018094804 W CN2018094804 W CN 2018094804W WO 2020006748 A1 WO2020006748 A1 WO 2020006748A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
antenna
phased array
unit
antenna unit
Prior art date
Application number
PCT/CN2018/094804
Other languages
English (en)
French (fr)
Inventor
姜涛
李静
张志伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880095365.3A priority Critical patent/CN112385086B/zh
Priority to EP18925613.4A priority patent/EP3790111B1/en
Priority to PCT/CN2018/094804 priority patent/WO2020006748A1/zh
Publication of WO2020006748A1 publication Critical patent/WO2020006748A1/zh
Priority to US17/141,776 priority patent/US11811147B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/10Radiation diagrams of antennas

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method for calibrating a phased array antenna and related devices.
  • a phased array antenna consists of multiple antenna elements.
  • An antenna array is formed.
  • the antenna unit in a phased array antenna is also called a service antenna unit.
  • the performance of a phased array antenna is highly dependent on the amplitude and phase accuracy of each service antenna unit. In an ideal state, during the operation of the phased array antenna, each service antenna unit has a specific amplitude and phase, and the service antenna units do not interfere with each other. However, in an actual phased array antenna, because the circuit channel corresponding to each service antenna unit is not ideal, the amplitude and phase of each service antenna unit have relatively large fluctuations.
  • Changes in the amplitude and phase of each service antenna unit cause changes in characteristics such as the radiation pattern of the antenna array, which reduces the accuracy of the amplitude and phase characteristics of the antenna channel corresponding to each service antenna unit, resulting in poor performance of the phased array antenna. Therefore, how to ensure the accuracy of the amplitude and phase characteristics of each antenna channel of the phased array antenna has become one of the technical problems to be solved urgently in ensuring the performance stability of the phased array antenna.
  • each calibration antenna unit covers the calibration antenna unit. Calibration of antenna channels in the area.
  • each calibration antenna unit separately covers an area on the outer surface of the array of the phased array antenna, and the coverage effect of the calibration antenna unit on each service antenna unit in the area is not good. That is, in the area covered by the same calibration antenna unit, the distance between each service antenna unit and the calibration antenna in the area is different, which makes the coupling degree of different service antenna units and the calibration antenna unit in the area greatly different, which leads to the calibration antenna unit.
  • the obtained calibration signal has poor quality, poor calibration effect, and low applicability.
  • the embodiments of the present application provide a method and a related device for calibrating a phased array antenna, which can improve the calibration quality of the phased array antenna, improve the reliability of the phased array antenna, and enhance the performance stability of the phased array antenna. Strong.
  • an embodiment of the present application provides a method for calibrating a phased array antenna.
  • the phased array antenna to which the method is applicable includes multiple service antenna units and multiple calibration antenna units deployed independently of the multiple service antenna units, wherein the multiple service antenna units are based on the multiple calibration antenna units. Divided into multiple antenna sub-arrays, one calibration antenna unit corresponds to one antenna sub-array.
  • the method includes performing the following operations on a test signal transmitted by any transmitting channel (such as transmitting channel n) in the phased array antenna to obtain a calibration signal corresponding to the transmitting channel n:
  • Any test signal is transmitted through the transmission channel n, and any one of the above test signals is radiated through the service antenna unit (such as the service antenna unit n) corresponding to the transmission channel n, and is received by the calibration antenna unit in the phased array antenna;
  • the service antenna unit such as the service antenna unit n
  • N is greater than or equal to 2 and less than or equal to the total number of calibration antenna units in the phased array antenna
  • the signal combination is a calibration signal corresponding to the transmission channel n.
  • the signals transmitted by each transmission channel in the phased array antenna can be processed to obtain the best calibration signal corresponding to each transmission channel.
  • the compensation of the amplitude and / or phase of each transmission channel can make the amplitude and / or phase of each transmission channel in the phased array antenna equal, thereby ensuring the best signal-to-noise ratio of the signal radiation of the phased array antenna and ensuring phase control Array antenna performance, low implementation complexity, stronger applicability.
  • the N calibration antenna units coupled with the service antenna unit n in the phased array antenna include a calibration antenna unit (such as calibration) corresponding to an antenna sub-array to which the service antenna unit n belongs.
  • the acquiring the N coupling signals received by the N calibration antenna units coupled with the service antenna unit n includes: acquiring a first coupling signal between the service antenna unit n and the calibration antenna unit n, and according to the first coupling signal, For the signal-to-noise ratio, N-1 calibration antenna units other than the calibration antenna unit n are determined from the calibration antenna units coupled with the service antenna unit n in the phased array antenna. Obtain the N-1 coupling signals received by the N-1 calibration antenna units to obtain N-channel coupling signals including the first coupling signal.
  • the N calibration antenna units are coupled to the service antenna unit n at times t 0 to t N-1 , respectively.
  • the transmission channels corresponding to the service antenna units at different positions may use different numbers of calibration antenna units to calibrate the transmission channels, so as to implement the directional patterns of the service antenna units at different positions to point to different beam control, thereby The best signal-to-noise ratio for the radiated signals of the service antenna units at various positions can be obtained.
  • a single calibration antenna unit may be used for signal reception and / or transmission to achieve calibration of the transmission channel.
  • the number of the above-mentioned calibration antenna units (that is, the determination of N in N-1) and the location can be selected according to the signal-to-noise ratio of the above-mentioned coupling signal n, combined with the signal of the best reception effect of the coupling signal of the calibration antenna unit in the phased array antenna.
  • the noise ratio requirement and the position of each calibration antenna unit in the phased array antenna are determined so that the coupling signal of each calibration antenna unit has the best reception effect.
  • the above-mentioned compensating the amplitude of each transmission channel according to the difference in the amplitude of the calibration signal corresponding to each transmission channel in the phased array antenna includes: calculating the phase control The amplitude difference of the calibration signal corresponding to each transmission channel in the array antenna, and the amplitude compensation of the calibration signal corresponding to each transmission channel is performed by an attenuator in the above transmission channels, so that the amplitude of the calibration signal corresponding to each transmission channel equal.
  • the embodiment of the present application can perform amplitude compensation on the calibration signal corresponding to each transmission channel through the attenuator in each transmission channel, which is simple in operation and more applicable.
  • the compensating the phase of each transmission channel according to a phase difference of a calibration signal corresponding to each transmission channel in the phased array antenna includes: calculating the phase control Phase difference of the calibration signal corresponding to each transmission channel in the array antenna, and phase compensation is performed on the calibration signal corresponding to each transmission channel by a phase shifter in each transmission channel, so that the calibration signal corresponding to each transmission channel is The phases are equal.
  • a phase shifter in each transmission channel can be used to phase compensate the calibration signal corresponding to each transmission channel. The operation is simple, the implementation difficulty is low, and the applicability is stronger.
  • the calibration antenna units corresponding to any antenna sub-array in the phased array antenna are deployed at the center positions or peripheral edges of all service antenna units included in any of the antenna sub-arrays.
  • the position can achieve better coverage of the calibration antenna unit to the service antenna unit in the antenna sub-array, and thus can improve the calibration reliability of the phased array antenna.
  • the calibration antenna unit in the phased array antenna includes a monopole antenna unit, a waveguide antenna unit, and / or other service antennas in the phased array antenna.
  • the antenna element whose radiation directions are orthogonal.
  • there are various manifestations of the calibration antenna unit which can improve the implementation flexibility of the phased array antenna method provided by the embodiment of the present application and have a wider application range.
  • an embodiment of the present application provides a method for calibrating a phased array antenna.
  • the phased array antenna to which the method is applicable includes multiple service antenna units and multiple calibration antenna units deployed independently of the multiple service antenna units, wherein the multiple service antenna units are based on the multiple calibration antenna units. Divided into multiple antenna sub-arrays, one calibration antenna unit corresponds to one antenna sub-array.
  • the amplitude and / or phase of the calibration signal corresponding to any receiving channel (such as receiving channel i) in the phased array antenna can be obtained through the following steps 1 to 3:
  • Step 1 Determine the relative position of the service antenna unit (such as service antenna unit i) corresponding to the receiving channel i and the N calibration antenna units of the phased array antenna, where N is greater than or equal to 2 and less than or equal to the above The total number of calibration antenna elements in the phased array antenna.
  • the service antenna unit such as service antenna unit i
  • Step 2 The N test signals fed into the N calibration antenna units are time-delayed and weighted according to the N sets of relative positions to obtain N calibration signals.
  • the N calibration signals are radiated by the N calibration antenna units, and Received by the service antenna unit in the phased array antenna.
  • Step 3 Receive the N calibration signals through the service antenna unit i and combine them into one time-domain aligned calibration signal, and record the amplitude and / or phase of the time-domain aligned calibration signal to obtain the corresponding reception channel i.
  • the amplitude and / or phase of the calibration signal is the amplitude and / or phase of the calibration signal.
  • the amplitude and / or phase of each receiving channel in the phased array antenna can be used to make the amplitude of each receiving channel in the phased array antenna consistent, thereby ensuring the signal of the phased array antenna.
  • the best signal-to-noise ratio of radiation guarantees the performance of phased array antennas with low implementation complexity and stronger applicability.
  • multiple calibration antenna units jointly transmit a calibration signal to a service antenna unit corresponding to each receiving channel, so as to achieve an optimal receiving effect of the service antenna unit corresponding to each receiving channel on the calibration signal corresponding to each receiving channel.
  • the amplitude of each receiving channel in the phased array antenna can be made consistent, thereby ensuring that the signal reception of the phased array antenna has the best Good receiving effect, guarantee the performance of phased array antenna, low implementation complexity and stronger applicability.
  • the method before determining the relative positions of the service antenna unit i corresponding to the receiving channel i and the N groups of N calibration antenna units in the phased array antenna, the method further includes: : Determine the distance between the service antenna unit i and the calibration antenna unit i in the antenna sub-array to which it belongs. When the distance between the service antenna unit i and the calibration antenna unit i is greater than or equal to a preset distance threshold, a coupling signal between the service antenna unit i and the calibration antenna unit i is obtained.
  • N-1 calibrations other than the calibration antenna unit i are determined from the calibration antenna units included in the phased array antenna. Antenna unit to obtain N calibration antenna units including the above-mentioned calibration antenna unit i. The N calibration antenna units are coupled to the service antenna unit i at times t 0 to t N-1 , respectively.
  • different signal processing strategies include receiving channels corresponding to service antenna units at different positions, which can be calibrated with different numbers of calibration antenna units, so as to achieve that the direction patterns of the service antenna units at different positions point to different beams. Control, so as to obtain the best effect of the signal reception of the business day unit at each location.
  • a single calibration antenna unit may be used for signal reception and / or transmission to achieve calibration of the receiving channel.
  • multiple calibration antenna units may be used for signal reception and / or Send to achieve calibration of the receive channel.
  • the compensating the amplitudes of the calibration signals corresponding to the receiving channels according to the difference in the amplitudes of the calibration signals corresponding to the receiving channels in the phased array antenna includes: : Calculate the amplitude difference of the calibration signal corresponding to each receiving channel in the phased array antenna, and perform amplitude compensation on the calibration signal corresponding to each receiving channel through the attenuator in the receiving channel, so that the receiving channels correspond to each other.
  • the calibration signals have the same amplitude, simple operation, and strong applicability.
  • the compensating the phase of each calibration signal corresponding to each receiving channel according to the phase difference of the calibration signal corresponding to each receiving channel in the phased array antenna includes: : Calculate the phase difference value of the calibration signal corresponding to each receiving channel in the phased array antenna, and perform phase compensation on the calibration signal corresponding to each receiving channel by a phase shifter in each receiving channel, so that each receiving channel
  • the phases of the corresponding calibration signals are equal, the implementation is low, and the scope of application is wider.
  • the calibration antenna unit corresponding to any antenna sub-array in the phased array antenna is deployed at the center position or peripheral edge of all service antenna units included in any of the antenna sub-arrays. position.
  • the calibration antenna unit in the phased array antenna includes a monopole antenna unit, a waveguide antenna unit, and / or other service antennas in the phased array antenna.
  • the antenna element whose radiation directions are orthogonal.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a phased array antenna, and the terminal further includes a device for performing the foregoing first aspect and / or any possible implementation manner of the first aspect.
  • the unit and / or module of the method for calibrating a phased array antenna provided therefore, can also realize the beneficial effects (or advantages) possessed by the method provided by the first aspect and / or any possible implementation manner of the first aspect .
  • an embodiment of the present application provides a terminal.
  • the terminal includes a phased array antenna.
  • the terminal further includes a terminal provided in the second aspect and / or any one of the possible implementation manners provided in the second aspect.
  • the unit and / or module of the method for calibrating a phased array antenna can also achieve the beneficial effects (or advantages) possessed by the method provided by the second aspect and / or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a phased array antenna, and the terminal further includes a memory and a signal processor.
  • the memory and the signal processor are connected through a bus system.
  • the memory is used to store a set of program code
  • the signal processor is used to call the program code stored in the memory to execute the first aspect and / or the phased array antenna provided by any possible implementation manner of the first aspect.
  • the calibration method can also achieve the beneficial effects (or advantages) of the first aspect and / or the method provided in any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a terminal.
  • the terminal includes a phased array antenna, and the terminal further includes a memory and a signal processor.
  • the memory and the signal processor are connected through a bus system.
  • the memory is used to store a set of program code
  • the signal processor is used to call the program code stored in the memory to execute the phased array antenna provided by the second aspect and / or any possible implementation manner of the second aspect.
  • the calibration method can also achieve the beneficial effects (or advantages) possessed by the method provided by the second aspect and / or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions are run on a terminal, the terminal is caused to execute the foregoing first aspect and / or the first
  • the method for calibrating a phased array antenna provided by any one of the possible aspects of the aspect can therefore also achieve the beneficial effects of the first aspect and / or the method provided by any of the possible aspects of the first aspect (Or advantages).
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the terminal is caused to execute the second aspect and / or the second aspect.
  • the method for calibrating a phased array antenna provided in any one of the possible aspects of the aspect can also achieve the beneficial effects of the second aspect and / or the method provided in any of the possible aspects of the second aspect. (Or advantages).
  • an embodiment of the present application provides a terminal.
  • the terminal may be a chip or multiple chips that work together.
  • the terminal includes a phased array antenna coupled with the terminal (for example, a chip).
  • the terminal is configured to execute the first aspect and / or any possible implementation manner of the first aspect, and / or the phase control provided by the second aspect and / or any possible implementation manner of the second aspect.
  • Array antenna calibration method It should be understood that "coupled” herein means that two components are directly or indirectly joined to each other. This combination may be fixed or removable, and this combination may allow fluid, electricity, electrical signals, or other types of signals to communicate between the two components.
  • an embodiment of the present application provides a computer program product including instructions.
  • the terminal causes the terminal to execute any of the foregoing first aspect and / or a possible implementation of the first aspect.
  • Method, and / or the method for calibrating a phased array antenna provided in the second aspect and / or any possible implementation manner of the second aspect can also implement the method provided in any one of the first aspect to the second aspect. The beneficial effects of the method.
  • FIG. 1 is a schematic diagram of a distribution of antenna units according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an antenna sub-array provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a calibration system for a phased array antenna transmission channel according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a phased array antenna calibration method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of signal processing for transmission channel calibration provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a calibration system for a receiving channel of a phased array antenna according to an embodiment of the present application
  • FIG. 7 is another schematic flowchart of a phased array antenna calibration method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of signal processing for receiving channel calibration according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 10 is another schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a terminal according to an embodiment of the present application.
  • Phased array antenna refers to the antenna that changes the shape of the antenna pattern by controlling the amplitude and phase of the radiating unit feed in the array antenna. By controlling the amplitude and phase of each radiating element in the array antenna, the maximum direction of the antenna pattern of the phased array antenna can be changed to achieve the purpose of beam scanning.
  • the radiating unit in the array antenna of the phased array antenna refers to the antenna element in the array antenna, or the service antenna unit.
  • a service antenna unit is taken as an example for description below.
  • the array antenna refers to the service antenna units deployed in the form of an array in the phased array antenna. In other words, each service antenna unit in the phased array antenna forms an array. This array can be referred to as an antenna array.
  • These service antenna units are also called array antennas.
  • Embodiments of the present application provide a method for calibrating a phased array antenna and a related device.
  • Multiple calibration antenna units can be deployed in an antenna array composed of a service antenna unit in the phased array antenna independently of the service antenna unit.
  • the coupling of multiple calibration antenna units and service antenna units enables online calibration of the antenna channels of the phased array antenna.
  • the antenna channel in the phased array antenna includes the transmitting channel and the receiving channel of the phased array antenna.
  • the transmission channel and The online calibration of the receiving channel is explained separately, and there is no limitation here.
  • FIG. 1 is a schematic diagram of a distribution of antenna units according to an embodiment of the present application.
  • the antenna units include a service antenna unit and a calibration antenna unit.
  • the diamond-shaped square represents a service antenna unit
  • the calibration antenna unit of the array antenna is deployed in the antenna array of the phased array antenna independently of the service antenna unit.
  • the deployment of the calibration antenna unit independently of the service antenna unit means that the deployment position of the calibration antenna unit in the phased array antenna does not affect the deployment position of the service antenna unit in the antenna array of the phased array antenna.
  • the deployment position of each service antenna unit in the antenna array of the phased array antenna is not limited, and the calibration antenna unit of the phased array antenna is distributed to the service based on the deployment of the service antenna unit. Between antenna units.
  • the deployment mode of the phased array antenna's calibration antenna unit is applicable to the phased array antenna in the deployment mode of any service antenna unit, so the phased array provided by the embodiment of the present application is also improved.
  • the calibration range of the antenna is more flexible.
  • At least two (ie, multiple) calibration antenna units are deployed in the antenna array of the phased array antenna, and the antenna array composed of the service antenna units in the phased array antenna may be based on multiple
  • the calibration antenna unit is divided into multiple antenna sub-arrays, that is, the antenna array of the phased array antenna may be divided into at least two antenna sub-arrays based on the calibration antenna unit.
  • One antenna sub-array includes one calibration antenna unit and multiple service antenna units, and each calibration antenna unit may be located at the center or peripheral edge of the antenna sub-array to which it belongs. Referring to FIG. 2, FIG. 2 is a schematic diagram of an antenna sub-array provided by an embodiment of the present application.
  • the calibration antenna unit in each antenna sub-array, can be located in the middle of all service antenna units of the antenna sub-array, that is, the service antennas surrounding the same calibration antenna unit.
  • the unit is divided into the same antenna sub-array.
  • each calibration antenna unit in the division of the antenna array of the phased array antenna, each calibration antenna unit can be centered, and the service antenna units surrounding the same calibration antenna unit can be divided into the same antenna sub-array, and the phased array antenna can be further divided.
  • the antenna array of an array antenna is divided into multiple antenna sub-arrays.
  • a rounded square represents an antenna sub-array.
  • the shape of the antenna sub-array obtained by dividing each calibration antenna unit as a center may be other shapes other than rounded squares, which is not limited herein.
  • the calibration antenna unit may also be located at a peripheral edge of the antenna sub-array, that is, the calibration antenna unit may be located at a certain edge position outside of all service antenna units in the antenna sub-array.
  • the calibration antenna unit may be located at the upper left corner position, the upper right corner, or the lower right corner in the antenna sub-array shown in the rounded rectangle shown in FIG. 2, and may be specifically determined according to an actual application scenario, which is not limited herein.
  • the antenna sub-array can be divided according to the rule that one calibration antenna unit corresponds to one antenna sub-array.
  • the area where the specific service antenna unit is located can be determined according to the actual application scenario.
  • the position of a calibration antenna unit may be used as a reference, and the service antenna units distributed in a certain area where the calibration antenna unit is located may be divided into the same antenna sub-array, and the antenna sub-array may be implemented by the calibration antenna unit.
  • the coverage of the service antenna unit of the antenna can improve the coupling degree between the calibration antenna unit and each service antenna unit in each antenna sub-array, and can better guarantee the performance stability of the phased array antenna.
  • the calibration antenna unit includes, but is not limited to, a monopole antenna unit, a waveguide antenna unit, and / or other antennas orthogonal to the radiation direction of the service antenna unit in the phased array antenna. unit.
  • an implementation form of the calibration antenna unit may be determined according to an actual application scenario, and is not limited herein.
  • the calibration of the phased array antenna may include the calibration of the transmit channel and the receive channel of the phased array antenna. The following will divide the scene based on the antenna sub-array shown in FIG. 2, and combine FIG. 3 to FIG. 11 to calibrate the phased array antenna provided by the embodiment of the present application and the transmission channel of the related device through Embodiment 1 and Embodiment 2. The calibration and calibration of the receiving channel are explained.
  • FIG. 3 is a schematic structural diagram of a calibration system for a phased array antenna transmission channel according to an embodiment of the present application.
  • the calibration system for the phased array antenna transmission channel provided in the embodiments of the present application includes, but is not limited to, a beam control machine 31, multiple phase shifters / attenuators (that is, phase shifters and / or attenuators) 32, and multiple transmissions.
  • Machine 33 multiple phase shifters / attenuators (that is, phase shifters and / or attenuators) 32, and multiple transmissions.
  • Machine 33 a correction network 34, a correction receiver 35, and a signal processor 34.
  • the calibration system shown in FIG. 3 may include one or more transmission channels, and one transmission channel may include a phase shifter / attenuator, a transmitter, and a service antenna unit.
  • completing a transmission channel calibration may consist of the following steps:
  • the excitation signal for the transmission channel calibration (for example, the enable signal used for the calibration of the transmission channel, or the test signal) is fed into the phase shifter / attenuator for phase and / or amplitude adjustment, and then transmitted to the service antenna via the transmitter
  • the unit finally radiates into space through the service antenna unit, is received by the calibration antenna unit, and synthesizes radio frequency signals by the calibration network.
  • the correction receiver receives the radio frequency signal synthesized by the correction network and processes and outputs data including phase and / or amplitude.
  • the data including the phase and / or amplitude output by the correction receiver is obtained by inversion calculation of the signal processor to obtain the amplitude and / or phase of the transmission channel.
  • the calibration of each transmission channel is ended. If the difference between the amplitude and / or phase of each transmission channel is greater than a certain threshold, the signal processor compensates the amplitude and / or phase difference of each transmission channel, so that the amplitude and / or phase of all transmission channels are equal, or each The difference in amplitude and / or phase between the transmission channels is less than or equal to a certain threshold. The signal processor feeds back the amplitude and / or phase of each transmission channel after compensation to the beam control machine.
  • the beam control machine arranges a set of transmission channel calibration control signals to a phase shifter / attenuator at high speed, and adjusts the phase and / or amplitude of each transmission channel based on each phase shifter / attenuator, so that The phase and / or amplitude are equal, or the difference between the phase and / or amplitude of each transmission channel is less than or equal to a specified threshold.
  • the method for calibrating a phased array antenna provided in the embodiment of the present application can be applied to a terminal including a phased array antenna and the calibration system shown in FIG. 3 described above.
  • the method for calibrating the phased array antenna can be used in the calibration system shown in FIG. 3
  • the execution of the signal processing machine 36 may also be performed by other more signal processing units included in the terminal, which is not limited herein.
  • the signal processor 36 and / or other signal processing units process the signals transmitted by each transmission channel to obtain the best calibration signal corresponding to each transmission channel, and then the amplitude and / or phase of the calibration signal corresponding to each transmission channel can be obtained. Compensate to make the amplitude and / or phase of each transmit channel in the phased array antenna consistent.
  • FIG. 4 is a schematic flowchart of a method for calibrating a phased array antenna according to an embodiment of the present application.
  • the calibration method of the phased array antenna shown in FIG. 4 is suitable for the calibration of the transmission channel of the phased array antenna, and may include steps:
  • the calibration of each transmission channel in the phased array antenna may first transmit a test signal through each transmission channel, wherein the test signal transmitted by each transmission channel passes through a service antenna corresponding to each transmission channel.
  • the unit radiates and is received by one or more calibration antenna units in the phased array antenna.
  • a calibration signal corresponding to any transmission channel may be obtained by processing based on a test signal corresponding to any transmission channel received by one or more calibration antenna units in the phased array antenna.
  • the test signal transmitted by any of the above transmission channels is a signal used to calibrate the any transmission channel. For convenience of description, the following uses the test signal as an example for description.
  • any transmitting channel in the phased array antenna can be described as an example of transmitting channel n, where n is greater than zero and less than the total number of transmitting channels in the phased array antenna (for convenience of description, it can be set to M) Integer.
  • the test signal transmitted by the transmission channel n can be described by using the test signal dn as an example.
  • the calibration signals corresponding to any transmission channel in the phased array antenna can be processed through the implementation methods provided in the steps S411 to S413 as follows:
  • the test signal dn transmitted by the transmission channel n may be radiated by a service antenna unit corresponding to the transmission channel n and received by one or more calibration antenna units in the phased array antenna.
  • the service antenna unit corresponding to the foregoing transmission channel n may be described by using the service antenna unit n as an example.
  • the calibration antenna unit coupled with the service antenna unit n may be part or all of a plurality of calibration antenna units included in the phased array antenna, at least including the service The calibration antenna unit corresponding to the antenna sub-array where the antenna unit n is located (for convenience of description, the antenna unit n can be calibrated for illustration).
  • the service antenna unit n is one of the service antenna units included in the antenna sub-array 1 in the phased array antenna
  • the calibration antenna unit in the antenna sub-array 1 is the calibration antenna unit n.
  • the test signal dn radiated by the service antenna unit n may be received by one or more calibration antenna units including the calibration antenna unit n, and may be determined based on a relative position relationship between the service antenna unit n and the calibration antenna unit n.
  • a corresponding signal processing strategy is used for processing to obtain a calibration signal corresponding to the transmission channel n.
  • different signal processing strategies include transmission channels corresponding to service antenna units at different positions, and different numbers of calibration antenna units may be used to calibrate the transmission channels, so as to implement directional patterns for service antenna units at different positions. Point to different beam control, so as to obtain the best signal-to-noise ratio for the radiated signals of the service antenna units at various positions.
  • a single calibration antenna unit may be used for signal reception and / or transmission to achieve calibration of the transmission channel.
  • multiple calibration antenna units can be used for signal reception and / Or send to achieve the calibration of the transmission channel.
  • a plurality of calibration antenna units including the calibration antenna unit n may be used to jointly calibrate the transmission channel. n Perform calibration.
  • the preset distance threshold may be determined according to actual application scenario requirements, for example, the preset distance threshold is determined according to requirements for calibration channel signal-to-noise ratio in the actual application scenario, and is not limited herein. If the distance between the service antenna unit n and the calibration antenna unit n is less than a preset distance threshold, the calibration antenna unit n can be used to calibrate the transmission channel n, which can meet the signal-to-noise ratio requirements of the transmission channel calibration. Optionally, in order to improve the calibration accuracy of the transmission channel n, when the distance between the service antenna unit n and the calibration antenna unit n is less than a preset distance threshold, a plurality of calibration antenna units including the calibration antenna unit n may be used in combination.
  • the transmission channel n is calibrated, which may be specifically determined according to an actual application scenario, and is not limited herein.
  • the following description will be made by taking multiple calibration antenna units including the calibration antenna unit n to calibrate the transmission channel n as an example.
  • at least one of the multiple calibration antenna units selected for calibration of any transmission channel includes The calibration antenna unit in the antenna sub-array where the service antenna unit corresponding to any transmission channel is located will not be described in detail below.
  • the foregoing multiple calibration antenna units can be described by taking N calibration antenna units as an example, where N is greater than or equal to 2 and less than or equal to the total number of calibration antenna units in the phased array antenna.
  • a coupling signal between the foregoing service antenna unit n and the calibration antenna unit n may be obtained (correspondingly, the coupling signal is the first coupling signal, and may be set as the coupling signal n for convenience of description), Furthermore, according to the signal-to-noise ratio of the coupling signal n, N-1 calibration antenna units other than the calibration antenna unit n may be determined from the calibration antenna units coupled with the service antenna unit n in the phased array antenna.
  • the number of the above-mentioned calibration antenna units (that is, the determination of N in N-1) and the location may be selected according to the signal-to-noise ratio of the above-mentioned coupling signal n, and the coupling signal of the calibration antenna unit in the phased array antenna is optimal
  • the signal-to-noise ratio of the receiving effect is determined and the position of each calibration antenna unit in the phased array antenna is determined, so that the coupling signal of each calibration antenna unit has the best receiving effect, which is not limited here.
  • the test signal dn transmitted by the transmission channel n is radiated by the service antenna unit n, it can be received by the N calibration antenna units coupled with the service antenna unit n, and then the N-channel coupling signals received by the N calibration antenna units can be obtained.
  • time delay weighting is performed on the N coupling signals to obtain N calibration signals aligned in the time domain.
  • the calibration signal is combined with the calibration signal corresponding to the transmission channel n.
  • FIG. 5 is a schematic diagram of signal processing for transmission channel calibration provided by an embodiment of the present application.
  • One transmission channel in the service channel corresponds to one service antenna unit, and signals transmitted by one service antenna unit can be received by multiple calibration antenna units.
  • all calibration antenna units share the same calibration channel.
  • the calibration channel can be switched to obtain the coupling between different calibration antenna units and service antenna units. Signal, thereby avoiding additional calibration errors caused by different calibration channels, avoiding the influence of different calibration channels on the calibration accuracy of each transmission channel, and improving the calibration accuracy of the transmission channel of the phased array antenna.
  • each coupling signal can first be converted from an analog signal through A / D conversion (that is, analog-to-digital conversion). Converted into a digital signal. That is, the analog signal received by each calibration antenna unit can be converted into a digital signal through A / D conversion, and then the N digital signals obtained by the A / D conversion can be weighted with delay in the digital domain to obtain N calibration signals.
  • the N-channel calibration signals can be combined into one calibration signal through signal superposition (ie, amplitude superposition enhancement), so as to obtain a calibration signal corresponding to the transmission channel n.
  • the coupling signals received by each calibration antenna unit may be subjected to delay weighting processing and combined into one calibration signal, and one transmission channel corresponding to one channel may be obtained.
  • the calibration signal so that the amplitude and / or phase compensation of each transmission channel can be achieved based on the calibration signal corresponding to each transmission channel.
  • a calibration signal corresponding to each transmitting channel can be obtained based on the implementation methods provided in steps S411 to S413 above, so that a phased array antenna can be obtained.
  • the calibration signals corresponding to all the transmission channels in the method refer to the implementation manners provided in steps S411 to S413 above for details, and details are not described herein again.
  • the amplitude difference values of the calibration signals corresponding to each transmission channel may be calculated according to the acquired calibration signals corresponding to the amplitudes of the respective transmission channels.
  • the amplitude of one of the transmission channels can be used as a reference amplitude, and then the difference between the amplitude of each other transmission channel and the reference amplitude can be calculated, so that In each transmission channel, the amplitude of the calibration signal corresponding to each transmission channel is compensated by an attenuator, so that the amplitude of the calibration signal corresponding to each transmission channel is equal.
  • the amplitudes of the calibration signals corresponding to all the transmission channels are equal to the above-mentioned reference amplitude, so that all of the phased array antennas can be realized.
  • the amplitudes of the transmitting channels are the same.
  • the phase difference values of the calibration signals corresponding to each transmission channel may also be calculated according to the phases of the calibration signals corresponding to the obtained transmission channels.
  • the phase of one of the transmission channels can be used as a reference phase, and then the difference between the phase of the other transmission channels and the reference phase can be calculated.
  • a phase shifter is used to perform phase compensation on the calibration signal corresponding to each transmission channel, so that the phases of the calibration signals corresponding to each transmission channel are equal.
  • phase compensation of the calibration signals corresponding to each transmission channel by using a phase shifter in each transmission channel can make the phases of the calibration signals corresponding to all the transmission channels equal to the above reference phase, thereby realizing the phased array antenna. All transmitting channels have the same phase.
  • the amplitude and / or phase compensation of each transmission channel in the phased array antenna can be used to make the amplitude of each transmission channel in the phased array antenna consistent, thereby ensuring the signal of the phased array antenna.
  • the best signal-to-noise ratio of radiation guarantees the performance of phased array antennas with low implementation complexity and stronger applicability.
  • Embodiment 2 Calibration of the receiving channel
  • FIG. 6 is a schematic structural diagram of a calibration system for a receiving channel of a phased array antenna according to an embodiment of the present application.
  • the calibration system of the phased array antenna receiving channel provided in the embodiment of the present application includes, but is not limited to, multiple receivers 61, multiple phase shifters / attenuators (that is, phase shifters and / or attenuators) 62, and a beam control.
  • Machine 63 a correction network 64, a correction receiver 65, and a signal processor 66.
  • the calibration system shown in FIG. 6 may include one or more receiving channels, and one receiving channel may include a service antenna unit, a phase shifter / attenuator, and a receiver.
  • completing a receiving channel calibration may consist of the following steps:
  • the excitation signal for the calibration of the receiving channel (that is, the test signal for the calibration of the receiving channel) can be transmitted based on the calibration antenna unit and received by the service antenna unit in the phased array antenna.
  • the receiving channel corresponding to the service antenna unit includes a receiver, a phase shifter / attenuator.
  • the excitation signal received by the service antenna unit passes through the receiver in the receiving channel, and is adjusted by the phase shifter / attenuator for phase and / or post-amplitude, and then output to the correction network, and synthesizes the RF signal based on the correction network.
  • the calibration receiver receives the radio frequency signal synthesized by the calibration network and processes and outputs data including phase and / or amplitude.
  • the data including the phase and / or amplitude output by the correction receiver is inverted and calculated by the signal processor to obtain the phase and / or amplitude of the receiving channel.
  • the calibration of each receiving channel is ended. If the difference between the amplitude and / or phase of each receiving channel is greater than a certain threshold, the signal processor compensates the amplitude and / or phase difference of each receiving channel so that the amplitude and / or phase of all receiving channels are equal, or each The difference in amplitude and / or phase between the receiving channels is less than or equal to a specified threshold. The signal processor feeds back the amplitude and / or phase of each receiving channel after compensation to the beam control machine.
  • the beam control machine arranges a set of control signals calibrated by the receiving channels to the phase shifter / attenuator at high speed, and adjusts the phase and / or amplitude of each receiving channel based on each phase shifter / attenuator, so that the The phase and / or amplitude are equal, or the difference between the phase and / or amplitude of each receiving channel is less than or equal to a predetermined threshold.
  • the method for calibrating a phased array antenna provided in the embodiment of the present application can be applied to a terminal including a phased array antenna and the above-mentioned calibration system shown in FIG. 6.
  • the method for calibrating the phased array antenna can be used in the calibration system shown in FIG. 6.
  • the execution of the signal processor 66 may also be performed by other more signal processing units included in the terminal, which is not limited herein.
  • multiple calibration antenna units jointly transmit a calibration signal to a service antenna unit corresponding to each receiving channel, so as to achieve an optimal receiving effect of the service antenna unit corresponding to each receiving channel on the calibration signal corresponding to each receiving channel.
  • the signal processor 66 and / or other signal processing units may compensate the amplitude and / or phase of the calibration signal corresponding to each receiving channel to make the amplitude and / or phase of each receiving channel in the phased array antenna consistent.
  • FIG. 7 is another schematic flowchart of a phased array antenna calibration method according to an embodiment of the present application.
  • the calibration method of the phased array antenna shown in FIG. 7 is applicable to the calibration of the receiving channel of the phased array antenna, and may include steps:
  • the test signal used for receiving channel calibration first passes through the calibration antenna unit, is radiated by the calibration antenna unit, and is transmitted by the service antenna in the phased array antenna. Unit received. Based on the manner in which the service antenna unit corresponding to any receiving channel in the phased array antenna receives a calibration signal from one or more calibration antenna units, a calibration signal corresponding to any receiving channel can be obtained.
  • any of the foregoing receiving channels can be described by using receiving channel i as an example. Among them, i is an integer greater than zero and less than the total number of receiving channels in the phased array antenna (for convenience of description, it can be set to M).
  • the calibration signals corresponding to any receiving channel in the phased array antenna can be processed through the implementation methods provided in the steps S711 to S713 as follows:
  • S711 Determine the relative positions of the service antenna units corresponding to any receiving channel and the N sets of N calibration antenna units in the phased array antenna.
  • the service antenna unit corresponding to any of the foregoing receiving channels i may be described by using the service antenna unit i as an example, and any of the receiving channels in the phased array antennas may be used by receiving the channel i as an example.
  • the test signal di used for calibrating the receiving channel i can be described by using the test signal di as an example.
  • the test signal di may be radiated by one or more calibration antenna units in the phased array antenna, and received by the service antenna unit i corresponding to the receiving channel i.
  • a calibration antenna unit in the service antenna unit i and an antenna subarray to which the service antenna unit i belongs may be determined first (the antenna unit i may be calibrated for convenience of description) distance.
  • the distance between the service antenna unit i and the calibration antenna unit i is greater than or equal to a preset distance threshold, a coupling signal between the service antenna unit i and the calibration antenna unit i is obtained.
  • N-1 calibration antennas other than the calibration antenna unit i are determined from a plurality of calibration antenna units included in the phased array antenna.
  • a corresponding signal processing strategy may also be adopted for determination based on the relative position relationship between the service antenna unit i and the calibration antenna unit i. Process to obtain the calibration signal corresponding to the receiving channel i.
  • different signal processing strategies include receiving channels corresponding to service antenna units at different positions, which can be calibrated with different numbers of calibration antenna units, so as to achieve different orientations of service antenna units at different positions. Beam control, so as to obtain the best results for the signal reception of business day units at various locations.
  • a single calibration antenna unit may be used for signal reception and / or transmission to achieve calibration of the receiving channel.
  • multiple calibration antenna units may be used for signal reception and / or Send to achieve calibration of the receive channel.
  • the calibration antenna unit i may be used to jointly calibrate the receiving channel. i Perform calibration. If the distance between the service antenna unit i and the calibration antenna unit i is less than a preset distance threshold, the calibration antenna unit i may be used to calibrate the receiving channel i.
  • a plurality of calibration antenna units including the calibration antenna unit i may be used in combination.
  • the calibration of the receiving channel i can be determined according to the actual application scenario, and there is no limitation here.
  • a description will be given by taking multiple calibration antenna units including the calibration antenna unit i to calibrate the receiving channel i as an example.
  • at least one of the multiple calibration antenna units selected for calibration of any receiving channel includes The calibration antenna unit in the antenna sub-array where the service antenna unit corresponding to any one of the receiving channels is located is not described in detail below.
  • the foregoing multiple calibration antenna units can be described by taking N calibration antenna units as an example, where N is greater than or equal to 2 and less than or equal to the total number of calibration antenna units in the phased array antenna.
  • a coupling signal between the service antenna unit i and the calibration antenna unit i (which may be set as a second coupling signal) may be obtained.
  • the coupling signal i can be described as an example
  • the calibration antenna can be determined from a plurality of calibration antenna units coupled with the service antenna unit i in the phased array antenna according to the signal-to-noise ratio of the coupling signal i.
  • the number of the above-mentioned calibration antenna units (that is, the determination of N in N-1) and the selection of the location may be based on the signal-to-noise ratio of the coupling signal i and the coupling signal of the calibration antenna unit in the phased array antenna to receive the best reception.
  • the effect of the signal-to-noise ratio is determined by combining the positions of the calibration antenna elements in the phased array antenna to achieve the best reception of the coupled signals of the calibration antenna elements.
  • the number of the above-mentioned calibration antenna units illustrated by taking N as an example) and location selection may be determined according to an actual application scenario, and are not limited herein.
  • the N calibration antenna units can be determined from multiple calibration antenna units of the phased array antenna, and then each calibration antenna unit and service antenna in the N calibration antenna units can be determined.
  • the relative positions between the units i, so that N sets of relative positions can be obtained.
  • the distance between each of the N calibration antenna units and the service antenna unit i can be represented by the relative position between the two, so that the feedback can be based on the distance between each calibration antenna unit and the service antenna unit i.
  • the test signals entering each calibration antenna unit are subjected to delay weighting processing so that the N calibration signals radiated to the service antenna unit i through each calibration antenna unit are aligned in the time domain.
  • S712 Delay weight the N test signals fed into the N calibration antenna units according to the N groups of relative positions to obtain N calibration signals.
  • the test signals of each calibration antenna unit are fed and passed through each calibration antenna unit.
  • the time delays of the test signals received by the service antenna unit i from each calibration antenna unit are also different. Therefore, in order to make the delays of the test signals radiated to the service antenna unit i reach the service antenna unit i based on the calibration antenna units equal, the delay weighting processing may be performed on each test signal fed to each calibration antenna unit so as to reach the service antenna
  • Each calibration signal of the unit i is aligned in the time domain.
  • the service antenna unit i can receive the N calibration signals aligned in time delay from the N calibration antenna units. Through the service antenna unit i, the received N calibration signals can be combined into one time-aligned calibration signal, and then the combined calibration signal can be determined as the calibration signal corresponding to the receiving channel i.
  • FIG. 8 is a schematic diagram of signal processing for receiving channel calibration provided by an embodiment of the present application.
  • each receiving channel in the phased array antenna firstly, according to the relative position of the service antenna unit corresponding to each receiving channel and each calibration antenna unit, each test fed into each calibration antenna unit The signal is weighted with delay in the time domain in the digital domain to obtain N calibration signals.
  • the above N-channel calibration signals can be received by a service antenna unit corresponding to each receiving channel, and signal superposition (ie, amplitude superposition enhancement) is combined on the service antenna unit side into one calibration signal, so that a calibration signal corresponding to each receiving channel can be obtained.
  • signal superposition ie, amplitude superposition enhancement
  • the test signal fed to each calibration antenna unit may be first subjected to delay weighting processing to obtain N calibration signals, and then the N calibration signals may be subjected to D / A conversion (i.e. Digital-to-analog conversion) and then radiated through each calibration antenna unit. That is, the N-channel calibration signals obtained by the delay weighting process are converted from digital signals to analog signals, and then can be radiated based on the above-mentioned N calibration antenna units and received by the service antenna units corresponding to the respective receiving channels.
  • D / A conversion i.e. Digital-to-analog conversion
  • the D / A converted calibration signal radiates the calibration signal to the service antenna unit corresponding to each receiving channel through the N calibration antenna units.
  • the calibration signals fed to each calibration antenna unit have been time-weighted in the calibration channel, the calibration signals radiated by each calibration antenna unit are aligned in the time domain when they reach the service antenna unit, and the signal is superposed on the service antenna unit side. Therefore, the service antenna unit i can receive the calibration signal from each calibration antenna unit with the best receiving effect.
  • the calibration of all the receiving channels shares the same calibration channel, so that additional calibration errors caused by different calibration channels can be avoided, and different calibration channels can be avoided.
  • the influence of the calibration accuracy of the receiving channel improves the calibration accuracy of the receiving channel of the phased array antenna.
  • S713 Receive the N calibration signals through the service antenna unit i and combine them into a time-aligned calibration signal, and record the amplitude and / or phase of the calibration signal to obtain the amplitude and / or the calibration signal corresponding to the receiving channel i. Phase.
  • the service antenna unit i receives the calibration signals radiated from each calibration antenna unit, it can perform signal superimposition (that is, amplitude superposition enhancement) on the service antenna unit i to combine them into one time-domain aligned calibration signal, so as to obtain a receiving channel.
  • the calibration signal corresponding to i can further determine the amplitude and / or phase of the calibration signal combined into one channel as the amplitude and / or phase corresponding to the receiving channel i.
  • a calibration signal corresponding to each receiving channel can be obtained based on the implementation methods provided in steps S711 to S713 above, so that a phased array antenna can be obtained.
  • the amplitudes and / or phases of the calibration signals corresponding to all the receiving channels in the phased array antenna can also be obtained.
  • the amplitude difference values of the calibration signals corresponding to the respective receiving channels may be calculated according to the acquired calibration signals corresponding to the magnitudes of the respective receiving channels.
  • the amplitude of one of the receiving channels can be used as a reference amplitude, and then the difference between the amplitude of each other receiving channel and the reference amplitude can be calculated, so that In each receiving channel, the amplitude of the calibration signal corresponding to each receiving channel is compensated by an attenuator, so that the amplitude of the calibration signal corresponding to each receiving channel is equal.
  • the amplitudes of the calibration signals corresponding to all receiving channels are equal to the above reference amplitude, so that all of the phased array antennas can be realized.
  • the amplitudes of the receiving channels are the same.
  • the phase difference values of the calibration signals corresponding to the respective receiving channels may also be calculated according to the phases of the calibration signals corresponding to the respective receiving channels.
  • the phase of one of the receiving channels can be used as a reference phase, and then the differences between the phases of the other receiving channels and the reference phase can be calculated, so that In each receiving channel, a phase shifter is used to perform phase compensation on the calibration signal corresponding to each receiving channel, so that the phases of the calibration signals corresponding to each receiving channel are equal.
  • the phases of the calibration signals corresponding to all receiving channels are equal to the above reference phase, thereby realizing the phased array antenna. All receiving channels are in phase.
  • the amplitude and / or phase of each receiving channel in the phased array antenna can be used to make the amplitude of each receiving channel in the phased array antenna consistent, thereby ensuring the signal of the phased array antenna.
  • the receiver has the best receiving effect, guarantees the performance of the phased array antenna, has low implementation complexity and stronger applicability.
  • FIG. 9 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal provided in the embodiment of the present application includes a phased array antenna.
  • the phased array antenna includes multiple service antenna units and multiple calibration antenna units deployed independently of the multiple service antenna units. .
  • the multiple service antenna units are divided into multiple antenna sub-arrays based on the multiple calibration antenna units, and one calibration antenna unit corresponds to one antenna sub-array.
  • the terminal provided in this embodiment of the present application further includes:
  • the signal processing unit 91 is configured to perform the following operations on a test signal transmitted by any transmission channel n in the phased array antenna to obtain a calibration signal corresponding to the foregoing transmission channel n:
  • test signal is transmitted through the transmission channel n, and any test signal is radiated through the service antenna unit n corresponding to the transmission channel n, and is received by the calibration antenna unit in the phased array antenna;
  • N is greater than or equal to 2 and less than or equal to the total number of calibration antenna units in the phased array antenna
  • the signal combination is a calibration signal corresponding to the transmission channel n.
  • the signal acquisition unit 92 is configured to acquire calibration signals corresponding to all transmission channels in the phased array antenna obtained by the signal processing unit 91.
  • the signal compensation unit 93 is configured to perform the amplitude and / or phase difference of each of the transmission channels according to the difference in the amplitude and / or phase of the calibration signal corresponding to each transmission channel in the phased array antenna obtained by the signal acquisition unit 92. Compensation to make the amplitude and / or phase of each transmission channel in the phased array antenna consistent.
  • the N calibration antenna units coupled with the service antenna unit n in the phased array antenna include a calibration antenna unit n corresponding to an antenna sub-array to which the service antenna unit n belongs.
  • the signal processing unit 91 is configured to:
  • the N calibration antenna units are coupled to the service antenna unit n at times t 0 to t N-1 , respectively.
  • the signal compensation unit 93 is configured to:
  • the signal compensation unit 93 is configured to:
  • the calibration antenna units corresponding to any of the antenna sub-arrays of the phased array antennas are deployed at the center positions or peripheral edge positions of all service antenna units included in any of the antenna sub-arrays.
  • the calibration antenna unit in the phased-array antenna includes a monopole antenna unit, a waveguide antenna unit, and / or other orthogonal radiation directions of the service antenna unit in the phased-array antenna.
  • Antenna unit is a monopole antenna unit, a waveguide antenna unit, and / or other orthogonal radiation directions of the service antenna unit in the phased-array antenna.
  • the foregoing signal processing unit 91 may be configured to execute the implementation manners provided by each step (S411-S413) in step S41 in the embodiment shown in FIG. 4.
  • the signal acquisition unit 92 may be configured to execute the implementation manner provided in step S42 in the embodiment shown in FIG. 4.
  • the signal compensation unit 93 may be configured to execute the implementation manner provided in step S43 in the embodiment shown in FIG. 4.
  • the terminal can perform the implementation manner provided by the transmission channel calibration of the phased array antenna in the foregoing FIG. 3 to FIG. 5 through its built-in units.
  • each unit included in the terminal may be each unit included in the signal processor 36 in the system shown in FIG.
  • the terminal provided in this embodiment of the present application can also implement the beneficial effects (or advantages) of the implementation manners provided in the various steps of the foregoing embodiments, and details are not described herein again.
  • FIG. 10 is another schematic structural diagram of a terminal according to an embodiment of the present application.
  • a terminal provided in an embodiment of the present application includes a phased array antenna.
  • the phased array antenna includes multiple service antenna units and multiple calibration antenna units deployed independently of the multiple service antenna units. .
  • the multiple service antenna units are divided into multiple antenna sub-arrays based on the multiple calibration antenna units, and one calibration antenna unit corresponds to one antenna sub-array.
  • the terminal provided in this embodiment of the present application further includes:
  • the signal processing unit 101 is configured to obtain the amplitude and / or phase of the calibration signal corresponding to any of the receiving channels i in the phased array antenna through the following steps 1 to 3:
  • Step 1 Determine the relative positions of the service antenna unit i corresponding to the receiving channel i and the N sets of N calibration antenna units in the phased array antenna, where N is greater than or equal to 2 and less than or equal to the phased array antenna. Calibrate the total number of antenna elements.
  • Step 2 The N test signals fed into the N calibration antenna units are time-delayed and weighted according to the N sets of relative positions to obtain N calibration signals.
  • the N calibration signals are radiated by the N calibration antenna units, and Received by the service antenna unit in the phased array antenna.
  • Step 3 Receive the N calibration signals through the service antenna unit i and combine them into a time domain aligned calibration signal, and record the amplitude and / or phase of the time domain aligned calibration signal to obtain the receiving channel i.
  • the magnitude and / or phase of the corresponding calibration signal is
  • the signal obtaining unit 102 is configured to obtain the amplitudes and / or phases of the calibration signals corresponding to all the receiving channels in the phased array antenna obtained by the signal processing unit 101.
  • the signal compensating unit 103 is configured to obtain the amplitude and / or phase difference of the calibration signal corresponding to each receiving channel in the phased array antenna of the phased array antenna according to the signal obtaining unit 102, and to the amplitude of each calibration signal corresponding to each receiving channel. And / or phase compensation, so that the amplitude and / or phase of each receiving channel in the phased array antenna are consistent.
  • the signal processing unit 101 is further configured to:
  • N-1 calibrations other than the calibration antenna unit i are determined from the calibration antenna units included in the phased array antenna.
  • the N calibration antenna units are coupled to the service antenna unit i at times t 0 to t N-1 , respectively.
  • the signal compensation unit 103 is configured to:
  • the signal compensation unit 103 is configured to:
  • the calibration antenna units corresponding to any of the antenna sub-arrays of the phased array antennas are deployed at the center positions or peripheral edge positions of all service antenna units included in any of the antenna sub-arrays.
  • the calibration antenna unit in the phased-array antenna includes a monopole antenna unit, a waveguide antenna unit, and / or other orthogonal radiation directions of the service antenna unit in the phased-array antenna.
  • Antenna unit is a monopole antenna unit, a waveguide antenna unit, and / or other orthogonal radiation directions of the service antenna unit in the phased-array antenna.
  • the foregoing signal processing unit 101 may be configured to execute the implementation manners provided by each step (S711-S713) in step S71 in the embodiment shown in FIG. 7.
  • the signal obtaining unit 102 may be configured to execute the implementation manner provided in step S72 in the embodiment shown in FIG. 7.
  • the signal compensation unit 103 may be configured to execute the implementation manner provided in step S73 in the embodiment shown in FIG. 7.
  • the terminal may perform the implementation manner provided by the receiver channel calibration of the phased array antenna in the foregoing FIG. 6 to FIG. 8 through its built-in units.
  • each unit included in the terminal may be each unit included in the signal processor 66 in the system shown in FIG.
  • FIG. 11 is another schematic structural diagram of a terminal according to an embodiment of the present application.
  • the terminal provided in the embodiment of the present application includes a phased array antenna 110, a signal processor 111, a memory 112, and a bus system 114.
  • phased array antenna 110 The phased array antenna 110, the signal processor 111, and the memory 112 are connected through a bus system 904.
  • the memory 112 is used for storing programs.
  • the program may include program code, and the program code includes a computer operation instruction.
  • the memory 112 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Compact read-only memory (CD-ROM). Only one memory is shown in FIG. 11. Of course, a plurality of memories may be provided as required.
  • the memory 112 may also be a memory in the signal processor 111, which is not limited herein.
  • the memory 112 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions Includes various operation instructions for implementing various operations.
  • Operating system Includes various system programs for implementing various basic services and processing hardware-based tasks.
  • the signal processor 111 may be one or more central processing units (CPUs). In the case where the signal processor 111 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the various components of the terminal are coupled together through a bus system 114.
  • the bus system 114 may be a data bus, and may also include a power bus, a control bus, and a status signal bus, which are not limited herein. However, for the sake of clarity, various buses are marked as the bus system 114 in FIG. 11. For ease of representation, FIG. 11 is only schematically drawn.
  • the signal processor 111 may be the signal processor 36 in the system shown in FIG. 3 and / or the signal processor 66 in the system shown in FIG. 6, as shown in FIGS. 4 to 5, and / or FIG. 7 to FIG.
  • the method provided in the embodiment shown in FIG. 8 may be applied to the signal processor 111, or implemented by the signal processor 111.
  • the signal processor 111 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the signal processor 111 or an instruction in the form of software.
  • the aforementioned signal processor 111 may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), or a field-programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 112, and the signal processor 111 can read the information in the memory 112 and, in conjunction with its hardware, perform the method steps of the transmission channel calibration of the phased array antenna described in the embodiments shown in FIG. 4 to FIG. 5; Its hardware executes the method steps of receiving channel calibration of the phased array antenna described in the embodiments shown in FIG. 7 to FIG. 8.
  • the terminal provided in this embodiment of the present application can also implement the beneficial effects (or advantages) of the implementation manners provided in the various steps of the foregoing embodiments, and details are not described herein again.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions.
  • the terminal is caused to execute each step in the embodiments shown in FIG. 3 to FIG. 5.
  • the method for calibrating the transmission channel of the phased array antenna described in the foregoing description, or the implementation manner of the transmission channel calibration of the phased array antenna performed by the terminal in the foregoing embodiments may refer to the implementation methods provided in the foregoing embodiments for details. More details.
  • An embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are run on a terminal, the terminal is caused to execute each step in the embodiments shown in FIG. 6 to FIG. 8.
  • the method for calibrating the receiving channel of the phased array antenna described above, or the implementation manner of the receiving channel calibration of the phased array antenna performed by the terminal in the foregoing embodiments, may refer to the implementation methods provided in the foregoing embodiments. More details.
  • An embodiment of the present application provides a computer program product including instructions.
  • the terminal is caused to execute the transmission of the phased array antenna described in each step in the embodiments shown in FIG. 3 to FIG. 5.
  • the method of channel calibration, or the implementation of the transmission channel calibration of the phased array antenna performed by the terminal in the foregoing embodiments for details, refer to the implementation methods provided in the foregoing embodiments, and details are not described herein again. .
  • An embodiment of the present application provides a computer program product including instructions.
  • the terminal is caused to perform receiving of the phased array antenna described in each step in the embodiments shown in FIG. 6 to FIG. 8 described above.
  • the method of channel calibration, or the implementation of receiving channel calibration of the phased array antenna performed by the terminal in the foregoing embodiments for details, refer to the implementation methods provided in the foregoing embodiments, and details are not described herein again.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供了一种相控阵天线的校准方法及相关装置,该方法包括:通过发射通道n发射任一测试信号,上述测试信号通过发射通道n对应的业务天线单元n辐射,并由相控阵天线中的校准天线单元接收。获取与业务天线单元n耦合的N个校准天线单元接收的N路耦合信号;根据业务天线单元n与N个校准天线单元中各校准天线单元的相对位置,对N路耦合信号进行时延加权以得到N路校准信号,将N路校准信号合路为发射通道n对应的校准信号。获取相控阵天线中所有发射通道对应的校准信号,根据各发射通道对应的校准信号的幅度和/或相位的差值进行幅度和/或相位进行补偿。采用本申请实施例,可提高相控阵天线的校准质量,提高相控阵天线可靠性。

Description

相控阵天线的校准方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种相控阵天线的校准方法及相关装置。
背景技术
相控阵天线由多个天线单元组成天线阵列,通过控制各天线单元的幅相(幅度和相位)可以改变天线方向图最大值的指向,实现在特定方向辐射波束扫描。相控阵天线中的天线单元也称业务天线单元,相控阵天线的性能高度依赖于每一个业务天线单元的幅相精确度。理想状态下,在相控阵天线的工作过程中各个业务天线单元都有特定的幅相,各业务天线单元之间互不干扰。然而,在实际的相控阵天线中,由于各业务天线单元对应的电路通道不理想,使得各业务天线单元的幅相有比较大的波动。各业务天线单元的幅相变化使得天线阵列的辐射方向图等特性均发生了改变,使得各业务天线单元对应的天线通道的幅相特性精确度降低,导致相控阵天线的性能变差。因此,如何保障相控阵天线的各天线通道的幅相特性精确度成为保证相控阵天线的性能稳定性中亟待解决的技术问题之一。
现有技术中,相控阵天线中各天线通道的校准,一种方案是基于相控阵天线的阵列外部四周部署多个校准天线单元,通过每个校准天线单元实现对该校准天线单元所覆盖区域内的天线通道的校准。然而,在现有技术中,每个校准天线单元单独覆盖相控阵天线的阵列外表面的一个区域,校准天线单元对于该区域内的各个业务天线单元的覆盖效果不佳。即在同一个校准天线单元所覆盖的区域,该区域内各业务天线单元到校准天线的距离不同,使得该区域内不同业务天线单元与校准天线单元的耦合度差异较大,从而导致校准天线单元获取得到的校准信号质量差,校准效果差,适用性低。
发明内容
本申请实施例提供了一种相控阵天线的校准方法及相关装置,可提高相控阵天线的校准质量,提高相控阵天线可靠性,增强相控阵天线的性能稳定性,适用性更强。
第一方面,本申请实施例提供了一种相控阵天线的校准方法。该方法所适用的相控阵天线中包括多个业务天线单元以及独立于上述多个业务天线单元之外部署的多个校准天线单元,其中,上述多个业务天线单元基于上述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列。该方法包括对上述相控阵天线中任一发射通道(如发射通道n)发射的测试信号执行如下操作以获取发射通道n对应的校准信号:
通过发射通道n发射任一测试信号,上述任一测试信号通过发射通道n对应的业务天线单元(如业务天线单元n)辐射,并由相控阵天线中的校准天线单元接收;
获取与上述业务天线单元n耦合的N个校准天线单元接收的N路耦合信号,其中N大于或者等于2且小于或者等于相控阵天线中校准天线单元总数;
根据上述业务天线单元n与上述N个校准天线单元中各校准天线单元的相对位置,对上述N路耦合信号进行时延加权以得到在时域上对齐的N路校准信号,将上述N路校准信号合路为发射通道n对应的校准信号。
重复上述操作以获取上述相控阵天线中所有发射通道对应的校准信号,根据上述相控阵天线中各发射通道对应的校准信号的幅度和/或相位的差值,对上述各发射通道的幅度和/或相位进行补偿,以使上述相控阵天线中各发射通道的幅度和/或相位一致。
在本申请实施例中,对于发射通道的校准可对相控阵天线中各个发射通道发射的信号进行处理以获取得到各个发射通道对应的最佳校准信号,进而可通过对相控阵天线中的各个发射通道的幅度和/或相位的补偿,可使得相控阵天线中各个发射通道的幅度和/或相位相等,从而可保证相控阵天线的信号辐射的最佳信噪比,保障相控阵天线的性能,实现复杂度低,适用性更强。
结合第一方面,在一种可能的实施方式中,上述相控阵天线中与业务天线单元n耦合的N个校准天线单元中包括业务天线单元n所属天线子阵列对应的校准天线单元(如校准天线单元n)。上述获取与上述业务天线单元n耦合的N个校准天线单元接收的N路耦合信号包括:获取上述业务天线单元n与上述校准天线单元n之间的第一耦合信号,根据上述第一耦合信号的信噪比,从上述相控阵天线中与上述业务天线单元n耦合的校准天线单元中确定出上述校准天线单元n之外的N-1个校准天线单元。获取上述N-1个校准天线单元接收到的N-1路耦合信号以得到包含上述第一耦合信号在内的N路耦合信号。其中,上述N个校准天线单元分别在时间t 0至t N-1与上述业务天线单元n耦合。
在本申请实施例中,不同位置的业务天线单元对应的发射通道可采用不同数量的校准天线单元进行发射通道的校准,以实现对不同位置的业务天线单元实现方向图指向不同的波束控制,从而可获取对各个位置上的业务天线单元的辐射信号的最佳信噪比。可选的,对于距离校准天线单元较近的业务天线单元所对应的发射通道,可采用单一校准天线单元进行信号接收和/或发送以实现对该发射通道的校准。对于距离校准天线单元较远的业务天线单元所对应的发射通道,因为业务天线单元和校准天线单元之间耦合度会随距离拉大而降低,因此可采用多个校准天线单元进行信号接收和/或发送以实现对该发射通道的校准。上述校准天线单元的数量(即N-1中的N的确定)以及位置的选择可根据上述耦合信号n的信噪比,结合相控阵天线中校准天线单元的耦合信号最佳接收效果的信噪比要求和相控阵天线中各个校准天线单元的位置确定,以使各个校准天线单元的耦合信号具备最佳接收效果。上述时间t 0至t n=N-1均匀分布且时间间隔小于发射通道n发射信号的带宽的二分之一。
结合第一方面,在一种可能的实施方式中,上述根据上述相控阵天线中各发射通道对应的校准信号的幅度的差值,对上述各发射通道的幅度进行补偿包括:计算上述相控阵天线中各发射通道对应的校准信号的幅度差值,并在上述各发射通道内通过衰减器对上述各发射通道对应的校准信号进行幅度补偿,以使上述各发射通道对应的校准信号的幅度相等。本申请实施例可通过各个发射通道内的衰减器对各个发射通道对应的校准信号进行幅度补偿,操作简单,适用性更强。
结合第一方面,在一种可能的实施方式中,上述根据上述相控阵天线中各发射通道对应的校准信号的相位的差值,对上述各发射通道的相位进行补偿包括:计算上述相控阵天线中各发射通道对应的校准信号的相位差值,并在上述各发射通道内通过移相器对上述各发射通道对应的校准信号进行相位补偿,以使上述各发射通道对应的校准信号的相位相等。本申请实施例可通过各个发射通道内的移相器对各个发射通道对应的校准信号进行相位补 偿,操作简单,实现难度低,适用性更强。
结合第一方面,在一种可能的实施方式中,上述相控阵天线中任一天线子阵列对应的校准天线单元部署于上述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置,可实现校准天线单元对天线子阵列中的业务天线单元的更好覆盖,进而可提高相控阵天线的校准可靠性。
结合第一方面,在一种可能的实施方式中,上述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与上述相控阵天线中的业务天线单元的辐射方向正交的天线单元。在本申请实施例中,校准天线单元的表现形式多样,进而可提高本申请实施例提供的相控阵天线方法的实现灵活性,适用范围更广。
第二方面,本申请实施例提供了一种相控阵天线的校准方法。该方法所适用的相控阵天线中包括多个业务天线单元以及独立于上述多个业务天线单元之外部署的多个校准天线单元,其中,上述多个业务天线单元基于上述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列。该方法可通过如下步骤1至步骤3获取上述相控阵天线中任一接收通道(如接收通道i)对应的校准信号的幅度和/或相位:
步骤1:确定上述接收通道i对应的业务天线单元(如业务天线单元i)与上述相控阵天线中的N个校准天线单元的N组相对位置,其中N大于或者等于2且小于或者等于上述相控阵天线中校准天线单元总数。
步骤2:根据上述N组相对位置分别对馈入上述N个校准天线单元的N个测试信号进行时延加权以得到N路校准信号,上述N路校准信号经上述N个校准天线单元辐射,并由上述相控阵天线中的业务天线单元接收。
步骤3:通过上述业务天线单元i接收上述N路校准信号并合路为一路时域上对齐的校准信号,记录上述时域上对齐的校准信号的幅度和/或相位以得到上述接收通道i对应的校准信号的幅度和/或相位。
重复执行上述步骤1至步骤3以获取上述相控阵天线中所有接收通道对应的校准信号的幅度和/或相位。根据上述相控阵天线中各接收通道对应的校准信号的幅度和/或相位的差值,对上述各接收通道对应的各校准信号的幅度和/或相位进行补偿,以使上述相控阵天线中各接收通道的幅度和/或相位一致。
在本申请实施例中,通过相控阵天线中的各个接收通道的幅度和/或相位的补偿,可使得相控阵天线中各个接收通道的幅相一致,从而可保证相控阵天线的信号辐射的最佳信噪比,保障相控阵天线的性能,实现复杂度低,适用性更强。本申请实施例通过多个校准天线单元联合发射校准信号到各个接收通道对应的业务天线单元,实现各个接收通道对应的业务天线单元对各个接收通道对应的校准信号的最佳接收效果。进而,可通过对相控阵天线中的各个接收通道的幅度和/或相位的补偿,可使得相控阵天线中各个接收通道的幅相一致,从而可保证相控阵天线的信号接收具备最佳接收效果,保障相控阵天线的性能,实现复杂度低,适用性更强。
结合第二方面,在一种可能的实施方式中,上述确定上述接收通道i对应的业务天线单元i与上述相控阵天线中的N个校准天线单元的N组相对位置之前,该方法还包括:确定上述业务天线单元i与其所属的天线子阵列中的校准天线单元i的距离。当上述业务天 线单元i与上述校准天线单元i的距离大于或者等于预设距离阈值时,获取上述业务天线单元i与上述校准天线单元i之间的耦合信号。根据上述业务天线单元i与上述校准天线单元i之间的耦合信号的信噪比,从上述相控阵天线中包括的校准天线单元中确定出上述校准天线单元i之外的N-1个校准天线单元以得到包含上述校准天线单元i在内的N个校准天线单元。其中,上述N个校准天线单元分别在时间t 0至t N-1与所述业务天线单元i耦合。
在本申请实施例中,不同的信号处理策略包括不同位置的业务天线单元对应的接收通道可采用不同数量的校准天线单元进行校准,以实现对不同位置的业务天线单元实现方向图指向不同的波束控制,从而可获取对各个位置上的业务天单元的信号接收的最佳效果。可选的,对于距离校准天线单元较近的业务天线单元对应的接收通道,可采用单一校准天线单元进行信号接收和/或发送以实现对该接收通道的校准。对于距离校准天线单元较远的业务天线单元对应的接收通道,因为业务天线单元和校准天线单元之间耦合度会随距离拉大而降低,因此可采用多个校准天线单元进行信号接收和/或发送以实现对该接收通道的校准。
结合第二方面,在一种可能的实施方式中,上述根据上述相控阵天线中各接收通道对应的校准信号的幅度的差值,对上述各接收通道对应的各校准信号的幅度进行补偿包括:计算上述相控阵天线中各接收通道对应的校准信号的幅度差值,并在上述各接收通道内通过衰减器对上述各接收通道对应的校准信号进行幅度补偿,以使上述各接收通道对应的校准信号的幅度相等,操作简单,适用性强。
结合第二方面,在一种可能的实施方式中,上述根据上述相控阵天线中各接收通道对应的校准信号的相位的差值,对上述各接收通道对应的各校准信号的相位进行补偿包括:计算上述相控阵天线中各接收通道对应的校准信号的相位差值,并在上述各接收通道内通过移相器对上述各接收通道对应的校准信号进行相位补偿,以使上述各接收通道对应的校准信号的相位相等,实现难度低,适用范围更广。
结合第二方面,在一种可能的实施方式中,上述相控阵天线中任一天线子阵列对应的校准天线单元部署于上述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
结合第二方面,在一种可能的实施方式中,上述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与上述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
第三方面,本申请实施例提供了一种终端,该终端中包括相控阵天线,该终端中还包括用于执行上述第一方面和/或第一方面中任一种可能的实施方式所提供的相控阵天线的校准方法的单元和/或模块,因此也能实现第一方面和/或第一方面中任一种可能的实施方式所提供的方法所具备的有益效果(或者优点)。
第四方面,本申请实施例提供了一种终端,该终端中包括相控阵天线,该终端还包括用于执行上述第二方面和/或第二方面中任一种可能的实施方式所提供的相控阵天线的校准方法的单元和/或模块,因此也能实现第二方面和/或第二方面中任一种可能的实施方式所提供的方法所具备的有益效果(或者优点)。
第五方面,本申请实施例提供了一种终端,该终端中包括相控阵天线,该终端中还包括存储器和信号处理器。其中,该存储器和信号处理器通过总线***连接。该存储器用于存储一组程序代码,该信号处理器用于调用该存储器中存储的程序代码执行上述第一方面和/或第一方面中任一种可能的实施方式所提供的相控阵天线的校准方法,因此也能实现第一方面和/或第一方面中任一种可能的实施方式所提供的方法所具备的有益效果(或者优点)。
第六方面,本申请实施例提供了一种终端,该终端中包括相控阵天线,该终端中还包括存储器和信号处理器。其中,该存储器和信号处理器通过总线***连接。该存储器用于存储一组程序代码,该信号处理器用于调用该存储器中存储的程序代码执行上述第二方面和/或第二方面中任一种可能的实施方式所提供的相控阵天线的校准方法,因此也能实现第二方面和/或第二方面中任一种可能的实施方式所提供的方法所具备的有益效果(或者优点)。
第七方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在终端上运行时,使得终端执行上述第一方面和/或第一方面中任一种可能的实施方式所提供的相控阵天线的校准方法,因此也能实现第一方面和/或第一方面中任一种可能的实施方式所提供的方法所具备的有益效果(或者优点)。
第八方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在终端上运行时,使得终端执行上述第二方面和/或第二方面中任一种可能的实施方式所提供的相控阵天线的校准方法,因此也能实现第二方面和/或第二方面中任一种可能的实施方式所提供的方法所具备的有益效果(或者优点)。
第九方面,本申请实施例提供了一种终端,该终端可以是一块芯片或多块协同工作的芯片,该终端中包括与终端(例如芯片)耦合的相控阵天线。该终端用于执行上述第一方面和/或第一方面中任一种可能的实施方式,和/或述第二方面和/或第二方面中任一种可能的实施方式所提供的相控阵天线的校准方法。应理解,这里“耦合”是指两个部件彼此直接或间接地结合。这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间通信。
第十方面,本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在终端上运行时,使得终端执行上述第一方面和/或第一方面中任一种可能的实施方式,和/或述第二方面和/或第二方面中任一种可能的实施方式所提供的相控阵天线的校准方法,也能实现第一方面至第二方面中任一方面提供的方法所具备的有益效果。
附图说明
图1是本申请实施例提供的天线单元的分布示意图;
图2是本申请实施例提供的天线子阵列示意图;
图3是本申请实施例提供的相控阵天线发射通道的校准***结构示意图;
图4是本申请实施例提供的相控阵天线的校准方法的一流程示意图;
图5是本申请实施例提供的发射通道校准的信号处理示意图;
图6是本申请实施例提供的相控阵天线接收通道的校准***结构示意图;
图7是本申请实施例提供的相控阵天线的校准方法的另一流程示意图;
图8是本申请实施例提供的接收通道校准的信号处理示意图;
图9是本申请实施例提供的终端的一结构示意图;
图10是本申请实施例提供的终端的另一结构示意图;
图11是本申请实施例提供的终端的另一结构示意图。
具体实施方式
相控阵天线指的是通过控制阵列天线中辐射单元馈电的幅度和相位来改变天线方向图形状的天线。通过控制阵列天线中各个辐射单元的幅度和相位可以改变相控阵天线的天线方向图最大值的指向,以达到波束扫描的目的。这里相控阵天线的阵列天线中的辐射单元是指阵列天线中的天线元件,或者业务天线单元。为方便描述,下面将以业务天线单元为例进行说明。这里阵列天线指相控阵天线中以阵列的形式部署的业务天线单元,换句话说,相控阵天线中的各个业务天线单元组成了一个阵列,这个阵列可称为天线阵列,该阵列中的这些业务天线单元也称为阵列天线。
本申请实施例提供了一种相控阵天线的校准方法及相关装置,可在相控阵天线中由业务天线单元组成的天线阵列中独立于业务天线单元之外部署多个校准天线单元,基于多个校准天线单元与业务天线单元的耦合实现相控阵天线的天线通道在线校准。这里相控阵天线中的天线通道包括相控阵天线的发射通道和接收通道,下面将结合本申请实施例提供的相控阵天线的校准天线单元的部署对相控阵天线中的发射通道和接收通道的在线校准分别进行说明,在此不做限制。
参见图1,图1是本申请实施例提供的天线单元的分布示意图。在图1所示的天线单元的分布示意图中,天线单元包括业务天线单元和校准天线单元。如图1所示,菱形方块表示业务天线单元,控阵天线的校准天线单元独立于业务天线单元部署在相控阵天线的天线阵列中。这里,校准天线单元独立于业务天线单元部署指的是校准天线单元在相控阵天线中的部署位置不影响相控阵天线的天线阵列中业务天线单元的部署位置。换句话说,在本申请实施例中,相控阵天线的天线阵列中各个业务天线单元的部署位置不做限制,相控阵天线的校准天线单元在业务天线单元的部署基础上,分布于业务天线单元之间。换句话说,在本申请实施例中,相控阵天线的校准天线单元的部署方式适用于任意业务天线单元部署方式下的相控阵天线,因此也提高了本申请实施例提供的相控阵天线的校准方法的适应范围,灵活性更强。
可选的,在一些可行的实施方式中,相控阵天线的天线阵列中至少部署两个(即多个)校准天线单元,相控阵天线中的业务天线单元组成的天线阵列可基于多个校准天线单元划分为多个天线子阵列,即相控阵天线的天线阵列可基于校准天线单元划分为至少两个天线子阵列。其中,一个天线子阵列中包括一个校准天线单元和多个业务天线单元,并且每个校准天线单元可位于其所属天线子阵列的中心或者***边缘。参见图2,图2是本申请实施例提供的天线子阵列示意图。如图2所示,在相控阵天线中,在每个天线子阵列中,校准天线单元可位于天线子阵列的所有业务天线单元的中间位置,即围绕在同一个校准天线单元四周的业务天线单元划分为同一个天线子阵列。换句话说,在相控阵天线的天线阵列的划分中可以每个校准天线单元为中心,将围绕在同一个校准天线单元四周的业务天线单 元划分为同一个天线子阵列,进而可将相控阵天线的天线阵列划分为多个天线子阵列,如图2所示,一个圆角正方形表示一个天线子阵列。其中,以各校准天线单元为中心划分得到的天线子阵列的形状也可为圆角正方形之外的其他形状,在此不做限制。
可选的,在一些可选的实施方式中,校准天线单元也可位于天线子阵列的***边缘,即校准天线单元可以位于天线子阵列中所有业务天线单元的外侧的某一个边缘位置。例如校准天线单元可位于图2所示圆角矩形所示的天线子阵列中的左上角位置、右上角或者右下角等位置,具体可根据实际应用场景确定,在此不做限制。换句话说,在相控阵天线的天线阵列中,可以按照一个校准天线单元对应一个天线子阵列的规则进行天线子阵列的划分,具体划分的业务天线单元所在区域可根据实际应用场景确定,在此不做限制。例如,可以以一个校准天线单元所在位置为基准,将分布在校准天线单元所在位置的某一个区域内的业务天线单元划分为同一个天线子阵列,通过该校准天线单元实现对该天线子阵列内的业务天线单元的覆盖,从而可提高各个天线子阵列中校准天线单元与各个业务天线单元的耦合度,可更好地保障相控阵天线的性能稳定性。
可选的,在本申请实施例中,校准天线单元包括但不限于单极子天线单元,波导口天线单元,和/或其他与相控阵天线中的业务天线单元的辐射方向正交的天线单元。具体实现中,校准天线单元的实现形式可根据实际应用场景确定,在此不做限制。
在一些可行的实施方式中,相控阵天线的校准可包括相控阵天线的发射通道校准和接收通道校准。下面将基于图2所示的天线子阵列划分场景,结合图3至图11,通过实施例一和实施例二分别对本申请实施例提供的相控阵天线的校准方法及相关装置中发射通道的校准和接收通道的校准进行说明。
实施例一:发射通道的校准
参见图3,图3是本申请实施例提供的相控阵天线发射通道的校准***结构示意图。本申请实施例提供的相控阵天线发射通道的校准***中包括但不限于一个波束控制机31、多个移相器/衰减器(即移相器和/或衰减器)32、多个发射机33、一个校正网络34、一个校正接收机35和一个信号处理机34。其中,在图3所示的校准***中可包括一个或者多个发射通道,其中,一个发射通道中可包括一个移相器/衰减器、一个发射机和一个业务天线单元。
在一些可行的实施方式中,在相控阵天线的发射通道的校准过程中,完成一次发射通道校准可由以下几个步骤组成:
(1)发射通道校准的激励信号(例如用于发射通道校准的使能信号,或称测试信号)馈入移相器/衰减器进行相位和/或幅度调节之后,经过发射机发射到业务天线单元,最后通过业务天线单元辐射到空间,由校准天线单元接收并由校正网络合成射频信号。
(2)校正接收机接收校正网络合成后的射频信号并处理输出包含相位和/或幅度的数据。
(3)校正接收机输出的包含相位和/或幅度的数据经信号处理机反演计算获得发射通道的幅度和/或相位。
(4)若各个发射通道的幅度和/或相位相等,或者各个发射通道的幅度和/或相位的差值小于或者等于规定的某一个阈值,则各个发射通道的校正结束。若各个发射通道的幅度 和/或相位的差值的大于规定的某一个阈值,信号处理机补偿各个发射通道的幅度和/或相位差,使得所有发射通道的幅度和/或相位相等、或者各个发射通道之间的幅度和/或相位的差值小于或者等于规定的某一个阈值。信号处理机将补偿之后的各个发射通道的幅度和/或相位反馈给波束控制机。
(5)波束控制机将一组发射通道校准的控制信号高速布相至移相器/衰减器,基于各个移相器/衰减器调整各个发射通道的相位和/或幅度,使得所有发射通道的相位和/或幅度相等、或者各个发射通道的相位和/或幅度的差值的小于或者等于规定的某一个阈值。
本申请实施例提供的相控阵天线的校准方法可适用于包含相控阵天线和上述图3所示的校准***的终端,上述相控阵天线的校准方法可由图3所示的校准***中的信号处理机36执行,也可由上述终端中所包含的其他更多的信号处理单元执行,在此不做限制。上述信号处理机36和/或其他信号处理单元对各个发射通道发射的信号进行处理以获取得到各个发射通道对应的最佳校准信号,进而可各个发射通道对应的校准信号的幅度和/或相位进行补偿以使相控阵天线中各个发射通道的幅度和/或相位一致。
请一并参见图4,图4是本申请实施例提供的相控阵天线的校准方法的一流程示意图。图4所示的相控阵天线的校准方法适用于相控阵天线的发射通道的校准,可包括步骤:
S41,基于相控阵天线中任一发射通道发射的测试信号,获取任一发射通道对应的校准信号。
在一些可行的实施方式中,相控阵天线中各个发射通道的校准可首先通过每个发射通道分别发射一个测试信号,其中,每个发射通道发射的测试信号经过每个发射通道对应的业务天线单元辐射,并由相控阵天线中的一个或者多个校准天线单元接收。基于相控阵天线中一个或者多个校准天线单元接收的任一发射通道对应的测试信号进行处理可得到任一发射通道对应的校准信号。其中,上述任一发射通道发射的测试信号为用于对该任一发射通道进行校准的信号,为方便描述,下面则以测试信号为例进行说明。为方便描述,上述相控阵天线中的任一发射通道可以发射通道n为例进行说明,其中,n为大于零并且小于相控阵天线中发射通道总数(为方便描述,可设为M)的整数。对应的,上述发射通道n发射的测试信号可以测试信号dn为例进行说明。
在一些可行的实施方式中,通过如下步骤S411至步骤S413中各个步骤所提供的实现方式可处理得到相控阵天线中任一发射通道对应的校准信号:
S411,通过相控阵天线中发射通道n发射测试信号。
在一些可行的实施方式中,发射通道n发射的测试信号dn可由发射通道n对应的业务天线单元辐射,并由相控阵天线中的一个或者多个校准天线单元接收。为方便描述,上述发射通道n对应的业务天线单元可以业务天线单元n为例进行说明。
S412,获取与业务天线单元n耦合的N个校准天线单元接收的N路耦合信号。
在一些可行的实施方式中,在相控阵天线中,与业务天线单元n耦合的校准天线单元可为相控阵天线中所包括的多个校准天线单元中的部分或者全部,其中至少包括业务天线单元n所在的天线子阵列对应的校准天线单元(为方便描述可以校准天线单元n为例进行说明)。假设上述业务天线单元n为相控阵天线中的天线子阵列1所包含的业务天线单元之一,天线子阵列1中的校准天线单元为校准天线单元n。可选的,上述业务天线单元n所 辐射的测试信号dn可由包括校准天线单元n在内的一个或者多个校准天线单元接收,并可基于业务天线单元n与校准天线单元n的相对位置关系确定采用相应的信号处理策略进行处理以得到发射通道n对应的校准信号。
在一些可行的实施方式中,不同的信号处理策略包括不同位置的业务天线单元对应的发射通道可采用不同数量的校准天线单元进行发射通道的校准,以实现对不同位置的业务天线单元实现方向图指向不同的波束控制,从而可获取对各个位置上的业务天线单元的辐射信号的最佳信噪比。可选的,对于距离校准天线单元较近的业务天线单元所对应的发射通道,可采用单一校准天线单元进行信号接收和/或发送以实现对该发射通道的校准。对于距离校准天线单元较远的业务天线单元所对应的发射通道,因为业务天线单元和校准天线单元之间耦合度会随距离拉大而降低,因此可采用多个校准天线单元进行信号接收和/或发送以实现对该发射通道的校准。例如,对于上述发射通道n的校准,若业务天线单元n距离校准天线单元n的距离大于或者等于预设距离阈值,则可采用包括校准天线单元n在内的多个校准天线单元联合对发射通道n进行校准。其中,上述预设距离阈值可根据实际应用场景需求确定,例如根据实际应用场景中对于校准信道信噪比的需求确定该预设距离阈值等,在此不做限制。若业务天线单元n距离校准天线单元n的距离小于预设距离阈值,则可采用校准天线单元n对发射通道n进行校准,即可满足发射通道校准的信噪比要求。可选的,为了提高发射通道n的校准精度,在业务天线单元n距离校准天线单元n的距离小于预设距离阈值时,也可采用包括校准天线单元n在内的多个校准天线单元联合对发射通道n进行校准,具体可根据实际应用场景确定,在此不做限制。下面将以包括校准天线单元n在内的多个校准天线单元联合对发射通道n进行校准为例进行说明,换句话说,对任一发射通道进行校准所选择的多个校准天线单元中至少包括该任一发射通道对应的业务天线单元所在天线子阵列内的校准天线单元,下面不再赘述。为方便描述,上述多个校准天线单元可以N个校准天线单元为例进行说明,其中N大于或者等于2且小于或者等于相控阵天线中校准天线单元总数。
在一些可行的实施方式中,可获取上述业务天线单元n与校准天线单元n之间的耦合信号(对应的,该耦合信号即为第一耦合信号,为方便描述可设为耦合信号n),进而可根据上述耦合信号n的信噪比,从相控阵天线中与业务天线单元n耦合的校准天线单元中确定出上述校准天线单元n之外的N-1个校准天线单元。可选的,上述校准天线单元的数量(即N-1中的N的确定)以及位置的选择可根据上述耦合信号n的信噪比,结合相控阵天线中校准天线单元的耦合信号最佳接收效果的信噪比要求和相控阵天线中各个校准天线单元的位置确定,以使各个校准天线单元的耦合信号具备最佳接收效果,在此不做限制。其中,上述包括校准天线单元n在内的N个校准天线单元可分别在时间t 0至t n=N-1与业务天线单元n耦合,上述时间t 0至t n=N-1均匀分布且时间间隔小于发射通道n发射信号的带宽的二分之一。发射通道n发射的测试信号dn经过业务天线单元n辐射之后,可由上述与业务天线单元n耦合的N个校准天线单元接收,进而可获取得到上述N个校准天线单元接收到的N路耦合信号。为方便描述,上述获取的N路耦合信号可记为A 0至A n=N-1
S413,根据业务天线单元n与上述N个校准天线单元中各校准天线单元的相对位置,对上述N路耦合信号进行时延加权以得到在时域上对齐的N路校准信号,将上述N路校准 信号合路为发射通道n对应的校准信号。
在一些可行的实施方式中,上述发射通道n发射的测试信号由与业务天线单元n耦合的N个校准天线单元接收,其中,每个校准天线单元与业务天线单元n的距离均不相同,因此每个校准天线单元接收到业务天线单元n辐射的信号的时延也均不相同。因此,基于上述包括校准天线单元n在内的N个校准天线单元接收到N路耦合信号A 0至A n=N-1之后,可根据各个校准天线单元与业务天线单元n的相对位置,对上述N路耦合信号A 0至A n=N-1进行时延加权处理以得到在时域上对齐的N路信号。为方便描述,上述N路耦合信号A 0至A n=N-1经过时延加权处理得到的在时域上对齐的N路信号可以以N路校准信号为例进行说明。通过时延加权处理得到在时域上对齐的N路校准信号之后,则可将上述N路校准信号合路为一个校准信号,进而可将合路得到的校准信号确定为发射通道n对应的校准信号。
请一并参见图5,图5是本申请实施例提供的发射通道校准的信号处理示意图。如图5所示,对于相控阵天线中的每个发射通道,发射通道发射的测试信号,可首先通过业务通道中的业务天线单元进行辐射,并由在不同的时间(t 0至t n(即t n=N-1))与业务天线单元耦合的校准天线单元接收。其中,业务通道中的一个发射通道对应一个业务天线单元,一个业务天线单元发射的信号可由多个校准天线单元接收。如图5所示,在相控阵天线的各个发射通道的校准过程中,所有校准天线单元共用同一个校准通道,校准通道可通过开关切换来获取不同的校准天线单元与业务天线单元耦合的耦合信号,从而可避免因为校准通道不同而带来的额外的校准误差,避免了校准通道不同对各个发射通道的校准精度的影响,提高相控阵天线的发射通道的校准精度。
对于发射通道n,如图5所示,在校准通道中,获取得到各个校准天线单元接收到各路耦合信号之后,各路耦合信号可首先通过A/D转换(即模数转换)从模拟信号转换为数字信号。即通过A/D转换可将各个校准天线单元接收到的模拟信号转换为数字信号,之后可将A/D转换得到的N路数字信号在数字域上进行时延加权,得到N路校准信号。上述N路校准信号可通过信号叠加(即幅度叠加增强)合并为一路校准信号,从而可获取得到发射通道n对应的校准信号。其中,对于各个发射通道发射的测试信号,经过各个校准天线单元接收之后可通过对各个校准天线单元接到的耦合信号进行时延加权处理并合路为一路校准信号,可得到一个发射通道对应一路校准信号,从而可基于各个发射通道对应的校准信号实现各个发射通道的幅度和/或相位补偿。
S42,获取相控阵天线中所有发射通道对应的校准信号。
在一些可行的实施方式中,针对相控阵天线中每个发射通道,均可基于上述步骤S411至S413提供的实现方式获取得到每个发射通道对应的校准信号,从而可获取得到相控阵天线中所有发射通道对应的校准信号,具体可参见上述步骤S411至S413所提供的实现方式,在此不再赘述。
S43,根据相控阵天线中各发射通道对应的校准信号的幅度和/或相位的差值,对各发射通道的幅度和/或相位进行补偿。
在一些可行的实施方式中,获取得到各个发射通道对应的校准信号之后,可根据获取得到的各个发射通道对应的校准信号的幅度,计算各个发射通道对应的校准信号的幅度差值。可选的,在计算各个发射通道的校准信号的幅度差值时,可以以其中一个发射通道的 幅度作为参考幅度,进而可计算其他各个发射通道的幅度与该参考幅度的差值,从而可在各个发射通道内通过衰减器对各个发射通道对应的校准信号进行幅度补偿,以使各发射通道对应的校准信号的幅度相等。可选的,通过在各个发射通道内通过衰减器对各个发射通道对应的校准信号进行幅度补偿可使得所有发射通道对应的校准信号的幅度均等于上述参考幅度,从而可实现相控阵天线中所有发射通道的幅度一致。
在一些可行的实施方式中,获取得到各个发射通道对应的校准信号之后,也可根据获取得到的各个发射通道对应的校准信号的相位,计算各个发射通道对应的校准信号的相位差值。可选的,在计算各个发射通道的校准信号的相位差值时,可以以其中一个发射通道的相位作为参考相位,进而可计算其他各个发射通道的相位与该参考相位的差值,从而可在各个发射通道内通过移相器对各个发射通道对应的校准信号进行相位补偿,以使各发射通道对应的校准信号的相位相等。可选的,通过在各个发射通道内通过移相器对各个发射通道对应的校准信号进行相位补偿可使得所有发射通道对应的校准信号的相位均等于上述参考相位,从而可实现相控阵天线中所有发射通道的相位一致。
在本申请实施例中,通过相控阵天线中的各个发射通道的幅度和/或相位的补偿,可使得相控阵天线中各个发射通道的幅相一致,从而可保证相控阵天线的信号辐射的最佳信噪比,保障相控阵天线的性能,实现复杂度低,适用性更强。
实施例二:接收通道的校准
参见图6,图6是本申请实施例提供的相控阵天线接收通道的校准***结构示意图。本申请实施例提供的相控阵天线接收通道的校准***中包括但不限于多个接收机61、多个移相器/衰减器(即移相器和/或衰减器)62、一个波束控制机63、一个校正网络64、一个校正接收机65和一个信号处理机66。其中,在图6所示的校准***中可包括一个或者多个接收通道,其中,一个接收通道中可包括一个业务天线单元、一个移相器/衰减器、和一个接收机。
在一些可行的实施方式中,在相控阵天线的接收通道的校准过程中,完成一次接收通道校准可由以下几个步骤组成:
(1)接收通道校准的激励信号(即接收通道校准的测试信号)可基于校准天线单元发射,并由相控阵天线中的业务天线单元接收。
(2)业务天线单元接收到的激励信号经过该业务天线单元对应的接收通道之后,由校正网络合成射频信号。其中,该业务天线单元对应的接收通道中包括接收机、移相器/衰减器。业务天线单元接收到的激励信号经过接收通道中的接收机,并由移相器/衰减器进行相位和/后幅度的调节之后输出至校正网络,基于校正网络合成射频信号。
(3)校正接收机接收校正网络合成后的射频信号并处理输出包含相位和/或幅度的数据。
(4)校正接收机输出的包含相位和/或幅度的数据经信号处理机反演计算获得接收通道的相位和/或幅度。
(5)若各个接收通道的幅度和/或相位相等,或者各个接收通道的幅度和/或相位的差值小于或者等于规定的某一个阈值,则各个接收通道的校正结束。若各个接收通道的幅度 和/或相位的差值的大于规定的某一个阈值,信号处理机补偿各个接收通道的幅度和/或相位差,使得所有接收通道的幅度和/或相位相等、或者各个接收通道之间的幅度和/或相位的差值小于或者等于规定的某一个阈值。信号处理机将补偿之后的各个接收通道的幅度和/或相位反馈给波束控制机。
(6)波束控制机将一组接收通道校准的控制信号高速布相至移相器/衰减器,基于各个移相器/衰减器调整各个接收通道的相位和/或幅度,使得所有接收通道的相位和/或幅度相等、或者各个接收通道的相位和/或幅度的差值的小于或者等于规定的某一个阈值。
本申请实施例提供的相控阵天线的校准方法可适用于包含相控阵天线和上述图6所示的校准***的终端,上述相控阵天线的校准方法可由图6所示的校准***中的信号处理机66执行,也可由上述终端中所包含的其他更多的信号处理单元执行,在此不做限制。本申请实施例通过多个校准天线单元联合发射校准信号到各个接收通道对应的业务天线单元,实现各个接收通道对应的业务天线单元对各个接收通道对应的校准信号的最佳接收效果。上述信号处理机66和/或其他信号处理单元可对各个接收通道对应的校准信号的幅度和/或相位进行补偿以使相控阵天线中各个接收通道的幅度和/或相位一致。
请一并参见图7,图7是本申请实施例提供的相控阵天线的校准方法的另一流程示意图。图7所示的相控阵天线的校准方法适用于相控阵天线的接收通道的校准,可包括步骤:
S71,获取相控阵天线中任一接收通道对应的校准信号的幅度和/或相位。
在一些可行的实施方式中,相控阵天线中各个接收通道的校准过程中,用于接收通道校准的测试信号首先经过校准天线单元,通过校准天线单元辐射并由相控阵天线中的业务天线单元接收。基于相控阵天线中任一接收通道对应的业务天线单元从一个或者多个校准天线单元接收校准信号的方式可得到任一接收通道对应的校准信号。为方便描述,上述任一接收通道可以接收通道i为例进行说明。其中,i为大于零并且小于相控阵天线中接收通道总数(为方便描述,可设为M)的整数。
在一些可行的实施方式中,通过如下步骤S711至步骤S713中各个步骤所提供的实现方式可处理得到相控阵天线中任一接收通道对应的校准信号:
S711,确定任一接收通道对应的业务天线单元与相控阵天线中的N个校准天线单元的N组相对位置。
在一些可行的实施方式中,为方便描述,上述任一接收通道i对应的业务天线单元可以业务天线单元i为例进行说明,上述相控阵天线中的任一接收通道可以接收通道i为例进行说明。对应的,用于对上述接收通道i进行校准的测试信号可以测试信号di为例进行说明。测试信号di可由相控阵天线中的一个或者多个校准天线单元进行辐射,并由接收通道i对应的业务天线单元i接收。
在一些可行的实施方式中,对上述接收通道i进行校准时,可首先确定上述业务天线单元i与其所属的天线子阵列中的校准天线单元(为方便描述可以校准天线单元i为例进行说明)的距离。当上述业务天线单元i与校准天线单元i的距离大于或者等于预设距离阈值时,获取上述业务天线单元i与上述校准天线单元i之间的耦合信号。基于上述业务天线单元i与校准天线单元i之间的耦合信号的信噪比,从相控阵天线中包括的多个校准天线单元中确定出校准天线单元i之外的N-1个校准天线单元以得到包含校准天线单元i 在内的N个校准天线单元。其中,上述N个校准天线单元可分别在时间t 0至t n=N-1与上述业务天线单元i耦合。
可选的,参见上述实施例一中发射通道校准对应的实现方式,在接收通道的校准过程中,也可基于业务天线单元i与校准天线单元i的相对位置关系确定采用相应的信号处理策略进行处理以得到接收通道i对应的校准信号。
在一些可行的实施方式中,不同的信号处理策略包括不同位置的业务天线单元对应的接收通道可采用不同数量的校准天线单元进行校准,以实现对不同位置的业务天线单元实现方向图指向不同的波束控制,从而可获取对各个位置上的业务天单元的信号接收的最佳效果。可选的,对于距离校准天线单元较近的业务天线单元对应的接收通道,可采用单一校准天线单元进行信号接收和/或发送以实现对该接收通道的校准。对于距离校准天线单元较远的业务天线单元对应的接收通道,因为业务天线单元和校准天线单元之间耦合度会随距离拉大而降低,因此可采用多个校准天线单元进行信号接收和/或发送以实现对该接收通道的校准。例如,对于上述接收通道i的校准,若业务天线单元i距离校准天线单元i的距离大于或者等于预设距离阈值,则可采用包括校准天线单元i在内的多个校准天线单元联合对接收通道i进行校准。若业务天线单元i距离校准天线单元i的距离小于预设距离阈值,则可采用校准天线单元i对接收通道i进行校准。可选的,为了提高接收通道i的校准精度,在业务天线单元i距离校准天线单元i的距离小于预设距离阈值时,也可采用包括校准天线单元i在内的多个校准天线单元联合对接收通道i进行校准,具体可根据实际应用场景确定,在此不做限制。下面将以包括校准天线单元i在内的多个校准天线单元联合对接收通道i进行校准为例进行说明,换句话说,对任一接收通道进行校准所选择的多个校准天线单元中至少包括该任一接收通道对应的业务天线单元所在天线子阵列内的校准天线单元,下面不再赘述。为方便描述,上述多个校准天线单元可以N个校准天线单元为例进行说明,其中N大于或者等于2且小于或者等于相控阵天线中校准天线单元总数。
在一些可行的实施方式中,若确定采用N个校准天线单元联合对接收通道i进行校准,则可获取上述业务天线单元i与校准天线单元i之间的耦合信号(可设为第二耦合信号,为方便描述可以耦合信号i为例进行说明),进而可根据上述耦合信号i的信噪比,从相控阵天线中与业务天线单元i耦合的多个校准天线单元中确定出上述校准天线单元i之外的N-1个校准天线单元。可选的,上述校准天线单元的数量(即N-1中的N的确定)以及位置的选择可根据上述耦合信号i的信噪比和相控阵天线中校准天线单元的耦合信号最佳接收效果的信噪比,结合相控阵天线中各个校准天线单元的位置确定,以实现各个校准天线单元的耦合信号的最佳接收效果。具体上述校准天线单元的数量(以N为例进行说明)和位置的选择可根据实际应用场景确定,在此不做限制。其中,上述包括校准天线单元i在内的N个校准天线单元可分别在时间t 0至t n=N-1与业务天线单元i耦合。
在一些可行的实施方式中,通过上述实现方式可从相控阵天线的多个校准天线单元确定出上述N个校准天线单元,进而可确定上述N个校准天线单元中各个校准天线单元与业务天线单元i之间的相对位置,从而可获取得到N组相对位置。其中,上述N个校准天线单元中每个校准天线单元与业务天线单元i之间的距离可通过两者之间的相对位置表示,从而可根据各个校准天线单元与业务天线单元i的距离对馈入各个校准天线单元的测试信 号进行时延加权处理使得通过各个校准天线单元辐射到业务天线单元i的N路校准信号在时域上对齐。
S712,根据上述N组相对位置分别对馈入所述N个校准天线单元的N个测试信号进行时延加权以得到N路校准信号。
在一些可行的实施方式中,由于上述N个校准天线单元中各个校准天线单元与业务天线单元i之间的距离均各不相同,因此馈入各个校准天线单元的测试信号,经过各个校准天线单元辐射之后由业务天线单元i接收,则业务天线单元i从各个校准天线单元接收到的测试信号的时延也均不相同。因此,为了使得基于各个校准天线单元向业务天线单元i辐射的测试信号到达业务天线单元i的时延相同,可首先对馈入各个校准天线单元的各个测试信号进行时延加权处理使得到达业务天线单元i的各路校准信号在时域上对齐,业务天线单元i可从上述N个校准天线单元接收得到在时延上对齐的N路校准信号。通过业务天线单元i可将接收到的上述N路校准信号合路为一路时域上对齐的校准信号,进而可将合路得到的校准信号确定为接收通道i对应的校准信号。
请一并参见图8,图8是本申请实施例提供的接收通道校准的信号处理示意图。如图8所示,对于相控阵天线中的每个接收通道的校准,可首先根据各个接收通道对应的业务天线单元与各个校准天线单元的相对位置,对馈入各个校准天线单元的各测试信号在数字域上进行时域上的时延加权得到N路校准信号。上述N路校准信号可由各个接收通道对应的业务天线单元接收,并在业务天线单元侧进行信号叠加(即幅度叠加增强)合并为一路校准信号,从而可获取得到每个接收通道对应的校准信号。对于每个接收通道对应的校准信号,可首先对馈入各个校准天线单元的各测试信号进行时延加权处理得到N路校准信号之后,可将所述N路校准信号经过D/A转换(即数模转换)之后经各个校准天线单元辐射。即,将时延加权处理得到的N路校准信号从数字信号转换为模拟信号,进而可基于上述N个校准天线单元辐射,并由各个接收通道对应的业务天线单元接收。如图8所示,在相控阵天线的各个接收通道的校准过程中,所有接收通道的校准共用同一个校准通道,校准通道可分别在时间t 0至t n=N-1通过开关切换来将D/A转换后的校准信号经N个校准天线单元向各个接收通道对应的业务天线单元辐射校准信号。例如,对于接收通道i的校准,上述N个校准天线单元中各个校准天线单元可分别在时间t 0至t n=N-1与业务天线单元i耦合,业务天线单元i可从各个校准天线单元接收得到接收通道i对应的校准信号。这里,由于馈入各个校准天线单元的校准信号已经在校准通道通过时延加权实现了各个校准天线单元辐射的校准信号到达业务天线单元时在时域上对齐,并在业务天线单元侧进行信号叠加,因此使得业务天线单元i从各个校准天线单元接收校准信号可具备最佳的接收效果。
这里,在相控阵天线的各个接收通道的校准过程中,所有接收通道的校准共用同一个校准通道,从而可避免因为校准通道不同而带来的额外的校准误差,避免了校准通道不同对各个接收通道的校准精度的影响,提高相控阵天线的接收通道的校准精度。
S713,通过业务天线单元i接收上述N路校准信号并合路为一路时域上对齐的校准信号,记录该校准信号的幅度和/或相位以得到接收通道i对应的校准信号的幅度和/或相位。
在一些可行的实施方式中,对于接收通道i对应的校准信号,在不同的时间馈入到上述N个校准天线单元中不同的校准天线单元之后,上述各个校准天线单元可分别在时间t 0 至t n=N-1与业务天线单元i耦合,业务天线单元i可从各个校准天线单元接收得到接收通道i对应的校准信号。基于业务天线单元i接收到各个校准天线单元辐射的校准信号之后,可在业务天线单元i端进行信号叠加(即幅度叠加增强)合并为一路时域上对齐的校准信号,从而可获取得到接收通道i对应的校准信号,进而可将合并为一路的校准信号的幅度和/相位确定为接收通道i对应的幅度和/或相位。
S72,获取相控阵天线中所有接收通道对应的校准信号的幅度和/或相位。
在一些可行的实施方式中,针对相控阵天线中每个接收通道,均可基于上述步骤S711至S713提供的实现方式获取得到每个接收通道对应的校准信号,从而可获取得到相控阵天线中所有接收通道对应的校准信号。此时,也可获取得到相控阵天线中所有接收通道对应的校准信号的幅度和/或相位。具体可参见上述步骤S711至S713所提供的实现方式,在此不再赘述。
S73,根据相控阵天线中各接收通道对应的校准信号的幅度和/或相位的差值,对各接收通道对应的各校准信号的幅度和/或相位进行补偿。
在一些可行的实施方式中,获取得到各个接收通道对应的校准信号之后,可根据获取得到的各个接收通道对应的校准信号的幅度,计算各个接收通道对应的校准信号的幅度差值。可选的,在计算各个接收通道的校准信号的幅度差值时,可以以其中一个接收通道的幅度作为参考幅度,进而可计算其他各个接收通道的幅度与该参考幅度的差值,从而可在各个接收通道内通过衰减器对各个接收通道对应的校准信号进行幅度补偿,以使各接收通道对应的校准信号的幅度相等。可选的,通过在各个接收通道内通过衰减器对各个接收通道对应的校准信号进行幅度补偿可使得所有接收通道对应的校准信号的幅度均等于上述参考幅度,从而可实现相控阵天线中所有接收通道的幅度一致。
在一些可行的实施方式中,获取得到各个接收通道对应的校准信号之后,也可根据获取得到的各个接收通道对应的校准信号的相位,计算各个接收通道对应的校准信号的相位差值。可选的,在计算各个接收通道的校准信号的相位差值时,可以以其中一个接收通道的相位作为参考相位,进而可计算其他各个接收通道的相位与该参考相位的差值,从而可在各个接收通道内通过移相器对各个接收通道对应的校准信号进行相位补偿,以使各接收通道对应的校准信号的相位相等。可选的,通过在各个接收通道内通过移相器对各个接收通道对应的校准信号进行相位补偿可使得所有接收通道对应的校准信号的相位均等于上述参考相位,从而可实现相控阵天线中所有接收通道的相位一致。
在本申请实施例中,通过相控阵天线中的各个接收通道的幅度和/或相位的补偿,可使得相控阵天线中各个接收通道的幅相一致,从而可保证相控阵天线的信号接收具备最佳接收效果,保障相控阵天线的性能,实现复杂度低,适用性更强。
请参见图9,图9是本申请实施例提供的终端的一结构示意图。如图9所示,本申请实施例提供的终端中包括相控阵天线,上述相控阵天线中包括多个业务天线单元以及独立于上述多个业务天线单元之外部署的多个校准天线单元。其中,上述多个业务天线单元基于上述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列。本申请实施例提供的终端还包括:
信号处理单元91,用于对上述相控阵天线中任一发射通道n发射的测试信号执行如下 操作以获取上述发射通道n对应的校准信号:
通过上述发射通道n发射任一测试信号,上述任一测试信号通过上述发射通道n对应的业务天线单元n辐射,并由上述相控阵天线中的校准天线单元接收;
获取与上述业务天线单元n耦合的N个校准天线单元接收的N路耦合信号,其中N大于或者等于2且小于或者等于上述相控阵天线中校准天线单元总数;
根据上述业务天线单元n与上述N个校准天线单元中各校准天线单元的相对位置,对上述N路耦合信号进行时延加权以得到在时域上对齐的N路校准信号,将上述N路校准信号合路为上述发射通道n对应的校准信号。
信号获取单元92,用于获取上述信号处理单元91得到的上述相控阵天线中所有发射通道对应的校准信号。
信号补偿单元93,用于根据上述信号获取单元92获取的上述相控阵天线中各发射通道对应的校准信号的幅度和/或相位的差值,对上述各发射通道的幅度和/或相位进行补偿,以使上述相控阵天线中各发射通道的幅度和/或相位一致。
在一些可行的实施方式中,上述相控阵天线中与上述业务天线单元n耦合的上述N个校准天线单元中包括上述业务天线单元n所属天线子阵列对应的校准天线单元n。上述信号处理单元91用于:
获取上述业务天线单元n与上述校准天线单元n之间的第一耦合信号,根据上述第一耦合信号的信噪比,从上述相控阵天线中与上述业务天线单元n耦合的校准天线单元中确定出上述校准天线单元n之外的N-1个校准天线单元;
获取上述N-1个校准天线单元接收到的N-1路耦合信号以得到包含上述第一耦合信号在内的N路耦合信号;
其中,上述N个校准天线单元分别在时间t 0至t N-1与所述业务天线单元n耦合。
在一些可行的实施方式中,上述信号补偿单元93用于:
计算上述信号获取单元92获取的上述相控阵天线中各发射通道对应的校准信号的幅度差值,并在上述各发射通道内通过衰减器对上述各发射通道对应的校准信号进行幅度补偿,以使上述各发射通道对应的校准信号的幅度相等。
在一些可行的实施方式中,上述信号补偿单元93用于:
计算上述信号获取单元92获取的上述相控阵天线中各发射通道对应的校准信号的相位差值,并在上述各发射通道内通过移相器对上述各发射通道对应的校准信号进行相位补偿,以使上述各发射通道对应的校准信号的相位相等。
在一些可行的实施方式中,上述相控阵天线中任一天线子阵列对应的校准天线单元部署于上述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
在一些可行的实施方式中,上述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与上述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
在一些可行的实施方式中,上述信号处理单元91可用于执行上述图4所示的实施例中步骤S41中各个步骤(S411-S413)所提供的实现方式。上述信号获取单元92可用于执行上述图4所示的实施例中步骤S42所提供的实现方式。上述信号补偿单元93可用于执行上 述图4所示的实施例中步骤S43所提供的实现方式。终端可通过其内置的各个单元执行如上述图3至图5中相控阵天线的发射通道校准所提供的实现方式,具体可参见上述各个实施例的各个步骤中提供的实现方式,在此不再赘述。这里,终端所包括的各个单元可以是图3所示***中的信号处理机36中所包括的各个单元,具体可根据实际应用场景确定,在此不做限制。本申请实施例提供的终端也能实现上述各个实施例的各个步骤中提供的实现方式所具备的有益效果(或者优点),在此不再赘述。
请参见图10,图10是本申请实施例提供的终端的另一结构示意图。如图10所示,本申请实施例提供的终端中包括相控阵天线,上述相控阵天线中包括多个业务天线单元以及独立于上述多个业务天线单元之外部署的多个校准天线单元。其中,上述多个业务天线单元基于上述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列。本申请实施例提供的终端还包括:
信号处理单元101,用于通过如下步骤1至步骤3获取上述相控阵天线中任一接收通道i对应的校准信号的幅度和/或相位:
步骤1:确定上述接收通道i对应的业务天线单元i与上述相控阵天线中的N个校准天线单元的N组相对位置,其中N大于或者等于2且小于或者等于所述相控阵天线中校准天线单元总数。
步骤2:根据上述N组相对位置分别对馈入上述N个校准天线单元的N个测试信号进行时延加权以得到N路校准信号,上述N路校准信号经上述N个校准天线单元辐射,并由上述相控阵天线中的业务天线单元接收。
步骤3:通过上述业务天线单元i接收上述N路校准信号并合路为一路时域上对齐的校准信号,记录所述时域上对齐的校准信号的幅度和/或相位以得到上述接收通道i对应的校准信号的幅度和/或相位。
信号获取单元102,用于获取上述信号处理单元101得到的上述相控阵天线中所有接收通道对应的校准信号的幅度和/或相位。
信号补偿单元103,用于根据上述信号获取单元获取102的上述相控阵天线中各接收通道对应的校准信号的幅度和/或相位的差值,对上述各接收通道对应的各校准信号的幅度和/或相位进行补偿,以使上述相控阵天线中各接收通道的幅度和/或相位一致。
在一些可行的实施方式中,上述信号处理单元101还用于:
确定上述业务天线单元i与其所属的天线子阵列中的校准天线单元i的距离;
当上述业务天线单元i与上述校准天线单元i的距离大于或者等于预设距离阈值时,获取上述业务天线单元i与上述校准天线单元i之间的耦合信号;
根据上述业务天线单元i与上述校准天线单元i之间的耦合信号的信噪比,从上述相控阵天线中包括的校准天线单元中确定出上述校准天线单元i之外的N-1个校准天线单元以得到包含上述校准天线单元i在内的N个校准天线单元;
其中,上述N个校准天线单元分别在时间t 0至t N-1与上述业务天线单元i耦合。
在一些可行的实施方式中,上述信号补偿单元103用于:
计算上述相控阵天线中各接收通道对应的校准信号的幅度差值,并在上述各接收通道内通过衰减器对上述各接收通道对应的校准信号进行幅度补偿,以使上述各接收通道对应 的校准信号的幅度相等。
在一些可行的实施方式中,上述信号补偿单元103用于:
计算上述相控阵天线中各接收通道对应的校准信号的相位差值,并在上述各接收通道内通过移相器对上述各接收通道对应的校准信号进行相位补偿,以使上述各接收通道对应的校准信号的相位相等。
在一些可行的实施方式中,上述相控阵天线中任一天线子阵列对应的校准天线单元部署于上述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
在一些可行的实施方式中,上述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与上述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
在一些可行的实施方式中,上述信号处理单元101可用于执行上述图7所示的实施例中步骤S71中各个步骤(S711-S713)所提供的实现方式。上述信号获取单元102可用于执行上述图7所示的实施例中步骤S72所提供的实现方式。上述信号补偿单元103可用于执行上述图7所示的实施例中步骤S73所提供的实现方式。终端可通过其内置的各个单元执行如上述图6至图8中相控阵天线的接收通道校准所提供的实现方式,具体可参见上述各个实施例的各个步骤中提供的实现方式,在此不再赘述。这里,终端所包括的各个单元可以是图6所示***中的信号处理机66中所包括的各个单元,具体可根据实际应用场景确定,在此不做限制。本申请实施例提供的终端也能实现上述各个实施例的各个步骤中提供的实现方式所具备的有益效果(或者优点),在此不再赘述。
请参见图11,图11是本申请实施例提供的终端的另一结构示意图。如图11所示,本申请实施例提供的终端包括相控阵天线110、信号处理器111、存储器112和总线***114。
其中,上述相控阵天线110、信号处理器111和存储器112通过总线***904连接。
上述存储器112用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器112包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图11中仅示出了一个存储器,当然,存储器也可以根据需要,设置为多个。存储器112也可以是信号处理器111中的存储器,在此不做限制。
存储器112存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作***:包括各种***程序,用于实现各种基础业务以及处理基于硬件的任务。
上述信号处理器111可以是一个或多个中央处理器(central processing unit,CPU),在信号处理器111是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,终端的各个组件通过总线***114耦合在一起,其中总线***114可以是数据总线,还可以包括电源总线、控制总线和状态信号总线等,在此不做限制。但是为了清楚说明起见,在图11中将各种总线都标为总线***114。为便于表示,图11中仅是示意性画出。
这里,上述信号处理器111可以是图3所示***中的信号处理机36和/或上述图6所示***中的信号处理机66,上述图4至图5,和/或图7至图8所示实施例提供的方法可以应用于信号处理器111中,或者由信号处理器111实现。信号处理器111可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过信号处理器111中的硬件的集成逻辑电路或者软件形式的指令完成。上述的信号处理器111可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器112,信号处理器111可读取存储器112中的信息,结合其硬件执行图4至图5所示实施例所描述的相控阵天线的发射通道校准的方法步骤;或者结合其硬件执行图7至图8所示实施例所描述的相控阵天线的接收通道校准的方法步骤。本申请实施例提供的终端也能实现上述各个实施例的各个步骤中提供的实现方式所具备的有益效果(或者优点),在此不再赘述。
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在终端上运行时,使得终端执行上述图3至图5所示实施例中各个步骤描述的相控阵天线的发射通道校准的方法,或者上述各个实施例中终端所执行的相控阵天线的发射通道校准的实现方式,具体可参见上述各个实施例提供的实现方式,在此不再赘述。
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在终端上运行时,使得终端执行上述图6至图8所示实施例中各个步骤描述的相控阵天线的接收通道校准的方法,或者上述各个实施例中终端所执行的相控阵天线的接收通道校准的实现方式,具体可参见上述各个实施例提供的实现方式,在此不再赘述。
本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在终端上运行时,使得终端执行上述图3至图5所示实施例中各个步骤描述的相控阵天线的发射通道校准的方法,或者上述各个实施例中终端所执行的相控阵天线的发射通道校准的实现方式,具体可参见上述各个实施例提供的实现方式,在此不再赘述。。
本申请实施例提供了一种包含指令的计算机程序产品,当该计算机程序产品在终端上运行时,使得终端执行上述图6至图8所示实施例中各个步骤描述的相控阵天线的接收通道校准的方法,或者上述各个实施例中终端所执行的相控阵天线的接收通道校准的实现方式,具体可参见上述各个实施例提供的实现方式,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种相控阵天线的校准方法,其特征在于,所述相控阵天线中包括多个业务天线单元以及独立于所述多个业务天线单元之外部署的多个校准天线单元,其中,所述多个业务天线单元基于所述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列,所述方法包括:
    对所述相控阵天线中任一发射通道n发射的测试信号执行如下操作以获取所述发射通道n对应的校准信号:
    通过所述发射通道n发射任一测试信号,所述任一测试信号通过所述发射通道n对应的业务天线单元n辐射,并由所述相控阵天线中的校准天线单元接收;
    获取与所述业务天线单元n耦合的N个校准天线单元接收的N路耦合信号,其中N大于或者等于2且小于或者等于所述相控阵天线中校准天线单元总数;
    根据所述业务天线单元n与所述N个校准天线单元中各校准天线单元的相对位置,对所述N路耦合信号进行时延加权以得到在时域上对齐的N路校准信号,将所述N路校准信号合路为所述发射通道n对应的校准信号;
    获取所述相控阵天线中所有发射通道对应的校准信号;
    根据所述相控阵天线中各发射通道对应的校准信号的幅度和/或相位的差值,对所述各发射通道的幅度和/或相位进行补偿,以使所述相控阵天线中各发射通道的幅度和/或相位一致。
  2. 根据权利要求1所述的方法,其特征在于,所述相控阵天线中与所述业务天线单元n耦合的所述N个校准天线单元中包括所述业务天线单元n所属天线子阵列对应的校准天线单元n;
    所述获取与所述业务天线单元n耦合的N个校准天线单元接收的N路耦合信号包括:
    获取所述业务天线单元n与所述校准天线单元n之间的第一耦合信号,根据所述第一耦合信号的信噪比,从所述相控阵天线中与所述业务天线单元n耦合的校准天线单元中确定出所述校准天线单元n之外的N-1个校准天线单元;
    获取所述N-1个校准天线单元接收到的N-1路耦合信号以得到包含所述第一耦合信号在内的N路耦合信号;
    其中,所述N个校准天线单元分别在时间t 0至t N-1与所述业务天线单元n耦合。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述相控阵天线中各发射通道对应的校准信号的幅度的差值,对所述各发射通道的幅度进行补偿包括:
    计算所述相控阵天线中各发射通道对应的校准信号的幅度差值,并在所述各发射通道内通过衰减器对所述各发射通道对应的校准信号进行幅度补偿,以使所述各发射通道对应的校准信号的幅度相等。
  4. 根据权利要求1或2所述的方法,其特征在于,所述根据所述相控阵天线中各发射 通道对应的校准信号的相位的差值,对所述各发射通道的相位进行补偿包括:
    计算所述相控阵天线中各发射通道对应的校准信号的相位差值,并在所述各发射通道内通过移相器对所述各发射通道对应的校准信号进行相位补偿,以使所述各发射通道对应的校准信号的相位相等。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述相控阵天线中任一天线子阵列对应的校准天线单元部署于所述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
  6. 根据权利要求5所述的方法,其特征在于,所述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与所述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
  7. 一种相控阵天线的校准方法,其特征在于,所述相控阵天线中包括多个业务天线单元以及独立于所述多个业务天线单元之外部署的多个校准天线单元,其中,所述多个业务天线单元基于所述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列,所述方法包括:
    通过如下步骤1至步骤3获取所述相控阵天线中任一接收通道i对应的校准信号的幅度和/或相位:
    步骤1:确定所述接收通道i对应的业务天线单元i与所述相控阵天线中的N个校准天线单元的N组相对位置,其中N大于或者等于2且小于或者等于所述相控阵天线中校准天线单元总数;
    步骤2:根据所述N组相对位置分别对馈入所述N个校准天线单元的N个测试信号进行时延加权以得到N路校准信号,所述N路校准信号经所述N个校准天线单元辐射,并由所述相控阵天线中的业务天线单元接收;
    步骤3:通过所述业务天线单元i接收所述N路校准信号并合路为一路时域上对齐的校准信号,记录所述时域上对齐的校准信号的幅度和/或相位以得到所述接收通道i对应的校准信号的幅度和/或相位;
    获取所述相控阵天线中所有接收通道对应的校准信号的幅度和/或相位;
    根据所述相控阵天线中各接收通道对应的校准信号的幅度和/或相位的差值,对所述各接收通道对应的各校准信号的幅度和/或相位进行补偿,以使所述相控阵天线中各接收通道的幅度和/或相位一致。
  8. 根据权利要求7所述的方法,其特征在于,所述确定所述接收通道i对应的业务天线单元i与所述相控阵天线中的N个校准天线单元的N组相对位置之前,所述方法还包括:
    确定所述业务天线单元i与其所属的天线子阵列中的校准天线单元i的距离;
    当所述业务天线单元i与所述校准天线单元i的距离大于或者等于预设距离阈值时,获取所述业务天线单元i与所述校准天线单元i之间的耦合信号;
    根据所述业务天线单元i与所述校准天线单元i之间的耦合信号的信噪比,从所述相控阵天线中包括的校准天线单元中确定出所述校准天线单元i之外的N-1个校准天线单元以得到包含所述校准天线单元i在内的N个校准天线单元;
    其中,所述N个校准天线单元分别在时间t 0至t N-1与所述业务天线单元i耦合。
  9. 根据权利要求7或8所述的方法,其特征在于,所述根据所述相控阵天线中各接收通道对应的校准信号的幅度的差值,对所述各接收通道对应的各校准信号的幅度进行补偿包括:
    计算所述相控阵天线中各接收通道对应的校准信号的幅度差值,并在所述各接收通道内通过衰减器对所述各接收通道对应的校准信号进行幅度补偿,以使所述各接收通道对应的校准信号的幅度相等。
  10. 根据权利要求7或8所述的方法,其特征在于,所述根据所述相控阵天线中各接收通道对应的校准信号的相位的差值,对所述各接收通道对应的各校准信号的相位进行补偿包括:
    计算所述相控阵天线中各接收通道对应的校准信号的相位差值,并在所述各接收通道内通过移相器对所述各接收通道对应的校准信号进行相位补偿,以使所述各接收通道对应的校准信号的相位相等。
  11. 根据权利要求7-10任一项所述的方法,其特征在于,所述相控阵天线中任一天线子阵列对应的校准天线单元部署于所述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
  12. 根据权利要求11所述的方法,其特征在于,所述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与所述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
  13. 一种终端,其特征在于,所述终端中包括相控阵天线,所述相控阵天线中包括多个业务天线单元以及独立于所述多个业务天线单元之外部署的多个校准天线单元,其中,所述多个业务天线单元基于所述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列,所述终端包括:
    信号处理单元,用于对所述相控阵天线中任一发射通道n发射的测试信号执行如下操作以获取所述发射通道n对应的校准信号:
    通过所述发射通道n发射任一测试信号,所述任一测试信号通过所述发射通道n对应的业务天线单元n辐射,并由所述相控阵天线中的校准天线单元接收;
    获取与所述业务天线单元n耦合的N个校准天线单元接收的N路耦合信号,其中N大于或者等于2且小于或者等于所述相控阵天线中校准天线单元总数;
    根据所述业务天线单元n与所述N个校准天线单元中各校准天线单元的相对位置, 对所述N路耦合信号进行时延加权以得到在时域上对齐的N路校准信号,将所述N路校准信号合路为所述发射通道n对应的校准信号;
    信号获取单元,用于获取所述信号处理单元得到的所述相控阵天线中所有发射通道对应的校准信号;
    信号补偿单元,用于根据所述信号获取单元获取的所述相控阵天线中各发射通道对应的校准信号的幅度和/或相位的差值,对所述各发射通道的幅度和/或相位进行补偿,以使所述相控阵天线中各发射通道的幅度和/或相位一致。
  14. 根据权利要求13所述的终端,其特征在于,所述相控阵天线中与所述业务天线单元n耦合的所述N个校准天线单元中包括所述业务天线单元n所属天线子阵列对应的校准天线单元n;
    所述信号处理单元用于:
    获取所述业务天线单元n与所述校准天线单元n之间的第一耦合信号,根据所述第一耦合信号的信噪比,从所述相控阵天线中与所述业务天线单元n耦合的校准天线单元中确定出所述校准天线单元n之外的N-1个校准天线单元;
    获取所述N-1个校准天线单元接收到的N-1路耦合信号以得到包含所述第一耦合信号在内的N路耦合信号;
    其中,所述N个校准天线单元分别在时间t 0至t N-1与所述业务天线单元n耦合。
  15. 根据权利要求13或14所述的终端,其特征在于,所述信号补偿单元用于:
    计算所述信号获取单元获取的所述相控阵天线中各发射通道对应的校准信号的幅度差值,并在所述各发射通道内通过衰减器对所述各发射通道对应的校准信号进行幅度补偿,以使所述各发射通道对应的校准信号的幅度相等。
  16. 根据权利要求13或14所述的终端,其特征在于,所述信号补偿单元用于:
    计算所述信号获取单元获取的所述相控阵天线中各发射通道对应的校准信号的相位差值,并在所述各发射通道内通过移相器对所述各发射通道对应的校准信号进行相位补偿,以使所述各发射通道对应的校准信号的相位相等。
  17. 根据权利要求13-16任一项所述的终端,其特征在于,所述相控阵天线中任一天线子阵列对应的校准天线单元部署于所述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
  18. 根据权利要求17所述的终端,其特征在于,所述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与所述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
  19. 一种终端,其特征在于,所述终端中包括相控阵天线,所述相控阵天线中包括多 个业务天线单元以及独立于所述多个业务天线单元之外部署的多个校准天线单元,其中,所述多个业务天线单元基于所述多个校准天线单元划分为多个天线子阵列,一个校准天线单元对应一个天线子阵列,所述终端包括:
    信号处理单元,用于通过如下步骤1至步骤3获取所述相控阵天线中任一接收通道i对应的校准信号的幅度和/或相位:
    步骤1:确定所述接收通道i对应的业务天线单元i与所述相控阵天线中的N个校准天线单元的N组相对位置,其中N大于或者等于2且小于或者等于所述相控阵天线中校准天线单元总数;
    步骤2:根据所述N组相对位置分别对馈入所述N个校准天线单元的N个测试信号进行时延加权以得到N路校准信号,所述N路校准信号经所述N个校准天线单元辐射,并由所述相控阵天线中的业务天线单元接收;
    步骤3:通过所述业务天线单元i接收所述N路校准信号并合路为一路时域上对齐的校准信号,记录所述时域上对齐的校准信号的幅度和/或相位以得到所述接收通道i对应的校准信号的幅度和/或相位;
    信号获取单元,用于获取所述信号处理单元得到的所述相控阵天线中所有接收通道对应的校准信号的幅度和/或相位;
    信号补偿单元,用于根据所述信号获取单元获取的所述相控阵天线中各接收通道对应的校准信号的幅度和/或相位的差值,对所述各接收通道对应的各校准信号的幅度和/或相位进行补偿,以使所述相控阵天线中各接收通道的幅度和/或相位一致。
  20. 根据权利要求19所述的终端,其特征在于,所述信号处理单元还用于:
    确定所述业务天线单元i与其所属的天线子阵列中的校准天线单元i的距离;
    当所述业务天线单元i与所述校准天线单元i的距离大于或者等于预设距离阈值时,获取所述业务天线单元i与所述校准天线单元i之间的耦合信号;
    根据所述业务天线单元i与所述校准天线单元i之间的耦合信号的信噪比,从所述相控阵天线中包括的校准天线单元中确定出所述校准天线单元i之外的N-1个校准天线单元以得到包含所述校准天线单元i在内的N个校准天线单元;
    其中,所述N个校准天线单元分别在时间t 0至t N-1与所述业务天线单元i耦合。
  21. 根据权利要求19或20所述的终端,其特征在于,所述信号补偿单元用于:
    计算所述相控阵天线中各接收通道对应的校准信号的幅度差值,并在所述各接收通道内通过衰减器对所述各接收通道对应的校准信号进行幅度补偿,以使所述各接收通道对应的校准信号的幅度相等。
  22. 根据权利要求19或20所述的终端,其特征在于,所述信号补偿单元用于:
    计算所述相控阵天线中各接收通道对应的校准信号的相位差值,并在所述各接收通道内通过移相器对所述各接收通道对应的校准信号进行相位补偿,以使所述各接收通道对应的校准信号的相位相等。
  23. 根据权利要求19-22任一项所述的终端,其特征在于,所述相控阵天线中任一天线子阵列对应的校准天线单元部署于所述任一天线子阵列包括的所有业务天线单元的中心位置或者***边缘位置。
  24. 根据权利要求23所述的终端,其特征在于,所述相控阵天线中的校准天线单元包括单极子天线单元,波导口天线单元,和/或其他与所述相控阵天线中的业务天线单元的辐射方向正交的天线单元。
PCT/CN2018/094804 2018-07-06 2018-07-06 相控阵天线的校准方法及相关装置 WO2020006748A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880095365.3A CN112385086B (zh) 2018-07-06 2018-07-06 相控阵天线的校准方法及相关装置
EP18925613.4A EP3790111B1 (en) 2018-07-06 2018-07-06 Method for calibrating phased-array antenna, and related apparatus
PCT/CN2018/094804 WO2020006748A1 (zh) 2018-07-06 2018-07-06 相控阵天线的校准方法及相关装置
US17/141,776 US11811147B2 (en) 2018-07-06 2021-01-05 Method for calibrating phased array antenna and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/094804 WO2020006748A1 (zh) 2018-07-06 2018-07-06 相控阵天线的校准方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/141,776 Continuation US11811147B2 (en) 2018-07-06 2021-01-05 Method for calibrating phased array antenna and related apparatus

Publications (1)

Publication Number Publication Date
WO2020006748A1 true WO2020006748A1 (zh) 2020-01-09

Family

ID=69059836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094804 WO2020006748A1 (zh) 2018-07-06 2018-07-06 相控阵天线的校准方法及相关装置

Country Status (4)

Country Link
US (1) US11811147B2 (zh)
EP (1) EP3790111B1 (zh)
CN (1) CN112385086B (zh)
WO (1) WO2020006748A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134629A (zh) * 2020-09-24 2020-12-25 合肥若森智能科技有限公司 一种简易相控阵卫星天线校准设备及方法
CN112886995A (zh) * 2021-01-19 2021-06-01 京东方科技集团股份有限公司 控制装置、天线的控制方法、接收机
CN112994808A (zh) * 2021-05-20 2021-06-18 成都天锐星通科技有限公司 一种射频信号内校准***及相控阵天线
CN113109634A (zh) * 2021-05-07 2021-07-13 北京和德宇航技术有限公司 天线测试方法、装置、终端设备、天线测试***及介质
CN114578144A (zh) * 2022-05-06 2022-06-03 成都瑞迪威科技有限公司 一种高效免对位的天线通道分布检测方法
CN114915356A (zh) * 2021-02-08 2022-08-16 周锡增 相位阵列天线校正方法
CN115396050A (zh) * 2022-07-12 2022-11-25 北京卫星信息工程研究所 一种分布式阵内耦合并行相控阵天线校准***与方法
CN115561531A (zh) * 2022-11-10 2023-01-03 成都华芯天微科技有限公司 一种相控阵天线多波束通道校准***
CN116827454A (zh) * 2023-08-30 2023-09-29 北京星河动力装备科技有限公司 相控阵天线及其校准方法、运载火箭
EP4262110A4 (en) * 2020-12-30 2024-01-31 Huawei Technologies Co., Ltd. ANTENNA CALIBRATION METHOD AND SYSTEM

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113726452B (zh) * 2021-08-25 2022-08-16 中国电子科技集团公司第五十四研究所 一种数模混合相控阵天线自动校准方法
CN115754488B (zh) * 2021-10-15 2024-01-05 南京捷希科技有限公司 一种天线校准方法、装置及存储介质
CN113992278B (zh) * 2021-12-30 2022-04-08 上海莱天通信技术有限公司 一种反射式相控阵天线的校准测试方法及装置
CN114252854B (zh) * 2021-12-31 2023-05-30 齐鲁空天信息研究院 一种相控阵天线自检方法及***
CN114465675B (zh) * 2022-04-12 2022-08-16 成都雷电微力科技股份有限公司 一种适用于拼阵的相控阵天线的校准方法
CN115733563A (zh) * 2022-08-29 2023-03-03 电子科技大学 一种大规模可扩展相控阵天线的在线相位校准方法
CN115882979B (zh) * 2022-11-30 2024-07-09 中国电子科技集团公司第二十九研究所 一种多信道相控阵天线收发时延实时自标定方法
CN117749287B (zh) * 2024-02-19 2024-05-03 成都恪赛科技有限公司 一种相控阵天线校准装置及方法
CN117978302B (zh) * 2024-04-01 2024-06-04 北京国信航宇科技有限公司 一种相控阵天线的标定方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384989A (zh) * 1999-10-26 2002-12-11 西门子公司 在无线通信***中校准电子相控的多振子天线的方法
JP5938114B1 (ja) * 2015-01-13 2016-06-22 日本電信電話株式会社 アンテナ装置と位相調整方法
CN106990394A (zh) * 2017-02-27 2017-07-28 中国电子科技集团公司第二十七研究所 一种平面或柱面相控阵雷达中天线单元的幅相校准方法
CN108155958A (zh) * 2017-11-22 2018-06-12 西南电子技术研究所(中国电子科技集团公司第十研究所) 大规模mimo天线阵列远场校准***

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1039217A (en) 1974-07-01 1978-09-26 Willy J. Grundherr Rotary wheel printing system
US5175558A (en) * 1992-02-10 1992-12-29 Trw Inc. Nulling system for constraining pulse jammer duty factors
US6157343A (en) 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
US6208287B1 (en) 1998-03-16 2001-03-27 Raytheoncompany Phased array antenna calibration system and method
US6133868A (en) * 1998-06-05 2000-10-17 Metawave Communications Corporation System and method for fully self-contained calibration of an antenna array
US6983127B1 (en) * 2001-07-31 2006-01-03 Arraycomm, Inc. Statistical calibration of wireless base stations
JP2003218621A (ja) 2002-01-21 2003-07-31 Nec Corp アレーアンテナの校正装置及び校正方法
CN100488091C (zh) * 2003-10-29 2009-05-13 中兴通讯股份有限公司 应用于cdma***中的固定波束成形装置及其方法
GB0327041D0 (en) * 2003-11-21 2003-12-24 Roke Manor Research Apparatus and methods
US7869828B2 (en) * 2003-12-31 2011-01-11 Zte Corporation Adjust equipment and method for array antenna transmission link
WO2006070478A1 (ja) * 2004-12-28 2006-07-06 Fujitsu Limited 無線通信システム
JP4478606B2 (ja) * 2005-05-19 2010-06-09 富士通株式会社 リニアアレイアンテナの校正装置及び校正方法
CN101064902B (zh) * 2006-04-25 2010-11-10 大唐移动通信设备有限公司 实时校准智能天线的方法
KR20090074812A (ko) * 2006-10-26 2009-07-07 퀄컴 인코포레이티드 빔 형성기를 이용한 다중 입력 다중 출력을 위한 중계기 기술
WO2009027723A1 (en) 2007-08-31 2009-03-05 Bae Systems Plc Antenna calibration
EP2183820A1 (en) * 2007-08-31 2010-05-12 BAE Systems PLC Antenna calibration
US7714775B2 (en) 2007-12-17 2010-05-11 The Boeing Company Method for accurate auto-calibration of phased array antennas
IL188507A (en) * 2007-12-31 2012-06-28 Elta Systems Ltd Phased array antenna having integral calibration network and method for measuring calibration ratio thereof
US8212716B2 (en) * 2007-12-31 2012-07-03 Elta Systems Ltd. System and method for calibration of phased array antenna having integral calibration network in presence of an interfering body
JP5051385B2 (ja) * 2008-05-16 2012-10-17 日本電気株式会社 アレーアンテナを用いた無線通信装置、その校正方法、及び無線通信基地局システム
CN102780518B (zh) * 2011-05-09 2014-12-03 华为技术有限公司 校准天线增益的方法和装置
CN102412441A (zh) * 2011-09-02 2012-04-11 中国电子科技集团公司第十研究所 相控阵天线矢量平均校准方法
CN102386983B (zh) * 2011-10-17 2013-02-13 中国舰船研究设计中心 船舶大型阵列天线间电磁耦合反衍预测方法
CN104426615B (zh) * 2013-08-26 2016-12-28 北京信威通信技术股份有限公司 一种并联组合智能天线校准耦合装置和方法
CN103997352B (zh) * 2014-05-14 2016-02-24 电信科学技术研究院 有源天线相关设备、***及收发校准方法
CN104917574B (zh) * 2015-04-24 2017-09-22 国网冀北电力有限公司电力科学研究院 短距离电力通信用无线通信测试***自校准方法
CN204857954U (zh) * 2015-08-06 2015-12-09 中国电子科技集团公司第三十八研究所 一种Ka频段宽角扫描相控阵天线
JP6955484B2 (ja) * 2015-09-10 2021-10-27 ブルー ダニューブ システムズ, インク.Blue Danube Systems, Inc. アクティブアレイ較正
CN105390814B (zh) * 2015-10-18 2018-06-26 中国电子科技集团公司第十研究所 具有内校准网络的有源相控阵天线
CN105259544B (zh) * 2015-10-31 2017-09-15 零八一电子集团有限公司 有源相控阵雷达t/r组件幅相测试***
CA2946011C (en) * 2016-10-21 2023-01-24 C-Com Satellite Systems Inc. Method and apparatus for phased antenna array calibration
CN106850037B (zh) * 2016-12-21 2019-08-09 西安空间无线电技术研究所 一种具有校准收发通道的多通道收发时延实时监测***及方法
CN107329125B (zh) * 2017-06-01 2020-09-22 西南电子技术研究所(中国电子科技集团公司第十研究所) 消除短时突发干扰信号的自闭环校准方法
CN107315183B (zh) * 2017-06-01 2020-06-26 西南电子技术研究所(中国电子科技集团公司第十研究所) 导航卫星阵列天线接收***的校准方法
CN107092013B (zh) * 2017-06-22 2023-11-21 浙江宜通华盛科技有限公司 相控阵天气雷达接收、发射通道检测方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384989A (zh) * 1999-10-26 2002-12-11 西门子公司 在无线通信***中校准电子相控的多振子天线的方法
JP5938114B1 (ja) * 2015-01-13 2016-06-22 日本電信電話株式会社 アンテナ装置と位相調整方法
CN106990394A (zh) * 2017-02-27 2017-07-28 中国电子科技集团公司第二十七研究所 一种平面或柱面相控阵雷达中天线单元的幅相校准方法
CN108155958A (zh) * 2017-11-22 2018-06-12 西南电子技术研究所(中国电子科技集团公司第十研究所) 大规模mimo天线阵列远场校准***

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134629A (zh) * 2020-09-24 2020-12-25 合肥若森智能科技有限公司 一种简易相控阵卫星天线校准设备及方法
EP4262110A4 (en) * 2020-12-30 2024-01-31 Huawei Technologies Co., Ltd. ANTENNA CALIBRATION METHOD AND SYSTEM
CN112886995A (zh) * 2021-01-19 2021-06-01 京东方科技集团股份有限公司 控制装置、天线的控制方法、接收机
CN114915356A (zh) * 2021-02-08 2022-08-16 周锡增 相位阵列天线校正方法
CN113109634A (zh) * 2021-05-07 2021-07-13 北京和德宇航技术有限公司 天线测试方法、装置、终端设备、天线测试***及介质
WO2022242492A1 (zh) * 2021-05-20 2022-11-24 成都天锐星通科技有限公司 一种射频信号内校准***及相控阵天线
CN112994808A (zh) * 2021-05-20 2021-06-18 成都天锐星通科技有限公司 一种射频信号内校准***及相控阵天线
CN114578144B (zh) * 2022-05-06 2022-07-19 成都瑞迪威科技有限公司 一种高效免对位的天线通道分布检测方法
CN114578144A (zh) * 2022-05-06 2022-06-03 成都瑞迪威科技有限公司 一种高效免对位的天线通道分布检测方法
CN115396050A (zh) * 2022-07-12 2022-11-25 北京卫星信息工程研究所 一种分布式阵内耦合并行相控阵天线校准***与方法
CN115396050B (zh) * 2022-07-12 2024-07-09 北京卫星信息工程研究所 一种分布式阵内耦合并行相控阵天线校准***与方法
CN115561531A (zh) * 2022-11-10 2023-01-03 成都华芯天微科技有限公司 一种相控阵天线多波束通道校准***
CN116827454A (zh) * 2023-08-30 2023-09-29 北京星河动力装备科技有限公司 相控阵天线及其校准方法、运载火箭
CN116827454B (zh) * 2023-08-30 2024-01-09 北京星河动力装备科技有限公司 相控阵天线及其校准方法、运载火箭

Also Published As

Publication number Publication date
US11811147B2 (en) 2023-11-07
US20210126362A1 (en) 2021-04-29
CN112385086B (zh) 2021-08-20
EP3790111B1 (en) 2022-03-02
EP3790111A1 (en) 2021-03-10
CN112385086A (zh) 2021-02-19
EP3790111A4 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
WO2020006748A1 (zh) 相控阵天线的校准方法及相关装置
US11177567B2 (en) Antenna array calibration systems and methods
US20230261373A1 (en) Antenna array calibration systems and methods
US11522501B2 (en) Phased array amplifier linearization
TWI634759B (zh) 在相位天線陣列中用以產生具有較寬波束寬度之波束場型的方法和裝置
RU2147753C1 (ru) Калибровка антенной решетки
US20220069477A1 (en) Antenna device and radar apparatus
KR20110007207A (ko) 위상 어레이 안테나의 전파 주파수 경로들을 교정하는 방법
US11349208B2 (en) Antenna apparatus with switches for antenna array calibration
KR20160126355A (ko) 안테나 장치 및 그 빔포밍 방법
US9294176B2 (en) Transmitter
CN113036456A (zh) 一种天线装置及相关设备
US20190326664A1 (en) Compact Combiner for Phased-Array Antenna Beamformer
JP3285022B2 (ja) 適応アレーアンテナ装置
US10009073B2 (en) System for acquiring channel knowledge and method thereof
JP3899062B2 (ja) アンテナ装置及びその制御方法
JPH1168443A (ja) ディジタルビームフォーミングアンテナ装置
JP3832234B2 (ja) アンテナ装置およびそのアンテナの測定方法
CN215120797U (zh) 用于校准天线阵列中的信道的***
JP2023548192A (ja) 無線送受信装置およびそのビーム形成方法
US11081791B2 (en) Wireless communication device, control method, and program
JP3736735B2 (ja) アダプティブアレーアンテナ
JP7350961B1 (ja) 受電装置、受信装置、端末装置、無線電力伝送システム及び通信システム
Li A simple and efficient on-board calibration method of satellite phased array antenna
JP2993510B2 (ja) フェーズドアレイアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018925613

Country of ref document: EP

Effective date: 20201201

NENP Non-entry into the national phase

Ref country code: DE