WO2020019319A1 - 云台的控制方法及控制装置、云台、移动小车 - Google Patents

云台的控制方法及控制装置、云台、移动小车 Download PDF

Info

Publication number
WO2020019319A1
WO2020019319A1 PCT/CN2018/097559 CN2018097559W WO2020019319A1 WO 2020019319 A1 WO2020019319 A1 WO 2020019319A1 CN 2018097559 W CN2018097559 W CN 2018097559W WO 2020019319 A1 WO2020019319 A1 WO 2020019319A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
attitude
preset
gimbal
component
Prior art date
Application number
PCT/CN2018/097559
Other languages
English (en)
French (fr)
Inventor
刘帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039845.8A priority Critical patent/CN110914781A/zh
Priority to PCT/CN2018/097559 priority patent/WO2020019319A1/zh
Publication of WO2020019319A1 publication Critical patent/WO2020019319A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions

Definitions

  • the present application relates to the technical field of gimbal control, and in particular, to a control method and control device for a gimbal, a gimbal, and a mobile cart.
  • the three-axis head includes a yaw axis, a roll axis, and a pitch axis.
  • the two-axis gimbal includes two axes: yaw axis, roll axis and pitch axis.
  • the single-axis gimbal includes one of a yaw axis, a roll axis, and a pitch axis.
  • a two-axis gimbal only needs to control two axes
  • a single-axis gimbal only needs to control one axis.
  • the The axis performs output control. Therefore, in this case, output control of an axis that does not exist easily causes control saturation, and affects the output control of other axes in the gimbal, which is not conducive to the attitude control of the gimbal.
  • Embodiments of the present application provide a control method and control device for a PTZ, a PTZ, and a mobile cart.
  • This application provides a control method for a pan / tilt, the control method includes:
  • the measurement attitude includes a measurement component of a preset axis, and the preset axis is an axis in the pan / tilt head that does not require attitude control;
  • the difference between the measured component of the preset axis and the expected component of the preset axis in the desired attitude of the gimbal is controlled to be within a preset difference range.
  • the control method of the gimbal makes the difference between the measured component and the desired component of the preset axis within a preset difference range, so that the influence of the output of the preset axis on the attitude control of the gimbal can be avoided, thereby avoiding control Saturated situation.
  • the control device includes one or more processors, which work individually or collectively, and the processor is electrically connected to the pan / tilt head.
  • the processor is used for:
  • the measurement attitude includes a measurement component of a preset axis, and the preset axis is an axis in the pan / tilt head that does not require attitude control;
  • the difference between the measured component of the preset axis and the expected component of the preset axis in the desired attitude of the gimbal is controlled to be within a preset difference range.
  • the control device of the gimbal makes the difference between the measured component and the desired component of the preset axis within a preset difference range, so that the influence of the output of the preset axis on the control of the attitude of the gimbal can be avoided, thereby avoiding control Saturated situation.
  • the present application provides a pan / tilt head, including the control device according to the foregoing embodiment.
  • the difference between the measured component and the expected component of the preset axis is within a preset difference range, so that the influence of the output of the preset axis on the attitude control of the gimbal can be avoided, thereby avoiding the situation of control saturation.
  • the present application provides a mobile cart including the pan / tilt head according to the foregoing embodiment, and the pan / tilt head is disposed on a body of the mobile cart.
  • the moving trolley according to the embodiment of the present application enables the difference between the measured component and the expected component of the preset axis to be within a preset difference range. This can reduce the influence of the output of the preset axis on the attitude control of the gimbal, thereby avoiding the situation of control saturation. .
  • FIG. 1 is a schematic flowchart of a control method for a pan / tilt according to an embodiment of the present application
  • FIG. 2 is another schematic flowchart of a control method for a pan / tilt according to an embodiment of the present application
  • FIG. 3 is another schematic flowchart of a control method for a pan / tilt according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a module of a pan / tilt according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a pan / tilt according to an embodiment of the present application.
  • FIG. 6 is a schematic block diagram of a mobile cart according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, the meaning of "a plurality" is two or more, unless specifically defined otherwise.
  • connection should be understood in a broad sense unless explicitly stated and limited otherwise.
  • they may be fixed connections or removable.
  • Connection, or integral connection can be mechanical, electrical, or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements relationship.
  • connection, or integral connection can be mechanical, electrical, or can communicate with each other; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements relationship.
  • the control method of the pan / tilt according to the embodiment of the present application may be implemented by the control device 10 of the pan / tilt according to the embodiment of the present application and applied to the mobile cart 100 according to the embodiment of the present application.
  • the control methods of the PTZ include:
  • Step S10 Obtain a measurement attitude of the gimbal 20, the measurement attitude includes a measurement component of a preset axis, and the preset axis is an axis in the gimbal 20 that does not require attitude control;
  • Step S20 Control the difference between the measured component of the preset axis and the expected component of the preset axis in the desired attitude of the gimbal 20 to be within a preset difference range.
  • the control method of the pan / tilt makes the difference between the measured component and the expected component of the preset axis within a preset difference range, so that the influence of the output of the preset axis on the attitude control of the pan / tilt 20 can be reduced, thereby avoiding the occurrence of Control saturation.
  • the pan / tilt head 20 includes a preset axis and an adjustable axis (where the pan / tilt head 20 includes a preset axis, which does not mean that a preset axis exists in the structural entity of the pan / tilt head 20).
  • the attitude of the gimbal 20 includes a component of a preset axis and a component of an adjustable axis.
  • the preset axis is an axis having no degrees of freedom in the gimbal 20, that is, no attitude control is required.
  • the inability to control the adjustable axis of the gimbal 20 can be understood as the inability to control the rotation of the adjustable axis arm.
  • the expected component of the preset axis is usually set to zero.
  • the measured component of the preset axis is large, the total angular error calculated from the measured attitude and the expected attitude of the gimbal 20 will be very large, resulting in The conditions of the small-angle approximation are not satisfied, and thus the small-angle approximation cannot be used to process the measured attitude and the desired attitude.
  • the preset axis is an axis that does not require attitude control, when performing the attitude control of the gimbal 20, the components of each axis in the attitude measurement will still be actually measured, so the difference between the measured attitude and the desired attitude is controlled.
  • the error output is saturated, making the adjustable axis of the gimbal 20 unable to control or not Good, that is, the situation of control saturation.
  • keeping the difference between the measured component and the expected component of the preset axis within the preset difference range can reduce the total angular error between the measured attitude and the desired attitude, avoiding the original angular error meeting the condition of small angle approximation, and
  • the condition of small angle approximation can be used to deal with the case where the measurement attitude and the desired posture cannot be used, and at the same time, the error output saturation is effectively avoided, so that the adjustable axis of the gimbal 20 can be controlled. In this way, the situation where the control head 20 is saturated is avoided.
  • the attitude of the gimbal 20 can be expressed by a quaternion or Euler angle, and the quaternion and the Euler angle can be converted to each other through corresponding formulas. It can be understood that the attitude is expressed in the form of quaternion or Euler angle, and the conversion relationship between the quaternion and Euler angle formula can refer to the related technology of PTZ attitude control. The specific calculation process is not detailed here. Expand.
  • the measurement attitude is obtained by real-time measurement.
  • the desired attitude can be set by the user or set by default, and can be manually input by the user.
  • the measurement attitude and desired attitude of the pan / tilt head 20 are represented by a quaternion, and the measurement attitude and desired attitude of the pan / tilt head are converted from a quaternion to an Euler angle, and a preset axis measurement can be obtained.
  • Component and expected component may include zero, a preset value, and a range between zero and the preset value.
  • the preset value can be specifically set according to the control accuracy.
  • the gimbal 20 may be a stabilization device and a support device for mounting and fixing a load 110 such as a camera, a sensor, or a shooting device.
  • the head 20 can be a single-axis head, a two-axis head, or a three-axis head.
  • This embodiment further uses the pan / tilt 20 as a three-axis pan / tilt as an example.
  • the gimbal 20 may include a yaw axis arm 21, a roll axis arm 23, a pitch axis axis arm 25, and a yaw axis motor 22 for controlling the rotation of the yaw axis axis arm 21.
  • the yaw is controlled correspondingly by the yaw axis motor 22, the roll axis motor 24, and the pitch axis motor 26
  • the axis arm 21, the roll axis arm 23, and the pitch axis axis arm 25 are rotated, so that the attitude control of the gimbal 20 can be realized.
  • the three-axis head can be used as a two-axis head or a single-axis head.
  • the roll axis of the three-axis head is a preset axis, that is, the roll axis motor 24 is locked, and the roll axis arm 23 cannot rotate.
  • control method further includes:
  • Step S30 Control the attitude of the gimbal 20 according to the measured attitude and the desired attitude.
  • step S30 includes:
  • Step S32 Determine the attitude difference between the desired attitude and the measured attitude
  • Step S34 The adjustable axis of the PTZ 20 is controlled to meet a desired component of the adjustable axis in the desired attitude according to the attitude difference, and the adjustable axis is an axis in the PTZ 20 that requires attitude control.
  • the measurement attitude of the pan / tilt head 20 is converted from quaternion to Euler angle to obtain the measurement component of the preset axis
  • the desired attitude of the pan / tilt head 20 is converted from quaternion to Euler angle to obtain the preset axis.
  • Desired measurement component By changing the measurement component or the desired component of the preset axis, the difference between the measured component of the preset axis and the expected component of the preset axis in the desired attitude of the head 20 is controlled to be within a preset difference range. Then, the changed component of the preset axis expressed in Euler angles and the measured component of the adjustable axis are converted into the actually adopted measurement attitude expressed in quaternion.
  • the difference in attitude between the desired attitude and the actual measurement attitude can be obtained.
  • the adjustable axis is the axis that needs attitude control in the gimbal 20, that is, the adjustable axis shaft arm can be controlled to rotate. In this way, the deviation between the measured component of the preset axis in the measurement attitude and the expected component of the preset axis in the desired attitude can be effectively prevented from causing an excessive deviation, which will affect the control of the adjustable axis in the gimbal 20.
  • step S34 includes: processing the attitude difference using a condition of small angle approximation to control the adjustable axis of the gimbal 20 to meet a desired component of the adjustable axis in the desired attitude.
  • the small angle approximation formula is used to convert the attitude difference qerr into the angular errors ang-err-x, ang-err-y, and ang-err-z of the three coordinate axes XYZ on the body coordinate system. Since the angle difference between the three coordinate axes XYZ is proportional to the expected body angular velocity, the angle difference between the three coordinate axes XYZ can be converted from the body coordinate system to the joint coordinate system (such as the base of the gimbal) through the inverse Jacobian matrix. 30 is the reference coordinate system established) to obtain the desired joint angular velocity.
  • the small-angle approximation formula is: When [theta] is less than 5 degrees, there sin ⁇ , cos ⁇ 1- ⁇ 2/2 , tan ⁇ .
  • the total angular error can be reduced (the total angular error includes the angular errors of the three coordinate axes XYZ on the body coordinate system ang-err-x , Ang-err-y, and ang-err-z), so that the angle error can satisfy the condition of small angle approximation, use the condition of small angle approximation to process the desired attitude and measurement attitude, and realize
  • the axis adjustment control avoids the error output saturation, so that the adjustable axis of the gimbal 20 can be better controlled.
  • the condition of the small angle approximation can be used to process the desired attitude and the measurement attitude when the condition of the small angle approximation can be used, and the processing method of the desired attitude and the measurement attitude is increased.
  • the three coordinate axes X, Y, and Z correspond to the pitch axis, the roll axis, and the yaw axis, respectively.
  • step S20 includes: controlling the measurement component of the preset axis to be equal to the expected component of the preset axis in the desired attitude of the gimbal 20.
  • the preset axis is an axis with no degrees of freedom in the gimbal 20 and no attitude control is required.
  • the measurement component of the preset axis and the desired attitude of the PTZ 20 can be controlled.
  • the difference in the expected component of the preset axis is within a preset difference range.
  • the measured component of the control preset axis is equal to the expected component of the preset axis in the desired attitude of the gimbal 20, that is, the difference between the measured component of the preset axis and the expected component of the preset axis in the desired attitude of the gimbal 20 Is zero.
  • a desired component of a preset axis in a desired attitude of the head 20 may be adjusted to a measurement component of the preset axis.
  • the measurement component of the preset axis may also be adjusted to the desired component of the preset axis in the desired attitude of the head 20.
  • the expected component of the preset axis is zero.
  • the PTZ 20 may include a preset axis, that is, a preset axis exists in a structural entity of the PTZ 20. At this time, the relative attitude of the preset axis and the base 30 of the gimbal remains unchanged. In other words, the relative attitude of the preset shaft arm and the base 30 of the gimbal remains unchanged.
  • the head 20 is a three-axis head
  • one of the axes can be used as a preset axis, and the other two axes can be used as adjustable axes.
  • the three-axis head can be used as a two-axis head.
  • a three-axis head can also be one of the two axes as a preset axis and the other axis as an adjustable axis.
  • the three-axis head can be used as a single-axis head.
  • the preset axis may include a roll axis.
  • the Inertial Measurement Unit may include three single-axis accelerometers and three single-axis gyroscopes.
  • the accelerometer can detect the acceleration signals of the three axes of the gimbal 20 in the body coordinate system, and the gyroscope detects the angular velocity signals of the gimbal 20 relative to the body coordinate system.
  • the inertial measurement unit measures the angular velocity and acceleration of the gimbal 20 in the three-dimensional space, and the measurement attitude of the gimbal 20 can be calculated by integrating.
  • the control device 10 of the pan / tilt includes one or more processors 12, which work individually or collectively, and the processors 12 are electrically connected to the pan / tilt 20.
  • the control device 10 of the pan / tilt head may include a memory 14, and the memory 14 may include a volatile memory (such as a random-access memory (RAM); the memory 14 may also include a non-volatile memory (non- volatile memory, such as flash memory, hard disk drive (HDD), or solid-state drive (SSD); used to store program instructions.
  • the processor 12 may call a program instruction to implement a corresponding control method of the PTZ.
  • steps S10 and S20 of the control method for a pan / tilt according to the embodiment of the present application may be implemented by the processor 12.
  • the processor 12 is configured to control the attitude of the pan / tilt head 20 according to the measured attitude and the desired attitude.
  • step S30 of the control method of the pan / tilt can be implemented by the processor 12.
  • the processor 12 is configured to: determine the attitude difference between the desired attitude and the measured attitude; and control the adjustable axis of the pan / tilt 20 according to the attitude difference to meet a desired component of the adjustable axis in the desired attitude.
  • the adjustable axis is The axis in the gimbal 20 requiring attitude control.
  • steps S32 and S34 of the control method of the pan / tilt can be implemented by the processor 12.
  • the processor 12 is configured to control that a measurement component of the preset axis is equal to a desired component of the preset axis in a desired attitude of the gimbal 20.
  • the processor 12 is configured to adjust a desired component of a preset axis in a desired attitude of the gimbal 20 to a measurement component of the preset axis.
  • the processor 12 is configured to adjust a measurement component of the preset axis to a desired component of the preset axis in a desired attitude of the gimbal 20.
  • the desired component of the preset axis is zero.
  • the gimbal 20 is not provided with a preset axis.
  • the head 20 includes a preset axis, and the relative attitude of the preset axis and the base 30 of the head remains unchanged.
  • the processor 12 before the difference between the measured component of the control preset axis and the expected component of the preset axis in the desired attitude of the gimbal is within the preset difference range, the processor 12 is configured to: lock the preset axis so that the Let the relative attitude of the axis and the base of the gimbal remain unchanged.
  • the processor 12 is further configured to: unlock the preset axis to enable the preset axis to perform attitude control.
  • the preset axis includes a roll axis.
  • the head 20 includes a single-axis head, a two-axis head, or a three-axis head.
  • the measured attitude is obtained using an inertial measurement unit.
  • the gimbal 20 may include a control device 10 for the gimbal.
  • the gimbal 20 includes a shaft assembly 210, one or more processors 12, and a memory 14.
  • the processor 12 is electrically connected to the shaft assembly 210, and one or more processors 12 work individually or collectively to implement the control method of the gimbal of the above-mentioned embodiment.
  • the gimbal 20 of the embodiment of the present application keeps the difference between the measured component and the expected component of the preset axis within a preset difference range, so that the influence of the output of the preset axis on the attitude control of the gimbal 20 can be avoided, thereby avoiding control saturation. Case.
  • the head 20 may include a single-axis head, a two-axis head, or a three-axis head.
  • the gimbal 20 is connected to a base 30 of the gimbal.
  • This embodiment further uses the pan / tilt 20 as a three-axis pan / tilt as an example.
  • the axis assembly 210 includes a yaw axis axis arm 21, a roll axis axis arm 23, a pitch axis axis arm 25, and a yaw axis motor for controlling the rotation of the yaw axis axis arm 21. 22.
  • the rotation of the shaft arm 25 can control the attitude of the three-axis head.
  • the three-axis head can be used as a two-axis head or a single-axis head.
  • the roll axis of the three-axis gimbal is a preset axis, that is, the roll axis motor 24 is locked, and the roll axis arm 23 cannot rotate.
  • Controlling the difference between the measured component and the expected component of the preset axis of the gimbal 20 is within the preset difference range, which can reduce the total angular error, thereby making it possible for the angular error to meet the conditions of the small angle approximation and In the condition, a small angle approximation is used to process the desired attitude and the measured attitude, and at the same time, the error output saturation is avoided, and the adjustable axis of the gimbal 20 can be controlled. In this way, the situation where the control head 20 is saturated is avoided.
  • the pan / tilt 20 may be equipped with a load 110, and the load 110 may be an image capturing device or an imaging device (such as a camera, a camcorder, an infrared camera, an ultraviolet camera, or the like), audio Capturing devices (eg, parabolic reflective microphones), infrared camera equipment, shooting devices, etc., the load 110 may provide static sensing data (such as pictures) or dynamic sensing data (such as videos).
  • the attitude of the load 110 can be controlled by the head 20.
  • the mobile cart 100 includes the pan / tilt head 20 of the foregoing embodiment.
  • the pan / tilt 20 is disposed on the body of the mobile cart 100.
  • the moving cart 100 further includes a shooting device 40, and the shooting device 40 is placed on the gimbal 20.
  • the difference between the measured component and the expected component of the preset axis is within a preset difference range, so that the situation of control saturation can be avoided, thereby reducing the attitude control of the output of the preset axis to the head 20 Impact.
  • the gimbal 20 is disposed on the body of the mobile cart 100 through the base 30 of the gimbal, and the shooting device 40 is disposed on the gimbal 20.
  • the mobile dolly 100 can control the attitude of the shooting device 40 through the control device 10 of the gimbal to control the attitude of the gimbal 20.
  • the gimbal 20 may be a two-axis gimbal.
  • the adjustable axes include a yaw axis and a pitch axis, and the preset axis is a roll axis.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for performing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present application includes additional execution, which may not be performed in the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a ordered list of executable instructions that may be considered to perform a logical function may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the present application may be executed by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be performed by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a logic gate circuit having a logic function for performing a logic function on a data signal
  • PGA programmable gate arrays
  • FPGA field programmable gate arrays
  • a person of ordinary skill in the art can understand that performing all or part of the steps carried by the foregoing implementation method can be completed by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium, and the program is executing , Including one or a combination of steps of a method embodiment.
  • each functional unit in each embodiment of the present application may be integrated in one processing module, or each unit may exist separately physically, or two or more units may be integrated in one module.
  • the above integrated modules can be executed in the form of hardware or software functional modules. When the integrated module is executed in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)

Abstract

一种云台的控制方法,包括:获取该云台的测量姿态,该测量姿态包括预设轴的测量分量,该预设轴为该云台中不需要姿态控制的轴;控制该预设轴的测量分量与该云台的期望姿态中该预设轴的期望分量的差异在预设差异范围。通过该控制方法,可以减少预设轴的输出对云台的姿态控制的影响,避免出现控制饱和的情况。还包括一种云台的控制装置、包括该控制装置的云台和包括该云台的移动小车。

Description

云台的控制方法及控制装置、云台、移动小车 技术领域
本申请涉及云台控制技术领域,特别涉及一种云台的控制方法及控制装置、云台、移动小车。
背景技术
在相关技术中,三轴云台包括有偏航(yaw)轴、横滚(roll)轴及俯仰(pitch)轴。两轴云台则包括偏航轴、横滚轴及俯仰轴中的两个轴。单轴云台包括偏航轴、横滚轴及俯仰轴中的一个轴。然而,例如,两轴云台只需要控制两个轴,单轴云台只需要控制一个轴,但在对两轴云台或单轴云台做姿态控制时,依然会对云台中不存在的轴进行输出控制。因此,在此种情况下,对原本不存在的轴进行输出控制容易造成控制饱和,而影响云台中其它存在的轴的输出控制,不利于云台的姿态控制。
发明内容
本申请的实施方式提供一种云台的控制方法及控制装置、云台、移动小车。
本申请提供一种云台的控制方法,所述控制方法包括:
获取所述云台的测量姿态,所述测量姿态包括预设轴的测量分量,所述预设轴为所述云台中不需要姿态控制的轴;
控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围。
本申请实施方式的云台的控制方法,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以减少预设轴的输出对云台的姿态控制的影响,从而避免出现控制饱和的情况。
本申请提供一种云台的控制装置,所述控制装置包括一个或多个处理器,单独地或共同地工作,所述处理器与所述云台电连接;所述处理器用于:
获取所述云台的测量姿态,所述测量姿态包括预设轴的测量分量,所述预设轴为所述云台中不需要姿态控制的轴;
控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围。
本申请实施方式的云台的控制装置,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以减少预设轴的输出对云台姿态的控制的影响,从而避免出现控制饱和的 情况。
本申请提供一种云台,包括上述实施方式所述的控制装置。
本申请实施方式的云台,使预设轴的测量分量和期望分量的的差异在预设差异范围,这样可以减少预设轴的输出对云台姿态控制的影响,从而避免出现控制饱和的情况。
本申请提供一种移动小车,包括上述实施方式所述的云台,所述云台设置在所述移动小车的机身上。
本申请实施方式的移动小车,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以减少预设轴的输出对云台的姿态控制的影响,从而避免出现控制饱和的情况。
本申请的实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实施方式的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的云台的控制方法的流程示意图;
图2是本申请实施方式的云台的控制方法的又一流程示意图;
图3是本申请实施方式的云台的控制方法的另一流程示意图;
图4是本申请实施方式的云台的模块示意图;
图5是本申请实施方式的云台的结构示意图;
图6是本申请实施方式的移动小车的模块示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通信;可以是直接相连,也可以通过中间媒介 间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
请参阅图1至图6,本申请实施方式的云台的控制方法可由本申请实施方式的云台的控制装置10实现,并应用于本申请实施方式的移动小车100。云台的控制方法包括:
步骤S10:获取云台20的测量姿态,测量姿态包括预设轴的测量分量,预设轴为云台20中不需要姿态控制的轴;
步骤S20:控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量的差异在预设差异范围。
本申请实施方式的云台的控制方法,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以减少预设轴的输出对云台20的姿态控制的影响,从而避免出现控制饱和的情况。
可以理解,云台20包括预设轴和可调轴(其中,云台20包括预设轴,并不意味着云台20的结构实体中存在预设轴)。云台20的姿态包括预设轴的分量和可调轴的分量。其中个,预设轴为云台20中没有自由度的轴,即不需要进行姿态控制。云台20的可调轴无法控制可以理解为无法控制可调轴轴臂转动。在实际应用中,通常设置预设轴的期望分量为零,当预设轴的测量分量较大时,由云台20的测量姿态和期望姿态计算得到的总角度误差就会很大,从而导致不满足小角度近似的条件,进而无法使用小角度近似条件对测量姿态和期望姿态进行处理。同时,由于预设轴为不需要进行姿态控制的轴,那么在进行云台20的姿态控制时,由于姿态测量中各个轴的分量仍会实际测量,从而在进行测量姿态与期望姿态的差异控制时,仍会存在根据测量姿态中预设轴的测量分量和期望姿态中预设轴的期望分量偏差过大的情况,而导致误差输出饱和,使得云台20的可调轴无法控制或控制不佳,即出现控制饱和的情况。在本申请中,使预设轴的测量分量和期望分量的差异保持在预设差异范围,可以减小测量姿态与期望姿态的总角度误差,避免了原本角度误差满足小 角度近似的条件,并可以使用小角度近似的条件处理测量姿态与期望姿态而不能使用小角度近似的条件处理的情况,同时,也有效避免了误差输出饱和,使得云台20的可调轴能够控制。如此,避免云台20出现控制饱和的情况。
云台20的姿态可采用四元数或欧拉角表示,并且四元数与欧拉角之间可以通过相应的公式互相转换。可以理解,姿态以四元数或欧拉角的表示形式,和四元数与欧拉角之间的公式互相转换关系可参考云台姿态控制的相关技术,具体的计算过程在此不再详细展开。
测量姿态是实时测量获得的,期望姿态可以是用户设定的或默认设置的,可以由用户手动输入。在本申请中,示例性的,云台20的测量姿态和期望姿态由四元数表示,将云台的测量姿态和期望姿态由四元数转换到欧拉角,可以得到预设轴的测量分量和期望分量。预设差异范围可包括零、预设值和零与预设值之间的范围。预设值可根据控制精度来具体设定。
具体的,云台20可以是用来安装、固定相机、传感器或射击装置等负载110的增稳设备和支撑设备。云台20可以为单轴云台、两轴云台,也可以为三轴云台。本实施方式以云台20为三轴云台为例进一步说明。请结合图5,云台20可包括偏航轴轴臂21、横滚轴轴臂23、俯仰轴轴臂25和用于控制偏航轴轴臂21转动的偏航轴电机22、用于控制横滚轴轴臂23转动的横滚轴电机24、用于控制俯仰轴轴臂25转动的俯仰轴电机26,通过偏航轴电机22、横滚轴电机24和俯仰轴电机26对应控制偏航轴轴臂21、横滚轴轴臂23和俯仰轴轴臂25转动,可以实现云台20姿态的控制。
当三轴云台其中一个轴或其中两个轴为预设轴时(预设轴对应的电机被锁定,预设轴轴臂不能转动,即每一个预设轴可以对应一个预设轴轴臂),三轴云台可以作两轴云台或单轴云台使用。例如,三轴云台的横滚轴为预设轴,即横滚轴电机24被锁定,横滚轴轴臂23不能转动。
请参阅图2,在某些实施方式中,在步骤S20之后,控制方法还包括:
步骤S30:根据测量姿态和期望姿态,控制云台20的姿态。
具体地,请参阅图3,步骤S30包括:
步骤S32:确定期望姿态和测量姿态的姿态差异;
步骤S34:根据姿态差异控制云台20的可调轴满足期望姿态中可调轴的期望分量,可调轴为云台20中需要姿态控制的轴。
可以理解,将云台20的测量姿态由四元数转换为欧拉角以获得预设轴的测量分量,并将云台20的期望姿态由四元数转换为欧拉角以获得预设轴的期望测量分量。通过改变预设轴的测量分量或期望分量,控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量的差异在预设差异范围。然后将以欧拉角表示的预设轴改变后的分量和可调轴的测量分 量转成以四元数表示的实际采用的测量姿态。对期望姿态和实际采用的测量姿态进行做差可以获得姿态差异。可调轴为云台20中需要姿态控制的轴,也即是说可调轴轴臂可以被控制转动。如此,可以有效防止测量姿态中预设轴的测量分量和期望姿态中预设轴的期望分量偏差过大,而导致影响云台20中可调轴的控制。
具体地,步骤S34包括:利用小角度近似的条件处理姿态差异以控制云台20的可调轴满足期望姿态中可调轴的期望分量。
可以理解,期望姿态qtar和实际采用的测量姿态qmeas可以均由四元数表示,有qtar=qmeas*qerr,qerr表示姿态差异。因此,利用期望姿态qtar和实际采用的测量姿态qmeas进行做差可以得到机体坐标系(例如以负载110为参考所建立的坐标系)上的姿态差异qerr=qmea的逆*qtar。获得姿态差异qerr后利用小角度近似公式将姿态差异qerr转换为机体坐标系上三个坐标轴XYZ的角度误差ang-err-x、ang-err-y和ang-err-z。由于三个坐标轴XYZ的角度差与期望的机体角速度成比例关系,可以通过逆雅克比矩阵将三个坐标轴XYZ的角度差从机体坐标系转换为关节坐标系(例如以云台的基座30为参考所建立的坐标系)以得到期望的关节角速度。对期望的关节角速度进行闭环处理得到期望的扭矩,将期望的扭矩发送至可调轴对应的电机驱动器以电机驱动可调轴轴臂转动,使得云台20的可调轴满足期望姿态中可调轴的期望分量,从而使云台20转动至期望姿态。
进一步地,小角度近似公式为:当θ小于5度时,有sinθ≈θ,cosθ≈1-θ 2/2,tanθ≈θ。当云台20的预设轴的测量分量和期望分量的差异在预设差异范围,可以减小总角度误差(总角度误差包括机体坐标系上三个坐标轴XYZ的角度误差ang-err-x、ang-err-y和ang-err-z),使得角度误差能够在满足小角度近似的条件的情况下,利用小角度近似的条件处理期望姿态和测量姿态,并实现对云台20中可调轴的控制,同时,避免了误差输出饱和,使得云台20的可调轴能够得到较好的控制。如此,不仅可以避免云台20出现控制饱和的情况,也使得在原本能够使用小角度近似的条件时利用小角度近似的条件处理期望姿态和测量姿态,增加了期望姿态和测量姿态的处理方式。其中,三个坐标轴X轴、Y轴和Z轴分别对应于俯仰轴、横滚轴和偏航轴。
在某些实施方式中,步骤S20包括:控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量相等。
可以理解,预设轴为云台20中没有自由度的轴,不需要进行姿态控制。为减少预设轴的输出对云台20的姿态控制(即对可调轴的姿态控制)的影响以避免出现控制饱和的情况,可以控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量的差异在预设差异范围。较佳地,控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量相等,即预设轴的测量分量与云台20的期望姿态中预设轴的期望分量的差异为零。具体地,可以将 云台20的期望姿态中预设轴的期望分量调整为预设轴的测量分量。当然,也可以将预设轴的测量分量调整为云台20的期望姿态中预设轴的期望分量。较佳地,预设轴的期望分量为零。
在某些实施方式中,云台20未设置预设轴,即云台20的结构实体中不存在预设轴。也即是说,云台20的结构实体中不存在预设轴轴臂。
可以理解,当云台20为单轴云台时,云台20设置有一个可调轴,且可以未设置一个或两个预设轴,例如单轴云台可为偏航轴单轴云台,或横滚轴单轴云台,或俯仰轴单轴云台。在一个示例中,当单轴云台为偏航轴单轴云台时,可调轴为偏航轴,预设轴为横滚轴和/或俯仰轴。
当云台20为两轴云台时,云台20设置有两个可调轴,且可以未设置一个预设轴。在一个示例中,两轴云台的可调轴为俯仰轴和偏航轴,预设轴为横滚轴。
在某些实施方式中,云台20可以包括预设轴,即云台20的结构实体中存在预设轴。此时,预设轴与云台的基座30的相对姿态保持不变。也即是说,预设轴轴臂与云台的基座30的相对姿态保持不变。
可以理解,当云台20为两轴云台时,可以将其中一个实际存在的轴可以作为预设轴,将另外一个实际存在的轴作为可调轴,此时两轴云台能够作为单轴云台使用。
当云台20为三轴云台时,可以其中一个轴可以作为预设轴,另外两个轴可以作为可调轴,此时三轴云台能够作为两轴云台使用。当然,三轴云台也可以是其中两个轴作为预设轴,另外一个轴作为可调轴,此时三轴云台能够作为单轴云台使用。在一个示例中,预设轴可以包括横滚轴。在某些实施方式中,在控制预设轴的测量分量与云台的期望姿态中预设轴的期望分量的差异在预设差异范围之前,控制方法还包括:锁定预设轴以使预设轴与云台的基座的相对姿态保持不变。
可以理解,当云台20包括实体结构中实际存在的预设轴且不需要对其进行姿态控制时,可以通过用户输入指令或默认设置来锁定预设轴(例如,锁定预设轴对应的电机),使得预设轴没有自由度,预设轴轴臂不能转动,预设轴轴臂与云台的基座30的相对姿态保持不变。
在某些实施方式中,在锁定预设轴以使预设轴与云台的基座的相对姿态保持不变之后,方法还包括:解锁预设轴以使预设轴能够进行姿态控制。
可以理解,当需要对预设轴进行姿态控制时,可以通过用户输入指令来解锁预设轴(即解锁预设轴对应的电机),使得预设轴轴臂可以转动以进行姿态控制。当然,也可以通过检测自动判断是否需要解锁预设轴,例如,可以检测预设轴对应的电机是否被解锁,并可以在需要或能够解锁预设轴时,默认为自动解锁预设轴。
如此,通过对云台20的结构实体中实际存在的预设轴进行锁定或解锁,可以在不需要控制预设轴时,避免预设轴的测量分量与期望分量之间的差异导致的对云台20的控制饱和,同时,又能够在需要控制预设轴,实现预设轴的相应功能,进而控制云台20完成相应的操作。
在某些实施方式中,测量姿态使用惯性测量单元测量获得。
在一个例子中,惯性测量单元(Inertial Measurement Unit,IMU)可包括三个单轴的加速度计和三个单轴的陀螺仪。加速度计可以检测机体坐标系下云台20三轴的加速度信号,陀螺仪检测云台20相对于机体坐标系的角速度信号。惯性测量单元测量云台20在三维空间中的角速度和加速度,即可利用积分的方式解算出云台20的测量姿态。
请参阅图4,本申请实施方式的云台的控制装置10包括一个或多个处理器12,单独地或共同地工作,处理器12与云台20电连接。云台的控制装置10可以包括存储器14,存储器14可以包括易失性存储器(volatile memory)例如随机存取存储器(random-access memory,RAM);存储器14也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD);用于存储程序指令。处理器12可以调用程序指令,实现相应的云台的控制方法。具体地,处理器12用于:获取云台20的测量姿态,测量姿态包括预设轴的测量分量,预设轴为云台20中不需要姿态控制的轴;及控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量的差异在预设差异范围。
也即是说,本申请实施方式的云台的控制方法的步骤S10和S20可由处理器12实现。
本申请实施方式的云台的控制装置10,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以减少预设轴的输出对云台20的姿态控制的影响,从而避免出现控制饱和的情况。
需要说明的是,上述对云台的控制方法的实施方式和有益效果的解释说明,也适用于本实施方式的云台的控制装置10,为避免冗余,在此不再详细展开。
在某些实施方式中,处理器12用于:根据测量姿态和期望姿态,控制云台20的姿态。
也即是说,云台的控制方法的步骤S30可由处理器12实现。
在某些实施方式中,处理器12用于:确定期望姿态和测量姿态的姿态差异;及根据姿态差异控制云台20的可调轴满足期望姿态中可调轴的期望分量,可调轴为云台20中需要姿态控制的轴。
也即是说,云台的控制方法的步骤S32和步骤S34可由处理器12实现。
在某些实施方式中,处理器12用于:利用小角度近似的条件处理姿态差异以控制云台20的可调轴满足期望姿态中可调轴的期望分量。
在某些实施方式中,处理器12用于:控制预设轴的测量分量与云台20的期望姿态中预设轴的期望分量相等。
在某些实施方式中,处理器12用于:将云台20的期望姿态中预设轴的期望分量调整为预设轴的测量分量。
在某些实施方式中,处理器12用于:将预设轴的测量分量调整为云台20的期望姿态中预设轴的期望分量。
在某些实施方式中,预设轴的期望分量为零。
在某些实施方式中,云台20未设置预设轴。
在某些实施方式中,云台20包括预设轴,预设轴与云台的基座30的相对姿态保持不变。
在某些实施方式中,在控制预设轴的测量分量与云台的期望姿态中预设轴的期望分量的差异在预设差异范围之前,处理器12用于:锁定预设轴以使预设轴与云台的基座的相对姿态保持不变。
在某些实施方式中,在锁定预设轴以使预设轴与云台的基座的相对姿态保持不变之后,处理器12还用于:解锁预设轴以使预设轴能够进行姿态控制。
在某些实施方式中,预设轴包括横滚轴。
在某些实施方式中,云台20包括单轴云台、两轴云台或三轴云台。
在某些实施方式中,测量姿态使用惯性测量单元测量获得。
请参阅图4,本申请实施例还提供了一种云台20。该云台20可以包括云台的控制装置10,具体地,云台20包括轴组件210、一个或多个处理器12和存储器14。处理器12与轴组件210电连接,一个或多个处理器12单独地或共同地工作用于实现上述实施方式的云台的控制方法。
本申请实施方式的云台20,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以减少预设轴的输出对云台20的姿态控制的影响,从而避免出现控制饱和的情况。
可选地,云台20可以包括单轴云台、两轴云台或三轴云台。云台20连接有云台的基座30。本实施方式以云台20为三轴云台为例进一步说明。具体地,对于三轴云台来说,轴组件210包括偏航轴轴臂21、横滚轴轴臂23、俯仰轴轴臂25、用于控制偏航轴轴臂21转动的偏航轴电机22、用于控制横滚轴轴臂23转动的横滚轴电机24及用于控制俯仰轴轴臂25转动的俯仰轴电机26,通过偏航轴轴臂21、横滚轴轴臂23和俯仰轴轴臂25的转动,可以控制三轴云台的姿态。
当三轴云台其中一个轴或其中两个轴为预设轴时(例如,预设轴对应的电机被锁定),三轴云台可以作两轴云台或单轴云台使用。例如,三轴云台的横滚轴为预设轴,即横滚轴 电机24被锁定,横滚轴轴臂23不能转动。控制云台20的预设轴的测量分量和期望分量的差异在预设差异范围,可以减小总角度误差,从而使得角度误差有可能满足小角度近似的条件,并能够在满足小角度近似的条件时利用小角度近似的条件处理期望姿态和测量姿态,同时,也避免了误差输出饱和,云台20的可调轴能够控制。如此,避免云台20出现控制饱和的情况。
进一步地,请参阅图5,云台20上可以搭载有负载110,负载110可以为影像捕获设备或者摄像设备(如相机、摄录机、红外线摄像设备、紫外线摄像设备或者类似的设备),音频捕获装置(例如,抛物面反射传声器),红外线摄像设备,射击装置等,负载110可以提供静态感应数据(如图片)或者动态感应数据(如视频)。负载110的姿态可以通过云台20得到控制。
需要说明的是,上述对云台的控制方法及控制装置10的实施方式和有益效果的解释说明,也适用于本实施方式的云台20,为避免冗余,在此不再详细展开。
请参阅图6,本申请实施方式的移动小车100包括上述实施方式的云台20,云台20设置在移动小车100的机身上。进一步地,移动小车100还包括射击装置40,射击装置40置于云台20。
本申请实施方式的移动小车100,使预设轴的测量分量和期望分量的差异在预设差异范围,这样可以避免出现控制饱和的情况,从而减少预设轴的输出对云台20的姿态控制的影响。
具体地,云台20通过云台的基座30设置在移动小车100的机身上,射击装置40设置在云台20上。移动小车100可以通过云台的控制装置10实现对云台20的姿态控制以控制射击装置40的姿态。
在某些实施方式中,云台20可以为两轴云台,可调轴包括偏航轴、俯仰轴,预设轴为横滚轴。
需要说明的是,上述对云台的控制方法及控制装置10的实施方式和有益效果的解释说明,也适用于本实施方式的移动小车100,为避免冗余,在此不再详细展开。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于执行特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分, 并且本申请的优选实施方式的范围包括另外的执行,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施方式所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于执行逻辑功能的可执行指令的定序列表,可以具体执行在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来执行。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来执行。例如,如果用硬件来执行,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来执行:具有用于对数据信号执行逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解执行上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施方式的步骤之一或其组合。
此外,在本申请各个实施方式中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式执行,也可以采用软件功能模块的形式执行。所述集成的模块如果以软件功能模块的形式执行并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换 和变型。

Claims (33)

  1. 一种云台的控制方法,其特征在于,所述控制方法包括:
    获取所述云台的测量姿态,所述测量姿态包括预设轴的测量分量,所述预设轴为所述云台中不需要姿态控制的轴;
    控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围。
  2. 如权利要求1所述的控制方法,其特征在于,在所述控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围之后,所述控制方法还包括:
    根据所述测量姿态和所述期望姿态,控制所述云台的姿态。
  3. 如权利要求2所述的控制方法,其特征在于,所述根据所述测量姿态和所述期望姿态,控制所述云台的姿态,包括:
    确定所述期望姿态和所述测量姿态的姿态差异;
    根据所述姿态差异控制所述云台的可调轴满足所述期望姿态中所述可调轴的期望分量,所述可调轴为所述云台中需要姿态控制的轴。
  4. 如权利要求3所述的控制方法,其特征在于,所述根据所述姿态差异控制所述云台的可调轴满足所述期望姿态中所述可调轴的期望分量,包括:
    利用小角度近似的条件处理所述姿态差异以控制所述云台的可调轴满足所述期望姿态中所述可调轴的期望分量。
  5. 如权利要求1所述的控制方法,其特征在于,所述控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围,包括:
    控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量相等。
  6. 如权利要求5所述的控制方法,其特征在于,所述控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量相等,包括:
    将所述云台的期望姿态中所述预设轴的期望分量调整为所述预设轴的测量分量。
  7. 如权利要求5所述的控制方法,其特征在于,所述控制所述预设轴的测量分量与所 述云台的期望姿态中所述预设轴的期望分量相等,包括:
    将所述预设轴的测量分量调整为所述云台的期望姿态中所述预设轴的期望分量。
  8. 如权利要求7所述的控制方法,其特征在于,所述预设轴的期望分量为零。
  9. 如权利要求1至8任一项所述的控制方法,其特征在于,所述云台未设置所述预设轴。
  10. 如权利要求1至8任一项所述的控制方法,其特征在于,所述云台包括所述预设轴,所述预设轴与所述云台的基座的相对姿态保持不变。
  11. 如权利要求10所述的控制方法,其特征在于,在所述控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围之前,所述控制方法还包括:
    锁定所述预设轴以使所述预设轴与所述云台的基座的相对姿态保持不变。
  12. 如权利要求11所述的控制方法,其特征在于,在所述锁定所述预设轴以使所述预设轴与所述云台的基座的相对姿态保持不变之后,所述方法还包括:
    解锁所述预设轴以使所述预设轴能够进行姿态控制。
  13. 如权利要求1至8任一项所述的控制方法,其特征在于,所述预设轴包括横滚轴。
  14. 如权利要求1至8任一项所述的控制方法,其特征在于,所述云台包括单轴云台、两轴云台或三轴云台。
  15. 如权利要求1至8任一项所述的控制方法,其特征在于,所述测量姿态使用惯性测量单元测量获得。
  16. 一种云台的控制装置,其特征在于,所述控制装置包括一个或多个处理器,单独地或共同地工作,所述处理器与所述云台电连接;
    所述处理器用于:
    获取所述云台的测量姿态,所述测量姿态包括预设轴的测量分量,所述预设轴为所述 云台中不需要姿态控制的轴;
    控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围。
  17. 如权利要求16所述的控制装置,其特征在于,所述处理器还用于:
    根据所述测量姿态和所述期望姿态,控制所述云台的姿态。
  18. 如权利要求17所述的控制装置,其特征在于,所述处理器用于:
    确定所述期望姿态和所述测量姿态的姿态差异;
    根据所述姿态差异控制所述云台的可调轴满足所述期望姿态中所述可调轴的期望分量,所述可调轴为所述云台中需要姿态控制的轴。
  19. 如权利要求18所述的控制装置,其特征在于,所述处理器用于:
    利用小角度近似的条件处理所述姿态差异以控制所述云台的可调轴满足所述期望姿态中所述可调轴的期望分量。
  20. 如权利要求16所述的控制装置,其特征在于,所述处理器用于:
    控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量相等。
  21. 如权利要求20所述的控制装置,其特征在于,所述处理器用于:
    将所述云台的期望姿态中所述预设轴的期望分量调整为所述预设轴的测量分量。
  22. 如权利要求20所述的控制装置,其特征在于,所述处理器用于:
    将所述预设轴的测量分量调整为所述云台的期望姿态中所述预设轴的期望分量。
  23. 如权利要求22所述的控制装置,其特征在于,所述预设轴的期望分量为零。
  24. 如权利要求16至23任一项所述的控制装置,其特征在于,所述云台未设置所述预设轴。
  25. 如权利要求16至23任一项所述的控制装置,其特征在于,所述云台包括所述预设轴,所述预设轴与所述云台的基座的相对姿态保持不变。
  26. 如权利要求25所述的控制装置,其特征在于,在所述控制所述预设轴的测量分量与所述云台的期望姿态中所述预设轴的期望分量的差异在预设差异范围之前,所述处理器用于:
    锁定所述预设轴以使所述预设轴与所述云台的基座的相对姿态保持不变。
  27. 如权利要求26所述的控制装置,其特征在于,在所述锁定所述预设轴以使所述预设轴与所述云台的基座的相对姿态保持不变之后,所述处理器还用于:
    解锁所述预设轴以使所述预设轴能够进行姿态控制。
  28. 如权利要求16至23任一项所述的控制装置,其特征在于,所述预设轴包括横滚轴。
  29. 如权利要求16至23任一项所述的控制装置,其特征在于,所述云台包括单轴云台、两轴云台或三轴云台。
  30. 如权利要求16至23任一项所述的控制装置,其特征在于,所述测量姿态使用惯性测量单元测量获得。
  31. 一种云台,其特征在于,包括权利要求16至30任一项所述的控制装置。
  32. 一种移动小车,其特征在于,包括权利要求31所述的云台,所述云台设置在所述移动小车的机身上。
  33. 如权利要求32所述的移动小车,其特征在于,所述移动小车还包括射击装置,所述射击装置置于所述云台。
PCT/CN2018/097559 2018-07-27 2018-07-27 云台的控制方法及控制装置、云台、移动小车 WO2020019319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039845.8A CN110914781A (zh) 2018-07-27 2018-07-27 云台的控制方法及控制装置、云台、移动小车
PCT/CN2018/097559 WO2020019319A1 (zh) 2018-07-27 2018-07-27 云台的控制方法及控制装置、云台、移动小车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097559 WO2020019319A1 (zh) 2018-07-27 2018-07-27 云台的控制方法及控制装置、云台、移动小车

Publications (1)

Publication Number Publication Date
WO2020019319A1 true WO2020019319A1 (zh) 2020-01-30

Family

ID=69181181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097559 WO2020019319A1 (zh) 2018-07-27 2018-07-27 云台的控制方法及控制装置、云台、移动小车

Country Status (2)

Country Link
CN (1) CN110914781A (zh)
WO (1) WO2020019319A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268510B (zh) * 2022-09-23 2022-12-20 天津云圣智能科技有限责任公司 云台控制方法、装置、电子设备及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107357318A (zh) * 2017-06-16 2017-11-17 中国科学院长春光学精密机械与物理研究所 稳定云台转动的控制方法及控制***及稳定云台
CN107526373A (zh) * 2017-09-08 2017-12-29 山东鲁能智能技术有限公司 一种云台控制***及其控制方法和装置
CN108061218A (zh) * 2015-09-29 2018-05-22 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法
CN108089694A (zh) * 2016-11-22 2018-05-29 纳恩博(北京)科技有限公司 一种智能控制方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596546B (zh) * 2015-01-27 2017-07-28 北京航空航天大学 一种单轴旋转惯导***的姿态输出补偿方法
CN109477715A (zh) * 2016-06-06 2019-03-15 深圳市大疆灵眸科技有限公司 载体辅助跟踪
CN205899016U (zh) * 2016-07-11 2017-01-18 优利科技有限公司 一种避障装置及***
CN106444859B (zh) * 2016-11-10 2019-07-26 广州市景沃电子有限公司 一种横滚角运动隔离的单轴稳定云台及控制方法
CN106681369B (zh) * 2016-12-01 2019-10-08 广州亿航智能技术有限公司 一种云台姿态控制方法及***
CN107111322B (zh) * 2016-12-12 2019-02-22 深圳市大疆创新科技有限公司 云台及其操作方法、控制方法,及使用其的可移动设备
CN107223220B (zh) * 2016-12-30 2019-04-16 深圳市大疆灵眸科技有限公司 云台控制方法、装置及云台
CN107009370A (zh) * 2017-04-26 2017-08-04 电子科技大学 射击机器人
CN206975509U (zh) * 2017-07-12 2018-02-06 北京航天光华电子技术有限公司 一种机载三轴云台***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108061218A (zh) * 2015-09-29 2018-05-22 深圳市大疆灵眸科技有限公司 手柄云台及其控制方法
CN108089694A (zh) * 2016-11-22 2018-05-29 纳恩博(北京)科技有限公司 一种智能控制方法及设备
CN107357318A (zh) * 2017-06-16 2017-11-17 中国科学院长春光学精密机械与物理研究所 稳定云台转动的控制方法及控制***及稳定云台
CN107526373A (zh) * 2017-09-08 2017-12-29 山东鲁能智能技术有限公司 一种云台控制***及其控制方法和装置

Also Published As

Publication number Publication date
CN110914781A (zh) 2020-03-24

Similar Documents

Publication Publication Date Title
JP7000646B2 (ja) ジンバル動作モードの切替方法及び制御装置
WO2019242584A1 (zh) 设备的角度估算方法、装置、摄像组件及飞行器
WO2019227347A1 (zh) 云台的控制方法、云台、拍摄设备及可读存储介质
US11156905B2 (en) Control method for gimbal, controller, and gimbal
WO2018191964A1 (zh) 云台的控制方法以及云台
WO2020042064A1 (zh) 云台的控制方法与装置、云台***和无人机
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
WO2019056381A1 (zh) 云台的控制方法、云台控制器及云台
WO2018191963A1 (zh) 遥控器、云台及云台控制方法、装置、***
WO2020042152A1 (zh) 手持云台的控制方法、手持云台及图像获取设备
WO2022077397A1 (en) Gimbal control method and gimbal
JP6430661B2 (ja) 安定プラットホーム、並びにその追従制御システム及び方法
WO2019210467A1 (zh) 云台控制方法与装置、云台***、无人机和计算机可读存储介质
WO2020237493A1 (zh) 云台零位标定方法和云台
WO2020062298A1 (zh) 云台及其控制方法、可移动平台
WO2021037047A1 (zh) 一种飞行器的偏航角修正方法、装置及飞行器
CN110825124A (zh) 云台控制方法及***
CN112135124A (zh) 云台位置校准检测方法、装置以及***
WO2020042159A1 (zh) 一种云台的转动控制方法、装置及控制设备、移动平台
WO2020019319A1 (zh) 云台的控制方法及控制装置、云台、移动小车
WO2019227464A1 (zh) 旋转角度控制方法、云台以及计算机可读的记录介质
KR102476705B1 (ko) 카메라 구동장치, 카메라 구동 방법 및 짐벌장치
WO2019227410A1 (zh) 姿态转换方法、姿态显示方法及云台***
WO2019196093A1 (zh) 基于云台的imu校准方法、装置及存储介质
WO2020087354A1 (zh) 竖向增稳机构及其控制方法以及可移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927351

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18927351

Country of ref document: EP

Kind code of ref document: A1