WO2020017445A1 - Motor control device and method, and electric assistance vehicle - Google Patents

Motor control device and method, and electric assistance vehicle Download PDF

Info

Publication number
WO2020017445A1
WO2020017445A1 PCT/JP2019/027668 JP2019027668W WO2020017445A1 WO 2020017445 A1 WO2020017445 A1 WO 2020017445A1 JP 2019027668 W JP2019027668 W JP 2019027668W WO 2020017445 A1 WO2020017445 A1 WO 2020017445A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
speed
rotation
motor
control device
Prior art date
Application number
PCT/JP2019/027668
Other languages
French (fr)
Japanese (ja)
Inventor
保坂 康夫
弘和 白川
太一 ▲柳▼岡
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to JP2020531286A priority Critical patent/JP7308198B2/en
Priority to DE112019001369.6T priority patent/DE112019001369B4/en
Publication of WO2020017445A1 publication Critical patent/WO2020017445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/20Electric propulsion with power supplied within the vehicle using propulsion power generated by humans or animals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • B60L15/2018Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking for braking on a slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present invention relates to a regeneration control technique for an electric assist vehicle.
  • the regeneration is automatically started without the user's operation, so that the regeneration is expected to be performed even in the running state where the regeneration has not been performed, and the regeneration amount is expected to increase.
  • the regeneration is automatically started when the user does not intend to decelerate, the user may feel uncomfortable.
  • Patent Document 2 when a detection unit detects a start instruction or a stop instruction of regenerative control by a passenger, and (b) a start instruction of regenerative control is detected by a detection unit, If the current vehicle speed is higher than the first vehicle speed until the first vehicle speed at the time of detection is specified and the control coefficient for the regenerative target amount is set to a predetermined value and the detection unit detects an instruction to stop the regenerative control.
  • the regenerative control start instruction is such that a reverse rotation of the pedal by a predetermined phase angle or more, the regenerative control start instruction switch is turned on, or the brake switch is continuously turned on within a predetermined time. It is said to be detected by.
  • regenerative braking force is applied in consideration of the intention of the occupant, and regenerative control is performed so as to maintain the first vehicle speed as much as possible. It is assumed that the occupant remembers an operation for instructing the start of the regenerative control with the intention to specify. Further, the vehicle speed at the time of instructing the start of the regenerative control is to be maintained, but the vehicle speed preferable for the occupant is not necessarily the vehicle speed at the time of instructing the start of the regenerative control.
  • the intention of the passenger is clear, but it is costly to provide the instruction switch, and it is an operation that is not normally performed, so it is troublesome to press the instruction switch during traveling. Hangs.
  • the cost for providing the brake switch is required, and the regenerative control depends on the brake operation, so that the energy obtained by the regeneration is not sufficient.
  • a sensor capable of detecting the reverse rotation is used, so that the cost is increased and the reverse rotation of the pedal is intended with the intention of specifying the first vehicle speed. Attempting to do so may result in sudden reverse rotation during normal rotation, which may complicate pedal operation.
  • an object of the present invention is to provide a new technique for performing regenerative control according to an estimated user's intention, as one aspect.
  • the motor control device includes: (A) a driving unit that drives a motor; and (B) a state of a predetermined traveling or pedal operation that is presumed to have no intention to accelerate.
  • a control unit that specifies the speed of the vehicle that moves in accordance with at least one of the rotations, determines a regenerative amount based on the specified speed, and controls the driving unit according to the regenerative amount.
  • FIG. 1 is a diagram showing an appearance of the electric assist bicycle.
  • FIG. 2 is a diagram illustrating a configuration example of the motor control device.
  • FIG. 3 is a diagram illustrating a configuration example of the regeneration control unit.
  • FIG. 4 is a diagram showing a processing flow in the embodiment.
  • FIG. 5 is a diagram illustrating a processing flow of the reference speed setting processing A.
  • FIG. 6 is a diagram depicting a processing flow of a confirmation processing;
  • FIG. 7 is a diagram depicting a processing flow of a regeneration amount determination processing;
  • FIG. 8 is a diagram illustrating an example of a correspondence relationship between ⁇ V and a regeneration coefficient.
  • FIG. 9 is a diagram for describing a control example according to the embodiment.
  • FIG. 9 is a diagram for describing a control example according to the embodiment.
  • FIG. 10 is a diagram depicting a processing flow of a reference speed setting processing B;
  • FIG. 11 is a diagram illustrating a processing flow of the reference speed setting processing C.
  • FIG. 12 is a diagram illustrating a processing flow of the regeneration amount determination processing B.
  • FIG. 13 is a diagram illustrating a processing flow of the reference speed adjustment processing A.
  • FIG. 14 is a diagram for explaining a specific example of the reference speed adjustment.
  • FIG. 15 is a diagram illustrating a processing flow of the reference speed adjustment processing B.
  • FIG. 16 is a diagram illustrating a processing flow of the reference speed adjustment processing C.
  • an electric assist bicycle which is an example of an electric assist vehicle.
  • the embodiment of the present invention is not limited to an electric bicycle, and is not limited to a motor-assisted bicycle.
  • a motor for assisting the movement of a moving body for example, a bogie, a wheelchair, an elevator, etc.
  • the present invention is also applicable to a motor control device and the like.
  • FIG. 1 is an external view showing an example of an electric assist bicycle which is an example of the electric assist vehicle in the present embodiment.
  • This electric assist bicycle 1 is equipped with a motor drive device.
  • the motor driving device includes a battery pack 101, a motor control device 102, a torque sensor 103, a pedal rotation sensor 104, a motor 105, and an operation panel 106.
  • the electric assist bicycle 1 may have the brake sensor 107 in some cases, but is not used in the present embodiment.
  • the electric assist bicycle 1 also has front wheels, rear wheels, headlights, freewheels, transmissions, and the like.
  • the battery pack 101 is, for example, a lithium ion secondary battery, but may be another type of battery, for example, a lithium ion polymer secondary battery, a nickel hydrogen storage battery, or the like.
  • the battery pack 101 supplies electric power to the motor 105 via the motor control device 102, and also performs charging with regenerative electric power from the motor 105 via the motor control device 102 during regeneration.
  • the torque sensor 103 is provided around the crankshaft, detects the pedaling force of the driver by the driver, and outputs the detection result to the motor control device 102.
  • the pedal rotation sensor 104 is provided around the crankshaft, and outputs a signal corresponding to the rotation to the motor control device 102.
  • the motor 105 is, for example, a known three-phase DC brushless motor, and is mounted on, for example, the front wheels of the electric assist bicycle 1.
  • the motor 105 rotates the front wheels, and the rotor is connected to the front wheels so that the rotor rotates according to the rotation of the front wheels.
  • the motor 105 includes a rotation sensor such as a Hall element and outputs rotation information of the rotor (that is, a Hall signal) to the motor control device 102.
  • the motor control device 102 performs a predetermined calculation based on signals from the rotation sensor, the torque sensor 103, the pedal rotation sensor 104, and the like of the motor 105, controls the driving of the motor 105, and also controls the regeneration by the motor 105.
  • the operation panel 106 receives, for example, an instruction input regarding the presence / absence of assist (that is, turning on / off the power switch), and if there is assist, an input of a desired assist ratio and the like from the user, and inputs the instruction input and the like to the motor control device 102.
  • the operation panel 106 may have a function of displaying data such as a travel distance, a travel time, a calorie consumption, and a regenerative electric energy, which are the results calculated by the motor control device 102.
  • the operation panel 106 may have a display unit such as an LED (Light Emitting Diode). Thereby, for example, the charge level of the battery pack 101, the on / off state, the mode corresponding to the desired assist ratio, and the like are presented to the driver.
  • LED Light Emitting Diode
  • FIG. 2 shows a configuration related to the motor control device 102 according to the present embodiment.
  • the motor control device 102 includes a controller 1020 and an FET (Field Effect Transistor) bridge 1030.
  • the FET bridge 1030 includes a high-side FET (Suh) and a low-side FET (Sul) for switching the U-phase of the motor 105, and a high-side FET (Svh) and a low-side FET (Svl) for switching the V-phase of the motor 105. ), And a high-side FET (Swh) and a low-side FET (Swl) for switching the W phase of the motor 105.
  • the FET bridge 1030 is a driving unit of the motor 105 and forms a part of a complementary switching amplifier.
  • the controller 1020 includes an arithmetic unit 1021, a pedal rotation input unit 1022, a motor rotation input unit 1024, a variable delay circuit 1025, a motor drive timing generation unit 1026, a torque input unit 1027, and an AD (Analog- Digital) input unit 1029.
  • the calculation unit 1021 includes an input from the operation panel 106 (for example, turning on / off the assist), an input from the pedal rotation input unit 1022, an input from the motor rotation input unit 1024, an input from the torque input unit 1027, and an AD input unit. A predetermined calculation is performed using the input from 1029 and output to the motor drive timing generation unit 1026 and the variable delay circuit 1025.
  • the calculation unit 1021 includes a memory 10211, and the memory 10211 stores various data used for calculation, data being processed, and the like.
  • the arithmetic unit 1021 may be realized by a processor executing a program, and in this case, the program may be stored in the memory 10211.
  • the memory 10211 may be provided separately from the arithmetic unit 1021 in some cases.
  • the pedal rotation input unit 1022 digitizes a pedal rotation phase angle (also simply referred to as a pedal rotation angle or a crank rotation phase angle, which may include a signal indicating a rotation direction) from the pedal rotation sensor 104. And outputs the result to the calculation unit 1021.
  • the motor rotation input unit 1024 digitizes a signal (for example, a rotation phase angle, a rotation direction, and the like) regarding the rotation of the motor 105 (the rotation of the front wheels in the present embodiment) from the Hall signal output by the motor 105, and converts the signal into a calculation unit 1021.
  • Output to Torque input section 1027 digitizes a signal corresponding to the pedaling force from torque sensor 103 and outputs the signal to arithmetic section 1021.
  • AD input section 1029 digitizes the output voltage from the secondary battery and outputs the result to arithmetic section 1021.
  • Calculating section 1021 outputs a lead angle value to variable delay circuit 1025 as a calculation result.
  • the variable delay circuit 1025 adjusts the phase of the Hall signal based on the advance angle value received from the arithmetic unit 1021, and outputs the adjusted hall signal to the motor drive timing generation unit 1026.
  • the calculation unit 1021 outputs a PWM code corresponding to, for example, a duty ratio of PWM (Pulse Width Modulation) to the motor drive timing generation unit 1026 as a calculation result.
  • the motor drive timing generation unit 1026 generates and outputs a switching signal for each FET included in the FET bridge 1030 based on the adjusted Hall signal from the variable delay circuit 1025 and the PWM code from the calculation unit 1021.
  • the motor 105 may be driven by power or may be regeneratively braked.
  • the basic operation of the motor is described in International Publication No. 2012/086459 and the like, and is not a main part of the present embodiment.
  • FIG. 3 shows a functional block configuration example (portion according to the present embodiment) related to the regeneration control unit 3000 in the arithmetic unit 1021.
  • the regeneration control unit 3000 includes a regeneration target calculation unit 3100, a reference speed setting unit 3200, and a control unit 3300.
  • the regeneration target calculation unit 3100 specifies a regeneration target amount that is predetermined according to the speed, the acceleration, or the like from the current speed, the acceleration, or the like, and outputs it.
  • the reference speed setting unit 3200 sets a reference speed which is a reference speed for performing the regenerative control.
  • the parameters used by the reference speed setting unit 3200 to set the reference speed are various, but there are cases where a pedal torque input is used and cases where a pedal torque input and a pedal rotation input are used.
  • the rotation speed or the vehicle speed of the front wheel and the rotation speed of the rear wheel converted based on the pedal rotation (the rotation speed obtained by converting the pedal rotation into the rotation speed of the rear wheel based on the gear ratio and the like, also referred to as a pedal-converted rotation speed)
  • the vehicle speed of the rear wheel also referred to as a pedal rotation conversion speed (a speed obtained by converting the pedal rotation into a vehicle speed based on a gear ratio or the like)
  • these parameters are used to detect that the user has no intention of acceleration.
  • the control unit 3300 receives the reference speed and the regeneration enable flag from the reference speed setting unit 3200, the speed and the like from the motor rotation processing unit 2000, the regeneration target amount from the regeneration target calculation unit 3100, and the The regenerative amount is calculated based on the pedal rotation input and the pedal torque input from the torque input unit 1027, and regenerative control is performed according to the regenerative amount.
  • control unit 3300 determines a regeneration coefficient from the obtained data, and calculates the regeneration amount by multiplying the regeneration coefficient by the regeneration target amount.
  • Control unit 3300 may perform not only regenerative control according to the present embodiment but also regenerative control based on another viewpoint. For example, automatic regeneration control based on acceleration or speed may be performed.
  • the arithmetic unit 1021 drives the motor 105 via the motor drive timing generation unit 1026, the variable delay circuit 1025, and the FET bridge 1030 so as to perform the conventional power running drive.
  • the arithmetic unit 1021 regenerates the motor 105 via the motor drive timing generation unit 1026, the variable delay circuit 1025, and the FET bridge 1030 so as to realize the regeneration amount output by the control unit 3300. Control.
  • the pedal rotation speed is reduced or stopped, and the timing when the pedal torque input almost disappears, the timing when the pedal torque input and the pedal rotation almost disappear
  • the current vehicle speed is set as a reference speed (that is, an upper limit speed) at a timing when a predetermined relationship between the motor rotation and the pedal rotation, which is estimated to have no intention to accelerate, is detected.
  • the regenerative control is started to suppress the speed increase.
  • a regenerative coefficient is set based on the difference between the reference speed and the current speed to activate regenerative braking.
  • the regeneration amount is controlled so as to realize a traveling state according to the user's intention, more comfortable traveling can be performed.
  • the regeneration control unit 3000 measures various data (FIG. 4: step S1).
  • pedal torque, vehicle speed, pedal rotation angle, and the like are measured. In other embodiments, additional parameters may be measured.
  • the reference speed setting unit 3200 determines whether or not the regeneration enable flag is ON (step S3). If the regeneration possible flag is ON, the process proceeds to step S7. On the other hand, if the regenerative flag is OFF, the reference speed setting unit 3200 executes a reference speed setting process (step S5).
  • the reference speed setting process according to the present embodiment will be described later with reference to FIG.
  • control unit 3300 executes a confirmation process for confirming whether the regenerative control according to the present embodiment may be performed (step S7).
  • the confirmation processing will be described later with reference to FIG.
  • the control unit 3300 executes the regeneration amount determination processing based on the processing result of the confirmation processing (step S9).
  • the regeneration amount determination processing will be described later with reference to FIG.
  • a regenerative coefficient is determined based on the reference speed, and the regenerative target is calculated from the regenerative target amount and the regenerative coefficient calculated by the regenerative target calculating unit 3100.
  • the amount is determined, and the motor 105 is caused to perform regenerative braking via the FET bridge 1030 or the like in order to realize the amount of regeneration.
  • the regenerative control unit 3000 determines whether or not to end the process based on an instruction to turn off the power (step S11). If the process is not to be ended, the process returns to step S1. On the other hand, if the processing is to be ended, the processing is ended here.
  • a regenerable flag is set in advance, and a reference speed is set at that timing, and when a speed increase from the reference speed is detected, the speed increase is detected.
  • the regenerative amount is determined so that the regenerative braking is performed.
  • regenerable flag and the time flag are initially set to OFF.
  • the reference speed setting unit 3200 determines whether the pedal torque is equal to or less than a predetermined threshold TH11 (FIG. 5: step S21).
  • the threshold value TH11 is a threshold value for determining that there is almost no pedal torque input. If the pedal torque exceeds the threshold value TH11, it is determined that the user intends to accelerate, and the process proceeds to step S35.
  • the reference speed setting unit 3200 determines whether the time flag indicating whether or not time measurement is being performed is ON. It is determined whether or not it is (step S23). If the time flag is not ON, the reference speed setting unit 3200 sets the time flag to ON (step S25). Further, the reference speed setting unit 3200 starts time measurement (step S27). Then, the process returns to the calling process.
  • the reference speed setting unit 3200 determines whether the measurement time from step S27 has passed a certain time. It is determined whether or not it is (step S29). If the measurement time has not passed the predetermined time, the process returns to the process of the calling source.
  • step S27 if the measurement time from step S27 has passed a certain time, it means that the state where the pedal torque is equal to or less than the threshold value TH11 has continued for a certain time or more.
  • a regenerative flag indicating whether or not the regeneration is possible is set to ON (step S31).
  • the reference speed setting unit 3200 sets the current speed from the motor rotation processing unit 2000 to the reference speed V0 (step S33).
  • the regenerable state is detected, and the reference speed V0 is set. Note that the regenerable flag and the reference speed V0 are output to the control unit 3300.
  • the reference speed setting unit 3200 sets the time flag to OFF and clears the measurement time (Step S35). As a result, the next time measurement can be performed appropriately. Then, the process returns to the calling process.
  • the reference speed setting process A As described above, according to the reference speed setting process A according to the present embodiment, if there is little input of pedal torque for a certain period of time or longer, it is estimated that the user does not intend to accelerate, and the reference speed V0 Is set, and a regeneration enable flag is set to prepare for regeneration control.
  • control unit 3300 determines whether or not the pedal rotation angle is less than threshold value TH2 (FIG. 6: step S41). This is because if the pedal rotation angle is made to a certain degree (threshold TH2) or more, it is presumed that the user is going to accelerate by pedaling, and it is not preferable to perform regeneration. Therefore, when the pedal rotation angle is equal to or larger than threshold value TH2, control unit 3300 sets the regenerable flag to OFF (step S47). Then, the process returns to the calling process.
  • threshold value TH2 threshold value TH2
  • the control unit 3300 determines whether the pedal torque is less than the threshold value TH3 (step S43).
  • the threshold value TH3 may be the same as the threshold value TH11, but may be a value larger than the threshold value TH11. If the threshold value TH3 is larger than the threshold value TH11, it is possible to suppress a swing in which the regenerable flag is turned ON or OFF due to a measurement error or the like. If the pedal torque is equal to or larger than the threshold value TH3, the process proceeds to step S47.
  • the control unit 3300 determines whether the current speed from the motor rotation processing unit 2000 exceeds the threshold TH4 (step S45). This is because it is inappropriate to perform the regenerative control when a certain speed is not obtained. If the current speed is equal to or less than the threshold TH4, the process proceeds to step S47. On the other hand, if the current speed exceeds the threshold TH4, the regenerative flag is not set to OFF, and the process returns to the process of the caller.
  • the regenerative enable flag is set. Set the flag to OFF.
  • the controller 3300 determines whether or not the regenerative flag is ON (FIG. 7: step S51). When the regenerable flag is OFF, it is inappropriate to perform the regenerative control according to the present embodiment. Therefore, control unit 3300 determines the regenerative amount (may be 0) under other conditions. Then, the regenerative braking of the motor 105 according to the regeneration amount is performed by the FET bridge 1030 and the like (step S59). Then, the process returns to the calling process.
  • the control unit 3300 determines whether the current speed from the motor rotation processing unit 2000 exceeds the reference speed V0 (step S53). In the present embodiment, when the current speed exceeds the reference speed V0, the speed is suppressed by regenerative braking. Therefore, if the current speed is equal to or lower than the reference speed V0, the present embodiment Such regenerative control is not performed. However, control may be performed such that a regeneration coefficient smaller than the current regeneration coefficient is used.
  • step S59 if the current speed is equal to or lower than the reference speed V0, the process proceeds to step S59.
  • ⁇ V current speed ⁇ V0
  • step S55 the correspondence between ⁇ V and the regeneration coefficient [%] is determined in advance.
  • FIG. 8 shows an example of this correspondence.
  • the vertical axis represents the regeneration coefficient [%]
  • the horizontal axis represents ⁇ V [km / h].
  • the relationship may be represented by a straight line a (which may be 100 or may be a value less than 100).
  • the regenerative coefficient may be determined based on another index value calculated by an equation including the (current speed-V0) term instead of the simple ⁇ V.
  • the determined regenerative coefficient is used as it is, a shock due to a large change in acceleration is given to the user. Therefore, it is necessary to gradually increase the regenerative coefficient to the determined regenerative coefficient from the time when the brake is turned off. Control is also performed.
  • the control unit 3300 determines the regenerative amount by multiplying the regenerative coefficient by the regenerative target amount corresponding to the current acceleration or the like output from the regenerative target calculating unit 3100, and according to the regenerative value via the FET bridge 1030 or the like.
  • the motor 105 performs regenerative braking (step S57). Then, the process returns to the calling process.
  • the timing is set at that timing.
  • the regeneration control is performed based on the reference speed V0.
  • FIG. 9 shows an operation example.
  • an operation in the case where the road surface changes from a flat ground to a downhill while the electric assist bicycle 1 is traveling will be described.
  • a case in which regeneration is performed according to a brake operation will be described first.
  • the user is pedaling, and regeneration is not performed.
  • a signal indicating pedal torque off is turned on in FIG. 9B.
  • the electrically assisted bicycle 1 enters a downhill, and the speed starts to increase as indicated by a dotted line c in FIG.
  • FIG. 9C the regenerable flag is turned on at time t2 as shown by the solid line a in FIG. 9C.
  • the speed at time t2 is set to the reference speed V0.
  • the regenerative operation state is set at the time t4, but in the present embodiment, the regenerative operation state is set at the time t3.
  • This allows the user to maintain the reference speed V0 without performing the brake operation, so that safe driving can be performed without performing the brake operation.
  • the regeneration is performed ahead of time, and the regeneration is performed in accordance with the brake operation. , The amount of charge also increases.
  • FIG. 10 shows a processing flow of the reference speed setting processing B.
  • the same parts as those in the reference speed setting processing A are denoted by the same reference numerals. That is, the difference between FIG. 5 and FIG. 10 is only the part where step S61 is added at the beginning.
  • the reference speed setting unit 3200 determines whether or not the pedal rotation angle is equal to or less than the threshold value TH12 (Step S61). If the pedal rotation angle exceeds the threshold value TH12, the process proceeds to step S35. On the other hand, if the pedal rotation angle is equal to or smaller than the threshold value TH12, the process proceeds to step S21.
  • the threshold value TH12 may be the same as the threshold value TH2, or may be a value smaller than the threshold value TH2. If TH12> TH2, it is possible to prevent the regenerative flag from turning ON or OFF due to a measurement error, slight pedal rotation, or the like.
  • FIG. 11 shows a processing flow of the reference speed setting processing C.
  • the same parts as those in the reference speed setting processing A are denoted by the same reference numerals. That is, the difference between FIG. 5 and FIG. 11 is the part where steps S71 and S73 are provided instead of step S21 at the beginning.
  • the reference speed setting unit 3200 calculates the rotation difference according to the present embodiment (FIG. 11: step S71).
  • the rotation difference according to the present embodiment is, for example, a difference between the rotation speed of the front wheel and the rotation speed of the rear wheel converted based on the pedal rotation (for example, the rotation speed of the front wheel ⁇ the rotation speed of the rear wheel). ).
  • a difference between the vehicle speed of the front wheels and the vehicle speed of the rear wheels converted based on the pedal rotation for example, the vehicle speed of the front wheels minus the vehicle speed of the rear wheels may be used.
  • a ratio or the like (for example, the rotation speed of the front wheel / the rotation speed of the rear wheel, the vehicle speed of the front wheel / the vehicle speed of the rear wheel) is used to determine whether or not the deviation is equal to or more than a predetermined level. You may make it determine.
  • the rotation speed of the front wheel is a first index value according to the rotation of the wheel
  • the rotation speed of the rear wheel is a second index value according to the rotation of the pedal. Then, based on this, it may be determined whether or not the first index value and the second index value deviate by a predetermined level or more.
  • the reference speed setting unit 3200 determines whether or not the rotation difference is equal to or larger than the threshold value TH13 (Step S73). If the rotation difference is equal to or greater than the threshold value TH13, it is estimated that the user has no intention to accelerate, and the process proceeds to step S23. On the other hand, when the rotation difference is less than the threshold value TH13, the process proceeds to step S35.
  • the rotation of the front wheels is focused on.
  • the rotation of the wheels of the electric assist bicycle 1 is detected or the vehicle speed is measured. Just do it.
  • the speed increase from the reference speed is compared with the first embodiment. Similarly, it can be suppressed.
  • the reference speed V0 is not changed unless the regenerable flag is turned off.
  • the speed V0 may be changed. For example, when going down a hill, if it is felt that regenerative braking is too effective, the reference speed V0 may be increased by explicitly instructing.
  • step S41 of the confirmation process (FIG. 6) is not executed, but the basic processing flow is the same as that of the first embodiment. The same is true, and only the regeneration amount determination processing is changed.
  • ⁇ Regeneration amount determination processing B according to the present embodiment will be described with reference to FIG.
  • the same parts as those in the regeneration amount determination processing shown in FIG. 7 are denoted by the same reference numerals. That is, the difference between the regenerative amount determination process and the regenerative amount determination process B in FIG. 7 is such that a process (step S81) in which the reference speed setting unit 3200 executes the reference speed adjustment process is added between steps S51 and S53. It is the part that is. That is, if the regenerable flag is set to ON, the reference speed adjustment processing is executed.
  • a reference speed adjustment process A shown in FIG. 13 is executed.
  • the present embodiment is an example in which the pedal rotation sensor 104 that can distinguish between the normal rotation of the pedal and the reverse rotation of the pedal is used.
  • the reference speed setting unit 3200 determines whether or not the pedal is rotating forward based on the pedal rotation input (step S91). If the pedal is rotating forward, the reference speed setting unit 3200 determines whether or not the pedal rotation angle is equal to or greater than the threshold TH21 (step S93). For example, it is determined whether the rotation has been made 360 ° or more. For example, the cumulative pedal rotation angle after the regenerable flag is set to ON may be measured, and the cumulative pedal rotation angle may be returned to zero each time the reference speed V0 is adjusted. If the pedal rotation angle is less than the threshold value TH21, the process returns to the calling process.
  • the reference speed setting unit 3200 increases the reference speed V0 by dV (step S95).
  • dV is, for example, 1 km / h. Then, the process returns to the calling process.
  • the reference speed setting unit 3200 determines whether or not the pedal is rotating backward (step S97). If the pedal is not rotating in the reverse direction, that is, if the pedal rotation has stopped, the process returns to the calling process.
  • the reference speed setting unit 3200 determines whether or not the pedal reverse rotation angle is equal to or larger than the threshold value TH21 (step S99). If the pedal reverse rotation angle is less than the threshold value TH21, the process returns to the calling process.
  • the reference speed setting unit 3200 decreases the reference speed V0 by dV (step S101). Then, the process returns to the calling process.
  • the dV at the time of decreasing may be different from the dV at the time of increasing.
  • the reference speed V0 is schematically adjusted as shown in FIG.
  • the upper part of FIG. 14 shows a change in the pedal rotation angle.
  • the lower part of FIG. 14 shows a change in the reference speed V0 (the horizontal axis represents the pedal rotation angle, and the vertical axis represents the reference speed).
  • the pedal rotation angle is 0 ° to less than 360 °
  • the reference speed remains at V0.
  • the rotation is 1 forward rotation, that is, 360 ° forward rotation, V0 + 1km is obtained. / H. If it is 360 ° or more and less than 720 °, there is no change. If two forward rotations, that is, 720 ° forward rotation, change to V0 + 2 km / h.
  • the upper limit value of the adjustment amount is set, and the reference speed V0 does not change even if the pedal is further rotated forward, but may be changed. Note that the reference speed V0 is not changed beyond +2 km / h. However, an upper limit value may be provided for the adjusted reference speed V0 so that the reference speed V0 does not exceed the upper limit.
  • the reference speed V0 can be increased or decreased based on a user's explicit instruction. If the user feels the speed is too fast or too slow, the user can rotate the pedal to make adjustments.
  • the upper limit value or the lower limit value of the adjustment amount is set, even if the user rotates the pedal excessively, it is possible to avoid a sudden change in ride quality.
  • Such adjustment of the reference speed may be performed only when the pedal torque is less than the threshold value. This is because if the pedal torque is measured to a certain extent or more, it is estimated that the user intends to accelerate, and it is estimated that adjustment of the reference speed is unnecessary.
  • the reference speed V0 is changed every 360 °, but the reference speed V0 may be changed every other angle. Further, the reference speed V0 may be changed linearly or exponentially according to the rotation angle. Further, the reference speed V0 may be changed according to the pedal rotation angle along a curve defined separately.
  • the reference speed V0 may be decreased instead of being increased by the forward rotation, and may be increased rather than decreased by the reverse rotation.
  • the pedal rotation sensor 104 capable of distinguishing between the normal rotation of the pedal and the reverse rotation of the pedal is used.
  • the reference speed adjustment processing B (FIG. 15) may be executed.
  • the reference speed setting unit 3200 determines whether or not the pedal rotation angle is equal to or greater than the threshold TH21 (step S111). For example, it is determined whether the rotation has been made 360 ° or more. For example, the cumulative pedal rotation angle after the regenerable flag is set to ON may be measured, and the cumulative pedal rotation angle may be returned to zero each time the reference speed V0 is adjusted. If the pedal rotation angle is less than the threshold value TH21, the process returns to the calling process.
  • the reference speed setting unit 3200 increases the reference speed V0 by dV or decreases the reference speed V0 by dV (step S113).
  • dV is, for example, 1 km / h. Then, the process returns to the calling process.
  • the dV at the time of decreasing may be different from the dV at the time of increasing.
  • the reference speed V0 is increased or decreased according to the rotation angle.
  • the increment or decrement may be stepwise increased or decreased every rotation, that is, every 360 °, linearly or along an arbitrary curve. It may be increased or decreased.
  • ⁇ Restriction of adjustment by pedal torque may be the same as that of the fourth embodiment. Further, the upper limit value or the lower limit value of the adjustment amount may be the same as in the fourth embodiment.
  • Embodiment 6 The reference speed V0 may be adjusted in a manner different from the fourth and fifth embodiments.
  • the reference speed adjustment processing C (FIG. 16) may be executed.
  • the reference speed setting unit 3200 determines whether or not the pedal rotation speed obtained from the pedal rotation input falls within the first speed band (for example, 0.5 rotation / s or more) (FIG. 16: step S121). For example, it is determined whether the rotation is performed at a relatively high speed. If the pedal rotation speed falls within the first speed band, the reference speed setting unit 3200 increases the reference speed V0 by dV (step S123). Then, the process returns to the calling process.
  • the first speed band for example, 0.5 rotation / s or more
  • the reference speed setting unit 3200 determines that the pedal rotation speed is in the second speed band (for example, 0.25 rotation exceeding 0 rotation / s). / S) (step S125). If the pedal rotation speed falls within the second speed band, the reference speed setting unit 3200 decreases the reference speed V0 by dV (step S127). Then, the process returns to the calling process. Also, when the pedal rotation speed is not within the second speed band, the process returns to the process of the calling source.
  • the dV at the time of decreasing may be different from the dV at the time of increasing.
  • the reference speed V0 is reduced corresponding to the first speed band, or the second speed band is used.
  • the reference speed V0 may be increased.
  • the functional block diagram described above is an example, and one functional block may be divided into a plurality of functional blocks, or a plurality of functional blocks may be integrated into one functional block.
  • the order of the steps may be changed or a plurality of steps may be executed in parallel as long as the processing content does not change.
  • the operation unit 1021 may be partially or entirely implemented by a dedicated circuit, or may execute a program prepared in advance to realize the above-described functions.
  • the motor control device includes: (A) a driving unit that drives a motor; and (B) a pedal that responds to detection of a predetermined traveling or pedal operation state estimated to have no intention to accelerate.
  • a control unit that specifies a speed of the vehicle that moves in accordance with at least one of the rotation and the rotation of the motor, determines a regenerative amount based on the specified speed, and controls a driving unit according to the regenerative amount.
  • a state of a predetermined running or pedal operation eg, forward or forward pedal operation
  • the speed is higher than the speed at the time of detection of the state. Is not assumed. Therefore, if the regeneration amount is determined based on the speed at the time of such state detection, the regeneration control according to the user's intention is performed. In addition, if the speed increase is appropriately suppressed, safety is improved.
  • the predetermined running or pedal operation state estimated to have no intention to accelerate may be detected independently of the brake operation. Since it is not necessary to provide a brake sensor, cost can be reduced. Also, the predetermined running or pedal operation state in which it is estimated that there is no intention to accelerate can be said to be a state in which after detecting a pedal operation by the user for acceleration, the pedal operation for acceleration is not detected.
  • the above-mentioned predetermined running or pedal operation state is (1) a state in which a pedal torque input less than a first threshold is continued for a predetermined time or more, (2) a pedal torque input less than a second threshold, and A state in which the pedal rotation angle smaller than the third threshold value is continued for a predetermined time or more, or (3) a value obtained from the degree of coincidence or deviation between the first value corresponding to the wheel rotation and the second value corresponding to the pedal rotation.
  • it is determined that the value of 1 and the second value are different from each other by a predetermined level or more.
  • Such a state is typically a state where it is estimated that there is no intention to accelerate, and is a state that the user performs without any special intention or occurs.
  • the regeneration control as described above may be performed when a state alternative to these is detected.
  • the regenerative braking can be started early in some cases, and in such a case, the energy recovered to the battery may increase.
  • the first value is the vehicle speed (m / s) or the wheel rotation speed (rpm) converted from the wheel rotation
  • the second value is the vehicle speed or the wheel rotation speed converted from the pedal rotation.
  • control unit described above may change the speed specified above according to the pedal rotation angle or the pedal rotation speed after detecting a predetermined traveling or pedal operation state.
  • the reference speed may be arbitrarily changed according to a user's explicit instruction. It is to be noted that the amount to be changed can be modified to provide an upper limit, allow only an increase, or allow only a decrease.
  • the control unit described above changes the speed specified above according to the pedal rotation angle or the pedal rotation speed after detecting a predetermined traveling or pedal operation state. May be changed. This is because, when a pedal torque equal to or larger than the threshold value is detected, the intention of acceleration is estimated, so that there is no need to change the reference speed.
  • control unit described above when the speed of the vehicle at the time of processing exceeds the specified speed, the regeneration amount according to the difference between the speed of the vehicle at the time of processing and the specified speed. It may be determined. As a result, the increase in speed can be effectively suppressed.
  • Such a configuration is not limited to the matters described in the embodiment, and may be implemented by another configuration having substantially the same effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A motor control device according to the present invention has: (A) a driving unit that drives a motor; and (B) a control unit that identifies the speed of a vehicle moving in response to pedal rotation and/or motor rotation upon detection of a state of predetermined traveling or a pedal operation, which leads to deduction of no intention of acceleration, that determines a regeneration amount on the basis of the identified speed, and that controls the driving unit in accordance with the regeneration amount. The state of the predetermined traveling or the pedal operation represents, for example, a state where a pedal torque input of less than a first threshold value continues for a fixed period of time or longer, a state where a pedal torque input of less than a second threshold value and a pedal rotation angle of less than a third threshold value continue for a fixed period of time or longer, or a state where, in accordance with the coincidence or deviance between a first value based on wheel rotation and a second value based on the pedal rotation, the first value and the second value has been determined to be different by a prescribed level or more.

Description

モータ制御装置及び方法、並びに電動アシスト車Motor control device and method, and electric assist vehicle
 本発明は、電動アシスト車の回生制御技術に関する。 The present invention relates to a regeneration control technique for an electric assist vehicle.
 回生制御をどのような場合に行うかについては、様々な方法が存在している。例えば、加速度に応じて自動的に動作させる方法がある(例えば特許文献1)。 There are various methods for when to perform regenerative control. For example, there is a method of automatically operating according to acceleration (for example, Patent Document 1).
 この方法によれば、ユーザが操作しなくても自動的に回生が開始するので、これまで回生が行われなかった走行状態においても回生が行われて回生量が増加することが期待される。一方、ユーザが減速を意図していないときに自動的に回生が開始することで、ユーザに違和感を感じさせることがある。 According to this method, the regeneration is automatically started without the user's operation, so that the regeneration is expected to be performed even in the running state where the regeneration has not been performed, and the regeneration amount is expected to increase. On the other hand, when the regeneration is automatically started when the user does not intend to decelerate, the user may feel uncomfortable.
 また、他の文献(例えば特許文献2)では、(a)搭乗者による回生制御の開始指示又は停止指示を検出する検出部と、(b)検出部により回生制御の開始指示を検出すると、当該検出時における第1の車速を特定すると共に回生目標量に対する制御係数に所定の値を設定し、検出部により回生制御の停止指示を検出するまで、現在車速が第1の車速より速い場合には制御係数の値を増加させ、現在車速が第1の車速より遅い場合には制御係数の値を減少させる制御係数算出部と、(c)制御係数算出部からの制御係数の値と回生目標量とから、モータの駆動を制御する制御部とを有するモータ駆動制御装置が開示されている。この文献では、回生制御の開始指示が、ペダルの所定位相角以上の逆回転、回生制御の開始指示のための指示スイッチのオン、又はブレーキスイッチが所定時間内に連続してオンになったことにより検出されるとされている。 Further, in other documents (for example, Patent Document 2), when a detection unit detects a start instruction or a stop instruction of regenerative control by a passenger, and (b) a start instruction of regenerative control is detected by a detection unit, If the current vehicle speed is higher than the first vehicle speed until the first vehicle speed at the time of detection is specified and the control coefficient for the regenerative target amount is set to a predetermined value and the detection unit detects an instruction to stop the regenerative control. A control coefficient calculator for increasing the value of the control coefficient and decreasing the value of the control coefficient when the current vehicle speed is lower than the first vehicle speed; and (c) the value of the control coefficient from the control coefficient calculator and the regenerative target amount Thus, there is disclosed a motor drive control device having a control unit for controlling the drive of the motor. According to this document, the regenerative control start instruction is such that a reverse rotation of the pedal by a predetermined phase angle or more, the regenerative control start instruction switch is turned on, or the brake switch is continuously turned on within a predetermined time. It is said to be detected by.
 この文献の技術によれば、搭乗者の意図を加味して回生制動力が働くようになり、可能な限り第1の車速が維持されるように回生制御がなされるが、第1の車速を指定する意図を持って回生制御の開始指示を行うための操作を搭乗者が覚えていることが前提となっている。また、回生制御の開始指示時における車速を維持しようとするが、搭乗者にとって好ましい車速は、回生制御の開始指示時における車速とは限らない。さらに、指示スイッチを用いる場合には、搭乗者の意図は明確であるが、指示スイッチを設けるためのコストが掛かると共に、通常は行わない操作であるから、走行中に指示スイッチを押すのは手間が掛かる。さらに、ブレーキスイッチを設ける場合にも、ブレーキスイッチを設けるためのコストが掛かると共に、ブレーキ操作に依存する回生制御となって、回生によって得られるエネルギーも十分ではない。また、ペダルの所定位相角以上の逆回転を採用する場合も、逆回転を検出できるセンサを用いることになりコストが増加すると共に、第1の車速を指定する意図を持ってペダルの逆回転を行おうとすると、正回転させている途中で急に逆回転を行うことになってペダル操作が煩雑になる場合もある。 According to the technology of this document, regenerative braking force is applied in consideration of the intention of the occupant, and regenerative control is performed so as to maintain the first vehicle speed as much as possible. It is assumed that the occupant remembers an operation for instructing the start of the regenerative control with the intention to specify. Further, the vehicle speed at the time of instructing the start of the regenerative control is to be maintained, but the vehicle speed preferable for the occupant is not necessarily the vehicle speed at the time of instructing the start of the regenerative control. In addition, when using the instruction switch, the intention of the passenger is clear, but it is costly to provide the instruction switch, and it is an operation that is not normally performed, so it is troublesome to press the instruction switch during traveling. Hangs. Further, even when the brake switch is provided, the cost for providing the brake switch is required, and the regenerative control depends on the brake operation, so that the energy obtained by the regeneration is not sufficient. Also, when a reverse rotation of a predetermined phase angle or more of the pedal is employed, a sensor capable of detecting the reverse rotation is used, so that the cost is increased and the reverse rotation of the pedal is intended with the intention of specifying the first vehicle speed. Attempting to do so may result in sudden reverse rotation during normal rotation, which may complicate pedal operation.
欧州特許出願公開第2868562号明細書EP-A-2868562 米国特許出願公開第2014/0121877号U.S. Patent Application Publication No. 2014/0121877
 従って、本発明の目的は、一側面として、推定されるユーザの意図に応じた回生制御を行うための新たな技術を提供することである。 Accordingly, an object of the present invention is to provide a new technique for performing regenerative control according to an estimated user's intention, as one aspect.
 本発明のモータ制御装置は、(A)モータを駆動する駆動部と、(B)加速意図がないと推定される所定の走行又はペダル操作の状態を検出することに応じて、ペダル回転とモータの回転との少なくともいずれかに応じて移動する車両の速度を特定し、当該特定された速度に基づき回生量を決定し、当該回生量に従って駆動部を制御する制御部とを有する。 The motor control device according to the present invention includes: (A) a driving unit that drives a motor; and (B) a state of a predetermined traveling or pedal operation that is presumed to have no intention to accelerate. A control unit that specifies the speed of the vehicle that moves in accordance with at least one of the rotations, determines a regenerative amount based on the specified speed, and controls the driving unit according to the regenerative amount.
図1は、電動アシスト自転車の外観を示す図である。FIG. 1 is a diagram showing an appearance of the electric assist bicycle. 図2は、モータ制御装置の構成例を示す図である。FIG. 2 is a diagram illustrating a configuration example of the motor control device. 図3は、回生制御部の構成例を示す図である。FIG. 3 is a diagram illustrating a configuration example of the regeneration control unit. 図4は、実施の形態における処理フローを示す図である。FIG. 4 is a diagram showing a processing flow in the embodiment. 図5は、基準速度設定処理Aの処理フローを示す図である。FIG. 5 is a diagram illustrating a processing flow of the reference speed setting processing A. 図6は、確認処理の処理フローを示す図である。FIG. 6 is a diagram depicting a processing flow of a confirmation processing; 図7は、回生量決定処理の処理フローを示す図である。FIG. 7 is a diagram depicting a processing flow of a regeneration amount determination processing; 図8は、ΔVと回生係数との対応関係の例を示す図である。FIG. 8 is a diagram illustrating an example of a correspondence relationship between ΔV and a regeneration coefficient. 図9は、実施の形態による制御例を説明するための図である。FIG. 9 is a diagram for describing a control example according to the embodiment. 図10は、基準速度設定処理Bの処理フローを示す図である。FIG. 10 is a diagram depicting a processing flow of a reference speed setting processing B; 図11は、基準速度設定処理Cの処理フローを示す図である。FIG. 11 is a diagram illustrating a processing flow of the reference speed setting processing C. 図12は、回生量決定処理Bの処理フローを示す図である。FIG. 12 is a diagram illustrating a processing flow of the regeneration amount determination processing B. 図13は、基準速度調整処理Aの処理フローを示す図である。FIG. 13 is a diagram illustrating a processing flow of the reference speed adjustment processing A. 図14は、基準速度調整の具体例を説明するための図である。FIG. 14 is a diagram for explaining a specific example of the reference speed adjustment. 図15は、基準速度調整処理Bの処理フローを示す図である。FIG. 15 is a diagram illustrating a processing flow of the reference speed adjustment processing B. 図16は、基準速度調整処理Cの処理フローを示す図である。FIG. 16 is a diagram illustrating a processing flow of the reference speed adjustment processing C.
 以下、本発明の実施の形態について、電動アシスト車の一例である電動アシスト自転車の例をもって説明する。しかしながら、本発明の実施の形態は、電動アシスト自転車だけに適用対象を限定するものではなく、人力に応じて移動する移動体(例えば、台車、車いす、昇降機など)の移動を補助するモータなどに対するモータ制御装置等についても適用可能である。 Hereinafter, embodiments of the present invention will be described with reference to an example of an electric assist bicycle which is an example of an electric assist vehicle. However, the embodiment of the present invention is not limited to an electric bicycle, and is not limited to a motor-assisted bicycle. For example, a motor for assisting the movement of a moving body (for example, a bogie, a wheelchair, an elevator, etc.) that moves in accordance with human power. The present invention is also applicable to a motor control device and the like.
[実施の形態1]
 図1は、本実施の形態における電動アシスト車の一例である電動アシスト自転車の一例を示す外観図である。この電動アシスト自転車1は、モータ駆動装置を搭載している。モータ駆動装置は、バッテリパック101と、モータ制御装置102と、トルクセンサ103と、ペダル回転センサ104と、モータ105と、操作パネル106とを有する。なお、電動アシスト自転車1は、ブレーキセンサ107を有する場合もあるが、本実施の形態では用いない。
[Embodiment 1]
FIG. 1 is an external view showing an example of an electric assist bicycle which is an example of the electric assist vehicle in the present embodiment. This electric assist bicycle 1 is equipped with a motor drive device. The motor driving device includes a battery pack 101, a motor control device 102, a torque sensor 103, a pedal rotation sensor 104, a motor 105, and an operation panel 106. The electric assist bicycle 1 may have the brake sensor 107 in some cases, but is not used in the present embodiment.
 また、電動アシスト自転車1は、前輪、後輪、前照灯、フリーホイール、変速機等も有している。 The electric assist bicycle 1 also has front wheels, rear wheels, headlights, freewheels, transmissions, and the like.
 バッテリパック101は、例えばリチウムイオン二次電池であるが、他種の電池、例えばリチウムイオンポリマー二次電池、ニッケル水素蓄電池などであってもよい。そして、バッテリパック101は、モータ制御装置102を介してモータ105に対して電力を供給し、回生時にはモータ制御装置102を介してモータ105からの回生電力によって充電も行う。 The battery pack 101 is, for example, a lithium ion secondary battery, but may be another type of battery, for example, a lithium ion polymer secondary battery, a nickel hydrogen storage battery, or the like. The battery pack 101 supplies electric power to the motor 105 via the motor control device 102, and also performs charging with regenerative electric power from the motor 105 via the motor control device 102 during regeneration.
 トルクセンサ103は、クランク軸周辺に設けられており、運転者によるペダルの踏力を検出し、この検出結果をモータ制御装置102に出力する。また、ペダル回転センサ104は、トルクセンサ103と同様に、クランク軸周辺に設けられており、回転に応じた信号をモータ制御装置102に出力する。 The torque sensor 103 is provided around the crankshaft, detects the pedaling force of the driver by the driver, and outputs the detection result to the motor control device 102. Similarly to the torque sensor 103, the pedal rotation sensor 104 is provided around the crankshaft, and outputs a signal corresponding to the rotation to the motor control device 102.
 モータ105は、例えば周知の三相直流ブラシレスモータであり、例えば電動アシスト自転車1の前輪に装着されている。モータ105は、前輪を回転させるとともに、前輪の回転に応じてローターが回転するように、ローターが前輪に連結されている。さらに、モータ105はホール素子等の回転センサを備えてローターの回転情報(すなわちホール信号)をモータ制御装置102に出力する。 The motor 105 is, for example, a known three-phase DC brushless motor, and is mounted on, for example, the front wheels of the electric assist bicycle 1. The motor 105 rotates the front wheels, and the rotor is connected to the front wheels so that the rotor rotates according to the rotation of the front wheels. Further, the motor 105 includes a rotation sensor such as a Hall element and outputs rotation information of the rotor (that is, a Hall signal) to the motor control device 102.
 モータ制御装置102は、モータ105の回転センサ、トルクセンサ103及びペダル回転センサ104等からの信号に基づき所定の演算を行って、モータ105の駆動を制御し、モータ105による回生の制御も行う。 The motor control device 102 performs a predetermined calculation based on signals from the rotation sensor, the torque sensor 103, the pedal rotation sensor 104, and the like of the motor 105, controls the driving of the motor 105, and also controls the regeneration by the motor 105.
 操作パネル106は、例えばアシストの有無に関する指示入力(すなわち、電源スイッチのオン及びオフ)、アシスト有りの場合には希望アシスト比等の入力をユーザから受け付けて、当該指示入力等をモータ制御装置102に出力する。また、操作パネル106は、モータ制御装置102によって演算された結果である走行距離、走行時間、消費カロリー、回生電力量等のデータを表示する機能を有する場合もある。また、操作パネル106は、LED(Light Emitting Diode)などによる表示部を有している場合もある。これによって、例えばバッテリパック101の充電レベルや、オンオフの状態、希望アシスト比に対応するモードなどを運転者に提示する。 The operation panel 106 receives, for example, an instruction input regarding the presence / absence of assist (that is, turning on / off the power switch), and if there is assist, an input of a desired assist ratio and the like from the user, and inputs the instruction input and the like to the motor control device 102. Output to Further, the operation panel 106 may have a function of displaying data such as a travel distance, a travel time, a calorie consumption, and a regenerative electric energy, which are the results calculated by the motor control device 102. The operation panel 106 may have a display unit such as an LED (Light Emitting Diode). Thereby, for example, the charge level of the battery pack 101, the on / off state, the mode corresponding to the desired assist ratio, and the like are presented to the driver.
 本実施の形態に係るモータ制御装置102に関連する構成を図2に示す。モータ制御装置102は、制御器1020と、FET(Field Effect Transistor)ブリッジ1030とを有する。FETブリッジ1030は、モータ105のU相についてのスイッチングを行うハイサイドFET(Suh)及びローサイドFET(Sul)と、モータ105のV相についてのスイッチングを行うハイサイドFET(Svh)及びローサイドFET(Svl)と、モータ105のW相についてのスイッチングを行うハイサイドFET(Swh)及びローサイドFET(Swl)とを含む。このFETブリッジ1030は、モータ105の駆動部であり、コンプリメンタリ型スイッチングアンプの一部を構成している。 FIG. 2 shows a configuration related to the motor control device 102 according to the present embodiment. The motor control device 102 includes a controller 1020 and an FET (Field Effect Transistor) bridge 1030. The FET bridge 1030 includes a high-side FET (Suh) and a low-side FET (Sul) for switching the U-phase of the motor 105, and a high-side FET (Svh) and a low-side FET (Svl) for switching the V-phase of the motor 105. ), And a high-side FET (Swh) and a low-side FET (Swl) for switching the W phase of the motor 105. The FET bridge 1030 is a driving unit of the motor 105 and forms a part of a complementary switching amplifier.
 また、制御器1020は、演算部1021と、ペダル回転入力部1022と、モータ回転入力部1024と、可変遅延回路1025と、モータ駆動タイミング生成部1026と、トルク入力部1027と、AD(Analog-Digital)入力部1029とを有する。 Further, the controller 1020 includes an arithmetic unit 1021, a pedal rotation input unit 1022, a motor rotation input unit 1024, a variable delay circuit 1025, a motor drive timing generation unit 1026, a torque input unit 1027, and an AD (Analog- Digital) input unit 1029.
 演算部1021は、操作パネル106からの入力(例えばアシストのオン/オフなど)、ペダル回転入力部1022からの入力、モータ回転入力部1024からの入力、トルク入力部1027からの入力、AD入力部1029からの入力を用いて所定の演算を行って、モータ駆動タイミング生成部1026及び可変遅延回路1025に対して出力を行う。なお、演算部1021は、メモリ10211を有しており、メモリ10211は、演算に用いる各種データ及び処理途中のデータ等を格納する。さらに、演算部1021はプログラムをプロセッサが実行することによって実現される場合もあり、この場合には当該プログラムがメモリ10211に記録されている場合もある。また、メモリ10211は演算部1021とは別に設けられる場合もある。 The calculation unit 1021 includes an input from the operation panel 106 (for example, turning on / off the assist), an input from the pedal rotation input unit 1022, an input from the motor rotation input unit 1024, an input from the torque input unit 1027, and an AD input unit. A predetermined calculation is performed using the input from 1029 and output to the motor drive timing generation unit 1026 and the variable delay circuit 1025. Note that the calculation unit 1021 includes a memory 10211, and the memory 10211 stores various data used for calculation, data being processed, and the like. Furthermore, the arithmetic unit 1021 may be realized by a processor executing a program, and in this case, the program may be stored in the memory 10211. The memory 10211 may be provided separately from the arithmetic unit 1021 in some cases.
 ペダル回転入力部1022は、ペダル回転センサ104からの、ペダル回転位相角(単にペダル回転角度、又はクランク回転位相角とも呼ぶ。なお、回転方向を表す信号を含む場合もある。)を、ディジタル化して演算部1021に出力する。モータ回転入力部1024は、モータ105が出力するホール信号からモータ105の回転(本実施の形態においては前輪の回転)に関する信号(例えば回転位相角、回転方向など)を、ディジタル化して演算部1021に出力する。トルク入力部1027は、トルクセンサ103からの踏力に相当する信号をディジタル化して演算部1021に出力する。AD入力部1029は、二次電池からの出力電圧をディジタル化して演算部1021に出力する。 The pedal rotation input unit 1022 digitizes a pedal rotation phase angle (also simply referred to as a pedal rotation angle or a crank rotation phase angle, which may include a signal indicating a rotation direction) from the pedal rotation sensor 104. And outputs the result to the calculation unit 1021. The motor rotation input unit 1024 digitizes a signal (for example, a rotation phase angle, a rotation direction, and the like) regarding the rotation of the motor 105 (the rotation of the front wheels in the present embodiment) from the Hall signal output by the motor 105, and converts the signal into a calculation unit 1021. Output to Torque input section 1027 digitizes a signal corresponding to the pedaling force from torque sensor 103 and outputs the signal to arithmetic section 1021. AD input section 1029 digitizes the output voltage from the secondary battery and outputs the result to arithmetic section 1021.
 演算部1021は、演算結果として進角値を可変遅延回路1025に出力する。可変遅延回路1025は、演算部1021から受け取った進角値に基づきホール信号の位相を調整してモータ駆動タイミング生成部1026に出力する。演算部1021は、演算結果として例えばPWM(Pulse Width Modulation)のデューティー比に相当するPWMコードをモータ駆動タイミング生成部1026に出力する。モータ駆動タイミング生成部1026は、可変遅延回路1025からの調整後のホール信号と演算部1021からのPWMコードとに基づいて、FETブリッジ1030に含まれる各FETに対するスイッチング信号を生成して出力する。演算部1021の演算結果によって、モータ105は、力行駆動される場合もあれば、回生制動される場合もある。なお、モータの基本動作については、国際公開第2012/086459号パンフレット等に記載されており、本実施の形態の主要部ではないので、ここでは説明を省略する。 Calculating section 1021 outputs a lead angle value to variable delay circuit 1025 as a calculation result. The variable delay circuit 1025 adjusts the phase of the Hall signal based on the advance angle value received from the arithmetic unit 1021, and outputs the adjusted hall signal to the motor drive timing generation unit 1026. The calculation unit 1021 outputs a PWM code corresponding to, for example, a duty ratio of PWM (Pulse Width Modulation) to the motor drive timing generation unit 1026 as a calculation result. The motor drive timing generation unit 1026 generates and outputs a switching signal for each FET included in the FET bridge 1030 based on the adjusted Hall signal from the variable delay circuit 1025 and the PWM code from the calculation unit 1021. Depending on the calculation result of the calculation unit 1021, the motor 105 may be driven by power or may be regeneratively braked. The basic operation of the motor is described in International Publication No. 2012/086459 and the like, and is not a main part of the present embodiment.
 次に、図3に、演算部1021における回生制御部3000に関連する機能ブロック構成例(本実施の形態に係る部分)を示す。回生制御部3000は、回生目標算出部3100と、基準速度設定部3200と、制御部3300とを有する。なお、演算部1021は、モータ回転入力部1024からのモータ回転入力からモータ105の回転数(前輪の回転数)、電動アシスト自転車1の速度(=車速)及び加速度(速度の時間変化量)等を算出するモータ回転処理部2000を有している。 Next, FIG. 3 shows a functional block configuration example (portion according to the present embodiment) related to the regeneration control unit 3000 in the arithmetic unit 1021. The regeneration control unit 3000 includes a regeneration target calculation unit 3100, a reference speed setting unit 3200, and a control unit 3300. The arithmetic unit 1021 calculates the number of rotations of the motor 105 (the number of rotations of the front wheels), the speed (= vehicle speed) and the acceleration (the amount of time change of the speed) of the motor-assisted bicycle 1 based on the motor rotation input from the motor rotation input unit 1024. Is calculated.
 回生目標算出部3100は、速度又は加速度等に応じて予め定められた回生目標量を、現在の速度又は加速度等から特定して出力する。基準速度設定部3200は、回生制御を行う上で基準となる速度である基準速度を設定する。基準速度設定部3200が基準速度を設定する上で用いるパラメータは、さまざまであるが、ペダルトルク入力を用いる場合もあれば、ペダルトルク入力とペダル回転入力を用いる場合もある。さらに、前輪の回転数又は車速と、ペダル回転に基づき換算される後輪の回転数(ペダル回転をギア比等に基づき後輪の回転数に換算した回転数であり、ペダル換算回転数とも呼ぶ)又は後輪の車速(ペダル回転換算速度(ペダル回転をギア比等に基づき車速に換算した速度)とも呼ぶ)とを用いる場合もある。いずれの場合も、ユーザには加速の意図がないことを検出するためにそれらのパラメータを用いる。 The regeneration target calculation unit 3100 specifies a regeneration target amount that is predetermined according to the speed, the acceleration, or the like from the current speed, the acceleration, or the like, and outputs it. The reference speed setting unit 3200 sets a reference speed which is a reference speed for performing the regenerative control. The parameters used by the reference speed setting unit 3200 to set the reference speed are various, but there are cases where a pedal torque input is used and cases where a pedal torque input and a pedal rotation input are used. Furthermore, the rotation speed or the vehicle speed of the front wheel and the rotation speed of the rear wheel converted based on the pedal rotation (the rotation speed obtained by converting the pedal rotation into the rotation speed of the rear wheel based on the gear ratio and the like, also referred to as a pedal-converted rotation speed) ) Or the vehicle speed of the rear wheel (also referred to as a pedal rotation conversion speed (a speed obtained by converting the pedal rotation into a vehicle speed based on a gear ratio or the like)). In each case, these parameters are used to detect that the user has no intention of acceleration.
 制御部3300は、基準速度設定部3200からの基準速度及び回生可能フラグと、モータ回転処理部2000からの速度等と、回生目標算出部3100からの回生目標量と、ペダル回転入力部1022からのペダル回転入力と、トルク入力部1027からのペダルトルク入力とに基づき、回生量を算出して当該回生量に従って回生制御を行う。本実施の形態では、制御部3300は、得られたデータから回生係数を決定し、当該回生係数を回生目標量に対して乗ずることで、回生量を算出する。なお、制御部3300は、本実施の形態に係る回生制御のみならず、他の観点に基づく回生制御も行う場合もある。例えば、加速度又は速度に基づく自動回生制御を行う場合もある。 The control unit 3300 receives the reference speed and the regeneration enable flag from the reference speed setting unit 3200, the speed and the like from the motor rotation processing unit 2000, the regeneration target amount from the regeneration target calculation unit 3100, and the The regenerative amount is calculated based on the pedal rotation input and the pedal torque input from the torque input unit 1027, and regenerative control is performed according to the regenerative amount. In the present embodiment, control unit 3300 determines a regeneration coefficient from the obtained data, and calculates the regeneration amount by multiplying the regeneration coefficient by the regeneration target amount. Control unit 3300 may perform not only regenerative control according to the present embodiment but also regenerative control based on another viewpoint. For example, automatic regeneration control based on acceleration or speed may be performed.
 なお、回生を行わない場合には、演算部1021は、従来の力行駆動を行うようにモータ駆動タイミング生成部1026、可変遅延回路1025及びFETブリッジ1030を介してモータ105を駆動する。一方、回生を行う場合には、演算部1021は、制御部3300が出力する回生量を実現するように、モータ駆動タイミング生成部1026、可変遅延回路1025及びFETブリッジ1030を介してモータ105を回生制御する。 When the regeneration is not performed, the arithmetic unit 1021 drives the motor 105 via the motor drive timing generation unit 1026, the variable delay circuit 1025, and the FET bridge 1030 so as to perform the conventional power running drive. On the other hand, when performing regeneration, the arithmetic unit 1021 regenerates the motor 105 via the motor drive timing generation unit 1026, the variable delay circuit 1025, and the FET bridge 1030 so as to realize the regeneration amount output by the control unit 3300. Control.
 本実施の形態では、例えば、ユーザがもう加速は不要ということで、ペダル回転数を下げたりやめたりして、ペダルトルク入力がほぼ無くなったタイミング、ペダルトルク入力及びペダル回転がほぼ無くなったタイミングや、同様に加速意図がないと推定される、モータ回転とペダル回転との所定の関係が検出されたタイミングなどで、現在車速を基準速度(すなわち上限速度)として設定する。そして、その後に、下り坂に入るなどして、基準速度を現在速度が上回ることを検出した場合には、本実施の形態に係る回生制御を開始して、速度上昇を抑制させる。例えば、基準速度と現在速度との差に基づき回生係数を設定して回生制動を働かせる。これによって、早期に回生制動が働き始めるため、バッテリへの充電量が増加すると共に、ユーザがブレーキ操作を行わなくても速度上昇が抑制されて、ユーザの手間が削減され、安全性も向上する。 In the present embodiment, for example, when the user no longer needs acceleration, the pedal rotation speed is reduced or stopped, and the timing when the pedal torque input almost disappears, the timing when the pedal torque input and the pedal rotation almost disappear, Similarly, the current vehicle speed is set as a reference speed (that is, an upper limit speed) at a timing when a predetermined relationship between the motor rotation and the pedal rotation, which is estimated to have no intention to accelerate, is detected. After that, when it is detected that the current speed exceeds the reference speed, for example, when the vehicle goes downhill, the regenerative control according to the present embodiment is started to suppress the speed increase. For example, a regenerative coefficient is set based on the difference between the reference speed and the current speed to activate regenerative braking. As a result, the regenerative braking starts to work early, so that the amount of charge to the battery increases and the speed increase is suppressed even if the user does not perform the brake operation, so that the user's labor is reduced and the safety is improved. .
 さらに、ユーザの意図に従った走行状態を実現するように回生量が制御されるので、より快適な走行が行えるようになる。 Furthermore, since the regeneration amount is controlled so as to realize a traveling state according to the user's intention, more comfortable traveling can be performed.
 次に、図4乃至図9を用いて図3に示した回生制御部3000の処理内容について説明する。なお、図4の処理は、単位時間毎に実行される。 Next, the processing contents of the regeneration control unit 3000 shown in FIG. 3 will be described with reference to FIGS. Note that the processing in FIG. 4 is executed every unit time.
 まず、回生制御部3000は、各種データの測定を行う(図4:ステップS1)。本実施の形態では、ペダルトルク、車速、ペダル回転角度などを測定する。なお、他の実施の形態では、追加のパラメータを測定する場合もある。 First, the regeneration control unit 3000 measures various data (FIG. 4: step S1). In the present embodiment, pedal torque, vehicle speed, pedal rotation angle, and the like are measured. In other embodiments, additional parameters may be measured.
 次に、基準速度設定部3200は、回生可能フラグがONになっているか否かを判断する(ステップS3)。回生可能フラグがONであれば、処理はステップS7に移行する。一方、回生可能フラグがOFFであれば、基準速度設定部3200は、基準速度設定処理を実行する(ステップS5)。本実施の形態に係る基準速度設定処理については、図5を用いて後に述べる。 Next, the reference speed setting unit 3200 determines whether or not the regeneration enable flag is ON (step S3). If the regeneration possible flag is ON, the process proceeds to step S7. On the other hand, if the regenerative flag is OFF, the reference speed setting unit 3200 executes a reference speed setting process (step S5). The reference speed setting process according to the present embodiment will be described later with reference to FIG.
 その後、制御部3300は、本実施の形態に係る回生制御を行って良いのか否かについて確認する確認処理を実行する(ステップS7)。確認処理については、図6を用いて後に述べる。 After that, the control unit 3300 executes a confirmation process for confirming whether the regenerative control according to the present embodiment may be performed (step S7). The confirmation processing will be described later with reference to FIG.
 その後、制御部3300は、確認処理の処理結果に基づき回生量決定処理を実行する(ステップS9)。回生量決定処理については、図7を用いて後に述べる。この回生量決定処理では、本実施の形態に係る回生制御を実行する場合には、基準速度に基づき回生係数を決定し、回生目標算出部3100により算出された回生目標量と回生係数とから回生量を決定し、当該回生量を実現すべくFETブリッジ1030等を介してモータ105に回生制動を行わせる。 After that, the control unit 3300 executes the regeneration amount determination processing based on the processing result of the confirmation processing (step S9). The regeneration amount determination processing will be described later with reference to FIG. In the regenerative amount determination process, when the regenerative control according to the present embodiment is executed, a regenerative coefficient is determined based on the reference speed, and the regenerative target is calculated from the regenerative target amount and the regenerative coefficient calculated by the regenerative target calculating unit 3100. The amount is determined, and the motor 105 is caused to perform regenerative braking via the FET bridge 1030 or the like in order to realize the amount of regeneration.
 そして、回生制御部3000は、電源オフなどの指示に基づき処理を終了するか否かを判断する(ステップS11)。処理を終了しない場合には、処理はステップS1に戻る。一方、処理を終了すべき場合には、ここで処理を終了する。 (4) Then, the regenerative control unit 3000 determines whether or not to end the process based on an instruction to turn off the power (step S11). If the process is not to be ended, the process returns to step S1. On the other hand, if the processing is to be ended, the processing is ended here.
 本実施の形態では、ユーザに加速意図がないことを検出すると回生可能フラグを予め設定しておくと共に、そのタイミングで基準速度を設定し、その基準速度からの速度上昇を検出すると当該速度上昇を抑制するように回生量を決定して回生制動を実行させるものである。 In this embodiment, when it is detected that the user does not intend to accelerate, a regenerable flag is set in advance, and a reference speed is set at that timing, and when a speed increase from the reference speed is detected, the speed increase is detected. The regenerative amount is determined so that the regenerative braking is performed.
 次に、図5を用いて本実施の形態に係る基準速度設定処理Aを説明する。なお、回生可能フラグ及び時間フラグは初期的にはOFFにセットされている。 Next, the reference speed setting process A according to the present embodiment will be described with reference to FIG. Note that the regenerable flag and the time flag are initially set to OFF.
 基準速度設定部3200は、ペダルトルクが、予め定められた閾値TH11以下であるか否かを判断する(図5:ステップS21)。閾値TH11は、ペダルトルク入力がほとんど無いことを判断するための閾値である。ペダルトルクが閾値TH11を超える場合には、ユーザには加速意図があると判断されるので、処理はステップS35に移行する。 The reference speed setting unit 3200 determines whether the pedal torque is equal to or less than a predetermined threshold TH11 (FIG. 5: step S21). The threshold value TH11 is a threshold value for determining that there is almost no pedal torque input. If the pedal torque exceeds the threshold value TH11, it is determined that the user intends to accelerate, and the process proceeds to step S35.
 一方、ペダルトルクが閾値TH11以下である場合には、ユーザには加速意図がないと判断されるので、基準速度設定部3200は、時間計測中か否かを表す時間フラグがONになっているか否かを判断する(ステップS23)。時間フラグがONになっていなければ、基準速度設定部3200は、時間フラグをONにセットする(ステップS25)。さらに、基準速度設定部3200は、時間計測を開始する(ステップS27)。そして処理は呼び出し元の処理に戻る。 On the other hand, if the pedal torque is equal to or less than the threshold value TH11, it is determined that the user does not intend to accelerate, so the reference speed setting unit 3200 determines whether the time flag indicating whether or not time measurement is being performed is ON. It is determined whether or not it is (step S23). If the time flag is not ON, the reference speed setting unit 3200 sets the time flag to ON (step S25). Further, the reference speed setting unit 3200 starts time measurement (step S27). Then, the process returns to the calling process.
 一方、時間フラグがONにセットされている場合、すなわち、継続的にペダルトルクが閾値TH11以下である場合には、基準速度設定部3200は、ステップS27からの計測時間が一定時間を経過したか否かを判断する(ステップS29)。まだ、計測時間が一定時間を経過していない場合には、処理は呼び出し元の処理に戻る。 On the other hand, when the time flag is set to ON, that is, when the pedal torque is continuously equal to or less than the threshold value TH11, the reference speed setting unit 3200 determines whether the measurement time from step S27 has passed a certain time. It is determined whether or not it is (step S29). If the measurement time has not passed the predetermined time, the process returns to the process of the calling source.
 一方、ステップS27からの計測時間が一定時間を経過した場合には、ペダルトルクが閾値TH11以下である状態が一定時間以上継続したことになるので、基準速度設定部3200は、回生可能な状態か否かを表す回生可能フラグをONにセットする(ステップS31)。さらに、基準速度設定部3200は、基準速度V0に、モータ回転処理部2000からの現在の速度を設定する(ステップS33)。これによって、回生可能な状態が検出され、基準速度V0が設定されたことになる。なお、回生可能フラグ及び基準速度V0は、制御部3300に出力される。 On the other hand, if the measurement time from step S27 has passed a certain time, it means that the state where the pedal torque is equal to or less than the threshold value TH11 has continued for a certain time or more. A regenerative flag indicating whether or not the regeneration is possible is set to ON (step S31). Further, the reference speed setting unit 3200 sets the current speed from the motor rotation processing unit 2000 to the reference speed V0 (step S33). Thus, the regenerable state is detected, and the reference speed V0 is set. Note that the regenerable flag and the reference speed V0 are output to the control unit 3300.
 その後、基準速度設定部3200は、時間フラグをOFFにセット、計測時間をクリアする(ステップS35)。これによって、次に時間計測を行う際に適切に処理できるようになる。そして処理は呼び出し元の処理に戻る。 Thereafter, the reference speed setting unit 3200 sets the time flag to OFF and clears the measurement time (Step S35). As a result, the next time measurement can be performed appropriately. Then, the process returns to the calling process.
 このように、本実施の形態に係る基準速度設定処理Aによれば、ペダルトルクの入力がほとんど無い状態が一定時間以上継続すれば、ユーザには加速意図がないと推定して、基準速度V0を設定すると共に、回生可能フラグをセットすることで、回生制御の準備を行う。 As described above, according to the reference speed setting process A according to the present embodiment, if there is little input of pedal torque for a certain period of time or longer, it is estimated that the user does not intend to accelerate, and the reference speed V0 Is set, and a regeneration enable flag is set to prepare for regeneration control.
 次に、図6を用いて本実施の形態に係る確認処理の処理内容について説明する。 Next, the contents of the confirmation processing according to the present embodiment will be described with reference to FIG.
 まず、制御部3300は、ペダル回転角度が閾値TH2未満であるか否かを判断する(図6:ステップS41)。ペダル回転角度がある程度(閾値TH2)以上なされると、ユーザはペダルを漕いで加速しようとしていると推定されるので、回生を行うことが好ましくないためである。よって、ペダル回転角度が閾値TH2以上である場合には、制御部3300は、回生可能フラグをOFFにセットする(ステップS47)。そして処理は呼び出し元の処理に戻る。 First, control unit 3300 determines whether or not the pedal rotation angle is less than threshold value TH2 (FIG. 6: step S41). This is because if the pedal rotation angle is made to a certain degree (threshold TH2) or more, it is presumed that the user is going to accelerate by pedaling, and it is not preferable to perform regeneration. Therefore, when the pedal rotation angle is equal to or larger than threshold value TH2, control unit 3300 sets the regenerable flag to OFF (step S47). Then, the process returns to the calling process.
 一方、ペダル回転角度が閾値TH2未満である場合には、制御部3300は、ペダルトルクが閾値TH3未満であるか否かを判断する(ステップS43)。閾値TH3は、閾値TH11と同じであってもよいが、閾値TH11よりも大きな値であってもよい。閾値TH3>閾値TH11であれば、測定誤差などにより回生可能フラグがONになったりOFFになったりする揺れを抑えることができる。ペダルトルクが閾値TH3以上であれば、処理はステップS47に移行する。 On the other hand, if the pedal rotation angle is less than the threshold value TH2, the control unit 3300 determines whether the pedal torque is less than the threshold value TH3 (step S43). The threshold value TH3 may be the same as the threshold value TH11, but may be a value larger than the threshold value TH11. If the threshold value TH3 is larger than the threshold value TH11, it is possible to suppress a swing in which the regenerable flag is turned ON or OFF due to a measurement error or the like. If the pedal torque is equal to or larger than the threshold value TH3, the process proceeds to step S47.
 一方、ペダルトルクが閾値TH3未満である場合には、制御部3300は、モータ回転処理部2000からの現在の速度が閾値TH4を超えているか否かを判断する(ステップS45)。ある程度の速度が出ていない場合に本回生制御を行うことが不適切だからである。現在の速度が閾値TH4以下であれば、処理はステップS47に移行する。一方、現在の速度が閾値TH4を超えている場合には、回生可能フラグをOFFにセットすることはなく、処理は呼び出し元の処理に戻る。 On the other hand, if the pedal torque is less than the threshold TH3, the control unit 3300 determines whether the current speed from the motor rotation processing unit 2000 exceeds the threshold TH4 (step S45). This is because it is inappropriate to perform the regenerative control when a certain speed is not obtained. If the current speed is equal to or less than the threshold TH4, the process proceeds to step S47. On the other hand, if the current speed exceeds the threshold TH4, the regenerative flag is not set to OFF, and the process returns to the process of the caller.
 このように、一旦回生可能フラグをONにセットした後に走行状態が変化して、本実施の形態に係る回生制御を行うのが不適切な状態になったことを検出した場合には、回生可能フラグをOFFにセットする。 As described above, when it is detected that the running state changes after the regenerative enable flag is set to ON and the regenerative control according to the present embodiment becomes inappropriate, the regenerative enable flag is set. Set the flag to OFF.
 次に図7を用いて本実施の形態に係る回生量決定処理について説明する。 Next, the regeneration amount determination processing according to the present embodiment will be described with reference to FIG.
 まず、制御部3300は、回生可能フラグがONになっているか否かを判断する(図7:ステップS51)。回生可能フラグがOFFになっている場合、本実施の形態に係る回生制御を行うことは不適切なので、制御部3300は、他の条件にて回生量(0の場合もある)を決定して、当該回生量に従ったモータ105の回生制動をFETブリッジ1030などに行わせる(ステップS59)。そして処理は呼び出し元の処理に戻る。 First, the controller 3300 determines whether or not the regenerative flag is ON (FIG. 7: step S51). When the regenerable flag is OFF, it is inappropriate to perform the regenerative control according to the present embodiment. Therefore, control unit 3300 determines the regenerative amount (may be 0) under other conditions. Then, the regenerative braking of the motor 105 according to the regeneration amount is performed by the FET bridge 1030 and the like (step S59). Then, the process returns to the calling process.
 一方、回生可能フラグがONになっている場合、制御部3300は、モータ回転処理部2000からの現在の速度が基準速度V0を超えているか否かを判断する(ステップS53)。本実施の形態では、現在の速度が基準速度V0を超えている場合に回生制動にて速度を抑制することにしているので、現在の速度が基準速度V0以下であれば、本実施の形態に係る回生制御を行わないものとしている。但し、現在の回生係数よりも小さい回生係数を用いるような制御を行うようにしても良い。 On the other hand, if the regenerable flag is ON, the control unit 3300 determines whether the current speed from the motor rotation processing unit 2000 exceeds the reference speed V0 (step S53). In the present embodiment, when the current speed exceeds the reference speed V0, the speed is suppressed by regenerative braking. Therefore, if the current speed is equal to or lower than the reference speed V0, the present embodiment Such regenerative control is not performed. However, control may be performed such that a regeneration coefficient smaller than the current regeneration coefficient is used.
 本実施の形態では、現在の速度が基準速度V0以下であれば、処理はステップS59に移行する。一方、現在の速度が基準速度V0を超えている場合には、制御部3300は、ΔV(=現在速度-V0)に基づき回生係数を設定する(ステップS55)。例えば、ΔVと回生係数[%]の対応関係を予め定めておく。この対応関係の一例を図8に示す。図8の例では、縦軸は回生係数[%]を表しており、横軸はΔV[km/h]を表している。例えば、ΔV=0の時の回生係数がRMIN(0であってもよいし、0を超える値である場合もある)であり、ΔV=v1(所定値)の時の回生係数がRMAX(100であってもよいし、100未満の値である場合もある)である直線aで表される対応関係であってもよい。また、ΔV=0の時の回生係数がRMIN(0であってもよいし、0を超える値である場合もある)であり、ΔV=v1の時の回生係数がRMAX(100であってもよいし、100未満の値である場合もある)である指数関数の曲線bで表される関係であってもよい。その他の関数で表される曲線であってもよい。また、単純なΔVではなく、(現在の速度-V0)項を含む式で算出される他の指標値を基に回生係数を決定しても良い。 In the present embodiment, if the current speed is equal to or lower than the reference speed V0, the process proceeds to step S59. On the other hand, if the current speed exceeds the reference speed V0, the control unit 3300 sets a regeneration coefficient based on ΔV (= current speed−V0) (step S55). For example, the correspondence between ΔV and the regeneration coefficient [%] is determined in advance. FIG. 8 shows an example of this correspondence. In the example of FIG. 8, the vertical axis represents the regeneration coefficient [%], and the horizontal axis represents ΔV [km / h]. For example, the regeneration coefficient when ΔV = 0 is R MIN (may be 0 or may exceed 0), and the regeneration coefficient when ΔV = v1 (predetermined value) is R MAX The relationship may be represented by a straight line a (which may be 100 or may be a value less than 100). Further, the regeneration coefficient when ΔV = 0 is R MIN (may be 0 or may be a value exceeding 0), and the regeneration coefficient when ΔV = v1 is R MAX (100 Or a value less than 100 in some cases). It may be a curve represented by another function. Further, the regenerative coefficient may be determined based on another index value calculated by an equation including the (current speed-V0) term instead of the simple ΔV.
 なお、決定された回生係数をそのまま採用すると、加速度の大幅変化によるショックをユーザに与えることになるので、ブレーキがOFFになったことを検出した時点から、決定された回生係数まで漸増させるような制御も行う。 If the determined regenerative coefficient is used as it is, a shock due to a large change in acceleration is given to the user. Therefore, it is necessary to gradually increase the regenerative coefficient to the determined regenerative coefficient from the time when the brake is turned off. Control is also performed.
 制御部3300は、回生目標算出部3100から出力された現在の加速度等に応じた回生目標量に対して回生係数を乗ずることで回生量を決定し、当該回生量に従ってFETブリッジ1030等を介してモータ105に回生制動を行わせる(ステップS57)。そして処理は呼び出し元の処理に戻る。 The control unit 3300 determines the regenerative amount by multiplying the regenerative coefficient by the regenerative target amount corresponding to the current acceleration or the like output from the regenerative target calculating unit 3100, and according to the regenerative value via the FET bridge 1030 or the like. The motor 105 performs regenerative braking (step S57). Then, the process returns to the calling process.
 以上のような処理を実行することで、ユーザに加速意図がないと推定される第1の例である、ペダルトルクがほとんど検出されない状態が一定時間以上継続する場合に、そのタイミングで設定される基準速度V0に基づき回生制御が行われるようになる。 By performing the above-described processing, when a state in which the pedal torque is hardly detected, which is the first example in which it is estimated that the user has no intention to accelerate, continues for a certain period of time, the timing is set at that timing. The regeneration control is performed based on the reference speed V0.
 ここで、図9に動作例を示す。ここでは、図9最上段に示すように、電動アシスト自転車1が走行中に、平地から下り坂に路面が変化する場合における動作を説明する。比較のため、ブレーキ操作に応じて回生を行う場合をまず説明する。時刻t1では、ユーザはペダルを漕いでおり、回生は行われていない。その後ユーザがペダルを漕ぐのをやめて、時刻t2で、ペダルトルクが閾値TH11以下である状態が一定時間継続すると、図9(b)ではペダルトルクオフを表す信号がオンになる。その後時刻t3になると、電動アシスト自転車1は下り坂に入り、図9(d)において点線cが表すように、速度が上昇し始める。そしてユーザが危険を感じる速度に達すると、ユーザが時刻t4でブレーキ操作を行う(図9(a))。この時刻t4で、図9(e)において点線fで示すように回生動作状態となる。なお、便宜上、図9(c)において点線bで表すように、回生可能フラグも時刻t4でオンになるものとしている。時刻t4以降(例えば時刻t5)については、下り坂を走行しているが、図9(d)において点線cが表すように、回生制動により速度上昇は抑制されている。 Here, FIG. 9 shows an operation example. Here, as shown at the top of FIG. 9, an operation in the case where the road surface changes from a flat ground to a downhill while the electric assist bicycle 1 is traveling will be described. For comparison, a case in which regeneration is performed according to a brake operation will be described first. At time t1, the user is pedaling, and regeneration is not performed. Thereafter, when the user stops pedaling and the state where the pedal torque is equal to or less than the threshold value TH11 continues for a certain period of time at time t2, a signal indicating pedal torque off is turned on in FIG. 9B. Thereafter, at time t3, the electrically assisted bicycle 1 enters a downhill, and the speed starts to increase as indicated by a dotted line c in FIG. 9D. Then, when the speed at which the user perceives danger is reached, the user performs a brake operation at time t4 (FIG. 9A). At this time t4, a regenerative operation state is set as shown by a dotted line f in FIG. Note that, for convenience, as shown by a dotted line b in FIG. 9C, the regenerative flag is also turned on at time t4. After time t4 (for example, time t5), the vehicle is traveling on a downhill, but the speed increase is suppressed by regenerative braking as indicated by a dotted line c in FIG. 9D.
 一方、本実施の形態に係る電動アシスト自転車1の場合、ユーザがペダルを漕ぐのをやめて、時刻t2で、ペダルトルクが閾値TH11以下である状態が一定時間継続すると、図9(b)に示すようにペダルトルクオフを表す信号がオンになるのと同時に、図9(c)において実線aで示すように回生可能フラグが時刻t2でオンになる。但し、まだ回生は働かない。なお、時刻t2の速度が基準速度V0にセットされる。 On the other hand, in the case of the electrically assisted bicycle 1 according to the present embodiment, when the user stops pedaling and the state where the pedal torque is equal to or less than the threshold value TH11 continues at a time t2 for a certain period of time, FIG. At the same time as the signal indicating pedal torque off is turned on, the regenerable flag is turned on at time t2 as shown by the solid line a in FIG. 9C. However, regeneration still does not work. The speed at time t2 is set to the reference speed V0.
 その後時刻t3で下り坂に入り、速度が上昇し始めると、既に回生可能フラグがオンになっているので、図9(e)において実線eで表すように回生動作状態となる。すなわち、基準速度V0を超える車速が検出されれば回生動作状態となり、図9(d)において実線dで表されるように基準速度V0が維持されるように回生制動が行われるようになる。これは下り坂を下っている時刻t5においても同様である。 Thereafter, when the vehicle goes downhill at time t3 and the speed starts to increase, the regenerative operation enable flag has already been turned on, so that a regenerative operation state is established as shown by a solid line e in FIG. 9E. That is, when a vehicle speed exceeding the reference speed V0 is detected, a regenerative operation state is set, and regenerative braking is performed so that the reference speed V0 is maintained as indicated by a solid line d in FIG. 9D. This is the same at time t5 when the vehicle is traveling downhill.
 このように、ブレーキ操作に応じて回生制御を行う場合には、時刻t4において回生動作状態になるが、本実施の形態では、時刻t3になると回生動作状態となる。これによって、ユーザはブレーキ操作を行わずとも基準速度V0が維持されるので、ブレーキ操作を行わずとも安全な走行が可能となり、さらに、回生が前倒しで実行されることによりブレーキ操作に応じて回生を行う場合に比して充電量も増加することになる。 In this way, when the regenerative control is performed according to the brake operation, the regenerative operation state is set at the time t4, but in the present embodiment, the regenerative operation state is set at the time t3. This allows the user to maintain the reference speed V0 without performing the brake operation, so that safe driving can be performed without performing the brake operation. In addition, the regeneration is performed ahead of time, and the regeneration is performed in accordance with the brake operation. , The amount of charge also increases.
[実施の形態2]
 本実施の形態では、ユーザに加速意図がないと推定される第2の例について説明する。そのため、本実施の形態では、基準速度設定処理Aの代わりに基準速度設定処理Bを実行する。
[Embodiment 2]
In the present embodiment, a second example in which it is assumed that the user has no intention to accelerate will be described. Therefore, in the present embodiment, the reference speed setting process B is executed instead of the reference speed setting process A.
 図10に、基準速度設定処理Bの処理フローを示す。なお、基準速度設定処理Aと同じ部分については同じ参照符号を付している。すなわち、図5と図10の差は、冒頭にステップS61が追加されている部分のみである。 FIG. 10 shows a processing flow of the reference speed setting processing B. The same parts as those in the reference speed setting processing A are denoted by the same reference numerals. That is, the difference between FIG. 5 and FIG. 10 is only the part where step S61 is added at the beginning.
 具体的には、基準速度設定部3200は、ペダル回転角度が閾値TH12以下であるか否かを判断する(ステップS61)。ペダル回転角度が閾値TH12を超える場合には、処理はステップS35に移行する。一方、ペダル回転角度が閾値TH12以下であれば、処理はステップS21に移行する。なお、閾値TH12は、閾値TH2と同じであってもよいし、閾値TH2より小さな値であってもよい。TH12>TH2であれば、測定誤差や微少なペダル回転などにより回生可能フラグがONになったりOFFになったりする揺れを抑えることができる。 Specifically, the reference speed setting unit 3200 determines whether or not the pedal rotation angle is equal to or less than the threshold value TH12 (Step S61). If the pedal rotation angle exceeds the threshold value TH12, the process proceeds to step S35. On the other hand, if the pedal rotation angle is equal to or smaller than the threshold value TH12, the process proceeds to step S21. Note that the threshold value TH12 may be the same as the threshold value TH2, or may be a value smaller than the threshold value TH2. If TH12> TH2, it is possible to prevent the regenerative flag from turning ON or OFF due to a measurement error, slight pedal rotation, or the like.
 本実施の形態では、第1の実施の形態におけるペダルトルクに加えてペダル回転角度も併せてチェックすることで、確実にユーザに加速意図がないことを確認するものである。 In this embodiment, by checking the pedal rotation angle in addition to the pedal torque in the first embodiment, it is surely confirmed that the user does not intend to accelerate.
[実施の形態3]
 本実施の形態では、ユーザに加速意図がないと推定される第3の例について説明する。そのため、本実施の形態では、基準速度設定処理A及びBの代わりに基準速度設定処理Cを実行する。
[Embodiment 3]
In the present embodiment, a third example in which it is estimated that the user has no intention to accelerate will be described. Therefore, in the present embodiment, a reference speed setting process C is executed instead of the reference speed setting processes A and B.
 図11に、基準速度設定処理Cの処理フローを示す。なお、基準速度設定処理Aと同じ部分については同じ参照符号を付している。すなわち、図5と図11の差は、冒頭におけるステップS21の代わりに、ステップS71及びS73が設けられている部分である。 FIG. 11 shows a processing flow of the reference speed setting processing C. The same parts as those in the reference speed setting processing A are denoted by the same reference numerals. That is, the difference between FIG. 5 and FIG. 11 is the part where steps S71 and S73 are provided instead of step S21 at the beginning.
 すなわち、基準速度設定部3200は、本実施の形態に係る回転差を算出する(図11:ステップS71)。本実施の形態では、モータ105によって駆動される前輪の回転と比較してペダル回転があまりなされていない状態を、ユーザには加速意図がないと判定するものである。そのため、本実施の形態に係る回転差とは、例えば、前輪の回転数と、ペダル回転に基づき換算される、後輪の回転数との差(例えば、前輪の回転数-後輪の回転数)である。また、前輪についての車速と、ペダル回転に基づき換算された後輪についての車速との差(例えば、前輪についての車速-後輪についての車速)を用いてもよい。なお、差ではなく、比など(例えば、前輪の回転数/後輪の回転数、前輪についての車速/後輪についての車速)を用いて、それらの乖離が所定レベル以上であるか否かを判断するようにしてもよい。なお、前輪の回転数等は車輪回転に応じた第1の指標値であり、後輪の回転数等はペダル回転に応じた第2の指標値であり、それらの一致度や乖離度を算出して、それに基づき第1の指標値と第2の指標値とが所定レベル以上乖離しているか否かを判断してもよい。 That is, the reference speed setting unit 3200 calculates the rotation difference according to the present embodiment (FIG. 11: step S71). In the present embodiment, a state in which the pedal is not rotated much as compared with the rotation of the front wheel driven by the motor 105 is determined to have no intention of acceleration by the user. Therefore, the rotation difference according to the present embodiment is, for example, a difference between the rotation speed of the front wheel and the rotation speed of the rear wheel converted based on the pedal rotation (for example, the rotation speed of the front wheel−the rotation speed of the rear wheel). ). Alternatively, a difference between the vehicle speed of the front wheels and the vehicle speed of the rear wheels converted based on the pedal rotation (for example, the vehicle speed of the front wheels minus the vehicle speed of the rear wheels) may be used. Instead of using the difference, a ratio or the like (for example, the rotation speed of the front wheel / the rotation speed of the rear wheel, the vehicle speed of the front wheel / the vehicle speed of the rear wheel) is used to determine whether or not the deviation is equal to or more than a predetermined level. You may make it determine. The rotation speed of the front wheel is a first index value according to the rotation of the wheel, and the rotation speed of the rear wheel is a second index value according to the rotation of the pedal. Then, based on this, it may be determined whether or not the first index value and the second index value deviate by a predetermined level or more.
 そして、基準速度設定部3200は、回転差が閾値TH13以上であるか否かを判断する(ステップS73)。回転差が閾値TH13以上である場合には、ユーザには加速意図がないと推定して処理はステップS23に移行する。一方、回転差が閾値TH13未満である場合には、処理はステップS35に移行する。 Then, the reference speed setting unit 3200 determines whether or not the rotation difference is equal to or larger than the threshold value TH13 (Step S73). If the rotation difference is equal to or greater than the threshold value TH13, it is estimated that the user has no intention to accelerate, and the process proceeds to step S23. On the other hand, when the rotation difference is less than the threshold value TH13, the process proceeds to step S35.
 本実施の形態では、モータ105が前輪に設けられているので、前輪の回転に着目しているが、本実施の形態では、電動アシスト自転車1の車輪の回転が検出されるか、車速が計測されれば良い。 In the present embodiment, since the motor 105 is provided on the front wheels, the rotation of the front wheels is focused on. However, in the present embodiment, the rotation of the wheels of the electric assist bicycle 1 is detected or the vehicle speed is measured. Just do it.
 このように、ユーザに加速意図がなく回生可能な状態が一定時間以上継続する事象を検出できて、基準速度が設定されれば、その基準速度からの速度上昇を、第1の実施の形態と同様に抑制できるようになる。 As described above, when the user can detect an event in which the regenerative state without intention of acceleration continues for a certain period of time or more and the reference speed is set, the speed increase from the reference speed is compared with the first embodiment. Similarly, it can be suppressed.
[実施の形態4]
 第1乃至第3の実施の形態では、基準速度V0は、回生可能フラグがOFFにならないと変更されない例を示したが、回生可能フラグがONのままでも、ユーザからの指示があれば、基準速度V0を変更してもよい。例えば、坂を下る場合に、回生制動が効き過ぎていると感じた場合、明示的に指示することで基準速度V0を上昇させるような場合が考えられる。
[Embodiment 4]
In the first to third embodiments, an example has been described in which the reference speed V0 is not changed unless the regenerable flag is turned off. The speed V0 may be changed. For example, when going down a hill, if it is felt that regenerative braking is too effective, the reference speed V0 may be increased by explicitly instructing.
 そのため、本実施の形態では、基準速度V0を途中で変更する第1の例について説明する。なお、本実施の形態では、ペダル回転角度に基づき基準速度V0を調整するので、確認処理(図6)のステップS41については実行しないが、基本的な処理フローは、第1の実施の形態と同様であり、変更があるのは、回生量決定処理のみである。 Therefore, in the present embodiment, a first example in which the reference speed V0 is changed halfway will be described. In the present embodiment, since the reference speed V0 is adjusted based on the pedal rotation angle, step S41 of the confirmation process (FIG. 6) is not executed, but the basic processing flow is the same as that of the first embodiment. The same is true, and only the regeneration amount determination processing is changed.
 本実施の形態に係る回生量決定処理Bについて、図12を用いて説明する。図7に示した回生量決定処理と同じ部分については同じ参照符号を付している。すなわち、図7の回生量決定処理と回生量決定処理Bとの差は、ステップS51とS53との間に、基準速度設定部3200が基準速度調整処理を実行する処理(ステップS81)が追加されている部分である。すなわち、回生可能フラグがONにセットされていれば、基準速度調整処理が実行される。 回 Regeneration amount determination processing B according to the present embodiment will be described with reference to FIG. The same parts as those in the regeneration amount determination processing shown in FIG. 7 are denoted by the same reference numerals. That is, the difference between the regenerative amount determination process and the regenerative amount determination process B in FIG. 7 is such that a process (step S81) in which the reference speed setting unit 3200 executes the reference speed adjustment process is added between steps S51 and S53. It is the part that is. That is, if the regenerable flag is set to ON, the reference speed adjustment processing is executed.
 本実施の形態では、図13に示す基準速度調整処理Aが実行される。なお、本実施の形態では、ペダル正回転とペダル逆回転とを区別できるペダル回転センサ104を用いる例である。 In the present embodiment, a reference speed adjustment process A shown in FIG. 13 is executed. Note that the present embodiment is an example in which the pedal rotation sensor 104 that can distinguish between the normal rotation of the pedal and the reverse rotation of the pedal is used.
 まず、基準速度設定部3200は、ペダル回転入力からペダルが正回転しているか否かを判断する(ステップS91)。ペダルが正回転している場合には、基準速度設定部3200は、ペダル回転角度が閾値TH21以上であるか否かを判断する(ステップS93)。例えば360°以上回転されたか否かを判断する。例えば、回生可能フラグがONにセットされてからの累積のペダル回転角度を計測しておき、基準速度V0の調整を行う毎に累積のペダル回転角度をゼロに戻すようにしてもよい。ペダル回転角度が閾値TH21未満である場合には、処理は呼び出し元の処理に戻る。 First, the reference speed setting unit 3200 determines whether or not the pedal is rotating forward based on the pedal rotation input (step S91). If the pedal is rotating forward, the reference speed setting unit 3200 determines whether or not the pedal rotation angle is equal to or greater than the threshold TH21 (step S93). For example, it is determined whether the rotation has been made 360 ° or more. For example, the cumulative pedal rotation angle after the regenerable flag is set to ON may be measured, and the cumulative pedal rotation angle may be returned to zero each time the reference speed V0 is adjusted. If the pedal rotation angle is less than the threshold value TH21, the process returns to the calling process.
 一方、ペダル回転角度が閾値TH21以上である場合には、基準速度設定部3200は、基準速度V0を、dVだけ増加させる(ステップS95)。dVは、例えば1km/hである。そして処理は呼び出し元の処理に戻る。 On the other hand, if the pedal rotation angle is equal to or greater than the threshold value TH21, the reference speed setting unit 3200 increases the reference speed V0 by dV (step S95). dV is, for example, 1 km / h. Then, the process returns to the calling process.
 また、ペダルが正回転していない場合には、基準速度設定部3200は、ペダルが逆回転しているか否かを判断する(ステップS97)。ペダルが逆回転していない場合、すなわちペダル回転が停止している場合には、処理は呼び出し元の処理に戻る。 If the pedal is not rotating forward, the reference speed setting unit 3200 determines whether or not the pedal is rotating backward (step S97). If the pedal is not rotating in the reverse direction, that is, if the pedal rotation has stopped, the process returns to the calling process.
 一方、ペダルが逆回転している場合には、基準速度設定部3200は、ペダル逆回転角度が、閾値TH21以上であるか否かを判断する(ステップS99)。ペダル逆回転角度が閾値TH21未満である場合には、処理は呼び出し元の処理に戻る。 On the other hand, when the pedal is rotating in the reverse direction, the reference speed setting unit 3200 determines whether or not the pedal reverse rotation angle is equal to or larger than the threshold value TH21 (step S99). If the pedal reverse rotation angle is less than the threshold value TH21, the process returns to the calling process.
 一方、ペダル逆回転角が閾値TH21以上である場合には、基準速度設定部3200は、基準速度V0を、dVだけ減少させる(ステップS101)。そして処理は呼び出し元の処理に戻る。なお、減少させる際のdVは、増加させる際のdVと異なる場合もある。 On the other hand, when the pedal reverse rotation angle is equal to or larger than the threshold TH21, the reference speed setting unit 3200 decreases the reference speed V0 by dV (step S101). Then, the process returns to the calling process. The dV at the time of decreasing may be different from the dV at the time of increasing.
 このような処理を行う場合には、例えば、図14に模式的に示すような基準速度V0の調整が行われる。図14の上段は、ペダル回転角度の変化を表している。図14の下段は、基準速度V0の変化(横軸はペダル回転角度を表し、縦軸は基準速度を表している)を表している。 In the case of performing such a process, for example, the reference speed V0 is schematically adjusted as shown in FIG. The upper part of FIG. 14 shows a change in the pedal rotation angle. The lower part of FIG. 14 shows a change in the reference speed V0 (the horizontal axis represents the pedal rotation angle, and the vertical axis represents the reference speed).
 上で述べたような処理が実行されると、ペダル回転角度が0°から360°未満であれば基準速度はV0のままであるが、1正回転、すなわち360°正回転させれば、V0+1km/hに変化する。360°以上で720°未満であれば変化しない。2正回転、すなわち720°正回転させれば、V0+2km/hに変化する。図14では、調整量の上限値を設定しており、それ以上ペダルを正回転させても基準速度V0は変化しないようになっているが、変化させるようにしてもよい。なお、+2km/hを超えて変化させないようにしているが、調整後の基準速度V0に上限値を設けて、それ以上の基準速度V0にならないようにしてもよい。 When the above-described processing is executed, if the pedal rotation angle is 0 ° to less than 360 °, the reference speed remains at V0. However, if the rotation is 1 forward rotation, that is, 360 ° forward rotation, V0 + 1km is obtained. / H. If it is 360 ° or more and less than 720 °, there is no change. If two forward rotations, that is, 720 ° forward rotation, change to V0 + 2 km / h. In FIG. 14, the upper limit value of the adjustment amount is set, and the reference speed V0 does not change even if the pedal is further rotated forward, but may be changed. Note that the reference speed V0 is not changed beyond +2 km / h. However, an upper limit value may be provided for the adjusted reference speed V0 so that the reference speed V0 does not exceed the upper limit.
 一方、1逆回転、すなわち360°逆回転させれば、V0-1km/hに変化する。以下、正回転と同じで、360°逆回転させる毎に、-1km/h変化させるようにしてもよい。また、正回転のように、負の調整量に下限値を設けてもよい。 On the other hand, if it is rotated one reverse rotation, that is, 360 ° reverse rotation, it changes to V0-1 km / h. Hereinafter, the rotation may be changed by -1 km / h every time the motor is rotated 360 ° in the same manner as the normal rotation. Further, a lower limit value may be set for the negative adjustment amount as in the case of positive rotation.
 このようにすれば、ユーザの明示的な指示に基づき、基準速度V0を増加させたり減少させたりすることができるようになる。速度が速すぎる、又は速度が遅すぎると感じる場合に、ユーザは、ペダルを回転させて調整できるようになる。 れ ば In this way, the reference speed V0 can be increased or decreased based on a user's explicit instruction. If the user feels the speed is too fast or too slow, the user can rotate the pedal to make adjustments.
 調整量の上限値又は下限値を設けるようにすれば、ユーザがペダルを回転させすぎた場合でも、急激に乗り味が変化するようなことを避けることができるようになる。 If the upper limit value or the lower limit value of the adjustment amount is set, even if the user rotates the pedal excessively, it is possible to avoid a sudden change in ride quality.
 なお、このような基準速度の調整は、ペダルトルクが閾値未満の場合にのみ実施するようにしてもよい。ペダルトルクがある程度以上計測される場合には、ユーザに加速意図があると推定されるので、基準速度の調整は不要と推定されるためである。 Note that such adjustment of the reference speed may be performed only when the pedal torque is less than the threshold value. This is because if the pedal torque is measured to a certain extent or more, it is estimated that the user intends to accelerate, and it is estimated that adjustment of the reference speed is unnecessary.
 また、本実施の形態では、360°毎に基準速度V0を変化させるようにしているが、別の角度毎に基準速度V0を変化させてもよい。また、回転角度に応じて線形的に又は指数関数的に基準速度V0を変化させるようにしてもよい。また、別に定義するカーブに沿って、ペダル回転角度に応じて基準速度V0を変化させるようにしてもよい。 In the present embodiment, the reference speed V0 is changed every 360 °, but the reference speed V0 may be changed every other angle. Further, the reference speed V0 may be changed linearly or exponentially according to the rotation angle. Further, the reference speed V0 may be changed according to the pedal rotation angle along a curve defined separately.
 さらに、正回転で基準速度V0を増加させるのではなく減少させ、逆回転で基準速度V0を減少させるのではなく増加させるようにしてもよい。 Further, the reference speed V0 may be decreased instead of being increased by the forward rotation, and may be increased rather than decreased by the reverse rotation.
[実施の形態5]
 第4の実施の形態では、ペダル正回転とペダル逆回転とを区別できるペダル回転センサ104を用いたが、区別できないペダル回転センサ104を用いるようにしてもよい。 その場合には、基準速度調整処理B(図15)を実行するようにしてもよい。
[Embodiment 5]
In the fourth embodiment, the pedal rotation sensor 104 capable of distinguishing between the normal rotation of the pedal and the reverse rotation of the pedal is used. In that case, the reference speed adjustment processing B (FIG. 15) may be executed.
 すなわち、基準速度設定部3200は、ペダル回転角度が閾値TH21以上であるか否かを判断する(ステップS111)。例えば360°以上回転されたか否かを判断する。例えば、回生可能フラグがONにセットされてからの累積のペダル回転角度を計測しておき、基準速度V0の調整を行う毎に累積のペダル回転角度をゼロに戻すようにしてもよい。ペダル回転角度が閾値TH21未満である場合には、処理は呼び出し元の処理に戻る。 That is, the reference speed setting unit 3200 determines whether or not the pedal rotation angle is equal to or greater than the threshold TH21 (step S111). For example, it is determined whether the rotation has been made 360 ° or more. For example, the cumulative pedal rotation angle after the regenerable flag is set to ON may be measured, and the cumulative pedal rotation angle may be returned to zero each time the reference speed V0 is adjusted. If the pedal rotation angle is less than the threshold value TH21, the process returns to the calling process.
 一方、ペダル回転角度が閾値TH21以上である場合には、基準速度設定部3200は、基準速度V0を、dVだけ増加させるか、又は基準速度V0を、dVだけ減少させる(ステップS113)。dVは、例えば1km/hである。そして処理は呼び出し元の処理に戻る。なお、減少させる際のdVは、増加させる際のdVと異なる場合もある。 On the other hand, if the pedal rotation angle is equal to or greater than the threshold value TH21, the reference speed setting unit 3200 increases the reference speed V0 by dV or decreases the reference speed V0 by dV (step S113). dV is, for example, 1 km / h. Then, the process returns to the calling process. The dV at the time of decreasing may be different from the dV at the time of increasing.
 本実施の形態では、ペダル回転方向が分からないので、回転角度に応じて基準速度V0を増加させるか、減少させることを行うようになっている。 In the present embodiment, since the pedal rotation direction is not known, the reference speed V0 is increased or decreased according to the rotation angle.
 増加又は減少のさせ方は、第4の実施の形態と同様に、一回転毎、すなわち360°毎に、段階的に増加又は減少させてもよいし、線形的に又は任意のカーブに沿って増加又は減少させてもよい。 As in the case of the fourth embodiment, the increment or decrement may be stepwise increased or decreased every rotation, that is, every 360 °, linearly or along an arbitrary curve. It may be increased or decreased.
 ペダルトルクによる調整の制限についても、第4の実施の形態と同様で良い。また、調整量の上限値又は下限値などについても、第4の実施の形態と同様で良い。 調整 Restriction of adjustment by pedal torque may be the same as that of the fourth embodiment. Further, the upper limit value or the lower limit value of the adjustment amount may be the same as in the fourth embodiment.
[実施の形態6]
 第4及び第5の実施の形態とは異なる形で、基準速度V0を調整するようにしてもよい。例えば、基準速度調整処理C(図16)を実行するようにしてもよい。
Embodiment 6
The reference speed V0 may be adjusted in a manner different from the fourth and fifth embodiments. For example, the reference speed adjustment processing C (FIG. 16) may be executed.
 基準速度設定部3200は、ペダル回転入力から得られるペダル回転速度が、第1の速度帯(例えば0.5回転/s以上)に入っている否かを判断する(図16:ステップS121)。例えば比較的速い速度で回転させているか否かを判断する。ペダル回転速度が第1の速度帯に入っている場合には、基準速度設定部3200は、基準速度V0をdVだけ増加させる(ステップS123)。そして処理は呼び出し元の処理に戻る。 The reference speed setting unit 3200 determines whether or not the pedal rotation speed obtained from the pedal rotation input falls within the first speed band (for example, 0.5 rotation / s or more) (FIG. 16: step S121). For example, it is determined whether the rotation is performed at a relatively high speed. If the pedal rotation speed falls within the first speed band, the reference speed setting unit 3200 increases the reference speed V0 by dV (step S123). Then, the process returns to the calling process.
 一方、ペダル回転速度が、第1の速度帯に入っていない場合には、基準速度設定部3200は、ペダル回転速度が、第2の速度帯(例えば0回転/sを超えて0.25回転/s以下)に入っているか否かを判断する(ステップS125)。ペダル回転速度が第2の速度帯に入っている場合には、基準速度設定部3200は、基準速度V0をdVだけ減少させる(ステップS127)。そして処理は呼び出し元の処理に戻る。また、ペダル回転速度が、第2の速度帯にも入っていない場合にも、処理は呼び出し元の処理に戻る。なお、減少させる際のdVは、増加させる際のdVと異なる場合もある。 On the other hand, when the pedal rotation speed does not fall within the first speed band, the reference speed setting unit 3200 determines that the pedal rotation speed is in the second speed band (for example, 0.25 rotation exceeding 0 rotation / s). / S) (step S125). If the pedal rotation speed falls within the second speed band, the reference speed setting unit 3200 decreases the reference speed V0 by dV (step S127). Then, the process returns to the calling process. Also, when the pedal rotation speed is not within the second speed band, the process returns to the process of the calling source. The dV at the time of decreasing may be different from the dV at the time of increasing.
 このようにすれば、ユーザはペダル回転速度を変化させることで、基準速度V0を任意に調整させることができるようになる。 In this way, the user can arbitrarily adjust the reference speed V0 by changing the pedal rotation speed.
 なお、第1の速度帯のみを用いるようにしたり、第2の速度帯のみを用いるようにしたり、第1の速度帯に対応させて基準速度V0を減少させたり、第2の速度帯に対応させて基準速度V0を増加させるようにしてもよい。 It should be noted that only the first speed band is used, only the second speed band is used, the reference speed V0 is reduced corresponding to the first speed band, or the second speed band is used. Thus, the reference speed V0 may be increased.
 以上本発明の実施の形態を説明したが、本発明はこれに限定されるものではない。例えば、目的に応じて、上で述べた各実施の形態における任意の技術的特徴を削除するようにしても良いし、他の実施の形態で述べた任意の技術的特徴を追加するようにしても良い。 Although the embodiment of the present invention has been described above, the present invention is not limited to this. For example, according to the purpose, any of the technical features in the above-described embodiments may be deleted, or any of the technical features described in the other embodiments may be added. Is also good.
 さらに、上で述べた機能ブロック図は一例であって、1の機能ブロックを複数の機能ブロックに分けても良いし、複数の機能ブロックを1つの機能ブロックに統合しても良い。処理フローについても、処理内容が変わらない限り、ステップの順番を入れ替えたり、複数のステップを並列に実行するようにしても良い。 {Furthermore, the functional block diagram described above is an example, and one functional block may be divided into a plurality of functional blocks, or a plurality of functional blocks may be integrated into one functional block. As for the processing flow, the order of the steps may be changed or a plurality of steps may be executed in parallel as long as the processing content does not change.
 演算部1021は、一部又は全部を専用の回路にて実装しても良いし、予め用意したプログラムを実行することで、上で述べたような機能を実現させるようにしても良い。 The operation unit 1021 may be partially or entirely implemented by a dedicated circuit, or may execute a program prepared in advance to realize the above-described functions.
 センサの種類も上で述べた例は一例であり、上で述べたパラメータを得られるような他のセンサを用いるようにしても良い。 (4) The type of sensor described above is merely an example, and another sensor that can obtain the above-described parameters may be used.
 以上述べた実施の形態をまとめると以下のようになる。 ま と め The above embodiments are summarized as follows.
 本実施の形態に係るモータ制御装置は、(A)モータを駆動する駆動部と、(B)加速意図がないと推定される所定の走行又はペダル操作の状態を検出することに応じて、ペダル回転とモータの回転との少なくともいずれかに応じて移動する車両の速度を特定し、当該特定された速度に基づき回生量を決定し、当該回生量に従って駆動部を制御する制御部とを有する。 The motor control device according to the present embodiment includes: (A) a driving unit that drives a motor; and (B) a pedal that responds to detection of a predetermined traveling or pedal operation state estimated to have no intention to accelerate. A control unit that specifies a speed of the vehicle that moves in accordance with at least one of the rotation and the rotation of the motor, determines a regenerative amount based on the specified speed, and controls a driving unit according to the regenerative amount.
 このように加速意図がないと推定される所定の走行又はペダル操作(例えば順方向又は正方向のペダル操作)の状態が検出されれば、その状態の検出時の速度よりも速度が上昇することは想定されていない。従って、そのような状態検出時の速度に基づき回生量を決定すれば、ユーザの意図に応じた回生制御が行われるようになる。また、速度上昇が適切に抑制されれば、安全性の向上につながる。 If a state of a predetermined running or pedal operation (eg, forward or forward pedal operation) estimated to have no intention to accelerate is detected in this way, the speed is higher than the speed at the time of detection of the state. Is not assumed. Therefore, if the regeneration amount is determined based on the speed at the time of such state detection, the regeneration control according to the user's intention is performed. In addition, if the speed increase is appropriately suppressed, safety is improved.
 なお、加速意図がないと推定される所定の走行又はペダル操作の状態は、ブレーキ操作とは無関係に検出される場合もある。ブレーキセンサを設けずともよいので、コスト削減となる。また、加速意図がないと推定される所定の走行又はペダル操作の状態は、ユーザによる加速のためのペダル操作を検出した後、当該加速のためのペダル操作を検出しなくなった状態とも言える。 Note that the predetermined running or pedal operation state estimated to have no intention to accelerate may be detected independently of the brake operation. Since it is not necessary to provide a brake sensor, cost can be reduced. Also, the predetermined running or pedal operation state in which it is estimated that there is no intention to accelerate can be said to be a state in which after detecting a pedal operation by the user for acceleration, the pedal operation for acceleration is not detected.
 なお、上で述べた所定の走行又はペダル操作の状態が、(1)第1の閾値未満のペダルトルク入力が一定時間以上継続される状態、(2)第2の閾値未満のペダルトルク入力及び第3の閾値未満のペダル回転角度が一定時間以上継続される状態、又は(3)車輪回転に応じた第1の値とペダル回転に応じた第2の値との一致度又は乖離度から第1の値と第2の値とが所定レベル以上異なるようになったと判断された状態である場合もある。このような状態は、典型的に加速意図がないと推定される状態であり、ユーザが特段意図せずに行う又は生じる状態である。これらに代わる状態を検出した場合に上記のような回生制御を行うようにしてもよい。また、これらによって回生制御の準備を行うことで、早期に回生制動を開始できるようになる場合もあり、そのような場合にはバッテリへの回収エネルギーが増加する場合もある。 Note that the above-mentioned predetermined running or pedal operation state is (1) a state in which a pedal torque input less than a first threshold is continued for a predetermined time or more, (2) a pedal torque input less than a second threshold, and A state in which the pedal rotation angle smaller than the third threshold value is continued for a predetermined time or more, or (3) a value obtained from the degree of coincidence or deviation between the first value corresponding to the wheel rotation and the second value corresponding to the pedal rotation. In some cases, it is determined that the value of 1 and the second value are different from each other by a predetermined level or more. Such a state is typically a state where it is estimated that there is no intention to accelerate, and is a state that the user performs without any special intention or occurs. The regeneration control as described above may be performed when a state alternative to these is detected. In addition, by performing the preparation for the regenerative control by these, the regenerative braking can be started early in some cases, and in such a case, the energy recovered to the battery may increase.
 なお、第1の値が、車輪回転から換算される車速(m/s)又は車輪の回転数(rpm)であり、第2の値が、ペダル回転から換算される車速又は車輪の回転数である場合もある。 The first value is the vehicle speed (m / s) or the wheel rotation speed (rpm) converted from the wheel rotation, and the second value is the vehicle speed or the wheel rotation speed converted from the pedal rotation. There can be.
 なお、上で述べた制御部が、上で特定された速度を、所定の走行又はペダル操作の状態を検出した後におけるペダル回転角度又はペダル回転速度に応じて変更するようにしてもよい。ユーザの明示的な指示に応じて基準となる速度を任意に変更するようにしてもよい。なお、変更する量については上限を設けたり、増加のみを許可したり、減少のみを許可するような変形も可能である。 Note that the control unit described above may change the speed specified above according to the pedal rotation angle or the pedal rotation speed after detecting a predetermined traveling or pedal operation state. The reference speed may be arbitrarily changed according to a user's explicit instruction. It is to be noted that the amount to be changed can be modified to provide an upper limit, allow only an increase, or allow only a decrease.
 さらに、上で述べた制御部が、ペダルトルクが閾値未満である場合に、上で特定された速度を、所定の走行又はペダル操作の状態を検出した後におけるペダル回転角度又はペダル回転速度に応じて変更するようにしてもよい。閾値以上のペダルトルクが検出されると、加速意図が推定されるので、基準となる速度の変更は不要となるためである。 Further, when the pedal torque is less than the threshold value, the control unit described above changes the speed specified above according to the pedal rotation angle or the pedal rotation speed after detecting a predetermined traveling or pedal operation state. May be changed. This is because, when a pedal torque equal to or larger than the threshold value is detected, the intention of acceleration is estimated, so that there is no need to change the reference speed.
 また、上で述べた制御部が、処理時点における車両の速度が上記特定された速度を超えている場合に、処理時点における車両の速度と上記特定された速度との差に応じた回生量を決定するようにしてもよい。これにより、速度上昇を効果的に抑制できるようになる。 Further, the control unit described above, when the speed of the vehicle at the time of processing exceeds the specified speed, the regeneration amount according to the difference between the speed of the vehicle at the time of processing and the specified speed. It may be determined. As a result, the increase in speed can be effectively suppressed.
 このような構成は、実施の形態に述べられた事項に限定されるものではなく、実質的に同一の効果を奏する他の構成にて実施される場合もある。 Such a configuration is not limited to the matters described in the embodiment, and may be implemented by another configuration having substantially the same effect.

Claims (10)

  1.  モータを駆動する駆動部と、
     加速意図がないと推定される所定の走行又はペダル操作の状態を検出することに応じて、ペダル回転と前記モータの回転との少なくともいずれかに応じて移動する車両の速度を特定し、当該特定された速度に基づき回生量を決定し、当該回生量に従って前記駆動部を制御する制御部と、
     を有するモータ制御装置。
    A drive unit for driving a motor;
    In response to detecting a predetermined traveling or pedal operation state estimated to have no acceleration intention, the speed of the vehicle moving in accordance with at least one of the pedal rotation and the rotation of the motor is identified, and the identification is performed. A control unit that determines a regenerative amount based on the performed speed, and controls the driving unit according to the regenerative amount,
    Motor control device having
  2.  前記所定の走行又はペダル操作の状態が、
     第1の閾値未満のペダルトルク入力が一定時間以上継続される状態、
     第2の閾値未満のペダルトルク入力及び第3の閾値未満のペダル回転角度が一定時間以上継続される状態、又は
     車輪回転に応じた第1の値とペダル回転に応じた第2の値との一致度又は乖離度から前記第1の値と前記第2の値とが所定レベル以上異なるようになったと判断された状態
     である請求項1記載のモータ制御装置。
    The state of the predetermined traveling or pedal operation,
    A state in which the pedal torque input less than the first threshold is continued for a predetermined time or more,
    A state where the pedal torque input less than the second threshold value and the pedal rotation angle less than the third threshold value are continued for a predetermined time or more, or the first value corresponding to the wheel rotation and the second value corresponding to the pedal rotation 2. The motor control device according to claim 1, wherein the first value and the second value are determined to be different from each other by a predetermined level or more based on the degree of coincidence or the degree of deviation. 3.
  3.  前記制御部が、
     前記特定された速度を、前記所定の走行又はペダル操作の状態を検出した後におけるペダル回転角度又はペダル回転速度に応じて変更する
     請求項1又は2記載のモータ制御装置。
    The control unit includes:
    The motor control device according to claim 1, wherein the specified speed is changed according to a pedal rotation angle or a pedal rotation speed after detecting the predetermined traveling or pedal operation state.
  4.  前記制御部が、
     ペダルトルクが閾値未満である場合に、前記特定された速度を、前記所定の走行又はペダル操作の状態を検出した後におけるペダル回転角度又はペダル回転速度に応じて変更する
     請求項1又は2記載のモータ制御装置。
    The control unit includes:
    The method according to claim 1, wherein when the pedal torque is less than a threshold value, the specified speed is changed according to a pedal rotation angle or a pedal rotation speed after detecting the predetermined running or pedal operation state. Motor control device.
  5.  前記制御部が、
     処理時点における前記車両の速度が前記特定された速度を超えている場合に、前記処理時点における前記車両の速度と前記特定された速度との差に応じた回生量を決定する
     請求項1乃至4のいずれか1つ記載のモータ制御装置。
    The control unit includes:
    The regenerative amount according to a difference between the speed of the vehicle at the processing time and the specified speed is determined when the speed of the vehicle at the processing time exceeds the specified speed. The motor control device according to any one of the above.
  6.  前記所定の走行又はペダル操作の状態が、ブレーキ操作とは無関係に検出される
     請求項1乃至5のいずれか1つ記載のモータ制御装置。
    The motor control device according to any one of claims 1 to 5, wherein the predetermined traveling or pedal operation state is detected independently of a brake operation.
  7.  前記第1の値が、車輪回転から換算される車速又は車輪の回転数であり、
     前記第2の値が、ペダル回転から換算される車速又は車輪の回転数である
     請求項2記載のモータ制御装置。
    The first value is a vehicle speed or the number of rotations of a wheel converted from the rotation of the wheel,
    The motor control device according to claim 2, wherein the second value is a vehicle speed or a wheel rotation speed converted from pedal rotation.
  8.  前記所定の走行又はペダル操作の状態が、
     ユーザによる加速のためのペダル操作を検出した後、当該加速のためのペダル操作を検出しなくなった状態である
     請求項1記載のモータ制御装置。
    The state of the predetermined traveling or pedal operation,
    The motor control device according to claim 1, wherein after detecting a pedal operation by the user for acceleration, the pedal operation for acceleration is not detected.
  9.  請求項1乃至8のいずれか1つ記載のモータ制御装置を有する電動アシスト車。 An electric assist vehicle having the motor control device according to any one of claims 1 to 8.
  10.  加速意図がないと推定される所定の走行又はペダル操作の状態を検出することに応じて、ペダル回転と前記モータの回転との少なくともいずれかに応じて移動する車両の速度を特定するステップと、
     当該特定された速度に基づき回生量を決定し、当該回生量に従って前記駆動部を制御するステップと、
     を含み、プロセッサにより実行されるモータ制御方法。
    Determining a speed of a vehicle moving in accordance with at least one of pedal rotation and rotation of the motor, in response to detecting a predetermined traveling or pedal operation state estimated to have no acceleration intention;
    Determining a regeneration amount based on the specified speed, and controlling the driving unit according to the regeneration amount;
    And a motor control method executed by the processor.
PCT/JP2019/027668 2018-07-20 2019-07-12 Motor control device and method, and electric assistance vehicle WO2020017445A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020531286A JP7308198B2 (en) 2018-07-20 2019-07-12 MOTOR CONTROL DEVICE AND METHOD, AND POWER-ASSISTED VEHICLE
DE112019001369.6T DE112019001369B4 (en) 2018-07-20 2019-07-12 Engine control device and method and vehicle with electric auxiliary drive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018136342 2018-07-20
JP2018-136342 2018-07-20

Publications (1)

Publication Number Publication Date
WO2020017445A1 true WO2020017445A1 (en) 2020-01-23

Family

ID=69164154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027668 WO2020017445A1 (en) 2018-07-20 2019-07-12 Motor control device and method, and electric assistance vehicle

Country Status (4)

Country Link
JP (1) JP7308198B2 (en)
DE (1) DE112019001369B4 (en)
TW (1) TWI733136B (en)
WO (1) WO2020017445A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020201212A1 (en) 2020-01-31 2021-08-05 Gerd Scheying Device for energy recovery in two-wheelers with a mid-engine drive unit and method for operating the same
IT202000014560A1 (en) * 2020-06-18 2021-12-18 Zehus S P A METHOD AND DEVICE FOR CONTROLLING THE CRUISE SPEED OF A HYBRID OR ELECTRIC PROPULSION VEHICLE
WO2022112414A1 (en) * 2020-11-25 2022-06-02 Robert Bosch Gmbh Vehicle that can be driven by muscle power and/or electrically, having wheel-slip control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112758239A (en) * 2021-01-25 2021-05-07 深圳市达伦仕科技有限公司 Intelligent electric power-assisted wheel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090539A (en) * 2012-10-29 2014-05-15 Taiyo Yuden Co Ltd Motor drive control device and power-assisted vehicle
JP2017088155A (en) * 2015-11-09 2017-05-25 太陽誘電株式会社 Regeneration control device of electric motor, regeneration driving device of electric motor, and electric auxiliary vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778162B1 (en) 1998-05-04 2000-07-13 Ecole D Ingenieurs Du Canton D CONTROL DEVICE FOR ELECTRIC VEHICLE
JP3882993B2 (en) 2001-11-02 2007-02-21 本田技研工業株式会社 Regenerative control device for electric vehicle
US20110144841A1 (en) 2009-12-16 2011-06-16 Murray Ruben Electronic bike integrated supplemental motor system
WO2014003017A1 (en) 2012-06-28 2014-01-03 株式会社村田製作所 Control device of auxiliary-powered movement device, and auxiliary-powered movement device comprising said control device
JP5666639B2 (en) * 2013-02-28 2015-02-12 太陽誘電株式会社 Motor drive control device and electric assist vehicle
US10137787B2 (en) 2015-11-09 2018-11-27 Taiyo Yuden Co., Ltd. Regenerative controller for electric motor, regenerative driver for electric motor, and power-assisted vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014090539A (en) * 2012-10-29 2014-05-15 Taiyo Yuden Co Ltd Motor drive control device and power-assisted vehicle
JP2017088155A (en) * 2015-11-09 2017-05-25 太陽誘電株式会社 Regeneration control device of electric motor, regeneration driving device of electric motor, and electric auxiliary vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020201212A1 (en) 2020-01-31 2021-08-05 Gerd Scheying Device for energy recovery in two-wheelers with a mid-engine drive unit and method for operating the same
DE102020201212B4 (en) 2020-01-31 2021-10-07 Gerd Scheying Device for energy recovery in two-wheelers with a mid-engine drive unit and method for operating the same
IT202000014560A1 (en) * 2020-06-18 2021-12-18 Zehus S P A METHOD AND DEVICE FOR CONTROLLING THE CRUISE SPEED OF A HYBRID OR ELECTRIC PROPULSION VEHICLE
WO2021255637A1 (en) * 2020-06-18 2021-12-23 Zehus S.P.A. Method and device for controlling the cruising speed of a hybrid or electric propulsion vehicle
WO2022112414A1 (en) * 2020-11-25 2022-06-02 Robert Bosch Gmbh Vehicle that can be driven by muscle power and/or electrically, having wheel-slip control

Also Published As

Publication number Publication date
DE112019001369B4 (en) 2023-12-07
JP7308198B2 (en) 2023-07-13
JPWO2020017445A1 (en) 2021-08-02
TW202007583A (en) 2020-02-16
DE112019001369T5 (en) 2020-12-10
TWI733136B (en) 2021-07-11

Similar Documents

Publication Publication Date Title
WO2020017445A1 (en) Motor control device and method, and electric assistance vehicle
US8725340B1 (en) Motor drive controller and electric power-assisted vehicle
TWI572522B (en) Motor drive control device and electric auxiliary vehicle
EP2377713A1 (en) Electrically assisted bicycle
US10919600B2 (en) Motor driving control apparatus and method and motor-assisted vehicle
JP5450194B2 (en) Electric assist bicycle
US9136780B2 (en) Controller for driving a motor and electric power-assisted vehicle
JP2017088155A (en) Regeneration control device of electric motor, regeneration driving device of electric motor, and electric auxiliary vehicle
US10137787B2 (en) Regenerative controller for electric motor, regenerative driver for electric motor, and power-assisted vehicle
JP2017154564A (en) Power-assisted bicycle
JP7379324B2 (en) Motor control device and electric assist vehicle
US10577048B2 (en) Controller for driving a motor, and electric power assisted vehicle
CN110228559B (en) Motor drive control device and electric auxiliary vehicle
JP7313846B2 (en) Motor drive control device and electrically assisted vehicle
JP7457472B2 (en) Motor control device and electric assist vehicle
JP2015109798A (en) Motor drive control device and power-assisted vehicle
JP7195288B2 (en) Motor drive control device and electrically assisted vehicle
WO2023281846A1 (en) Motor control device for electrically assisted vehicle, and electrically assisted vehicle
JP5537994B2 (en) Electric assist bicycle
WO2023195276A1 (en) Motor control device for electrically assisted vehicle, and electrically assisted vehicle
WO2023053518A1 (en) Control device for suppressing collision of electrically assisted vehicle and electrically assisted vehicle provided with said control device
JP6674492B2 (en) Motor control device and electric assist vehicle
JP2023078790A (en) Control device for electric assist vehicle, and electric assist vehicle
JP2022120454A (en) Control device of power-assisted vehicle, and power-assisted vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020531286

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19837992

Country of ref document: EP

Kind code of ref document: A1