WO2023195276A1 - Motor control device for electrically assisted vehicle, and electrically assisted vehicle - Google Patents

Motor control device for electrically assisted vehicle, and electrically assisted vehicle Download PDF

Info

Publication number
WO2023195276A1
WO2023195276A1 PCT/JP2023/007724 JP2023007724W WO2023195276A1 WO 2023195276 A1 WO2023195276 A1 WO 2023195276A1 JP 2023007724 W JP2023007724 W JP 2023007724W WO 2023195276 A1 WO2023195276 A1 WO 2023195276A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank
angle
rotation
value
regenerative braking
Prior art date
Application number
PCT/JP2023/007724
Other languages
French (fr)
Japanese (ja)
Inventor
彪之介 植原
康夫 保坂
太一 ▲柳▼岡
弘和 白川
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Publication of WO2023195276A1 publication Critical patent/WO2023195276A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/20Controlling the acceleration or deceleration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to regeneration control technology for electrically assisted vehicles.
  • Patent Document 1 based on at least the second value of the first value calculated based on the amount of rotation of the wheel and the second value calculated based on the amount of rotation of the crank, It is disclosed that the amount of regeneration of an electric motor is controlled for a power storage device in which regenerative charging is performed through an electric motor that supplies driving force.
  • regenerative braking is performed when the vehicle is coasting without pedaling, but the speed may be lower than expected by the vehicle occupant.
  • the crew In order to maintain speed, the crew must rotate the crank to re-accelerate. That is, expanding the range in which regenerative braking is applied may cause unintended deceleration of the occupant.
  • Patent Document 2 discloses a control device for an electrically assisted bicycle that performs regeneration control when the torque value of pedal force torque is below a predetermined level, and performs assist control when the torque value is larger than the predetermined level.
  • a technique is disclosed in which regeneration control is performed at a crank angle position below a predetermined level, and the regeneration control is switched to assist control at a crank angle position where the torque value becomes higher than a predetermined level.
  • regeneration is performed even while pedaling, regardless of the occupant's intention, so the occupant pedals with more force than when this control is not performed. It turns out.
  • Patent Document 2 mentions weakening regeneration when the speed decreases, it is still difficult to say that the regeneration is in accordance with the user's intention.
  • Patent Document 3 when a signal indicating that the rotational direction of the pedal is reverse is received from a pedal rotation sensor that detects the rotational direction of the pedal, the drive control unit is instructed to start regeneration.
  • the technology has been disclosed. However, it is common to rotate the pedals in the reverse direction after the forward rotation of the pedals has been stopped, and considering this, it is not possible to immediately switch to reverse rotation of the pedals and perform regenerative braking. From the passenger's perspective, the opportunity for regenerative braking may be missed.
  • regeneration is performed at a first degree of regeneration in the first case in which the operation of the brake lever is detected, and in the second case in which an increase in vehicle speed is detected and the number of rotations of the pedal is below a second threshold value.
  • There is a first regeneration mode in which regeneration is performed at a second regeneration degree that is weaker than the first regeneration degree in the first case, and regeneration is performed at the first regeneration degree in the first case and regeneration is performed at the second regeneration degree in the second case. It is disclosed that the regeneration mode is switched to a second regeneration mode in which regeneration is performed at a degree of regeneration weaker than the first degree in a third case where the number of rotations of the pedal is equal to or less than a third threshold value. It is said that this improves the regeneration rate while suppressing the possibility that the user will feel stressed, but the regeneration control is not necessarily performed at a suitable timing and with a suitable degree of regeneration.
  • JP2017-88155A Japanese Patent Application Publication No. 2012-76577 Japanese Patent Application Publication No. 2014-166125 JP 2019-123369 Publication
  • an object of the present invention is to provide a novel technique that enables regenerative braking to be performed in a manner that is more in line with the occupant's intentions.
  • the motor control device includes an inverter that drives the motor of an electrically assisted vehicle or performs regenerative braking, and a motor control device that controls the speed of the crank when the rotational speed of the crank in the electrically assisted vehicle is less than or equal to a first threshold value. Based on the first condition regarding the crank angle, which is the angle from the reference position, or regarding the cumulative crank rotation angle, which is the cumulative rotation angle of the crank after the input torque due to the rotation of the crank becomes equal to or less than the second threshold. and a control unit that controls the inverter by determining the presence or absence of regenerative braking, which is associated in advance with the first condition or the second condition, based on the second condition.
  • FIG. 1 is a diagram showing the appearance of a power-assisted bicycle according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a motor control device.
  • FIG. 3 is a diagram showing a functional configuration related to the regeneration control section in the first embodiment.
  • FIG. 4 is a diagram for explaining the definition of crank angle.
  • FIG. 5 is a diagram showing a processing flow according to the first embodiment.
  • FIG. 6 is a diagram showing an example of setting the predetermined range in the first embodiment.
  • FIG. 7 is a diagram showing an example of operation according to the first embodiment.
  • FIG. 8 is a diagram showing a processing flow according to a modification of the first embodiment.
  • FIG. 9 is a diagram showing a processing flow of reverse rotation angle calculation processing.
  • FIG. 1 is a diagram showing the appearance of a power-assisted bicycle according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a motor control device.
  • FIG. 3 is a diagram showing a
  • FIG. 10 is a diagram showing a processing flow according to a modification of the first embodiment.
  • FIG. 11 is a diagram illustrating an operation example according to a modification of the first embodiment.
  • FIG. 12 is a diagram showing a functional configuration related to the regeneration control section in the second embodiment.
  • FIG. 13 is a diagram showing a processing flow according to the second embodiment.
  • FIG. 14 is a diagram showing an example of operation according to the second embodiment.
  • FIG. 15 is a diagram showing another example of operation according to the second embodiment.
  • FIG. 16 is a diagram showing a processing flow according to the third embodiment.
  • FIG. 17 is a diagram showing a processing flow of crank angle estimation processing.
  • FIG. 18 is a diagram showing a processing flow of adjustment processing.
  • FIG. 19 is a diagram showing a processing flow according to the third embodiment.
  • FIG. 19 is a diagram showing a processing flow according to the third embodiment.
  • FIG. 20 is a diagram showing an example of operation according to the third embodiment.
  • FIG. 21 is a diagram showing another example of operation according to the third embodiment.
  • FIG. 22 is a diagram showing the difference in the transition of the crank angle estimated value due to the difference in assumptions in the example of FIG. 20.
  • FIG. 23 is a diagram showing a processing flow according to the first modification of the third embodiment.
  • FIG. 24 is a diagram showing the processing flow of the second crank angle estimation process.
  • FIG. 25 is a diagram showing a processing flow according to the first modification of the third embodiment.
  • FIG. 26 is a diagram illustrating an operation example according to the first modification of the third embodiment.
  • FIG. 27 is a diagram showing an example of a case where the vertical direction and the vertical direction considered by the occupant coincide.
  • FIG. 28 is a diagram showing an example where the vertical direction and the vertical direction considered by the occupant do not match.
  • FIG. 29 is a diagram for explaining a method of calculating the inclination of an electrically assisted bicycle.
  • Embodiments of the present invention will be described below using an example of a power-assisted bicycle, which is an example of a power-assisted vehicle.
  • the embodiments of the present invention are not limited to electrically assisted bicycles, but are applicable to motors that assist the movement of moving objects (e.g., trolleys, wheelchairs, elevators, etc.) that move according to human power. It is also applicable to motor control devices and the like.
  • FIG. 1 is an external view showing an example of a power-assisted bicycle, which is an example of a power-assisted vehicle in this embodiment.
  • This electrically assisted bicycle 1 is equipped with a motor drive device.
  • the motor drive device includes a battery pack 101, a motor control device 102, a torque sensor 103, a crank rotation sensor 104, a motor 105, an operation panel 106, and a brake sensor 107.
  • the electrically assisted bicycle 1 also has a front wheel, a rear wheel, a headlamp, a freewheel, a transmission, and the like.
  • the battery pack 101 is, for example, a lithium ion secondary battery, but may also be other types of batteries, such as a lithium ion polymer secondary battery, a nickel metal hydride storage battery, or the like.
  • the battery pack 101 supplies power to the motor 105 via the motor control device 102, and also performs charging with the regenerated power from the motor 105 via the motor control device 102 during regeneration.
  • the torque sensor 103 is provided around the crankshaft, detects the pedal effort (ie, input torque) by the occupant, and outputs the detection result to the motor control device 102 . Further, like the torque sensor 103, the crank rotation sensor 104 is provided around the crankshaft, and outputs a signal corresponding to the rotation of the crank to the motor control device 102.
  • the motor 105 is, for example, a well-known three-phase DC brushless motor, and is mounted, for example, on the front wheel of the electrically assisted bicycle 1.
  • the motor 105 rotates the front wheel, and the rotor is connected to the front wheel so that the rotor rotates in accordance with the rotation of the front wheel.
  • the motor 105 includes a rotation sensor such as a Hall element, and outputs rotor rotation information (ie, a Hall signal) to the motor control device 102.
  • the motor control device 102 performs predetermined calculations based on signals from the rotation sensor of the motor 105, the torque sensor 103, the crank rotation sensor 104, etc., controls the drive of the motor 105, and also controls regeneration by the motor 105.
  • the operation panel 106 receives, for example, an instruction input regarding the presence or absence of assistance (i.e., turning the power switch on and off), a desired assist ratio in the case of assistance, etc. from the passenger, and transmits the instruction input etc. to the motor control device 102. Output to.
  • the operation panel 106 may have a function of displaying data calculated by the motor control device 102 such as travel distance, travel time, calorie consumption, and regenerated power amount.
  • the operation panel 106 may include a display section using an LED (Light Emitting Diode) or the like. As a result, the driver is presented with, for example, the charge level of the battery pack 101, the on/off state, the mode corresponding to the desired assist ratio, and the like.
  • the brake sensor 107 detects a brake operation by an occupant and outputs a signal related to the brake operation (for example, a signal indicating whether or not the brake is applied) to the motor control device 102 .
  • a signal related to the brake operation for example, a signal indicating whether or not the brake is applied
  • it is a sensor using a magnet and a reed switch.
  • FIG. 2 shows a configuration related to motor control device 102 according to this embodiment.
  • the motor control device 102 includes a controller 1020 and a field effect transistor (FET) bridge 1030.
  • the FET bridge 1030 includes a high side FET (Suh) and a low side FET (Sul) that perform switching for the U phase of the motor 105, and a high side FET (Svh) and a low side FET (Svl) that perform switching for the V phase of the motor 105. ), and a high side FET (Swh) and a low side FET (Swl) that perform switching for the W phase of the motor 105.
  • This FET bridge 1030 is an inverter for the motor 105, and constitutes a part of a complementary switching amplifier.
  • the controller 1020 also includes a calculation section 1021, a crank rotation input section 1022, a brake input section 1023, a motor rotation input section 1024, a variable delay circuit 1025, a motor drive timing generation section 1026, and a torque input section 1027. and an AD input unit 1029 that performs AD (Analog-Digital) conversion of the output voltage of the battery pack 101.
  • AD Analog-Digital
  • the calculation unit 1021 receives input from the operation panel 106 (for example, turning on/off assist, etc.), input from the crank rotation input unit 1022, input from the brake input unit 1023, input from the motor rotation input unit 1024, and torque input unit. A predetermined calculation is performed using the input from the AD input section 1027 and the input from the AD input section 1029, and output is performed to the motor drive timing generation section 1026 and the variable delay circuit 1025.
  • the calculation unit 1021 has a memory 10211, and the memory 10211 stores various data used in calculations, data in the middle of processing, and the like.
  • the calculation unit 1021 may be realized by a processor executing a program, and in this case, the program may be recorded in the memory 10211. Further, the memory 10211 may be provided separately from the calculation unit 1021.
  • the crank rotation input section 1022 processes the signal from the crank rotation sensor 104 and outputs it to the calculation section 1021.
  • the motor rotation input unit 1024 digitizes signals (for example, rotation phase angle, rotation direction, etc.) related to the rotation of the motor 105 (rotation of the front wheels in this embodiment) from the Hall signal output by the motor 105 and sends the digital signal to the calculation unit 1021.
  • Torque input section 1027 digitizes a signal corresponding to the pedal force from torque sensor 103 and outputs it to calculation section 1021 .
  • the AD input section 1029 digitizes the output voltage from the secondary battery and outputs it to the calculation section 1021.
  • the brake input section 1023 digitizes the signal from the brake sensor 107 and outputs it to the calculation section 1021.
  • the calculation unit 1021 outputs the lead angle value to the variable delay circuit 1025 as a calculation result.
  • the variable delay circuit 1025 adjusts the phase of the Hall signal based on the lead angle value received from the calculation unit 1021 and outputs it to the motor drive timing generation unit 1026.
  • the calculation unit 1021 outputs, for example, a PWM code corresponding to the duty ratio of PWM (Pulse Width Modulation) to the motor drive timing generation unit 1026 as a calculation result.
  • Motor drive timing generation section 1026 generates and outputs switching signals for each FET included in FET bridge 1030 based on the adjusted Hall signal from variable delay circuit 1025 and the PWM code from calculation section 1021.
  • the motor 105 may be driven in power running or may be regeneratively braked. Note that the basic operation of the motor is described in the International Publication No. 2012/086459 pamphlet and the like, and is not a main part of this embodiment, so a description thereof will be omitted here.
  • FIG. 3 shows an example of a functional block configuration related to the regeneration control section 3000 in the calculation section 1021 (a portion according to the present embodiment).
  • the regeneration control section 3000 includes a first control section 3010, a second control section 3020, and a third control section 3030.
  • a crank rotation processing section 3200 that specifies the crank angle from the crank rotation input from the crank rotation input section 1022 and calculates the crank rotation speed [rps].
  • the first control unit 3010 performs processing to determine whether or not regenerative braking is to be performed based on the crank rotation speed and crank angle from the crank rotation processing unit 3200, and when it is determined that regenerative braking is to be performed, the regenerative braking torque is Decide and output. Note that if the regenerative braking torque is immediately set to the maximum value when regeneration is enabled, or immediately set to 0 when regeneration is disabled, there is a risk that the occupant will feel uncomfortable due to a sudden change in acceleration. Therefore, a restriction may be placed on the rate of change over time of the speed, and slew rate control may be performed so that the output torque does not change suddenly.
  • control unit 3010 it is determined whether or not regenerative braking is to be performed in response to a brake input from brake input unit 1023, and when regenerative braking is performed, regenerative braking torque is output to first control unit 3010.
  • 2 control unit 3020 is also provided.
  • a third control unit 3030 and the like are also provided.
  • the regenerative braking torque is determined depending on another control unit that outputs the regenerative braking torque to the first control unit 3010 and one or more parameters.
  • Another control unit may be provided that determines whether or not regenerative braking is to be performed, and outputs regenerative braking torque to the first control unit 3010 when regenerative braking is performed.
  • another control unit may be provided that outputs regenerative braking torque according to the difference between a reference vehicle speed, which is a specified vehicle speed, and the current vehicle speed at an appropriate timing.
  • the first control unit 3010 may output the regenerative braking torque determined by the first control unit 3010 when it is determined to perform regenerative braking based on the crank rotation speed and crank angle from the crank rotation processing unit 3200. However, it is possible to output regenerative braking torque (for example, the maximum value of regenerative braking torque if multiple control units are associated) from a predetermined control unit among the first control unit 3010 and other control units. You may also do this. Furthermore, when the first control section 3010 determines to stop regenerative braking based on the crank rotation speed and crank angle from the crank rotation processing section 3200, the first control section 3010 may output the regenerative braking torque as zero.
  • regenerative braking torque for example, the maximum value of regenerative braking torque if multiple control units are associated
  • the regenerative braking torque from a predetermined control section among the first control section 3010 and the other control sections may be outputted as zero.
  • the third control unit 3030 is associated with the first control unit 3010 and the second control unit 3020 is not associated with the first control unit 3010, regenerative braking in response to a brake operation is performed by the first control unit 3010. 3010 and the third control unit 3030.
  • the first control section 3010 may output the maximum value of the regenerative braking torque from a predetermined control section (or all control sections including itself).
  • the calculation unit 1021 drives the motor 105 via the motor drive timing generation unit 1026, variable delay circuit 1025, and FET bridge 1030 so as to perform conventional power running drive.
  • the calculation unit 1021 controls the motor 105 via the motor drive timing generation unit 1026, the variable delay circuit 1025, and the FET bridge 1030 so as to realize the regenerative braking torque output by the regeneration control unit 3000. to control regeneration.
  • FIG. 4 is an enlarged view of the crank and pedal periphery of the electrically assisted bicycle 1 viewed from the left side when the rider rides the electrically assisted bicycle 1 on a flat surface with the stand released.
  • the crank angle ⁇ is the angle formed by the vehicle body vertical line V, which is a vertical line passing through the crank rotation axis 1090, and the center line L of the left crank 1092, which is connected to the left pedal 1091 on which the passenger rests his or her left foot.
  • the counterclockwise direction is defined as the positive direction.
  • the vehicle body vertical line V is a line perpendicular to the actual ground, it is a line that serves as a reference when assuming a certain state, such as a line that passes through a position that the crank rotation sensor 104 recognizes as 0°. Also good.
  • the reference vehicle body vertical line V is different or a line other than the center line L of the left crank 1092 is used (for example, the center line of the right crank), as long as the cranks are positioned at substantially the same angle, , will be treated in the same way in the following explanation.
  • the crank rotation speed the direction in which the crank rotates counterclockwise when viewed from the direction shown in FIG. 4 is positive.
  • crank angle indicates the absolute angle (i.e. position) of the crank
  • crank rotation angle indicates the relative rotation angle of the crank, but does not specify the absolute position. shall be taken as a thing.
  • steps S1 to S11 are executed at every predetermined control cycle.
  • the first control unit 3010 acquires the crank rotation speed and crank angle from the crank rotation processing unit 3200 (FIG. 1: Step S1). Then, the first control unit 3010 determines whether the crank rotation speed is less than or equal to the threshold value TH1 (step S3). In a state where the rotation of the crank can be considered to have almost stopped, it is considered that the occupant has no intention of accelerating.
  • the threshold value TH1 a rotation speed at which it can be considered that the crank rotation is almost stopped, for example, 0.05 rps, may be adopted. Therefore, for example, if there is a red light in the direction of travel, the occupant will stop rotating the crank, but in this case, the occupant may have the intention of stopping and may regenerate.
  • the first control section 3010 further determines whether the crank angle is within a predetermined range (step S5).
  • the vicinity ranges R1 and R2 of the vehicle body vertical line V are the predetermined ranges.
  • the predetermined range is 0° to 30°, 150° to 210°, and 330° to 360° by adding ⁇ 30° to the vertical crank angle of 0° or 180°. Become. Note that the size of the range may be determined by taking into account the error of the crank rotation sensor 104, the inaccuracy of the crank angle recognition by the occupant, and the like.
  • the occupant By making such a setting, if the occupant wishes to activate regenerative braking, he or she only has to stop the crank within this range, and if the occupant has stopped rotating the crank but wishes to coast, regenerative braking will not be activated. If it is not necessary, just stop the crank outside this range. In particular, if the range near the vehicle body vertical line V is set, the occupant can easily stop the crank. Note that the predetermined range may be set in a different form from the example shown in FIG.
  • the predetermined range is preferably a range that is symmetrical with respect to the crank rotation axis 1090 as the center of symmetry. This is because the occupant's crank operation differs depending on his/her dominant foot, which one is the left or right crank.
  • step S7 the first control unit 3010 determines to perform regenerative braking, and outputs, for example, a predetermined regenerative braking torque (step S7). The process then moves to step S11.
  • step S3 the crank rotation speed exceeds the threshold value TH1
  • step S5 the first control unit 3010 stops regenerative braking.
  • Step S9 the regenerative braking torque is output as zero. If the regenerative braking has already been stopped, the regenerative braking continues to be stopped. The process then moves to step S11.
  • step S11 the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like, and if the process is not terminated, the process returns to step S1. On the other hand, if it should be terminated, the process is terminated. In this way, regenerative braking can be performed in accordance with the intention of the occupant.
  • FIG. 7(a) the crank rotation speed gradually decreases from time 0, and at time t1, the crank rotation speed becomes equal to or less than the threshold value TH1.
  • FIG. 7(b) the crank angle changes according to the rotation of the crank, but is almost stopped within a predetermined range of 180° ⁇ 30° before time t1. Therefore, at time t1, regenerative braking begins to be performed as shown in FIG. 7(c).
  • the hatched portions correspond to a predetermined range of 180° ⁇ 30°, 330° to 360°, and 0° to 30°.
  • the crank rotation speed once becomes zero after time t1, but then gradually increases. Furthermore, as shown in FIG. 7(b), the crank angle falls outside the predetermined range at time t2. Then, regenerative braking is stopped at time t2. Thereafter, as shown in FIG. 7(a), the crank rotational speed exceeds the threshold value TH1 at time t3, but does not increase much and falls below the threshold value TH1 again at time t4. However, as shown in FIG. 7(b), since the crank angle is outside the predetermined range, regenerative braking is not performed. Thereafter, the crank rotation speed becomes zero, but increases again and exceeds the threshold value TH1 at time t5. At time t5, the crank angle is also outside the predetermined range, and the regenerative braking continues to stop.
  • a predetermined regenerative braking torque is output, but this is, for example, regenerative braking that is output by the second control unit 3020 when the brake sensor 107 detects that the brake lever is operated.
  • the torque may be smaller than the torque (eg, 20 Nm), for example, about 5 Nm.
  • the regenerative braking torque may be output in accordance with the output of the third control section 3030, which determines the regenerative braking torque in accordance with the vehicle speed.
  • the third control unit 3030 may reduce the regenerative braking torque according to the elapsed time. This is an example where the third control unit 3030 is associated.
  • Another control unit that determines regenerative braking torque according to acceleration or another control unit that determines regenerative braking torque based on other parameters may be associated. Even when regenerative braking is stopped in step S9, the regenerative braking torque by the associated control unit is output as zero.
  • the second control unit 3020 is not associated, even if the first control unit 3010 determines to stop regenerative braking, if regenerative braking is performed based on the signal from the brake sensor 107, , the regenerative braking torque output from the second control section 3020 may be used.
  • a plurality of control units are associated, a plurality of regenerative braking torques can be obtained when the first control unit 3010 determines to perform regenerative braking.
  • the maximum value among the plurality of regenerative braking torques may be adopted.
  • priority is given to the control that provides the greatest braking force, reducing the possibility that insufficient braking force will occur and causing the vehicle to run contrary to the occupant's intentions, thereby increasing safety.
  • the first control unit 3010 adopts 10 Nm.
  • the first control section 3010 may compare 10Nm and 20Nm and output 20Nm.
  • the first control unit 3010 acquires the crank rotation speed and crank angle from the crank rotation processing unit 3200 (FIG. 8: Step S21). Then, the first control unit 3010 determines whether the crank rotation speed is less than or equal to the threshold value TH11 (step S23). These steps are almost the same as steps S1 and S3 in FIG.
  • the threshold value TH11 may be the same as the threshold value TH1, or may be different from the threshold value TH1. However, the threshold value TH11 is a positive threshold value, and when the pedal is rotated in the reverse direction, a negative crank rotation speed is obtained, and it is determined that the condition of step S23 is satisfied.
  • the first control unit 3010 stops regenerative braking (step S29). That is, the regenerative braking torque is output as zero. If the regenerative braking has already been stopped, the regenerative braking continues to be stopped.
  • the first control unit 3010 also sets flag 1, which indicates whether regenerative braking is already being executed, to OFF (step S31). Also, set the reverse rotation angle used in the following processing to 0. The process then turns terminal A and moves to step S49 in FIG.
  • the first control unit 3010 determines whether flag 1 is on and the crank is rotating in reverse (step S25).
  • the reverse rotation of the crank can be determined by determining whether the crank angle in the current control cycle is smaller than the crank angle in the previous control cycle. If flag 1 is off or the crank is rotating forward, the process turns terminal B and moves to step S33 in FIG. 10.
  • step S27 a reverse rotation angle calculation process. This reverse rotation angle calculation process will be explained using FIG. 9. Note that after step S27, terminal B is turned and the process moves to step S33 in FIG.
  • the first control unit 3010 compares the crank angle in the previous control cycle with the crank angle in the current control cycle, and determines whether reverse rotation is being performed (step S51). If the reverse rotation is not performed, the process moves to step S59. On the other hand, if the reverse rotation is being performed, the first control unit 3010 calculates the reverse rotation angle as follows: Previous crank angle (crank angle in the previous control cycle) - Current crank angle (crank angle in the current control cycle) + It is calculated based on the previous reverse rotation angle (step S53). Note that the initial value of the previous reverse rotation angle is 0. In this way, the reverse rotation angles are accumulated.
  • the first control unit 3010 determines whether the reverse rotation angle exceeds 360° (step S55). If the reverse rotation angle is 360° or less, the process moves to step S59. On the other hand, if the reverse rotation angle exceeds 360°, the first control unit 3010 updates the reverse rotation angle to ⁇ 360° so that the reverse rotation angle becomes 360° or less (step S57). .
  • the first control unit 3010 updates the previous crank angle with the current crank angle (step S59), and updates the previous reverse rotation angle with the reverse rotation angle (step S61). The process then returns to the calling process.
  • the terminal B is turned and the process moves to step S33 of FIG. 10, where the first control unit 3010 determines whether the reverse rotation angle is equal to or greater than the threshold value TH12 (step S33).
  • the threshold value TH12 is such that, excluding unintended reverse rotation (for example, slight movement of the legs or detection error of the crank rotation sensor), the reverse rotation can be recognized as intended by the occupant, and the reverse rotation does not feel troublesome to the occupant.
  • the angle is set. For example, it is 60°.
  • step S35 determines whether the crank angle is within a predetermined range. This step is similar to step S5 in FIG. If the crank angle is not within the predetermined range, the first control unit 3010 stops regenerative braking (step S43). This step is similar to step S9 in FIG. 5 and step S29 in FIG. 8. Then, the first control unit 3010 sets flag 1, which indicates whether regenerative braking is already being executed, to OFF (step S45). The process then moves to step S49.
  • the first control unit 3010 determines to perform regenerative braking, and outputs, for example, a predetermined regenerative braking torque (step S37). This step is similar to step S7 in FIG.
  • the first control unit 3010 then sets flag 1 on (step S39).
  • the first control unit 3010 initializes the reverse rotation angle to 0 (step S41). From now on, when the crank is rotated in reverse, the angle of reverse rotation will be accumulated. The process then moves to step S49.
  • the first control unit 3010 increases the regenerative braking torque compared to before the reverse rotation angle becomes equal to or greater than the threshold value TH12 (step S47). For example, if the regenerative braking torque determined in step S37 is 5 Nm, it is increased to 10 Nm in step S47. Note that, after the regenerative braking torque is increased for the first time in this step S37, the regenerative braking torque is not increased any further even if the process moves to step S37 again. The process then moves to step S49.
  • step S49 the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like, and if the process has not been terminated, the process returns to step S21. On the other hand, if the process should be terminated, the process is terminated. In this way, regenerative braking can be performed in accordance with the intention of the occupant.
  • step S35 it is no longer determined in step S35 whether the crank angle is within the predetermined range. That is, the regenerative braking torque is maintained in an increased state. This is to avoid a situation in which regenerative braking is stopped when the crank is rotated in the opposite direction in an attempt to increase regenerative braking torque. Note that in order to stop the regenerative braking, it is sufficient to apply a positive crank rotation speed that is equal to or higher than the threshold value TH11.
  • FIG. 11(b) the crank angle increases to fall within a predetermined range (the hatched area, same as FIG. 7) at time t11, but as shown in FIG. 11(a), at time t12 Until then, even though the crank rotation speed has decreased, it has not reached the threshold value TH11, so regenerative braking is not performed as shown in FIG. 11(d). At time t12, the crank rotation speed becomes equal to or less than the threshold value TH11 and the crank angle also falls within a predetermined range, so regeneration is enabled.
  • the second embodiment enables regenerative braking in accordance with the intention of the occupant, which is different from the first embodiment.
  • FIG. 12 shows an example of a functional block configuration (a portion according to the present embodiment) related to the regeneration control section 3000b in the calculation section 1021.
  • Regeneration control section 3000b is a first control section that uses input torque output from torque input section 1027 and output from crank rotation processing section 3200 instead of first control section 3010 in regeneration control section 3000 shown in FIG. 3010b.
  • the first control unit 3010b has the same functions as the first control unit 3010, except for determining whether or not regenerative braking is performed, which will be described below.
  • the first control unit 3010 acquires the crank rotation speed and crank rotation angle from the crank rotation processing unit 3200, and the input torque from the torque input unit 1027 (FIG. 13: Step S71).
  • the crank rotation angle is calculated as the crank angle in the previous control cycle minus the crank angle in the current control cycle.
  • the first control unit 3010b determines whether the input torque is less than or equal to the threshold value TH21 (step S73).
  • An example of the threshold value TH21 is a torque that is considered to indicate that the occupant is not requesting acceleration or cruising, for example, 10 Nm.
  • step S85 the first control unit 3010b initializes the rotation angle counter value representing the cumulative crank rotation angle after satisfying the torque condition to 0 (step S85), and performs regenerative braking. (step S87). Step S87 is similar to step S9 in FIG. The process then moves to step S89.
  • the first control unit 3010b updates the rotation angle counter value by the rotation angle counter value + the crank rotation angle (step S75). That is, the cumulative crank rotation angle is calculated. Then, the first control unit 3010b determines whether the rotation angle counter value is less than or equal to the threshold value TH22 (step S77).
  • the threshold value TH22 is a rotation angle, such as 180°, at which it is considered that the occupant continues to rotate the crank with clear intention. That is, in this step, it is determined whether or not the occupant is not intentionally causing the crank to continue rotating.
  • step S83 If the rotation angle counter value exceeds the threshold value TH22, the first control unit 3010b stops regenerative braking (step S83). This is similar to step S9 in FIG. The process then moves to step S89.
  • the first control unit 3010b determines whether or not the crank rotation speed is less than or equal to the threshold value TH23 (step S79).
  • the threshold value TH23 is a rotational speed at which it can be considered that the crank is almost stopped, for example, 0.05 rps. If the crank rotation speed is less than or equal to the threshold value TH23, the first control unit 3010b determines to perform regenerative braking, and outputs, for example, a predetermined regenerative braking torque (step S81). This step is similar to step S7 in FIG. The process then moves to step S89. On the other hand, if the crank rotation speed exceeds the threshold TH23, the process moves to step S83.
  • step S89 the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like, and if the process has not been terminated, the process returns to step S71. On the other hand, if the process should be terminated, the process is terminated.
  • FIG. 14 shows a case where the occupant immediately stops pedaling after weakening the force applied to the crank.
  • the crank Judging from the crank rotational speed shown in FIG. 14(a), the crank angle shown in FIG. 14(b), and the input torque shown in FIG. 14(c), the crank is constantly rotating approximately one and a half revolutions until time t26. However, at time t26, the crank rotation speed becomes equal to or less than the threshold value TH23, and thereafter the rotation of the crank is stopped and this state is maintained.
  • FIG. 15 shows a case in which the occupant continues to rotate the pedals even after weakening the force applied to the crank.
  • crank rotational speed shown in FIG. 15(a) From the crank rotational speed shown in FIG. 15(a), the crank angle shown in FIG. 15(b), and the input torque shown in FIG. 15(c), the crank is rotated approximately one and a half revolutions until time t35. Further, the crank rotation speed does not become lower than the threshold value TH23.
  • the occupant can select whether or not to perform regenerative braking by determining how to stop the crank after weakening the force applied to the crank, and can perform regenerative braking in accordance with the occupant's intention.
  • the presence or absence of regenerative braking may be determined based on the waveform passed through a filter.
  • the presence or absence of regenerative braking may be determined based on the smoothed input torque waveform using a low-pass filter with an arbitrary time constant. This makes it possible to perform stable control without being affected by peak values caused by instantaneous fluctuations in input torque, noise, etc.
  • the waveform of the input torque may be smoothed by taking the average value for an arbitrary number of samplings.
  • crank angle due to cost and other issues, it is not possible to directly obtain the crank angle from the signal from the crank rotation sensor 104, and there are cases where only the relative rotation angle, that is, how much the crank has rotated, can be determined.
  • it may be a crank rotation sensor 104 that outputs a pulse signal every time the crank rotates by a predetermined angle (for example, 30 degrees).
  • the crank rotation processing section 3200 calculates the crank rotation from a change in the input torque from the torque input section 1027 and a pulse signal indicating that the crank rotation input section 1022 has relatively rotated by a predetermined angle. Estimate the angle.
  • the input torque waveform becomes approximately a sine wave with an offset, twice per crank rotation.
  • Local minimum and maximum values appear one by one.
  • a local minimum value represents a state in which the crank is in a generally vertical position (dead center)
  • a local maximum value represents a state in which the crank is in a generally horizontal position.
  • the crank angle is estimated using this tendency.
  • the position of the dead center is when the crank is in a generally vertical position regardless of the inclination, so when the crank is in a vertical position, it means that it is in a vertical position. That is, in this embodiment, there is no problem even if the electrically assisted bicycle 1 runs on an incline.
  • crank rotation processing section 3200 acquires input torque from the torque input section 1027, a pulse signal from the crank rotation input section 1022, etc. (FIG. 16: Step S101).
  • the crank rotation processing unit 3200 then executes crank angle estimation processing (step S103). This crank angle estimation process will be explained using FIG. 17.
  • the crank rotation processing unit 3200 determines whether crank rotation has been detected, for example, based on the above-mentioned pulse signal (FIG. 17: Step S121). If crank rotation is not detected, the process returns to the calling process.
  • crank rotation processing section 3200 calculates a crank rotation angle according to the detected crank rotation (step S123).
  • the crank rotation angle is calculated by multiplying the number of pulses received in the current control cycle by the rotation angle per pulse (for example, 30 degrees).
  • the crank rotation processing unit 3200 calculates the current relative rotation angle from the minimum torque value as the previous relative rotation angle+the calculated crank rotation angle (step S125).
  • the previous relative rotation angle is reset to 0, and the crank rotation angle is accumulated from there.
  • the estimated crank angle at the time when it is confirmed that the crank has rotated once is corrected by the current relative rotation angle from the minimum torque value.
  • crank rotation processing unit 3200 executes adjustment processing for the current relative rotation angle calculated in step S125 (step S127). Specifically, this is a process for setting the current relative rotation angle to 0° or more and less than 360°, such as the process shown in FIG. 18, for example.
  • the crank rotation processing unit 3200 determines whether the angle to be processed is 360° or more (FIG. 18: Step S141). If the angle to be processed is 360° or more, the crank rotation processing unit 3200 updates the angle to be processed to -360° (step S143). Processing then returns to the calling process.
  • the crank rotation processing unit 3200 determines whether the angle to be processed is less than 0° (step S145). If the angle to be processed is less than 0°, the crank rotation processing unit 3200 updates the angle to be processed to the angle to be processed + 360° (step S147). Processing then returns to the calling process. On the other hand, if the angle to be processed is 0° or more, the process returns to the calling process.
  • the crank rotation processing unit 3200 calculates the crank angle estimated value from the previous crank angle estimated value + the calculated crank rotation angle (step S129).
  • the initial value of the previous crank angle estimate is, for example, 0.
  • the crank angle estimated value is a value that increases by a predetermined angle (rotation angle per pulse (for example, 30 degrees)) for each pulse signal described above.
  • the crank rotation processing unit 3200 then performs adjustment processing on the estimated crank angle value (step S131).
  • the processing content is as shown in FIG.
  • crank rotation processing unit 3200 substitutes the crank angle estimated value calculated in step S129 for the previous crank angle estimated value (step S133). Processing then returns to the calling process.
  • crank rotation processing unit 3200 determines whether the input torque acquired this time is smaller than the previously specified minimum torque value (step S105). If the input torque acquired this time is greater than or equal to the minimum torque value, the process shifts to the process in FIG. 19 via terminal D.
  • the crank rotation processing unit 3200 updates the minimum torque value with the input torque acquired this time (step S107). Further, the crank rotation processing unit 3200 resets the current relative rotation angle from the minimum torque value to zero (step S109). This is because the angle at which the input torque is minimum during one rotation of the crank is set to 0°. However, it may be set to 180°. The process then shifts to the process shown in FIG. 19 via terminal D.
  • the crank rotation processing unit 3200 determines whether the crank has rotated once based on the number of pulses described above (step S111). For example, if a pulse is received every 30 degrees, 12 pulses will result in one rotation. If the crank has not rotated one revolution, the process moves to step S117.
  • the crank rotation processing unit 3200 updates the estimated crank angle value with the current relative rotation angle from the minimum torque value calculated in step S125 (step S113). ). Thereby, the estimated crank angle value can be corrected using the rotation angle after detecting the minimum torque value, that is, the current relative rotation angle from the minimum torque value. Further, the crank rotation processing unit 3200 resets the minimum torque value and the current relative rotation angle from the minimum torque value to zero (step S115).
  • crank rotation processing unit 3200 updates the previous relative rotation angle with the current relative rotation angle from the minimum torque value (step S117).
  • step S119 determines whether or not the process is to be terminated due to a power outage or the like. If the process is not terminated, the process returns to step S101 via the terminal E. On the other hand, if the process should be terminated, the process is terminated.
  • FIG. 20 a first example of estimating the crank angle will be described using FIG. 20.
  • the input torque changes approximately sinusoidally, as shown in FIG. 20(a), and two local maximum values and two local minimum values appear in one crank rotation.
  • the pulse signal described above is received, for example, every 30 degrees.
  • the estimated crank angle value increases from 0° by 30° every time a pulse signal is received.
  • the current relative rotation angle from the minimum torque value is reset to 0 every time the minimum torque value is detected during one crank rotation, so it may increase. is also reset each time a new minimum torque value is detected.
  • the input torque is specified as the minimum value (black circle) during the first crank rotation, but at this time t41, the current relative rotation angle from the minimum torque value is reset to zero.
  • the estimated crank angle becomes 60°, but the current relative value from the minimum torque value Since the rotation angle is also 60°, the value remains the same even after correction.
  • time t46 which is the third revolution of the crank, the estimated crank angle value becomes 60°, but the current relative rotation angle from the minimum torque value Since the angle is also 60°, the value remains the same even after correction.
  • FIG. 21 a second example of estimating the crank angle will be described using FIG. 21.
  • the input torque has the same maximum value and minimum value twice per crank rotation, the timing at which the minimum torque value appears differs for each crank rotation.
  • the second minimum value becomes the torque minimum value (black circle)
  • the first minimum value becomes the torque minimum value (black circle).
  • FIGS. 21A to 21D show the same types of signal changes as FIGS. 21A to 21D.
  • the minimum torque value is detected earlier than time t43, so at time t53, the current relative rotation angle from the minimum torque value is reset to 0. be done.
  • both the estimated crank angle value and the current relative rotation angle from the minimum torque value increase in accordance with the pulse, but at time t54, the second crank rotation occurs, so the current relative rotation angle from the minimum torque value at that time increases.
  • the estimated crank angle value (60°) is updated with the current relative rotation angle of 240°. Note that the minimum torque value is also reset here.
  • the current relative rotation angle from the minimum torque value is reset to 0 at time t55.
  • both the estimated crank angle value and the current relative rotation angle from the minimum torque value increase in accordance with the pulse, but at time t56, the third crank rotation occurs, so the current relative rotation angle from the minimum torque value at that time increases.
  • the estimated crank angle value (240°) is updated with the current relative rotation angle of 240°.
  • crank angle can be estimated with high accuracy.
  • the estimated crank angle value is assumed to be 0° at the time when the minimum torque value is detected, but it may be assumed to be 180°. Note that it is not possible to determine which is correct, so in the example of Fig. 20, as schematically shown in Fig. 22, there is a difference between when it is regarded as 0° (solid line) and when it is regarded as 180° (dotted line). Put it away. Furthermore, the torque may be changed to be based on the maximum torque value. That is, the estimated crank angle value may be considered to be 90° or 270° at the time when the maximum torque value is detected.
  • the predetermined range of the crank angle in the first embodiment is preferably a point-symmetric range with the crankshaft as the center of symmetry, but in this embodiment, This restriction is often not a problem.
  • the crank angle may have an error of 180°.
  • crank angle may be estimated based on the timing of the minimum torque value or the maximum torque value within a half revolution of the crank.
  • the waveform of the input torque a waveform that has been subjected to calculations using a filter or the like may be used.
  • a filter a low-pass filter, a band-pass filter, etc.
  • the crank angle can be estimated more accurately without being affected by noise, waveform distortion, etc.
  • the above processing flow does not have to be performed all the time. For example, it may be executed only at arbitrary timing.
  • the crank angle may be estimated only during the first revolution or several revolutions of the crank after the power is turned on, and thereafter the crank angle may be estimated in accordance with the pulse signal from the crank rotation sensor 104. .
  • crank angle estimate may be increased by the angle.
  • steps S151 in FIG. 23 to S181 in FIG. 25 are executed at every predetermined control cycle. Further, it is assumed that the rotation direction of the crank can be detected and the crank is recognized to be rotating in the normal direction.
  • crank rotation processing section 3200 acquires the input torque from the torque input section 1027, the pulse signal from the crank rotation input section 1022, etc. (FIG. 23: Step S151). Then, the crank rotation processing section 3200 executes crank angle estimation processing 2 (step S153). This crank angle estimation process 2 will be explained using FIG. 24.
  • the crank rotation processing unit 3200 determines whether crank rotation has been detected, for example, based on the above-mentioned pulse signal (FIG. 24: Step S191). If crank rotation is not detected, the process returns to the calling process.
  • crank rotation processing section 3200 calculates a crank rotation angle according to the detected crank rotation (step S193).
  • the crank rotation angle is calculated by multiplying the number of pulses received in the current control cycle by the rotation angle per pulse (for example, 30 degrees).
  • crank rotation processing unit 3200 calculates the first current relative rotation angle from the minimum torque value as the first previous relative rotation angle+the calculated crank rotation angle (step S195).
  • the first previous relative rotation angle is reset to 0, and the crank rotation angles are accumulated from there.
  • crank rotation processing unit 3200 calculates the second current relative rotation angle from the maximum torque value as the second previous relative rotation angle+the calculated crank rotation angle (step S197).
  • the second previous relative rotation angle is reset to 0, and the crank rotation angles are accumulated from there.
  • crank rotation processing unit 3200 executes adjustment processing for the first current relative rotation angle calculated in step S195 and the second current relative rotation angle calculated in step S197 (step S199). Specifically, this is a process for setting the first and second current relative rotation angles to 0° or more and less than 360°, such as the process shown in FIG. 18, for example.
  • crank rotation processing unit 3200 calculates the crank angle estimated value using the previous crank angle estimated value + the calculated crank rotation angle (step S201).
  • the initial value of the previous crank angle estimate is, for example, 0.
  • the crank angle estimated value is a value that increases by a predetermined angle (for example, 30 degrees) for each pulse signal described above.
  • the crank rotation processing unit 3200 then performs adjustment processing on the estimated crank angle value (step S203).
  • the processing content is as shown in FIG.
  • crank rotation processing unit 3200 substitutes the crank angle estimated value calculated in step S203 for the previous crank angle estimated value (step S205). Processing then returns to the calling process.
  • the crank rotation processing unit 3200 determines whether the input torque acquired this time is smaller than the previously specified minimum torque value (step S155). If the input torque acquired this time is greater than or equal to the minimum torque value, the crank rotation processing unit 3200 determines whether the input torque acquired this time is greater than the previously specified maximum torque value (step S161). If the input torque acquired this time is less than or equal to the maximum torque value, the process shifts to the process shown in FIG. 25 via terminal F.
  • the crank rotation processing unit 3200 updates the minimum torque value with the input torque acquired this time (step S157). Further, the crank rotation processing unit 3200 resets the first current relative rotation angle from the minimum torque value to zero (step S159). The process then shifts to the process shown in FIG. 25 via the terminal F.
  • the crank rotation processing unit 3200 updates the maximum input torque value with the input torque acquired this time (step S163). Further, the crank rotation processing unit 3200 resets the second current relative rotation angle from the maximum torque value to zero (step S165). The process then shifts to the process shown in FIG. 25 via the terminal F.
  • the crank rotation processing unit 3200 determines whether the crank has rotated once from the number of pulses described above (step S167). For example, if a pulse is received every 30 degrees, 12 pulses will result in one rotation. If the crank has not rotated one revolution, the process moves to step S177.
  • the second current relative rotation angle from the maximum torque value - the first current relative rotation angle from the minimum torque value is calculated as the relative angle difference (step S169).
  • crank rotation processing unit 3200 determines whether the relative angle difference is approximately 90° or 270° (step S171).
  • step S177 if the relative angle difference is not about 90° or 270°, the process moves to step S177.
  • the crank rotation processing unit 3200 sets the estimated crank angle value to the first current relative rotation angle from the minimum torque value calculated in step S201. Update (step S173).
  • the estimated crank angle value can be corrected using the rotation angle after detecting the minimum torque value, that is, the first current relative rotation angle from the minimum torque value.
  • the crank rotation processing unit 3200 resets the maximum torque value, the minimum torque value, the first current relative rotation angle from the minimum torque value, and the second current relative rotation angle from the maximum torque value to zero (step S175 ).
  • crank rotation processing unit 3200 updates the first previous relative rotation angle with the first current relative rotation angle from the minimum torque value (step S177).
  • the crank rotation processing unit 3200 also updates the second previous relative rotation angle with the second current relative rotation angle from the maximum torque value (step S179).
  • step S181 determines whether or not the process is to be terminated due to a power outage or the like. If the process is not terminated, the process returns to step S151 via the terminal G. On the other hand, if the process should be terminated, the process is terminated.
  • FIG. 26 An example of estimating the crank angle will be described using FIG. 26.
  • the input torque changes approximately sinusoidally, as shown in FIG. 26(a), and two local maximum values and two local minimum values appear in one crank rotation.
  • the minimum torque value appears due to noise immediately after the maximum torque value appears.
  • the maximum torque value appears at exactly one rotation.
  • the estimated crank angle value increases from 0° by 30° every time a pulse signal is received.
  • the first current relative rotation angle from the minimum torque value is reset to 0 every time the minimum torque value is detected, so it repeats increases and decreases.
  • the minimum torque value indicated by a black circle is detected, it is reset to 0, and the first current relative rotation angle from the minimum torque value becomes 60° at the final point of the first crank rotation.
  • the second current relative rotation angle from the maximum torque value is reset to 0 when the maximum torque value shown in white in FIG.
  • crank angle estimate is corrected to 60° at the end of the first crank rotation.
  • the minimum torque value is detected immediately due to noise, so as shown in FIG. 26(d), the first current relative value from the minimum torque value is The rotation angle reaches 300° at the end of the second crank revolution.
  • the maximum torque value is also detected immediately, so the second current relative rotation angle from the maximum torque value also reaches 330° at the end of the second crank rotation. .
  • the relative angle difference is 30 degrees, as shown in FIG. 26(b), so the estimated crank angle value is not corrected.
  • the first minimum value becomes the minimum torque value
  • the first current relative value from the minimum torque value is The rotation angle increases from there until reaching 240° at the end of the third crank revolution.
  • the second current relative rotation angle from the maximum torque value at that time is 0°. Therefore, as shown in FIG. 26(b), at the final point of the third crank rotation, the relative angle difference is 240°, so the estimated crank angle value is not corrected.
  • the estimated crank angle value can be set to an inappropriate value, such as when there is noise in the input torque or when the input torque waveform is extremely distorted compared to a sine wave. Since this can be avoided, the estimated crank angle value becomes a more appropriate value.
  • crank angle at which the minimum torque value was detected was assumed to be 0° or 180°, or the crank angle at which the maximum torque value was detected was assumed to be 90° or 270°.
  • Such an angle may be changed depending on the occupant.
  • the crank angle at which the maximum torque is achieved may be 120° or 300° with an offset of +30°, for example, instead of the ideal state of 90° or 270°. . If the crank angle is not corrected by such an offset, the estimated crank angle value will deviate by the offset.
  • Such an offset value may be recorded in a memory for each occupant, and read out and corrected by automatically determining which occupant is on board, or by being specified by the occupant.
  • crank angle determined by the crank rotation sensor 104 is 0° and 180° (dotted line) coincide with the vertical direction (arrow A) considered by the occupant.
  • crank angles of 90° and 270° (dotted chain lines) measured by the crank rotation sensor 104 similarly match the horizontal direction (arrow B) considered by the occupant.
  • crank angles of 0 degrees and 180 degrees (dotted lines) measured by the crank rotation sensor 104 do not match the vertical direction (arrow C) considered by the occupant.
  • 10° and 190° are the vertical directions considered by the occupant.
  • crank angles of 90° and 270° (dotted chain lines) measured by the crank rotation sensor 104 do not match the horizontal direction (arrow D) considered by the occupant, and are For example, 100° and 280° are the horizontal directions considered by the occupant.
  • the predetermined range in the first embodiment for example, 0° to 30°, 330° to 360°, 150° to 210°.
  • an inclination sensor is added, and the inclination angle of the electrically assisted bicycle 1 is determined from the inclination sensor by (1) the crank angle, (2) a predetermined range, or 3) the third embodiment. This is handled by correcting the assumed angle (0° or 180° for the crank angle at which the minimum torque value was detected, 90° or 270° for the crank angle at which the maximum torque value was detected).
  • the predetermined range is set to 0°.
  • the angle is corrected to 40°, 340° to 360°, and 160° to 220°.
  • the assumed angle is corrected to 10° or 100°.
  • the electrically assisted bicycle 1 is equipped with the three-axis acceleration sensor 108 and climbs a slope with an inclination angle ⁇ .
  • the three-axis acceleration sensor 108 outputs acceleration with the traveling direction of the electrically assisted bicycle 1 as the x-axis and the upward direction as the z-axis.
  • the triaxial acceleration sensor 108 detects ad z in the z-axis direction and ad x in the x-axis direction.
  • the inclination angle ⁇ is calculated as follows.
  • the acceleration detected by the triaxial acceleration sensor 108 reflects not only the gravitational acceleration g but also the vehicle body acceleration a other than the gravitational acceleration g since the vehicle is traveling on a slope. It is preferable to exclude the vehicle body acceleration a from the acceleration detected by the triaxial acceleration sensor 108, extract only the acceleration due to weight acceleration, and then calculate the inclination angle ⁇ of the slope.
  • the vehicle body acceleration a can be obtained from the output of the speed sensor over time (dV/dt if the speed is V).
  • the motor rotation processing unit 3100 calculates the vehicle speed from the rotation of the motor 105, the vehicle speed can be obtained from the change in the vehicle speed over time.
  • the inclination angle ⁇ can be obtained using the following formula.
  • the functional block diagram described above is an example, and one functional block may be divided into a plurality of functional blocks, or a plurality of functional blocks may be integrated into one functional block.
  • the order of steps may be changed or a plurality of steps may be executed in parallel, as long as the processing content remains the same.
  • the motor control device includes (A) an inverter that performs power running drive or regenerative braking of the motor of an electrically assisted vehicle, and (B) a crank rotation speed that is a rotational speed of a crank in the electrically assisted vehicle that is equal to or less than a first threshold value. Based on the first condition regarding the crank angle, which is the angle from the reference position of the crank, or after the input torque due to the rotation of the crank becomes equal to or less than the second threshold value, the cumulative rotation angle of the crank in the case where and a control unit that controls the inverter by determining the presence or absence of regenerative braking, which is associated in advance with the first condition or the second condition, based on the second condition regarding the cumulative crank rotation angle.
  • the occupant can convey the occupant's intention to the motor control device by operating the crank, and the motor control device can perform regeneration control in accordance with the occupant's intention.
  • the first condition described above may be that the crank angle is within a predetermined range.
  • the control unit described above controls the inverter to perform regenerative braking that is associated with the first condition in advance when the first condition is satisfied, and If the first condition is not satisfied, the inverter is controlled to stop regenerative braking that is previously associated with the first condition. Since the crank angle can be stopped within a predetermined range, the passenger can easily operate the system.
  • the predetermined range mentioned above may be an angular range including a vertical direction or a direction perpendicular to the ground. Although such an angular range is an angle at which the crank can be stopped relatively easily, other angular ranges may be set.
  • the control unit described above detects that the rotation angle of the crank has reversely rotated by a third threshold value or more from the state where the first condition is satisfied, the regenerative braking force is increased compared to before the detection. You may also make it stronger. Even if the braking force is insufficient after regenerative braking, the braking force can be increased with a simple crank operation.
  • the second condition described above may be that the cumulative crank rotation angle is equal to or less than a fourth threshold value and the crank rotation speed is equal to or less than a fifth threshold value.
  • the control unit described above controls the inverter to perform regenerative braking that is associated with the second condition in advance when the second condition is satisfied, and If the second condition is not satisfied, the inverter is controlled to stop regenerative braking that is previously associated with the second condition. If the intention is to cruise with the possibility of acceleration, it is sufficient to keep the crank rotating; if the intention is to decelerate, the rotation of the crank may be immediately stopped.
  • the control unit described above may control the inverter to generate the strongest regenerative braking force among the regenerative braking forces determined by a plurality of methods. This is to prioritize safety.
  • the control unit described above detects the minimum value or maximum value of the input torque that changes while the electric assist vehicle is moving forward, while the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward, and
  • the crank angle may be estimated based on the time when the minimum value or maximum value of the input torque is detected and a signal obtained every time the crank rotates by a predetermined angle. Even when the crank rotation sensor outputs the above signal, the crank angle can be estimated.
  • the control unit described above controls the minimum value or maximum value of the input torque that changes while the electric assist vehicle is moving forward, while the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward.
  • the crank angle at the time when the minimum value or maximum value is detected is a predetermined angle (for example, if the minimum value is a range of 0° or 180° plus a margin, if the maximum value is a range of 90°)
  • the crank angle may be estimated based on a signal obtained every time the crank rotates by a predetermined angle after the above-mentioned time point.
  • control unit described above controls the input torque to be set at a minimum value or a maximum value of the input torque that changes while the electric assist vehicle is moving forward and the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward.
  • control unit described above may correct the crank angle or a predetermined range depending on the longitudinal inclination of the electrically assisted vehicle. When traveling on a slope, there is likely to be a discrepancy between the crank angle felt by the occupant and the crank angle based on the sensor, so this is corrected.
  • control unit described above may correct the predetermined angle according to the inclination of the electrically assisted vehicle in the longitudinal direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

In order to perform regenerative braking in a manner that complies more with the intent of an occupant, the motor control device according to an embodiment comprises: an inverter that causes a motor of an electrically assisted vehicle to perform power driving or regenerative braking; and a control unit that controls the inverter by determining, on the basis of a first condition or a second condition, the presence or absence of regenerative braking associated in advance with the first condition or the second condition, the first condition being about the crank angle that is the angle from a reference position of the crank in the case that the crank rotation speed which is the rotation speed of the crank in the electrically assisted vehicle is less than or equal to a first threshold, the second condition being about the cumulative crank rotation angle that is the cumulative rotation angle of the crank after the input torque caused by the rotation of the crank becomes less than or equal to a second threshold.

Description

電動アシスト車のためのモータ制御装置及び電動アシスト車Motor control device for electrically assisted vehicles and electrically assisted vehicles
本発明は、電動アシスト車の回生制御技術に関する。 The present invention relates to regeneration control technology for electrically assisted vehicles.
例えば特許文献1には、車輪の回転量に基づいて算出される第1の値とクランクの回転量に基づいて算出される第2の値とのうち少なくとも第2の値に基づいて、車輪に駆動力を供給する電動機を通じて回生充電が行われる蓄電装置に対する、電動機の回生量を制御することが開示されている。本特許文献1の制御では、例えば、乗員がペダルを漕がず惰行走行を行わせる場合に回生制動がなされるものであるが、乗員の想定よりも速度が低下する場合もあり、その場合には乗員は速度維持のためにクランクを回転させて再加速をさせることになる。すなわち、回生制動を働かせる範囲を広げることで、乗員の意図せざる減速を招く場合がある。 For example, in Patent Document 1, based on at least the second value of the first value calculated based on the amount of rotation of the wheel and the second value calculated based on the amount of rotation of the crank, It is disclosed that the amount of regeneration of an electric motor is controlled for a power storage device in which regenerative charging is performed through an electric motor that supplies driving force. In the control disclosed in Patent Document 1, for example, regenerative braking is performed when the vehicle is coasting without pedaling, but the speed may be lower than expected by the vehicle occupant. In order to maintain speed, the crew must rotate the crank to re-accelerate. That is, expanding the range in which regenerative braking is applied may cause unintended deceleration of the occupant.
また例えば特許文献2には、踏力トルクのトルク値が所定レベル以下の場合に回生制御を行い、トルク値が所定レベルより大きい場合にアシスト制御を行う電動補助自転車の制御装置が、トルク値が所定レベル以下のクランク角度位置で回生制御を行い、トルク値が所定レベルよりも高くなったクランク角度位置で回生制御からアシスト制御に切り替える技術が開示されている。しかしながら、本特許文献2の制御では、回生はペダルを漕いでいる間も乗員の意図に依らず回生が行われるため、本制御を行わない場合に比して乗員は多くの力でペダルを漕ぐことになる。特に、登坂時であっても、トルク値が所定レベル以下であれば回生制動が行われるので、乗員の負担がより大きくなる。よって、乗員は思い通りの走行ができなくなる可能性がある。なお、本特許文献2では、速度が落ちた場合には回生を弱めることについて触れているが、それでもユーザの意図に沿った回生とは言いがたい。 For example, Patent Document 2 discloses a control device for an electrically assisted bicycle that performs regeneration control when the torque value of pedal force torque is below a predetermined level, and performs assist control when the torque value is larger than the predetermined level. A technique is disclosed in which regeneration control is performed at a crank angle position below a predetermined level, and the regeneration control is switched to assist control at a crank angle position where the torque value becomes higher than a predetermined level. However, in the control of Patent Document 2, regeneration is performed even while pedaling, regardless of the occupant's intention, so the occupant pedals with more force than when this control is not performed. It turns out. In particular, even when climbing a slope, regenerative braking is performed if the torque value is below a predetermined level, which increases the burden on the occupant. Therefore, the occupant may not be able to drive as desired. Note that although Patent Document 2 mentions weakening regeneration when the speed decreases, it is still difficult to say that the regeneration is in accordance with the user's intention.
なお、例えば特許文献3では、ペダルの回転方向を検知するペダル回転センサからペダルの回転方向が逆転であることを表す信号を受信した場合、回生を開始させるように駆動制御部に指示するような技術が開示されている。しかしながら、ペダルの正回転を停止させる過程を経てからペダルを逆回転させるのが一般的であり、このことを鑑みるにペダルの逆回転に移行して回生制動を行わせるのは即座にはできず、乗員からすれば回生制動の時機を逸する場合もある。 For example, in Patent Document 3, when a signal indicating that the rotational direction of the pedal is reverse is received from a pedal rotation sensor that detects the rotational direction of the pedal, the drive control unit is instructed to start regeneration. The technology has been disclosed. However, it is common to rotate the pedals in the reverse direction after the forward rotation of the pedals has been stopped, and considering this, it is not possible to immediately switch to reverse rotation of the pedals and perform regenerative braking. From the passenger's perspective, the opportunity for regenerative braking may be missed.
さらに、例えば特許文献4では、ブレーキレバーの操作が検出される第1の場合に第1回生度合いで回生を行い、車速の上昇が検出され且つペダルの回転数が第2閾値以下である第2の場合に第1回生度合いよりも弱い第2回生度合いで回生を行う第1回生モードと、第1の場合に第1回生度合いで回生を行い、第2の場合に第2回生度合いで回生を行い、ペダルの回転数が第3閾値以下である第3の場合に第1回生度合いよりも弱い回生度合いで回生を行う第2回生モードとの切り替えを行うことが開示されている。これによりユーザがストレスを感じてしまうおそれを抑制しつつ回生率を向上させる、とされているが、必ずしも好適なタイミング且つ回生度合いで回生制御が行われているわけではない。 Furthermore, for example, in Patent Document 4, regeneration is performed at a first degree of regeneration in the first case in which the operation of the brake lever is detected, and in the second case in which an increase in vehicle speed is detected and the number of rotations of the pedal is below a second threshold value. There is a first regeneration mode in which regeneration is performed at a second regeneration degree that is weaker than the first regeneration degree in the first case, and regeneration is performed at the first regeneration degree in the first case and regeneration is performed at the second regeneration degree in the second case. It is disclosed that the regeneration mode is switched to a second regeneration mode in which regeneration is performed at a degree of regeneration weaker than the first degree in a third case where the number of rotations of the pedal is equal to or less than a third threshold value. It is said that this improves the regeneration rate while suppressing the possibility that the user will feel stressed, but the regeneration control is not necessarily performed at a suitable timing and with a suitable degree of regeneration.
特開2017-88155号公報JP2017-88155A 特開2012-76577号公報Japanese Patent Application Publication No. 2012-76577 特開2014-166125号公報Japanese Patent Application Publication No. 2014-166125 特開2019-123369号公報JP 2019-123369 Publication
従って、本発明の目的は、一側面によれば、より乗員の意図に沿った形で回生制動を行うことができるようにするための新規な技術を提供することである。 Therefore, according to one aspect, an object of the present invention is to provide a novel technique that enables regenerative braking to be performed in a manner that is more in line with the occupant's intentions.
本発明に係るモータ制御装置は、電動アシスト車のモータを力行駆動又は回生制動させるインバータと、電動アシスト車におけるクランクの回転速度であるクランク回転速度が第1の閾値以下である場合における、クランクの基準位置からの角度であるクランク角度についての第1の条件に基づき、又は、クランクの回転による入力トルクが第2の閾値以下となった後におけるクランクの累計の回転角度である累計クランク回転角度についての第2の条件に基づき、第1の条件又は第2の条件に予め対応付けられている回生制動の有無を判断してインバータを制御する制御部とを有する。 The motor control device according to the present invention includes an inverter that drives the motor of an electrically assisted vehicle or performs regenerative braking, and a motor control device that controls the speed of the crank when the rotational speed of the crank in the electrically assisted vehicle is less than or equal to a first threshold value. Based on the first condition regarding the crank angle, which is the angle from the reference position, or regarding the cumulative crank rotation angle, which is the cumulative rotation angle of the crank after the input torque due to the rotation of the crank becomes equal to or less than the second threshold. and a control unit that controls the inverter by determining the presence or absence of regenerative braking, which is associated in advance with the first condition or the second condition, based on the second condition.
図1は、実施の形態における電動アシスト自転車の外観を示す図である。FIG. 1 is a diagram showing the appearance of a power-assisted bicycle according to an embodiment. 図2は、モータ制御装置の構成例を示す図である。FIG. 2 is a diagram showing a configuration example of a motor control device. 図3は、第1の実施の形態における回生制御部に関連する機能構成を示す図である。FIG. 3 is a diagram showing a functional configuration related to the regeneration control section in the first embodiment. 図4は、クランク角度の定義を説明するための図である。FIG. 4 is a diagram for explaining the definition of crank angle. 図5は、第1の実施の形態に係る処理フローを示す図である。FIG. 5 is a diagram showing a processing flow according to the first embodiment. 図6は、第1の実施の形態における所定範囲の設定例を示す図である。FIG. 6 is a diagram showing an example of setting the predetermined range in the first embodiment. 図7は、第1の実施の形態に係る動作例を示す図である。FIG. 7 is a diagram showing an example of operation according to the first embodiment. 図8は、第1の実施の形態の変形例に係る処理フローを示す図である。FIG. 8 is a diagram showing a processing flow according to a modification of the first embodiment. 図9は、逆回転角度算出処理の処理フローを示す図である。FIG. 9 is a diagram showing a processing flow of reverse rotation angle calculation processing. 図10は、第1の実施の形態の変形例に係る処理フローを示す図である。FIG. 10 is a diagram showing a processing flow according to a modification of the first embodiment. 図11は、第1の実施の形態の変形例に係る動作例を示す図である。FIG. 11 is a diagram illustrating an operation example according to a modification of the first embodiment. 図12は、第2の実施の形態における回生制御部に関連する機能構成を示す図である。FIG. 12 is a diagram showing a functional configuration related to the regeneration control section in the second embodiment. 図13は、第2の実施の形態に係る処理フローを示す図である。FIG. 13 is a diagram showing a processing flow according to the second embodiment. 図14は、第2の実施の形態に係る動作例を示す図である。FIG. 14 is a diagram showing an example of operation according to the second embodiment. 図15は、第2の実施の形態に係る他の動作例を示す図である。FIG. 15 is a diagram showing another example of operation according to the second embodiment. 図16は、第3の実施の形態に係る処理フローを示す図である。FIG. 16 is a diagram showing a processing flow according to the third embodiment. 図17は、クランク角度推定処理の処理フローを示す図である。FIG. 17 is a diagram showing a processing flow of crank angle estimation processing. 図18は、調整処理の処理フローを示す図である。FIG. 18 is a diagram showing a processing flow of adjustment processing. 図19は、第3の実施の形態に係る処理フローを示す図である。FIG. 19 is a diagram showing a processing flow according to the third embodiment. 図20は、第3の実施の形態に係る動作例を示す図である。FIG. 20 is a diagram showing an example of operation according to the third embodiment. 図21は、第3の実施の形態に係る他の動作例を示す図である。FIG. 21 is a diagram showing another example of operation according to the third embodiment. 図22は、図20の例における仮定の差によるクランク角度推定値の推移の差を表す図である。FIG. 22 is a diagram showing the difference in the transition of the crank angle estimated value due to the difference in assumptions in the example of FIG. 20. 図23は、第3の実施の形態の第1の変形例に係る処理フローを示す図である。FIG. 23 is a diagram showing a processing flow according to the first modification of the third embodiment. 図24は、第2クランク角度推定処理の処理フローを示す図である。FIG. 24 is a diagram showing the processing flow of the second crank angle estimation process. 図25は、第3の実施の形態の第1の変形例に係る処理フローを示す図である。FIG. 25 is a diagram showing a processing flow according to the first modification of the third embodiment. 図26は、第3の実施の形態の第1の変形例に係る動作例を示す図である。FIG. 26 is a diagram illustrating an operation example according to the first modification of the third embodiment. 図27は、鉛直方向と乗員が考える垂直方向とが一致する場合の例を示す図である。FIG. 27 is a diagram showing an example of a case where the vertical direction and the vertical direction considered by the occupant coincide. 図28は、鉛直方向と乗員が考える垂直方向とが一致しない場合の例を示す図である。FIG. 28 is a diagram showing an example where the vertical direction and the vertical direction considered by the occupant do not match. 図29は、電動アシスト自転車の傾斜を算出する方法を説明するための図である。FIG. 29 is a diagram for explaining a method of calculating the inclination of an electrically assisted bicycle.
以下、本発明の実施の形態について、電動アシスト車の一例である電動アシスト自転車の例をもって説明する。しかしながら、本発明の実施の形態は、電動アシスト自転車だけに適用対象を限定するものではなく、人力に応じて移動する移動体(例えば、台車、車いす、昇降機など)の移動を補助するモータなどに対するモータ制御装置等についても適用可能である。 Embodiments of the present invention will be described below using an example of a power-assisted bicycle, which is an example of a power-assisted vehicle. However, the embodiments of the present invention are not limited to electrically assisted bicycles, but are applicable to motors that assist the movement of moving objects (e.g., trolleys, wheelchairs, elevators, etc.) that move according to human power. It is also applicable to motor control devices and the like.
[実施の形態1]
図1は、本実施の形態における電動アシスト車の一例である電動アシスト自転車の一例を示す外観図である。この電動アシスト自転車1は、モータ駆動装置を搭載している。モータ駆動装置は、バッテリパック101と、モータ制御装置102と、トルクセンサ103と、クランク回転センサ104と、モータ105と、操作パネル106と、ブレーキセンサ107とを有する。
[Embodiment 1]
FIG. 1 is an external view showing an example of a power-assisted bicycle, which is an example of a power-assisted vehicle in this embodiment. This electrically assisted bicycle 1 is equipped with a motor drive device. The motor drive device includes a battery pack 101, a motor control device 102, a torque sensor 103, a crank rotation sensor 104, a motor 105, an operation panel 106, and a brake sensor 107.
また、電動アシスト自転車1は、前輪、後輪、前照灯、フリーホイール、変速機等も有している。 The electrically assisted bicycle 1 also has a front wheel, a rear wheel, a headlamp, a freewheel, a transmission, and the like.
バッテリパック101は、例えばリチウムイオン二次電池であるが、他種の電池、例えばリチウムイオンポリマー二次電池、ニッケル水素蓄電池などであってもよい。そして、バッテリパック101は、モータ制御装置102を介してモータ105に対して電力を供給し、回生時にはモータ制御装置102を介してモータ105からの回生電力によって充電も行う。 The battery pack 101 is, for example, a lithium ion secondary battery, but may also be other types of batteries, such as a lithium ion polymer secondary battery, a nickel metal hydride storage battery, or the like. The battery pack 101 supplies power to the motor 105 via the motor control device 102, and also performs charging with the regenerated power from the motor 105 via the motor control device 102 during regeneration.
トルクセンサ103は、クランク軸周辺に設けられており、乗員によるペダルの踏力(即ち入力トルク)を検出し、この検出結果をモータ制御装置102に出力する。また、クランク回転センサ104は、トルクセンサ103と同様に、クランク軸周辺に設けられており、クランクの回転に応じた信号をモータ制御装置102に出力する。 The torque sensor 103 is provided around the crankshaft, detects the pedal effort (ie, input torque) by the occupant, and outputs the detection result to the motor control device 102 . Further, like the torque sensor 103, the crank rotation sensor 104 is provided around the crankshaft, and outputs a signal corresponding to the rotation of the crank to the motor control device 102.
モータ105は、例えば周知の三相直流ブラシレスモータであり、例えば電動アシスト自転車1の前輪に装着されている。モータ105は、前輪を回転させるとともに、前輪の回転に応じてローターが回転するように、ローターが前輪に連結されている。さらに、モータ105はホール素子等の回転センサを備えてローターの回転情報(すなわちホール信号)をモータ制御装置102に出力する。 The motor 105 is, for example, a well-known three-phase DC brushless motor, and is mounted, for example, on the front wheel of the electrically assisted bicycle 1. The motor 105 rotates the front wheel, and the rotor is connected to the front wheel so that the rotor rotates in accordance with the rotation of the front wheel. Further, the motor 105 includes a rotation sensor such as a Hall element, and outputs rotor rotation information (ie, a Hall signal) to the motor control device 102.
モータ制御装置102は、モータ105の回転センサ、トルクセンサ103及びクランク回転センサ104等からの信号に基づき所定の演算を行って、モータ105の駆動を制御し、モータ105による回生の制御も行う。 The motor control device 102 performs predetermined calculations based on signals from the rotation sensor of the motor 105, the torque sensor 103, the crank rotation sensor 104, etc., controls the drive of the motor 105, and also controls regeneration by the motor 105.
操作パネル106は、例えばアシストの有無に関する指示入力(すなわち、電源スイッチのオン及びオフ)、アシスト有りの場合には希望アシスト比等の入力を乗員から受け付けて、当該指示入力等をモータ制御装置102に出力する。また、操作パネル106は、モータ制御装置102によって演算された結果である走行距離、走行時間、消費カロリー、回生電力量等のデータを表示する機能を有する場合もある。また、操作パネル106は、LED(Light Emitting Diode)などによる表示部を有している場合もある。これによって、例えばバッテリパック101の充電レベルや、オンオフの状態、希望アシスト比に対応するモードなどを運転者に提示する。 The operation panel 106 receives, for example, an instruction input regarding the presence or absence of assistance (i.e., turning the power switch on and off), a desired assist ratio in the case of assistance, etc. from the passenger, and transmits the instruction input etc. to the motor control device 102. Output to. In addition, the operation panel 106 may have a function of displaying data calculated by the motor control device 102 such as travel distance, travel time, calorie consumption, and regenerated power amount. Further, the operation panel 106 may include a display section using an LED (Light Emitting Diode) or the like. As a result, the driver is presented with, for example, the charge level of the battery pack 101, the on/off state, the mode corresponding to the desired assist ratio, and the like.
ブレーキセンサ107は、乗員のブレーキ操作を検出して、ブレーキ操作に関する信号(例えば、ブレーキの有無を表す信号)をモータ制御装置102に出力する。具体的には、磁石とリードスイッチを用いたセンサである。 The brake sensor 107 detects a brake operation by an occupant and outputs a signal related to the brake operation (for example, a signal indicating whether or not the brake is applied) to the motor control device 102 . Specifically, it is a sensor using a magnet and a reed switch.
本実施の形態に係るモータ制御装置102に関連する構成を図2に示す。モータ制御装置102は、制御器1020と、FET(Field Effect Transistor)ブリッジ1030とを有する。FETブリッジ1030は、モータ105のU相についてのスイッチングを行うハイサイドFET(Suh)及びローサイドFET(Sul)と、モータ105のV相についてのスイッチングを行うハイサイドFET(Svh)及びローサイドFET(Svl)と、モータ105のW相についてのスイッチングを行うハイサイドFET(Swh)及びローサイドFET(Swl)とを含む。このFETブリッジ1030は、モータ105に対するインバータであり、コンプリメンタリ型スイッチングアンプの一部を構成している。 FIG. 2 shows a configuration related to motor control device 102 according to this embodiment. The motor control device 102 includes a controller 1020 and a field effect transistor (FET) bridge 1030. The FET bridge 1030 includes a high side FET (Suh) and a low side FET (Sul) that perform switching for the U phase of the motor 105, and a high side FET (Svh) and a low side FET (Svl) that perform switching for the V phase of the motor 105. ), and a high side FET (Swh) and a low side FET (Swl) that perform switching for the W phase of the motor 105. This FET bridge 1030 is an inverter for the motor 105, and constitutes a part of a complementary switching amplifier.
また、制御器1020は、演算部1021と、クランク回転入力部1022と、ブレーキ入力部1023と、モータ回転入力部1024と、可変遅延回路1025と、モータ駆動タイミング生成部1026と、トルク入力部1027と、バッテリパック101の出力電圧をAD(Analog-Digital)変換するAD入力部1029とを有する。 The controller 1020 also includes a calculation section 1021, a crank rotation input section 1022, a brake input section 1023, a motor rotation input section 1024, a variable delay circuit 1025, a motor drive timing generation section 1026, and a torque input section 1027. and an AD input unit 1029 that performs AD (Analog-Digital) conversion of the output voltage of the battery pack 101.
演算部1021は、操作パネル106からの入力(例えばアシストのオン/オフなど)、クランク回転入力部1022からの入力、ブレーキ入力部1023からの入力、モータ回転入力部1024からの入力、トルク入力部1027からの入力、AD入力部1029からの入力を用いて所定の演算を行って、モータ駆動タイミング生成部1026及び可変遅延回路1025に対して出力を行う。なお、演算部1021は、メモリ10211を有しており、メモリ10211は、演算に用いる各種データ及び処理途中のデータ等を格納する。さらに、演算部1021は、プログラムをプロセッサが実行することによって実現される場合もあり、この場合には当該プログラムがメモリ10211に記録されている場合もある。また、メモリ10211は、演算部1021とは別に設けられる場合もある。 The calculation unit 1021 receives input from the operation panel 106 (for example, turning on/off assist, etc.), input from the crank rotation input unit 1022, input from the brake input unit 1023, input from the motor rotation input unit 1024, and torque input unit. A predetermined calculation is performed using the input from the AD input section 1027 and the input from the AD input section 1029, and output is performed to the motor drive timing generation section 1026 and the variable delay circuit 1025. Note that the calculation unit 1021 has a memory 10211, and the memory 10211 stores various data used in calculations, data in the middle of processing, and the like. Furthermore, the calculation unit 1021 may be realized by a processor executing a program, and in this case, the program may be recorded in the memory 10211. Further, the memory 10211 may be provided separately from the calculation unit 1021.
クランク回転入力部1022は、クランク回転センサ104からの信号を処理して演算部1021に出力する。モータ回転入力部1024は、モータ105が出力するホール信号からモータ105の回転(本実施の形態においては前輪の回転)に関する信号(例えば回転位相角、回転方向など)を、ディジタル化して演算部1021に出力する。トルク入力部1027は、トルクセンサ103からの踏力に相当する信号をディジタル化して演算部1021に出力する。AD入力部1029は、二次電池からの出力電圧をディジタル化して演算部1021に出力する。ブレーキ入力部1023は、ブレーキセンサ107からの信号を、ディジタル化して演算部1021に出力する。 The crank rotation input section 1022 processes the signal from the crank rotation sensor 104 and outputs it to the calculation section 1021. The motor rotation input unit 1024 digitizes signals (for example, rotation phase angle, rotation direction, etc.) related to the rotation of the motor 105 (rotation of the front wheels in this embodiment) from the Hall signal output by the motor 105 and sends the digital signal to the calculation unit 1021. Output to. Torque input section 1027 digitizes a signal corresponding to the pedal force from torque sensor 103 and outputs it to calculation section 1021 . The AD input section 1029 digitizes the output voltage from the secondary battery and outputs it to the calculation section 1021. The brake input section 1023 digitizes the signal from the brake sensor 107 and outputs it to the calculation section 1021.
演算部1021は、演算結果として進角値を可変遅延回路1025に出力する。可変遅延回路1025は、演算部1021から受け取った進角値に基づきホール信号の位相を調整してモータ駆動タイミング生成部1026に出力する。演算部1021は、演算結果として例えばPWM(Pulse Width Modulation)のデューティー比に相当するPWMコードをモータ駆動タイミング生成部1026に出力する。モータ駆動タイミング生成部1026は、可変遅延回路1025からの調整後のホール信号と演算部1021からのPWMコードとに基づいて、FETブリッジ1030に含まれる各FETに対するスイッチング信号を生成して出力する。演算部1021の演算結果によって、モータ105は、力行駆動される場合もあれば、回生制動される場合もある。なお、モータの基本動作については、国際公開第2012/086459号パンフレット等に記載されており、本実施の形態の主要部ではないので、ここでは説明を省略する。 The calculation unit 1021 outputs the lead angle value to the variable delay circuit 1025 as a calculation result. The variable delay circuit 1025 adjusts the phase of the Hall signal based on the lead angle value received from the calculation unit 1021 and outputs it to the motor drive timing generation unit 1026. The calculation unit 1021 outputs, for example, a PWM code corresponding to the duty ratio of PWM (Pulse Width Modulation) to the motor drive timing generation unit 1026 as a calculation result. Motor drive timing generation section 1026 generates and outputs switching signals for each FET included in FET bridge 1030 based on the adjusted Hall signal from variable delay circuit 1025 and the PWM code from calculation section 1021. Depending on the calculation result of the calculation unit 1021, the motor 105 may be driven in power running or may be regeneratively braked. Note that the basic operation of the motor is described in the International Publication No. 2012/086459 pamphlet and the like, and is not a main part of this embodiment, so a description thereof will be omitted here.
次に、図3に、演算部1021における回生制御部3000に関連する機能ブロック構成例(本実施の形態に係る部分)を示す。回生制御部3000は、第1制御部3010と、第2制御部3020と、第3制御部3030とを有する。なお、演算部1021は、モータ回転入力部1024からのモータ回転入力からモータ105の回転数(前輪の回転数)、電動アシスト自転車1の速度(=車速)及び加速度(速度の時間変化量)等を算出するモータ回転処理部3100と、クランク回転入力部1022からのクランク回転入力からクランク角度を特定し、クランク回転速度[rps]などを算出するクランク回転処理部3200とを有している。 Next, FIG. 3 shows an example of a functional block configuration related to the regeneration control section 3000 in the calculation section 1021 (a portion according to the present embodiment). The regeneration control section 3000 includes a first control section 3010, a second control section 3020, and a third control section 3030. Note that the calculation unit 1021 calculates the rotation speed of the motor 105 (the rotation speed of the front wheel), the speed (=vehicle speed), acceleration (time change amount of speed), etc. of the electric assist bicycle 1 from the motor rotation input from the motor rotation input unit 1024. , and a crank rotation processing section 3200 that specifies the crank angle from the crank rotation input from the crank rotation input section 1022 and calculates the crank rotation speed [rps].
第1制御部3010は、クランク回転処理部3200からのクランク回転速度及びクランク角度に基づき回生制動の実行の有無を判定する処理などを行い、回生制動を実行すると判定した場合には回生制動トルクを決定して出力する。なお、回生制動トルクを、回生有効時に即座に最大値に設定したり、回生が無効となった際に即座に0としたりする場合、急激な加速度変化により乗員に違和感を与えるおそれがある。よって、速度の時間変化率に制約を設け、出力トルクが急激に変化しないようスルーレート制御を行っても良い。 The first control unit 3010 performs processing to determine whether or not regenerative braking is to be performed based on the crank rotation speed and crank angle from the crank rotation processing unit 3200, and when it is determined that regenerative braking is to be performed, the regenerative braking torque is Decide and output. Note that if the regenerative braking torque is immediately set to the maximum value when regeneration is enabled, or immediately set to 0 when regeneration is disabled, there is a risk that the occupant will feel uncomfortable due to a sudden change in acceleration. Therefore, a restriction may be placed on the rate of change over time of the speed, and slew rate control may be performed so that the output torque does not change suddenly.
なお、本実施の形態では、ブレーキ入力部1023からブレーキ入力に応じて、回生制動の実行の有無を判定し、回生制動を行う場合には回生制動トルクを、第1制御部3010に出力する第2制御部3020も設けられる。また、モータ回転処理部3100から出力される電動アシスト自転車1の車速に応じて、回生制動の実行の有無を判定し、回生制動を行う場合には回生制動トルクを、第1制御部3010に出力する第3制御部3030等も設けられる。なお、加速度に応じて、回生制動の実行の有無を判定し、回生制動を行う場合には回生制動トルクを、第1制御部3010に出力する他の制御部や、1又は複数のパラメータに応じて、回生制動の実行の有無を判定し、回生制動を行う場合には回生制動トルクを、第1制御部3010に出力する他の制御部を設けるようにしても良い。例えば、適切なタイミングにおいて特定された車速である基準車速と現在の車速との差に応じた回生制動トルクを出力するような他の制御部を設けるようにしても良い。 Note that in this embodiment, it is determined whether or not regenerative braking is to be performed in response to a brake input from brake input unit 1023, and when regenerative braking is performed, regenerative braking torque is output to first control unit 3010. 2 control unit 3020 is also provided. Also, depending on the vehicle speed of the electrically assisted bicycle 1 output from the motor rotation processing section 3100, it is determined whether or not regenerative braking is to be performed, and when regenerative braking is performed, the regenerative braking torque is output to the first control section 3010. A third control unit 3030 and the like are also provided. In addition, depending on the acceleration, it is determined whether or not to perform regenerative braking, and when performing regenerative braking, the regenerative braking torque is determined depending on another control unit that outputs the regenerative braking torque to the first control unit 3010 and one or more parameters. Another control unit may be provided that determines whether or not regenerative braking is to be performed, and outputs regenerative braking torque to the first control unit 3010 when regenerative braking is performed. For example, another control unit may be provided that outputs regenerative braking torque according to the difference between a reference vehicle speed, which is a specified vehicle speed, and the current vehicle speed at an appropriate timing.
第1制御部3010は、クランク回転処理部3200からのクランク回転速度及びクランク角度に基づき回生制動を実行すると判定した場合に、第1制御部3010が決定した回生制動トルクを出力するようにしても良いが、第1制御部3010及び他の制御部のうち予め定められた制御部からの回生制動トルク(複数の制御部が対応付けられている場合には例えば回生制動トルクの最大値)を出力するようにしても良い。また、第1制御部3010は、クランク回転処理部3200からのクランク回転速度及びクランク角度に基づき回生制動を停止すると判定した場合に、回生制動トルクをゼロとして出力するようにしても良いが、第1制御部3010及び他の制御部のうち予め定められた制御部からの回生制動トルクをゼロとして出力するようにしても良い。例えば第1制御部3010に対して、第3制御部3030が対応付けられており、第2制御部3020が対応付けられていない場合には、ブレーキ操作に応じた回生制動は、第1制御部3010及び第3制御部3030に依らずに実行される。さらに、第1制御部3010は、予め定められた制御部(自らを含む全制御部であっても良い)からの回生制動トルクのうち最大値を出力するようにしても良い。 The first control unit 3010 may output the regenerative braking torque determined by the first control unit 3010 when it is determined to perform regenerative braking based on the crank rotation speed and crank angle from the crank rotation processing unit 3200. However, it is possible to output regenerative braking torque (for example, the maximum value of regenerative braking torque if multiple control units are associated) from a predetermined control unit among the first control unit 3010 and other control units. You may also do this. Furthermore, when the first control section 3010 determines to stop regenerative braking based on the crank rotation speed and crank angle from the crank rotation processing section 3200, the first control section 3010 may output the regenerative braking torque as zero. The regenerative braking torque from a predetermined control section among the first control section 3010 and the other control sections may be outputted as zero. For example, if the third control unit 3030 is associated with the first control unit 3010 and the second control unit 3020 is not associated with the first control unit 3010, regenerative braking in response to a brake operation is performed by the first control unit 3010. 3010 and the third control unit 3030. Further, the first control section 3010 may output the maximum value of the regenerative braking torque from a predetermined control section (or all control sections including itself).
なお、回生を行わない場合には、演算部1021は、従来の力行駆動を行うようにモータ駆動タイミング生成部1026、可変遅延回路1025及びFETブリッジ1030を介してモータ105を駆動する。一方、回生を行う場合には、演算部1021は、回生制御部3000が出力する回生制動トルクを実現するように、モータ駆動タイミング生成部1026、可変遅延回路1025及びFETブリッジ1030を介してモータ105を回生制御する。 Note that when regeneration is not performed, the calculation unit 1021 drives the motor 105 via the motor drive timing generation unit 1026, variable delay circuit 1025, and FET bridge 1030 so as to perform conventional power running drive. On the other hand, when performing regeneration, the calculation unit 1021 controls the motor 105 via the motor drive timing generation unit 1026, the variable delay circuit 1025, and the FET bridge 1030 so as to realize the regenerative braking torque output by the regeneration control unit 3000. to control regeneration.
次に、図4を用いて、本願の実施の形態におけるクランク角度の定義を説明する。図4は、スタンドを解除した電動アシスト自転車1に乗員が平坦面で乗車した場合において、電動アシスト自転車1を左側から見た、クランク及びペダル周辺の拡大図である。クランク角度θは、クランク回転軸1090を通る鉛直線である車体垂直線Vと、乗員が左足を載せる左ペダル1091に連結されている左クランク1092の中心線Lとが成す角度とする。また、反時計回りの方向を正の方向とする。 Next, the definition of the crank angle in the embodiment of the present application will be explained using FIG. 4. FIG. 4 is an enlarged view of the crank and pedal periphery of the electrically assisted bicycle 1 viewed from the left side when the rider rides the electrically assisted bicycle 1 on a flat surface with the stand released. The crank angle θ is the angle formed by the vehicle body vertical line V, which is a vertical line passing through the crank rotation axis 1090, and the center line L of the left crank 1092, which is connected to the left pedal 1091 on which the passenger rests his or her left foot. Further, the counterclockwise direction is defined as the positive direction.
なお、車体垂直線Vは、実際の地面に対する鉛直線であっても、例えばクランク回転センサ104が0°と認識する位置を通る直線など、ある状態を想定した場合における基準となる直線であっても良い。当然ながら、基準となる車体垂直線Vが異なっていたり、左クランク1092の中心線Lではない線(例えば右クランクの中心線など)を用いる場合でも、実質的に同じ角度にクランクが位置すれば、以下の説明では同じように取り扱われるものとする。さらに、クランク回転速度についても、図4のような方向から見て反時計回りに回る向きを正とする。 Note that even if the vehicle body vertical line V is a line perpendicular to the actual ground, it is a line that serves as a reference when assuming a certain state, such as a line that passes through a position that the crank rotation sensor 104 recognizes as 0°. Also good. Of course, even if the reference vehicle body vertical line V is different or a line other than the center line L of the left crank 1092 is used (for example, the center line of the right crank), as long as the cranks are positioned at substantially the same angle, , will be treated in the same way in the following explanation. Furthermore, regarding the crank rotation speed, the direction in which the crank rotates counterclockwise when viewed from the direction shown in FIG. 4 is positive.
また、「クランク角度」はクランクの絶対的な角度(すなわち位置)を示すものとし、「クランク回転角度」は、クランクの相対的な回転角度を表すものであって、絶対的な位置は特定しないものとする。 In addition, "crank angle" indicates the absolute angle (i.e. position) of the crank, and "crank rotation angle" indicates the relative rotation angle of the crank, but does not specify the absolute position. shall be taken as a thing.
以下、図5及び図6を用いて回生制御部3000等の制御内容について詳細に説明する。なお、ステップS1乃至S11を、所定の制御周期毎に実行するものとする。 Hereinafter, the control contents of the regeneration control section 3000 and the like will be explained in detail using FIGS. 5 and 6. Note that steps S1 to S11 are executed at every predetermined control cycle.
第1制御部3010は、クランク回転処理部3200からクランク回転速度及びクランク角度を取得する(図1:ステップS1)。そして、第1制御部3010は、クランク回転速度が閾値TH1以下であるか否かを判断する(ステップS3)。クランクの回転がほぼ停止しているとみなせる状態では、乗員は加速の意図を有していないと考えられる。閾値TH1には、クランク回転がほぼ停止しているとみなせるような回転速度、例えば0.05rpsを採用し得る。よって、例えば進行方向に赤信号がある場合、乗員はクランクの回転を止めるが、この場合、乗員には停止の意図があり回生を行って良いかもしれない。しかし、クランクの回転を止める状況として、乗員はしばらく惰行したいという意図をもっている可能性もあり、その場合、回生を実行することは不適当である。すなわち、クランク回転を止めたら即回生を行うという制御は必ずしも乗員の意図に合っていない。 The first control unit 3010 acquires the crank rotation speed and crank angle from the crank rotation processing unit 3200 (FIG. 1: Step S1). Then, the first control unit 3010 determines whether the crank rotation speed is less than or equal to the threshold value TH1 (step S3). In a state where the rotation of the crank can be considered to have almost stopped, it is considered that the occupant has no intention of accelerating. As the threshold value TH1, a rotation speed at which it can be considered that the crank rotation is almost stopped, for example, 0.05 rps, may be adopted. Therefore, for example, if there is a red light in the direction of travel, the occupant will stop rotating the crank, but in this case, the occupant may have the intention of stopping and may regenerate. However, in a situation where the crank rotation is stopped, there is a possibility that the occupant intends to coast for a while, and in that case, it is inappropriate to perform regeneration. In other words, control that performs regeneration immediately after the crank rotation is stopped does not necessarily meet the occupant's intention.
よって、クランク回転速度が閾値TH1以下である場合には、第1制御部3010は、さらにクランク角度が所定範囲内であるか否かを判断する(ステップS5)。 Therefore, when the crank rotation speed is less than or equal to the threshold value TH1, the first control section 3010 further determines whether the crank angle is within a predetermined range (step S5).
この所定範囲の設定例を図6に示す。図6の例では、車体垂直線Vの近傍範囲R1及びR2が所定範囲となっている。クランク角度が垂直である0°又は180°に、誤差などに相当する範囲±30°を加えて、0°乃至30°、150°乃至210°、330°乃至360°の範囲が、所定範囲となる。なお、範囲の大きさは、クランク回転センサ104の誤差や、乗員におけるクランク角度認識の不正確さ等を含めて考慮した上で決定すればよい。このような設定を行うことで、乗員が回生制動の稼働を希望する場合には、乗員はこの範囲内にクランクを止めればよく、クランクの回転を止めたが惰行を希望しており回生制動が不要である場合には、この範囲外にクランクを止めれば良い。特に、車体垂直線Vの近傍範囲を設定すれば、乗員はクランクを停止させやすい。なお、所定範囲は、図6の例とは異なる形で設定しても良い。 An example of setting this predetermined range is shown in FIG. In the example of FIG. 6, the vicinity ranges R1 and R2 of the vehicle body vertical line V are the predetermined ranges. The predetermined range is 0° to 30°, 150° to 210°, and 330° to 360° by adding ±30° to the vertical crank angle of 0° or 180°. Become. Note that the size of the range may be determined by taking into account the error of the crank rotation sensor 104, the inaccuracy of the crank angle recognition by the occupant, and the like. By making such a setting, if the occupant wishes to activate regenerative braking, he or she only has to stop the crank within this range, and if the occupant has stopped rotating the crank but wishes to coast, regenerative braking will not be activated. If it is not necessary, just stop the crank outside this range. In particular, if the range near the vehicle body vertical line V is set, the occupant can easily stop the crank. Note that the predetermined range may be set in a different form from the example shown in FIG.
なお、所定範囲は、クランク回転軸1090を対称の中心とする点対称となる範囲が好ましい。乗員のクランク操作は、利き足などにより左右どちらのクランクを主として操作するかが異なるためである。 Note that the predetermined range is preferably a range that is symmetrical with respect to the crank rotation axis 1090 as the center of symmetry. This is because the occupant's crank operation differs depending on his/her dominant foot, which one is the left or right crank.
クランク角度が所定範囲内であれば、第1制御部3010は、回生制動を実行すると判定して、例えば予め定められた回生制動トルクを出力する(ステップS7)。そして処理はステップS11に移行する。一方、ステップS3でクランク回転速度が閾値TH1を超えると判断された場合又はステップS5でクランク角度が所定範囲外であると判断された場合には、第1制御部3010は、回生制動を停止する(ステップS9)。すなわち、回生制動トルクをゼロとして出力する。既に回生制動を停止している場合には、そのまま回生制動の停止を継続する。そして処理はステップS11に移行する。 If the crank angle is within the predetermined range, the first control unit 3010 determines to perform regenerative braking, and outputs, for example, a predetermined regenerative braking torque (step S7). The process then moves to step S11. On the other hand, if it is determined in step S3 that the crank rotation speed exceeds the threshold value TH1, or if it is determined that the crank angle is outside the predetermined range in step S5, the first control unit 3010 stops regenerative braking. (Step S9). That is, the regenerative braking torque is output as zero. If the regenerative braking has already been stopped, the regenerative braking continues to be stopped. The process then moves to step S11.
ステップS11では、演算部1021等は、電源断などの理由で処理を終了するか否かを判断し、処理終了でなければ、処理はステップS1に戻る。一方、終了すべきであれば、処理を終了する。このようにすれば、乗員の意図に沿った形で回生制動を実行することができる。 In step S11, the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like, and if the process is not terminated, the process returns to step S1. On the other hand, if it should be terminated, the process is terminated. In this way, regenerative braking can be performed in accordance with the intention of the occupant.
次に、図7を用いて、本実施の形態における動作例を説明する。図7(a)に示すように、時刻0から徐々にクランク回転速度が遅くなって、時刻t1で、クランク回転速度が閾値TH1以下となる。また、図7(b)に示すように、クランク角度はクランクの回転に応じて変化するが、時刻t1より前に所定範囲である180°±30°の範囲内でほぼ停止されている。従って、時刻t1で、図7(c)に示すように、回生制動が実行されるようになる。なお、ハッチング部分は、所定範囲に相当する180°±30°と、330°乃至360°と0°乃至30°である。 Next, an example of operation in this embodiment will be described using FIG. 7. As shown in FIG. 7(a), the crank rotation speed gradually decreases from time 0, and at time t1, the crank rotation speed becomes equal to or less than the threshold value TH1. Further, as shown in FIG. 7(b), the crank angle changes according to the rotation of the crank, but is almost stopped within a predetermined range of 180°±30° before time t1. Therefore, at time t1, regenerative braking begins to be performed as shown in FIG. 7(c). Note that the hatched portions correspond to a predetermined range of 180°±30°, 330° to 360°, and 0° to 30°.
一方、クランク回転速度は、図7(a)に示すように、時刻t1より後に一旦ゼロになるが、その後徐々に増加する。さらに、図7(b)に示すように、時刻t2にクランク角度が所定範囲外になる。そうすると、時刻t2に、回生制動が停止される。その後は、図7(a)に示すように、時刻t3にクランク回転速度が閾値TH1を超えるが、それほど増加せず、時刻t4で再度閾値TH1以下となる。しかしながら、図7(b)に示すように、クランク角度は所定範囲外であるから、回生制動を実行することにはならない。その後、クランク回転速度はゼロになるが再度増加して、時刻t5で閾値TH1を超える。時刻t5では、クランク角度も所定範囲外であり、回生制動の停止は継続される。 On the other hand, as shown in FIG. 7(a), the crank rotation speed once becomes zero after time t1, but then gradually increases. Furthermore, as shown in FIG. 7(b), the crank angle falls outside the predetermined range at time t2. Then, regenerative braking is stopped at time t2. Thereafter, as shown in FIG. 7(a), the crank rotational speed exceeds the threshold value TH1 at time t3, but does not increase much and falls below the threshold value TH1 again at time t4. However, as shown in FIG. 7(b), since the crank angle is outside the predetermined range, regenerative braking is not performed. Thereafter, the crank rotation speed becomes zero, but increases again and exceeds the threshold value TH1 at time t5. At time t5, the crank angle is also outside the predetermined range, and the regenerative braking continues to stop.
なお、ステップS7について、予め定められた回生制動トルクを出力すると述べたが、これは、例えばブレーキセンサ107でブレーキレバーが操作されたことを検出した場合に第2制御部3020が出力する回生制動トルク(例えば20Nm)より小さい、例えば5Nm程度であっても良い。また、車速に応じて回生制動トルクを決定する第3制御部3030の出力に応じて回生制動トルクを出力するようにしても良い。さらに、第3制御部3030が経過時間に応じて回生制動トルクを減少させるようにしても良い。これは、第3制御部3030が対応付けられている場合の例である。加速度に応じて回生制動トルクを決定する他の制御部やその他のパラメータで回生制動トルクを決定する他の制御部を対応付けても良い。ステップS9で回生制動を停止させる場合においても、対応付けられている制御部による回生制動トルクをゼロとして出力させる。 Note that in step S7, it has been described that a predetermined regenerative braking torque is output, but this is, for example, regenerative braking that is output by the second control unit 3020 when the brake sensor 107 detects that the brake lever is operated. The torque may be smaller than the torque (eg, 20 Nm), for example, about 5 Nm. Alternatively, the regenerative braking torque may be output in accordance with the output of the third control section 3030, which determines the regenerative braking torque in accordance with the vehicle speed. Furthermore, the third control unit 3030 may reduce the regenerative braking torque according to the elapsed time. This is an example where the third control unit 3030 is associated. Another control unit that determines regenerative braking torque according to acceleration or another control unit that determines regenerative braking torque based on other parameters may be associated. Even when regenerative braking is stopped in step S9, the regenerative braking torque by the associated control unit is output as zero.
上でも述べたように、第2制御部3020を対応付けなければ、第1制御部3010が回生制動を停止させると判断しても、ブレーキセンサ107からの信号に基づき回生制動を行う場合には、第2制御部3020から出力される回生制動トルクを採用するようにしても良い。 As mentioned above, if the second control unit 3020 is not associated, even if the first control unit 3010 determines to stop regenerative braking, if regenerative braking is performed based on the signal from the brake sensor 107, , the regenerative braking torque output from the second control section 3020 may be used.
さらに、複数の制御部が対応付けられている場合には、第1制御部3010が回生制動を実行すると判断した場合に、複数の回生制動トルクが得られる。このような場合には、複数の回生制動トルクのうち最大値を採用するようにしても良い。これにより、制動力が最も大きい制御が優先され、制動力不足が生じて乗員の意図に反した走行の可能性が減少し、安全性が高まる。例えば、5Nmと10Nmを出力するような制御部が対応付けられている場合には、第1制御部3010は10Nmを採用する。さらに、第2制御部3020は、対応付けられていないが20Nmを出力するような場面では、第1制御部3010は、10Nmと20Nmを比較して、20Nmを出力するようにしても良い。 Furthermore, if a plurality of control units are associated, a plurality of regenerative braking torques can be obtained when the first control unit 3010 determines to perform regenerative braking. In such a case, the maximum value among the plurality of regenerative braking torques may be adopted. As a result, priority is given to the control that provides the greatest braking force, reducing the possibility that insufficient braking force will occur and causing the vehicle to run contrary to the occupant's intentions, thereby increasing safety. For example, when control units that output 5 Nm and 10 Nm are associated, the first control unit 3010 adopts 10 Nm. Furthermore, in a situation where the second control section 3020 outputs 20Nm although it is not associated, the first control section 3010 may compare 10Nm and 20Nm and output 20Nm.
[実施の形態1の変形例]
回生制動の度合いを、クランク操作で調整できるようにしても良い。本実施の形態では、図8乃至図11を用いて、このような場合における回生制御部3000等の制御内容について詳細に説明する。なお、ステップS21乃至S49を、所定の制御周期毎に実行するものとする。
[Modification of Embodiment 1]
The degree of regenerative braking may be adjusted by crank operation. In this embodiment, the control contents of the regeneration control unit 3000 and the like in such a case will be explained in detail using FIGS. 8 to 11. Note that steps S21 to S49 are executed at every predetermined control cycle.
第1制御部3010は、クランク回転処理部3200からクランク回転速度及びクランク角度を取得する(図8:ステップS21)。そして、第1制御部3010は、クランク回転速度が閾値TH11以下であるか否かを判断する(ステップS23)。これらのステップは、図5におけるステップS1及びS3とほぼ同じである。閾値TH11は閾値TH1と同じであっても良いし、異なっていても良い。但し、閾値TH11は正の閾値であり、ペダルが逆回転されている場合には負のクランク回転速度が得られて、ステップS23の条件を満たしていると判断される。 The first control unit 3010 acquires the crank rotation speed and crank angle from the crank rotation processing unit 3200 (FIG. 8: Step S21). Then, the first control unit 3010 determines whether the crank rotation speed is less than or equal to the threshold value TH11 (step S23). These steps are almost the same as steps S1 and S3 in FIG. The threshold value TH11 may be the same as the threshold value TH1, or may be different from the threshold value TH1. However, the threshold value TH11 is a positive threshold value, and when the pedal is rotated in the reverse direction, a negative crank rotation speed is obtained, and it is determined that the condition of step S23 is satisfied.
クランク回転速度が閾値TH11を超えている場合には、第1制御部3010は、回生制動を停止する(ステップS29)。すなわち、回生制動トルクをゼロとして出力する。既に回生制動を停止している場合には、そのまま回生制動の停止を継続する。また、第1制御部3010は、既に回生制動が実行中であるか否かを表すフラグ1をオフにセットする(ステップS31)。また、以下の処理で用いられる逆回転角度を0にする。そして処理は端子Aを回して図10のステップS49に移行する。 If the crank rotation speed exceeds the threshold value TH11, the first control unit 3010 stops regenerative braking (step S29). That is, the regenerative braking torque is output as zero. If the regenerative braking has already been stopped, the regenerative braking continues to be stopped. The first control unit 3010 also sets flag 1, which indicates whether regenerative braking is already being executed, to OFF (step S31). Also, set the reverse rotation angle used in the following processing to 0. The process then turns terminal A and moves to step S49 in FIG.
一方、クランク回転速度が閾値TH11以下である場合には、第1制御部3010は、フラグ1がオンで且つクランクが逆回転しているか否かを判断する(ステップS25)。クランク逆回転は、前回の制御周期におけるクランク角度と比べて今回の制御周期におけるクランク角度が減少しているか否かで判定できる。フラグ1がオフであるか又はクランクが正回転している場合には、処理は端子Bを回して図10のステップS33に移行する。 On the other hand, if the crank rotational speed is less than or equal to the threshold value TH11, the first control unit 3010 determines whether flag 1 is on and the crank is rotating in reverse (step S25). The reverse rotation of the crank can be determined by determining whether the crank angle in the current control cycle is smaller than the crank angle in the previous control cycle. If flag 1 is off or the crank is rotating forward, the process turns terminal B and moves to step S33 in FIG. 10.
一方、フラグ1がオンで且つクランクが逆回転している場合には、第1制御部3010は、逆回転角度算出処理を実行する(ステップS27)。この逆回転角度算出処理については、図9を用いて説明する。なお、ステップS27の後には、端子Bを回して図10のステップS33に移行する。 On the other hand, if flag 1 is on and the crank is rotating in reverse, the first control unit 3010 executes a reverse rotation angle calculation process (step S27). This reverse rotation angle calculation process will be explained using FIG. 9. Note that after step S27, terminal B is turned and the process moves to step S33 in FIG.
第1制御部3010は、前回の制御周期におけるクランク角度と今回の制御周期におけるクランク角度を比較して、逆回転がなされているか判断する(ステップS51)。逆回転がなされていない場合には、処理はステップS59に移行する。一方、逆回転がなされている場合には、第1制御部3010は、逆回転角度を、前回クランク角度(前回の制御周期におけるクランク角度)-現在クランク角度(今回の制御周期におけるクランク角度)+前回逆回転角度により算出する(ステップS53)。なお、前回逆回転角度の初期値は0である。このように逆回転角度の累積を行ってゆく。 The first control unit 3010 compares the crank angle in the previous control cycle with the crank angle in the current control cycle, and determines whether reverse rotation is being performed (step S51). If the reverse rotation is not performed, the process moves to step S59. On the other hand, if the reverse rotation is being performed, the first control unit 3010 calculates the reverse rotation angle as follows: Previous crank angle (crank angle in the previous control cycle) - Current crank angle (crank angle in the current control cycle) + It is calculated based on the previous reverse rotation angle (step S53). Note that the initial value of the previous reverse rotation angle is 0. In this way, the reverse rotation angles are accumulated.
そして、第1制御部3010は、逆回転角度が360°を超えたか否かを判断する(ステップS55)。逆回転角度が360°以下であれば、処理はステップS59に移行する。一方、逆回転角度が360°を超えていれば、第1制御部3010は、逆回転角度が360°以下になるように、逆回転角度-360°で逆回転角度を更新する(ステップS57)。 Then, the first control unit 3010 determines whether the reverse rotation angle exceeds 360° (step S55). If the reverse rotation angle is 360° or less, the process moves to step S59. On the other hand, if the reverse rotation angle exceeds 360°, the first control unit 3010 updates the reverse rotation angle to −360° so that the reverse rotation angle becomes 360° or less (step S57). .
その後、第1制御部3010は、前回クランク角度を現在クランク角度で更新し(ステップS59)、前回逆回転角度を逆回転角度で更新する(ステップS61)。そして、処理は呼び出し元の処理に戻る。 After that, the first control unit 3010 updates the previous crank angle with the current crank angle (step S59), and updates the previous reverse rotation angle with the reverse rotation angle (step S61). The process then returns to the calling process.
図8の処理では端子Bを回して図10のステップS33に移行して、第1制御部3010は、逆回転角度が閾値TH12以上であるか否かを判断する(ステップS33)。閾値TH12には、意図しない逆回転(例えば脚のわずかな動きやクランク回転センサの検出誤差など)を除き、乗員が意図した逆回転と認識可能となり、且つ乗員が煩雑と感じない程度の逆回転角度が設定される。例えば60°である。 In the process of FIG. 8, the terminal B is turned and the process moves to step S33 of FIG. 10, where the first control unit 3010 determines whether the reverse rotation angle is equal to or greater than the threshold value TH12 (step S33). The threshold value TH12 is such that, excluding unintended reverse rotation (for example, slight movement of the legs or detection error of the crank rotation sensor), the reverse rotation can be recognized as intended by the occupant, and the reverse rotation does not feel troublesome to the occupant. The angle is set. For example, it is 60°.
逆回転角度が閾値TH12未満であれば、第1制御部3010は、クランク角度が所定範囲内であるか否かを判断する(ステップS35)。このステップは、図5におけるステップS5と同様である。クランク角度が所定範囲内でない場合には、第1制御部3010は、回生制動を停止させる(ステップS43)。本ステップは、図5におけるステップS9及び図8におけるステップS29と同様である。そして、第1制御部3010は、既に回生制動が実行中であるか否かを表すフラグ1をオフにセットする(ステップS45)。そして処理はステップS49に移行する。 If the reverse rotation angle is less than the threshold TH12, the first control unit 3010 determines whether the crank angle is within a predetermined range (step S35). This step is similar to step S5 in FIG. If the crank angle is not within the predetermined range, the first control unit 3010 stops regenerative braking (step S43). This step is similar to step S9 in FIG. 5 and step S29 in FIG. 8. Then, the first control unit 3010 sets flag 1, which indicates whether regenerative braking is already being executed, to OFF (step S45). The process then moves to step S49.
一方、クランク角度が所定範囲内であれば、第1制御部3010は、回生制動を実行すると判定して、例えば予め定められた回生制動トルクを出力する(ステップS37)。本ステップは、図5におけるステップS7と同様である。そして、第1制御部3010は、フラグ1をオンにセットする(ステップS39)。さらに、第1制御部3010は、逆回転角度を0に初期化する(ステップS41)。これ以降、クランクが逆回転されると、その逆回転角度が累積されるようになる。そして処理はステップS49に移行する。 On the other hand, if the crank angle is within the predetermined range, the first control unit 3010 determines to perform regenerative braking, and outputs, for example, a predetermined regenerative braking torque (step S37). This step is similar to step S7 in FIG. The first control unit 3010 then sets flag 1 on (step S39). Furthermore, the first control unit 3010 initializes the reverse rotation angle to 0 (step S41). From now on, when the crank is rotated in reverse, the angle of reverse rotation will be accumulated. The process then moves to step S49.
なお、ステップS33で逆回転角度が閾値TH12以上であれば、第1制御部3010は、回生制動トルクを、逆回転角度が閾値TH12以上となる前と比べて増加させる(ステップS47)。例えば、ステップS37で決定される回生制動トルクが5Nmである場合には、ステップS47では10Nmに増加させる。なお、本ステップS37で最初に回生制動トルクを増加させた後には、再度ステップS37に移行してもそれ以上回生制動トルクを増加させるわけではない。そして処理はステップS49に移行する。 Note that if the reverse rotation angle is equal to or greater than the threshold value TH12 in step S33, the first control unit 3010 increases the regenerative braking torque compared to before the reverse rotation angle becomes equal to or greater than the threshold value TH12 (step S47). For example, if the regenerative braking torque determined in step S37 is 5 Nm, it is increased to 10 Nm in step S47. Note that, after the regenerative braking torque is increased for the first time in this step S37, the regenerative braking torque is not increased any further even if the process moves to step S37 again. The process then moves to step S49.
ステップS49では、演算部1021等は、電源断などの理由で処理を終了するか否かを判断し、処理終了でなければ、処理はステップS21に戻る。一方、終了すべき場合には、処理を終了する。このようにすれば、乗員の意図に沿った形で回生制動を実行することができる。 In step S49, the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like, and if the process has not been terminated, the process returns to step S21. On the other hand, if the process should be terminated, the process is terminated. In this way, regenerative braking can be performed in accordance with the intention of the occupant.
このように一旦逆回転角度が閾値TH12以上となると、ステップS35でクランク角度が所定範囲内であるか否かは判断されなくなる。すなわち、回生制動トルクは増加された状態で維持されるようになる。これは、回生制動トルクを増加させようとしてクランクを逆回転させると回生制動が停止される事態を回避するためである。なお、回生制動を停止させる場合には、閾値TH11以上の正のクランク回転速度を与えれば良い。 In this way, once the reverse rotation angle becomes equal to or greater than the threshold value TH12, it is no longer determined in step S35 whether the crank angle is within the predetermined range. That is, the regenerative braking torque is maintained in an increased state. This is to avoid a situation in which regenerative braking is stopped when the crank is rotated in the opposite direction in an attempt to increase regenerative braking torque. Note that in order to stop the regenerative braking, it is sufficient to apply a positive crank rotation speed that is equal to or higher than the threshold value TH11.
以上のような処理を行うことで、乗員は制動力不足を感じた場合には、クランクを逆回転させれば、回生制動トルクが増加するので、乗員の意図に応じた回生制動を行うことができるようになる。 By performing the above processing, if the occupant feels that the braking force is insufficient, the regenerative braking torque will increase by rotating the crank in the opposite direction, making it possible to perform regenerative braking according to the occupant's intention. become able to.
次に、図11を用いて本変形例の動作例を説明する。図11(b)に示すように、クランク角度は、時刻t11に所定範囲(図7と同じでハッチング部分)に入るように増加しているが、図11(a)に示すように、時刻t12まではクランク回転速度は減少していても閾値TH11に達していないので、図11(d)に示すように回生制動は行われない。時刻t12になると、クランク回転速度が閾値TH11以下になってクランク角度も所定範囲内に入っているので回生が有効化される。 Next, an example of the operation of this modified example will be described using FIG. 11. As shown in FIG. 11(b), the crank angle increases to fall within a predetermined range (the hatched area, same as FIG. 7) at time t11, but as shown in FIG. 11(a), at time t12 Until then, even though the crank rotation speed has decreased, it has not reached the threshold value TH11, so regenerative braking is not performed as shown in FIG. 11(d). At time t12, the crank rotation speed becomes equal to or less than the threshold value TH11 and the crank angle also falls within a predetermined range, so regeneration is enabled.
その後時刻t13になるまでは、クランク角度は所定範囲内で動かないので回生制動が継続するが、時刻t13以降になると、乗員がクランクを逆回転させはじめる。このため、図11(a)に示すようにクランク回転速度が負の値となり、図11(b)に示すようにクランク角度が減少し、図11(c)に示すように逆回転角度が徐々に増加する。 Thereafter, until time t13, the crank angle does not move within a predetermined range, so regenerative braking continues, but after time t13, the occupant begins to rotate the crank in the reverse direction. For this reason, the crank rotation speed becomes a negative value as shown in FIG. 11(a), the crank angle decreases as shown in FIG. 11(b), and the reverse rotation angle gradually decreases as shown in FIG. 11(c). increases to
そして、時刻t14になると、図11(c)に示すように逆回転角度が閾値TH12以上となるので、図11(d)に示すように回生制動トルクを増加させた強回生を有効化させる。 Then, at time t14, the reverse rotation angle becomes equal to or greater than the threshold value TH12 as shown in FIG. 11(c), so strong regeneration with increased regenerative braking torque is enabled as shown in FIG. 11(d).
その後時刻t15になると、図11(a)に示すようにクランクの逆回転が停止し、図11(b)に示すようにクランク角度が60°程度で維持される。このように、クランク角度が所定範囲外であっても、強回生は維持される。 After that, at time t15, the reverse rotation of the crank stops as shown in FIG. 11(a), and the crank angle is maintained at about 60 degrees as shown in FIG. 11(b). In this way, strong regeneration is maintained even if the crank angle is outside the predetermined range.
さらに時間が経過すると、図11(a)に示すように、クランクが正回転されはじめて、時刻t16において閾値TH11を超えるようになる。このタイミングで、図11(d)に示すように、回生は停止(無効化)される。その後、クランクの回転は継続しているので、回生は再度有効化されることはない。 As time further elapses, as shown in FIG. 11(a), the crank starts to be rotated in the forward direction, and the threshold value TH11 is exceeded at time t16. At this timing, regeneration is stopped (invalidated) as shown in FIG. 11(d). After that, since the crank continues to rotate, regeneration will not be re-enabled.
このように、乗員の意図に応じた回生制動が行われるようになる。 In this way, regenerative braking is performed according to the intention of the occupant.
[実施の形態2]
第2の実施の形態では、第1の実施の形態とは異なる形で乗員の意図に応じた回生制動を可能にするものである。
[Embodiment 2]
The second embodiment enables regenerative braking in accordance with the intention of the occupant, which is different from the first embodiment.
図12に、演算部1021における回生制御部3000bに関連する機能ブロック構成例(本実施の形態に係る部分)を示す。回生制御部3000bは、図3に示した回生制御部3000における第1制御部3010の代わりに、トルク入力部1027から出力される入力トルク及びクランク回転処理部3200からの出力を用いる第1制御部3010bを含む。第1制御部3010bは、以下で説明する回生制動の有無の判定以外は、第1制御部3010と同様の機能を有している。 FIG. 12 shows an example of a functional block configuration (a portion according to the present embodiment) related to the regeneration control section 3000b in the calculation section 1021. Regeneration control section 3000b is a first control section that uses input torque output from torque input section 1027 and output from crank rotation processing section 3200 instead of first control section 3010 in regeneration control section 3000 shown in FIG. 3010b. The first control unit 3010b has the same functions as the first control unit 3010, except for determining whether or not regenerative braking is performed, which will be described below.
図13乃至図15を用いて、回生制御部3000b等の制御内容について詳細に説明する。なお、ステップS71乃至S89を、所定の制御周期毎に実行するものとする。 Control contents of the regeneration control section 3000b and the like will be explained in detail using FIGS. 13 to 15. Note that steps S71 to S89 are executed at every predetermined control cycle.
第1制御部3010は、クランク回転処理部3200からクランク回転速度及びクランク回転角度と、トルク入力部1027からの入力トルクとを取得する(図13:ステップS71)。クランク回転角度は、前回の制御周期におけるクランク角度-今回の制御周期におけるクランク角度で算出される。 The first control unit 3010 acquires the crank rotation speed and crank rotation angle from the crank rotation processing unit 3200, and the input torque from the torque input unit 1027 (FIG. 13: Step S71). The crank rotation angle is calculated as the crank angle in the previous control cycle minus the crank angle in the current control cycle.
そして、第1制御部3010bは、入力トルクが閾値TH21以下であるか否かを判断する(ステップS73)。閾値TH21は、例えば乗員が加速や巡航を要求していないと考えられるトルク、例えば10Nmが一例である。 Then, the first control unit 3010b determines whether the input torque is less than or equal to the threshold value TH21 (step S73). An example of the threshold value TH21 is a torque that is considered to indicate that the occupant is not requesting acceleration or cruising, for example, 10 Nm.
入力トルクが閾値TH21を超えている場合には、第1制御部3010bは、トルク条件を満たした後における累積のクランク回転角度を表す回転角カウンタ値を0に初期化し(ステップS85)、回生制動を停止する(ステップS87)。ステップS87は、図5のステップS9と同様である。そして処理はステップS89に移行する。 If the input torque exceeds the threshold TH21, the first control unit 3010b initializes the rotation angle counter value representing the cumulative crank rotation angle after satisfying the torque condition to 0 (step S85), and performs regenerative braking. (step S87). Step S87 is similar to step S9 in FIG. The process then moves to step S89.
一方、入力トルクが閾値TH21以下である場合には、第1制御部3010bは、回転角カウンタ値を、回転角カウンタ値+クランク回転角度で更新する(ステップS75)。すなわち、累積のクランク回転角度を算出する。そして、第1制御部3010bは、回転角カウンタ値が閾値TH22以下であるか否かを判断する(ステップS77)。閾値TH22は、例えば乗員が明確な意思の下、クランクの回転を継続させていると考えられる回転角度、例えば180°が一例である。すなわち、本ステップでは、乗員が意図してクランクの回転を継続させていない状態であるか否かを判断している。 On the other hand, when the input torque is less than or equal to the threshold value TH21, the first control unit 3010b updates the rotation angle counter value by the rotation angle counter value + the crank rotation angle (step S75). That is, the cumulative crank rotation angle is calculated. Then, the first control unit 3010b determines whether the rotation angle counter value is less than or equal to the threshold value TH22 (step S77). An example of the threshold value TH22 is a rotation angle, such as 180°, at which it is considered that the occupant continues to rotate the crank with clear intention. That is, in this step, it is determined whether or not the occupant is not intentionally causing the crank to continue rotating.
回転角カウンタ値が閾値TH22を超えている場合には、第1制御部3010bは、回生制動を停止する(ステップS83)。図5のステップS9と同様である。そして処理はステップS89に移行する。 If the rotation angle counter value exceeds the threshold value TH22, the first control unit 3010b stops regenerative braking (step S83). This is similar to step S9 in FIG. The process then moves to step S89.
一方、回転角カウンタ値が閾値TH22以下である場合には、第1制御部3010bは、クランク回転速度が閾値TH23以下であるか否かを判断する(ステップS79)。閾値TH23は、クランクをほぼ止めているとみなせる回転速度、例えば0.05rpsである。クランク回転速度が閾値TH23以下である場合には、第1制御部3010bは、回生制動を実行すると判定して、例えば予め定められた回生制動トルクを出力する(ステップS81)。本ステップは、図5のステップS7と同様である。そして処理はステップS89に移行する。一方、クランク回転速度が閾値TH23を超えている場合には、処理はステップS83に移行する。 On the other hand, if the rotation angle counter value is less than or equal to the threshold value TH22, the first control unit 3010b determines whether or not the crank rotation speed is less than or equal to the threshold value TH23 (step S79). The threshold value TH23 is a rotational speed at which it can be considered that the crank is almost stopped, for example, 0.05 rps. If the crank rotation speed is less than or equal to the threshold value TH23, the first control unit 3010b determines to perform regenerative braking, and outputs, for example, a predetermined regenerative braking torque (step S81). This step is similar to step S7 in FIG. The process then moves to step S89. On the other hand, if the crank rotation speed exceeds the threshold TH23, the process moves to step S83.
ステップS89では、演算部1021等は、電源断などの理由で処理を終了するか否かを判断し、処理終了でなければ、処理はステップS71に戻る。一方、終了すべき場合には、処理を終了する。 In step S89, the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like, and if the process has not been terminated, the process returns to step S71. On the other hand, if the process should be terminated, the process is terminated.
このようにようにすれば、入力トルクが少なくなって、クランク回転の継続があまりなく、クランク回転速度が小さい場合、乗員が加速や巡航を欲していないとみなして、回生制動を行うものである。一方、入力トルクが少なくなっても、クランク回転が継続する場合、すなわち乗員がクランク回転に余韻を持たせている場合には、加速や巡航を欲しているとみなして、回生制動を行わないようにする。 In this way, if the input torque is low, the crank rotation is not continued very long, and the crank rotation speed is low, it will be assumed that the occupants do not want acceleration or cruising, and regenerative braking will be performed. . On the other hand, if the crank continues to rotate even if the input torque decreases, in other words, if the occupant has a lingering effect on the crank rotation, it is assumed that the occupant wants to accelerate or cruise, and regenerative braking is not performed. Make it.
図14及び図15を用いて、本実施の形態における動作例を説明する。まず、図14においては、乗員がクランクへの力の印加を弱めた後、ペダルを直ぐに止めた場合を示している。 An example of operation in this embodiment will be described using FIGS. 14 and 15. First, FIG. 14 shows a case where the occupant immediately stops pedaling after weakening the force applied to the crank.
図14(a)に示したクランク回転速度、(b)に示したクランク角度、(c)に示した入力トルクからして、時刻t26までは、おおよそクランクを1回転半コンスタントに回転させているが、時刻t26で、クランク回転速度は閾値TH23以下となり、その後クランクの回転を停止させ、且つその状態を維持している。 Judging from the crank rotational speed shown in FIG. 14(a), the crank angle shown in FIG. 14(b), and the input torque shown in FIG. 14(c), the crank is constantly rotating approximately one and a half revolutions until time t26. However, at time t26, the crank rotation speed becomes equal to or less than the threshold value TH23, and thereafter the rotation of the crank is stopped and this state is maintained.
なお、図14(c)に示すように、入力トルクは、乗員が力を入れてクランクを回転させている場合には、波打つように変化しており、時刻t21からt22の間、時刻t23からt24の間、閾値TH21以下となる。そうなると、図14(d)に示すように、回転角カウント値は、時刻t21からt22の間、時刻t23からt24の間は、増加するが、クランク回転速度は図14(a)に示すように閾値TH23を超えているので、入力トルクが閾値TH21を超えた時点で0に戻され、図14(e)に示すように回生制動も行われない。 Note that, as shown in FIG. 14(c), when the occupant rotates the crank with force, the input torque changes in a wavy manner, and varies from time t21 to t22 and from time t23 to t23. During t24, it becomes below the threshold value TH21. In this case, as shown in FIG. 14(d), the rotation angle count value increases between time t21 and t22 and between time t23 and t24, but the crank rotation speed increases as shown in FIG. 14(a). Since the input torque exceeds the threshold value TH23, the input torque is returned to 0 when the input torque exceeds the threshold value TH21, and regenerative braking is not performed as shown in FIG. 14(e).
一方、時刻t25で、入力トルクが再度閾値TH21以下となると、回転角カウント値も増加するが、閾値TH22に達する前に、時刻t26でクランク回転速度は閾値TH23以下となるので、回生制動が有効化される。時刻t26以降では、クランク回転は停止されているので、回生制動が継続される。 On the other hand, at time t25, when the input torque becomes less than the threshold value TH21 again, the rotation angle count value also increases, but before reaching the threshold value TH22, the crank rotation speed becomes less than the threshold value TH23 at time t26, so regenerative braking is effective. be converted into After time t26, since the crank rotation is stopped, regenerative braking is continued.
これに対して図15では、乗員がクランクへの力の印加を弱めた後も、ペダルの回転を継続する場合を示している。 In contrast, FIG. 15 shows a case in which the occupant continues to rotate the pedals even after weakening the force applied to the crank.
図15(a)に示したクランク回転速度、(b)に示したクランク角度、(c)に示した入力トルクからして、時刻t35までは、おおよそクランクを1回転半回転させている。また、クランク回転速度は閾値TH23以下にはならない。 From the crank rotational speed shown in FIG. 15(a), the crank angle shown in FIG. 15(b), and the input torque shown in FIG. 15(c), the crank is rotated approximately one and a half revolutions until time t35. Further, the crank rotation speed does not become lower than the threshold value TH23.
なお、図15(c)に示すように、入力トルクは、乗員が力を入れてクランクを回転させている場合には、波打つように変化しており、時刻t31からt32の間、時刻t33からt34の間、閾値TH21以下となる。そうなると、図15(d)に示すように、回転角カウント値は、時刻t31からt32の間、時効t33からt34の間は、増加するが、クランク回転速度は図15(a)に示すように閾値TH23を超えているので、入力トルクが閾値TH21を超えた時点で0に戻され、図15(e)に示すように回生制動は行われない。 Note that, as shown in FIG. 15(c), when the occupant rotates the crank with force, the input torque changes in a wavy manner, and varies from time t31 to t32 and from time t33 to t33. During t34, it becomes below the threshold value TH21. In this case, as shown in FIG. 15(d), the rotation angle count value increases between times t31 and t32 and between aging t33 and t34, but the crank rotation speed increases as shown in FIG. 15(a). Since the input torque exceeds the threshold value TH23, the input torque is returned to 0 when the input torque exceeds the threshold value TH21, and regenerative braking is not performed as shown in FIG. 15(e).
その後、時刻t35で入力トルクが閾値TH21以下となっても、クランクの回転は継続しているので、クランク回転速度は閾値TH23以上のままである。時刻t35以降、回転角カウント値は増加してゆくが、入力トルクが閾値TH21を超えないのでゼロに戻されることなく、時刻t36で閾値TH22を超えてゆく。そうすると、時刻t37でクランク回転速度が閾値TH23以下となっても、もはや回生制動は行われない。 Thereafter, even if the input torque becomes equal to or less than the threshold value TH21 at time t35, the rotation of the crank continues, so the crank rotational speed remains equal to or greater than the threshold value TH23. After time t35, the rotation angle count value increases, but since the input torque does not exceed threshold value TH21, it is not returned to zero and exceeds threshold value TH22 at time t36. Then, even if the crank rotational speed becomes equal to or less than the threshold value TH23 at time t37, regenerative braking is no longer performed.
このように、乗員は、クランクへの力の印加を弱めた後におけるクランクの止め方で、回生制動の有無を選択でき、乗員の意図に沿った回生制動を行うことができるようになる。 In this way, the occupant can select whether or not to perform regenerative braking by determining how to stop the crank after weakening the force applied to the crank, and can perform regenerative braking in accordance with the occupant's intention.
なお、入力トルクについては、フィルタに通した波形に基づき回生制動の有無を判定してもよい。例えば、任意の時定数のローパスフィルタを用い、平滑された入力トルクの波形を基に回生制動の有無を判定しても良い。これにより、入力トルクの一瞬の変動によるピーク値や、ノイズ等に左右されず、安定した制御を行うことができるようになる。他の例としては、入力トルクの波形において任意のサンプリング数分の平均値をとることで平滑化してもよい。 Note that regarding the input torque, the presence or absence of regenerative braking may be determined based on the waveform passed through a filter. For example, the presence or absence of regenerative braking may be determined based on the smoothed input torque waveform using a low-pass filter with an arbitrary time constant. This makes it possible to perform stable control without being affected by peak values caused by instantaneous fluctuations in input torque, noise, etc. As another example, the waveform of the input torque may be smoothed by taking the average value for an arbitrary number of samplings.
[実施の形態3]
上で述べた第1及び第2の実施の形態では、クランク角度をクランク回転センサ104が出力する信号から特定できることを前提として説明を行った。
[Embodiment 3]
The first and second embodiments described above have been described on the premise that the crank angle can be identified from the signal output by the crank rotation sensor 104.
しかしながら、コスト等の問題で、クランク回転センサ104からの信号では、クランク角度を直接得ることができず、クランクがどれだけの角度回転したか、すなわち相対回転角度のみがわかるような場合がある。例えば、クランクが所定角度(例えば30°)回転する毎にパルス信号を出力するクランク回転センサ104である場合もある。 However, due to cost and other issues, it is not possible to directly obtain the crank angle from the signal from the crank rotation sensor 104, and there are cases where only the relative rotation angle, that is, how much the crank has rotated, can be determined. For example, it may be a crank rotation sensor 104 that outputs a pulse signal every time the crank rotates by a predetermined angle (for example, 30 degrees).
そこで、本実施の形態では、例えばクランク回転処理部3200が、トルク入力部1027からの入力トルクの変化とクランク回転入力部1022からの相対的に所定角度回転したことを表すパルス信号とから、クランク角度を推定する。 Therefore, in the present embodiment, for example, the crank rotation processing section 3200 calculates the crank rotation from a change in the input torque from the torque input section 1027 and a pulse signal indicating that the crank rotation input section 1022 has relatively rotated by a predetermined angle. Estimate the angle.
一般に、乗員がクランクを正回転させて電動アシスト自転車1が前向きに進んでいる場合(すなわち車速が正の場合)、入力トルクの波形は、オフセットを有するおおよそ正弦波状となり、クランク1回転につき2回ずつ、極小値と極大値が現れる。極小値の場合は、クランクが概ね垂直の位置にある状態(死点)を表し、極大値の場合はクランクが概ね水平の位置にある状態を表す。本実施の形態では、この傾向を利用してクランク角度を推定する。死点の位置は、傾斜に依らずクランクが概ね鉛直位置にある場合となるため、クランクが垂直位置にある、というのは、鉛直位置にあるということになる。すなわち、本実施の形態では、電動アシスト自転車1が傾斜を走行していても問題が無い。 In general, when the rider rotates the crank in the forward direction and the electrically assisted bicycle 1 is moving forward (that is, when the vehicle speed is positive), the input torque waveform becomes approximately a sine wave with an offset, twice per crank rotation. Local minimum and maximum values appear one by one. A local minimum value represents a state in which the crank is in a generally vertical position (dead center), and a local maximum value represents a state in which the crank is in a generally horizontal position. In this embodiment, the crank angle is estimated using this tendency. The position of the dead center is when the crank is in a generally vertical position regardless of the inclination, so when the crank is in a vertical position, it means that it is in a vertical position. That is, in this embodiment, there is no problem even if the electrically assisted bicycle 1 runs on an incline.
以下、図16乃至図22を用いて、クランク角度を推定するための処理を説明する。なお、図16のステップS101から図19のステップS119までを、所定の制御周期毎に実行するものとする。また、クランクの回転方向を検出でき、クランクが正回転していると認識している状態を想定する。 The process for estimating the crank angle will be described below with reference to FIGS. 16 to 22. It is assumed that steps S101 in FIG. 16 to S119 in FIG. 19 are executed at every predetermined control cycle. Further, it is assumed that the rotation direction of the crank can be detected and the crank is recognized to be rotating in the normal direction.
まず、クランク回転処理部3200は、トルク入力部1027から入力トルク、クランク回転入力部1022からのパルス信号などを取得する(図16:ステップS101)。そして、クランク回転処理部3200は、クランク角度推定処理を実行する(ステップS103)。このクランク角度推定処理については、図17を用いて説明する。 First, the crank rotation processing section 3200 acquires input torque from the torque input section 1027, a pulse signal from the crank rotation input section 1022, etc. (FIG. 16: Step S101). The crank rotation processing unit 3200 then executes crank angle estimation processing (step S103). This crank angle estimation process will be explained using FIG. 17.
クランク回転処理部3200は、例えば上で述べたパルス信号に基づき、クランク回転が検出されたか否かを判断する(図17:ステップS121)。クランク回転が検出されない場合には、処理は呼び出し元の処理に戻る。 The crank rotation processing unit 3200 determines whether crank rotation has been detected, for example, based on the above-mentioned pulse signal (FIG. 17: Step S121). If crank rotation is not detected, the process returns to the calling process.
一方、クランク回転が検出された場合には、クランク回転処理部3200は、検出されたクランク回転に応じたクランク回転角度を算出する(ステップS123)。今回の制御周期において受信したパルスの数×1パルスあたりの回転角度(例えば30°)によりクランク回転角度が算出される。 On the other hand, if crank rotation is detected, the crank rotation processing section 3200 calculates a crank rotation angle according to the detected crank rotation (step S123). The crank rotation angle is calculated by multiplying the number of pulses received in the current control cycle by the rotation angle per pulse (for example, 30 degrees).
そして、クランク回転処理部3200は、トルク最小値からの現在相対回転角度を、前回相対回転角度+算出されたクランク回転角度にて算出する(ステップS125)。トルク最小値が検出されると前回相対回転角度が0にリセットされて、そこからクランク回転角度が累積される。後に説明するが、クランクが1回転回転したことを確認した時点におけるクランク角度推定値を、トルク最小値からの現在相対回転角度で補正する。 Then, the crank rotation processing unit 3200 calculates the current relative rotation angle from the minimum torque value as the previous relative rotation angle+the calculated crank rotation angle (step S125). When the minimum torque value is detected, the previous relative rotation angle is reset to 0, and the crank rotation angle is accumulated from there. As will be explained later, the estimated crank angle at the time when it is confirmed that the crank has rotated once is corrected by the current relative rotation angle from the minimum torque value.
そして、クランク回転処理部3200は、ステップS125で算出された現在相対回転角度に対する調整処理を実行する(ステップS127)。具体的には、現在相対回転角度を0°以上360°未満にするための処理であって、例えば図18に示すような処理である。 Then, the crank rotation processing unit 3200 executes adjustment processing for the current relative rotation angle calculated in step S125 (step S127). Specifically, this is a process for setting the current relative rotation angle to 0° or more and less than 360°, such as the process shown in FIG. 18, for example.
クランク回転処理部3200は、処理対象の角度が360°以上であるか否かを判断する(図18:ステップS141)。処理対象の角度が360°以上である場合には、クランク回転処理部3200は、処理対象の角度を、処理対象の角度-360°で更新する(ステップS143)。そして処理は呼び出し元の処理に戻る。 The crank rotation processing unit 3200 determines whether the angle to be processed is 360° or more (FIG. 18: Step S141). If the angle to be processed is 360° or more, the crank rotation processing unit 3200 updates the angle to be processed to -360° (step S143). Processing then returns to the calling process.
一方、処理対象の角度が360°未満である場合には、クランク回転処理部3200は、処理対象の角度が0°を下回っているか否かを判断する(ステップS145)。処理対象の角度が0°を下回っている場合には、クランク回転処理部3200は、処理対象の角度を、処理対象の角度+360°で更新する(ステップS147)。そして処理は呼び出し元の処理に戻る。一方、処理対象の角度が0°以上である場合には、処理は呼び出し元の処理に戻る。 On the other hand, if the angle to be processed is less than 360°, the crank rotation processing unit 3200 determines whether the angle to be processed is less than 0° (step S145). If the angle to be processed is less than 0°, the crank rotation processing unit 3200 updates the angle to be processed to the angle to be processed + 360° (step S147). Processing then returns to the calling process. On the other hand, if the angle to be processed is 0° or more, the process returns to the calling process.
図17の説明に戻って、クランク回転処理部3200は、クランク角度推定値を、前回クランク角度推定値+算出されたクランク回転角度により算出する(ステップS129)。前回クランク角度推定値の初期値は例えば0である。このように、クランク角度推定値は、上で述べたパルス信号毎に所定角度(1パルスあたりの回転角度(例えば30°))増加するような値である。 Returning to the explanation of FIG. 17, the crank rotation processing unit 3200 calculates the crank angle estimated value from the previous crank angle estimated value + the calculated crank rotation angle (step S129). The initial value of the previous crank angle estimate is, for example, 0. In this way, the crank angle estimated value is a value that increases by a predetermined angle (rotation angle per pulse (for example, 30 degrees)) for each pulse signal described above.
そして、クランク回転処理部3200は、クランク角度推定値に対する調整処理を実行する(ステップS131)。処理内容は図18に示したような処理である。 The crank rotation processing unit 3200 then performs adjustment processing on the estimated crank angle value (step S131). The processing content is as shown in FIG.
その後、クランク回転処理部3200は、前回クランク角度推定値に、ステップS129で算出されたクランク角度推定値を代入する(ステップS133)。そして処理は呼び出し元の処理に戻る。 Thereafter, the crank rotation processing unit 3200 substitutes the crank angle estimated value calculated in step S129 for the previous crank angle estimated value (step S133). Processing then returns to the calling process.
図16の処理の説明に戻って、クランク回転処理部3200は、今回取得した入力トルクが、これより前に特定されたトルク最小値より小さいか否かを判断する(ステップS105)。今回取得した入力トルクがトルク最小値以上である場合には、処理は端子Dを介して図19の処理に移行する。 Returning to the description of the process in FIG. 16, the crank rotation processing unit 3200 determines whether the input torque acquired this time is smaller than the previously specified minimum torque value (step S105). If the input torque acquired this time is greater than or equal to the minimum torque value, the process shifts to the process in FIG. 19 via terminal D.
一方、今回取得した入力トルクがこれより前に特定されたトルク最小値より小さい場合には、クランク回転処理部3200は、トルク最小値を、今回取得した入力トルクで更新する(ステップS107)。また、クランク回転処理部3200は、トルク最小値からの現在相対回転角度をゼロにリセットする(ステップS109)。ここでは、クランク1回転中に入力トルクが最小となる角度を0°と設定するためである。但し、180°と設定するようにしても良い。そして処理は端子Dを介して図19の処理に移行する。 On the other hand, if the input torque acquired this time is smaller than the minimum torque value specified earlier, the crank rotation processing unit 3200 updates the minimum torque value with the input torque acquired this time (step S107). Further, the crank rotation processing unit 3200 resets the current relative rotation angle from the minimum torque value to zero (step S109). This is because the angle at which the input torque is minimum during one rotation of the crank is set to 0°. However, it may be set to 180°. The process then shifts to the process shown in FIG. 19 via terminal D.
図19の処理の説明に移行して、クランク回転処理部3200は、上で述べたパルスの数からクランクが1回転したか否かを判断する(ステップS111)。例えば30°毎にパルスが受信される場合には、12発のパルスが得られると1回転したことになる。クランクが1回転していない場合には、ステップS117に移行する。 Moving on to the description of the process in FIG. 19, the crank rotation processing unit 3200 determines whether the crank has rotated once based on the number of pulses described above (step S111). For example, if a pulse is received every 30 degrees, 12 pulses will result in one rotation. If the crank has not rotated one revolution, the process moves to step S117.
一方、クランク角度が1回転したと判断した場合には、クランク回転処理部3200は、クランク角度推定値を、ステップS125で算出された、トルク最小値からの現在相対回転角度で更新する(ステップS113)。これにより、トルク最小値を検出してからの回転角度、すなわちトルク最小値からの現在相対回転角度で、クランク角度推定値を補正することができるようになる。さらに、クランク回転処理部3200は、トルク最小値とトルク最小値からの現在相対回転角度とを、ゼロにリセットする(ステップS115)。 On the other hand, if it is determined that the crank angle has made one rotation, the crank rotation processing unit 3200 updates the estimated crank angle value with the current relative rotation angle from the minimum torque value calculated in step S125 (step S113). ). Thereby, the estimated crank angle value can be corrected using the rotation angle after detecting the minimum torque value, that is, the current relative rotation angle from the minimum torque value. Further, the crank rotation processing unit 3200 resets the minimum torque value and the current relative rotation angle from the minimum torque value to zero (step S115).
その後、クランク回転処理部3200は、前回相対回転角度を、トルク最小値からの現在相対回転角度で更新する(ステップS117)。 Thereafter, the crank rotation processing unit 3200 updates the previous relative rotation angle with the current relative rotation angle from the minimum torque value (step S117).
そして、演算部1021等は、電源断などの理由で処理を終了するか否かを判断し(ステップS119)、処理終了でなければ、処理は端子Eを介してステップS101に戻る。一方、終了すべき場合には、処理を終了する。 Then, the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like (step S119). If the process is not terminated, the process returns to step S101 via the terminal E. On the other hand, if the process should be terminated, the process is terminated.
次に、図20を用いて、クランク角度を推定する第1の例を説明する。上でも述べたように、入力トルクは、図20(a)に示すように、おおよそ正弦波状に変化して、クランク1回転で2回の極大値及び2回の極小値が現れる。また、図20(d)に示すように、上で述べたパルス信号は、例えば30°毎に受信される。このような場合、図20(b)に示すように、クランク角度推定値は、0°からパルス信号を受信する毎に30°増加する。 Next, a first example of estimating the crank angle will be described using FIG. 20. As mentioned above, the input torque changes approximately sinusoidally, as shown in FIG. 20(a), and two local maximum values and two local minimum values appear in one crank rotation. Further, as shown in FIG. 20(d), the pulse signal described above is received, for example, every 30 degrees. In such a case, as shown in FIG. 20(b), the estimated crank angle value increases from 0° by 30° every time a pulse signal is received.
一方、図20(c)に示すように、トルク最小値からの現在相対回転角度は、クランク1回転中においてトルク最小値が検出される毎に0にリセットされるので、増加することがあっても、新たなトルク最小値が検出される毎にリセットされる。この例では、時刻t41において入力トルクが最初のクランク1回転の間における最小値(黒丸)として特定されるが、この時刻t41において、トルク最小値からの現在相対回転角度は、ゼロにリセットされる。その後、時刻t42において、クランクが1回転したことになるので、時刻t41から時刻t42までに増加した、トルク最小値からの現在相対回転角度(60°)で、クランク角度推定値を更新する。すなわち、クランク角度推定値は、時刻t42において360°=0°となるはずであったが、トルク最小値からの現在相対回転角度60°に補正される。なお、ここでトルク最小値もリセットされる。 On the other hand, as shown in FIG. 20(c), the current relative rotation angle from the minimum torque value is reset to 0 every time the minimum torque value is detected during one crank rotation, so it may increase. is also reset each time a new minimum torque value is detected. In this example, at time t41, the input torque is specified as the minimum value (black circle) during the first crank rotation, but at this time t41, the current relative rotation angle from the minimum torque value is reset to zero. . Thereafter, at time t42, the crank has made one revolution, so the estimated crank angle value is updated with the current relative rotation angle (60°) from the minimum torque value, which has increased from time t41 to time t42. That is, the estimated crank angle value was supposed to be 360°=0° at time t42, but is corrected to the current relative rotation angle of 60° from the minimum torque value. Note that the minimum torque value is also reset here.
その後は、時刻t43で、クランク角度推定値は360°=0°になり、2度目のクランク1回転となる時刻t44において、クランク角度推定値は60°となるが、トルク最小値からの現在相対回転角度も60°となるので、補正しても同じ値となる。 After that, at time t43, the estimated crank angle becomes 360°=0°, and at time t44, which is the second crank rotation, the estimated crank angle becomes 60°, but the current relative value from the minimum torque value Since the rotation angle is also 60°, the value remains the same even after correction.
さらに、時刻t45で、クランク角度推定値は360°=0になり、3度目のクランク1回転となる時刻t46において、クランク角度推定値は60°となるが、トルク最小値からの現在相対回転角度も60°となるので、補正しても同じ値となる。 Further, at time t45, the estimated crank angle value becomes 360°=0, and at time t46, which is the third revolution of the crank, the estimated crank angle value becomes 60°, but the current relative rotation angle from the minimum torque value Since the angle is also 60°, the value remains the same even after correction.
また、図21を用いて、クランク角度を推定する第2の例を説明する。入力トルクが、クランク1回転で2回極大値及び2回極小値が現れるのは同じであるが、トルク最小値が現れるタイミングが、クランクの回転毎に異なる場合を示している。すなわち、最初のクランク1回転では、2回目の極小値がトルク最小値(黒丸)となるが、2番目及び3番目のクランク1回転では、1回目の極小値がトルク最小値(黒丸)となる。なお、図21(a)乃至(d)は、図21(a)乃至(d)と同じ種類の信号の変化を示している。 Further, a second example of estimating the crank angle will be described using FIG. 21. Although the input torque has the same maximum value and minimum value twice per crank rotation, the timing at which the minimum torque value appears differs for each crank rotation. In other words, for the first crank revolution, the second minimum value becomes the torque minimum value (black circle), but for the second and third crank revolutions, the first minimum value becomes the torque minimum value (black circle). . Note that FIGS. 21A to 21D show the same types of signal changes as FIGS. 21A to 21D.
最初のクランク1回転については、図20と同じであって、時刻t51でトルク最小値が検出されるので、図21(c)に示すように、トルク最小値からの現在相対回転角度が0にリセットされる。その後、時刻t52において、クランクが1回転したことになるので、時刻t51から時刻t52までに増加した、トルク最小値からの現在相対回転角度(60°)で、クランク角度推定値を更新する。すなわち、クランク角度推定値は、時刻t52において360°=0°となるはずであったが、トルク最小値からの現在相対回転角度60°に補正される。なお、ここでトルク最小値もリセットされる。 The first crank rotation is the same as in FIG. 20, and since the minimum torque value is detected at time t51, the current relative rotation angle from the minimum torque value becomes 0, as shown in FIG. 21(c). will be reset. Thereafter, at time t52, the crank has made one revolution, so the estimated crank angle value is updated with the current relative rotation angle (60°) from the minimum torque value, which has increased from time t51 to time t52. That is, the estimated crank angle value was supposed to be 360°=0° at time t52, but is corrected to the current relative rotation angle of 60° from the minimum torque value. Note that the minimum torque value is also reset here.
その後、図21(a)に示すように、時刻t53において、時刻t43よりも早い段階でトルク最小値が検出されるので、この時刻t53において、トルク最小値からの現在相対回転角度が0にリセットされる。その後、クランク角度推定値もトルク最小値からの現在相対回転角度も、パルスに応じて増加してゆくが、時刻t54において、2回目のクランク1回転を迎えるので、その際における、トルク最小値からの現在相対回転角度240°で、クランク角度推定値(60°)を更新する。なお、ここでトルク最小値もリセットされる。 Thereafter, as shown in FIG. 21(a), at time t53, the minimum torque value is detected earlier than time t43, so at time t53, the current relative rotation angle from the minimum torque value is reset to 0. be done. After that, both the estimated crank angle value and the current relative rotation angle from the minimum torque value increase in accordance with the pulse, but at time t54, the second crank rotation occurs, so the current relative rotation angle from the minimum torque value at that time increases. The estimated crank angle value (60°) is updated with the current relative rotation angle of 240°. Note that the minimum torque value is also reset here.
さらに、時刻t55でトルク最小値が検出されると、この時刻t55で、トルク最小値からの現在相対回転角度が0にリセットされる。その後、クランク角度推定値もトルク最小値からの現在相対回転角度も、パルスに応じて増加してゆくが、時刻t56において、3回目のクランク1回転を迎えるので、その際における、トルク最小値からの現在相対回転角度240°で、クランク角度推定値(240°)を更新する。 Further, when the minimum torque value is detected at time t55, the current relative rotation angle from the minimum torque value is reset to 0 at time t55. After that, both the estimated crank angle value and the current relative rotation angle from the minimum torque value increase in accordance with the pulse, but at time t56, the third crank rotation occurs, so the current relative rotation angle from the minimum torque value at that time increases. The estimated crank angle value (240°) is updated with the current relative rotation angle of 240°.
このような処理を行うことで、クランク角度を精度よく推定できる。 By performing such processing, the crank angle can be estimated with high accuracy.
上で述べた処理フローでは、トルク最小値を検出した時点でクランク角度推定値が0°であるとみなす例を示したが、180°であるとみなすようにしてもよい。なお、いずれが正しいのかは判断できないので、図20の例では、図22に模式的に示すように、0°とみなす場合(実線)と180°とみなす場合(点線)とで差が出てしまう。さらに、トルク最大値を基準とするように変更するようにしてもよい。すなわち、トルク最大値を検出した時点でクランク角度推定値が90°又は270°であるとみなすようにしてもよい。 In the process flow described above, an example was shown in which the estimated crank angle value is assumed to be 0° at the time when the minimum torque value is detected, but it may be assumed to be 180°. Note that it is not possible to determine which is correct, so in the example of Fig. 20, as schematically shown in Fig. 22, there is a difference between when it is regarded as 0° (solid line) and when it is regarded as 180° (dotted line). Put it away. Furthermore, the torque may be changed to be based on the maximum torque value. That is, the estimated crank angle value may be considered to be 90° or 270° at the time when the maximum torque value is detected.
また、図6に関連して説明したように、第1の実施の形態におけるクランク角度の所定範囲は、クランク軸を対称の中心とする点対称となる範囲が好ましいが、本実施の形態では、本制約は問題とならない場合が多い。上で述べた処理フローでは、左右クランクの判別が不可能であるため、クランク角度は180°の誤差をもちうる。これは、一般に、クランク1回転の間に、入力トルクが極小値となる角度(死点に相当)は2点あるが、これは左クランクが上にある場合か、下にある場合か、クランク回転センサ104からのパルス信号及び入力トルクの変化だけでは判別できないためで、結果的にクランク軸を対称の中心とする点対称となる所定範囲を設定することが多いためである。 Further, as explained in relation to FIG. 6, the predetermined range of the crank angle in the first embodiment is preferably a point-symmetric range with the crankshaft as the center of symmetry, but in this embodiment, This restriction is often not a problem. In the processing flow described above, since it is impossible to distinguish between left and right cranks, the crank angle may have an error of 180°. Generally speaking, during one crank rotation, there are two angles at which the input torque reaches its minimum value (corresponding to the dead center). This is because it cannot be determined based only on changes in the pulse signal from the rotation sensor 104 and the input torque, and as a result, a predetermined range that is symmetrical about the crankshaft is often set.
さらに、このような問題から、クランク半回転の間でのトルク最小値又はトルク最大値となるタイミングを基準に、クランク角度を推定するようにしてもよい。 Furthermore, due to this problem, the crank angle may be estimated based on the timing of the minimum torque value or the maximum torque value within a half revolution of the crank.
また、入力トルクの波形については、フィルタ等により演算が加えられた波形を用いても良い。クランク半回転で1周期となる、入力トルク波形の基本波分を取り出すフィルタ(ローパスフィルタ、バンドパスフィルタ等)を用いても良い。この場合、ノイズや波形の歪み等に左右されず、より正確にクランク角度が推定できる。 Furthermore, as for the waveform of the input torque, a waveform that has been subjected to calculations using a filter or the like may be used. A filter (a low-pass filter, a band-pass filter, etc.) that extracts the fundamental wave component of the input torque waveform, which is one cycle per half rotation of the crank, may be used. In this case, the crank angle can be estimated more accurately without being affected by noise, waveform distortion, etc.
また、上記処理フローを常に行わなくてもよい。例えば、任意のタイミングのみで実行するようにしてもよい。具体的な例としては、電源オン後の最初のクランク1回転又は数回転でのみクランク角度を推定し、その後はクランク回転センサ104からのパルス信号に応じてクランク角度を推定するようにしてもよい。 Furthermore, the above processing flow does not have to be performed all the time. For example, it may be executed only at arbitrary timing. As a specific example, the crank angle may be estimated only during the first revolution or several revolutions of the crank after the power is turned on, and thereafter the crank angle may be estimated in accordance with the pulse signal from the crank rotation sensor 104. .
さらに、図17のステップS121で回転が検出されないと、図17の処理全体がスキップされるようになるが、クランク回転が遅い場合には、クランク角度推定値がなかなか更新されないことになる。よって、場合によっては、例えばクランク回転が遅くて複数制御周期図17の処理がスキップされるような場合には、1制御周期で、所定角度(上の例では30°)以内で予め定められた角度だけ、クランク角度推定値を増加させるようにしてもよい。 Furthermore, if rotation is not detected in step S121 of FIG. 17, the entire process of FIG. 17 will be skipped, but if the crank rotation is slow, the estimated crank angle value will not be updated easily. Therefore, in some cases, for example, when the crank rotation is slow and the process in FIG. The crank angle estimate may be increased by the angle.
[実施の形態3の変形例1]
トルクセンサ103によっては、ノイズによって瞬間的に入力トルクを0Nmと出力するような場合がある。本変形例ではこのような事態に対処する。
[Modification 1 of Embodiment 3]
Depending on the torque sensor 103, noise may cause it to momentarily output an input torque of 0 Nm. This modification deals with such a situation.
本変形例の処理フローを図23乃至図26を用いて説明する。なお、図23のステップS151から図25のステップS181までを、所定の制御周期毎に実行するものとする。また、クランクの回転方向を検出でき、クランクが正回転していると認識している状態を想定する。 The processing flow of this modification will be explained using FIGS. 23 to 26. It is assumed that steps S151 in FIG. 23 to S181 in FIG. 25 are executed at every predetermined control cycle. Further, it is assumed that the rotation direction of the crank can be detected and the crank is recognized to be rotating in the normal direction.
まず、クランク回転処理部3200は、トルク入力部1027から入力トルク、クランク回転入力部1022からのパルス信号などを取得する(図23:ステップS151)。そして、クランク回転処理部3200は、クランク角度推定処理2を実行する(ステップS153)。このクランク角度推定処理2については、図24を用いて説明する。 First, the crank rotation processing section 3200 acquires the input torque from the torque input section 1027, the pulse signal from the crank rotation input section 1022, etc. (FIG. 23: Step S151). Then, the crank rotation processing section 3200 executes crank angle estimation processing 2 (step S153). This crank angle estimation process 2 will be explained using FIG. 24.
クランク回転処理部3200は、例えば上で述べたパルス信号に基づき、クランク回転が検出されたか否かを判断する(図24:ステップS191)。クランク回転が検出されない場合には、処理は呼び出し元の処理に戻る。 The crank rotation processing unit 3200 determines whether crank rotation has been detected, for example, based on the above-mentioned pulse signal (FIG. 24: Step S191). If crank rotation is not detected, the process returns to the calling process.
一方、クランク回転が検出された場合には、クランク回転処理部3200は、検出されたクランク回転に応じたクランク回転角度を算出する(ステップS193)。今回の制御周期において受信したパルスの数×1パルスあたりの回転角度(例えば30°)によりクランク回転角度が算出される。 On the other hand, if crank rotation is detected, the crank rotation processing section 3200 calculates a crank rotation angle according to the detected crank rotation (step S193). The crank rotation angle is calculated by multiplying the number of pulses received in the current control cycle by the rotation angle per pulse (for example, 30 degrees).
そして、クランク回転処理部3200は、トルク最小値からの第1現在相対回転角度を、第1前回相対回転角度+算出されたクランク回転角度にて算出する(ステップS195)。トルク最小値が検出されると第1前回相対回転角度が0にリセットされて、そこからクランク回転角度が累積される。 Then, the crank rotation processing unit 3200 calculates the first current relative rotation angle from the minimum torque value as the first previous relative rotation angle+the calculated crank rotation angle (step S195). When the minimum torque value is detected, the first previous relative rotation angle is reset to 0, and the crank rotation angles are accumulated from there.
また、クランク回転処理部3200は、トルク最大値からの第2現在相対回転角度を、第2前回相対回転角度+算出されたクランク回転角度にて算出する(ステップS197)。トルク最大値が検出されると第2前回相対回転角度が0にリセットされて、そこからクランク回転角度が累積される。 Further, the crank rotation processing unit 3200 calculates the second current relative rotation angle from the maximum torque value as the second previous relative rotation angle+the calculated crank rotation angle (step S197). When the maximum torque value is detected, the second previous relative rotation angle is reset to 0, and the crank rotation angles are accumulated from there.
そして、クランク回転処理部3200は、ステップS195で算出された第1現在相対回転角度及びステップS197で算出された第2現在相対回転角度に対する調整処理を実行する(ステップS199)。具体的には、第1及び第2現在相対回転角度を0°以上360°未満にするための処理であって、例えば図18に示すような処理である。 Then, the crank rotation processing unit 3200 executes adjustment processing for the first current relative rotation angle calculated in step S195 and the second current relative rotation angle calculated in step S197 (step S199). Specifically, this is a process for setting the first and second current relative rotation angles to 0° or more and less than 360°, such as the process shown in FIG. 18, for example.
また、クランク回転処理部3200は、クランク角度推定値を、前回クランク角度推定値+算出されたクランク回転角度により算出する(ステップS201)。前回クランク角度推定値の初期値は例えば0である。このように、クランク角度推定値は、上で述べたパルス信号毎に所定角度(例えば30°)増加するような値である。 Further, the crank rotation processing unit 3200 calculates the crank angle estimated value using the previous crank angle estimated value + the calculated crank rotation angle (step S201). The initial value of the previous crank angle estimate is, for example, 0. In this way, the crank angle estimated value is a value that increases by a predetermined angle (for example, 30 degrees) for each pulse signal described above.
そして、クランク回転処理部3200は、クランク角度推定値に対する調整処理を実行する(ステップS203)。処理内容は図18に示したような処理である。 The crank rotation processing unit 3200 then performs adjustment processing on the estimated crank angle value (step S203). The processing content is as shown in FIG.
その後、クランク回転処理部3200は、前回クランク角度推定値に、ステップS203で算出されたクランク角度推定値を代入する(ステップS205)。そして処理は呼び出し元の処理に戻る。 After that, the crank rotation processing unit 3200 substitutes the crank angle estimated value calculated in step S203 for the previous crank angle estimated value (step S205). Processing then returns to the calling process.
図23の処理の説明に戻って、クランク回転処理部3200は、今回取得した入力トルクが、これより前に特定されたトルク最小値より小さいか否かを判断する(ステップS155)。今回取得した入力トルクがトルク最小値以上である場合には、クランク回転処理部3200は、今回取得した入力トルクが、これより前に特定されたトルク最大値より大きいか否かを判断する(ステップS161)。今回取得した入力トルクがトルク最大値以下である場合には、処理は端子Fを介して図25の処理に移行する。 Returning to the explanation of the process in FIG. 23, the crank rotation processing unit 3200 determines whether the input torque acquired this time is smaller than the previously specified minimum torque value (step S155). If the input torque acquired this time is greater than or equal to the minimum torque value, the crank rotation processing unit 3200 determines whether the input torque acquired this time is greater than the previously specified maximum torque value (step S161). If the input torque acquired this time is less than or equal to the maximum torque value, the process shifts to the process shown in FIG. 25 via terminal F.
一方、今回取得した入力トルクがこれより前に特定されたトルク最小値より小さい場合には、クランク回転処理部3200は、トルク最小値を、今回取得した入力トルクで更新する(ステップS157)。また、クランク回転処理部3200は、トルク最小値からの第1現在相対回転角度をゼロにリセットする(ステップS159)。そして処理は端子Fを介して図25の処理に移行する。 On the other hand, if the input torque acquired this time is smaller than the previously specified minimum torque value, the crank rotation processing unit 3200 updates the minimum torque value with the input torque acquired this time (step S157). Further, the crank rotation processing unit 3200 resets the first current relative rotation angle from the minimum torque value to zero (step S159). The process then shifts to the process shown in FIG. 25 via the terminal F.
また、今回取得した入力トルクがこれより前に特定された入力トルク最大値より大きい場合には、クランク回転処理部3200は、入力トルク最大値を、今回取得した入力トルクで更新する(ステップS163)。また、クランク回転処理部3200は、トルク最大値からの第2現在相対回転角度をゼロにリセットする(ステップS165)。そして処理は端子Fを介して図25の処理に移行する。 Furthermore, if the input torque acquired this time is larger than the maximum input torque value specified before this, the crank rotation processing unit 3200 updates the maximum input torque value with the input torque acquired this time (step S163). . Further, the crank rotation processing unit 3200 resets the second current relative rotation angle from the maximum torque value to zero (step S165). The process then shifts to the process shown in FIG. 25 via the terminal F.
図25の処理の説明に移行して、クランク回転処理部3200は、上で述べたパルスの数からクランクが1回転したか否かを判断する(ステップS167)。例えば30°毎にパルスが受信される場合には、12発のパルスが得られると1回転したことになる。クランクが1回転していない場合には、ステップS177に移行する。 Moving on to the description of the process in FIG. 25, the crank rotation processing unit 3200 determines whether the crank has rotated once from the number of pulses described above (step S167). For example, if a pulse is received every 30 degrees, 12 pulses will result in one rotation. If the crank has not rotated one revolution, the process moves to step S177.
一方、クランク角度が1回転したと判断した場合には、相対角度差として、トルク最大値からの第2現在相対回転角度-トルク最小値からの第1現在相対回転角度を算出する(ステップS169)。 On the other hand, if it is determined that the crank angle has rotated once, the second current relative rotation angle from the maximum torque value - the first current relative rotation angle from the minimum torque value is calculated as the relative angle difference (step S169). .
そして、クランク回転処理部3200は、相対角度差が約90°又は270°であるか否かを判断する(ステップS171)。 Then, the crank rotation processing unit 3200 determines whether the relative angle difference is approximately 90° or 270° (step S171).
一般的に、入力トルクの波形は、クランク1回転の中で、クランクが垂直の位置からスタートするとして、トルク極小(死点、クランク角度=0°)->トルク極大(90°)ー>トルク極小(死点、180°)ー>トルク極大(270°)を繰り返すことから、クランク1回転の中では、トルク最小値とトルク最大値との間のクランク角度の差は、おおむね90°又は270°となる。よって、例えば、相対角度差が、誤差を含めて70°以上110°以下、又は250°以上290°以下であれば、ノイズによってトルク最小値等のクランク角度が変化しているわけではない、ということが確認できる。 In general, the input torque waveform is as follows, assuming that the crank starts from a vertical position during one crank rotation: Torque minimum (dead center, crank angle = 0°) -> Torque maximum (90°) -> Torque Since the minimum (dead center, 180°) -> maximum torque (270°) is repeated, the difference in crank angle between the minimum torque value and the maximum torque value is approximately 90° or 270° in one crank rotation. °. Therefore, for example, if the relative angle difference is 70° or more and 110° or less, or 250° or more and 290° or less, including the error, it means that the crank angle such as the minimum torque value is not changing due to noise. This can be confirmed.
従って、相対角度差が約90°又は270°ではない場合には、処理はステップS177に移行する。一方、相対角度差が約90°又は270°である場合には、クランク回転処理部3200は、クランク角度推定値を、ステップS201で算出された、トルク最小値からの第1現在相対回転角度で更新する(ステップS173)。これにより、トルク最小値を検出してからの回転角度、すなわちトルク最小値からの第1現在相対回転角度で、クランク角度推定値を補正することができるようになる。さらに、クランク回転処理部3200は、トルク最大値とトルク最小値とトルク最小値からの第1現在相対回転角度とトルク最大値からの第2現在相対回転角度とを、ゼロにリセットする(ステップS175)。 Therefore, if the relative angle difference is not about 90° or 270°, the process moves to step S177. On the other hand, if the relative angle difference is about 90° or 270°, the crank rotation processing unit 3200 sets the estimated crank angle value to the first current relative rotation angle from the minimum torque value calculated in step S201. Update (step S173). Thereby, the estimated crank angle value can be corrected using the rotation angle after detecting the minimum torque value, that is, the first current relative rotation angle from the minimum torque value. Furthermore, the crank rotation processing unit 3200 resets the maximum torque value, the minimum torque value, the first current relative rotation angle from the minimum torque value, and the second current relative rotation angle from the maximum torque value to zero (step S175 ).
その後、クランク回転処理部3200は、第1前回相対回転角度を、トルク最小値からの第1現在相対回転角度で更新する(ステップS177)。また、クランク回転処理部3200は、第2前回相対回転角度を、トルク最大値からの第2現在相対回転角度で更新する(ステップS179) Thereafter, the crank rotation processing unit 3200 updates the first previous relative rotation angle with the first current relative rotation angle from the minimum torque value (step S177). The crank rotation processing unit 3200 also updates the second previous relative rotation angle with the second current relative rotation angle from the maximum torque value (step S179).
そして、演算部1021等は、電源断などの理由で処理を終了するか否かを判断し(ステップS181)を、処理終了でなければ、処理は端子Gを介してステップS151に戻る。一方、終了すべき場合には、処理を終了する。 Then, the calculation unit 1021 and the like determine whether or not the process is to be terminated due to a power outage or the like (step S181). If the process is not terminated, the process returns to step S151 via the terminal G. On the other hand, if the process should be terminated, the process is terminated.
図26を用いて、クランク角度を推定する例を説明する。上でも述べたように、入力トルクは、図26(a)に示すように、おおよそ正弦波状に変化して、クランク1回転で2回の極大値及び2回の極小値が現れる。但し、本例では、2回目のクランク1回転においては、トルク極大値が現れた直後にノイズでトルク最小値が出現している。また、3回目のクランク1回転においては、ちょうど1回転した時点においてトルク最大値が出現してしまっている。 An example of estimating the crank angle will be described using FIG. 26. As mentioned above, the input torque changes approximately sinusoidally, as shown in FIG. 26(a), and two local maximum values and two local minimum values appear in one crank rotation. However, in this example, in the second crank rotation, the minimum torque value appears due to noise immediately after the maximum torque value appears. Furthermore, in the third crank rotation, the maximum torque value appears at exactly one rotation.
なお、図26(e)に示すように、上で述べたパルス信号は、例えば30°毎に受信されるものとする。 Note that, as shown in FIG. 26(e), it is assumed that the pulse signal described above is received every 30 degrees, for example.
このような場合、図26(c)に示すように、最初のクランク1回転においては、クランク角度推定値は、0°からパルス信号を受信する毎に30°増加する。図26(d)に示すように、トルク最小値からの第1現在相対回転角度は、トルク最小値が検出されるごとに0にリセットされるので、増減を繰り返すが、図26(a)に黒丸で示すトルク最小値が検出されると0にリセットされて、トルク最小値からの第1現在相対回転角度は、最初のクランク1回転の最終時点において60°となる。一方、トルク最大値からの第2現在相対回転角度は、図26(a)に白で示すトルク最大値が検出されると0にリセットされて、トルク最大値からの第2現在相対回転角度は、最初のクランク1回転の最終時点において330°となるので、相対角度差は270°である。従って、クランク角度推定値は、最初のクランク1回転の最終時点においては、60°に補正される。 In such a case, as shown in FIG. 26(c), during the first revolution of the crank, the estimated crank angle value increases from 0° by 30° every time a pulse signal is received. As shown in FIG. 26(d), the first current relative rotation angle from the minimum torque value is reset to 0 every time the minimum torque value is detected, so it repeats increases and decreases. When the minimum torque value indicated by a black circle is detected, it is reset to 0, and the first current relative rotation angle from the minimum torque value becomes 60° at the final point of the first crank rotation. On the other hand, the second current relative rotation angle from the maximum torque value is reset to 0 when the maximum torque value shown in white in FIG. 26(a) is detected, and the second current relative rotation angle from the maximum torque value is , is 330° at the end of the first crank rotation, so the relative angle difference is 270°. Therefore, the crank angle estimate is corrected to 60° at the end of the first crank rotation.
2回目のクランク1回転では、図26(a)に示すように、ノイズで直ぐにトルク最小値が検出されてしまうので、図26(d)に示すように、トルク最小値からの第1現在相対回転角度が、2回目のクランク1回転の最終時点において300°に達する。一方、図26(a)から分かるように、トルク最大値もすぐに検出されるので、トルク最大値からの第2現在相対回転角度も、2回目のクランク1回転の最終時点において330°に達する。そうなると、2回目のクランク1回転の最終時点において、図26(b)に示すように、相対角度差は、30°であるから、クランク角度推定値は、補正されない。 During the second crank rotation, as shown in FIG. 26(a), the minimum torque value is detected immediately due to noise, so as shown in FIG. 26(d), the first current relative value from the minimum torque value is The rotation angle reaches 300° at the end of the second crank revolution. On the other hand, as can be seen from FIG. 26(a), the maximum torque value is also detected immediately, so the second current relative rotation angle from the maximum torque value also reaches 330° at the end of the second crank rotation. . In this case, at the final point of the second crank rotation, the relative angle difference is 30 degrees, as shown in FIG. 26(b), so the estimated crank angle value is not corrected.
3回目のクランク1回転では、図26(a)に示すように、1回目の極小値がトルク最小値となるので、図26(d)に示すように、トルク最小値からの第1現在相対回転角度は、そこから増加して、3回目のクランク1回転の最終時点では、240°に達する。一方、トルク最大値は、3回目のクランク1回転の最終時点において検出されるので、その時点における、トルク最大値からの第2現在相対回転角度は0°となる。よって、図26(b)に示すように、3回目のクランク1回転の最終時点において、相対角度差は、240°であるから、クランク角度推定値は補正されない。 In the third crank rotation, as shown in FIG. 26(a), the first minimum value becomes the minimum torque value, so as shown in FIG. 26(d), the first current relative value from the minimum torque value is The rotation angle increases from there until reaching 240° at the end of the third crank revolution. On the other hand, since the maximum torque value is detected at the final point of the third crank rotation, the second current relative rotation angle from the maximum torque value at that time is 0°. Therefore, as shown in FIG. 26(b), at the final point of the third crank rotation, the relative angle difference is 240°, so the estimated crank angle value is not corrected.
このような処理を行うことで、入力トルクにノイズが載っている場合や、入力トルクの波形が正弦波と比して極端に歪んだ場合等、クランク角度推定値が不適切な値に設定されることを回避できるため、クランク角度推定値がより適切な値となる。 By performing this kind of processing, the estimated crank angle value can be set to an inappropriate value, such as when there is noise in the input torque or when the input torque waveform is extremely distorted compared to a sine wave. Since this can be avoided, the estimated crank angle value becomes a more appropriate value.
[実施の形態3の変形例2]
上で述べた例では、トルク最小値が検出されたクランク角度を0°又は180°とみなすか、トルク最大値が検出されたクランク角度を90°又は270°とみなすものとして説明したが、このような角度を、乗員によって変えるようにしてもよい。例えば、乗員によっては、トルク最大値をとるクランク角度が、理想的な状態である90°又は270°ではなく、例えば+30°のオフセットを有しており、120°又は300°になることがある。このようなオフセット分クランク角度を補正しない場合、クランク角度推定値はオフセット分ずれることになる。そこで、オフセットがあることを検知した場合、もしくは、そのような乗り方をすると考えられる乗員が乗っていると検知した場合、その影響を打ち消すように、補正を行うことが望ましい。また、このようなオフセット値を乗員ごとにメモリに記録しておき、どの乗員が乗っているか自動で判別、もしくは乗員が指定することにより、読み出して補正するようにしても良い。
[Modification 2 of Embodiment 3]
In the above example, the crank angle at which the minimum torque value was detected was assumed to be 0° or 180°, or the crank angle at which the maximum torque value was detected was assumed to be 90° or 270°. Such an angle may be changed depending on the occupant. For example, depending on the occupant, the crank angle at which the maximum torque is achieved may be 120° or 300° with an offset of +30°, for example, instead of the ideal state of 90° or 270°. . If the crank angle is not corrected by such an offset, the estimated crank angle value will deviate by the offset. Therefore, when it is detected that there is an offset, or when it is detected that an occupant who is likely to ride in such a manner is detected, it is desirable to perform correction to cancel the effect. Further, such an offset value may be recorded in a memory for each occupant, and read out and corrected by automatically determining which occupant is on board, or by being specified by the occupant.
[他の技術事項]
平坦な路面を走行する場合には、「クランクを垂直にする」ということと「クランクを鉛直方向に向ける」ということは同じであるから、図27に示すように、クランク回転センサ104によるクランク角度0°及び180°(点線)と、乗員が考える垂直方向(矢印A)とは一致する。同様に、「クランクを水平にする」場合には、クランク回転センサ104によるクランク角度90°及び270°(一点鎖線)と、乗員が考える水平方向(矢印B)とは、同様に一致する。
[Other technical matters]
When driving on a flat road surface, "setting the crank vertically" and "turning the crank vertically" are the same, so as shown in FIG. 27, the crank angle determined by the crank rotation sensor 104 is 0° and 180° (dotted line) coincide with the vertical direction (arrow A) considered by the occupant. Similarly, in the case of "levelling the crank", the crank angles of 90° and 270° (dotted chain lines) measured by the crank rotation sensor 104 similarly match the horizontal direction (arrow B) considered by the occupant.
しかしながら、登坂などで斜面を走行する場合には、「クランクを垂直にする」ということと「クランクを鉛直方向に向ける」ということは異なってくる。例えば、図28に示すように、例えば傾斜10度の斜面では、クランク回転センサ104によるクランク角度0°及び180°(点線)と、乗員が考える垂直方向(矢印C)=鉛直方向とは一致せず、クランク回転センサ104からすれば、10°及び190°が乗員が考える垂直方向となってしまう。「クランクを水平にする」場合にも、クランク回転センサ104によるクランク角度90°及び270°(一点鎖線)は、乗員が考える水平方向(矢印D)とは一致せず、クランク回転センサ104からすれば、100°及び280°が乗員が考える水平方向になってしまう。 However, when driving on a slope, such as when climbing a slope, "setting the crank vertically" and "directing the crank vertically" are different. For example, as shown in FIG. 28, on a slope with an inclination of 10 degrees, the crank angles of 0 degrees and 180 degrees (dotted lines) measured by the crank rotation sensor 104 do not match the vertical direction (arrow C) considered by the occupant. First, from the perspective of the crank rotation sensor 104, 10° and 190° are the vertical directions considered by the occupant. Even in the case of "leveling the crank", the crank angles of 90° and 270° (dotted chain lines) measured by the crank rotation sensor 104 do not match the horizontal direction (arrow D) considered by the occupant, and are For example, 100° and 280° are the horizontal directions considered by the occupant.
このような場合、乗員が「クランクを垂直」にしたと思っていても、第1の実施の形態における所定範囲(例えば、0°乃至30°、330°乃至360°、150°乃至210°)から外れてしまう可能性がある。 In such a case, even if the occupant thinks that the crank is in the vertical position, the predetermined range in the first embodiment (for example, 0° to 30°, 330° to 360°, 150° to 210°) There is a possibility that it will come off.
このような場合に対応するには、傾斜センサを追加して、傾斜センサから電動アシスト自転車1の傾斜角度で、(1)クランク角度、(2)所定範囲、又は3)第3の実施の形態におけるみなし角度(トルク最小値が検出されたクランク角度についての0°又は180°、トルク最大値が検出されたクランク角度についての90°又は270°)を補正することで対応する。 To deal with such a case, an inclination sensor is added, and the inclination angle of the electrically assisted bicycle 1 is determined from the inclination sensor by (1) the crank angle, (2) a predetermined range, or 3) the third embodiment. This is handled by correcting the assumed angle (0° or 180° for the crank angle at which the minimum torque value was detected, 90° or 270° for the crank angle at which the maximum torque value was detected).
例えば、(1)の場合で、登坂時で傾斜角度が+10°で、クランク回転センサ104の出力から直接クランク角度が得られる場合には、クランク角度が100°であれば、100°-10°=90°と補正する。 For example, in case (1), if the inclination angle is +10° when climbing a hill and the crank angle can be obtained directly from the output of the crank rotation sensor 104, if the crank angle is 100°, then 100° - 10° =90°.
例えば、(2)の場合で、登坂時で傾斜角度が+10°で、所定範囲が0°乃至30°、330°乃至360°、150°乃至210°である場合には、所定範囲を0°乃至40°、340°乃至360°、160°乃至220°に補正する。 For example, in case (2), if the slope angle is +10° when climbing a hill and the predetermined range is 0° to 30°, 330° to 360°, or 150° to 210°, the predetermined range is set to 0°. The angle is corrected to 40°, 340° to 360°, and 160° to 220°.
例えば、(3)の場合で、登坂時で傾斜角度+10°で、みなし角度0°又は90°である場合には、みなし角度を10°又は100°と補正する。 For example, in case (3), if the slope angle is +10° and the assumed angle is 0° or 90° when climbing a slope, the assumed angle is corrected to 10° or 100°.
なお、傾斜センサではなく、加速度センサを設けることで、モータ105の回転から得られる加速度とを組み合わせると、演算で傾斜角度を得ることも可能である。 Note that by providing an acceleration sensor instead of an inclination sensor, it is also possible to obtain the inclination angle by calculation when combined with the acceleration obtained from the rotation of the motor 105.
例えば、図29に示すように、3軸加速度センサ108を電動アシスト自転車1に備え、傾斜角度θの斜面を登坂する場合を想定する。ここで、3軸加速度センサ108は、電動アシスト自転車1の進行方向をx軸、上方向をz軸として、加速度を出力するものとする。 For example, as shown in FIG. 29, it is assumed that the electrically assisted bicycle 1 is equipped with the three-axis acceleration sensor 108 and climbs a slope with an inclination angle θ. Here, it is assumed that the three-axis acceleration sensor 108 outputs acceleration with the traveling direction of the electrically assisted bicycle 1 as the x-axis and the upward direction as the z-axis.
このような場合、重力加速度gを由来とするx軸方向の重力加速度gとz軸方向の重力加速度gがあり、電動アシスト自転車1が走行していればx軸方向に車体加速度aがかかる。これに対して、3軸加速度センサ108は、z軸方向にadと、x軸方向にadとを検出する。 In such a case, there is a gravitational acceleration g x in the x-axis direction and a gravitational acceleration g z in the z-axis direction, which are derived from the gravitational acceleration g, and if the electrically assisted bicycle 1 is traveling, the body acceleration a in the x-axis direction is It takes. On the other hand, the triaxial acceleration sensor 108 detects ad z in the z-axis direction and ad x in the x-axis direction.
ここで重力加速度g以外の加速度が電動アシスト自転車1にかかっていないとするならば、傾斜角度θは、以下のように算出される。 If it is assumed that no acceleration other than the gravitational acceleration g is applied to the electrically assisted bicycle 1, the inclination angle θ is calculated as follows.
θ=arctan(g/g)=arctan(ad/adθ=arctan(g x /g z )=arctan(ad x /ad z )
しかしながら、実際には3軸加速度センサ108で検出される加速度は、重力加速度gに加えて、斜面を走行しているので重量加速度g以外の車体加速度aも反映される。3軸加速度センサ108で検出される加速度から車体加速度aを除外して、重量加速度による加速度のみを抽出したうえで、斜面の傾斜角度θを算出することが好ましい。 However, in reality, the acceleration detected by the triaxial acceleration sensor 108 reflects not only the gravitational acceleration g but also the vehicle body acceleration a other than the gravitational acceleration g since the vehicle is traveling on a slope. It is preferable to exclude the vehicle body acceleration a from the acceleration detected by the triaxial acceleration sensor 108, extract only the acceleration due to weight acceleration, and then calculate the inclination angle θ of the slope.
車体加速度aは、電動アシスト自転車1に速度センサが備えてあれば、その出力である速度の時間変化(速度VであればdV/dt)から得られる。一方、速度センサを備えていなくても、モータ回転処理部3100がモータ105の回転から車速を算出すれば、当該車速の時間変化により得られる。 If the electrically assisted bicycle 1 is equipped with a speed sensor, the vehicle body acceleration a can be obtained from the output of the speed sensor over time (dV/dt if the speed is V). On the other hand, even if the speed sensor is not provided, if the motor rotation processing unit 3100 calculates the vehicle speed from the rotation of the motor 105, the vehicle speed can be obtained from the change in the vehicle speed over time.
従って、車体加速度aが得られれば、以下の式にて傾斜角度θが得られる。 Therefore, if the vehicle body acceleration a is obtained, the inclination angle θ can be obtained using the following formula.
θ=arctan(g/g)=arctan((ad-a)/adθ=arctan(g x /g z )=arctan((ad x -a)/ad z )
以上本発明の実施の形態を説明したが、本発明はこれに限定されるものではない。例えば、目的に応じて、上で述べた各実施の形態における任意の技術的特徴を削除するようにしても良いし、他の実施の形態で述べた任意の技術的特徴を追加するようにしても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited thereto. For example, depending on the purpose, any technical feature in each embodiment described above may be deleted, or any technical feature described in other embodiments may be added. Also good.
さらに、上で述べた機能ブロック図は一例であって、1の機能ブロックを複数の機能ブロックに分けても良いし、複数の機能ブロックを1つの機能ブロックに統合しても良い。処理フローについても、処理内容が変わらない限り、ステップの順番を入れ替えたり、複数のステップを並列に実行するようにしても良い。 Furthermore, the functional block diagram described above is an example, and one functional block may be divided into a plurality of functional blocks, or a plurality of functional blocks may be integrated into one functional block. Regarding the processing flow, the order of steps may be changed or a plurality of steps may be executed in parallel, as long as the processing content remains the same.
以上述べた実施の形態をまとめると以下のようになる。 The embodiments described above can be summarized as follows.
実施の形態に係るモータ制御装置は、(A)電動アシスト車のモータを力行駆動又は回生制動させるインバータと、(B)電動アシスト車におけるクランクの回転速度であるクランク回転速度が第1の閾値以下である場合における、クランクの基準位置からの角度であるクランク角度についての第1の条件に基づき、又は、クランクの回転による入力トルクが第2の閾値以下となった後におけるクランクの累計の回転角度である累計クランク回転角度についての第2の条件に基づき、第1の条件又は第2の条件に予め対応付けられている回生制動の有無を判断してインバータを制御する制御部とを有する。 The motor control device according to the embodiment includes (A) an inverter that performs power running drive or regenerative braking of the motor of an electrically assisted vehicle, and (B) a crank rotation speed that is a rotational speed of a crank in the electrically assisted vehicle that is equal to or less than a first threshold value. Based on the first condition regarding the crank angle, which is the angle from the reference position of the crank, or after the input torque due to the rotation of the crank becomes equal to or less than the second threshold value, the cumulative rotation angle of the crank in the case where and a control unit that controls the inverter by determining the presence or absence of regenerative braking, which is associated in advance with the first condition or the second condition, based on the second condition regarding the cumulative crank rotation angle.
このように、乗員は、クランク操作によって、乗員の意図をモータ制御装置に伝えることができ、モータ制御装置は、乗員の意図に沿った形で回生制御を行うことができるようになる。 In this way, the occupant can convey the occupant's intention to the motor control device by operating the crank, and the motor control device can perform regeneration control in accordance with the occupant's intention.
なお、上で述べた第1の条件が、クランク角度が所定範囲内であるという条件であってもよい。この場合、上で述べた制御部は、第1の条件が満たされた場合には、第1の条件に予め対応付けられている回生制動を実行するようにインバータを制御し、第1の条件が満たされていない場合には、第1の条件に予め対応付けられている回生制動を停止させるようにインバータを制御するようにする。クランク角度を所定範囲内で止めればよいので、乗員は簡単に操作できる。 Note that the first condition described above may be that the crank angle is within a predetermined range. In this case, the control unit described above controls the inverter to perform regenerative braking that is associated with the first condition in advance when the first condition is satisfied, and If the first condition is not satisfied, the inverter is controlled to stop regenerative braking that is previously associated with the first condition. Since the crank angle can be stopped within a predetermined range, the passenger can easily operate the system.
また、上で述べた所定範囲は、鉛直方向又は地面に対する垂直方向を含む、角度の範囲であってもよい。このような角度範囲は、比較的容易にクランクを止められる角度であるが、他の角度範囲を設定するようにしてもよい。 Moreover, the predetermined range mentioned above may be an angular range including a vertical direction or a direction perpendicular to the ground. Although such an angular range is an angle at which the crank can be stopped relatively easily, other angular ranges may be set.
さらに、上で述べた制御部は、第1の条件が満たされた状態から、クランクの回転角度が第3の閾値以上逆回転したことを検出した場合、当該検出前に比して回生制動力を強くするようにしてもよい。回生制動を行わせた後、制動力が不足している場合でも、簡単なクランク操作で、制動力を強くできるようになる。 Furthermore, when the control unit described above detects that the rotation angle of the crank has reversely rotated by a third threshold value or more from the state where the first condition is satisfied, the regenerative braking force is increased compared to before the detection. You may also make it stronger. Even if the braking force is insufficient after regenerative braking, the braking force can be increased with a simple crank operation.
また、上で述べた第2の条件が、累計クランク回転角度が第4の閾値以下であってクランク回転速度が第5の閾値以下であるという条件である場合もある。この場合、上で述べた制御部は、第2の条件が満たされた場合には、第2の条件に予め対応付けられている回生制動を実行するようにインバータを制御し、第2の条件が満たされていない場合には、第2の条件に予め対応付けられている回生制動を停止させるようにインバータを制御するようにする。加速の可能性もある巡行を意図する場合には、クランクを回転させ続ければよく、減速を意図する場合には、即座にクランクの回転を止めればよい。 Further, the second condition described above may be that the cumulative crank rotation angle is equal to or less than a fourth threshold value and the crank rotation speed is equal to or less than a fifth threshold value. In this case, the control unit described above controls the inverter to perform regenerative braking that is associated with the second condition in advance when the second condition is satisfied, and If the second condition is not satisfied, the inverter is controlled to stop regenerative braking that is previously associated with the second condition. If the intention is to cruise with the possibility of acceleration, it is sufficient to keep the crank rotating; if the intention is to decelerate, the rotation of the crank may be immediately stopped.
上で述べた制御部は、複数の方法で決定される回生制動力のうち最も強い回生制動力を生じさせるようにインバータを制御するようにしてもよい。安全を優先するためである。 The control unit described above may control the inverter to generate the strongest regenerative braking force among the regenerative braking forces determined by a plurality of methods. This is to prioritize safety.
上で述べた制御部が、電動アシスト車が前進中に、クランクが電動アシスト車を前進させる向きに半回転又は1回転する間に変化する入力トルクの最小値又は最大値を検出して、当該入力トルクの最小値又は最大値を検出した時点とクランクが所定角度回転する毎に得られる信号とに基づき、クランク角度を推定するようにしてもよい。クランク回転センサが、上記のような信号を出力する場合でも、クランク角度を推定することができるようになる。 The control unit described above detects the minimum value or maximum value of the input torque that changes while the electric assist vehicle is moving forward, while the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward, and The crank angle may be estimated based on the time when the minimum value or maximum value of the input torque is detected and a signal obtained every time the crank rotates by a predetermined angle. Even when the crank rotation sensor outputs the above signal, the crank angle can be estimated.
より具体的には、上で述べた制御部が、電動アシスト車が前進中に、クランクが電動アシスト車を前進させる向きに半回転又は1回転する間に変化する入力トルクの最小値又は最大値を検出すると、当該最小値又は最大値が検出された時点におけるクランク角度が所定角度(例えば、最小値であれば0°又は180°にマージンを加えた範囲であり、最大値であれば90°又は270°にマージンを加えた範囲))であるものとして、上記時点以降において、クランクが所定角度回転する毎に得られる信号に基づき、クランク角度を推定するようにしてもよい。 More specifically, the control unit described above controls the minimum value or maximum value of the input torque that changes while the electric assist vehicle is moving forward, while the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward. When the minimum value or maximum value is detected, the crank angle at the time when the minimum value or maximum value is detected is a predetermined angle (for example, if the minimum value is a range of 0° or 180° plus a margin, if the maximum value is a range of 90°) Alternatively, the crank angle may be estimated based on a signal obtained every time the crank rotates by a predetermined angle after the above-mentioned time point.
また、上で述べた制御部が、電動アシスト車が前進中に、クランクが電動アシスト車を前進させる向きに半回転又は1回転する間に、変化する入力トルクの最小値又は最大値である第1の値が検出された第1の時点と、変化する入力トルクの最小値又は最大値であって第1の値とは異なる第2の値が検出された第2の時点との間において、クランクが所定角度回転する毎に得られる信号に基づき算出される回転角度が所定の条件を満たす場合に、第1の時点又は第2の時点におけるクランク角度が所定角度であるものとして、第1の時点又は第2の時点以降において、上記信号に基づき、クランク角度を推定するようにしてもよい。入力トルクに対するノイズの影響を排除してクランク角度の推定を行うためである。 Further, the control unit described above controls the input torque to be set at a minimum value or a maximum value of the input torque that changes while the electric assist vehicle is moving forward and the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward. Between a first time when a value of 1 is detected and a second time when a second value that is the minimum value or maximum value of the changing input torque and is different from the first value is detected, If the rotation angle calculated based on the signal obtained each time the crank rotates by a predetermined angle satisfies a predetermined condition, the crank angle at the first or second time point is the predetermined angle, and the first The crank angle may be estimated based on the signal at the time or after the second time. This is to estimate the crank angle while eliminating the influence of noise on the input torque.
さらに、上で述べた制御部が、電動アシスト車の前後方向の傾斜に応じて、クランク角度又は所定範囲を補正するようにしてもよい。斜面を走行する場合には、乗員が感じるクランク角度とセンサに基づくクランク角度とにずれが生じやすくなるので、補正するものである。 Furthermore, the control unit described above may correct the crank angle or a predetermined range depending on the longitudinal inclination of the electrically assisted vehicle. When traveling on a slope, there is likely to be a discrepancy between the crank angle felt by the occupant and the crank angle based on the sensor, so this is corrected.
なお、上で述べた制御部が、電動アシスト車の前後方向の傾斜に応じて、上記所定角度を補正するようにしてもよい。 Note that the control unit described above may correct the predetermined angle according to the inclination of the electrically assisted vehicle in the longitudinal direction.
このような構成は、実施の形態に述べられた事項に限定されるものではなく、実質的に同一の効果を奏する他の構成にて実施される場合もある。 Such configurations are not limited to those described in the embodiments, and may be implemented with other configurations that provide substantially the same effects.

Claims (12)

  1.  電動アシスト車のモータを力行駆動又は回生制動させるインバータと、
     前記電動アシスト車におけるクランクの回転速度であるクランク回転速度が第1の閾値以下である場合における、前記クランクの基準位置からの角度であるクランク角度についての第1の条件に基づき、又は、前記クランクの回転による入力トルクが第2の閾値以下となった後における前記クランクの累計の回転角度である累計クランク回転角度についての第2の条件に基づき、前記第1の条件又は前記第2の条件に予め対応付けられている回生制動の有無を判断して前記インバータを制御する制御部と、
     を有するモータ制御装置。
    an inverter that drives or regeneratively brakes the motor of an electrically assisted vehicle;
    based on a first condition regarding a crank angle, which is an angle from a reference position of the crank, when the rotational speed of the crank, which is the rotational speed of the crank in the electrically assisted vehicle, is below a first threshold; or The first condition or the second condition is satisfied based on a second condition regarding the cumulative crank rotation angle, which is the cumulative rotation angle of the crank after the input torque due to the rotation of the crank becomes equal to or less than the second threshold. a control unit that controls the inverter by determining the presence or absence of regenerative braking associated with it in advance;
    A motor control device having:
  2.  前記第1の条件が、前記クランク角度が所定範囲内であるという条件であり、
     前記制御部は、
     前記第1の条件が満たされた場合には、前記第1の条件に予め対応付けられている回生制動を実行するように前記インバータを制御し、
     前記第1の条件が満たされていない場合には、前記第1の条件に予め対応付けられている回生制動を停止させるように前記インバータを制御する
     請求項1記載のモータ制御装置。
    The first condition is that the crank angle is within a predetermined range,
    The control unit includes:
    If the first condition is met, controlling the inverter to perform regenerative braking that is associated in advance with the first condition;
    The motor control device according to claim 1, wherein if the first condition is not satisfied, the inverter is controlled to stop regenerative braking that is associated with the first condition in advance.
  3.  前記所定範囲は、鉛直方向又は地面に対する垂直方向を含む、角度の範囲である
     請求項2記載のモータ制御装置。
    The motor control device according to claim 2, wherein the predetermined range is an angular range including a vertical direction or a direction perpendicular to the ground.
  4.  前記制御部は、
     前記第1の条件が満たされた状態から、前記クランクの回転角度が第3の閾値以上逆回転したことを検出した場合、当該検出前に比して前記回生制動力を強くする
     請求項2又は3記載のモータ制御装置。
    The control unit includes:
    If it is detected that the rotation angle of the crank has reversely rotated by a third threshold value or more from the state where the first condition is satisfied, the regenerative braking force is made stronger than before the detection. 3. The motor control device according to 3.
  5.  前記第2の条件が、前記累計クランク回転角度が第4の閾値以下であって前記クランク回転速度が第5の閾値以下であるという条件であり、
     前記制御部は、
     前記第2の条件が満たされた場合には、前記第2の条件に予め対応付けられている回生制動を実行するように前記インバータを制御し、
     前記第2の条件が満たされていない場合には、前記第2の条件に予め対応付けられている回生制動を停止させるように前記インバータを制御する
     請求項1記載のモータ制御装置。
    The second condition is that the cumulative crank rotation angle is less than or equal to a fourth threshold and the crank rotation speed is less than or equal to a fifth threshold,
    The control unit includes:
    If the second condition is met, controlling the inverter to perform regenerative braking that is associated with the second condition in advance;
    The motor control device according to claim 1, wherein if the second condition is not satisfied, the inverter is controlled to stop regenerative braking that is associated with the second condition in advance.
  6.  前記制御部は、
     複数の方法で決定される回生制動力のうち最も強い回生制動力を生じさせるように前記インバータを制御する
     請求項1記載のモータ制御装置。
    The control unit includes:
    The motor control device according to claim 1, wherein the inverter is controlled to generate the strongest regenerative braking force among regenerative braking forces determined by a plurality of methods.
  7.  前記制御部が、
     前記電動アシスト車が前進中に、前記クランクが前記電動アシスト車を前進させる向きに半回転又は1回転する間に変化する入力トルクの最小値又は最大値を検出して、当該入力トルクの最小値又は最大値を検出した時点と前記クランクが所定角度回転する毎に得られる信号とに基づき、前記クランク角度を推定する
     請求項1記載のモータ制御装置。
    The control section,
    While the electric assist vehicle is moving forward, detecting the minimum value or maximum value of the input torque that changes while the crank makes a half turn or one rotation in the direction of moving the electric assist vehicle forward, and detecting the minimum value of the input torque. The motor control device according to claim 1, wherein the crank angle is estimated based on the time when the maximum value is detected and a signal obtained every time the crank rotates by a predetermined angle.
  8.  前記制御部が、
     前記電動アシスト車が前進中に、前記クランクが前記電動アシスト車を前進させる向きに半回転又は1回転する間に変化する入力トルクの最小値又は最大値を検出すると、当該最小値又は最大値が検出された時点におけるクランク角度が所定角度であるものとして、前記時点以降において、前記クランクが所定角度回転する毎に得られる信号に基づき、前記クランク角度を推定する
     請求項1記載のモータ制御装置。
    The control section,
    When the electrically assisted vehicle is moving forward, when the crank detects a minimum value or a maximum value of input torque that changes while the crank rotates half a turn or one revolution in the direction of moving the electrically assisted vehicle forward, the minimum value or maximum value changes. The motor control device according to claim 1, wherein the crank angle is estimated based on a signal obtained every time the crank rotates by a predetermined angle after the detected time, assuming that the crank angle is a predetermined angle at the time of detection.
  9.  前記制御部が、
     前記電動アシスト車が前進中に、前記クランクが前記電動アシスト車を前進させる向きに半回転又は1回転する間に、変化する入力トルクの最小値又は最大値である第1の値が検出された第1の時点と、変化する入力トルクの最小値又は最大値であって前記第1の値とは異なる第2の値が検出された第2の時点との間において、前記クランクが所定角度回転する毎に得られる信号に基づき算出される回転角度が所定の条件を満たす場合に、前記第1の時点又は前記第2の時点におけるクランク角度が所定角度であるものとして、前記第1の時点又は前記第2の時点以降において、前記信号に基づき、前記クランク角度を推定する
     請求項1記載のモータ制御装置。
    The control section,
    While the electrically assisted vehicle is moving forward, a first value that is a minimum value or a maximum value of the input torque that changes is detected while the crank rotates half a turn or one revolution in a direction that moves the electrically assisted vehicle forward. The crank rotates a predetermined angle between a first time point and a second time point at which a second value, which is a minimum value or a maximum value of changing input torque and is different from the first value, is detected. If the rotation angle calculated based on the signal obtained each time satisfies a predetermined condition, the crank angle at the first time point or the second time point is the predetermined angle, and The motor control device according to claim 1, wherein the crank angle is estimated based on the signal after the second time point.
  10.  前記制御部が、
     前記電動アシスト車の前後方向の傾斜に応じて、前記クランク角度又は前記所定範囲を補正する
     請求項2記載のモータ制御装置。
    The control section,
    The motor control device according to claim 2, wherein the crank angle or the predetermined range is corrected according to a longitudinal inclination of the electrically assisted vehicle.
  11.  前記制御部が、
     前記電動アシスト車の前後方向の傾斜に応じて、前記所定角度を補正する
     請求項8又は9記載のモータ制御装置。
    The control section,
    The motor control device according to claim 8 or 9, wherein the predetermined angle is corrected according to a longitudinal inclination of the electrically assisted vehicle.
  12.  請求項1記載のモータ制御装置を備える電動アシスト車。 An electrically assisted vehicle comprising the motor control device according to claim 1.
PCT/JP2023/007724 2022-04-04 2023-03-02 Motor control device for electrically assisted vehicle, and electrically assisted vehicle WO2023195276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022062244 2022-04-04
JP2022-062244 2022-04-04

Publications (1)

Publication Number Publication Date
WO2023195276A1 true WO2023195276A1 (en) 2023-10-12

Family

ID=88242869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007724 WO2023195276A1 (en) 2022-04-04 2023-03-02 Motor control device for electrically assisted vehicle, and electrically assisted vehicle

Country Status (1)

Country Link
WO (1) WO2023195276A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166125A (en) * 2013-02-28 2014-09-08 Taiyo Yuden Co Ltd Motor drive controller and electrically-driven assist vehicle
JP2018133991A (en) * 2013-06-14 2018-08-23 マイクロスペース株式会社 Motor driving control device
JP2019119345A (en) * 2018-01-05 2019-07-22 太陽誘電株式会社 Motor drive controller and power-assisted vehicle
JP2019123369A (en) * 2018-01-16 2019-07-25 ブリヂストンサイクル株式会社 Power-assisted bicycle
JP2020192940A (en) * 2019-05-30 2020-12-03 株式会社シマノ Crank angle estimation device for personally-driven vehicle, and control apparatus for personally-driven vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166125A (en) * 2013-02-28 2014-09-08 Taiyo Yuden Co Ltd Motor drive controller and electrically-driven assist vehicle
JP2018133991A (en) * 2013-06-14 2018-08-23 マイクロスペース株式会社 Motor driving control device
JP2019119345A (en) * 2018-01-05 2019-07-22 太陽誘電株式会社 Motor drive controller and power-assisted vehicle
JP2019123369A (en) * 2018-01-16 2019-07-25 ブリヂストンサイクル株式会社 Power-assisted bicycle
JP2020192940A (en) * 2019-05-30 2020-12-03 株式会社シマノ Crank angle estimation device for personally-driven vehicle, and control apparatus for personally-driven vehicle

Similar Documents

Publication Publication Date Title
US8725340B1 (en) Motor drive controller and electric power-assisted vehicle
JP6104460B2 (en) Vehicle control apparatus and vehicle control method
JP7308198B2 (en) MOTOR CONTROL DEVICE AND METHOD, AND POWER-ASSISTED VEHICLE
TWI572522B (en) Motor drive control device and electric auxiliary vehicle
JP2017154564A (en) Power-assisted bicycle
US10577048B2 (en) Controller for driving a motor, and electric power assisted vehicle
JPH08140212A (en) Regenerative controller
JP2004215447A (en) Travel controller for vehicle
WO2023195276A1 (en) Motor control device for electrically assisted vehicle, and electrically assisted vehicle
JP6254878B2 (en) Electric assist bicycle
JP7313846B2 (en) Motor drive control device and electrically assisted vehicle
CN110228559B (en) Motor drive control device and electric auxiliary vehicle
JP5940637B2 (en) Motor drive control device and electric assist vehicle
JP2005335534A (en) Vehicle with auxiliary power unit
JP7457472B2 (en) Motor control device and electric assist vehicle
JP2019119345A (en) Motor drive controller and power-assisted vehicle
JP4814065B2 (en) Control device for electric vehicle
JP2007060806A (en) Drive control device for electric racing cart
JP7269315B2 (en) Motor drive control device and electrically assisted vehicle
JP7195288B2 (en) Motor drive control device and electrically assisted vehicle
WO2023281846A1 (en) Motor control device for electrically assisted vehicle, and electrically assisted vehicle
JP7458184B2 (en) Control device
WO2024024402A1 (en) Motor control device for electrically power assisted vehicle, and electrically power assisted vehicle
WO2022264738A1 (en) Vehicle control device
JP2023078790A (en) Control device for electric assist vehicle, and electric assist vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23784569

Country of ref document: EP

Kind code of ref document: A1