WO2020004108A1 - 空気調和システム - Google Patents

空気調和システム Download PDF

Info

Publication number
WO2020004108A1
WO2020004108A1 PCT/JP2019/023941 JP2019023941W WO2020004108A1 WO 2020004108 A1 WO2020004108 A1 WO 2020004108A1 JP 2019023941 W JP2019023941 W JP 2019023941W WO 2020004108 A1 WO2020004108 A1 WO 2020004108A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat exchanger
heat
indoor
side refrigerant
Prior art date
Application number
PCT/JP2019/023941
Other languages
English (en)
French (fr)
Inventor
山田 拓郎
熊倉 英二
岩田 育弘
松岡 弘宗
竜介 藤吉
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP19824978.1A priority Critical patent/EP3812662A4/en
Priority to JP2020527411A priority patent/JPWO2020004108A1/ja
Publication of WO2020004108A1 publication Critical patent/WO2020004108A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F2005/0039Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using a cryogen, e.g. CO2 liquid or N2 liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section

Definitions

  • Air conditioning system with multiple indoor heat exchangers for exchanging heat between indoor air and carbon dioxide as refrigerant
  • an air conditioning system having a plurality of indoor heat exchangers for exchanging heat between a refrigerant and room air.
  • an air conditioning system there is a system using carbon dioxide as a refrigerant sealed in a refrigerant circuit in which a refrigerant circulates, as disclosed in Patent Document 1 (WO 2011/099063).
  • the air conditioning system constitutes a multiple refrigerating cycle including a heat source side circuit and a use side circuit.
  • the heat source side circuit includes a heat source side compressor that compresses the heat source side refrigerant, an outdoor heat exchanger that exchanges heat between the heat source side refrigerant and outdoor air, and a refrigerant-refrigerant heat exchanger that exchanges heat between the heat source side refrigerant and the use side refrigerant. And an exchanger.
  • the use side circuit has a use side compressor for compressing the use side refrigerant, a refrigerant-refrigerant heat exchanger, and a plurality of indoor heat exchangers for exchanging heat between the use side refrigerant and room air, Carbon dioxide is sealed as a use-side refrigerant.
  • the amount of the use-side refrigerant sealed in the use-side circuit is set to 7.9 kg or less.
  • safety measures may density level only one is larger than the room space 1 m 3 per 0.074Kg, and hereinafter referred to 0.18kg It is.
  • the air conditioning system according to the second aspect is the air conditioning system according to the first aspect, wherein any one of the alarm device, the ventilation device, and the alarm device, the shutoff device, and the ventilation device is provided.
  • the outdoor heat exchanger that performs heat exchange between the refrigerant and the outdoor air is a heat source that does not have a plurality of indoor heat exchangers.
  • a small-sized refrigerant-refrigerant heat exchanger is provided in the side circuit that uses carbon dioxide as the usage-side refrigerant. Therefore, in this case, the amount of carbon dioxide as the use-side refrigerant sealed in the use-side circuit can be reduced as compared with the one-way refrigeration cycle using carbon dioxide as the refrigerant.
  • the concentration level of a certain carbon dioxide is reduced to a concentration level at which only one safety measure can be performed, and as described above, one of the alarm device, the ventilation device, and the alarm device, the shutoff device, and the ventilation device is used. It can be done only by providing one.
  • the air conditioning system according to the third aspect is the air conditioning system according to the second aspect, wherein an alarm device is provided among the alarm device and the ventilation device.
  • a ventilation device As described above, as a safety measure, an alarm device is provided, and a ventilation device is not provided.
  • a ventilation device it is necessary to satisfy installation standards such as the amount of ventilation, the number of ventilations, and the position of the ventilation opening. And is effective in construction.
  • An air conditioning system is the air conditioning system according to any one of the first to third aspects, wherein the indoor heat exchanger is a microchannel using a flat porous tube as a heat transfer tube through which a use-side refrigerant flows. It is a heat exchanger.
  • the indoor heat exchanger is constituted by the micro-channel heat exchanger, the volume of the indoor heat exchanger can be reduced, and thus the use side enclosed in the use side circuit can be reduced. The amount of the refrigerant can be further reduced.
  • An air-conditioning system is the air-conditioning system according to any of the first to fourth aspects, wherein the refrigerant-refrigerant in the utilization side circuit is used when the rated refrigeration capacity of the air conditioning system is 28 kW or less.
  • a pipe connecting the heat exchanger and the indoor heat exchanger use a pipe with a nominal diameter of 2.5 / 8 inch or less, and use a pipe between the usage side compressor and the indoor heat exchanger in the usage side circuit.
  • the piping connecting the refrigerant-refrigerant heat exchanger and the indoor heat exchanger in the utilization side circuit is smaller than the conventional one.
  • a pipe having a nominal diameter of 5/8 inch or less is used as a pipe connecting the use side compressor and the indoor heat exchanger in the user side circuit using a pipe having a nominal diameter of 5/8 inch or less. Since the pipe is used, the amount of the use side refrigerant sealed in the use side circuit can be reduced.
  • An air conditioning system is the air conditioning system according to any of the first to fifth aspects, wherein the outdoor heat exchanger is provided in the outdoor unit, and the refrigerant-refrigerant heat exchanger is It is provided in the intermediate unit connected to the outdoor unit through the heat source side refrigerant communication pipe through which the heat source side refrigerant flows, and the indoor heat exchanger is connected to the intermediate unit through the usage side refrigerant communication pipe through which the usage side refrigerant flows Is provided in the indoor unit.
  • the refrigerant-refrigerant heat exchanger since the refrigerant-refrigerant heat exchanger is provided in an intermediate unit different from the outdoor unit, the refrigerant-refrigerant heat exchanger can be provided at a position close to the indoor unit. Accordingly, the amount of the use-side refrigerant sealed in the use-side circuit can be further reduced.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to an embodiment of the present disclosure. It is a perspective view which shows the principal part of the indoor heat exchanger which comprises the air conditioning system of FIG. It is explanatory drawing of the piping system which connects between the units which comprise the air conditioning system of FIG. It is a table
  • FIG. 9 is an explanatory diagram of a piping system for connecting units constituting the air conditioning system of FIG. 8. It is a figure which shows the relationship between the structure of an air conditioning system (binary refrigeration cycle B and binary refrigeration cycle C), and the amount of carbon dioxide as a refrigerant.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system 1 according to an embodiment of the present disclosure.
  • FIG. 2 is a perspective view showing a main part of the indoor heat exchanger 52 constituting the air conditioning system 1 of FIG.
  • the air conditioning system 1 constitutes a multi-source refrigeration cycle including a heat source side circuit 10 in which a heat source side refrigerant circulates and a use side circuit 30 in which a use side refrigerant circulates, and heats the use side refrigerant and room air. It is a system that performs air conditioning (cooling or heating) of the indoor space by replacing the air conditioner.
  • the heat source side circuit 10 mainly includes a heat source side compressor 21, an outdoor heat exchanger 23, and a refrigerant-refrigerant heat exchanger 25.
  • an HFC refrigerant such as R32, an HFO refrigerant such as R1234yf, or a mixed refrigerant thereof is sealed as the heat source side refrigerant.
  • the heat source side circuit 10 includes a heat source side flow switching device 22 and a heat source side decompressor 24.
  • the heat source side compressor 21 is a device that compresses the heat source side refrigerant.
  • the heat source side compressor 21 is, for example, a compressor that drives a compression element such as a rotary or a scroll by a drive mechanism such as a motor or an engine.
  • the heat-source-side flow switching device 22 allows the outdoor heat exchanger 23 to function as a heat-source-side refrigerant radiator and the refrigerant-refrigerant heat exchanger 25 to function as a heat-source-side refrigerant evaporator (FIG. 1). ),
  • the outdoor heat exchanger 23 functions as an evaporator for the heat source-side refrigerant, and the refrigerant-refrigerant heat exchanger 25 functions as a radiator for the heat source-side refrigerant.
  • This is a device that switches between a second state (see a broken line of the heat source side flow path switching device 22 in FIG. 1).
  • the heat source side flow switching device 22 is, for example, a four-way switching valve.
  • the heat-source-side flow switching device 22 connects the discharge side of the heat-source-side compressor 21 and the gas side of the outdoor heat exchanger 23, and connects the suction side of the heat-source-side compressor 21 with the refrigerant. Connecting the gas side of the flow path of the refrigerant heat exchanger 25 through which the heat source side refrigerant flows.
  • the heat-source-side flow switching device 22 connects the discharge side of the heat-source-side compressor 21 to the gas side of the flow path of the refrigerant-refrigerant heat exchanger 25 through which the heat-source-side refrigerant flows, and The suction side of the side compressor 21 and the gas side of the outdoor heat exchanger 23 are connected.
  • the heat-source-side flow switching device 22 is not limited to the four-way switching valve, but may be, for example, a combination of a plurality of valves (such as a solenoid valve or a three-way valve) in the first state and the second state. It may be configured to have a function of switching.
  • the outdoor heat exchanger 23 is a device for exchanging heat between the heat source side refrigerant and the outdoor air.
  • the outdoor heat exchanger 23 is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 23 functions as a radiator for a heat source-side refrigerant that uses outdoor air as a cooling source when the heat source-side flow switch 22 is switched to the first state. In the state switched to the second state, it functions as a heat-source-side refrigerant evaporator that uses outdoor air as a heating source.
  • the gas side of the outdoor heat exchanger 23 is connected to the heat source side flow switching device 22, and the liquid side is connected to the liquid side of the flow path of the refrigerant-refrigerant heat exchanger 25 through which the heat source side refrigerant flows.
  • the heat source side decompressor 24 is a device for decompressing the heat source side refrigerant.
  • the heat source side decompressor 24 is, for example, an electric expansion valve.
  • the heat source side depressurizer 24 depressurizes the heat source side refrigerant radiated in the outdoor heat exchanger 23 when the heat source side flow switch 22 is switched to the first state, and the heat source side flow switch 22 In the switched state, the heat-source-side refrigerant radiated in the refrigerant-refrigerant heat exchanger 25 is depressurized.
  • the heat source side decompressor 24 has one end connected to the liquid side of the outdoor heat exchanger 23 and the other end connected to the liquid side of the flow path of the refrigerant-refrigerant heat exchanger 25 through which the heat source side refrigerant flows. .
  • the heat source side decompressor 24 is not limited to the electric expansion valve, but may be another expansion valve, a capillary tube, or an expander, for example.
  • the refrigerant-refrigerant heat exchanger 25 is a device for exchanging heat between the heat source side refrigerant and the use side refrigerant.
  • the refrigerant-refrigerant heat exchanger 25 is, for example, a plate-type or double-tube heat exchanger.
  • the plate-type or double-pipe heat exchanger is suitable for heat exchange between two refrigerants (here, a heat-source-side refrigerant and a use-side refrigerant), and a fin that exchanges heat between the refrigerant and air. It is a small heat exchanger compared to a large heat exchanger such as an and tube type heat exchanger.
  • the refrigerant-refrigerant heat exchanger 25 functions as a refrigerant evaporator that uses the use-side refrigerant as a heating source when the heat-source-side flow switching device 22 is switched to the first state. In the state switched to the second state, it functions as a refrigerant radiator using the use-side refrigerant as a cooling source.
  • the gas side of the flow path of the heat-source-side refrigerant in the refrigerant-refrigerant heat exchanger 25 is connected to the heat-source-side flow switch 22, and the flow path of the refrigerant-refrigerant heat exchanger 25 through which the heat-source-side refrigerant flows Is connected to a heat source side decompressor 24.
  • the use side circuit 30 includes a use side compressor 31, a refrigerant-refrigerant heat exchanger 25, and a plurality of indoor heat exchangers 52.
  • the use side circuit 30 is filled with carbon dioxide as a use side refrigerant.
  • the use-side circuit 30 includes a use-side flow switching device 32, a use-side pressure reducer 33, and an indoor pressure reducer 51 corresponding to each of the plurality of indoor heat exchangers 52.
  • the refrigerant may be in a supercritical state (a state in which a gas state and a liquid state cannot be distinguished) during the refrigeration cycle.
  • a refrigerant R410A, R32, etc.
  • the use side compressor 31 is a device that compresses the use side refrigerant.
  • the use-side compressor 31 is, for example, a compressor that drives a compression element such as a rotary or a scroll by a drive mechanism such as a motor or an engine.
  • the usage-side flow switching device 32 includes a first state in which the refrigerant-refrigerant heat exchanger 25 functions as a radiator for the usage-side refrigerant (see a solid line of the usage-side flow switching device 32 in FIG. 1); This is a device that switches between a second state in which the heat exchanger 25 functions as an evaporator for the usage-side refrigerant (see the broken line of the usage-side flow switching device 32 in FIG. 1).
  • the use-side flow path switch 32 causes the indoor heat exchanger 52 to function as an evaporator for the use-side refrigerant
  • the second state uses the indoor heat exchanger 52 as a radiator for the use-side refrigerant. Let it work.
  • the use-side flow switching device 32 is, for example, a four-way switching valve.
  • the use-side flow switching device 32 connects the discharge side of the use-side compressor 31 and the gas side of the flow passage of the use-side refrigerant in the refrigerant-refrigerant heat exchanger 25, and The suction side of the use side compressor 31 and the gas side of the indoor heat exchanger 52 are connected.
  • the use-side flow switching device 32 connects the discharge side of the use-side compressor 31 and the gas side of the indoor heat exchanger 52, and connects the suction side of the use-side compressor 31 to the refrigerant-refrigerant.
  • the liquid side of the flow path in which the use side refrigerant flows in the heat exchanger 25 is connected.
  • the use-side flow switching device 32 is not limited to a four-way switching valve, and may be, for example, a combination of a plurality of valves (such as a solenoid valve or a three-way valve) to switch between the first state and the second state. It may be configured to have a function of switching.
  • the refrigerant-refrigerant heat exchanger 25 is a device for exchanging heat between the heat source side refrigerant and the use side refrigerant as described above.
  • the refrigerant-refrigerant heat exchanger 25 converts the heat-source-side refrigerant into a cooling source in a state where the heat-source-side flow switching device 22 is switched to the first state and the use-side flow switching device 32 is switched to the first state.
  • the heat source side refrigerant is This is a device that functions as an evaporator for the use-side refrigerant that serves as a heating source.
  • the gas side of the flow passage of the use-side refrigerant in the refrigerant-refrigerant heat exchanger 25 is connected to the use-side flow switching device 32, and the flow passage of the refrigerant-refrigerant heat exchanger 25 through which the use-side refrigerant flows Is connected to the liquid side of the indoor heat exchanger 52.
  • the use side decompressor 33 is a device that decompresses the use side refrigerant.
  • the use side pressure reducer 33 is, for example, an electric expansion valve.
  • the use-side pressure reducer 33 is in a state where the use-side flow path switching device 32 is switched to the first state, is in a fully opened state or an almost open state, and has radiated heat in the refrigerant-refrigerant heat exchanger 25. Is reduced as much as possible, and in a state where the use-side flow switching device 32 is switched to the second state, the use-side refrigerant sent from the indoor decompressor 51 is decompressed.
  • the use side decompressor 33 has one end connected to the liquid side of the flow path of the use side refrigerant in the refrigerant-refrigerant heat exchanger 25 and the other end connected to the indoor decompressor 51.
  • the use side decompressor 33 is not limited to the electric expansion valve, but may be another expansion valve, a capillary tube, or an expander, for example.
  • the indoor decompressor 51 is a device that decompresses the use-side refrigerant.
  • the indoor decompressor 51 is, for example, an electric expansion valve.
  • the indoor decompressor 51 decompresses the use-side refrigerant radiated in the refrigerant-refrigerant heat exchanger 25 when the use-side flow switching device 32 is switched to the first state. In the state switched between the two states, the use-side refrigerant radiated in the indoor heat exchanger 52 is depressurized.
  • the indoor pressure reducer 51 has one end connected to the use side pressure reducer 33 and the other end connected to the liquid side of the indoor heat exchanger 52.
  • the indoor heat exchanger 52 is a device for exchanging heat between the use-side refrigerant and the indoor air.
  • the indoor heat exchanger 52 is, for example, a fin-and-tube heat exchanger.
  • a fin-and-tube type heat exchanger having a large number of circular heat transfer tubes 54 and a large number of heat transfer fins 55 is used.
  • the indoor heat exchanger 52 functions as a radiator of a usage-side refrigerant that uses indoor air as a cooling source when the usage-side flow switching device 32 is switched to the first state. In the state switched to the second state, it functions as an evaporator for the use-side refrigerant using room air as a heating source.
  • the gas side of the indoor heat exchanger 52 is connected to the use side switching device 32, and the liquid side is connected to the indoor decompressor 51.
  • the components of the heat source side circuit 10 and the use side circuit 30 are provided in the heat transfer unit 2 and the plurality of indoor units 5.
  • Each of the indoor units 5 is provided corresponding to the indoor heat exchanger 52.
  • the heat transfer unit 2 is disposed outside the room.
  • the heat transfer unit 2 includes the heat source side circuit 10 including the refrigerant-refrigerant heat exchanger 25 and the use side compressor 31 and the use side flow path switching unit 32 of the use side circuit 30. Further, the use side decompressor 33 of the use side circuit 30 is also provided in the heat transfer unit 2.
  • the heat transfer unit 2 is provided with an outdoor fan 26 for sending outdoor air to the outdoor heat exchanger 23.
  • the outdoor fan 26 is a fan that drives a blowing element such as a propeller fan by a driving mechanism such as a motor.
  • the indoor unit 5 is arranged indoors.
  • the indoor heat exchanger 52 of the use side circuit 30 is provided in the indoor unit 5.
  • the indoor decompressor 51 of the use side circuit 30 is also provided in the indoor unit 5.
  • the indoor unit 5 is provided with an indoor fan 53 for sending indoor air to the indoor heat exchanger 52.
  • the indoor fan 53 is a fan that drives a blowing element such as a centrifugal fan or a multiblade fan by a driving mechanism such as a motor.
  • the indoor unit 5 is provided with a refrigerant sensor 11 for detecting leakage of the use-side refrigerant.
  • the refrigerant sensor 11 detects whether or not the concentration of carbon dioxide as the use-side refrigerant is equal to or higher than a predetermined concentration.
  • the indoor unit 5 is provided with an alarm device 12 for notifying that the use-side refrigerant has leaked when the use-side refrigerant has leaked.
  • the alarm device 12 is one of the safety measures to be taken when leakage of carbon dioxide as the use-side refrigerant occurs.
  • the alarm device 12 issues a notification that the usage-side refrigerant has leaked.
  • the alarm device 12 a device that performs notification of the leakage of the usage-side refrigerant by sound and light is used.
  • the refrigerant sensor 11 and the alarm device 12 are provided in the indoor unit 5, but are not limited to this, and are used for operating the indoor space where the indoor unit 5 is air-conditioned and the indoor unit 5. May be provided on a remote controller or the like. Further, the refrigerant sensor 11 and the alarm device 12 may be provided separately.
  • the use-side liquid refrigerant communication pipe 6 is a part of a pipe connecting between the refrigerant-refrigerant heat exchanger 25 and the indoor heat exchanger 52.
  • the use-side liquid refrigerant communication pipe 6 is a pipe that connects between the use-side pressure reducer 33 and the indoor pressure reducer 51.
  • the use-side liquid refrigerant communication pipe 6 mainly includes a use-side liquid refrigerant communication branch pipe 62 connected to each of the indoor units 5, a portion where the use-side liquid refrigerant communication branch pipe 62 is all joined, and the heat transfer unit 2. And a utilization-side liquid refrigerant communication mother pipe 61 for connecting between them.
  • the use side gas refrigerant communication pipe 7 is a part of a pipe connecting between the use side compressor 31 and the indoor heat exchanger 52.
  • the use-side gas refrigerant communication pipe 7 is a pipe that connects the use-side flow switching device 32 and the gas side of the indoor heat exchanger 52.
  • the use-side gas refrigerant communication pipe 7 is mainly composed of a use-side gas refrigerant communication branch pipe 72 connected to each of the indoor units 5, a portion where the use-side gas refrigerant communication branch pipes 72 are all joined, and the heat transfer unit 2. And a utilization-side gas refrigerant communication mother pipe 71 that connects between them.
  • the components of the heat transfer unit 2 and the indoor unit 5 are controlled by the control unit 19.
  • the control unit 19 is configured such that a control board and the like provided in the heat transfer unit 2 and the indoor unit 5 are connected by communication.
  • the control unit 19 is illustrated at a position away from the heat transfer unit 2, the indoor unit 5, and the like for convenience.
  • the control unit 19 controls the components 11, 12, 21, 22, 24, 26, 31, 32, 33, 51, and 53 of the air conditioning system 1, that is, the operation control of the entire air conditioning system 1. It is supposed to do.
  • the air conditioning system 1 can perform a cooling operation for cooling indoor air and a heating operation for heating indoor air for indoor air conditioning.
  • the alarm device 12 notifies that the use-side refrigerant has leaked. Note that the cooling operation, the heating operation, and the operation when the use-side refrigerant leaks are performed by the control unit 19.
  • the cooling operation When the cooling operation is performed, for example, when all of the indoor units 5 perform the cooling operation (that is, the operation in which all of the indoor heat exchangers 52 function as evaporators for the use-side refrigerant to cool the indoor air), the heat source The side flow switch 22 is switched to the first state (see the solid line of the heat source side flow switch 22 in FIG. 1), and the use side flow switch 32 is in the first state (use side flow in FIG. 1). (See the solid line of the road switcher 32).
  • the heat-source-side refrigerant discharged from the heat-source-side compressor 21 is sent to the outdoor heat exchanger 23 through the heat-source-side flow switching device 22.
  • the heat-source-side refrigerant sent to the outdoor heat exchanger 23 is cooled by performing heat exchange with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 23 functioning as a radiator of the heat-source-side refrigerant. Condenses.
  • the refrigerant that has radiated heat in the outdoor heat exchanger 23 is sent to the refrigerant-refrigerant heat exchanger 25 after being decompressed by the heat source side decompressor 24.
  • the heat-source-side refrigerant sent to the refrigerant-refrigerant heat exchanger 25 evaporates by being heated by exchanging heat with the use-side refrigerant in the refrigerant-refrigerant heat exchanger 25 functioning as an evaporator of the heat source-side refrigerant. .
  • the heat-source-side refrigerant evaporated in the refrigerant-refrigerant heat exchanger 25 is drawn into the heat-source-side compressor 21 through the heat-source-side flow switching device 22, and is discharged from the heat-source-side compressor 21 again.
  • the use-side refrigerant discharged from the use-side compressor 31 is sent to the refrigerant-refrigerant heat exchanger 25 through the use-side flow switching device 32.
  • the use-side refrigerant sent to the refrigerant-refrigerant heat exchanger 25 is cooled by exchanging heat with the heat source-side refrigerant in the refrigerant-refrigerant heat exchanger 25 functioning as an evaporator for the use-side refrigerant.
  • the use-side refrigerant that has radiated heat in the refrigerant-refrigerant heat exchanger 25 is sent to the use-side liquid refrigerant communication pipe 6 through the use-side medium pressure reducer 33.
  • the use-side refrigerant sent to the use-side liquid medium communication pipe 6 is sent to the indoor heat exchanger 52 after being depressurized by the indoor pressure reducer 51.
  • the use side refrigerant sent to the indoor heat exchanger 52 is cooled by performing heat exchange with the indoor air supplied by the indoor fan 53 in the indoor heat exchanger 52 functioning as an evaporator of the use side refrigerant. Evaporate. Thereby, the cooling operation for cooling the indoor air is performed.
  • the use-side refrigerant evaporated in the indoor heat exchanger 52 is sent to the use-side gas refrigerant communication pipe 7.
  • the use-side refrigerant sent to the use-side gas refrigerant communication pipe 7 is sucked into the use-side compressor 31 through the use-side flow switching device 32 and is discharged from the use-side compressor 31 again.
  • the heating operation is performed, for example, when all the indoor units 5 perform the heating operation (that is, when all the indoor heat exchangers 52 function as radiators of the use-side refrigerant to heat the indoor air), the heat source The side flow switch 22 is switched to the second state (see the broken line of the heat source side flow switch 22 in FIG. 1), and the use side flow switch 32 is in the second state (use side flow in FIG. 1). (See the broken line of the road switcher 32).
  • the heat-source-side refrigerant discharged from the heat-source-side compressor 21 is sent to the refrigerant-refrigerant heat exchanger 25 through the heat-source-side flow switching device 22.
  • the heat-source-side refrigerant sent to the refrigerant-refrigerant heat exchanger 25 is condensed by performing heat exchange with the use-side refrigerant and cooling in the refrigerant-refrigerant heat exchanger 25 that functions as a radiator of the heat source-side refrigerant. .
  • the heat-source-side refrigerant that has radiated heat in the refrigerant-refrigerant heat exchanger 25 is sent to the outdoor heat exchanger 23 after being decompressed by the heat-source-side decompressor 24.
  • the heat-source-side refrigerant sent to the outdoor heat exchanger 23 is heated by exchanging heat with the outdoor air supplied by the outdoor fan 26 in the outdoor heat exchanger 23 functioning as an evaporator for the heat-source-side refrigerant. Evaporate.
  • the heat-source-side refrigerant evaporated in the outdoor heat exchanger 23 is drawn into the heat-source-side compressor 21 through the heat-source-side flow switching device 22, and is discharged from the heat-source-side compressor 21 again.
  • the usage-side refrigerant discharged from the usage-side compressor 31 is sent to the usage-side gas refrigerant communication pipe 7 through the usage-side flow switching device 32.
  • the use-side refrigerant sent to the use-side gas refrigerant communication pipe 7 is sent to the indoor heat exchanger 52.
  • the use-side refrigerant sent to the indoor heat exchanger 52 is cooled by performing heat exchange with the indoor air supplied by the indoor fan 53 in the indoor heat exchanger 52 functioning as a radiator of the use-side refrigerant. Thereby, the heating operation for heating the indoor air is performed.
  • the use-side refrigerant that has radiated heat in the indoor heat exchanger 52 is sent to the use-side liquid refrigerant communication pipe 6 after being decompressed by the indoor decompressor 51.
  • the use-side refrigerant sent to the use-side liquid refrigerant communication pipe 6 is further decompressed by the use-side decompressor 33 and then sent to the refrigerant-refrigerant heat exchanger 25.
  • the use-side refrigerant sent to the refrigerant-refrigerant heat exchanger 25 evaporates by being heated by exchanging heat with the heat source-side refrigerant in the refrigerant-refrigerant heat exchanger 25 functioning as an evaporator of the use-side refrigerant. .
  • the use-side refrigerant evaporated in the refrigerant-refrigerant heat exchanger 25 is drawn into the use-side compressor 31 through the use-side flow switching device 32, and is discharged from the use-side compressor 31 again.
  • the refrigerant sensor 11 detects the leakage of the use-side refrigerant, and the alarm device 12 notifies that the use-side refrigerant has leaked.
  • the concentration level of carbon dioxide can be reduced to a concentration level at which one safety measure to be taken when leakage of carbon dioxide as a use-side refrigerant occurs can be taken.
  • the alarm device 12 is selected and provided as a safety measure.
  • FIG. 3 is an explanatory diagram of a piping system that connects the units 2, 5a to 5j that constitute the air conditioning system 1 of FIG.
  • FIG. 4 is a table showing the relationship between the rated refrigeration capacity and the diameter of the refrigerant communication pipe when carbon dioxide is used as the refrigerant.
  • FIG. 5 is a diagram showing the relationship between the configuration of the air conditioning system (one-way refrigeration cycle A and two-way refrigeration cycle A) and the amount of carbon dioxide as a refrigerant.
  • the refrigerant is a refrigerant. It is necessary to take safety measures according to the concentration level of carbon dioxide that may reach the indoor space when leaked from the circuit.
  • the concentration levels of good carbon dioxide without providing a safety is a condition that the indoor space 1 m 3 per 0.074kg following safety measures may density level only one, indoor space 1 m 3 per 0. greater than 074Kg, and a condition that less 0.18 kg, safety measures more than the required concentration levels, a condition of greater interior space 1 m 3 per 0.18 kg.
  • a safety measure in addition to an alarm device for notifying that the refrigerant has leaked, a shut-off device that shuts off the circulation of the refrigerant when the refrigerant has leaked, and an indoor heat exchanger when the refrigerant has leaked.
  • a ventilation device that ventilates a space that is air-conditioned by indoor air that has undergone heat exchange.
  • the floor area of the air conditioning space per 2.8 kW of rated refrigeration capacity is 20 m 2
  • an air conditioning system with a rated refrigeration capacity of 28 kW is installed in a plurality of air conditioning spaces with a total floor area of 200 m 2. Then, when carbon dioxide as a refrigerant leaks into the air-conditioned space having the smallest space volume among the plurality of air-conditioned spaces, the amount of the refrigerant (carbon dioxide) that can be reduced by one or less safety measure is calculated.
  • the refrigerant amount may be larger than 7.9 kg.
  • safety measures should be taken. In some cases, it can be done with less than one. In that sense, the value of the refrigerant amount calculated here is the safest condition, and if this refrigerant amount condition is satisfied, it is possible to perform one or less safety measures in virtually all air conditioning systems. You can say that you can.
  • the heat transfer unit 2 includes 10 indoor units 5 (5a to 5j) having a rated refrigerating capacity of 2.8 kW.
  • the connected configuration will be described as an example.
  • the use-side refrigerant communication mother pipes 61 and 71 are 50 m and the sum of the use-side refrigerant communication branch pipes 62 and 72 (62a to 62j, 72a to 72j). Is 20 m.
  • the pipe diameters of the use side refrigerant communication pipes 6 and 7 are selected and used according to the rated refrigeration capacity.
  • a pipe having a nominal diameter of 2.5 / 8 inch is used as the use side liquid refrigerant communication main pipe 61, and a pipe having a nominal diameter of 1.5 / 8 inch is used as the use side liquid refrigerant communication branch pipe 62.
  • a pipe having a nominal diameter of 5/8 inch is used as the usage-side gas refrigerant communication main pipe 71, and a pipe having a nominal diameter of 2.5 / 8 inch is used as the usage-side gas refrigerant communication branch pipe 72.
  • a pipe having a nominal diameter of 2.5 / 8 inch or less is used as the use-side liquid refrigerant communication pipe 6, and the use-side gas refrigerant communication pipe 7 is used.
  • the same refrigerating capacity as the air conditioning system 1 (10 indoor units with a rated refrigerating capacity of 2.8 kW) and the same as the air conditioning system 1
  • the refrigerant amount is 9.0 kg ( (See the value of the one-way refrigeration cycle A in FIG. 5).
  • the amount of the use side refrigerant (carbon dioxide) sealed in the use side circuit 30 of the air conditioning system 1 of the binary refrigeration cycle is calculated based on the amount of the refrigerant, the one-way refrigeration using carbon dioxide as the refrigerant is performed. As compared with the air conditioning system of the cycle, the amount is 2.4 kg less and the amount of the use side refrigerant is 6.6 kg (see the value of the binary refrigeration cycle A in FIG. 5).
  • the amount of the use side refrigerant (carbon dioxide) sealed in the use side circuit 30 of the air conditioning system 1 of the binary refrigeration cycle can be reduced because of the large outdoor heat exchange between the refrigerant and the outdoor air.
  • An exchanger is provided in the heat source side circuit 10 that does not have the plurality of indoor heat exchangers 52, and the use side circuit 30 that uses carbon dioxide as the use side refrigerant includes a small refrigerant-refrigerant heat exchanger. This is because 25 may be provided.
  • the amount of refrigerant (carbon dioxide) sealed in the refrigerant circuit is larger than 7.9 kg, so two or more safety measures are required. It is.
  • the amount of the usage-side refrigerant (carbon dioxide) sealed in the usage-side circuit 30 can be 7.9 kg or less, so that only one safety measure can be completed. .
  • the alarm device 12 that issues a notification that the use-side refrigerant has leaked when the use-side refrigerant has leaked is provided.
  • the alarm device 12 it is necessary to use a device that provides notification that the use-side refrigerant has leaked by sound and light, but it is not necessary to provide other safety measures (blocking device or ventilation device). Therefore, the cost is low and the construction is easy.
  • the air conditioning system 1 constitutes a binary refrigeration cycle including the heat source side circuit 10 and the use side circuit 30.
  • the heat source side circuit 10 includes a heat source side compressor 21 for compressing the heat source side refrigerant, an outdoor heat exchanger 23 for exchanging heat between the heat source side refrigerant and outdoor air, and a refrigerant for exchanging heat between the heat source side refrigerant and the use side refrigerant.
  • the use side circuit 30 includes a use side compressor 31 for compressing the use side refrigerant, a refrigerant-refrigerant heat exchanger 25, and a plurality of indoor heat exchangers 52 for exchanging heat between the use side refrigerant and room air.
  • Carbon dioxide is sealed as a use-side refrigerant.
  • one of the alarm device 12, the alarm device 12, and the ventilation device is provided among the alarm device 12, the shut-off device, and the ventilation device. ing.
  • the air conditioning system of the unitary refrigeration cycle using carbon dioxide as a refrigerant has an outdoor heat exchanger that performs heat exchange between carbon dioxide as refrigerant and outdoor air in a refrigerant circuit.
  • the volume occupied by the outdoor heat exchanger is quite large.
  • the air conditioning system of the unitary refrigeration cycle that uses carbon dioxide as the refrigerant is less efficient than conventional refrigerants (such as HFC refrigerants) due to its physical properties.
  • the outdoor heat exchanger functions as a refrigerant radiator. This is remarkable in an operation (cooling operation) in which the indoor heat exchanger functions as an evaporator for the refrigerant.
  • the heat transfer area of the outdoor heat exchanger is increased, or the intermediate cooling for cooling the refrigerant during the compression process.
  • a device such as a supercooler for further cooling the refrigerant radiated in the heat exchanger or the outdoor heat exchanger is employed.
  • the amount of carbon dioxide as the refrigerant sealed in the refrigerant circuit increases, and it is difficult to reduce safety measures.
  • the use side circuit 30 having the plurality of indoor heat exchangers 52 and containing carbon dioxide as the use side refrigerant, and the use side circuit 30 through the refrigerant-refrigerant heat exchanger 25 And a heat source side circuit 10 in which a heat source side refrigerant that exchanges heat with the refrigerant is enclosed. Therefore, here, unlike the one-way refrigeration cycle using carbon dioxide as the refrigerant, the outdoor heat exchanger 23 that performs heat exchange between the refrigerant and the outdoor air is a heat source that does not have the plurality of indoor heat exchangers 52.
  • a use-side circuit 30 provided in the side circuit 10 and using carbon dioxide as the use-side refrigerant is provided with a refrigerant-refrigerant heat exchanger 25.
  • the refrigerant-refrigerant heat exchanger 25 is not a large-sized heat exchanger for performing heat exchange between refrigerant and air, but is suitable for heat exchange between two refrigerants (here, a heat source side refrigerant and a use side refrigerant).
  • a small heat exchanger such as a plate or double tube heat exchanger, can be used.
  • the heat source side circuit 10 uses a refrigerant (R32, R1234yf, or the like) having physical properties capable of increasing the efficiency over carbon dioxide.
  • R32, R1234yf, or the like a refrigerant having physical properties capable of increasing the efficiency over carbon dioxide.
  • the efficiency such as providing an intercooler or a subcooler, the overall efficiency including the use side circuit 30 can be improved.
  • the amount of carbon dioxide as the use-side refrigerant sealed in the use-side circuit 30 can be reduced, and the efficiency can be improved. You can also.
  • the concentration levels of carbon safety measures concentration levels that can dispense with one (larger than 0.074kg per indoor space 1 m 3, and satisfies the concentration level of less 0.18 kg) so that down to .
  • this concentration level is converted into the amount of carbon dioxide as the use-side refrigerant sealed in the use-side circuit 30, it is larger than 3.3 kg and 7.9 kg or less.
  • the safety level is reduced to a concentration level at which only one safety measure can be performed, and as described above, any one of the alarm device 12, the ventilation device, and the alarm device 12, the shutoff device, and the ventilation device is used.
  • One is provided. That is, here, the number of safety measures is reduced to one, and no interruption device is provided as a safety measure.
  • the shutoff device is a device that must be provided in the use side circuit 30, and it is necessary to satisfy the installation standards such as the shutoff performance. Therefore, it is costly and unnecessary to provide the shutoff device as a safety measure. It is effective in construction.
  • the alarm device 12 of the alarm device 12 and the ventilation device is provided.
  • the alarm device 12 is provided, and the ventilation device is not provided.
  • a ventilation device is provided as a safety measure, it is necessary to meet the installation standards such as the amount of ventilation, the number of ventilations, and the position of the ventilation opening. And is effective in construction.
  • the refrigerant as the refrigerant sealed in the refrigerant circuit (the use side circuit 30) is used.
  • the amount of carbon dioxide By reducing the amount of carbon dioxide, safety measures can be reduced.
  • the refrigerant-refrigerant heat exchanger 25 and the indoor heat A pipe having a nominal diameter of 2.5 / 8 inch or less, which is smaller than the conventional pipe, is used as a pipe (use side liquid refrigerant communication pipe 6) connecting to the exchanger 52, and the use side compression of the use side circuit 30 is used.
  • a pipe (use side gas refrigerant communication pipe 7) connecting between the unit 31 and the indoor heat exchanger 52 a pipe having a nominal diameter of 5/8 inch or less, which is smaller than the conventional one, is used.
  • a pipe having a nominal diameter of 1.5 / 8 inch is used as the use side liquid refrigerant communication pipe 6 when the rated refrigeration capacity is in the range of 2.2 kW to 8.0 kW. In the range of 0.4 kW to 28.0 kW, a pipe having a nominal diameter of 2.5 / 8 inch is used.
  • a tube with a nominal diameter of .5 / 8 inch is used.
  • the size of a tube usable as a refrigerant tube can be increased. This can contribute to optimization of the refrigerant pipe.
  • the indoor heat exchanger 52 not a heat exchanger having a large number of circular heat transfer tubes 54, but a large number of flat heat transfer tubes 56 as shown in FIG. Using a microchannel heat exchanger.
  • a fin-and-tube type heat exchanger having a large number of heat transfer tubes 56 and a large number of heat transfer fins 57 is employed as the micro-chan heat heat exchanger, as in FIG. It is not limited.
  • the volume of the indoor heat exchanger 52 can be reduced, and the amount of the use-side refrigerant sealed in the use-side circuit 30 is reduced by the fin-and-tube type having a large number of heat transfer tubes 54 formed of circular tubes. 0.5 kg less than in the case where the heat exchanger of No. 1 is used, and the amount of the use-side refrigerant is 6.1 kg (see the value of the binary refrigeration cycle B in FIG. 7).
  • the indoor heat exchanger 52 is constituted by the micro-channel heat exchanger, the volume of the indoor heat exchanger 52 can be reduced, and thus the indoor heat exchanger 52 is sealed in the use side circuit 30. The amount of the use-side refrigerant can be further reduced.
  • the amount of the refrigerant does not become 7.9 kg or less, it is understood that one safety measure cannot be completed as long as the air conditioning system of the unitary refrigeration cycle is adopted.
  • the use-side compressor 31 and the refrigerant-refrigerant heat exchanger 25 of the use-side circuit 30 are provided in the heat transfer unit 2 together with the heat source-side circuit 10 (see FIG. 1).
  • the amount of the usage-side refrigerant (carbon dioxide) sealed in the usage-side circuit 30 is 6.1 kg in the case of the first modification (when the indoor heat exchanger 52 is configured by a microchannel heat exchanger) ( (See the value of the binary refrigeration cycle B in FIG. 7).
  • the heat transfer unit 2 is divided into an outdoor unit 3 and an intermediate unit 4, and the heat transfer unit 2 is connected between the units 3 and 4 via the heat source side refrigerant communication pipes 8 and 9. Are connected.
  • the outdoor unit 3 is arranged outside the room. As shown in FIG. 8, portions of the heat source side circuit 10 excluding the refrigerant-refrigerant heat exchanger 25 (the heat source side compressor 21, the heat source side flow switching device 22, the outdoor heat exchanger 23, and the heat source side decompressor). 24) is provided in the outdoor unit 3.
  • the refrigerant-refrigerant heat exchanger 25 the heat source side compressor 21, the heat source side flow switching device 22, the outdoor heat exchanger 23, and the heat source side decompressor. 24
  • the intermediate unit 4 is arranged at a position close to the branch to the indoor unit 5, as shown in FIG. As shown in FIG. 8, the use-side compressor 31, the use-side flow switching device 32, the refrigerant-refrigerant heat exchanger 25, and the use-side decompressor 33 in the use-side circuit 30 are provided in the intermediate unit 4. .
  • the heat-source-side liquid refrigerant communication pipe 8 is a part of a pipe that connects between the outdoor heat exchanger 23 and the refrigerant-refrigerant heat exchanger 25.
  • the heat source side liquid refrigerant communication pipe 6 is a pipe connecting between the heat source side decompressor 24 and the liquid side of the flow path of the refrigerant-refrigerant heat exchanger 25 through which the heat source side refrigerant flows.
  • the heat source side gas refrigerant communication pipe 9 is a part of a pipe connecting between the heat source side compressor 21 and the refrigerant-refrigerant heat exchanger 25.
  • the heat source side gas refrigerant communication pipe 9 is a pipe connecting between the heat source side flow path switching device 22 and the gas side of the flow path of the refrigerant-refrigerant heat exchanger 25 through which the heat source side refrigerant flows. .
  • the outdoor heat exchanger 23 is provided in the outdoor unit 3, and the refrigerant-refrigerant heat exchanger 25 is connected to the outdoor unit 3 via the heat source side refrigerant communication pipes 8, 9 through which the heat source side refrigerant flows.
  • the indoor heat exchanger 52 is provided in the intermediate unit 4 connected to the intermediate unit 4 via the use-side refrigerant communication pipes 6 and 7 through which the use-side refrigerant flows. ing.
  • the intermediate unit 4 provided with the refrigerant-refrigerant heat exchanger 25 can be provided at a position near the branch to the indoor unit 5, for example, from the intermediate unit 4 to the indoor unit 5.
  • the length of the use-side refrigerant communication mother tubes 61, 71 of the use-side refrigerant communication tubes 6, 7 can be reduced to 10 m.
  • the amount of the use-side refrigerant sealed in the use-side circuit 30 is determined when the refrigerant-refrigerant heat exchanger 25 is provided in the outdoor heat transfer unit 2 (the length of the use-side refrigerant communication mother tubes 61, 71). Is 50 m), and the amount of the use-side refrigerant is 5.0 kg (see the value of the binary refrigeration cycle C in FIG. 10).
  • the refrigerant-refrigerant heat exchanger 25 is provided in the intermediate unit 4 different from the outdoor unit 3, the refrigerant-refrigerant heat exchanger 25 is provided at a position close to the indoor unit 5. Accordingly, the amount of the use-side refrigerant sealed in the use-side circuit 30 can be further reduced.
  • the present disclosure is widely applicable to an air conditioning system having a plurality of indoor heat exchangers for exchanging heat between carbon dioxide as a refrigerant and indoor air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

空気調和システム(1)は、熱源側回路(10)と利用側回路(30)とを含む多元冷凍サイクルを構成している。熱源側回路(10)は、熱源側圧縮機(21)と、熱源側冷媒と室外空気とを熱交換させる室外熱交換器(23)と、熱源側冷媒と利用側冷媒とを熱交換させる冷媒-冷媒熱交換器(25)と、を有する。利用側回路(30)は、利用側圧縮機(31)と、冷媒-冷媒熱交換器(25)と、利用側冷媒と室内空気とを熱交換させる複数の室内熱交換器(52)と、を有し、利用側冷媒として二酸化炭素が封入されている。利用側回路(30)に封入される利用側冷媒の量は、7.9kg以下にされている。

Description

空気調和システム
 冷媒としての二酸化炭素と室内空気とを熱交換させる複数の室内熱交換器を有する空気調和システム
 従来より、冷媒と室内空気とを熱交換させる複数の室内熱交換器を有する空気調和システムがある。このような空気調和システムとして、特許文献1(国際公開第2011/099063号)に示すように、冷媒が循環する冷媒回路に封入される冷媒として二酸化炭素を使用するものがある。
 冷媒回路に封入される冷媒として二酸化炭素を使用する場合には、人体への悪影響(酸欠等)を考慮する必要がある。具体的には、冷媒が冷媒回路から漏洩した際に室内空間において到達するおそれのある二酸化炭素の濃度レベルに応じて、安全対策を講じる必要がある。特に、複数の室内熱交換器を有する空気調和システムでは、冷媒回路に封入される冷媒量が多く、複数の室内熱交換器の1つで冷媒が漏洩した場合に、冷媒の漏洩が発生した室内熱交換器に対応する室内空間に冷媒回路に封入されている冷媒がすべて漏洩するおそれがあるため、その傾向が顕著になる。
 このため、冷媒としての二酸化炭素と室内空気とを熱交換させる複数の室内熱交換器を有する空気調和システムにおいては、冷媒回路に封入される冷媒としての二酸化炭素の量を少なくして、安全対策を減らすことが好ましい。
 第1の観点にかかる空気調和システムは、熱源側回路と利用側回路とを含む多元冷凍サイクルを構成している。熱源側回路は、熱源側冷媒を圧縮する熱源側圧縮機と、熱源側冷媒と室外空気とを熱交換させる室外熱交換器と、熱源側冷媒と利用側冷媒とを熱交換させる冷媒-冷媒熱交換器と、を有している。利用側回路は、利用側冷媒を圧縮する利用側圧縮機と、冷媒-冷媒熱交換器と、利用側冷媒と室内空気とを熱交換させる複数の室内熱交換器と、を有しており、利用側冷媒として二酸化炭素が封入されている。そして、ここでは、利用側回路に封入される利用側冷媒の量を7.9kg以下にしている。
 利用側回路に封入される利用側冷媒として二酸化炭素を使用する場合において、安全対策が1つだけでよい濃度レベルは、室内空間1m当たり0.074kgより大きく、かつ、0.18kg以下という条件である。ここでは、この条件を満たすために、床面積が20mで、かつ、天井高さが2.2mの空間容積の小さい空調空間を想定して、安全対策を1つ以下で済ませるための二酸化炭素の量(=7.9kg)を算出し、上記のように、利用側回路に封入される利用側冷媒の量を7.9kg以下まで少なくしている。
 第2の観点にかかる空気調和システムは、第1の観点にかかる空気調和システムにおいて、警報装置、遮断装置及び換気装置のうち、警報装置及び換気装置のいずれか1つを設けている。
 ここでは、上記のように、冷媒として二酸化炭素を使用する一元冷凍サイクルとは異なり、冷媒と室外空気とが熱交換を行う室外熱交換器が、複数の室内熱交換器を有していない熱源側回路に設けられ、そして、利用側冷媒として二酸化炭素を使用する利用側回路には、小型の冷媒-冷媒熱交換器が設けられている。このため、ここでは、冷媒として二酸化炭素を使用する一元冷凍サイクルに比べて、利用側回路に封入される利用側冷媒としての二酸化炭素の量を少なくすることができる。そして、このように、利用側回路に封入される利用側冷媒としての二酸化炭素の量を少なくすることによって、ここでは、利用側冷媒が利用側回路から漏洩した際に室内空間において到達するおそれのある二酸化炭素の濃度レベルを、安全対策を1つで済ますことが可能な濃度レベルまで下げるとともに、上記のように、警報装置、遮断装置及び換気装置のうち、警報装置及び換気装置のいずれか1つを設けるだけで済ませることができる。
 このように、ここでは、冷媒としての二酸化炭素と室内空気とを熱交換させる複数の室内熱交換器を有する空気調和システムにおいて、冷媒回路(利用側回路)に封入される冷媒としての二酸化炭素の量を少なくして、安全対策を減らすことができる。
 第3の観点にかかる空気調和システムは、第2の観点にかかる空気調和システムにおいて、警報装置及び換気装置のうち警報装置を設けている。
 ここでは、上記のように、安全対策として、警報装置を設けて、換気装置を設けないようにしている。ここで、換気装置は、安全対策として設ける場合には、換気量や換気回数、換気開口の位置等の設置基準を満たす必要があるため、安全対策として換気装置を設けずに済ませることは、コストや施工上で有効である。
 第4の観点にかかる空気調和システムは、第1~第3の観点のいずれかにかかる空気調和システムにおいて、室内熱交換器が、利用側冷媒が流れる伝熱管として扁平多孔管を使用したマイクロチャンネル熱交換器である。
 ここでは、上記のように、室内熱交換器をマイクロチャンネル熱交換器で構成しているため、室内熱交換器の容積を小さくすることができ、これにより、利用側回路に封入される利用側冷媒の量をさらに減らすことができる。
 第5の観点にかかる空気調和システムは、第1~第4の観点のいずれかにかかる空気調和システムにおいて、空気調和システムの定格冷凍能力が28kW以下の場合に、利用側回路のうち冷媒-冷媒熱交換器と室内熱交換器との間を接続する配管として、2.5/8インチ以下の呼び径の管を使用し、利用側回路のうち利用側圧縮機と室内熱交換器との間を接続する配管として、5/8インチ以下の呼び径の管を使用する。
 ここでは、上記のように、定格冷凍能力が28kWの場合であっても、利用側回路のうち冷媒-冷媒熱交換器と室内熱交換器との間を接続する配管として、従来よりも小さい2.5/8インチ以下の呼び径の管を使用し、利用側回路のうち利用側圧縮機と室内熱交換器との間を接続する配管として、従来よりも小さい5/8インチ以下の呼び径の管を使用しているため、利用側回路に封入される利用側冷媒の量を減らすことができる。
 第6の観点にかかる空気調和システムは、第1~第5の観点のいずれかにかかる空気調和システムにおいて、室外熱交換器が、室外ユニットに設けられており、冷媒-冷媒熱交換器が、熱源側冷媒が流れる熱源側冷媒連絡管を介して室外ユニットに接続される中間ユニットに設けられており、室内熱交換器が、利用側冷媒が流れる利用側冷媒連絡管を介して中間ユニットに接続される室内ユニットに設けられている。
 ここでは、上記のように、冷媒-冷媒熱交換器を室外ユニットとは別の中間ユニットに設けるようにしているため、冷媒-冷媒熱交換器を室内ユニットに近い位置に設けることができ、これにより、利用側回路に封入される利用側冷媒の量をさらに減らすことができる。
本開示の一実施形態にかかる空気調和システムの概略構成図である。 図1の空気調和システムを構成する室内熱交換器の要部を示す斜視図である。 図1の空気調和システムを構成するユニット間を接続する配管系統の説明図である。 冷媒として二酸化炭素を使用した場合における定格冷凍能力と冷媒連絡管の管径との関係を示す表である。 空気調和システムの構成(一元冷凍サイクルA及び二元冷凍サイクルA)と冷媒としての二酸化炭素の量の関係を示す図である。 変形例1の空気調和システムを構成する室内熱交換器の要部を示す斜視図である。 空気調和システムの構成(一元冷凍サイクルB、二元冷凍サイクルA及び二元冷凍サイクルB)と冷媒としての二酸化炭素の量の関係を示す図である。 変形例2の空気調和システムの概略構成図である。 図8の空気調和システムを構成するユニット間を接続する配管系統の説明図である。 空気調和システムの構成(二元冷凍サイクルB及び二元冷凍サイクルC)と冷媒としての二酸化炭素の量の関係を示す図である。
 以下、空気調和システムについて、図面に基づいて説明する。
 (1)構成
 図1は、本開示の一実施形態にかかる空気調和システム1の概略構成図である。図2は、図1の空気調和システム1を構成する室内熱交換器52の要部を示す斜視図である。
 <回路構成>
 空気調和システム1は、熱源側冷媒が循環する熱源側回路10と、利用側冷媒が循環する利用側回路30と、を含む多元冷凍サイクルを構成しており、利用側冷媒と室内空気とを熱交換させて室内空間の空調(冷房や暖房)を行うシステムである。
 -熱源側回路-
 熱源側回路10は、主として、熱源側圧縮機21と、室外熱交換器23と、冷媒-冷媒熱交換器25と、を有している。そして、熱源側回路10には、熱源側冷媒としてR32等のHFC冷媒、R1234yf等のHFO冷媒、又は、これらの混合冷媒等が封入されている。また、熱源側回路10は、熱源側流路切換機22と、熱源側減圧機24と、を有している。
 熱源側圧縮機21は、熱源側冷媒を圧縮する機器である。熱源側圧縮機21は、例えば、ロータリやスクロール等の圧縮要素をモータやエンジン等の駆動機構によって駆動する圧縮機である。
 熱源側流路切換機22は、室外熱交換器23を熱源側冷媒の放熱器として機能させ、かつ、冷媒-冷媒熱交換器25を熱源側冷媒の蒸発器として機能させる第1状態(図1の熱源側流路切換機22の実線を参照)と、室外熱交換器23を熱源側冷媒の蒸発器として機能させ、かつ、冷媒-冷媒熱交換器25を熱源側冷媒の放熱器として機能させる第2状態(図1の熱源側流路切換機22の破線を参照)と、を切り換える機器である。熱源側流路切換機22は、例えば、四路切換弁である。そして、熱源側流路切換機22は、第1状態において、熱源側圧縮機21の吐出側と室外熱交換器23のガス側とを接続し、かつ、熱源側圧縮機21の吸入側と冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路のガス側とを接続する。熱源側流路切換機22は、第2状態において、熱源側圧縮機21の吐出側と冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路のガス側とを接続し、かつ、熱源側圧縮機21の吸入側と室外熱交換器23のガス側とを接続する。尚、熱源側流路切換機22は、四路切換弁に限定されるものではなく、例えば、複数の弁(電磁弁や三方弁等)を組み合わせることによって上記の第1状態及び第2状態の切り換えを行う機能を有するように構成したものであってもよい。
 室外熱交換器23は、熱源側冷媒と室外空気とを熱交換させる機器である。室外熱交換器23は、例えば、フィンアンドチューブ式の熱交換器である。室外熱交換器23は、熱源側流路切換機22が第1状態に切り換えられた状態において、室外空気を冷却源とする熱源側冷媒の放熱器として機能し、熱源側流路切換機22が第2状態に切り換えられた状態において、室外空気を加熱源とする熱源側冷媒の蒸発器として機能する。室外熱交換器23は、ガス側が熱源側流路切換機22に接続されており、液側が冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路の液側に接続されている。
 熱源側減圧機24は、熱源側冷媒を減圧する機器である。熱源側減圧機24は、例えば、電動膨張弁である。熱源側減圧機24は、熱源側流路切換機22が第1状態に切り換えられた状態において、室外熱交換器23において放熱した熱源側冷媒を減圧し、熱源側流路切換機22が第2状態に切り換えられた状態において、冷媒-冷媒熱交換器25において放熱した熱源側冷媒を減圧する。熱源側減圧機24は、一端側が室外熱交換器23の液側に接続されており、他端側が冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路の液側に接続されている。尚、熱源側減圧機24は、電動膨張弁に限定されるものではなく、例えば、他の膨張弁やキャピラリーチューブ、膨張機であってもよい。
 冷媒-冷媒熱交換器25は、熱源側冷媒と利用側冷媒とを熱交換させる機器である。冷媒-冷媒熱交換器25は、例えば、プレート式や二重管式の熱交換器である。ここで、プレート式や二重管式の熱交換器は、2つの冷媒(ここでは、熱源側冷媒及び利用側冷媒)間の熱交換に適しており、冷媒と空気との熱交換を行うフィンアンドチューブ式の熱交換器のような大型の熱交換器に比べて、小型の熱交換器である。冷媒-冷媒熱交換器25は、熱源側流路切換機22が第1状態に切り換えられた状態において、利用側冷媒を加熱源とする冷媒の蒸発器として機能し、熱源側流路切換機22が第2状態に切り換えられた状態において、利用側冷媒を冷却源とする冷媒の放熱器として機能する。冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路のガス側は、熱源側流路切換機22に接続されており、冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路の液側は、熱源側減圧機24に接続されている。
 -利用側回路-
 利用側回路30は、利用側圧縮機31と、冷媒-冷媒熱交換器25と、複数の室内熱交換器52と、を有している。そして、利用側回路30には、利用側冷媒として二酸化炭素が封入されている。また、利用側回路30は、利用側流路切換機32と、利用側減圧機33と、複数の室内熱交換器52のそれぞれに対応する室内減圧機51と、を有している。尚、利用側冷媒として二酸化炭素を使用する場合には、冷凍サイクルの過程で冷媒が超臨界状態(ガス状態と液状態との区別が付かない状態)になる場合があるが、利用側回路30を構成する部品の名称等については、冷凍サイクルの過程で超臨界状態にならない冷媒(R410AやR32等)を使用する場合と同様に、部品の名称等に「ガス」や「液」という文言を使用している。
 利用側圧縮機31は、利用側冷媒を圧縮する機器である。利用側圧縮機31は、例えば、ロータリやスクロール等の圧縮要素をモータやエンジン等の駆動機構によって駆動する圧縮機である。
 利用側流路切換機32は、冷媒-冷媒熱交換器25を利用側冷媒の放熱器として機能させる第1状態(図1の利用側流路切換機32の実線を参照)と、冷媒-冷媒熱交換器25を利用側冷媒の蒸発器として機能させる第2状態(図1の利用側流路切換機32の破線を参照)と、を切り換える機器である。また、利用側流路切換機32は、第1状態において、室内熱交換器52を利用側冷媒の蒸発器として機能させ、第2状態において、室内熱交換器52を利用側冷媒の放熱器として機能させる。利用側流路切換機32は、例えば、四路切換弁である。そして、利用側流路切換機32は、第1状態において、利用側圧縮機31の吐出側と冷媒-冷媒熱交換器25のうち利用側冷媒が流れる流路のガス側とを接続し、かつ、利用側圧縮機31の吸入側と室内熱交換器52のガス側とを接続する。利用側流路切換機32は、第2状態において、利用側圧縮機31の吐出側と室内熱交換器52のガス側とを接続し、かつ、利用側圧縮機31の吸入側と冷媒-冷媒熱交換器25のうち利用側冷媒が流れる流路の液側とを接続する。尚、利用側流路切換機32は、四路切換弁に限定されるものではなく、例えば、複数の弁(電磁弁や三方弁等)を組み合わせることによって上記の第1状態及び第2状態の切り換えを行う機能を有するように構成したものであってもよい。
 冷媒-冷媒熱交換器25は、上記のように、熱源側冷媒と利用側冷媒とを熱交換させる機器である。冷媒-冷媒熱交換器25は、熱源側流路切換機22が第1状態に切り換えられ、かつ、利用側流路切換機32が第1状態に切り換えられた状態において、熱源側冷媒を冷却源とする利用側の放熱器として機能し、熱源側流路切換機22が第2状態に切り換えられ、かつ、利用側流路切換機32が第2状態に切り換えられた状態において、熱源側冷媒を加熱源とする利用側冷媒の蒸発器として機能する機器である。冷媒-冷媒熱交換器25のうち利用側冷媒が流れる流路のガス側は、利用側流路切換機32に接続されており、冷媒-冷媒熱交換器25のうち利用側冷媒が流れる流路の液側は、室内熱交換器52の液側に接続されている。
 利用側減圧機33は、利用側冷媒を減圧する機器である。利用側減圧機33は、例えば、電動膨張弁である。利用側減圧機33は、利用側流路切換機32が第1状態に切り換えられた状態において、全開状態又は全開近くの開度状態にされて冷媒-冷媒熱交換器25において放熱した利用側冷媒を極力減圧しないようにし、利用側流路切換機32が第2状態に切り換えられた状態において、室内減圧機51から送られる利用側冷媒を減圧する。利用側減圧機33は、一端側が冷媒-冷媒熱交換器25のうち利用側冷媒が流れる流路の液側に接続されており、他端側が室内減圧機51に接続されている。尚、利用側減圧機33は、電動膨張弁に限定されるものではなく、例えば、他の膨張弁やキャピラリーチューブ、膨張機であってもよい。
 室内減圧機51は、利用側冷媒を減圧する機器である。室内減圧機51は、例えば、電動膨張弁である。室内減圧機51は、利用側流路切換機32が第1状態に切り換えられた状態において、冷媒-冷媒熱交換器25において放熱した利用側冷媒を減圧し、利用側流路切換機32が第2状態に切り換えられた状態において、室内熱交換器52において放熱した利用側冷媒を減圧する。室内減圧機51は、一端側が利用側減圧機33に接続されており、他端側が室内熱交換器52の液側に接続されている。
 室内熱交換器52は、利用側冷媒と室内空気とを熱交換させる機器である。室内熱交換器52は、例えば、フィンアンドチューブ式の熱交換器である。ここで、室内熱交換器52としては、円管からなる多数の伝熱管54及び多数の伝熱フィン55を有するフィンアンドチューブ式の熱交換器が使用されている。室内熱交換器52は、利用側流路切換機32が第1状態に切り換えられた状態において、室内空気を冷却源とする利用側冷媒の放熱器として機能し、利用側流路切換機32が第2状態に切り換えられた状態において、室内空気を加熱源とする利用側冷媒の蒸発器として機能する。室内熱交換器52は、ガス側が利用側切換機32に接続されており、液側が室内減圧機51に接続されている。
 <ユニット構成>
 上記の熱源側回路10及び利用側回路30の構成機器は、熱搬送ユニット2と、複数の室内ユニット5と、に設けられている。室内ユニット5はそれぞれ、室内熱交換器52に対応して設けられている。
 -熱搬送ユニット-
 熱搬送ユニット2は、室外に配置されている。冷媒-冷媒熱交換器25を含む熱源側回路10、及び、利用側回路30のうち利用側圧縮機31及び利用側流路切換機32が、熱搬送ユニット2に設けられている。また、利用側回路30の利用側減圧機33も、熱搬送ユニット2に設けられている。
 また、熱搬送ユニット2には、室外熱交換器23に室外空気を送るための室外ファン26が設けられている。室外ファン26は、プロペラファン等の送風要素をモータ等の駆動機構によって駆動するファンである。
 -室内ユニット、警報装置-
 室内ユニット5は、室内に配置されている。利用側回路30の室内熱交換器52が、室内ユニット5に設けられている。また、利用側回路30の室内減圧機51も、室内ユニット5に設けられている。
 また、室内ユニット5には、室内熱交換器52に室内空気を送るための室内ファン53が設けられている。室内ファン53は、遠心ファンや多翼ファン等の送風要素をモータ等の駆動機構によって駆動するファンである。
 また、室内ユニット5には、利用側冷媒の漏洩を検知する冷媒センサ11が設けられている。冷媒センサ11は、利用側冷媒としての二酸化炭素の濃度が所定濃度以上になっているかどうかを検知するものである。また、室内ユニット5には、利用側冷媒の漏洩が発生した場合に利用側冷媒が漏洩した旨を発報する警報装置12が設けられている。ここで、警報装置12は、利用側冷媒としての二酸化炭素の漏洩が発生した場合に講じるべき安全対策の1つである。ここでは、冷媒センサ11が利用側冷媒の漏洩を検知した場合に、警報装置12が、利用側冷媒が漏洩した旨を発報する。警報装置12としては、利用側冷媒が漏洩した旨の報知を音及び光によって行うものが使用される。
 尚、ここでは、冷媒センサ11及び警報装置12が室内ユニット5に設けられているが、これに限定されるものではなく、室内ユニット5によって空調が行われる室内空間や室内ユニット5を操作するためのリモコン等に設けられていてもよい。また、冷媒センサ11と警報装置12とを別々に設けてもよい。
 -利用側冷媒連絡管-
 熱搬送ユニット2と室内ユニット5とは、利用側回路30の一部を構成する利用側冷媒連絡管6、7によって接続されている。
 利用側液冷媒連絡管6は、冷媒-冷媒熱交換器25と室内熱交換器52との間を接続する配管の一部である。具体的には、利用側液冷媒連絡管6は、利用側減圧機33と室内減圧機51との間を接続する配管である。利用側液冷媒連絡管6は、主として、室内ユニット5のそれぞれに接続される利用側液冷媒連絡枝管62と、利用側液冷媒連絡枝管62がすべて合流した部分と熱搬送ユニット2との間を接続する利用側液冷媒連絡母管61と、を有している。
 利用側ガス冷媒連絡管7は、利用側圧縮機31と室内熱交換器52との間を接続する配管の一部である。具体的には、利用側ガス冷媒連絡管7は、利用側流路切換機32と室内熱交換器52のガス側とを接続する配管である。利用側ガス冷媒連絡管7は、主として、室内ユニット5のそれぞれに接続される利用側ガス冷媒連絡枝管72と、利用側ガス冷媒連絡枝管72がすべて合流した部分と熱搬送ユニット2との間を接続する利用側ガス冷媒連絡母管71と、を有している。
 -制御部-
 そして、上記の熱搬送ユニット2及び室内ユニット5の構成機器は、制御部19によって制御されるようになっている。制御部19は、熱搬送ユニット2や室内ユニット5に設けられた制御基板等が通信接続されることによって構成されている。尚、図1においては、便宜上、熱搬送ユニット2や室内ユニット5等とは離れた位置に制御部19を図示している。このように、制御部19は、空気調和システム1の構成機器11、12、21、22、24、26、31、32、33、51、53の制御、すなわち、空気調和システム1全体の運転制御を行うようになっている。
 (2)動作
 次に、空気調和システム1の動作について、図1を用いて説明する。空気調和システム1は、室内の空調のために、室内空気を冷却する冷房運転及び室内空気を加熱する暖房運転を行うことができる。また、利用側回路30から利用側冷媒が漏洩した場合には、警報装置12によって利用側冷媒が漏洩した旨が報知されるようになっている。尚、これらの冷房運転、暖房運転及び利用側冷媒が漏洩した場合の動作は、制御部19によって行われる。
 -冷房運転-
 冷房運転の際、例えば、室内ユニット5のすべてが冷房運転(すなわち、室内熱交換器52のすべてが利用側冷媒の蒸発器として機能して室内空気を冷却する運転)を行う際には、熱源側流路切換機22が第1状態(図1の熱源側流路切換機22の実線を参照)に切り換えられ、かつ、利用側流路切換機32が第1状態(図1の利用側流路切換機32の実線を参照)に切り換えられる。
 すると、熱源側圧縮機21から吐出された熱源側冷媒は、熱源側流路切換機22を通じて室外熱交換器23に送られる。室外熱交換器23に送られた熱源側冷媒は、熱源側冷媒の放熱器として機能する室外熱交換器23において、室外ファン26によって供給される室外空気と熱交換を行って冷却されることによって凝縮する。室外熱交換器23において放熱した冷媒は、熱源側減圧機24によって減圧された後に、冷媒-冷媒熱交換器25に送られる。冷媒-冷媒熱交換器25に送られた熱源側冷媒は、熱源側冷媒の蒸発器として機能する冷媒-冷媒熱交換器25において、利用側冷媒と熱交換を行って加熱されることによって蒸発する。冷媒-冷媒熱交換器25において蒸発した熱源側冷媒は、熱源側流路切換機22を通じて熱源側圧縮機21に吸入されて、再び、熱源側圧縮機21から吐出される。
 一方、利用側圧縮機31から吐出された利用側冷媒は、利用側流路切換機32を通じて冷媒-冷媒熱交換器25に送られる。冷媒-冷媒熱交換器25に送られた利用側冷媒は、利用側冷媒の蒸発器として機能する冷媒-冷媒熱交換器25において、熱源側冷媒と熱交換を行って冷却される。冷媒-冷媒熱交換器25において放熱した利用側冷媒は、利用側媒体減圧機33を通じて利用側液冷媒連絡管6に送られる。利用側液媒体連絡管6に送られた利用側冷媒は、室内減圧機51によって減圧された後に、室内熱交換器52に送られる。室内熱交換器52に送られた利用側冷媒は、利用側冷媒の蒸発器として機能する室内熱交換器52において、室内ファン53によって供給される室内空気と熱交換を行って冷却されることによって蒸発する。これによって、室内空気を冷却する冷房運転が行われる。室内熱交換器52において蒸発した利用側冷媒は、利用側ガス冷媒連絡管7に送られる。利用側ガス冷媒連絡管7に送られた利用側冷媒は、利用側流路切換機32を通じて利用側圧縮機31に吸入されて、再び、利用側圧縮機31から吐出される。
 -暖房運転-
 暖房運転の際、例えば、室内ユニット5のすべてが暖房運転(すなわち、室内熱交換器52のすべてが利用側冷媒の放熱器として機能して室内空気を加熱する運転)を行う際には、熱源側流路切換機22が第2状態(図1の熱源側流路切換機22の破線を参照)に切り換えられ、かつ、利用側流路切換機32が第2状態(図1の利用側流路切換機32の破線を参照)に切り換えられる。
 すると、熱源側圧縮機21から吐出された熱源側冷媒は、熱源側流路切換機22を通じて冷媒-冷媒熱交換器25に送られる。冷媒-冷媒熱交換器25に送られた熱源側冷媒は、熱源側冷媒の放熱器として機能する冷媒-冷媒熱交換器25において、利用側冷媒と熱交換を行って冷却されることによって凝縮する。冷媒-冷媒熱交換器25において放熱した熱源側冷媒は、熱源側減圧機24によって減圧された後に、室外熱交換器23に送られる。室外熱交換器23に送られた熱源側冷媒は、熱源側冷媒の蒸発器として機能する室外熱交換器23において、室外ファン26によって供給される室外空気と熱交換を行って加熱されることによって蒸発する。室外熱交換器23において蒸発した熱源側冷媒は、熱源側流路切換機22を通じて熱源側圧縮機21に吸入されて、再び、熱源側圧縮機21から吐出される。
 一方、利用側圧縮機31から吐出された利用側冷媒は、利用側流路切換機32を通じて利用側ガス冷媒連絡管7に送られる。利用側ガス冷媒連絡管7に送られた利用側冷媒は、室内熱交換器52に送られる。室内熱交換器52に送られた利用側冷媒は、利用側冷媒の放熱器として機能する室内熱交換器52において、室内ファン53によって供給される室内空気と熱交換を行って冷却される。これによって、室内空気を加熱する暖房運転が行われる。室内熱交換器52において放熱した利用側冷媒は、室内減圧機51によって減圧された後に、利用側液冷媒連絡管6に送られる。利用側液冷媒連絡管6に送られた利用側冷媒は、利用側減圧機33によってさらに減圧された後に、冷媒-冷媒熱交換器25に送られる。冷媒-冷媒熱交換器25に送られた利用側冷媒は、利用側冷媒の蒸発器として機能する冷媒-冷媒熱交換器25において、熱源側冷媒と熱交換を行って加熱されることによって蒸発する。冷媒-冷媒熱交換器25において蒸発した利用側冷媒は、利用側流路切換機32を通じて利用側圧縮機31に吸入されて、再び、利用側圧縮機31から吐出される。
 -利用側冷媒が漏洩した場合-
 利用側回路30から利用側冷媒の漏洩が発生すると、冷媒センサ11が、利用側冷媒の漏洩を検知し、警報装置12が、利用側冷媒が漏洩した旨を報知するようになっている。
 尚、ここでは、利用側回路30に封入される利用側冷媒としての二酸化炭素の量が少なくなっているため、利用側冷媒が利用側回路30から漏洩した際に室内空間において到達するおそれのある二酸化炭素の濃度レベルを、利用側冷媒としての二酸化炭素の漏洩が発生した場合に講じるべき安全対策を1つで済ますことが可能な濃度レベルまで下げることができている。これにより、ここでは、安全対策として警報装置12だけを選定して設けている。
 (3)安全対策の選定
 次に、冷媒としての二酸化炭素の漏洩が発生した場合に講じるべき安全対策の選定について、図1~図5を用いて説明する。ここで、図3は、図1の空気調和システム1を構成するユニット2、5a~5j間を接続する配管系統の説明図である。図4は、冷媒として二酸化炭素を使用した場合における定格冷凍能力と冷媒連絡管の管径との関係を示す表である。図5は、空気調和システムの構成(一元冷凍サイクルA及び二元冷凍サイクルA)と冷媒としての二酸化炭素の量の関係を示す図である。
 空気調和システム1の利用側回路30のように、冷媒と室内空気とを熱交換させる複数の室内熱交換器を有する冷媒回路に封入される冷媒として二酸化炭素を使用する場合には、冷媒が冷媒回路から漏洩した際に室内空間において到達するおそれのある二酸化炭素の濃度レベルに応じて、安全対策を講じる必要がある。そして、安全対策を設けなくてもよい二酸化炭素の濃度レベルは、室内空間1m当たり0.074kg以下という条件であり、安全対策が1つだけでよい濃度レベルは、室内空間1m当たり0.074kgより大きく、かつ、0.18kg以下という条件であり、安全対策が2つ以上必要な濃度レベルは、室内空間1m当たり0.18kgより大きいという条件である。このため、安全対策を1つ以下で済ませるためには、室内空間1m当たり0.18kg以下という条件を満たす必要がある。尚、ここで、安全対策としては、冷媒が漏洩した旨を報知する警報装置の他、冷媒が漏洩した場合に冷媒の循環を遮断する遮断装置や、冷媒が漏洩した場合に室内熱交換器において熱交換された室内空気によって空調が行われる空間の換気を行う換気装置がある。
 ここで、定格冷凍能力2.8kW当たりの空調空間の床面積を20mとして、全床面積200mの複数の空調空間に対して定格冷凍能力が28kWの空気調和システムを設置する場合を想定して、複数の空調空間のうち空間容積が最も小さい空調空間に冷媒としての二酸化炭素が漏洩した際に、安全対策を1つ以下で済ませることが可能な冷媒(二酸化炭素)の量を算出する。ここで、「定格冷凍能力」とは、例えば、空気調和システム1を例にすると、製品カタログや取扱説明書に記載の室内ユニット5や熱搬送ユニット2の「定格冷房能力」や「呼称能力」と同等の値を意味する。まず、空間容積が最も小さい空調空間における天井高さを2.2mとする。すると、空調空間の空間容積は、44m(=20m×2.2m)となる。このため、安全対策を1つ以下で済ませるためには、7.9kg(=0.18kg/m×44m)以下という冷媒量の条件を満たす必要があることがわかる。また、安全対策を設けずに済ませるためには、3.3kg(=0.074kg/m×44m)以下という冷媒量の条件を満たす必要がある。一方、安全対策を2つ以上設けるのであれば、冷媒量が7.9kgよりも多くなってもよい。尚、この想定では、冷媒が漏洩する空調空間の空間容積をかなり小さく見積もっているため、冷媒量が上記の値よりも多い場合であっても、空調空間の空間容積が大きければ、安全対策を1つ以下で済ませることができる場合もあり得る。その意味では、ここで算出した冷媒量の値は、最も安全側の条件であり、この冷媒量の条件を満たせば、事実上、あらゆる空気調和システムにおいて、安全対策を1つ以下で済ませることができるものと言える。
 次に、空気調和システム1の利用側回路30に封入される利用側冷媒としての二酸化炭素の量について、熱搬送ユニット2に定格冷凍能力2.8kWの室内ユニット5(5a~5j)が10台接続された構成を例に挙げて説明する。利用側冷媒連絡管6、7の長さについては、利用側冷媒連絡母管61、71が50mであり、かつ、利用側冷媒連絡枝管62、72(62a~62j、72a~72j)の合計が20mであるものと想定する。また、利用側冷媒連絡管6、7の管径は、図4に示すように、定格冷凍能力に応じて選定して使用する。ここでは、利用側液冷媒連絡母管61として、2.5/8インチの呼び径の管を使用し、利用側液冷媒連絡枝管62として、1.5/8インチの呼び径の管を使用する。また、利用側ガス冷媒連絡母管71として、5/8インチの呼び径の管を使用し、利用側ガス冷媒連絡枝管72として、2.5/8インチの呼び径の管を使用する。すなわち、ここでは、定格冷凍能力の合計が28kW以下であるため、利用側液冷媒連絡管6として、2.5/8インチ以下の呼び径の管を使用し、利用側ガス冷媒連絡管7として、5/8インチ以下の呼び径の管を使用する。
 ここで、冷媒として二酸化炭素を使用する一元冷凍サイクルの空気調和システムにおいて、空気調和システム1と同じ冷凍能力(定格冷凍能力2.8kWの室内ユニットが10台)、及び、空気調和システム1と同じ管長さ及び管径の冷媒連絡管を有する一元冷凍サイクルの冷媒回路を想定して、この冷媒回路に封入される冷媒(二酸化炭素)の量を算出すると、冷媒量は、9.0kgとなる(図5の一元冷凍サイクルAの値を参照)。
 そして、この冷媒量をベースにして、二元冷凍サイクルの空気調和システム1の利用側回路30に封入される利用側冷媒(二酸化炭素)の量を算出すると、冷媒として二酸化炭素を使用する一元冷凍サイクルの空気調和システムに比べて、2.4kg少なくなり、利用側冷媒の量は、6.6kgとなる(図5の二元冷凍サイクルAの値を参照)。
 ここで、二元冷凍サイクルの空気調和システム1の利用側回路30に封入される利用側冷媒(二酸化炭素)の量が少なくできるのは、冷媒と室外空気とが熱交換を行う大型の室外熱交換器が、複数の室内熱交換器52を有していない熱源側回路10に設けられ、そして、利用側冷媒として二酸化炭素を使用する利用側回路30には、小型の冷媒-冷媒熱交換器25を設ければよいからである。すなわち、一元冷凍サイクルの空気調和システムを構成する室外熱交換器と二元冷凍サイクルの空気調和システム1を構成する冷媒-冷媒熱交換器25のうち利用側冷媒が流れる流路との容積差が、概ね冷媒量の差(=2.4kg)に対応している。
 このため、冷媒として二酸化炭素を使用する一元冷凍サイクルの空気調和システムでは、冷媒回路に封入される冷媒(二酸化炭素)の量が、7.9kgよりも多くなるため、安全対策が2つ以上必要である。一方、二元冷凍サイクルの空気調和システム1では、利用側回路30に封入される利用側冷媒(二酸化炭素)の量が、7.9kg以下にできるため、安全対策を1つで済ませることができる。
 そして、空気調和システム1では、安全対策として、上記のように、利用側冷媒の漏洩が発生した場合に利用側冷媒が漏洩した旨を発報する警報装置12を設けるようにしている。ここで、警報装置12としては、利用側冷媒が漏洩した旨の報知を音及び光によって行う仕様のものが必要となるが、他の安全対策(遮断装置や換気装置)を設ける必要がなないため、コストが安く、また、施工も容易である。
 これに対して、安全対策が2つ以上必要な場合(冷媒量が7.9kgよりも多くなる場合)には、警報装置だけでは足りず、遮断装置又は換気装置を設ける必要があるため、コストが高くなり、また、施工に手間がかかることになる。
 (4)特徴
 次に、空気調和システム1の特徴について説明する。
 <A>
 ここでは、上記のように、空気調和システム1が、熱源側回路10と利用側回路30とを含む二元冷凍サイクルを構成している。熱源側回路10は、熱源側冷媒を圧縮する熱源側圧縮機21と、熱源側冷媒と室外空気とを熱交換させる室外熱交換器23と、熱源側冷媒と利用側冷媒とを熱交換させる冷媒-冷媒熱交換器25と、を有している。利用側回路30は、利用側冷媒を圧縮する利用側圧縮機31と、冷媒-冷媒熱交換器25と、利用側冷媒と室内空気とを熱交換させる複数の室内熱交換器52と、を有しており、利用側冷媒として二酸化炭素が封入されている。そして、ここでは、利用側冷媒としての二酸化炭素の漏洩が発生した場合に講じるべき安全対策として、警報装置12、遮断装置及び換気装置のうち、警報装置12及び換気装置のいずれか1つを設けている。
 ここで、冷媒として二酸化炭素を使用する一元冷凍サイクルの空気調和システムは、冷媒回路に冷媒しての二酸化炭素と室外空気とが熱交換を行う室外熱交換器を有しており、冷媒回路において室外熱交換器が占める容積は、かなり大きい。しかも、冷媒として二酸化炭素を使用する一元冷凍サイクルの空気調和システムでは、その物性上、従来の冷媒(HFC冷媒等)に比べて効率が低く、特に、室外熱交換器を冷媒の放熱器として機能させ、かつ、室内熱交換器を冷媒の蒸発器として機能させる運転(冷房運転)において顕著である。このため、冷媒として二酸化炭素を使用する一元冷凍サイクルの空気調和システムでは、効率を向上させるために、室外熱交換器の伝熱面積を大きくしたり、圧縮過程の途中で冷媒を冷却する中間冷却器や室外熱交換器において放熱した冷媒をさらに冷却する過冷却器を設ける等の工夫が行われる。しかし、このような効率を向上させるための工夫を行うと、冷媒回路に封入される冷媒としての二酸化炭素の量が多くなってしまい、安全対策を減らすことが困難になる。
 そこで、ここでは、上記のように、複数の室内熱交換器52を有しており利用側冷媒として二酸化炭素が封入された利用側回路30と、冷媒-冷媒熱交換器25を介して利用側冷媒と熱交換を行う熱源側冷媒が封入された熱源側回路10と、を含む二元冷凍サイクルを構成している。このため、ここでは、冷媒として二酸化炭素を使用する一元冷凍サイクルとは異なり、冷媒と室外空気とが熱交換を行う室外熱交換器23が、複数の室内熱交換器52を有していない熱源側回路10に設けられ、そして、利用側冷媒として二酸化炭素を使用する利用側回路30には、冷媒-冷媒熱交換器25が設けられている。ここで、冷媒-冷媒熱交換器25は、冷媒と空気との熱交換を行う大型の熱交換器ではなく、2つの冷媒(ここでは、熱源側冷媒及び利用側冷媒)間の熱交換に適したプレート式や二重管式の熱交換器のような、小型の熱交換器を使用することができる。また、ここでは、冷媒として二酸化炭素を使用する一元冷凍サイクルとは異なり、熱源側回路10において、二酸化炭素よりも効率を高くすることが可能な物性を有する冷媒(R32やR1234yf等)を使用したり、中間冷却器や過冷却器を設ける等の効率を高める工夫を行うことによって、利用側回路30を含めた全体での効率を高めることもできる。これにより、ここでは、冷媒として二酸化炭素を使用する一元冷凍サイクルに比べて、利用側回路30に封入される利用側冷媒としての二酸化炭素の量を少なくすることができ、また、効率を高めることもできる。
 そして、ここでは、利用側回路30に封入される利用側冷媒としての二酸化炭素の量を少なくすることによって、利用側冷媒が利用側回路30から漏洩した際に室内空間において到達するおそれのある二酸化炭素の濃度レベルを、安全対策を1つで済ますことが可能な濃度レベル(室内空間1m当たり0.074kgより大きく、かつ、0.18kg以下という条件を満たす濃度レベル)まで下げるようにしている。尚、この濃度レベルを利用側回路30に封入される利用側冷媒としての二酸化炭素の量に換算すると、3.3kgより大きく、かつ、7.9kg以下となる。
 このように、ここでは、安全対策を1つで済ますことが可能な濃度レベルまで下げるとともに、上記のように、警報装置12、遮断装置及び換気装置のうち、警報装置12及び換気装置のいずれか1つを設けるようにしている。すなわち、ここでは、安全対策を1つに減らし、かつ、安全対策として遮断装置を設けないようしている。ここで、遮断装置は、利用側回路30に設けなければならない装置であり、また、遮断性能等の設置基準を満たす必要があるため、安全対策として遮断装置を設けずに済ませることは、コストや施工上で有効である。また、ここでは、警報装置12及び換気装置のうち警報装置12を設けている。すなわち、ここでは、安全対策として、警報装置12を設けて、換気装置を設けないようにしている。ここで、換気装置は、安全対策として設ける場合には、換気量や換気回数、換気開口の位置等の設置基準を満たす必要があるため、安全対策として換気装置を設けずに済ませることは、コストや施工上で有効である。
 このように、ここでは、冷媒としての二酸化炭素と室内空気とを熱交換させる複数の室内熱交換器52を有する空気調和システム1において、冷媒回路(利用側回路30)に封入される冷媒としての二酸化炭素の量を少なくして、安全対策を減らすことができる。
 <B>
 また、ここでは、上記のように、定格冷凍能力が28kWの場合であっても、すなわち、定格冷凍能力が28kW以下の場合において、利用側回路30のうち冷媒-冷媒熱交換器25と室内熱交換器52との間を接続する配管(利用側液冷媒連絡管6)として、従来よりも小さい2.5/8インチ以下の呼び径の管を使用し、利用側回路30のうち利用側圧縮機31と室内熱交換器52との間を接続する配管(利用側ガス冷媒連絡管7)として、従来よりも小さい5/8インチ以下の呼び径の管を使用している。
 このため、ここでは、利用側回路30に封入される利用側冷媒の量を減らすことができている。
 また、ここでは、上記のように、利用側液冷媒連絡管6として、定格冷凍能力が2.2kW~8.0kWの範囲において、1.5/8インチの呼び径の管を使用し、22.4kW~28.0kWの範囲において、2.5/8インチの呼び径の管を使用し、利用側ガス冷媒連絡管7として、定格冷凍能力が2.2kW~4.5kWの範囲において、2.5/8インチの呼び径の管を使用している。このように、ここでは、従来は冷媒管として使用されていない0.5/8インチ刻みの呼び径の管を使用しているため、冷媒管として使用可能な管のサイズを増やすことができ、冷媒管の最適化に寄与できる。
 (5)変形例
 <変形例1>
 上記実施形態では、室内熱交換器52として、円管からなる多数の伝熱管54を有するフィンアンドチューブ式の熱交換器を使用しており(図2参照)、利用側回路30に封入される利用側冷媒(二酸化炭素)の量は、6.6kgである(図5の二元冷凍サイクルAの値を参照)。
 これに対して、ここでは、室内熱交換器52として、円管からなる多数の伝熱管54を有する熱交換器ではなく、図6に示すように、扁平多孔管からなる多数の伝熱管56を有するマイクロチャンネル熱交換器を使用している。尚、ここでは、マイクロチャン熱熱交換器として、図2と同様に、多数の伝熱管56及び多数の伝熱フィン57を有するフィンアンドチューブ式の熱交換器を採用しているが、これに限定されるものではない。
 これにより、ここでは、室内熱交換器52の容積を小さくすることができ、利用側回路30に封入される利用側冷媒の量は、円管からなる多数の伝熱管54を有するフィンアンドチューブ式の熱交換器を使用する場合に比べて、0.5kg少なくなり、利用側冷媒の量は、6.1kgとなる(図7の二元冷凍サイクルBの値を参照)。
 このように、ここでは、室内熱交換器52をマイクロチャンネル熱交換器で構成しているため、室内熱交換器52の容積を小さくすることができ、これにより、利用側回路30に封入される利用側冷媒の量をさらに減らすことができる。
 尚、一元冷凍サイクルの空気調和システムにおいて、室内熱交換器としてマイクロチャンネル熱交換器を使用すると、二元冷凍サイクルAと二元冷凍サイクルBとの関係と同様に、一元冷凍サイクルAの場合の冷媒量(=9.0kg、図5参照)に比べて、0.5kg少なくなり、冷媒量は、8.5kgとなる(図7の一元冷凍サイクルBの値を参照)。しかし、この場合でも、冷媒量は、7.9kg以下にならないため、一元冷凍サイクルの空気調和システムを採用する限りは、安全対策を1つで済ませることはできないことがわかる。
 <変形例2>
 上記実施形態及び変形例1では、利用側回路30のうち利用側圧縮機31及び冷媒-冷媒熱交換器25が、熱源側回路10とともに、熱搬送ユニット2に設けられている(図1参照)。そして、利用側回路30に封入される利用側冷媒(二酸化炭素)の量は、変形例1の場合(室内熱交換器52をマイクロチャンネル熱交換器で構成する場合)、6.1kgである(図7の二元冷凍サイクルBの値を参照)。
 これに対して、ここでは、図8に示すように、熱搬送ユニット2を、室外ユニット3と、中間ユニット4とに分け、熱源側冷媒連絡管8、9を介して両ユニット3、4間が接続された構成を採用している。
 室外ユニット3は、室外に配置されている。図8に示すように、熱源側回路10のうち冷媒-冷媒熱交換器25を除く部分(熱源側圧縮機21、熱源側流路切換機22、室外熱交換器23、及び、熱源側減圧機24)が、室外ユニット3に設けられている。
 中間ユニット4は、図9に示すように、室内ユニット5への分岐部に近い位置に配置されている。図8に示すように、利用側回路30のうち利用側圧縮機31、利用側流路切換機32、冷媒-冷媒熱交換器25及び利用側減圧機33が、中間ユニット4に設けられている。
 熱源側液冷媒連絡管8は、室外熱交換器23と冷媒-冷媒熱交換器25との間を接続する配管の一部である。具体的には、熱源側液冷媒連絡管6は、熱源側減圧機24と冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路の液側との間を接続する配管である。熱源側ガス冷媒連絡管9は、熱源側圧縮機21と冷媒-冷媒熱交換器25との間を接続する配管の一部である。具体的には、熱源側ガス冷媒連絡管9は、熱源側流路切換機22と冷媒-冷媒熱交換器25のうち熱源側冷媒が流れる流路のガス側との間を接続する配管である。
 このように、ここでは、室外熱交換器23が、室外ユニット3に設けられており、冷媒-冷媒熱交換器25が、熱源側冷媒が流れる熱源側冷媒連絡管8、9を介して室外ユニット3に接続される中間ユニット4に設けられており、室内熱交換器52が、利用側冷媒が流れる利用側冷媒連絡管6、7を介して中間ユニット4に接続される室内ユニット5に設けられている。
 これにより、ここでは、冷媒-冷媒熱交換器25が設けられている中間ユニット4を、室内ユニット5への分岐部に近い位置に設けることができ、例えば、中間ユニット4から室内ユニット5に向かう利用側冷媒連絡管6、7の利用側冷媒連絡母管61、71の長さを10mまで短くすることができる。そうすると、利用側回路30に封入される利用側冷媒の量は、冷媒-冷媒熱交換器25が室外の熱搬送ユニット2に設けられている場合(利用側冷媒連絡母管61、71の長さが50mの場合)に比べて、1.1kg少なくなり、利用側冷媒の量は、5.0kgとなる(図10の二元冷凍サイクルCの値を参照)。
 このように、ここでは、冷媒-冷媒熱交換器25を室外ユニット3とは別の中間ユニット4に設けるようにしているため、冷媒-冷媒熱交換器25を室内ユニット5に近い位置に設けることができ、これにより、利用側回路30に封入される利用側冷媒の量をさらに減らすことができる。
 <C>
 上記実施形態及び変形例では、熱源側回路を1つ有する二元冷凍サイクルを採用しているが、これに限定されず、熱源側回路を複数有する多元冷凍サイクルであってもよい。
 <D>
 上記実施形態及び変形例では、冷暖房可能な構成を例に挙げて説明を行ったが、これに限定されるものではなく、冷房専用の構成であってもよい。
 以上、本開示の実施形態を説明したが、請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能であることが理解されるであろう。
 本開示は、冷媒としての二酸化炭素と室内空気とを熱交換させる複数の室内熱交換器を有する空気調和システムに対して、広く適用可能である。
 1  空気調和システム
 3  室外ユニット
 4  中間ユニット
 5  室内ユニット
 6  利用側液冷媒連絡管
 7  利用側ガス冷媒連絡管
 8  熱源側液冷媒連絡管
 9  熱源側ガス冷媒連絡管
 10 熱源側回路
 12 警報装置
 21 熱源側圧縮機
 23 室外熱交換器
 25 冷媒-冷媒熱交換器
 30 利用側回路
 31 利用側圧縮機
 56 扁平多孔管
国際公開第2011/099063号

Claims (6)

  1.  熱源側冷媒を圧縮する熱源側圧縮機(21)と、前記熱源側冷媒と室外空気とを熱交換させる室外熱交換器(23)と、前記熱源側冷媒と利用側冷媒とを熱交換させる冷媒-冷媒熱交換器(25)と、を有する熱源側回路(10)と、
     前記利用側冷媒を圧縮する利用側圧縮機(31)と、前記冷媒-冷媒熱交換器と、前記利用側冷媒と室内空気とを熱交換させる複数の室内熱交換器(52)と、を有しており、前記利用側冷媒として二酸化炭素が封入された利用側回路(30)と、
    を含む、多元冷凍サイクルを構成しており、
     前記利用側回路に封入される前記利用側冷媒の量を7.9kg以下にする、
    空気調和システム(1)。
  2.  前記利用側冷媒が漏洩した場合に前記利用側冷媒が漏洩した旨を報知する警報装置(12)、前記利用側冷媒が漏洩した場合に前記利用側冷媒の循環を遮断する遮断装置、及び、前記利用側冷媒が漏洩した場合に前記室内熱交換器において熱交換された前記室内空気によって空調が行われる空間の換気を行う換気装置のうち、前記警報装置及び前記換気装置のいずれか1つを設ける、
    請求項1に記載の空気調和システム。
  3.  前記警報装置及び前記換気装置のうち前記警報装置を設ける、
    請求項2に記載の空気調和システム。
  4.  前記室内熱交換器は、前記利用側冷媒が流れる伝熱管として扁平多孔管(56)を使用したマイクロチャンネル熱交換器である、
    請求項1~3のいずれか1項に記載の空気調和システム。
  5.  前記空気調和システムの定格冷凍能力が28kW以下の場合に、前記利用側回路のうち前記冷媒-冷媒熱交換器と前記室内熱交換器との間を接続する配管として、2.5/8インチ以下の呼び径の管を使用し、前記利用側回路のうち前記利用側圧縮機と前記室内熱交換器との間を接続する配管として、5/8インチ以下の呼び径の管を使用する、
    請求項1~4のいずれか1項に記載の空気調和システム。
  6.  前記室外熱交換器は、室外ユニット(3)に設けられており、
     前記冷媒-冷媒熱交換器は、前記熱源側冷媒が流れる熱源側冷媒連絡管(8、9)を介して前記室外ユニットに接続される中間ユニット(4)に設けられており、
     前記室内熱交換器は、前記利用側冷媒が流れる利用側冷媒連絡管(6、7)を介して前記中間ユニットに接続される室内ユニット(5)に設けられている、
    請求項1~5のいずれか1項に記載の空気調和システム。
PCT/JP2019/023941 2018-06-25 2019-06-17 空気調和システム WO2020004108A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19824978.1A EP3812662A4 (en) 2018-06-25 2019-06-17 AIR CONDITIONING SYSTEM
JP2020527411A JPWO2020004108A1 (ja) 2018-06-25 2019-06-17 空気調和システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018119780 2018-06-25
JP2018-119780 2018-06-25

Publications (1)

Publication Number Publication Date
WO2020004108A1 true WO2020004108A1 (ja) 2020-01-02

Family

ID=68986483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023941 WO2020004108A1 (ja) 2018-06-25 2019-06-17 空気調和システム

Country Status (3)

Country Link
EP (1) EP3812662A4 (ja)
JP (1) JPWO2020004108A1 (ja)
WO (1) WO2020004108A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250952A1 (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 空調機
WO2020250953A1 (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 空調機
WO2021065944A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 空気調和装置
CN113432196A (zh) * 2021-06-21 2021-09-24 深圳市科信通信技术股份有限公司 空调***
JP7235998B1 (ja) 2021-09-30 2023-03-09 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139012A (ja) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp 冷凍空調装置
JP2011106697A (ja) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp 空調室内機
WO2011099063A1 (ja) 2010-02-10 2011-08-18 三菱電機株式会社 空気調和装置
JP2013164246A (ja) * 2012-02-13 2013-08-22 Mitsubishi Electric Corp 熱交換器及び冷凍空調装置
JP2014020673A (ja) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp 冷凍装置
WO2016203507A1 (ja) * 2015-06-15 2016-12-22 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5642202B2 (ja) * 2011-01-26 2014-12-17 三菱電機株式会社 空気調和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139012A (ja) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp 冷凍空調装置
JP2011106697A (ja) * 2009-11-13 2011-06-02 Mitsubishi Electric Corp 空調室内機
WO2011099063A1 (ja) 2010-02-10 2011-08-18 三菱電機株式会社 空気調和装置
JP2013164246A (ja) * 2012-02-13 2013-08-22 Mitsubishi Electric Corp 熱交換器及び冷凍空調装置
JP2014020673A (ja) * 2012-07-18 2014-02-03 Mitsubishi Electric Corp 冷凍装置
WO2016203507A1 (ja) * 2015-06-15 2016-12-22 三菱電機株式会社 冷凍サイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3812662A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020250952A1 (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 空調機
WO2020250953A1 (ja) * 2019-06-12 2020-12-17 ダイキン工業株式会社 空調機
WO2021065944A1 (ja) * 2019-09-30 2021-04-08 ダイキン工業株式会社 空気調和装置
JPWO2021065944A1 (ja) * 2019-09-30 2021-04-08
CN113432196A (zh) * 2021-06-21 2021-09-24 深圳市科信通信技术股份有限公司 空调***
JP7235998B1 (ja) 2021-09-30 2023-03-09 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
WO2023054273A1 (ja) * 2021-09-30 2023-04-06 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置
JP2023051376A (ja) * 2021-09-30 2023-04-11 ダイキン工業株式会社 カスケードユニットおよび冷凍サイクル装置

Also Published As

Publication number Publication date
EP3812662A4 (en) 2021-08-04
JPWO2020004108A1 (ja) 2021-07-15
EP3812662A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2020004108A1 (ja) 空気調和システム
EP1703230B1 (en) Multi type air-conditioner and control method thereof
JP4952210B2 (ja) 空気調和装置
CN103221759B (zh) 空调机
JP5037838B2 (ja) 空気調和機
WO2012000323A1 (zh) 一种同时制冷和制热的一拖多空调
US9279591B2 (en) Air-conditioning apparatus
WO2016071955A1 (ja) 空気調和装置
JP2008121986A (ja) 空気調和装置
WO2015098157A1 (ja) 室外ユニット及び冷凍サイクル装置
WO2016079834A1 (ja) 空気調和装置
JP5277854B2 (ja) 空気調和装置
JP6576603B1 (ja) 空気調和装置
JP2010048506A (ja) マルチ型空気調和機
JP2012077949A (ja) コントローラ、調湿用制御部および空調処理システム
WO2017119138A1 (ja) 空気調和装置
JP2002243319A (ja) 空気調和装置
JP2010032167A (ja) 冷凍装置
JPWO2019198175A1 (ja) 冷凍サイクル装置
JP6537603B2 (ja) 空気調和装置
JP2000320914A (ja) 冷凍装置
JP2004170048A (ja) 空気調和装置
WO2019180817A1 (ja) 熱交換器、冷凍サイクル装置および空気調和装置
WO2021065677A1 (ja) 空気調和機
WO2023002522A1 (ja) 空気調和装置及び空気調和装置の設置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19824978

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020527411

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019824978

Country of ref document: EP

Effective date: 20210125