WO2019235800A1 - 연료전지 막가습기 - Google Patents

연료전지 막가습기 Download PDF

Info

Publication number
WO2019235800A1
WO2019235800A1 PCT/KR2019/006684 KR2019006684W WO2019235800A1 WO 2019235800 A1 WO2019235800 A1 WO 2019235800A1 KR 2019006684 W KR2019006684 W KR 2019006684W WO 2019235800 A1 WO2019235800 A1 WO 2019235800A1
Authority
WO
WIPO (PCT)
Prior art keywords
middle case
hollow fiber
fiber membrane
fluid
fuel cell
Prior art date
Application number
PCT/KR2019/006684
Other languages
English (en)
French (fr)
Inventor
김도우
김경주
이진형
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to US17/055,175 priority Critical patent/US20210151780A1/en
Priority to EP19815370.2A priority patent/EP3806211A4/en
Priority to JP2020563923A priority patent/JP2021524133A/ja
Priority to CN201980037758.3A priority patent/CN112236890A/zh
Publication of WO2019235800A1 publication Critical patent/WO2019235800A1/ko
Priority to JP2022042067A priority patent/JP7325163B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/0223Encapsulating hollow fibres by fixing the hollow fibres prior to encapsulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/033Specific distribution of fibres within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/02Specific tightening or locking mechanisms
    • B01D2313/025Specific membrane holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • B01D2313/201Closed housing, vessels or containers
    • B01D2313/2011Pressure vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/23Specific membrane protectors, e.g. sleeves or screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell membrane humidifier, and more particularly, to a fuel cell membrane humidifier capable of preventing a decrease in humidification efficiency caused by a pressure difference inside and outside the membrane humidifier.
  • a fuel cell is a power generation type battery which produces electricity by combining hydrogen and oxygen. Unlike general chemical cells such as batteries and accumulators, fuel cells can continue to produce electricity as long as hydrogen and oxygen are supplied. Fuel cells have twice the efficiency of internal combustion engines due to no heat loss.
  • the fuel cell is not only environmentally friendly but also has an advantage of reducing anxiety about resource depletion due to increased energy consumption.
  • Such fuel cells are classified into polymer electrolyte fuel cells (PEMFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells, depending on the type of electrolyte used. SOFC), alkaline fuel cell (AFC), and the like.
  • PEMFCs polymer electrolyte fuel cells
  • PAFCs phosphoric acid fuel cells
  • MCFCs molten carbonate fuel cells
  • SOFC sulfur oxide fuel cells
  • AFC alkaline fuel cell
  • Each of these fuel cells operates on essentially the same principle, but differs in the type of fuel used, operating temperature, catalyst, electrolyte, and the like.
  • the polymer electrolyte fuel cell is known to be most promising not only in small stationary power generation equipment but also in transportation systems because it can operate at a lower temperature than other fuel cells and can be miniaturized due to its high power density.
  • a polymer electrolyte membrane also called a proton exchange membrane
  • MEA membrane-electrode assembly
  • a method of humidifying a polymer electrolyte membrane includes 1) a bubbler humidification method in which water is supplied to a pressure vessel and a target gas is passed through a diffuser to supply moisture, and 2) a water content required for a fuel cell reaction is calculated. Direct injection to supply water directly to the gas stream pipe through the solenoid valve, and 3) membrane humidification to supply water to the gas fluid bed using a polymer membrane. Etc.
  • the membrane humidification method of humidifying the polymer electrolyte membrane by providing water vapor to the gas supplied to the polymer electrolyte membrane using a membrane that selectively permeates only the water vapor contained in the exhaust gas is advantageous in that the humidifier can be reduced in weight and size.
  • the selective permeable membrane used in the membrane humidification method is preferably a hollow fiber membrane having a large permeation area per unit volume when forming a module. That is, when the membrane humidifier is manufactured using the hollow fiber membrane, the high density of the hollow fiber membrane with a large contact surface area is possible, so that the humidification of the fuel cell can be sufficiently performed even with a small capacity, and the use of a low-cost material is possible.
  • the moisture and heat contained in the offgas discharged may be recovered and reused through a humidifier.
  • FIGS. 1 to 4 are cross-sectional views of a fuel cell membrane humidifier according to the prior art.
  • a hollow fiber membrane module 11 in which a plurality of hollow fiber membranes are accommodated is accommodated inside the middle case 10.
  • the hollow fiber membrane module 11 may be formed in the form of a cartridge.
  • a module insertion part 12 into which the hollow fiber membrane module 11 in the form of a cartridge is inserted is formed inside the middle case 10.
  • the module inserting portion 12 includes a plurality of partitions 12a and 12b.
  • the partition 12b that forms the outer portion of the module inserting portion 12 is substantially a part of the middle case 10.
  • the hollow fiber membrane module 11 is inserted into the module insertion part 12 so that both sides of the hollow fiber membrane module 11 are sandwiched between neighboring partitions 12a and 12b.
  • the middle case 10 includes a central dent part, and the inner wall of the central recess and the hollow fiber membrane module 11 are hermetically adhered to each other.
  • two fluid-flowing spaces are formed between the middle case 10 non-dent parts and the hollow fiber membrane modules 11 located on both sides of the central depression, respectively. (A, B) are isolated from each other.
  • the second fluid (ie, exhaust gas) discharged from the fuel cell stack (not shown) flows through the fluid inlet (not shown) formed in the middle case 10 and flows through the hollow fiber membrane module 11 from the blower.
  • Moisture exchange is performed with the first fluid (ie air) which is supplied and flows inside the hollow fiber membrane.
  • Reference numeral 20 denotes a cap case coupled to the middle case 10, and the cap case 20 is provided with a fluid inflow / outflow port 20a through which the first fluid flows in and out.
  • the shape change of the middle case 10 caused by the pressure gradient causes a gap G between the hollow fiber membrane module 11 and the inner wall of the middle case 10, and this gap G
  • the second fluid in the fluid flow space (A) flows directly into the fluid flow space (B) without passing through the hollow fiber membrane module (11). Since the second fluid that does not pass through the hollow fiber membrane module 11 does not contribute to the humidification through the hollow fiber membrane, there is a problem that the humidification efficiency is lowered.
  • FIGS. 1 to 4 illustrate that a second fluid (ie, exhaust gas) is introduced through a fluid inlet (not shown) of the middle case 10, the present invention is not limited thereto, and the fluid inlet of the middle case 10 is not limited thereto.
  • the first fluid that is, air
  • the second fluid discharged from the fuel cell stack may be introduced through the fluid inlet 20a of the cap case 20.
  • An object of the present invention is to provide a fuel cell membrane humidifier capable of preventing the deterioration in humidification efficiency caused by the pressure difference inside and outside the membrane humidifier.
  • Fuel cell membrane humidifier according to an embodiment of the present invention, the middle case having a module insertion portion therein; A cap case coupled with the middle case; A hollow fiber membrane module inserted into the module insertion unit; And a pressure buffer unit between the inner wall of the middle case and the module insert.
  • the module inserting portion includes an outermost partition spaced apart from an inner wall of the middle case, and the pressure buffer unit is disposed between the outermost partition wall and the inner wall of the middle case. It can be made of space.
  • the module inserting portion includes a plurality of partitions, and the plurality of partitions are formed inside the outermost partition wall and the outermost partition wall closest to the inner wall of the middle case.
  • the inner partition wall is disposed, and the pressure buffer unit may be formed as a space between the outermost partition wall and the inner wall of the middle case.
  • the fuel cell membrane humidifier according to an embodiment of the present invention may further include a connection part disposed between the outermost partition wall and the inner wall of the middle case to separate the space into first and second spaces separated from each other. have.
  • the hollow fiber membrane module may include one or more hollow fiber membrane bundles in which a plurality of hollow fiber membranes are integrated or one or more hollow fiber membrane cartridges in which a plurality of hollow fiber membranes are accommodated.
  • a fuel cell membrane humidifier includes a middle case and a cap case coupled to the middle case, and the middle case includes a middle case body into which the hollow fiber membrane module is inserted, and a detachment to the middle case body. And a middle case cover possibly coupled, wherein the space between the middle case body and the middle case cover forms a pressure buffer portion.
  • one or more fluid windows may be formed on at least one side of the middle case body.
  • the middle case cover may include a fluid inlet for the fluid flow or a fluid outlet for the fluid flow.
  • the hollow fiber membrane module may include one or more hollow fiber membrane bundles in which a plurality of hollow fiber membranes are integrated or one or more hollow fiber membrane cartridges in which a plurality of hollow fiber membranes are accommodated.
  • the hollow fiber membrane module may include a plurality of hollow fiber membrane cartridges, and a plurality of partition walls may be formed in the middle case body.
  • 1 to 4 is a view for explaining the problem of the fuel cell membrane humidifier according to the prior art.
  • 5 to 8 are various views of the fuel cell membrane humidifier according to an embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a portion of the middle case of the fuel cell membrane humidifier according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view illustrating a state in which a hollow fiber membrane module is disposed in a middle case of a fuel cell membrane humidifier according to an embodiment of the present invention.
  • 11 and 12 are cross-sectional views illustrating a fuel cell membrane humidifier according to another embodiment of the present invention.
  • the fuel cell membrane humidifier (hereinafter, also referred to as a membrane humidifier) according to an embodiment of the present invention includes a middle case 110 and a cap case 120.
  • the middle case 110 is combined with the cap case 120 to form an outer shape of the membrane humidifier.
  • the middle case 110 and the cap case 120 may be made of hard plastic or metal such as polycarbonate. 5 and 6, the middle case 110 and the cap case 120 may have a polygonal cross-sectional shape in a width direction.
  • the polygon may be a quadrangle, a square, a trapezoid, a parallelogram, a pentagon, a hexagon, or the like, and the polygon may have a rounded corner.
  • the cross-sectional shape in the width direction may be circular.
  • the middle case 110 has a second fluid inlet 111 for receiving a second fluid and a second fluid outlet 112 for discharging the second fluid, and a plurality of hollow fiber membranes are disposed inside the middle case 110.
  • the accommodated hollow fiber membrane module F is arrange
  • reference numeral 111 may be a second fluid outlet for discharging the second fluid
  • reference numeral 112 may be a second fluid inlet for receiving the second fluid. That is, any one of the reference numeral 111 and the reference numeral 112 may be the second fluid inlet, and the other may be the second fluid outlet.
  • reference numeral 111 denotes the second fluid inlet
  • reference numeral 112 illustrates the case of the second fluid outlet, but is not limited thereto.
  • the hollow fiber membrane module F may be a hollow fiber membrane bundle in which a plurality of hollow fiber membranes are integrated as shown in FIGS. 6 and 8, or hollow fiber membrane cartridges C in which the hollow fiber membranes or the hollow fiber membrane bundles are accommodated, as illustrated in FIGS. 5 and 7.
  • Can be. 5 and 7 illustrate that the plurality of hollow fiber membrane cartridges C form the hollow fiber membrane module F.
  • the present invention is not limited thereto, and the hollow fiber membrane module F may be formed of one hollow fiber membrane cartridge. have.
  • the hollow fiber membrane module F is formed of a plurality of cartridges C, and the present invention will be described by way of example the membrane humidifier of FIG. Substantially the same applies to the film humidifiers of FIG. 8.
  • the cartridges C having a circular or rectangular cross-sectional shape are illustrated, the shape of the cartridge C is not limited thereto.
  • the cap case 120 is coupled to each end of the middle case 110.
  • Each cap case 120 has a fluid inlet 121, one of which is a first fluid inlet and the other of which is a first fluid outlet.
  • the first fluid introduced into the fluid inlet 121 of the one side cap case 120 flows along the hollow of the hollow fiber membrane accommodated inside the hollow fiber membrane cartridge C (see FIG. 1), and then the fluid inlet and outlet of the other cap case 120.
  • the hollow fiber membrane is, for example, hollow of Nafion, polyetherimide, polyphenylsulfone, polyimide (PI), polysulfone (PS), polyethersulfone (PES) It can be a desert.
  • a first mesh part M1 allowing the second fluid introduced into the membrane humidifier through the second fluid inlet 111 to be introduced into the hollow fiber membrane cartridge C (FIG. 1).
  • a second mesh portion M2 (see FIG. 1) for allowing a second fluid, which has undergone water exchange in the hollow fiber membrane cartridge C, to flow out of the hollow fiber membrane cartridge C, is provided.
  • Each of the hollow fiber membrane cartridges C is inserted into the module inserting portion 210 so that both sides thereof are sandwiched between neighboring partitions 211 and 212 (see FIG. 9).
  • both sides of the hollow fiber membrane cartridge (C) may be formed with a locking jaw (not shown), when the hollow fiber membrane cartridge (C) is inserted into the module inserting portion 210, the locking jaw is inserted into the module It may be fitted over the partitions 211 and 212 forming the part 210.
  • Potting portions P filling the voids between the hollow fiber membranes are formed at both ends of the hollow fiber membrane cartridge C or the hollow fiber membrane bundle while binding the hollow fiber membranes.
  • both ends of the hollow fiber membrane module F are blocked by the potting part P, and a flow path through which the second fluid passes is formed therein.
  • the potting part P may not only fill the voids between the hollow fiber membranes, but also fix the hollow fiber membrane module F to the middle case 110.
  • the material of the potting part P is known and detailed description thereof will be omitted.
  • FIG. 9 is a cross-sectional view showing a portion of the middle case 110 of the fuel cell membrane humidifier according to an embodiment of the present invention. As shown in FIG. 9, the module insertion unit 210 and the pressure buffer unit 220 are formed in the middle case 110.
  • the module insertion unit 210 is inserted into the hollow fiber membrane cartridge (C) containing a plurality of hollow fiber membranes.
  • the module insertion unit 210 may be formed of a plurality of partitions 211 and 212 so that the plurality of hollow fiber membrane cartridges C may be inserted, respectively.
  • the inner wall 110a of the middle case is spaced apart from the partition 212 forming the outermost portion of the module inserting portion 210.
  • the space S between the outermost partition 212 and the inner wall 110a of the middle case forms a pressure buffer unit 220.
  • the pressure buffer part 220 may further include a connection part 221 disposed between the outermost partition wall 212 and the inner wall 110a of the middle case.
  • the connection part 221 may be formed over the circumference of the outermost partition wall 212.
  • the connection part 221 isolates the fluid flow space A and the fluid flow space B by separating the space S into first and second spaces which are isolated from each other, thereby allowing any of them through the fluid inlet 121.
  • the fluid introduced into one fluid flow space is allowed to flow to the other fluid flow space only through the hollow fiber membrane cartridge (C).
  • the inner partition 211 may be omitted.
  • the module insertion unit 210 may be made of only the outermost partition wall 212.
  • the pressures on both sides of the outermost partition wall 212 are substantially the same. Since pressure gradients are not formed at both sides of the outermost partition wall 212 by the pressure buffer unit 220, the outermost partition wall 212 is not deformed.
  • a hollow fiber membrane cartridge C is disposed between neighboring partitions 211 and 212, discharged from a fuel cell stack (not shown), and introduced through a second fluid inlet 111.
  • the second fluid is introduced into the cartridge C through the first mesh part M1 and flows out of the hollow fiber membrane to perform water exchange, and then flows out of the cartridge through the second mesh part M2.
  • the pressure P1 of the fluid flowing through the hollow fiber membrane cartridge C is the same, the pressure on both sides of the inner partition wall 211 is balanced so that deformation of the inner partition wall 211 does not occur.
  • the second fluid of the high pressure (P1) flows on one side through the hollow fiber membrane cartridge (C), the other side of the high pressure (P1 ') does not flow through the hollow fiber membrane cartridge (C)
  • a pressure gradient occurs due to a difference between the pressure P1 ′ of the second fluid flowing through the pressure buffer unit 220 and the atmospheric pressure P2 outside the middle case 110, so that the inner wall 110a of the middle case 110 is externally formed.
  • connection 221 suppresses such deformation (i.e., fluid flow spaces A and B are connected to the connection ( Still isolated by 221), thereby preventing the flow of the second fluid through the pressure buffer 220. Therefore, the airtightness between the outermost partition 212 and the hollow fiber membrane cartridge C is maintained, so that the second fluid does not flow between the outermost partition 212 and the hollow fiber membrane cartridge C. Meanwhile, the second fluid introduced into the pressure buffer part 220 flows into the hollow fiber membrane cartridge C after turning in the connection part 221.
  • a gap does not occur between the hollow fiber membrane cartridge C and the outermost partition 212, so that the fluid in the fluid flow space A does not pass through the hollow fiber membrane module F.
  • the flow to the fluid flow space B can be prevented, and as a result, the deterioration of the humidification efficiency can be prevented.
  • FIGS. 11 and 12 are cross-sectional views illustrating a fuel cell membrane humidifier according to another embodiment of the present invention.
  • the middle case 110 includes a middle case body 110a and a middle case cover 110b.
  • the second fluid inlet 111 through which the second fluid is supplied and the second fluid outlet 112 through which the second fluid is discharged are formed at both ends of the middle case 110, whereas in the present embodiment,
  • the middle case 110 includes a pair of middle case covers 110b having a second fluid inlet 111 and a second fluid outlet 112, respectively, and the middle case cover 110b is disposed on the middle case body 110a. Removably coupled.
  • the middle case body 110a and the middle case cover 110b are formed with fastening structures that can be coupled to or separated from each other by assembling.
  • a fitting groove (not shown) is formed in the middle case body 110a, and a fitting protrusion (not shown) is formed at an end portion of the middle case cover, and may be fastened and separated in an interference fit manner. Alternatively, it may be fastened and separated by screwing.
  • a hollow fiber membrane module including one or more hollow fiber membrane bundles or one or more hollow fiber membrane cartridges including a plurality of hollow fiber membranes is disposed, and a middle case cover on at least one side of the middle case body 110a
  • the second fluid introduced through the second fluid inlet 111 formed at 110b flows into the middle case body 110a and is formed through the second fluid outlet 112 formed at the middle case cover 110b.
  • One or more fluid windows 113 are formed which allow the two fluids to be discharged.
  • the fluid window 113 is formed at one side and the other side of the middle case body 110a, or as shown in FIG. 12, and is formed in plurality at one side of the middle case body 110a. Can be.
  • the middle case cover 110b includes a second fluid inlet 111 or a second fluid outlet 112.
  • the second fluid inlet 111 or the second fluid outlet 112 is illustrated in the center of the middle case cover 110b, but the second fluid inlet 111 or the second fluid outlet 112 is illustrated.
  • the position of may vary depending on the design. That is, the position of the second fluid inlet 111 or the second fluid outlet 112 may be adjusted according to a design environment such as an installation location and an installation space of the fuel cell and the fuel cell membrane humidifier.
  • the second fluid inlet 111 and the second fluid outlet 112 may be located at both sides of the middle case body 110a.
  • the second fluid inlet 111 and the second fluid inlet 111 may be disposed. 2 fluid outlet 112 may be located only on one side of the middle case body (110a).
  • a plurality of inner partitions 211 are formed in the middle case body 110a, and a part of the outer shape of the middle case body 110a performs the outermost partition wall 212.
  • the hollow fiber membrane cartridge C is inserted between the inner partition 211 and the inner partition 211 and between the inner partition 211 and the outermost partition 212.
  • the inner partition 211 and the outermost partition 212 form a module insertion unit 210, and a space between the middle case body 110a and the middle case cover 110b (more specifically, the outermost partition 212). ) And the space between the middle case cover 110b] (S) performs a function of the pressure buffer unit 220.
  • the inner partition 211 can be omitted.
  • the module insertion unit 210 may be made of only the outermost partition wall 212.
  • the pressure buffer unit 220 makes the pressures on both sides of the outermost partition wall 212 substantially the same. Since pressure gradients are not formed at both sides of the outermost partition wall 212 by the pressure buffer unit 220, the outermost partition wall 212 is not deformed.
  • the second fluid discharged from the fuel cell stack (not shown) and introduced into the second fluid inlet 111 flows into the cartridge C and flows outside the hollow fiber membrane. After water exchange is performed, it is spilled out of the cartridge. At this time, since the pressure P1 of the second fluid flowing through the hollow fiber membrane cartridge C is the same, the pressure on both sides of the inner partition 211 is in equilibrium so that deformation does not occur.
  • the second fluid of the high pressure (P1) flows through the hollow fiber membrane cartridge (C) on one side, the second fluid introduced into the second fluid inlet 111 on the other side (space S) Flows. Since the two fluids are the same fluid, the pressures on both sides of the outermost partition wall 212 are balanced so that deformation does not occur.
  • a high pressure fluid flows in the space S constituting the pressure buffer unit 220, and atmospheric pressure P2 exists outside the middle case cover 110b. Therefore, a pressure gradient occurs due to the pressure difference, so that deformation occurs in the outer direction of the middle case cover 110b.
  • deformation does not substantially affect the outermost partition 212, which is a part of the outer case of the middle case body 110a. Therefore, the airtightness of the outermost partition 212 and the hollow fiber membrane cartridge C is maintained, and a 2nd fluid does not flow out between the outermost partition 212 and the hollow fiber membrane cartridge C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 막가습기 내외부의 압력차에 의해 발생하는 가습 효율 저하를 방지할 수 있는 연료전지 막가습기에 관한 것으로, 본 발명의 실시예에 따른 연료전지 막가습기는, 내부에 모듈 삽입부를 갖는 미들 케이스; 상기 미들 케이스와 결합되는 캡 케이스; 상기 모듈 삽입부에 삽입된 중공사막 모듈; 및, 상기 미들 케이스의 내벽과 상기 모듈 삽입부 사이의 압력 버퍼부를 포함한다.

Description

연료전지 막가습기
본 발명은 연료전지 막가습기에 관한 것으로, 보다 구체적으로는 막가습기 내외부의 압력차에 의해 발생하는 가습 효율 저하를 방지할 수 있는 연료전지 막가습기에 관한 것이다.
연료 전지란 수소와 산소를 결합시켜 전기를 생산하는 발전(發電)형 전지이다. 연료 전지는 건전지나 축전지 등 일반 화학전지와 달리 수소와 산소가 공급되는 한 계속 전기를 생산할 수 있고, 열손실이 없어 내연기관보다 효율이 2배가량 높다는 장점이 있다.
또한, 수소와 산소의 결합에 의해 발생하는 화학 에너지를 전기 에너지로 직접 변환하기 때문에 공해물질 배출이 낮다. 따라서, 연료 전지는 환경 친화적일 뿐만 아니라 에너지 소비 증가에 따른 자원 고갈에 대한 걱정을 줄일 수 있다는 장점을 갖는다.
이러한 연료 전지는 사용되는 전해질의 종류에 따라 크게 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC), 인산형 연료 전지(PAFC), 용융 탄산염형 연료 전지(MCFC), 고체 산화물형 연료 전지(SOFC), 및 알칼리형 연료 전지(AFC) 등으로 분류할 수 있다.
이들 각각의 연료 전지는 근본적으로 동일한 원리에 의해 작동하지만 사용되는 연료의 종류, 운전 온도, 촉매, 전해질 등이 서로 다르다. 이 가운데서 고분자 전해질형 연료 전지는 다른 연료 전지에 비해 저온에서 동작한다는 점, 및 출력밀도가 커서 소형화가 가능하기 때문에 소규모 거치형 발전장비뿐만 아니라 수송 시스템에서도 가장 유망한 것으로 알려져 있다.
고분자 전해질형 연료 전지의 성능을 향상시키는데 있어서 가장 중요한 요인 중 하나는, 막-전극 접합체(Membrane Electrode Assembly: MEA)의 고분자 전해질 막(Polymer Electrolyte Membrane)[양성자 교환막(Proton Exchange Membrane)이라고도 지칭됨](PEM)에 일정량 이상의 수분을 공급함으로써 함수율을 유지하도록 하는 것이다. 고분자 전해질 막이 건조되면 발전 효율이 급격히 저하되기 때문이다.
고분자 전해질 막을 가습하는 방법으로는, 1) 내압용기에 물을 채운 후 대상 기체를 확산기(diffuser)로 통과시켜 수분을 공급하는 버블러(bubbler) 가습 방식, 2) 연료 전지 반응에 필요한 수분량을 계산하여 솔레노이드 밸브를 통해 가스 유동관(gas stream pipe)에 직접 수분을 공급하는 직접 분사(direct injection) 방식, 및 3) 고분자 분리막을 이용하여 가스의 유동층(gas fluid bed)에 수분을 공급하는 막 가습 방식 등이 있다.
이들 중에서도 배기 가스 중에 포함되는 수증기만을 선택적으로 투과시키는 막을 이용하여 수증기를 고분자 전해질 막에 공급되는 가스에 제공함으로써 고분자 전해질 막을 가습하는 막 가습 방식이 가습기를 경량화 및 소형화할 수 있다는 점에서 유리하다.
막 가습 방식에 사용되는 선택적 투과막은 모듈을 형성할 경우 단위 체적당 투과 면적이 큰 중공사막이 바람직하다. 즉, 중공사막을 이용하여 막가습기를 제조할 경우 접촉 표면적이 넓은 중공사막의 고집적화가 가능하여 소용량으로도 연료 전지의 가습이 충분히 이루어질 수 있고, 저가 소재의 사용이 가능하며, 연료 전지에서 고온으로 배출되는 배가스(offgas)에 포함된 수분과 열을 회수하여 가습기를 통해 재사용할 수 있다는 이점을 갖는다.
한편, 막가습기 가동시에 막가습기 내외부의 압력차에 의해 가습 효율이 저하되는 문제점이 발생한다. 이를 도 1 내지 도 4를 참조하여 설명한다.
도 1 내지 도 4는 종래 기술에 따른 연료전지 막가습기의 단면도이다. 설명의 편의를 위해, 도면에서 포팅부(P) 부분의 중공사막만 도시하였고, 나머지 부분의 중공사막은 생략해서 도시하였다. 종래 기술의 막가습기는 복수의 중공사막이 수용되는 중공사막 모듈(11)이 미들 케이스(10)의 내부에 수용된다. 도시된 바와 같이, 중공사막 모듈(11)은 카트리지 형태로 형성될 수 있다. 미들 케이스(10) 내부에는 카트리지 형태의 중공사막 모듈(11)이 삽입되는 모듈 삽입부(12)가 형성된다. 모듈 삽입부(12)는 복수개의 격벽(12a, 12b)을 포함한다. 여기서, 모듈 삽입부(12)의 외곽을 이루는 격벽(12b)은 실질적으로 미들 케이스(10)의 일부분이다.
도 2에 도시된 바와 같이, 중공사막 모듈(11)의 양 측면이 서로 이웃하는 격벽들(12a, 12b) 사이에 끼워지도록 중공사막 모듈(11)이 모듈 삽입부(12)에 삽입된다. 이때, 미들 케이스(10)는 중앙 함몰부(central dent part)을 구비하고, 상기 중앙 함몰부의 내벽과 중공사막 모듈(11)이 기밀하게 밀착된다. 그 결과, 상기 중앙 함몰부의 양 옆에 위치한 상기 미들 케이스(10) 비함몰부들(non-dent parts)과 중공사막 모듈들(11) 사이에 각각 형성되는 두 유체 유동공간들(fluid-flowing spaces)(A, B)은 서로 격리된다.
한편, 연료전지 스택(미도시)에서 배출된 제2 유체(즉, 배가스)는 미들 케이스(10)에 형성된 유체 유입구(미도시)를 통해 유입되어 중공사막 모듈(11)을 통해서 유동하면서 블로워로부터 공급되어 중공사막 내부를 유동하는 제1 유체(즉, 공기)와 수분 교환을 수행한다. 미설명 도면부호 20은 미들 케이스(10)와 결합되는 캡 케이스이며, 캡 케이스(20)에는 제1 유체가 유입/유출되는 유체 유입/유출 포트(20a)가 형성된다.
그러나, 고압의 운전 조건에서[즉, 유체 유입구(미도시)를 통해 미들 케이스(10) 내로 유입되는 제2 유체가 막가습기 외부의 대기압(P2)보다 큰 고압(P1)의 유체인 경우, 막가습기 내부와 외부 사이에 압력차가 발생하고, 막가습기 내부를 유동하는 제2 유체의 압력(P1)이 외부의 대기압(P2)보다 크므로, 막가습기 외부 방향으로 압력 구배가 형성되어 막가습기의 일부(특히, 미들 케이스(10)의 중앙 함몰부)는, 도 3에 도시된 바와 같이 막가습기 외부의 방향으로 변형이 발생한다. 한편, 미들 케이스(10) 내부에 존재하는 격벽들(12a)은 격벽 양측의 압력(P1)이 동일하므로, 압력 구배가 형성되지 않아서 변형이 발생하지 않는다.
도 4에 도시된 바와 같이, 압력 구배에 의해 발생하는 미들 케이스(10)의 형상 변경은 중공사막 모듈(11)과 미들 케이스(10) 내벽 사이에 갭(G)이 생기게 하고, 이러한 갭(G)을 통해 유체 유동공간(A)의 제2 유체는, 중공사막 모듈(11)을 통하지 않고 유체 유동공간(B)로 바로 유동하게 된다. 중공사막 모듈(11)을 통과하지 않은 제2 유체는 중공사막을 통한 가습에 아무런 기여를 하지 못하므로 가습 효율이 떨어지게 되는 문제가 있다.
한편, 도 1 내지 도 4에서는 미들 케이스(10)의 유체 유입구(미도시)를 통해 제2 유체(즉, 배가스)가 유입되는 것을 예시하였으나, 이에 한정되지 않고, 미들 케이스(10)의 유체 유입구(미도시)를 통해 제1 유체(즉, 공기)가 유입되고, 캡 케이스(20)의 유체 유입구(20a)를 통해 연료전지 스택(미도시)에서 배출된 제2 유체가 유입될 수도 있다.
본 발명은 막가습기 내외부의 압력차에 의해 발생하는 가습 효율 저하를 방지할 수 있는 연료전지 막가습기를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 연료전지 막가습기는, 내부에 모듈 삽입부를 갖는 미들 케이스; 상기 미들 케이스와 결합되는 캡 케이스; 상기 모듈 삽입부에 삽입된 중공사막 모듈; 및 상기 미들 케이스의 내벽과 상기 모듈 삽입부 사이의 압력 버퍼부를 포함한다.
본 발명의 일 실시예에 따른 연료전지 막가습기에 있어서, 상기 모듈 삽입부는 상기 미들 케이스의 내벽과 이격되어 있는 최외각 격벽을 포함하고, 상기 압력 버퍼부는 상기 최외곽 격벽과 상기 미들 케이스의 내벽 사이의 공간으로 이루어질 수 있다.
본 발명의 일 실시예에 따른 연료전지 막가습기에 있어서, 상기 모듈 삽입부는 복수의 격벽들을 포함하고, 상기 복수의 격벽들은 상기 미들 케이스의 내벽에 가장 근접한 최외곽 격벽과 상기 최외곽 격벽의 내측에 배치되는 내측 격벽을 포함하며, 상기 압력 버퍼부는 상기 최외곽 격벽과 상기 미들 케이스의 내벽 사이의 공간으로 이루어질 수 있다.
본 발명의 일 실시예에 따른 연료전지 막가습기는, 상기 최외각 격벽과 상기 미들 케이스의 내벽 사이에 배치되어 상기 공간을 서로 격리된 제1 및 제2 공간들로 분리하는 연결부를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 연료전지 막가습기에 있어서, 상기 중공사막 모듈은 복수의 중공사막들이 집적된 하나 이상의 중공사막 다발 또는 복수의 중공사막들이 수용된 하나 이상의 중공사막 카트리지를 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 막가습기는, 미들 케이스와 상기 미들 케이스와 결합되는 캡 케이스를 포함하며, 상기 미들 케이스는 중공사막 모듈이 삽입되는 미들 케이스 바디와, 상기 미들 케이스 바디에 착탈 가능하게 결합된 미들 케이스 커버를 포함하며, 상기 미들 케이스 바디와 상기 미들 케이스 커버 사이의 공간은 압력 버퍼부를 형성한다.
본 발명의 다른 실시예에 따른 연료전지 막가습기에 있어서, 상기 미들 케이스 바디의 적어도 일측면에는 하나 이상의 유체 윈도우가 형성될 수 있다.
본 발명의 다른 실시예에 따른 연료전지 막가습기에 있어서, 상기 미들 케이스 커버는 유체가 유입되는 유체 유입구 또는 유체가 유출되는 유체 유출구를 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 막가습기에 있어서, 상기 중공사막 모듈은 복수의 중공사막들이 집적된 하나 이상의 중공사막 다발 또는 복수의 중공사막들이 수용된 하나 이상의 중공사막 카트리지를 포함할 수 있다.
본 발명의 다른 실시예에 따른 연료전지 막가습기에 있어서, 상기 중공사막 모듈은 복수의 중공사막 카트리지들을 포함할 수 있고, 상기 미들 케이스 바디의 내부에는 복수개의 격벽들이 형성될 수 있다.
기타 본 발명의 다양한 측면에 따른 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명의 실시 형태에 따르면, 막가습기 내외부의 압력차에 의해 발생하는 가습 효율 저하를 방지할 수 있다.
도 1 내지 도 4는 종래 기술에 따른 연료전지 막가습기의 문제점을 설명하기 위한 도면이다.
도 5 내지 도 8은 본 발명의 일 실시예에 따른 연료전지 막가습기의 다양한 형태가 도시된 도면이다.
도 9는 본 발명의 일 실시예에 따른 연료전지 막가습기의 미들 케이스 일부가 도시된 단면도이다.
도 10은 본 발명의 일 실시예에 따른 연료전지 막가습기의 미들 케이스에 중공사막 모듈이 배치된 상태가 도시된 단면도이다.
도 11 및 도 12는 본 발명의 다른 실시예에 따른 연료전지 막가습기가 도시된 단면도이다.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 이하, 도면을 참조하여 본 발명의 실시예에 따른 연료전지 막가습기를 설명한다.
도 5 내지 도 8은 본 발명의 일 실시예에 따른 연료전지 막가습기의 다양한 형태가 도시된 도면이다. 도 5 내지 도 8에 도시된 바와 같이, 본 발명의 일 실시예에 따른 연료전지 막가습기(이하, '막가습기'라고도 함)는, 미들 케이스(110)와 캡 케이스(120)를 포함한다.
미들 케이스(110)는 캡 케이스(120)와 결합하여 막가습기의 외형을 형성한다. 미들 케이스(110)와 캡 케이스(120)는 폴리카보네이트 등의 경질 플라스틱이나 금속으로 이루어질 수 있다. 미들 케이스(110)와 캡 케이스(120)는, 도 5 및 도 6과 같이, 폭 방향 단면 형상이 다각형일 수 있다. 상기 다각형은 사각형, 정사각형, 사다리꼴, 평행사변형, 오각형, 육각형 등일 수 있으며, 상기 다각형은 모서리가 라운드진 형태일 수도 있다. 또는 도 7 및 도 8과 같이, 폭 방향 단면 형상이 원형일 수 있다. 상기 원형은 타원형일 수도 있다. 도 5 내지 도 8은 막가습기의 예시적인 형상일 뿐, 이에 한정되는 것은 아니다.
미들 케이스(110)는 제2 유체를 받아들이기 위한 제2 유체 유입구(111)와 제2 유체를 배출하기 위한 제2 유체 유출구(112)를 갖고, 미들 케이스(110) 내부에는 복수의 중공사막들이 수용된 중공사막 모듈(F)이 배치된다. 설계에 따라, 도면부호 111이 제2 유체를 배출하기 위한 제2 유체 유출구가 될 수 있고, 도면부호 112가 제2 유체를 받아들이기 위한 제2 유체 유입구가 될 수 있다. 즉, 도면부호 111과 도면부호 112 중 어느 하나가 제2 유체 유입구가 되고, 나머지 하나는 제2 유체 유출구가 될 수 있다. 이하의 설명에서, 도면부호 111은 제2 유체 유입구이고, 도면부호 112은 제2 유체 유출구인 경우를 예시하여 설명하나, 반드시 이에 한정되는 것은 아니다.
중공사막 모듈(F)은 도 6 및 도 8과 같이 복수의 중공사막들이 집적된 중공사막 다발이거나, 도 5 및 도 7과 같이 중공사막들 또는 중공사막 다발들이 수용된 중공사막 카트리지들(C)일 수 있다. 도 5 및 도 7에서 복수의 중공사막 카트리지들(C)이 중공사막 모듈(F)을 형성하는 것을 예시하였으나, 이에 한정되지 않고, 하나의 중공사막 카트리지로 중공사막 모듈(F)을 형성할 수도 있다. 이하에서는, 복수의 카트리지들(C)로 중공사막 모듈(F)을 형성하고, 폭 방향 단면 형상이 다각형인 도 5의 막가습기를 예시로 본 발명을 설명하지만, 본 발명의 기술적 특징들은 도 6 내지 도 8의 막가습기들에도 실질적으로 동일하게 적용될 수 있다. 또한, 원형 또는 사각형의 단면 형상을 갖는 카트리지들(C)이 예시되었으나, 카트리지(C)의 형상이 이에 한정되는 것은 아니다.
캡 케이스(120)는 미들 케이스(110)의 각 양단에 결합된다. 각각의 캡 케이스(120)에는 유체 출입구(121)가 형성되어 있으며, 이 중 하나는 제1 유체 유입구가 되고, 나머지 하나는 제1 유체 유출구가 된다. 일측 캡 케이스(120)의 유체 출입구(121)로 유입된 제1 유체는 중공사막 카트리지(C, 도 1 참조) 내부에 수용된 중공사막의 중공을 따라 흐른 후, 타측 캡 케이스(120)의 유체 출입구(121)로 빠져나가게 된다. 중공사막은, 예를 들어 나피온(Nafion) 재질, 폴리에테르이미드(polyetherimide) 재질, 폴리페닐설폰(polyphenylsulfone), 폴리이미드(PI), 폴리설폰(PS), 폴리에테르설폰(PES) 재질의 중공사막이 될 수 있다.
중공사막 카트리지(C)의 일단에는 제2 유체 유입구(111)를 통해 막가습기로 유입된 제2 유체가 중공사막 카트리지(C)의 내부로 유입될 수 있도록 하는 제1 메쉬부(M1, 도 1 참조)가 형성되고, 타단에는 중공사막 카트리지(C) 내부에서 수분 교환을 수행한 제2 유체가 중공사막 카트리지(C) 외부로 유출될 수 있도록 하는 제2 메쉬부(M2, 도 1 참조)가 형성될 수 있다. 중공사막 카트리지(C) 각각은 그 양 측면이 서로 이웃하는 격벽들(211, 212, 도 9 참조) 사이에 끼워지도록 모듈 삽입부(210)에 삽입된다. 또한, 선택적으로, 중공사막 카트리지(C)의 양 측면에는 걸림턱(미도시)이 형성될 수 있고, 중공사막 카트리지(C)가 모듈 삽입부(210)에 삽입될 때, 걸림턱은 모듈 삽입부(210)를 이루는 격벽(211, 212)에 걸쳐서 끼워질 수 있다.
중공사막 카트리지(C) 또는 중공사막 다발의 양단부에는 중공사막들을 결속하면서 중공사막들의 사이의 공극을 메우는 포팅부(P)가 형성된다. 이로써, 중공사막 모듈(F)의 양단부는 포팅부(P)에 막히어 그 내부에는 제2 유체가 통과하는 유로가 형성된다. 포팅부(P)는 중공사막들 사이의 공극을 메울 뿐만 아니라, 중공사막 모듈(F)을 미들 케이스(110)에 고정시킬 수 있다. 포팅부(P)의 재질은 공지된 바에 따른 것으로 본 명세서에서 자세한 설명은 생략한다.
도 9는 본 발명의 일 실시예에 따른 연료전지 막가습기의 미들 케이스(110) 일부가 도시된 단면도이다. 도 9에 도시된 바와 같이, 미들 케이스(110)의 내부에는 모듈 삽입부(210)와 압력 버퍼부(220)가 형성된다.
모듈 삽입부(210)에는 복수의 중공사막이 수용된 중공사막 카트리지(C)가 삽입된다. 모듈 삽입부(210)는 복수의 중공사막 카트리지(C)가 각각 삽입될 수 있도록 복수의 격벽(211, 212)으로 이루어질 수 있다.
미들 케이스의 내벽(110a)은 모듈 삽입부(210)의 최외곽을 이루는 격벽(212)과 이격되어 있다. 최외각 격벽(212)과 미들 케이스의 내벽(110a) 사이의 공간(S)은 압력 버퍼부(220)를 형성한다. 압력 버퍼부(220)는 최외각 격벽(212)과 미들 케이스의 내벽(110a) 사이에 배치된 연결부(221)를 더 포함할 수 있다. 연결부(221)는 최외각 격벽(212)의 둘레에 걸쳐 형성될 수 있다. 연결부(221)는 상기 공간(S)을 서로 격리된 제1 및 제2 공간들로 분리함으로써 유체 유동공간(A)과 유체 유동공간(B)를 격리시켜서 유체 출입구(121)를 통해 이들 중 어느 한 유체 유동공간으로 유입된 유체가 중공사막 카트리지(C)를 통해서만 다른 유체 유동공간으로 유동되도록 한다.
한편, 단일의 중공사막 카트리지(C)로 중공사막 모듈(F)을 이루는 경우, 내측 격벽(211)은 생략될 수 있다. 이 경우, 모듈 삽입부(210)는 최외각 격벽(212)으로만 이루어질 수 있다.
이와 같이 구성되는 압력 버퍼부(220)는 최외각 격벽(212) 양 측의 압력이 실질적으로 동일하게 한다. 압력 버퍼부(220)에 의해 최외각 격벽(212)의 양 측에는 압력 구배가 형성되지 않으므로, 최외각 격벽(212)은 변형되지 않는다.
이에 대해, 도 10을 참조하면, 이웃하는 격벽들(211, 212) 사이에 중공사막 카트리지(C)가 배치되고, 연료전지 스택(미도시)에서 배출되어 제2 유체 유입구(111)를 통해 유입된 제2 유체는, 제1 메쉬부(M1)를 통해 카트리지(C) 내부로 유입되어 중공사막 외부를 흐르면서 수분 교환을 수행한 후, 제2 메쉬부(M2)를 통해 카트리지 외부로 유출된다. 이때, 중공사막 카트리지(C)를 통해 유동하는 유체의 압력(P1)이 동일하므로, 내측 격벽(211) 양 측의 압력이 평형을 이루어서 상기 내측 격벽(211)의 변형이 발생하지 않는다.
한편, 최외곽 격벽(212)에서는, 일 측에는 중공사막 카트리지(C)를 통해 고압(P1)의 제2 유체가 유동하고, 타 측에서는 중공사막 카트리지(C)를 유동하지 않는 고압(P1')의 제2 유체가 유동한다. 최외곽 격벽(212) 양 측을 유동하는 제2 유체는 실질적으로 동일한 압력(P1=P1')을 가지므로, 최외곽 격벽(212) 양 측의 압력이 평형을 이루어서 상기 최외곽 격벽(212)의 변형이 발생하지 않는다. 압력 버퍼부(220)를 유동하는 제2 유체의 압력(P1')과 미들 케이스(110) 외부의 대기압(P2)의 차이에 의한 압력 구배가 생겨서 미들 케이스(110)의 내벽(110a)이 외부 방향으로 변형될 수도 있으나, 이러한 변형은 최외곽 격벽(212)에는 실질적인 영향을 주지 않을 뿐만 아니라, 상기 연결부(221)가 이러한 변형을 억제함으로써[즉, 유체 유동공간들 A와 B가 상기 연결부(221)에 의해 여전히 격리됨으로써] 상기 압력 버퍼부(220)를 통한 제2 유체의 흐름이 방지될 수 있다. 따라서, 최외곽 격벽(212)과 중공사막 카트리지(C) 사이의 기밀성은 유지되어, 제2 유체가 최외곽 격벽(212)과 중공사막 카트리지(C) 사이로 유출되지 않는다. 한편, 압력 버퍼부(220)로 유입된 제2 유체는 연결부(221)에서 터닝한 후, 중공사막 카트리지(C) 내부로 흐르게 된다.
따라서, 종래와는 달리 중공사막 카트리지(C)와 최외곽 격벽(212) 사이에 갭(gap)이 발생하지 않게 되어, 유체 유동공간(A)의 유체가 중공사막 모듈(F)을 통과하지 않고 유체 유동공간(B)로 유동하는 것을 방지할 수 있게 되고, 그 결과 가습 효율의 저하를 방지할 수 있게 된다.
다음, 도 11 및 도 12를 참조하여 본 발명의 다른 실시예에 따른 연료전지 막가습기를 설명한다. 도 11 및 도 12는 본 발명의 다른 실시예에 따른 연료전지 막가습기가 도시된 단면도이다.
본 실시예에 따른 연료전지 막가습기에서, 미들 케이스(110)는 미들 케이스 바디(110a)와 미들 케이스 커버(110b)를 포함한다. 전술한 일 실시예에서 미들 케이스(110)의 양단에 제2 유체가 공급되는 제2 유체 유입구(111)와 제2 유체가 배출되는 제2 유체 유출구(112)가 형성되는 반면, 본 실시예에서 미들 케이스(110)는 제2 유체 유입구(111)와 제2 유체 유출구(112)가 각각 형성된 한쌍의 미들 케이스 커버(110b)를 구비하고, 미들 케이스 커버(110b)는 미들 케이스 바디(110a)에 착탈 가능하게 결합된다. 미들 케이스 바디(110a)와 미들 케이스 커버(110b)에는 조립에 의해 서로 결합되거나 분리될 수 있는 체결 구조가 형성된다. 예를 들어, 미들 케이스 바디(110a)에 끼움홈(미도시)이 형성되고, 미들 케이스 커버의 단부에 끼움돌기(미도시)가 형성되어, 억지끼움 방식으로 체결 및 분리될 수 있다. 또는, 나사 결합 방식으로 체결 및 분리될 수 있다.
미들 케이스 바디(110a)의 내부에는 복수의 중공사막들로 이루어진 하나 이상의 중공사막 다발 또는 하나 이상의 중공사막 카트리지로 이루어진 중공사막 모듈이 배치되고, 미들 케이스 바디(110a)의 적어도 일 측면에는 미들 케이스 커버(110b)에 형성된 제2 유체 유입구(111)를 통해 유입된 제2 유체가 미들 케이스 바디(110a) 내부를 유동하게 하고, 미들 케이스 커버(110b)에 형성된 제2 유체 유출구(112)를 통해 제2 유체가 배출되도록 하는 하나 이상의 유체 윈도우(113)가 형성된다.
유체 윈도우(113)는, 도 11에 도시된 바와 같이, 미들 케이스 바디(110a)의 일측과 타측에 각각 형성되거나, 도 12에 도시된 바와 같이, 미들 케이스 바디(110a)의 일측에 복수개로 형성될 수 있다.
미들 케이스 커버(110b)는 제2 유체 유입구(111) 또는 제2 유체 유출구(112)를 포함한다. 도면에서는 제2 유체 유입구(111) 또는 제2 유체 유출구(112)가 미들 케이스 커버(110b)의 중앙에 형성되어 있는 것을 예시하고 있으나, 제2 유체 유입구(111) 또는 제2 유체 유출구(112)의 위치는 설계에 따라 달라질 수 있다. 즉, 연료전지와 연료전지 막가습기의 설치 위치 및 설치 공간 등의 설계 환경에 따라 제2 유체 유입구(111) 또는 제2 유체 유출구(112)의 위치는 조절되어 제조될 수 있다. 이때, 도 11과 같이 제2 유체 유입구(111) 및 제2 유체 유출구(112)가 미들 케이스 바디(110a)의 양측에 위치하도록 할 수 있으며, 도 12와 같이 제2 유체 유입구(111) 및 제2 유체 유출구(112)가 미들 케이스 바디(110a)의 일측에만 위치하도록 할 수 있다.
본 실시예에서 미들 케이스 바디(110a)의 내부에는 복수의 내측 격벽(211)이 형성되고, 미들 케이스 바디(110a)의 외형 일부는 최외곽 격벽(212) 기능을 수행한다. 중공사막 카트리지(C)는, 내측 격벽(211)과 내측 격벽(211) 사이 및 내측 격벽(211)과 최외곽 격벽(212) 사이에 삽입된다. 내측 격벽(211)과 최외곽 격벽(212)은 모듈 삽입부(210)를 이루고, 미들 케이스 바디(110a)와 미들 케이스 커버(110b) 사이의 공간[더욱 구체적으로는, 상기 최외곽 격벽(212)과 상기 미들 케이스 커버(110b) 사이의 공간](S)은 압력 버퍼부(220) 기능을 수행한다.
한편, 단일의 중공사막 카트리지로 중공사막 모듈(F)을 이루는 경우, 내측 격벽(211)은 생략될 수 있다. 이 경우, 모듈 삽입부(210)는 최외각 격벽(212)으로만 이루어질 수 있다.
압력 버퍼부(220)는 최외각 격벽(212) 양 측의 압력이 실질적으로 동일하게 한다. 압력 버퍼부(220)에 의해 최외각 격벽(212)의 양 측에는 압력 구배가 형성되지 않으므로, 최외각 격벽(212)은 변형되지 않는다.
이에 대해, 도 11 및 도 12를 참조하면, 연료전지 스택(미도시)에서 배출되어 제2 유체 유입구(111)로 유입된 제2 유체는, 카트리지(C) 내부로 유입되어 중공사막 외부를 흐르면서 수분 교환을 수행한 후, 카트리지 외부로 유출된다. 이때, 중공사막 카트리지(C)를 통해 유동하는 제2 유체의 압력(P1)이 동일하므로, 내측 격벽(211) 양 측의 압력은 평형을 이루어서 변형이 발생하지 않는다.
최외곽 격벽(212)에서는, 일 측에는 중공사막 카트리지(C)를 통해 고압(P1)의 제2 유체가 유동하고, 타 측(공간 S)에서는 제2 유체 유입구(111)로 유입된 제2 유체가 유동한다. 두 유체는 동일한 유체이므로 최외곽 격벽(212) 양 측의 압력은 평형을 이루어서 변형이 발생하지 않는다.
한편, 압력 버퍼부(220)를 이루는 공간(S)에는 고압의 유체가 유동하고, 미들 케이스 커버(110b) 외부에는 대기압(P2)이 존재한다. 따라서, 압력차에 의한 압력 구배가 생겨서 미들 케이스 커버(110b)의 외부 방향으로 변형이 발생하지만, 이러한 변형은 미들 케이스 바디(110a)의 외형 일부인 최외곽 격벽(212)에는 실질적인 영향을 주지 않는다. 따라서, 최외곽 격벽(212)과 중공사막 카트리지(C)의 기밀성은 유지되어, 제2 유체가 최외곽 격벽(212)과 중공사막 카트리지(C) 사이로 유출되지 않는다. 즉, 제2 유체 유입구(111)로 유입된 제2 유체는 유동 공간(A)에서 유동 공간(B)로 유출되지 않는다. 그 결과, 가습 효율의 저하를 방지할 수 있게 된다.
이상, 본 발명의 실시예들에 대하여 설명하였으나, 해당 기술 분야에서 통상의 지식을 가진 자라면 특허청구범위에 기재된 본 발명의 사상으로부터 벗어나지 않는 범위 내에서, 구성 요소의 부가, 변경, 삭제 또는 추가 등에 의해 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이며, 이 또한 본 발명의 권리범위 내에 포함된다고 할 것이다.

Claims (11)

  1. 내부에 모듈 삽입부를 갖는 미들 케이스;
    상기 미들 케이스와 결합되는 캡 케이스;
    상기 모듈 삽입부에 삽입된 중공사막 모듈; 및,
    상기 미들 케이스의 내벽과 상기 모듈 삽입부 사이의 압력 버퍼부
    를 포함하는 연료전지 막가습기.
  2. 제1항에 있어서,
    상기 모듈 삽입부는 상기 미들 케이스의 내벽과 이격되어 있는 최외각 격벽을 포함하고,
    상기 압력 버퍼부는 상기 최외곽 격벽과 상기 미들 케이스의 내벽 사이의 공간으로 이루어지는 연료전지 막가습기.
  3. 제1항에 있어서,
    상기 모듈 삽입부는 복수의 격벽들을 포함하고,
    상기 복수의 격벽들은 상기 미들 케이스의 내벽에 가장 근접한 최외곽 격벽과 상기 최외곽 격벽의 내측에 배치되는 내측 격벽을 포함하며,
    상기 압력 버퍼부는 상기 최외곽 격벽과 상기 미들 케이스의 내벽 사이의 공간으로 이루어지는 연료전지 막가습기.
  4. 제2항에 있어서,
    상기 최외각 격벽과 상기 미들 케이스의 내벽 사이에 배치되어 상기 공간을 서로 격리된 제1 및 제2 공간들로 분리하는 연결부를 더 포함하는 연료전지 막가습기.
  5. 제3항에 있어서,
    상기 최외각 격벽과 상기 미들 케이스의 내벽 사이에 배치되어 상기 공간을 서로 격리된 제1 및 제2 공간들로 분리하는 연결부를 더 포함하는 연료전지 막가습기.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 중공사막 모듈은 복수의 중공사막들이 집적된 하나 이상의 중공사막 다발 또는 복수의 중공사막들이 수용된 하나 이상의 중공사막 카트리지를 포함하는 연료전지 막가습기.
  7. 미들 케이스와 상기 미들 케이스와 결합되는 캡 케이스를 포함하며,
    상기 미들 케이스는 중공사막 모듈이 삽입되는 미들 케이스 바디와, 상기 미들 케이스 바디에 착탈 가능하게 결합된 미들 케이스 커버를 포함하며,
    상기 미들 케이스 바디와 상기 미들 케이스 커버 사이의 공간은 압력 버퍼부를 형성하는 연료전지 막가습기.
  8. 제7항에 있어서,
    상기 미들 케이스 바디의 적어도 일측면에는 하나 이상의 유체 윈도우가 형성된 연료전지 막가습기.
  9. 제7항에 있어서,
    상기 미들 케이스 커버는 유체가 유입되는 유체 유입구 또는 유체가 유출되는 유체 유출구를 포함하는 연료전지 막가습기.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서,
    상기 중공사막 모듈은 복수의 중공사막들이 집적된 하나 이상의 중공사막 다발 또는 복수의 중공사막들이 수용된 하나 이상의 중공사막 카트리지를 포함하는 연료전지 막가습기.
  11. 제10항에 있어서,
    상기 중공사막 모듈은 복수의 중공사막 카트리지들을 포함하고,
    상기 미들 케이스 바디의 내부에는 복수개의 격벽들이 형성되는 연료전지 막가습기.
PCT/KR2019/006684 2018-06-04 2019-06-04 연료전지 막가습기 WO2019235800A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/055,175 US20210151780A1 (en) 2018-06-04 2019-06-04 Membrane humidifier for fuel cell
EP19815370.2A EP3806211A4 (en) 2018-06-04 2019-06-04 FUEL CELL MEMBRANE HUMIDIFIER
JP2020563923A JP2021524133A (ja) 2018-06-04 2019-06-04 燃料電池膜加湿器
CN201980037758.3A CN112236890A (zh) 2018-06-04 2019-06-04 燃料电池膜加湿器
JP2022042067A JP7325163B2 (ja) 2018-06-04 2022-03-17 燃料電池膜加湿器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0064025 2018-06-04
KR20180064025 2018-06-04

Publications (1)

Publication Number Publication Date
WO2019235800A1 true WO2019235800A1 (ko) 2019-12-12

Family

ID=68769524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006684 WO2019235800A1 (ko) 2018-06-04 2019-06-04 연료전지 막가습기

Country Status (6)

Country Link
US (1) US20210151780A1 (ko)
EP (1) EP3806211A4 (ko)
JP (2) JP2021524133A (ko)
KR (1) KR102392264B1 (ko)
CN (1) CN112236890A (ko)
WO (1) WO2019235800A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057178A (ko) 2020-10-29 2022-05-09 한온시스템 주식회사 가습막 조립체 및 이를 포함하는 막가습기
KR20220057162A (ko) 2020-10-29 2022-05-09 한온시스템 주식회사 막가습기
KR20220082530A (ko) 2020-12-10 2022-06-17 한온시스템 주식회사 막가습기
KR20220089009A (ko) 2020-12-21 2022-06-28 한온시스템 주식회사 막가습기
KR102538321B1 (ko) * 2020-12-23 2023-06-01 엔브이에이치코리아(주) 연료전지 막가습기
WO2022146068A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
KR20220113184A (ko) 2021-02-05 2022-08-12 코오롱인더스트리 주식회사 연료전지 막가습기
KR20220127535A (ko) 2021-03-11 2022-09-20 코오롱인더스트리 주식회사 연료전지 막가습기
WO2022169351A1 (ko) 2021-02-05 2022-08-11 코오롱인더스트리 주식회사 연료전지 막가습기
KR20220127538A (ko) 2021-03-11 2022-09-20 코오롱인더스트리 주식회사 연료전지 막가습기
KR20220127537A (ko) 2021-03-11 2022-09-20 코오롱인더스트리 주식회사 연료전지 막가습기
KR20220127536A (ko) 2021-03-11 2022-09-20 코오롱인더스트리 주식회사 연료전지 막가습기
CN114156509A (zh) * 2021-12-20 2022-03-08 有研资源环境技术研究院(北京)有限公司 一种燃料电池的膜增湿器和燃料电池***
WO2023238968A1 (ko) * 2022-06-09 2023-12-14 엔브이에이치코리아(주) 연료전지 막가습기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032785B2 (ja) * 1979-02-17 1985-07-30 サンデン株式会社 冷凍あるいは冷蔵オ−プンショ−ケ−ス
KR101364354B1 (ko) * 2009-12-04 2014-02-18 코오롱인더스트리 주식회사 연료전지용 가습기
JP2016035895A (ja) * 2014-07-31 2016-03-17 現代自動車株式会社Hyundaimotor Company 燃料電池用膜加湿器の中空糸膜密集度分配装置
US20160322654A1 (en) * 2015-04-30 2016-11-03 Hyundai Motor Company Membrane humidifier for fuel cell
KR20180037390A (ko) * 2016-10-04 2018-04-12 현대자동차주식회사 연료전지용 가습기

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721185U (ja) * 1993-08-10 1995-04-18 株式会社ロキテクノ 中空糸膜浄水器
US5470469A (en) * 1994-09-16 1995-11-28 E. I. Du Pont De Nemours And Company Hollow fiber cartridge
JP2003065566A (ja) * 2001-08-24 2003-03-05 Honda Motor Co Ltd ガス加湿器およびガス加湿システム
JP2005156062A (ja) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd 加湿器
JP2007046801A (ja) * 2005-08-05 2007-02-22 Nissan Motor Co Ltd 加湿装置
JP2008041537A (ja) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2009016230A (ja) * 2007-07-06 2009-01-22 Toyota Motor Corp 加湿器及び燃料電池システム
JP2010107099A (ja) * 2008-10-30 2010-05-13 Honda Motor Co Ltd 加湿装置
JP2011141082A (ja) * 2010-01-07 2011-07-21 Honda Motor Co Ltd 加湿器
KR101185326B1 (ko) * 2010-03-31 2012-09-26 코오롱인더스트리 주식회사 연료전지용 가습기
KR101665718B1 (ko) * 2010-08-17 2016-10-12 코오롱인더스트리 주식회사 연료전지용 가습기
JP5690975B2 (ja) * 2011-12-29 2015-03-25 コーロン インダストリーズ インク 膜加湿器
KR101996477B1 (ko) * 2014-12-23 2019-07-04 코오롱인더스트리 주식회사 중공사막 카트리지형 가습 모듈 및 그 제조방법
KR102098641B1 (ko) * 2015-06-22 2020-04-08 코오롱인더스트리 주식회사 중공사막 모듈
CN205752394U (zh) * 2016-06-22 2016-11-30 江苏绿遥燃料电池***制造有限公司 一种紧凑型同时供阴阳极气体加湿的加湿器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032785B2 (ja) * 1979-02-17 1985-07-30 サンデン株式会社 冷凍あるいは冷蔵オ−プンショ−ケ−ス
KR101364354B1 (ko) * 2009-12-04 2014-02-18 코오롱인더스트리 주식회사 연료전지용 가습기
JP2016035895A (ja) * 2014-07-31 2016-03-17 現代自動車株式会社Hyundaimotor Company 燃料電池用膜加湿器の中空糸膜密集度分配装置
US20160322654A1 (en) * 2015-04-30 2016-11-03 Hyundai Motor Company Membrane humidifier for fuel cell
KR20180037390A (ko) * 2016-10-04 2018-04-12 현대자동차주식회사 연료전지용 가습기

Also Published As

Publication number Publication date
US20210151780A1 (en) 2021-05-20
CN112236890A (zh) 2021-01-15
EP3806211A4 (en) 2022-03-16
JP2021524133A (ja) 2021-09-09
EP3806211A1 (en) 2021-04-14
JP7325163B2 (ja) 2023-08-14
KR20190138288A (ko) 2019-12-12
JP2022091833A (ja) 2022-06-21
KR102392264B1 (ko) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2019235800A1 (ko) 연료전지 막가습기
WO2020180169A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2021107679A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2019132606A1 (ko) 유체의 흐름 방향 제어가 가능한 연료전지 막가습기
WO2019098642A2 (ko) 연료전지 막가습기
WO2022145692A1 (ko) 연료전지용 가습기
WO2022196963A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2022005089A1 (ko) 연료전지용 가습기
WO2022097870A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
KR20220162262A (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2023239058A1 (ko) 연료전지용 가습기의 미드-케이스 및 연료전지용 가습기
WO2024136389A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2023239057A1 (ko) 연료전지용 가습기의 미드-케이스 및 연료전지용 가습기
WO2023033418A1 (ko) 연료전지 막가습기
WO2022145791A1 (ko) 연료전지 막가습기
WO2022265294A1 (ko) 연료전지 막가습기
WO2022191606A1 (ko) 연료전지 막가습기
WO2023033343A1 (ko) 연료전지 막가습기
WO2023033393A1 (ko) 막가습기용 카트리지 및 이를 포함하는 연료전지 막가습기
WO2022245001A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2023243862A1 (ko) 연료전지용 가습기의 패킹부 및 연료전지용 가습기
WO2023033342A1 (ko) 연료전지 막가습기
WO2022191610A1 (ko) 연료전지 막가습기
WO2022191608A1 (ko) 연료전지 막가습기
WO2022164067A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815370

Country of ref document: EP

Effective date: 20210111