WO2019232920A1 - 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机 - Google Patents

用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机 Download PDF

Info

Publication number
WO2019232920A1
WO2019232920A1 PCT/CN2018/099446 CN2018099446W WO2019232920A1 WO 2019232920 A1 WO2019232920 A1 WO 2019232920A1 CN 2018099446 W CN2018099446 W CN 2018099446W WO 2019232920 A1 WO2019232920 A1 WO 2019232920A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
snap ring
main body
annular
partition member
Prior art date
Application number
PCT/CN2018/099446
Other languages
English (en)
French (fr)
Inventor
李奥
董文庆
汪新
何成进
Original Assignee
中船重工鹏力(南京)超低温技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中船重工鹏力(南京)超低温技术有限公司 filed Critical 中船重工鹏力(南京)超低温技术有限公司
Publication of WO2019232920A1 publication Critical patent/WO2019232920A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/003Filters

Definitions

  • the invention relates to the technical field of low-temperature refrigerators, in particular to a partition member for a cold storage device that can effectively separate cold storage materials and form an interference fit with the inner diameter of the tube of the cold storage device, and a low-temperature refrigerator using the same. .
  • Regenerative refrigerators include, for example, GM refrigerators and Stirling refrigerators. These refrigerators have a cylinder block and a moving piston that reciprocates inside.
  • the ultra-low temperature of about 4K uses a refrigerant gas such as helium, and a cold storage material is placed in the cold storage device to store cold energy. Since the cold storage materials need to be layered to prevent mixing, they are separated by partitions. If the dimensional accuracy of the outer peripheral surface of the partition member is not high, and a gap larger than the particle size is formed with the inner diameter of the regenerator cylinder, the cold storage materials on both sides of the partition member may be mixed. It is necessary to form the outer peripheral shape of the partition member with good dimensional accuracy so as not to form a gap between the outer peripheral surface of the partition member and the inner peripheral surface of the displacer.
  • An object of the present invention is to provide a partition member for a cold accumulator capable of effectively separating a cold storage material and forming an interference fit with an inner diameter of a cooler barrel, and a low-temperature refrigeration using the same machine.
  • a partition member for a cold accumulator characterized in that the partition member includes a ring-shaped body, a damping member, a filter assembly, and a ring-shaped snap ring, wherein the ring-shaped body is a centrally-opened groove, ring-shaped
  • the main body is used for accommodating a stacked filter module that prevents the passage of the cold storage material and allows the refrigerant gas to pass through.
  • the protruding portion of the ring-shaped retaining ring with a central opening and an inverted boss shape is embedded in the groove and presses the filter module.
  • a damping member for embedding the partition member in the regenerator cylinder is embedded between the annular body and the annular snap ring, and the outer diameter of the damping member is larger than the inner diameter of the regenerator cylinder so that the two fit in an interference fit.
  • the inner diameter of the inner wall surface of the main body of the annular main body is larger than the outer diameter of the filter module by 0.1 mm to 0.3 mm.
  • the outer diameter of the outer wall of the main body of the annular body and the outer diameter of the bottom extension of the annular snap ring are smaller than the inner diameter of the regenerator cylinder.
  • the inner diameter of the damping member is not smaller than the outer diameter of the protrusion of the annular snap ring and / or the inner diameter of the inner wall surface of the main body of the annular main body.
  • the filter assembly is arranged on the stepped surface of the groove and is embedded between the bottom surface and the stepped surface of the annular snap ring, so that the annular body and the annular snap ring are clamped from the axial sides of the filter assembly Filter components.
  • the filter assembly includes an axially stacked reinforcing member, a filtering member, and a reinforcing member; the reinforcing member is made of a circular wire mesh or a circular orifice plate, and the filtering member adopts 100 mesh to 200 mesh Made of circular wire mesh or circular felt.
  • the damping member is arranged on the top surface of the main body of the ring-shaped body, and the top surface of the main body, the bottom surface of the ring extension of the ring-shaped snap ring and the concave side wall of the ring of the convex portion of the ring-shaped snap ring constitute an insert In the area of the damping member, the damping member is embedded between the top surface of the main body and the bottom surface of the annular ring by axial pre-tensioning force of the annular main body and the annular snap ring.
  • the damping member is made of a ring-shaped 100-200 mesh wire mesh or a ring-shaped felt.
  • the low-temperature refrigerator includes a cylinder for placing a cold accumulator and expanding refrigerant gas, and is characterized in that the cold accumulator is provided with a refrigerant for dividing a cold storage material and a refrigerant.
  • a partition member through which gas can pass.
  • the low-temperature refrigerator is a cold-storage refrigerator having a partition member accommodated inside the cooler.
  • the low-temperature refrigerator includes a Stirling refrigerator and a Gifford-McMahon refrigerator.
  • the present invention has the following advantages:
  • the partition member of the present invention can effectively separate the cold storage material through the filter assembly, and the partition member forms an interference fit with the inner diameter of the regenerator cylinder through a damping member, so that the partition member and the regenerator cylinder can be eliminated without considering the processing accuracy of the partition member.
  • the gap between the inner diameters is convenient for processing and production installation.
  • FIG. 1 is a schematic structural sectional view of a partition member according to the present invention
  • Figure 2 is a schematic plan view of the partition member of the present invention.
  • FIG. 3 is a schematic structural cross-sectional view of an annular main body of a partition member according to the present invention.
  • FIG. 4 is a schematic plan view of a damping member of a partition member according to the present invention.
  • FIG. 5 is a schematic structural plan view of a filter assembly of a partition member according to the present invention.
  • FIG. 6 is a schematic cross-sectional structural view of a ring-shaped snap ring of a partition member of the present invention.
  • FIG. 7 is a schematic structural diagram of an ultra-low temperature refrigerator using a partition member of the present invention.
  • FIG. 8 is a sectional structural view of a second-stage regenerator in a GM refrigerator using the partition member of the present invention
  • FIG. 9 is a schematic cross-sectional structure diagram of the partition member region of the present invention in FIG. 8.
  • a partition member for a cold accumulator the partition member 30 includes a ring-shaped body 31, a damper 32, a filter assembly 33, and a ring-shaped snap ring 34, the ring-shaped body 31 is A centrally-opened groove, the ring-shaped body 31 is used to receive a protruding portion of a ring-shaped retaining ring 34 having a central opening and an inverted boss-like shape.
  • the damping member 32 which is inserted into the groove and presses the filter assembly 33, is used to embed the partition member 30 in the regenerator cylinder 12d between the annular body 31 and the annular snap ring 34, and the damping member 32
  • the outer diameter of the ring body 31 is larger than the inner diameter of the cooler cylinder 12d so that the two are in an interference fit.
  • the inner diameter of the inner wall surface 312 of the ring body 31 is 0.1 mm to 0.3 mm larger than the outer diameter of the filter assembly 33.
  • the outer diameter of the outer side wall 311 and the outer diameter of the bottom extension of the annular snap ring 34 are both smaller than the inner diameter of the regenerator cylinder 12d, and the inner diameter of the damping member 32 is not smaller than the outer diameter of the protrusion of the annular snap ring 34 and / or The inner diameter of the main body inner wall surface 312 of the ring-shaped main body 31.
  • the filter assembly 33 is provided on the stepped surface 313 of the groove and is embedded between the bottom surface 342 and the stepped surface 313 of the annular snap ring 34 so that the annular body 31 and the annular snap ring 34 clamps the filter module 33 from both sides of the filter module 33 in the axial direction;
  • the filter module 33 includes an axially stacked reinforcing member 33a, a filtering member 33b, and a reinforcing member 33a, and the reinforcing member 33a uses a circular wire mesh or a circular orifice plate
  • the filter element 33b is made of a circular mesh with a mesh of 100 to 200 or a circular felt.
  • the damping member 32 is disposed on the main body top surface 314 of the ring-shaped body 31, and the main body top surface 314, the ring-shaped extension bottom surface 343 of the ring-shaped snap ring 34, and the ring-shaped recessed side wall of the protrusion of the ring-shaped snap ring 34.
  • 341 constitutes a region in which the damping member 32 is embedded.
  • the axial preload of the annular body 31 and the annular snap ring 34 causes the damping member 32 to be embedded between the top surface 314 of the main body and the bottom surface 343 of the snap ring. 32 It is made by stacking ring-shaped 100-200 mesh wire mesh or ring felt.
  • a low-temperature refrigerator using a partition member includes a cylinder 13 for placing a cold accumulator and expanding the refrigerant gas, and a cold storage material is placed in the cold accumulator to divide the cold storage material and refrigerate.
  • the partition member 30 through which the agent gas can pass.
  • the above-mentioned low-temperature refrigerator is a cold-storage refrigerator having a partition member 30 accommodated inside the cooler.
  • the low-temperature refrigerator includes a Stirling refrigerator and a Gifford-McMahon refrigerator.
  • FIG. 7 is a schematic structural diagram of a low-temperature refrigerator according to an embodiment of the present invention.
  • the refrigerator includes a compressor 1, a casing assembly 2, a gas pipeline 3, a cylinder 13, a first-stage shifting piston 11, and a second-stage shifting piston 12.
  • the compressor 1 sucks and compresses refrigerant gas to make it a high pressure
  • the refrigerant gas is discharged, and the gas pipeline 3 supplies the high-pressure refrigerant gas to the cover assembly 2;
  • the cylinder 13 is a two-stage type cylinder, the body is made of 304 stainless steel, and is arranged coaxially.
  • the first-stage pusher piston 11 and the second-stage pusher piston 12 are coaxially connected, and driven by a driving mechanism (not shown) together in the cylinder 13 in the direction of Z1 to Z2, and the first-stage pusher piston 11 and the second-stage pusher
  • a driving mechanism not shown
  • the piston 12 moves upward (direction Z1) in the figure, the volumes of the primary expansion cavity 9 and the secondary expansion cavity 10 increase. Conversely, the volume of the corresponding expansion cavity becomes smaller.
  • the incoming refrigerant gas passes through the first-stage piston front hole 11a to perform heat exchange with the first-stage cold storage material 11c inside the first-stage pushing piston 11 and then flows out from the first-stage piston rear hole 11b;
  • the gas expands in the primary expansion cavity 9, and the remaining gas flows into the secondary shift piston 12 through the secondary piston front hole 12a, exchanges heat with the secondary cold storage material 12c inside it, and then flows out from the exhaust port 12b.
  • the refrigerant gas in the process transfers its own heat to the cold storage material, and the temperature changes from normal temperature to low temperature.
  • the cylinder 13 and the one-stage shift piston 11 and the two-stage shift piston 12 are continuously lowered to form a temperature gradient.
  • the returning gas is opposite to the above-mentioned flow process.
  • the refrigerant gas flows out from the secondary expansion chamber 10, performs heat exchange through the exhaust port 12b and the secondary cold storage material 12c in the secondary shift piston 12, and flows out from the secondary piston front hole 12a.
  • the refrigerant gas absorbs heat from the cold storage material and changes from low temperature to normal temperature.
  • the primary cold storage material 11c, the secondary cold storage material 12c, and the refrigerant gas are cooled.
  • the low-temperature gas is continuously expanded to perform work in the primary expansion cavity 9 and the secondary expansion cavity 10 to form a refrigeration source.
  • the blocking member 30 in the two-stage shift piston 12 will be described in detail below.
  • the secondary cold storage material 12c is generally divided into two parts: the secondary hot storage material 12c1 and the secondary cold storage material 12c2, and are stored in the cold storage.
  • Device secondary displacement piston 12
  • the two-stage push piston 12 has a two-stage piston front hole 12a in the upper part, an exhaust port 12b in the lower part, and a two-stage cold storage material 12c to form a porous channel, forming a through gas path.
  • Three blocking members 30 are installed in the two-stage pushing piston 12 to fasten the secondary hot-end cold-storage material 12c1 and the secondary cold-side cold-storage material 12c2 respectively inside; the blocking member 30 allows refrigerant gas to flow through, but No cold storage material allowed.
  • the partition member 30 is composed of an annular body 31, a damping member 32, a filter assembly 33, and an annular snap ring 34.
  • the ring-shaped body 31 and the ring-shaped snap ring 34 each have a central opening, and provide a flow path of the refrigerant gas.
  • the ring-shaped body 31 is a centrally-opened groove and has a recessed stepped surface 313.
  • the filter module 33 can be stacked on this stepped surface 313.
  • the filter module 33 can pass refrigerant gas and can simultaneously
  • the cold storage material 12c is prevented from passing through;
  • the filter 33b is made of a wire mesh of 100 mesh to 200 mesh or a soft felt.
  • the filter element 33b is installed above and below with a stiffer reinforcing element 33a.
  • the reinforcing element 33a is made of a coarse-mesh wire mesh or an orifice plate.
  • the inner diameter of the main body inner wall surface 312 of the ring-shaped body 31 is larger than the outer diameter D3 of the filter assembly 33 by about 0.1 mm to 0.3 mm, which is convenient for processing and production and installation; the ring-shaped recessed side wall 341 of the ring-shaped snap ring 34 and the ring-shaped body
  • the inner wall surface 312 of the main body 31 is an interference fit.
  • one of the ring-shaped body 31 and the ring-shaped retaining ring 34 is made of stainless steel, and the other is made of a soft aluminum alloy.
  • the annular snap ring 34 is pressed into the annular main body 31 so that a pre-tensioning force is formed along the stacking direction, and the filter assembly 33 is laminated together by the pre-tensioning force.
  • the bottom surface 342 of the snap ring 34 The filter assembly 33 is pressed against the step surface 313.
  • the damping member 32 is made of a ring-shaped metal mesh with a mesh of 100 to 200 mesh or a soft-textured ring felt.
  • the damping member 32 is installed below the bottom surface 343 of the ring extension of the ring snap ring 34 and relies on the ring to be concave.
  • the side wall 341 supports the inner side of the damping member 32 itself; similarly, relying on the pre-tensioning force of the annular body 31 and the annular snap ring 34 described above, the laminated damping member 32 rests on the top of the main body of the annular body 31 The surface 314 compresses the damping member 32.
  • the outer diameter D2 of the damping member 32 is larger than the inner diameter D1 of the cooler cylinder 12d, and the material of the damping member 32 is relatively soft, and can be easily pressed into the cooler cylinder 12d, so that the entire partition member 30 and the cooler cylinder 12d are formed.
  • the interference fit, the pre-tightening force formed by the interference fit can better restrain the partition member 30 to prevent relative movement within the cooler barrel 12d.
  • the middle portion of the partition member 30 is formed with a passage through which gas can pass, but the cold storage material cannot pass.
  • the peripheral dimension of the partition member 30 is only required to be smaller than the inner diameter D1 of the regenerator cylinder 12d, and the processing accuracy is small.
  • the damping member 32 is soft in texture and can be easily pressed into the regenerator cylinder 12d, so the processing accuracy is not high; and the partition member can be firmly fixed in the inner cavity of the regenerator cylinder 12d.
  • the partition member 30 according to the present invention is not limited to a partition member for partitioning a cold storage material stored in a GM refrigerator, but can be applied to cold storage for partitioning a cold storage tube (corresponding to a cold storage device in the present invention) stored in a pulse tube refrigerator.
  • Materials such as materials that are stored in the cold accumulators of various refrigerators or the cold storage materials of the cold storage tubes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)

Abstract

一种用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机,隔断构件(30)包括环状主体(31)、阻尼件(32)、过滤组件(33)和环状卡环(34),环状主体(31)为中央开口的凹槽,环状主体(31)用于容纳过滤组件(33),环状卡环(34)的凸出部嵌入凹槽内并压住过滤组件(33),用于将隔断构件(30)嵌置在蓄冷器筒体(12d)内的阻尼件(32)嵌置在环状主体(31)和环状卡环(34)之间,且阻尼件(32)的外径大于蓄冷器筒体(12d)的内径,隔断构件(30)与蓄冷器筒体(12d)的内径形成过盈配合。低温制冷机包括内置有隔断构件(30)的蓄冷器。

Description

用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机 技术领域
本发明涉及低温制冷机技术领域,具体地说是一种能有效的分隔蓄冷材料且与蓄冷器筒体的内径形成过盈配合的用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机。
背景技术
蓄冷式制冷机,例如,包括GM制冷机、斯特林制冷机。这些制冷机具有缸体和在其内部进行往复运动的推移活塞。例如,4K左右的超低温,采用利用氦气等制冷剂气体,蓄冷材料放置于的蓄冷器内,用于储藏冷能。由于蓄冷材料需要分层,防止混合在一起,采用隔断部件将其进行分隔开。若分隔部件的外周面的尺寸精度不高,与蓄冷器筒体内径形成有大于颗粒尺寸的间隙,分隔部件两侧的蓄冷材料可能出现混合现象。需要尺寸精度良好地制作分隔部件的外周形状,以免在分隔部件的外周面与置换器的内周面之间形成间隙。
发明内容
本发明的目的是针对现有技术存在的问题,提供一种能有效的分隔蓄冷材料且与蓄冷器筒体的内径形成过盈配合的用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机。
本发明的目的是通过以下技术方案解决的:
一种用于蓄冷器的隔断构件,其特征在于:所述的隔断构件包括环状主体、阻尼件、过滤组件和环状卡环,所述的环状主体为中央开口的凹槽,环状主体用于容纳具有阻止蓄冷材料通过且能够使制冷剂气体通过的层叠的过滤组件,呈中央开口、倒置凸台状的环状卡环的凸出部嵌入凹槽内并压住过滤组件,用于将隔断构件嵌置在蓄冷器筒体内的阻尼件嵌置在环状主体和环状卡环之间,且阻尼件的外径大于蓄冷器筒体的内径使得两者过盈配合。
所述环状主体的主体内壁面的内径比过滤组件的外径大0.1mm~0.3mm。
所述环状主体的主体外侧壁的外径和环状卡环的底部外延部的外径皆小于蓄冷器筒体的内径。
所述阻尼件的内径不小于环状卡环的凸出部外径和/或环状主体的主体内壁面的内径。
所述的过滤组件设置在凹槽的台阶面上并嵌置在环状卡环的卡环底面和台阶面之 间,使得环状主体和环状卡环从过滤组件的轴向两侧夹住过滤组件。
所述的过滤组件包括轴向层叠的加强件、过滤件和加强件;所述的加强件采用圆形金属丝网或者圆形孔板制作而成,所述的过滤件采用100目~200目的圆形金属丝网或者是圆形毛毡制作而成。
所述的阻尼件设置在环状主体的主体顶面上,且主体顶面、环状卡环的卡环外延底面以及环状卡环的凸出部的卡环内凹侧壁构成一个嵌置阻尼件的区域,通过环状主体和环状卡环的轴向预紧力使得阻尼件嵌置在主体顶面和卡环外延底面之间。
所述的阻尼件采用环状的100目~200目的金属丝网层叠起来或环状毛毡制作而成。
一种采用隔断构件的低温制冷机,所述的低温制冷机包括用于放置蓄冷器并使制冷剂气体膨胀的气缸,其特征在于:所述的蓄冷器内放置有用于分割蓄冷材料且制冷剂气体能够通过的隔断构件。
所述的低温制冷机为具有容纳于蓄冷器内部的隔断构件的蓄冷式制冷机,该低温制冷机包括斯特林型制冷机、吉福德-麦克马洪型制冷机。
本发明相比现有技术有如下优点:
本发明的隔断构件通过过滤组件能有效的分隔蓄冷材料且分隔部件通过阻尼件与蓄冷器筒体的内径形成过盈配合,从而不必考虑隔断构件的加工精度,就可消除隔断构件与蓄冷器筒体内径之间的间隙,便于加工和制作安装。
附图说明
附图1为本发明的隔断构件截面结构示意图;
附图2为本发明的隔断构件俯视结构示意图;
附图3为本发明的隔断构件的环状主体截面结构示意图;
附图4为本发明的隔断构件的阻尼件平面结构示意图;
附图5为本发明的隔断构件的过滤组件平面结构示意图;
附图6为本发明的隔断构件的环状卡环截面结构示意图;
附图7为采用本发明的隔断构件的超低温制冷机的构成示意图;
附图8为采用本发明的隔断构件的GM制冷机中的第二级蓄冷器的截面结构图;
附图9为附图8中涉及本发明的隔断构件区域的截面结构示意图。
其中:1—压缩机;2—罩体组件;3—气体管路;7—密封环;8—热腔;9—一级膨胀腔;10—二级膨胀腔;11—一级推移活塞;11a—一级活塞前孔;11b—一级活塞后孔; 11c—一级蓄冷材料;12—二级推移活塞;12a—二级活塞前孔;12b—排气口;12c—二级蓄冷材料;12c1—二级热端蓄冷材料;12c2—二级冷端蓄冷材料;12d—蓄冷器筒体;13—气缸;13b—二级换热器;30—隔断构件;31—环状主体;311—主体外侧壁;312—主体内壁面;313—台阶面;314—主体顶面;32—阻尼件;33—过滤组件;33a—加强件;33b—过滤件;34—环状卡环;341—卡环内凹侧壁;342—卡环底面;343—卡环外延底面。
具体实施方式
下面结合附图与实施例对本发明作进一步的说明。
如图1-6所示:一种用于蓄冷器的隔断构件,该隔断构件30包括环状主体31、阻尼件32、过滤组件33和环状卡环34,所述的环状主体31为中央开口的凹槽,环状主体31用于容纳具有阻止蓄冷材料通过且能够使制冷剂气体通过的层叠的过滤组件33,呈中央开口、倒置凸台状的环状卡环34的凸出部嵌入凹槽内并压住过滤组件33,用于将隔断构件30嵌置在蓄冷器筒体12d内的阻尼件32嵌置在环状主体31和环状卡环34之间,且阻尼件32的外径大于蓄冷器筒体12d的内径使得两者过盈配合;同时环状主体31的主体内壁面312的内径比过滤组件33的外径大0.1mm~0.3mm,环状主体31的主体外侧壁311的外径和环状卡环34的底部外延部的外径皆小于蓄冷器筒体12d的内径,阻尼件32的内径不小于环状卡环34的凸出部外径和/或环状主体31的主体内壁面312的内径。
在上述隔断构件30中,过滤组件33设置在凹槽的台阶面313上并嵌置在环状卡环34的卡环底面342和台阶面313之间,使得环状主体31和环状卡环34从过滤组件33的轴向两侧夹住过滤组件33;过滤组件33包括轴向层叠的加强件33a、过滤件33b和加强件33a,加强件33a采用圆形金属丝网或者圆形孔板制作而成,过滤件33b采用100目~200目的圆形金属丝网或者是圆形毛毡制作而成。阻尼件32设置在环状主体31的主体顶面314上,且主体顶面314、环状卡环34的卡环外延底面343以及环状卡环34的凸出部的卡环内凹侧壁341构成一个嵌置阻尼件32的区域,通过环状主体31和环状卡环34的轴向预紧力使得阻尼件32嵌置在主体顶面314和卡环外延底面343之间;阻尼件32采用环状的100目~200目的金属丝网层叠起来或环状毛毡制作而成。
如图7-8所示,一种采用隔断构件的低温制冷机,该低温制冷机包括用于放置蓄冷器并使制冷剂气体膨胀的气缸13,在蓄冷器内放置有用于分割蓄冷材料且制冷剂气体能够通过的隔断构件30。上述的低温制冷机为具有容纳于蓄冷器内部的隔断构件30的蓄 冷式制冷机,该低温制冷机包括斯特林型制冷机、吉福德-麦克马洪型制冷机。
如图7所示:图7是本发明的一个实施例的低温制冷机的结构示意图。制冷机包含压缩机1、罩体组件2、气体管路3、气缸13、一级推移活塞11、二级推移活塞12,压缩机1通过将制冷剂气体吸入、压缩,而使之作为高压的制冷剂气体排出,气体管路3将该高压的制冷剂气体向罩体组件2进行供给;气缸13是两级式的气缸,本体采用304不锈钢制成,同轴布置。一级推移活塞11与二级推移活塞12同轴连接,在驱动机构(图中未画出)的带动下一起在气缸13内沿着Z1~Z2方向运动,一级推移活塞11和二级推移活塞12向图中上方(Z1方向)移动,则一级膨胀腔9和二级膨胀腔10的容积增加。反之,对应的膨胀腔容积变小。
在上述膨胀腔容积的变化下,来流的制冷剂气体经过一级活塞前孔11a与一级推移活塞11内部的一级蓄冷材料11c进行热交换,再从一级活塞后孔11b流出;一部分气体在一级膨胀腔9内进行膨胀,剩余的气体通过二级活塞前孔12a流进二级推移活塞12内,与其内部的二级蓄冷材料12c进行换热,然后从排气口12b流出,进入到二级膨胀腔10内,该过程制冷剂气体将自身的热量传递给蓄冷材料,温度由常温变成低温。沿着上述气体流动方向,即Z2方向,气缸13以及一级推移活塞11、二级推移活塞12连续降低,形成温度梯度。
回流的气体与上述流动过程相反,制冷剂气体从二级膨胀腔10流出,通过排气口12b与二级推移活塞12内的二级蓄冷材料12c进行换热,从二级活塞前孔12a流出,与一级膨胀腔9内的制冷剂气体混合;然后经过一级活塞后孔11b,与一级推移活塞11内的一级蓄冷材料11c进行换热,接着通过一级活塞前孔11a,进入到罩体组件2内,再流到压缩机1的低压侧。该过程制冷剂气体从蓄冷材料吸收热量,由低温变成常温。
通过反复进行以上的动作,一级蓄冷材料11c、二级蓄冷材料12c和制冷剂气体被冷却。低温气体在一级膨胀腔9和二级膨胀腔10内不断的膨胀做功,形成制冷源。
下面以二级推移活塞12中的隔断构件30进行详细地进行说明。
如图8所示,为了提升制冷机制冷效果,根据温区的不同,二级蓄冷材料12c一般分隔成两部分:二级热端蓄冷材料12c1和二级冷端蓄冷材料12c2,并且容纳于蓄冷器(二级推移活塞12)内。二级推移活塞12的上部有二级活塞前孔12a、下部有排气口12b、以及二级蓄冷材料12c组成多孔通道,形成贯通的气体通路。在二级推移活塞12内安装有三块隔断构件30,将二级热端蓄冷材料12c1和二级冷端蓄冷材料12c2分别牢牢的固定在其内部;隔断构件30允许制冷剂气体流过,但不允许蓄冷材料通过。
如图1-6、9所示,隔断构件30由环状主体31、阻尼件32、过滤组件33以及环状卡环34组成。环状主体31以及环状卡环34均有中央开口,提供制冷剂气体的流动通道。具体的说:环状主体31为中央开口的凹槽,并且有内陷的台阶面313,过滤组件33可层叠的放置在这一台阶面313上,过滤组件33可通过制冷剂气体且同时能够阻止蓄冷材料12c通过;过滤件33b由100目~200目的金属丝网或者是质地柔软的毛毡来制作。为防止安装的过滤件33b塌陷,过滤件33b的上下安装有质地较硬的加强件33a,加强件33a选用粗目数的金属丝网或者孔板来制作。环状主体31的主体内壁面312的内径大于过滤组件33的外径D3约0.1mm~0.3mm,这样便于加工和制作安装;环状卡环34的卡环内凹侧壁341与环状主体31的主体内壁面312为过盈配合,在制作过程中,环状主体31和环状卡环34的其中一个采用不锈钢制作、另外一个采用质地较软的铝合金制作,这样能够较轻松的将环状卡环34压入到环状主体31内,使得形成沿着层叠方向的预紧力,并依靠预紧力将过滤组件33层叠在一起,靠环状卡环34的卡环底面342将过滤组件33压紧在台阶面313上。
阻尼件32采用环形的100目~200目的金属丝网层叠起来或质地较软的环形毛毡制作而成,阻尼件32安装在环状卡环34的卡环外延底面343下方,依靠卡环内凹侧壁341将阻尼件32自身的内侧支撑起来;同样的,依靠前述的环状主体31与环状卡环34配合的预紧力,层叠在一起的阻尼件32靠环状主体31的主体顶面314将阻尼件32压紧。阻尼件32的外径D2大于蓄冷器筒体12d的内径D1,并且阻尼件32的材质较为柔软,可轻松压入到蓄冷器筒体12d内,使得整个隔断构件30与蓄冷器筒体12d形成过盈配合,过盈配合形成的预紧力能较好的约束隔断构件30防止其在蓄冷器筒体12d内发生相对运动。
采用上述方式,隔断构件30的中部形成了可通过气体通过、但蓄冷材料不能通过的通道,隔断构件30的圆周尺寸只要小于蓄冷器筒体12d的内径D1即可,加工精度小。阻尼件32质地柔软,可轻松压入蓄冷器筒体12d内,因此加工的精度也不高;又可以牢牢将分隔部件固定在蓄冷器筒体12d的内腔中。
并且,实施方式中,对将具有本发明所涉及的隔断构件30的蓄冷器式制冷机应用于GM制冷机的例子进行了说明。但是,本发明所涉及的隔断构件30不限于分隔容纳于GM制冷机的蓄冷材料的分隔部件,可应用于分隔容纳于脉冲管制冷机的蓄冷管(相当于本发明中的蓄冷器)的蓄冷材料等容纳于各种制冷机的蓄冷器或者蓄冷管的蓄冷材料的分隔部件。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内;本发明未涉及的技术均可通过现有技术加以实现。

Claims (10)

  1. 一种用于蓄冷器的隔断构件,其特征在于:所述的隔断构件(30)包括环状主体(31)、阻尼件(32)、过滤组件(33)和环状卡环(34),所述的环状主体(31)为中央开口的凹槽,环状主体(31)用于容纳具有阻止蓄冷材料通过且能够使制冷剂气体通过的层叠的过滤组件(33),呈中央开口、倒置凸台状的环状卡环(34)的凸出部嵌入凹槽内并压住过滤组件(33),用于将隔断构件(30)嵌置在蓄冷器筒体(12d)内的阻尼件(32)嵌置在环状主体(31)和环状卡环(34)之间,且阻尼件(32)的外径大于蓄冷器筒体(12d)的内径使得两者过盈配合。
  2. 根据权利要求1所述的用于蓄冷器的隔断构件,其特征在于:所述环状主体(31)的主体内壁面(312)的内径比过滤组件(33)的外径大0.1mm~0.3mm。
  3. 根据权利要求1所述的用于蓄冷器的隔断构件,其特征在于:所述环状主体(31)的主体外侧壁(311)的外径和环状卡环(34)的底部外延部的外径皆小于蓄冷器筒体(12d)的内径。
  4. 根据权利要求1-3任一所述的用于蓄冷器的隔断构件,其特征在于:所述阻尼件(32)的内径不小于环状卡环(34)的凸出部外径和/或环状主体(31)的主体内壁面(312)的内径。
  5. 根据权利要求1所述的用于蓄冷器的隔断构件,其特征在于:所述的过滤组件(33)设置在凹槽的台阶面(313)上并嵌置在环状卡环(34)的卡环底面(342)和台阶面(313)之间,使得环状主体(31)和环状卡环(34)从过滤组件(33)的轴向两侧夹住过滤组件(33)。
  6. 根据权利要求1或5所述的用于蓄冷器的隔断构件,其特征在于:所述的过滤组件(33)包括轴向层叠的加强件(33a)、过滤件(33b)和加强件(33a);所述的加强件(33a)采用圆形金属丝网或者圆形孔板制作而成,所述的过滤件(33b)采用100目~200目的圆形金属丝网或者是圆形毛毡制作而成。
  7. 根据权利要求1所述的用于蓄冷器的隔断构件,其特征在于:所述的阻尼件(32)设置在环状主体(31)的主体顶面(314)上,且主体顶面(314)、环状卡环(34)的卡环外延底面(343)以及环状卡环(34)的凸出部的卡环内凹侧壁(341)构成一个嵌置阻尼件(32)的区域,通过环状主体(31)和环状卡环(34)的轴向预紧力使得阻尼件(32)嵌置在主体顶面(314)和卡环外延底面(343)之间。
  8. 根据权利要求1或7所述的用于蓄冷器的隔断构件,其特征在于:所述的阻尼件(32)采用环状的100目~200目的金属丝网层叠起来或环状毛毡制作而成。
  9. 一种采用如权利要求1-8任一所述的隔断构件的低温制冷机,所述的低温制冷机包括用于放置蓄冷器并使制冷剂气体膨胀的气缸(13),其特征在于:所述的蓄冷器内放置有用于分割蓄冷材料且制冷剂气体能够通过的隔断构件(30)。
  10. 根据权利要求9所述的低温制冷机,其特征在于:所述的低温制冷机为具有容纳于蓄冷器内部的隔断构件(30)的蓄冷式制冷机,该低温制冷机包括斯特林型制冷机、吉福德-麦克马洪型制冷机。
PCT/CN2018/099446 2018-06-04 2018-08-08 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机 WO2019232920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810566123.XA CN108645069A (zh) 2018-06-04 2018-06-04 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机
CN201810566123.X 2018-06-04

Publications (1)

Publication Number Publication Date
WO2019232920A1 true WO2019232920A1 (zh) 2019-12-12

Family

ID=63759457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099446 WO2019232920A1 (zh) 2018-06-04 2018-08-08 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机

Country Status (2)

Country Link
CN (1) CN108645069A (zh)
WO (1) WO2019232920A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3982062A1 (en) * 2020-10-09 2022-04-13 Valeo Systemes Thermiques A filter assembly for a heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765156B (zh) * 2020-06-11 2022-10-28 中国电子科技集团公司第十一研究所 斯特林制冷机推移活塞与换热器连接结构及其连接方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201764746U (zh) * 2010-08-31 2011-03-16 南京柯德超低温技术有限公司 带调相机构的g-m制冷机
CN104930742A (zh) * 2014-03-19 2015-09-23 住友重机械工业株式会社 蓄冷器
CN205690771U (zh) * 2016-06-22 2016-11-16 合肥美菱股份有限公司 一种可放置在冰箱内的蓄冷箱

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB519595A (en) * 1938-09-27 1940-04-01 Charles Edward Green Improved filter for filtering coffee or other infusions or liquids
JP3357719B2 (ja) * 1993-08-31 2002-12-16 三洋電機株式会社 極低温冷凍機
JPH0914799A (ja) * 1995-06-29 1997-01-17 Showa Alum Corp 受液器およびその製造方法
JP3588647B2 (ja) * 2001-04-17 2004-11-17 住友重機械工業株式会社 蓄冷器および冷凍機
JP3996537B2 (ja) * 2003-03-27 2007-10-24 住友重機械工業株式会社 蓄冷器用仕切り材及び蓄冷器
JP2008096040A (ja) * 2006-10-13 2008-04-24 Iwatani Industrial Gases Corp 極低温冷凍機の蓄冷器
JP2011027272A (ja) * 2009-07-21 2011-02-10 Sumitomo Heavy Ind Ltd 仕切り部材及び蓄冷器及び蓄冷器式冷凍機
JP5805421B2 (ja) * 2011-04-04 2015-11-04 住友重機械工業株式会社 蓄冷器式冷凍機及び仕切り部材
CN208312756U (zh) * 2018-06-04 2019-01-01 中船重工鹏力(南京)超低温技术有限公司 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201764746U (zh) * 2010-08-31 2011-03-16 南京柯德超低温技术有限公司 带调相机构的g-m制冷机
CN104930742A (zh) * 2014-03-19 2015-09-23 住友重机械工业株式会社 蓄冷器
CN205690771U (zh) * 2016-06-22 2016-11-16 合肥美菱股份有限公司 一种可放置在冰箱内的蓄冷箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3982062A1 (en) * 2020-10-09 2022-04-13 Valeo Systemes Thermiques A filter assembly for a heat exchanger

Also Published As

Publication number Publication date
CN108645069A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
JP5632241B2 (ja) クライオポンプ及び極低温冷凍機
US9423160B2 (en) Regenerative refrigerator
WO2019232920A1 (zh) 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机
JP5599739B2 (ja) 蓄冷器式冷凍機
US10184706B2 (en) Air conditioner
US20130000326A1 (en) Regenerator, gm refrigerator, and pulse tube refrigerator
JPH0460351A (ja) 冷凍機
JP5660979B2 (ja) クライオポンプ及び極低温冷凍機
JP5882110B2 (ja) 蓄冷器式冷凍機、蓄冷器
CN108507214B (zh) 一种推移活塞及采用该推移活塞的低温制冷机
JP5908324B2 (ja) 蓄冷式冷凍機
CN208312756U (zh) 用于蓄冷器的隔断构件及采用该隔断构件的低温制冷机
US9752802B2 (en) Regenerative refrigerator
CN210532727U (zh) 超低温制冷机
JP2015183970A (ja) 蓄冷器式冷凍機
US7305835B2 (en) Pulse tube cooling by circulation of buffer gas
JP6911649B2 (ja) 多段型蓄冷式冷凍機
JP2002286311A (ja) 極低温冷凍機
JPH10122683A (ja) 蓄冷型冷凍機
JPH06207754A (ja) 冷凍機の再生器及びその製造方法
JPH0311663Y2 (zh)
JP2015166665A (ja) 蓄冷器および仕切ユニット
JP6284788B2 (ja) ディスプレーサ
JPH09196488A (ja) 極低温冷凍機
JPH11281179A (ja) パルス管冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921600

Country of ref document: EP

Kind code of ref document: A1