WO2019232729A1 - 应用于回收污染物的***以及方法 - Google Patents

应用于回收污染物的***以及方法 Download PDF

Info

Publication number
WO2019232729A1
WO2019232729A1 PCT/CN2018/090164 CN2018090164W WO2019232729A1 WO 2019232729 A1 WO2019232729 A1 WO 2019232729A1 CN 2018090164 W CN2018090164 W CN 2018090164W WO 2019232729 A1 WO2019232729 A1 WO 2019232729A1
Authority
WO
WIPO (PCT)
Prior art keywords
pollutant
vacuum
collector
pollutants
water
Prior art date
Application number
PCT/CN2018/090164
Other languages
English (en)
French (fr)
Inventor
冯伟
张艳辉
张晨宁
尹铎
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2018/090164 priority Critical patent/WO2019232729A1/zh
Publication of WO2019232729A1 publication Critical patent/WO2019232729A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material

Definitions

  • the invention relates to the technical field of ecological environmental protection, and in particular, to a system and method for recycling pollutants.
  • Marine litter is a global problem. At present, many discussions have been carried out on the problem of marine litter, but most of them are strategic attempts at the macro level. Marine garbage items are mostly small garbage such as glass bottles and plastic products, and this type of garbage is more likely to be mistakenly eaten by marine life such as fish and turtles, posing a life threat to the living space of marine life; The scattered fishing nets are also easy to net marine life, restricting the free movement of marine life, resulting in difficulty in predation or breathing discomfort.
  • the main technical problem solved by the present invention is to provide a system and method for recycling pollutants, which can improve the automation degree of pollutants recycling.
  • a technical solution adopted by the present invention is to provide a system for recovering pollutants.
  • the system includes a pollutant collector and a vacuum generator.
  • the pollutant collector is connected to the vacuum generator.
  • Vacuum pipe; the pollutant collector is set under the water surface to collect the pollutants in the water.
  • the vacuum generator can extract the air from the vacuum pipe to make the vacuum pipe in a vacuum state to attract the pollutant in the pollutant collector. Move along the vacuum duct and achieve recovery.
  • the pollutant collector includes a pollutant collecting bucket and a water pump.
  • the pollutant collecting bucket is used to collect pollutants in the water.
  • a drainage pipe is connected between the pollutant collecting bucket and the water pump; the pollutant collecting bucket Set under the water surface, the water pump can extract the water in the pollutant collection bucket and discharge it out of the pollutant collection bucket along the drainage pipe, and guide the water flow into the pollutant collection bucket to form a water flow loop.
  • the water flow loop is used to guide the pollutant into Pollutant collection bucket.
  • the pollutant collector further includes a telescopic sleeve, the telescopic sleeve is disposed at the mouth of the pollutant collection barrel and is assembled correspondingly to the mouth of the pollutant collection barrel, and the telescopic sleeve is in a contracted state , The mouth of the barrel is below the water surface, and the telescopic sleeve can be extended until the mouth of the barrel is higher than the water surface to block the water from entering the pollutant collection barrel.
  • the system further includes an adjusting rod, which is connected to the pollutant collecting barrel, and is used for adjusting the distance between the mouth of the telescopic sleeve and the water surface when the telescopic sleeve is in a contracted state.
  • the water pump is disposed away from the water body.
  • a vacuum pipe is connected to the bottom of the pollutant collection bucket, and an induction valve is provided between the bottom of the pollutant collection bucket and the vacuum pipe; the system further includes a vacuum sensor for detecting the inside of the vacuum pipe. Vacuum value, the induction valve can be opened when the vacuum value of the vacuum pipe reaches the vacuum threshold, so that the pollutants in the pollutant collection barrel can move along the vacuum pipe and realize recovery.
  • the induction valve is equipped with a sensor for detecting the pressure exerted by the pollutants in the pollutant collection barrel on the induction valve.
  • the system can drive the vacuum generator to extract the pressure from the vacuum pipe. Air, and drive the telescoping sleeve to extend its mouth above the water.
  • the senor is a pressure sensor or a weight sensor.
  • the system further includes a pollutant transfer collector, and the pollutant transfer collector communicates with the pollutant collector and the vacuum generator through a vacuum pipe, and the pollutant transfer collector is used for storing the pollutant collector. Recovered pollutants.
  • the system further includes a rotary screen separator.
  • the rotary screen separator is disposed in a vacuum pipe between the pollutant transfer collector and the pollutant collector near the end of the pollutant transfer collector. Used to detect the types of pollutants recovered by the pollutant collector.
  • the system further includes an evacuation fan, and the evacuation fan communicates with the vacuum generator and the pollutant transfer collector through a vacuum pipe, and the vacuum fan is used for collecting and transferring the vacuum generator and the pollutant transfer.
  • a vacuum buffer is formed between the devices.
  • Another technical solution adopted by the present invention is to provide a method for recovering pollutants.
  • the method includes: the pollutant collector recycles the pollutants in the water by using a water flow circuit; and the pollutant collector is judged. Whether the weight of the internal pollutants reaches the threshold; if so, the vacuum generator evacuates the air in the vacuum pipe between it and the pollutant collector to attract the pollutants in the pollutant collector to move along the vacuum pipe and achieve recovery.
  • the beneficial effect of the present invention is that, different from the prior art, the present invention provides a system for recycling pollutants.
  • the system includes a pollutant collector and a vacuum generator. Vacuum pipes are connected for intercommunication.
  • a pollutant collector is arranged below the water surface to collect the pollutants in the water.
  • the vacuum generator works to evacuate the air in the vacuum pipe, so that the vacuum pipe is in a vacuum state.
  • the negative pressure is used to attract the pollutants collected by the pollutant collector into the vacuum pipe, and the pollutants are moved along the vacuum pipe to recover, instead of manual The method of salvaging pollutants and improving the automation of pollutant recovery.
  • FIG. 1 is a schematic structural diagram of an embodiment of a system for recycling pollutants according to the present invention
  • FIG. 2 is a schematic structural diagram of an embodiment of a telescopic sleeve of the system shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an embodiment of an induction valve of the system shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of another embodiment of a system for recycling pollutants according to the present invention.
  • FIG. 5 is a schematic flowchart of an embodiment of a method for recycling pollutants according to the present invention.
  • an embodiment of the present invention provides a system for recycling pollutants.
  • the system includes a pollutant collector and a vacuum generator.
  • a vacuum pipe is connected between the vacuum generator and the vacuum generator.
  • the pollutant collector is arranged below the water surface to collect pollutants in the water.
  • the vacuum generator can extract the air from the vacuum pipe to make the vacuum pipe in a vacuum state. Attracts pollutants from the pollutant collector along the vacuum pipe and enables recovery. This is explained in detail below.
  • FIG. 1 is a schematic structural diagram of an embodiment of a system for recovering pollutants according to the present invention.
  • the system 1 can be applied to the recovery of water pollutants such as marine garbage, lake garbage, and port water garbage, and its applicable environment is not limited here.
  • the system 1 for recovering pollutants includes a pollutant collector 11 and a vacuum generator 12.
  • the pollutant collector 11 is disposed below the water surface 2 for collecting pollutants in the water.
  • a vacuum pipe 13 is connected between the pollutant collector 11 and the vacuum generator 12 so that an air flow path can be formed between the two and is used to transport the pollutants in the pollutant collector 11.
  • the vacuum generator 12 When the vacuum generator 12 is working, it can evacuate the air in the vacuum pipe 13 so that the vacuum pipe 13 is in a vacuum state. Since the air pressure in the vacuum pipe 13 is lower than the air pressure of the environment in which the pollutants are located in the pollutant collector 11, a negative pressure suction effect can be formed between the pollutant collector 11 and the vacuum pipe 13.
  • the pressure difference causes the pollutants in the pollutant collector 11 to be attracted into the vacuum pipe 13 and moved along the vacuum pipe 13 to realize the recovery of the pollutants. Because the collection, transmission, and recovery of pollutants rely on automated machinery and equipment, instead of traditional manual fishing methods, the degree of automation of pollutant recovery is improved.
  • the vacuum generator 12 is disposed away from the water body.
  • the pollutant collector 11 is disposed in the water, and the two are connected through a vacuum pipe 13. Therefore, part of the pipe body of the vacuum pipe 13 is set in water, and part of the pipe body is outside the water surface 2. For example, it is applied to the recycling of garbage in the waters of a port.
  • the pollutant collector 11 is disposed underwater, and the vacuum generator 12 is disposed on the shore away from the water body.
  • the two are connected by a vacuum pipe 13.
  • a carrier carrying the vacuum generator 12 may also be provided on the water surface 2, and the vacuum generator 12 is separated from the water body by the carrier, which is not limited herein.
  • the vacuum generator 12 may be disposed in water. Since the vacuum generator 12 is usually driven by electric energy, in order to avoid leakage or water intrusion into the vacuum generator 12, it is necessary to add a waterproof structure to the vacuum generator 12 to isolate the vacuum generator 12 from the water body.
  • the pollutant collector 11 includes a pollutant collecting barrel 111 and a water pump 112.
  • the pollutant collecting barrel 111 is disposed below the water surface 2 and is used for collecting pollutants in the water.
  • a drainage pipe 113 is connected between the pollutant collection barrel 111 and the water pump 112.
  • the water pump 112 is used to extract the water in the pollutant collection barrel 111 and discharge it out of the pollutant collection barrel 111 along the drainage pipe 113.
  • the water in the pollutant collection barrel 111 is evacuated, and the water flow around the pollutant collection barrel 111 It will be guided into the pollutant collection barrel 111 and form a water flow circuit 114 with the drainage pipe 113.
  • the pollutants around the pollutant collection barrel 111 enter the pollutant collection barrel 111 under the guidance of the water flow circuit 114 to realize the pollutant collection.
  • the water pump 112 is disposed away from the water body to save the waterproof cost of the water pump 112.
  • a drain pipe 113 is connected between the water inlet end of the water pump 112 and the pollutant collecting barrel 111, and the water outlet end of the water pump 112 can also be connected to the water drainage pipe 113, and the water discharge circuit 113 at the water outlet end of the water pump 112 is immersed in water to realize the above-mentioned water flow circuit 114.
  • the water pump 112 may be disposed in water.
  • the water pump 112 In order to avoid electricity leakage or water intrusion into the working environment of the water pump 112 (not the drainage path of the water pump 112), the water pump 112 needs to be added with a waterproof structure to isolate the water pump 112 from the water body.
  • the pollutant collector 11 further includes a telescopic sleeve 115.
  • the telescopic sleeve 115 is a retractable hollow cylinder, and the size and shape of the mouth of the telescopic sleeve 115 are matched with the mouth of the pollutant collection barrel 111.
  • the telescopic sleeve 115 is disposed at the mouth of the pollutant collection barrel 111 and matches the pollutant collection barrel 111.
  • the barrel mouth corresponds to the assembly.
  • the telescopic sleeve 115 When the telescopic sleeve 115 is in a contracted state, its mouth is below the water surface 2, so that the water flow circuit 114 described above can guide the pollutants in the water into the pollutant collection barrel 111.
  • the pollutants in the pollutant collection barrel 111 reach a certain weight, the pollutants need to be collected and processed uniformly, and the pollutant collection barrel 111 is emptied to enable subsequent pollutant collection work.
  • the telescopic sleeve 115 can be extended until its mouth is higher than the water surface 2 to block the flow of water into the pollutant collecting barrel 111, that is, to prevent the pollutant from continuing to enter the pollutant collecting barrel 111 (the pollutant collecting barrel 111 is already full of pollutants) ,as shown in picture 2.
  • the system 1 further includes an adjusting rod 14 connected to the pollutant collecting barrel 111 for adjusting the distance of the mouth of the telescopic sleeve 115 from the water surface 2 when the retracting sleeve 115 is in a contracted state.
  • the system 1 can be equipped with adjusting rods 14 of different lengths. By changing the adjusting rods 14 of different lengths, different distances can be provided between the pollutant collecting barrel 111 and the water surface 2 (the distance is that the telescopic sleeve 115 is contracted In the state, the distance between the mouth of the barrel and the water surface is 2).
  • the length of the adjusting rod 14 is adjustable, that is, the adjusting rod 14 is a telescopic structure.
  • the extension rod member 14 By controlling the extension rod member 14 to expand or contract, a different distance is provided between the pollutant collecting barrel 111 and the water surface 2.
  • the distance between the mouth of the telescopic sleeve 115 and the water surface 2 may be 1 to 5 cm, such as 1 cm, 2 cm, and 3 cm.
  • the distance of the telescopic sleeve 115 from the water surface 2 when the telescopic sleeve 115 is in the contracted state is determined according to the drainage and water passing capacity of the water pump 112. The stronger the water drainage capacity of the water pump 112, the water pump 112 can guide a larger water flow through the pollutant collection barrel 111 Then, it is discharged through the drainage pipe 113.
  • the distance between the mouth of the telescopic sleeve 115 and the water surface 2 when the telescopic sleeve 115 is in a contracted state can be increased to collect more pollutants in a certain period of time.
  • the bottom of the pollutant collection barrel 111 is connected to the vacuum pipe 13, an induction valve 15 is provided between the bottom of the pollutant collection barrel 111 and the vacuum pipe 13, and the conduction between the pollutant collection barrel 111 and the vacuum pipe 13 is dependent.
  • the induction valve 15 is realized, and when the induction valve 15 is opened, the two are conducted. As shown in Figure 3.
  • the system 1 further includes a vacuum sensor (not shown in the figure) for detecting the vacuum value in the vacuum pipe 13.
  • the vacuum sensor can be arranged on the vacuum pipe 13 or on the side of the induction valve 15 near the vacuum pipe 13. It is not limited here.
  • the induction valve 15 opens when the vacuum value in the vacuum pipe 13 reaches the vacuum threshold, and conducts the pollutant collecting barrel 111 and the vacuum pipe 13 to utilize the negative pressure environment inside the vacuum pipe 13 to attract the pollutants in the pollutant collecting bucket 111 to enter
  • the vacuum pipe 13 is moved along the vacuum pipe 13 to realize recovery.
  • the pollutants may move along the vacuum pipe 13 at a speed of 18 m / s to 25 m / s.
  • the exhaust gas released by the pollutants will also be discharged along the vacuum pipe 13. It can be understood that during the process of pollutants moving along the vacuum pipe 13, the vacuum generator 12 always keeps working and continuously extracts air from the vacuum pipe 13.
  • the vacuum threshold is used to describe the degree of negative pressure inside the vacuum pipe 13, that is, to describe the pressure difference between the pressure inside the vacuum pipe 13 and the outside air.
  • the induction valve 15 is controlled to be opened, so that the vacuum pipe 13 has different negative pressure attractive forces to attract and recover pollutants. It can be understood that the greater the negative pressure attractive force possessed by the vacuum pipe 13, the higher the pollutant recovery efficiency.
  • the induction valve 15 is equipped with a sensor (not shown in the figure) for detecting the pressure applied by the pollutants in the pollutant collection barrel 111 to the induction valve 15.
  • the system 1 can drive the vacuum generator 12 to work when the pressure of the pollutants applied to the induction valve 15 reaches a pressure threshold, evacuate the air in the vacuum pipe 13, and drive the telescopic sleeve 115 to extend to the barrel 2 above the water surface 2.
  • the pressure threshold is used to describe the maximum weight of pollutants that the pollutant collection barrel 111 can hold.
  • the pressure threshold When the pressure of the pollutant detected by the sensor on the sensing valve 15 reaches the pressure threshold, it means that the pollutant in the pollutant collection barrel 111 has reached the load limit of the pollutant collection barrel 111, and the pollutant collection barrel 111 needs to be emptied and used for Follow-up pollutant collection.
  • the telescopic sleeve 115 is driven to extend until the mouth of the telescoping sleeve 115 is higher than the water surface 2 to block the water flow from entering the pollutant collection barrel 111 (that is, the pollutant guided by the water flow is prevented from entering the pollutant collection barrel 111).
  • the vacuum generator 12 is driven to evacuate the air in the vacuum pipe 13. When the vacuum value of the vacuum pipe 13 reaches the vacuum threshold, the induction valve 15 is opened, and the pollutants move along the vacuum pipe 13 under the suction of a negative pressure and realize recovery.
  • the sensor mounted on the sensing valve 15 may be a pressure sensor or a weight sensor, such as a sensor capable of detecting at least acceleration in the direction of gravity, or a temperature and humidity sensor, which is not limited herein.
  • the pollutant collector and the vacuum generator are connected through a vacuum pipe to realize intercommunication.
  • the pollutant collector is arranged below the water surface, and can collect pollutants in the water.
  • the air in the vacuum pipe can be evacuated, so that the vacuum pipe is in a vacuum state.
  • the negative pressure is used to attract the pollutants collected by the pollutant collector into the vacuum pipe, and the pollutants are moved along the vacuum pipe to realize the recovery.
  • the water flow loop formed by the cooperation between the pollutant collection bucket and the water pump can continuously recycle the floating pollutants in the water. Because the collection, transmission, and recovery of pollutants rely on automated machinery and equipment, they can replace the manual salvage method with a 24-hour fully automatic uninterrupted processing method to improve the efficiency and automation of pollutant recovery.
  • FIG. 4 is a schematic structural diagram of another embodiment of a system for recycling pollutants according to the present invention.
  • the system 3 applied to recover pollutants includes a pollutant collector 31 and a vacuum generator 32.
  • the pollutant collector 31 is disposed below the water surface 4 for collecting pollutants in the water.
  • a vacuum pipe 33 is connected between the pollutant collector 31 and the vacuum generator 32 so that an air flow path can be formed between the two and is used to transport the pollutants in the pollutant collector 31.
  • the vacuum generator 32 works, it can evacuate the air in the vacuum pipe 33 so that the vacuum pipe 33 is in a vacuum state. Since the air pressure in the vacuum pipe 33 is smaller than the air pressure of the environment in which the pollutants in the pollutant collector 31 are located, a negative pressure suction effect can be formed between the pollutant collector 31 and the vacuum pipe 33. The pressure difference causes the pollutants in the pollutant collector 31 to be attracted into the vacuum pipe 33 and moved along the vacuum pipe 33 to realize the recovery of the pollutants.
  • This embodiment is different from the above embodiment in that the system 3 described in this embodiment further includes a pollutant transfer collector 34.
  • the pollutant transfer collector 34 is used to store the pollutants recovered by the pollutant collector 31 to centrally process the pollutants recovered by the pollutant collector 31 multiple times.
  • the pollutants transported by the vacuum pipe 33 are collected in the pollutant relay collection In the device 34, after the pollutant transfer collector 34 is saturated, it is compressed and transported to the pollutant disposal site for centralized processing.
  • the pollutant transfer collector 34 communicates with the pollutant collector 31 and the vacuum generator 32 through a vacuum pipe 33 respectively.
  • the pollutant transfer collector 34 is disposed between the pollutant collector 31 and the vacuum generator 32, and the pollutant collector 31 The recovered pollutants are moved along the vacuum pipe 33 into the pollutant transfer collector 34.
  • the system 3 further includes a rotary screen separator 35.
  • the rotary screen separator 35 is disposed near the end of the pollutant transfer collector 34 in a vacuum pipe 33 between the pollutant transfer collector 34 and the pollutant collector 31.
  • the image analysis is used to assist the detection of the types of pollutants (that is, the types of pollutants recovered by the pollutant collector 31) transported by the vacuum pipe 33 to the pollutant transfer collector 34.
  • the pollutant collector 31 there are many types of pollutants collected by the pollutant collector 31, which are similar to pollutants with obvious size in the length direction such as branches. If a large number of pollutants are collected and distributed unreasonably, a large number of pollutant transfer collectors will be occupied.
  • the storage space of 34 causes the weight of the pollutants stored in the pollutant transfer collector 34 not to reach the threshold value, but the pollutants subsequently transported cannot enter the pollutant transfer collector 34.
  • a rotating screen separator 35 is provided in this embodiment.
  • the rotating screen separator 35 can obtain the types of pollutants entering the pollutant transfer collector 34 within a certain period of time through image analysis. When pollutants with obvious size in the length direction are found, In many cases, the pollutant transfer collector 34 may be emptied in advance to free up storage space for the pollutants arriving later.
  • the system 3 further includes an evacuation fan 36.
  • the evacuation fan 36 communicates with the vacuum generator 32 and the pollutant transfer collector 34 through a vacuum pipe 33, respectively.
  • the vacuum fan 36 is used to form a vacuum buffer zone between the vacuum generator 32 and the pollutant transfer collector 34.
  • the degree of vacuum of the vacuum atmosphere created by the evacuation fan 36 is less than the vacuum atmosphere created by the vacuum generator 32.
  • the vacuum atmosphere created by the evacuation fan 36 is used to ensure the stability of the vacuum environment of the entire system 3.
  • the pollutant collector and the vacuum generator are connected through a vacuum pipe to realize intercommunication.
  • the pollutant collector is arranged below the water surface, and can collect pollutants in the water.
  • the air in the vacuum pipe can be evacuated, so that the vacuum pipe is in a vacuum state.
  • the negative pressure is used to attract the pollutants collected by the pollutant collector into the vacuum pipe, and the pollutants are moved along the vacuum pipe to realize the recovery.
  • image-assisted analysis of the types of pollutants entering the pollutant transfer collector is used to rationally plan the way of pollutant recovery and transfer. Because the collection, transmission, and recovery of pollutants rely on automated machinery and equipment, they can replace the manual salvage method with a 24-hour fully automatic uninterrupted processing method to improve the efficiency and automation of pollutant recovery.
  • FIG. 5 is a schematic flowchart of an embodiment of a method for recovering pollutants according to the present invention. It should be noted that the method for recovering pollutants described in this embodiment is based on the system for recovering pollutants described in the above embodiments, which includes but is not limited to the following steps:
  • the pollutant collector recycles pollutants in water by using a water flow loop
  • the telescopic sleeve is in a contracted state, and its barrel mouth is located below the water surface.
  • the water pump continuously extracts the water body in the pollutant collection bucket and discharges it out of the pollutant collection bucket along the drainage pipe. Due to the drainage effect of the water pump, the water flow near the pollutant collection barrel enters the pollutant collection barrel to form a water flow circuit, and the water flow circuit guides the pollutants therein to the pollutant collection barrel to realize the function of the pollutant collection barrel to recover the pollutant.
  • S102 Determine whether the weight of the pollutant in the pollutant collector reaches a threshold
  • the sensor of the induction valve detects the pressure of the pollutant applied to the pollutant collection bucket in real time, and is used to determine whether the weight of the pollutant in the pollutant collector reaches a threshold value, so that when the pollutant collection bucket is fully loaded, Empty the pollutant collection bucket in time to carry out the subsequent recovery of pollutants and realize recycling.
  • the weight of the pollutant in the pollutant collector reaches a threshold, that is, the pressure of the pollutant applied to the pollutant collection bucket reaches a pressure threshold, it means that the pollutant collection bucket is fully loaded.
  • the telescopic sleeve is controlled to extend until the mouth of the telescopic sleeve is higher than the water surface, so as to prevent pollutants from entering the pollutant collecting barrel (the pollutant collecting barrel is fully loaded).
  • the vacuum generator works to evacuate the air in the vacuum pipe. When the vacuum value in the vacuum pipe reaches the vacuum threshold, the induction valve is opened, and the negative pressure is used to attract the pollutants in the pollutant collection bucket into the vacuum pipe and move along the vacuum pipe. Recycle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种应用于回收污染物的***(1),该***(1)包括污染物收集器(11)以及真空发生器(12),污染物收集器(11)与真空发生器(12)之间连接有真空管道(13),污染物收集器(11)设置于水面(2)之下,用于收集水中的污染物,真空发生器(12)能够抽离真空管道(13)内的空气,以使真空管道(13)处于真空状态,从而可以吸引污染物收集器(11)中的污染物沿真空管道(13)移动并实现回收。还提供了应用于回收污染物的方法,该方法及***(1)能够提高污染物回收的自动化程度。

Description

应用于回收污染物的***以及方法
【技术领域】
本发明涉及生态环境保护技术领域,特别是涉及一种应用于回收污染物的***以及方法。
【背景技术】
海洋垃圾是个全球性大问题,目前针对海洋垃圾的问题展开了诸多讨论,但大多是宏观层面的策略尝试。海洋垃圾物品中多为玻璃瓶、塑料制品等小型垃圾为主,而该类垃圾又较易被鱼类、龟类等海洋生物所误食,给海洋生物的生存空间造成生命威胁;浮游的破散渔网也容易网结海洋生物,限制海洋生物的自由活动,导致其捕食困难或呼吸不适等。
为有效解决该问题,目前主要采取了人工打捞收集海洋垃圾的方式,但该方式劳动强度大、效率低且工作环境较为恶劣,不宜于长时间工作,严重损耗人力资源。
【发明内容】
有鉴于此,本发明主要解决的技术问题是提供一种应用于回收污染物的***以及方法,能够提高污染物回收的自动化程度。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种应用于回收污染物的***,该***包括污染物收集器以及真空发生器,污染物收集器与真空发生器之间连接有真空管道;污染物收集器设置于水面之下,用于收集水中的污染物,真空发生器能够抽离真空管道内的空气,以使真空管道处于真空状态,以吸引污染物收集器中的污染物沿真空管道移动并实现回收。
在本发明的一实施例中,污染物收集器包括污染物收集桶以及水泵,污染物收集桶用于收集水中的污染物,污染物收集桶与水泵之间连接有排水管道;污染物收集桶设置于水面之下,水泵能够抽离污染物收集桶内的水分并沿排水管道排放至污染物收集桶之外,并引导水流进入污染物收集桶形成水流回路,水流回路用于引导污染物进入污染物收集桶。
在本发明的一实施例中,污染物收集器进一步包括伸缩套筒,伸缩套筒设置于污染物收集桶的桶口并与污染物收集桶的桶口对应装配,伸缩套筒处于收缩状态下,其筒口处于水面之下,并且伸缩套筒可伸展至其筒口高出水面,以阻挡水流进入污染物收集桶。
在本发明的一实施例中,该***进一步包括调节杆件,调节杆件与污染物收集桶连接,用于调节伸缩套筒处于收缩状态时其筒口离水面的距离。
在本发明的一实施例中,水泵远离水体设置。
在本发明的一实施例中,污染物收集桶的桶底连接有真空管道,污染物收集桶桶底与真空管道之间设置有感应阀门;该***进一步包括真空传感器,用于检测真空管道内的真空值,感应阀门能够在真空管道的真空值达到真空阈值时打开,以使污染物收集桶内的污染物沿真空管道移动并实现回收。
在本发明的一实施例中,感应阀门装配有感应器,用于检测污染物收集桶内污染物施加于感应阀门的压力,***能够在压力达到压力阈值时驱动真空发生器抽离真空管道内的空气,并且驱动伸缩套筒伸展至其筒口高出水面。
在本发明的一实施例中,感应器为压力传感器或重量传感器。
在本发明的一实施例中,该***进一步包括污染物中转收集器,污染物中转收集器通过真空管道分别与污染物收集器以及真空发生器连通,污染物中转收集器用于存储污染物收集器所回收的污染物。
在本发明的一实施例中,该***进一步包括旋屏分离器,旋屏分离器设置于污染物中转收集器与污染物收集器之间的真空管道靠近污染物中转收集器的端部,用于检测污染物收集器所回收污染物的种类。
在本发明的一实施例中,该***进一步包括抽真空风扇,抽真空风扇通过真空管道分别与真空发生器以及污染物中转收集器连通,抽真空风扇用于在真空发生器以及污染物中转收集器之间形成真空缓冲区。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种应用于回收污染物的方法,该方法包括:污染物收集器利用水流回路循环回收水中的污染物;判断污染物收集器内污染物的重量是否达到阈值;若是,则真空发生器抽离其与污染物收集器之间的真空管道内的空气,以吸引污染物收集器中的污染物沿真空管道移动并实现回收。
本发明的有益效果是:区别于现有技术,本发明提供一种应用于回收污染物的***,该***包括有污染物收集器以及真空发生器,污染物收集器与真空发生器之间通过真空管道连接,实现互通。同时污染物收集器设置于水面之下,以收集水中的污染物。真空发生器工作,抽离真空管道内的空气,使得真空管道处于真空状态,利用负压吸引污染物收集器所收集的污染物进入真空管道,并使污染物沿真空管道移动实现回收,以代替人工打捞污染物的方式,提高污染物回收的自动化程度。
【附图说明】
图1是本发明应用于回收污染物的***一实施例的结构示意图;
图2是图1所示***的伸缩套筒一实施例的结构示意图;
图3是图1所示***的感应阀门一实施例的结构示意图;
图4是本发明应用于回收污染物的***另一实施例的结构示意图;
图5是本发明应用于回收污染物的方法一实施例的流程示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
为解决现有技术中污染物回收的自动化程度较低的技术问题,本发明的一实施例提供一种应用于回收污染物的***,该***包括污染物收集器以及真空发生器,污染物收集器与真空发生器之间连接有真空管道;污染物收集器设置于水面之下,用于收集水中的污染物,真空发生器能够抽离真空管道内的空气,以使真空管道处于真空状态,以吸引污染物收集器中的污染物沿真空管道移动并实现回收。以下进行详细阐述。
请参阅图1,图1是本发明应用于回收污染物的***一实施例的结构示意图。
本实施例所阐述应用于回收污染物的***1,通过营造真空环境,利用负压吸引污染物并实现回收,其自动化程度较高,以减少人工参与作业量。该***1可以适用于海洋垃圾、湖泊垃圾以及港口水域垃圾等水域污染物的回收,其适用环境在此不做限定。
在本实施例中,应用于回收污染物的***1包括污染物收集器11以及真空发生器12。污染物收集器11设置于水面2之下,用于收集水中的污染物。污染物收集器11与真空发生器12之间连接有真空管道13,使得二者之间能够形成气流通路并且用于传输污染物收集器11中的污染物。当真空发生器12工作时,其能够抽离真空管道13内的空气,以使真空管道13处于真空状态。由于真空管道13内的气压小于污染物收集器11中污染物所处环境的气压,因此能够在污染物收集器11与真空管道13之间形成负压吸引作用,真空管道13内部与外界环境的压差,使得污染物收集器11中的污染物被吸引进真空管道13内并沿真空管道13移动,实现污染物的回收。由于污染物的收集以及传输回收依靠自动化机械设备实现,代替传统人工打捞的方式,从而提高污染物回收的自动化程度。
需要说明的是,考虑到防水措施的成本,真空发生器12远离水体设置。而污染物收集器11设置于水中,二者之间通过真空管道13连接。因此真空管道13部分管体设置于水中,部分管体处于水面2之外。例如应用于港口水域垃圾的回收中,污染物收集器11设置于水下,而真空发生器12则设置于岸上远离水体,二者之间依靠真空管道13连通。当然,也可在水面2上设置一承载真空发生器12的载体,通过该载体隔离真空发生器12与水体,在此不做限定。
在本发明的其他实施例中,真空发生器12可以设置于水中。由于真空发生器12通常电能驱动,因此为避免漏电或是水体侵入真空发生器12内部,需要真空发生器12增加防水结构,以隔离真空发生器12与水体。
进一步地,污染物收集器11包括污染物收集桶111以及水泵112。污染物收集桶111设置于水面2之下,用于收集水中的污染物。污染物收集桶111与水泵112之间连接有排水管道113。水泵112用于抽离污染物收集桶111内的水分并沿排水管道113排放至污染物收集桶111之外,污染物收集桶111内的水分被抽离,则污染物收集桶111周遭的水流会被引导进入污染物收集桶111内,与排水管道113形成水流回路114。污染物收集桶111周遭的污染物在水流回路114的引导下进入污染物收集桶111,实现污染物收集。
在本实施例中,水泵112远离水体设置,以节约水泵112的防水成本。水泵112的进水端与污染物收集桶111之间连接有排水管道113,水泵112的出水端也可连接排水管道113,并且水泵112出水端的排水管道113浸入水中,以实现上述水流回路114。
当然,在本发明的其他实施例中,水泵112也可设置于水中。为避免漏电或是水体侵入水泵112工作环境内部(并非水泵112的排水通路),需要水泵112增加防水结构,以隔离水泵112与水体。
污染物收集器11进一步包括伸缩套筒115。伸缩套筒115为可伸缩的中空筒体,其筒口尺寸以及形状与污染物收集桶111的桶口相互匹配,伸缩套筒115设置于污染物收集桶111的桶口并与污染物收集桶111的桶口对应装配。伸缩套筒115在其处于收缩状态下,其筒口处于水面2之下,使得上文所述水流回路114能够引导水中的污染物进入污染物收集桶111。而当污染物收集桶111内的污染物达到一定重量后,需要将污染物汇集并统一处理,并且清空污染物收集桶111使其能够进行后续污染物收集工作。具体地,伸缩套筒115可伸展至其筒口高出水面2,以阻挡水流进入污染物收集桶111,即阻挡污染物继续进入污染物收集桶111(污染物收集桶111已盛满污染物),如图2所示。
在本实施例中,***1进一步包括调节杆件14,调节杆件14与污染物收集桶111连接,用于调节伸缩套筒115处于收缩状态时其筒口离水面2的距离。***1可以配备有不同长度的调节杆件14,通过更换不同长度的调节杆件14,以使污染物收集桶111与水面2之间具备不同的距离(该距离即为伸缩套筒115处于收缩状态时其筒口离水面2的距离)。
在本发明的其他实施例中,调节杆件14自身长度可调节,即调节杆件14为伸缩式结构。通过控制调节杆件14伸展或收缩,以使污染物收集桶111与水面2之间具备不同的距离。
需要说明的是,伸缩套筒115处于收缩状态时其筒口离水面2的距离可以为1~5cm,例如1cm、2cm以及3cm等。伸缩套筒115其处于收缩状态时筒口离水面2的距离根据水泵112的排水以及过水能力确定,水泵112的排水能力越强,则水泵112可以引导更大的水流量经过污染物收集桶111,之后通过排水管道113排出,此时可以增大伸缩套筒115处于收缩状态时其筒口离水面2的距离,以在一定时间内收集更多的污染物。
进一步地,污染物收集桶111的桶底连接真空管道13,污染物收集桶111桶底与真空管道13之间设置有感应阀门15,污染物收集桶111与真空管道13之间的导通依附于感应阀门15实现,在感应阀门15开启时,二者导通。如图3所示。
本***1进一步包括真空传感器(图中未标识),用于检测真空管道13内的真空值,真空传感器可以设置于真空管道13部分,或是设置于感应阀门15靠近真空管道13的一侧,在此不做限定。感应阀门15在真空管道13内的真空值达到真空阈值时打开,导通污染物收集桶111与真空管道13,利用真空管道13内部的负压环境,吸引污染物收集桶111内的污染物进入真空管道13并沿真空管道13移动实现回收,例如污染物会以18m/s~25m/s的速度沿真空管道13移动。同时根据空气动力学原理,污染物所释放的废气同样会沿真空管道13排出。可以理解的是,在污染物沿真空管道13移动的过程中,真空发生器12始终保持工作状态,持续抽离真空管道13内的空气。
在本实施例中,真空阈值用于描述真空管道13内部的负压程度,即描述真空管道13内部气压与外界气压的压差大小。通过设定不同的真空阈值,使得真空管道13的真空值达到该真空阈值时,控制感应阀门15开启,从而使真空管道13具备不同的负压吸引力,以吸引并回收污染物。可以理解的是,真空管道13所具备的负压吸引力越大,则污染物回收效率越高。
进一步地,感应阀门15装配有感应器(图中未标识),用于检测污染物收集桶111内污染物施加于感应阀门15的压力。本***1能够在污染物施加于感应阀门15的压力达到压力阈值时驱动真空发生器12工作,抽离真空管道13内的空气,并且驱动伸缩套筒115伸展至其筒口高出水面2。
其中,压力阈值用于描述污染物收集桶111所能容纳污染物的最大重量。污染物收集桶111的压力阈值越大,其所能容纳的污染物的重量越大。当感应器所检测污染物施加于感应阀门15的压力达到压力阈值时,说明污染物收集桶111内的污染物已达到污染物收集桶111的负载上限,需要清空污染物收集桶111并用以进行后续污染物收集工作。具体地,驱动伸缩套筒115伸展至其筒口高出水面2,阻挡水流进入污染物收集桶111(即阻挡水流所引导的污染物进入污染物收集桶111)。并且驱动真空发生器12抽离真空管道13内的空气,在真空管道13的真空值达到真空阈值时,开启感应阀门15,污染物在负压吸引下沿真空管道13移动并实现回收。
在本发明的其他实施例中,感应阀门15所装配的感应器可以为压力传感器或是重量传感器等至少能够检测在重力方向上加速度的传感器,或者是温湿度传感器等,在此不做限定。
以上可以看出,本发明所提供的应用于回收污染物的***,污染物收集器与真空发生器之间通过真空管道连接,实现互通。同时污染物收集器设置于水面之下,能够收集水中的污染物。并且真空发生器工作时,能够抽离真空管道内的空气,使得真空管道处于真空状态,利用负压吸引污染物收集器所收集的污染物进入真空管道,并使污染物沿真空管道移动实现回收。同时污染物收集桶与水泵之间配合形成的水流回路,能够不断循环回收水中漂浮的污染物。由于污染物的收集以及传输回收依靠自动化机械设备实现,以能够24小时全自动不间断的处理方式代替人工打捞污染物的方式,提高污染物回收的效率以及自动化程度。
请参阅图4,图4是本发明应用于回收污染物的***另一实施例的结构示意图。
在本实施例中,应用于回收污染物的***3包括污染物收集器31以及真空发生器32。污染物收集器31设置于水面4之下,用于收集水中的污染物。污染物收集器31与真空发生器32之间连接有真空管道33,使得二者之间能够形成气流通路并且用于传输污染物收集器31中的污染物。当真空发生器32工作时,其能够抽离真空管道33内的空气,以使真空管道33处于真空状态。由于真空管道33内的气压小于污染物收集器31中污染物所处环境的气压,因此能够在污染物收集器31与真空管道33之间形成负压吸引作用,真空管道33内部与外界环境的压差,使得污染物收集器31中的污染物被吸引进真空管道33内并沿真空管道33移动,实现污染物的回收。
本实施例与上述实施例的不同之处在于,本实施例所阐述的***3进一步包括有污染物中转收集器34。污染物中转收集器34用于存储污染物收集器31所回收的污染物,以将污染物收集器31多次回收的污染物集中处理,真空管道33所运送的污染物汇聚在污染物中转收集器34中,在污染物中转收集器34饱和之后,再经过压缩运送至污染物处置场地进行集中处理。
污染物中转收集器34通过真空管道33分别与污染物收集器31以及真空发生器32连通,污染物中转收集器34设置于污染物收集器31与真空发生器32之间,污染物收集器31所回收的污染物会顺着真空管道33移动至污染物中转收集器34内。
进一步地,本***3还包括旋屏分离器35。旋屏分离器35设置于污染物中转收集器34与污染物收集器31之间的真空管道33靠近污染物中转收集器34的端部。利用图像分析辅助检测真空管道33所运送至污染物中转收集器34的污染物种类(即污染物收集器31所回收污染物的种类)。
需要说明的是,污染物收集器31所收集的污染物种类较多,其中类似于树枝等长度方向尺寸明显的污染物,如果大量汇集并且分布不合理时,会占用大量的污染物中转收集器34的储物空间,致使污染物中转收集器34所存储污染物重量未到阈值,但后续运送而至的污染物无法进入污染物中转收集器34。为避免上述情形,本实施例设置旋屏分离器35,旋屏分离器35能够通过图像分析,获取一定时间内进入污染物中转收集器34的污染物种类,当发现长度方向尺寸明显的污染物较多时,可以预先清空污染物中转收集器34,为后续运送而至的污染物腾出储物空间。
进一步地,本***3还包括有抽真空风扇36。抽真空风扇36通过真空管道33分别与真空发生器32以及污染物中转收集器34连通,抽真空风扇36用于在真空发生器32以及污染物中转收集器34之间形成真空缓冲区。抽真空风扇36所营造的真空氛围的真空度小于真空发生器32所营造的真空氛围,利用抽真空风扇36所营造的真空氛围,保证整个***3的真空环境的稳定性。
以上可以看出,本发明所提供的应用于回收污染物的***,污染物收集器与真空发生器之间通过真空管道连接,实现互通。同时污染物收集器设置于水面之下,能够收集水中的污染物。并且真空发生器工作时,能够抽离真空管道内的空气,使得真空管道处于真空状态,利用负压吸引污染物收集器所收集的污染物进入真空管道,并使污染物沿真空管道移动实现回收。同时利用图像辅助分析进入污染物中转收集器的污染物种类,以合理规划污染物回收以及转运方式。由于污染物的收集以及传输回收依靠自动化机械设备实现,以能够24小时全自动不间断的处理方式代替人工打捞污染物的方式,提高污染物回收的效率以及自动化程度。
请参阅图5,图5是本发明应用于回收污染物的方法一实施例的流程示意图。需要说明的是,本实施例所阐述的应用于回收污染物的方法是基于上述实施例所阐述应用于回收污染物的***,其包括但不限于以下步骤:
S101:污染物收集器利用水流回路循环回收水中的污染物;
在本实施例中,伸缩套筒处于收缩状态,其筒口位于水面之下。水泵持续抽离污染物收集桶内的水体,并沿排水管道排至污染物收集桶之外。由于水泵的排水作用,引起污染物收集桶附近水流进入污染物收集桶内,形成水流回路,水流回路引导其中的污染物进入污染物收集桶,实现污染物收集桶回收污染物的功能。
S102:判断污染物收集器内污染物的重量是否达到阈值;
在本实施例中,感应阀门的感应器实时检测污染物施加于污染物收集桶的压力大小,用于判断污染物收集器内污染物的重量是否达到阈值,以在污染物收集桶满载时,及时清空污染物收集桶,以进行后续污染物的回收工作,实现循环回收。
S103:若是,则真空发生器抽离其与污染物收集器之间的真空管道内的空气,以吸引污染物收集器中的污染物沿真空管道移动并实现回收;
在本实施例中,若污染物收集器内污染物的重量达到阈值,即污染物施加于污染物收集桶的压力大小达到压力阈值,说明污染物收集桶已经满载。此时,控制伸缩套筒伸展至其筒口高出水面,以阻挡污染物进入污染物收集桶(污染物收集桶已满载)。并且真空发生器工作,抽离真空管道内的空气,当真空管道内的真空值达到真空阈值时,开启感应阀门,利用负压吸引污染物收集桶内的污染物进入真空管道并沿真空管道移动,实现回收。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (12)

  1. 一种应用于回收污染物的***,其中,所述***包括污染物收集器以及真空发生器,所述污染物收集器与所述真空发生器之间连接有真空管道;
    所述污染物收集器设置于水面之下,用于收集水中的污染物,所述真空发生器能够抽离所述真空管道内的空气,以使所述真空管道处于真空状态,以吸引所述污染物收集器中的污染物沿所述真空管道移动并实现回收。
  2. 根据权利要求1所述的***,其中,所述污染物收集器包括污染物收集桶以及水泵,所述污染物收集桶用于收集水中的污染物,所述污染物收集桶与所述水泵之间连接有排水管道;
    所述污染物收集桶设置于水面之下,所述水泵能够抽离所述污染物收集桶内的水分并沿所述排水管道排放至所述污染物收集桶之外,并引导水流进入所述污染物收集桶形成水流回路,所述水流回路用于引导污染物进入所述污染物收集桶。
  3. 根据权利要求2所述的***,其中,所述污染物收集器进一步包括伸缩套筒,所述伸缩套筒设置于所述污染物收集桶的桶口并与所述污染物收集桶的桶口对应装配,所述伸缩套筒处于收缩状态下,其筒口处于水面之下,并且所述伸缩套筒可伸展至其筒口高出水面,以阻挡水流进入所述污染物收集桶。
  4. 根据权利要求3所述的***,其中,所述***进一步包括调节杆件,所述调节杆件与所述污染物收集桶连接,用于调节所述伸缩套筒处于收缩状态时其筒口离水面的距离。
  5. 根据权利要求2所述的***,其中,所述水泵远离水体设置。
  6. 根据权利要求3所述的***,其中,所述污染物收集桶的桶底连接有所述真空管道,所述污染物收集桶桶底与所述真空管道之间设置有感应阀门;
    所述***进一步包括真空传感器,用于检测所述真空管道内的真空值,所述感应阀门能够在所述真空管道的真空值达到真空阈值时打开,以使所述污染物收集桶内的污染物沿所述真空管道移动并实现回收。
  7. 根据权利要求6所述的***,其中,所述感应阀门装配有感应器,用于检测所述污染物收集桶内污染物施加于所述感应阀门的压力,所述***能够在所述压力达到压力阈值时驱动所述真空发生器抽离所述真空管道内的空气,并且驱动所述伸缩套筒伸展至其筒口高出水面。
  8. 根据权利要求7所述的***,其中,所述感应器为压力传感器或重量传感器。
  9. 根据权利要求1所述的***,其中,所述***进一步包括污染物中转收集器,所述污染物中转收集器通过所述真空管道分别与所述污染物收集器以及所述真空发生器连通,所述污染物中转收集器用于存储所述污染物收集器所回收的污染物。
  10. 根据权利要求9所述的***,其中,所述***进一步包括旋屏分离器,所述旋屏分离器设置于所述污染物中转收集器与所述污染物收集器之间的所述真空管道靠近所述污染物中转收集器的端部,用于检测所述污染物收集器所回收污染物的种类。
  11. 根据权利要求1所述的***,其中,所述***进一步包括抽真空风扇,所述抽真空风扇通过所述真空管道分别与所述真空发生器以及所述污染物中转收集器连通,所述抽真空风扇用于在所述真空发生器以及所述污染物中转收集器之间形成真空缓冲区。
  12. 一种应用于回收污染物的方法,其中,所述方法包括:
    污染物收集器利用水流回路循环回收水中的污染物;
    判断所述污染物收集器内污染物的重量是否达到阈值;
    若是,则真空发生器抽离其与所述污染物收集器之间的真空管道内的空气,以吸引所述污染物收集器中的污染物沿所述真空管道移动并实现回收。
PCT/CN2018/090164 2018-06-06 2018-06-06 应用于回收污染物的***以及方法 WO2019232729A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090164 WO2019232729A1 (zh) 2018-06-06 2018-06-06 应用于回收污染物的***以及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090164 WO2019232729A1 (zh) 2018-06-06 2018-06-06 应用于回收污染物的***以及方法

Publications (1)

Publication Number Publication Date
WO2019232729A1 true WO2019232729A1 (zh) 2019-12-12

Family

ID=68769710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090164 WO2019232729A1 (zh) 2018-06-06 2018-06-06 应用于回收污染物的***以及方法

Country Status (1)

Country Link
WO (1) WO2019232729A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2182803Y (zh) * 1994-04-04 1994-11-16 梁凤鸣 真空抽油式油水分离集油器
KR20050033388A (ko) * 2003-10-06 2005-04-12 지영배 진공강자흡식 펌프를 이용한 부유물 회수장치
CN201614308U (zh) * 2009-12-25 2010-10-27 天津开发区兰顿油田服务有限公司 浮油收集器
CN205204877U (zh) * 2015-12-18 2016-05-04 文安县天澜新能源有限公司 一种浮油回收处理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2182803Y (zh) * 1994-04-04 1994-11-16 梁凤鸣 真空抽油式油水分离集油器
KR20050033388A (ko) * 2003-10-06 2005-04-12 지영배 진공강자흡식 펌프를 이용한 부유물 회수장치
CN201614308U (zh) * 2009-12-25 2010-10-27 天津开发区兰顿油田服务有限公司 浮油收集器
CN205204877U (zh) * 2015-12-18 2016-05-04 文安县天澜新能源有限公司 一种浮油回收处理装置

Similar Documents

Publication Publication Date Title
CN201026425Y (zh) 一种防粘壁布袋除尘装置
WO2014079165A1 (zh) 餐厨垃圾联合筛选***
CN205555188U (zh) 一种具有自动识别功能的智能垃圾桶
WO2011021816A2 (ko) 쓰레기 자동 집하시설의 음식물 쓰레기 패킹장치
CN208455594U (zh) 一种用于水闸门上的垃圾打捞装置
CN110015526A (zh) 一种气动循环垃圾收集装置及方法
CN106088223A (zh) 一种智能伸缩水箱
CN102862781A (zh) 斗式提升机除尘装置及方法
WO2019232729A1 (zh) 应用于回收污染物的***以及方法
CN111207956B (zh) 一种基于物联网的水体表面监控装置和方法
CN209452328U (zh) 一种建筑垃圾识别分拣设备
CN109713391A (zh) 适用于工业化应用的废锂离子电池放电***
CN114893777B (zh) 一种用于医疗垃圾热解炉的渣灰环保处理装置及其处理方法
CN202359798U (zh) 一种管道式气动垃圾回收装置
CN111891304A (zh) 一种湖面家禽饲料识别收取装置及方法
CN218763819U (zh) 一种具有热回收功能的屋顶机
CN201865090U (zh) 一种水面垃圾收集器
CN215478279U (zh) 一种上料抽膜机构
CN206068589U (zh) 一种带有抽真空装置的医疗垃圾分类***
CN108824390A (zh) 应用于回收污染物的***以及方法
CN213415113U (zh) 一种社区内用分时段收集的垃圾分类收集***
CN106057984B (zh) 一种多晶硅太阳能电池板下料装置
CN208145369U (zh) 一种乒乓球捡球器
CN205085138U (zh) 一种趸漂水上垃圾综合处理***
CN207919623U (zh) 一种水利工程清淤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921862

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12-05-21)

122 Ep: pct application non-entry in european phase

Ref document number: 18921862

Country of ref document: EP

Kind code of ref document: A1