WO2019230818A1 - モータ制御装置、モータ制御方法およびモータシステム - Google Patents

モータ制御装置、モータ制御方法およびモータシステム Download PDF

Info

Publication number
WO2019230818A1
WO2019230818A1 PCT/JP2019/021336 JP2019021336W WO2019230818A1 WO 2019230818 A1 WO2019230818 A1 WO 2019230818A1 JP 2019021336 W JP2019021336 W JP 2019021336W WO 2019230818 A1 WO2019230818 A1 WO 2019230818A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
current
torque
permanent magnet
axis
Prior art date
Application number
PCT/JP2019/021336
Other languages
English (en)
French (fr)
Inventor
晋衣 山田
正倫 綿引
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN201980036865.4A priority Critical patent/CN112204874A/zh
Publication of WO2019230818A1 publication Critical patent/WO2019230818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors

Definitions

  • the present disclosure relates to a motor control device and a motor driving method for a permanent magnet synchronous motor, and a motor system including the motor control device.
  • the torque of the permanent magnet synchronous motor has a predetermined magnitude regardless of the rotational position of the rotor.
  • pulsation can occur in torque due to various causes. Since such torque ripple causes vibration and noise, it is required to reduce the torque ripple.
  • Japanese Laid-Open Patent Publication No. 2008-54386 discloses not only the torque ripple component of the sixth harmonic generated due to the structure of the motor but also the second harmonic generated due to dimensional variations in manufacturing.
  • a technique for reducing torque ripple components is disclosed. This technique can reduce torque ripple at the frequency by adjusting the current control gain (proportional gain and integral gain) in accordance with the frequency of the harmonic to be suppressed.
  • Japanese Patent Laid-Open Publication No. 2013-085439 discloses a harmonic current (6th electrical angle) in at least one of a normal d-axis current and a q-axis current (zero-order current) in order to reduce torque ripple caused by magnet torque.
  • a harmonic current (6th electrical angle) in at least one of a normal d-axis current and a q-axis current (zero-order current) in order to reduce torque ripple caused by magnet torque.
  • it may be simply referred to as “sixth harmonic current”).
  • JP 2008-54386 A Japanese publication: JP2013-85439A
  • Embodiments of the present disclosure provide a new motor control device and a motor control method that suppress N-order harmonic components generated due to manufacturing dimensional variations.
  • an embodiment of the present disclosure provides a motor system including the motor control device.
  • a motor control device of the present disclosure is a motor control device that controls a permanent magnet synchronous motor having a stator and a rotor, and includes a processor and a memory that stores a program for controlling the operation of the processor.
  • the processor determines a q-axis current in a dq-axis coordinate system that rotates in synchronization with the rotation of the rotor based on a speed command or a torque command in accordance with a command of the program, and the permanent magnet synchronous motor
  • a value obtained by superimposing the N-order harmonic current having a phase opposite to the phase of the N-order harmonic component (N is an integer of 2 or more) of the cogging torque on the q-axis current is determined as the q-axis current command value.
  • the motor control method of the present disclosure is a motor control method for controlling a permanent magnet synchronous motor having a stator and a rotor, and is synchronized with the rotation of the rotor based on a speed command or a torque command. Determining the q-axis current in the rotating dq-axis coordinate system, and determining the amplitude and phase of the N-order harmonic current having a phase opposite to the phase of the N-order harmonic component of the cogging torque in the permanent magnet synchronous motor And determining a value obtained by superimposing the Nth harmonic current on the q-axis current as a q-axis current command value.
  • a motor system of the present disclosure includes a surface magnet type permanent magnet synchronous motor having a split stator and a rotor, a motor driving device connected to the permanent magnet synchronous motor, and a connection to the motor driving device.
  • the motor control device includes a processor and a memory that stores a program for controlling the operation of the processor.
  • the memory further stores the phase and amplitude of the Nth harmonic component of cogging torque in the permanent magnet synchronous motor.
  • the processor determines a q-axis current in a dq-axis coordinate system that rotates in synchronization with the rotation of the rotor based on a speed command or a torque command in accordance with a command of the program, and the memory stored in the memory Determining a current value obtained by superimposing a second harmonic current having a phase and amplitude on the q-axis current as a q-axis current command value, and an amplitude of an Nth-order harmonic component of a torque ripple in the permanent magnet synchronous motor The increase is smaller than the amplitude of the Nth harmonic component of the cogging torque.
  • FIG. 1 is a diagram schematically illustrating a configuration of a non-limiting exemplary embodiment of a motor system according to the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of the motor 100.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of a motor control device in the motor system according to the present disclosure.
  • FIG. 4 is a diagram illustrating a configuration example of the stator 100S in the present embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of the rotor 100R in the present embodiment.
  • FIG. 6 is a diagram schematically showing deformation that occurs on the inner peripheral surface of the split stator due to manufacturing variations.
  • FIG. 1 is a diagram schematically illustrating a configuration of a non-limiting exemplary embodiment of a motor system according to the present disclosure.
  • FIG. 2 is a diagram illustrating a configuration example of the motor 100.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of a motor control device in the
  • FIG. 7 is a diagram schematically illustrating a configuration of another non-limiting exemplary embodiment of the motor system according to the present disclosure.
  • FIG. 8 is a diagram schematically illustrating a configuration example of an integrated circuit device according to the present disclosure.
  • FIG. 9 is a flowchart illustrating a procedure in the embodiment of the motor control method according to the present disclosure.
  • FIG. 10 shows the torque amplitude and electrical angle order obtained for a motor (normal model) in which the minimum or maximum value of the stator inner diameter has a difference smaller than 0.09% from the average inner diameter. It is a graph which shows a relationship.
  • FIG. 10 shows the torque amplitude and electrical angle order obtained for a motor (normal model) in which the minimum or maximum value of the stator inner diameter has a difference smaller than 0.09% from the average inner diameter. It is a graph which shows a relationship.
  • FIG. 11 shows the torque amplitude and electrical angle order obtained for a motor (variation model) in which the minimum or maximum value of the inner diameter of the stator shows a difference of 0.09% or more from the average value of the inner diameter due to manufacturing variations. It is a graph which shows the relationship.
  • FIG. 12 shows the torque amplitude and electrical angle order obtained when the second harmonic current is superimposed on the q-axis current so as to cancel the secondary torque ripple when the motor of FIG. 11 is operated (superposition model). It is a graph which shows the relationship.
  • FIG. 13 is a graph showing a change in torque over time when the second harmonic current is not superimposed on the “variation model” and the “normal model”.
  • FIG. 14 shows the time variation of the torque when the second harmonic current is not superimposed on the “variation model” and the torque when the second harmonic current is superimposed on the “variation model” (superimposition model). It is a graph which shows the time change of.
  • FIG. 15 is a graph showing a secondary torque ripple (dotted line) when the second harmonic current is not superimposed on the q-axis current, and a secondary torque ripple (solid line) when the second harmonic current is superimposed on the q-axis current. It is.
  • a permanent magnet synchronous motor including a rotor and a stator
  • the outer peripheral surface of the rotor faces the inner peripheral surface of the stator defined by the tip surface of the stator teeth via an air gap.
  • the magnetic flux passing through the air gap mainly flows in the radial direction and the circumferential direction.
  • a circumferential force (torque) and a radial force (radial force) are generated between the stator and the rotor. These forces are called “electromagnetic forces”.
  • the interlinkage magnetic flux that generates the electromagnetic force includes the interlinkage magnetic flux generated by the permanent magnets in the rotor and the interlinkage magnetic flux formed by energizing the stator windings. Since the magnitude of the magnetic flux component (interlinkage magnetic flux) penetrating each tooth changes spatially and temporally, the electromagnetic force also changes spatially and temporally. This causes electromagnetic vibration and torque ripple.
  • harmonic currents of the same order are superimposed in opposite phases in order to reduce low-order torque ripple that is generated due to manufacturing variation, not radial force.
  • the number of interlinkage magnetic fluxes formed in the stator winding by the magnetic poles of the rotor changes periodically according to the rotational position of the rotor.
  • the rotational position of the rotor is referred to as “angular position” or “position” and is represented by an angle ⁇ from the reference direction in the fixed coordinate system.
  • the number of interlinkage magnetic fluxes formed in each stator winding when a current is passed through the stator winding also depends on an inductance that can be periodically changed according to the position ⁇ of the rotor.
  • Each of the magnetic pole and the inductance of the rotor may include a harmonic component (spatial harmonic component) that cannot be ignored other than the fundamental wave component having the rotor position ⁇ as a variable.
  • a spatial harmonic component causes a ripple in the torque generated when a current is passed through the stator winding.
  • the cogging torque does not depend on the presence or absence of the stator winding current (drive current). For this reason, when an electric current is passed through the stator winding and the motor is operated, a torque ripple is generated in which a component caused by the spatial harmonics and a component caused by the cogging phenomenon overlap.
  • the torque ripple may increase due to the manufacturing variation of the motor.
  • the torque ripple caused by such manufacturing variation is reduced by superimposing the harmonic current on the winding current.
  • the magnetic flux density B in each tooth is expressed by the following Equation 1. .
  • the interlinkage magnetic flux ⁇ is expressed by a linear combination of a permanent magnet component ⁇ m produced by the permanent magnet of the rotor and a current component ⁇ i produced by the current flowing through the stator winding, and therefore the following formula 2 is established.
  • Equation 3 In a permanent magnet synchronous motor driven by three phases of the UVW phase, the torque T is expressed by the following Equation 3.
  • ⁇ mU , ⁇ mV , and ⁇ mW are U, V, and W-phase linkage magnetic fluxes generated by the permanent magnets of the rotor, respectively.
  • i U , i V , and i W are winding currents of the U, V, and W phases, respectively.
  • L U , L V , and L W are self-inductances of the U, V, and W phases, respectively, and M UV , M VW , and M WU are mutual inductances between the U, V, and W phases, respectively.
  • P n is the number of pole pairs.
  • Equation 4 ⁇ mU , ⁇ mV , and ⁇ mW are expressed by the following Equation 4 in consideration of the spatial harmonic component.
  • L U , L V , L W and M UV , M VW , M WU are expressed by the following formulas 5 and 6, respectively, considering the spatial harmonic components.
  • torque can be expressed in a dq axis coordinate system that rotates in synchronization with the rotation of the rotor.
  • d on the d-axis is an acronym for “direct”, and the d-axis faces the N pole direction of the permanent magnet of the rotor.
  • q on the q-axis is an acronym for “quadrature”, and the q-axis faces a direction orthogonal to the d-axis at an electrical angle of 90 °.
  • the current vector in the dq axis coordinate system is a current on which no harmonic current is superimposed. That is, the current vector in the dq axis coordinate system is represented by the d axis zero order current i d0 and the q axis zero order current i q0 .
  • the following equation (7) is obtained.
  • ⁇ md0 and ⁇ ′ md6 are the amplitudes of the zero-order component and the sixth-order component of the d-axis flux linkage generated by the permanent magnet, respectively.
  • ⁇ ′ mq6 is the amplitude of the sixth-order component of the q-axis flux linkage generated by the permanent magnet.
  • L d0 and L q0 are a zero-order component of the d-axis self-inductance and a zero-order component of the q-axis self-inductance, respectively.
  • i d0 and i q0 are a d-axis current and a q-axis current (zero-order current) in a state where the harmonic current is not superimposed, respectively.
  • Equation 7 is a matrix that defines UVW / dq conversion, and is expressed by Equation 8 below.
  • [C] T which is a transposed matrix of [C]
  • Equation 9 is a matrix that defines the dq / UVW conversion, and is expressed by the following Equation 9.
  • Equation 7 the torque in the dq axis coordinate system is approximately represented by the sum of the zeroth order component (stationary component) and the sixth harmonic component, as shown in Equation 12 below.
  • the zero-order component of the torque is represented by the following formula 13
  • the sixth harmonic component is represented by the following formula 14.
  • the sixth-order harmonic components are the first-order and fifth-order components in which the interlinkage magnetic fluxes ⁇ mU , ⁇ mV , and ⁇ mW of the U, V, and W phases generated by the permanent magnets of the rotor change according to the rotor position ⁇ . This occurs because it is approximately expanded as the sum of the seventh-order harmonic components.
  • Equation 15 In order to reduce the sixth-order harmonic component of radial force and torque ripple, it has been proposed to superimpose the sixth-order harmonic on the d-axis current and the q-axis current as shown in Equation 15 below.
  • i d6 and i q6 are the amplitudes of the superimposed sixth-order harmonic current
  • ⁇ d6 and ⁇ q6 are the phases of the sixth-order harmonic current.
  • a torque having a phase and an amplitude that cancels the second-order or third-order cogging torque (harmonic component) with an electrical angle generated due to manufacturing variations of such individual motors In order to intentionally generate an anti-phase harmonic component, a secondary or tertiary harmonic current is superimposed on the winding current. More specifically, a second harmonic component is generated in the torque T of Equation 7 by superimposing a second harmonic current, for example, on the q-axis zero-order current i q0 shown in Equation 7. By adjusting the phase and amplitude of the superimposed second harmonic current, the harmonic component of the cogging torque can be canceled by the second harmonic component of the generated torque T.
  • the q-axis current (q-axis zero-order current i q0 ) and the d-axis current (d-axis zero-order current i d0 ) are determined by a normal vector control algorithm based on the current command or the torque command.
  • a motor system 1000 shown in FIG. 1 includes a permanent magnet synchronous motor 100 having a stator 100S and a rotor 100R, a motor driving device 200 connected to the permanent magnet synchronous motor 100, and a motor connected to the motor driving device 200. And a control device 300.
  • the permanent magnet synchronous motor 100 is simply referred to as a motor 100.
  • the stator 100S of the motor 100 includes a plurality of stator teeth 100T and windings 100W for exciting the stator teeth 100T.
  • a winding 100 ⁇ / b> W provided around one stator tooth 100 ⁇ / b> T is illustrated.
  • a winding 100W is provided around each stator tooth 100T.
  • the rotor 100R includes a rotor core 100C and a plurality of permanent magnets 100M arranged in the circumferential direction on the outer peripheral surface of the rotor core 100C.
  • a voltage is applied by the motor driving device 200 to the winding 100W of the stator 100S.
  • the motor 100 in the example of FIG. 2 has an 8-pole 12-slot configuration.
  • the configuration of the permanent magnet synchronous motor that can be used in the embodiments of the present disclosure is not limited to 8 poles and 12 slots. *
  • the motor drive device 200 in FIG. 1 is a power converter having an inverter as a main circuit.
  • the main circuit includes a plurality of power semiconductor elements (not shown in FIG. 1) as components.
  • the motor control device 300 generates and outputs a control signal (gate signal) for switching individual power semiconductor elements in the motor driving device 200.
  • the motor system 1000 includes a current sensor (not shown) that measures a current flowing through the winding 100W.
  • the current sensor may be, for example, a current transformer (CT), but is not limited thereto.
  • CT current transformer
  • the motor control device 300 includes a processor 90 and a memory 95 that stores a program for controlling the operation of the processor 90.
  • the processor 90 executes the following processing in accordance with a program instruction. (1) determining a q-axis current in a dq-axis coordinate system that rotates in synchronization with the rotation of the rotor 100R based on a speed command or a torque command; (2)
  • the q-axis current command is a value obtained by superimposing an N-order harmonic current having a phase opposite to the phase of the N-order harmonic component (N is an integer of 2 or more) of the cogging torque in the motor 100 on the q-axis current. To be determined as a value.
  • FIG. 3 shows an example of the hardware configuration of the motor control device 300.
  • the motor control device 300 in this example includes a CPU (central processing unit) 320, a PWM circuit 330, a ROM (read only memory) 340, a RAM (random access memory) 350, and an I / F (input / output interface) connected to each other via a bus. ) 360.
  • Other circuits or devices not shown in the figure may be additionally connected to the bus.
  • the PWM circuit 330 gives a drive signal to the motor drive device 200. This drive signal is input to the gate terminal of the switching element in the motor driving apparatus 200, and on / off of each switching element is controlled.
  • Such a motor control device 300 can be realized by, for example, a 32-bit general-purpose microcontroller.
  • a microcontroller can be comprised of, for example, one or more integrated circuit chips.
  • Various operations performed by the motor control device 300 are defined by a program. It is also possible to change part or all of the operation of the motor control device 300 by updating part or all of the contents of the program. Such a program update may be performed using a recording medium storing the program, or may be performed by wired or wireless communication. Communication can be performed using the I / F 360 of FIG.
  • the configuration of the motor control device 300 is not limited to the example shown in FIG. *
  • the amplitude of the Nth harmonic component of the torque ripple in the motor 100 is smaller than the amplitude of the Nth harmonic component of the cogging torque.
  • the amplitude of the Nth harmonic component of the torque ripple can be reduced to 0.03% or less of the average torque.
  • the Nth order harmonic current superimposed on the q-axis current has a phase opposite to the phase of the Nth order harmonic component of the cogging torque. This is because the amplitude becomes small.
  • an N-order harmonic current that generates a torque that cancels the N-order harmonic component of the cogging torque is superimposed on the q-axis current.
  • the degree of this “cancellation” does not need to be complete, and it is sufficient if the amplitude of the cogging torque generated due to manufacturing variations can be reduced as compared with the value before superposition of the harmonic current.
  • the memory 95 shown in FIG. 1 stores a numerical value (a set of numerical values) defined by the phase and amplitude of the Nth harmonic component of the cogging torque in the motor 100.
  • This numerical value may be the “phase and amplitude” itself of the N-order harmonic component of the cogging torque, or may be the “antiphase and amplitude” thereof.
  • “reverse phase” corresponds to shifting the phase by 180 ° with respect to the second harmonic component of the cogging torque.
  • the second harmonic component of the cogging torque can be greatly reduced.
  • a second harmonic current having a phase shifted by 180 ° with respect to the second harmonic component of the cogging torque. Is superimposed on the q-axis current. For example, when the amplitude of the second harmonic component of the cogging torque is 0.7% or more of the average torque, if such a second harmonic current is superimposed, the amplitude of the Nth harmonic component of the torque ripple is averaged. It can be reduced to 0.03% or less of the torque.
  • the second harmonic component or the third harmonic component of the cogging torque resulting from manufacturing variations is sufficiently small, for example, less than 0.7% of the average torque.
  • the motor control according to the present disclosure may not be applied.
  • the memory 95 does not store a numerical value defined by the phase and amplitude of the Nth-order harmonic component of the cogging torque, or stores zero or other specific value. It may be memorized.
  • the processor 90 When controlling the motor 100, the processor 90 acquires the numerical value stored in the memory 95 from the memory 95. Based on the acquired numerical value, the processor 90 determines the phase and amplitude of the Nth harmonic current superimposed on the q-axis current. *
  • the configuration of the motor 100 is not limited to the configuration described above.
  • a surface magnet type motor (SPM) in which the permanent magnets are arranged on the surface of the rotor 100R may be used, or an embedded magnet type motor (IPM) in which the permanent magnets are incorporated in the rotor 100R.
  • An example of the motor 100 to which the motor control of the present disclosure is preferably applied is a surface magnet type motor.
  • a surface magnet type motor has a smaller torque ripple than an embedded magnet type motor, and is used for applications that strongly require a small torque ripple. For this reason, by applying the motor control technology of the present disclosure, it is possible to meet the demand. *
  • stator 100S is a split stator having a plurality of cores arranged along the circumferential direction of the rotor 100R
  • a second harmonic component of cogging torque is likely to occur due to manufacturing variations.
  • the third harmonic component of cogging torque may occur due to variations in the thickness of the permanent magnet.
  • a typical example of the Nth harmonic component is a second or third harmonic component.
  • the motor control in the embodiment of the present disclosure can exert the highest effect when applied to a surface magnet type motor having a split stator. *
  • FIG. 4 shows a configuration example of the stator 100S in the present embodiment.
  • the stator 100S is a split stator having a plurality of cores 100Sp arranged around the central axis.
  • one core 100Sp is described on the left side of the stator 100S for reference.
  • a split stator is realized by connecting the cores 100Sp each having the structure shown in the figure.
  • the description of the winding 100W is omitted for simplicity.
  • a winding 100W is provided around each stator tooth 100T.
  • the inner diameter of the stator 100S is ideally a perfect circle diameter Rs. However, as will be described later, when the stator 100S is manufactured by combining a plurality of cores 100Sp, the inner peripheral surface of the stator 100S may be deformed from a perfect circle. *
  • FIG. 5 shows a configuration example of the rotor 100R in the present embodiment.
  • the rotor 100R has a plurality of permanent magnets 100M arranged in the circumferential direction on the outer peripheral surface of the rotor core 100C.
  • the thickness of the permanent magnet 100M is t
  • the diameter of the rotor 100R is Rf. *
  • FIG. 6 is a diagram schematically showing deformation that occurs on the inner peripheral surface of the split stator due to manufacturing variations.
  • the intervals between the six sets of stator teeth arranged symmetrically with respect to the central axis are R1, R2, R3, R4, R5, and R6, respectively.
  • R1 to R6 can take different values due to manufacturing variations, so that a secondary cogging torque is generated, and finally the second harmonic component (secondary torque ripple) of the torque ripple is large. Become. *
  • the motor control of the present embodiment can be applied to a motor in which the minimum value or the maximum value of the inner diameter of the stator 100S has a difference of 0.09% or more from the average value of the inner diameter.
  • the secondary harmonic current may be superimposed on a motor whose secondary torque ripple amplitude is 0.7% or more of the average torque.
  • the motor system 1000 of this embodiment includes a permanent magnet synchronous motor 100 including a rotor 100R and a stator 100S, a position sensor 120 for measuring or estimating the position of the rotor 100R, and a permanent magnet synchronous motor. And a motor control device 300 for controlling 100.
  • a typical example of the position sensor 120 is a magnetic sensor such as a Hall element or Hall IC, a rotary encoder, or a resolver.
  • the position sensor 120 is not indispensable, and a configuration that estimates the position of the rotor 100R without a sensor may be employed.
  • the motor control device 300 includes a first circuit 10 that determines a zero-order current (d-axis zero-order current i d0 and q-axis zero-order current i q0 ) by known vector control, and a harmonic current according to the position of the rotor 100R.
  • a second circuit 20 for determining (d-axis N-order harmonic current i dh and q-axis N-order harmonic current i qh ) and a third circuit 30 for determining a current command value are provided.
  • the d-axis zero-order current i d0 is, for example, zero.
  • the d-axis Nth harmonic current i dh can also be set to zero.
  • the third circuit 30 is obtained by superimposing a q-axis N-th harmonic current i qh the d-axis 0-order current i d0 values obtained by superimposing the d-axis N-th harmonic current i dh, and q-axis 0-order current i q0 value Are determined as a d-axis current command value i d and a q-axis current command value i q , respectively.
  • the third circuit 30 is included in the vector control circuit 40 included in the motor control device 300.
  • the vector control circuit 40 determines the d-axis voltage command value v d and the q-axis voltage command value v q based on the d-axis current command value i d and the q-axis current command value i q .
  • the motor control device 300 includes a first conversion circuit 50 that performs UVW / dq conversion, a second conversion circuit 60 that performs dq / UVW conversion, an inverter 70, and a mechanical angle ( ⁇ m) indicated by the output of the position sensor 120. Is converted into an electrical angle ( ⁇ e).
  • the inverter 70 applies a U-phase voltage u, a V-phase voltage v, and a W-phase voltage w to the U-phase winding, V-phase winding, and W-phase winding of the permanent magnet synchronous motor 100, respectively, to obtain a desired current.
  • a circuit that generates a PWM signal based on the voltage command values vu, vv, and vw, and a gate driver that generates a gate drive signal that switches a transistor in the inverter 70 based on the PWM signal may be provided in the previous stage of the inverter 70. .
  • Some or all of the components such as the first circuit 10, the second circuit 20, the third circuit 30, the vector control circuit 40, the first conversion circuit 50, and the second conversion circuit 60 may be realized by an integrated circuit device. .
  • Such an integrated circuit device can typically be formed by one or more semiconductor components.
  • the integrated circuit device 500 illustrated in FIG. 8 includes a signal processor 520 and a memory 540.
  • the memory 540 stores a program that causes the signal processor 520 to execute the following processing.
  • ⁇ Process to determine d-axis zero-order current and q-axis zero-order current A process for determining the d-axis Nth harmonic current and the q-axis Nth harmonic current according to the position of the rotor A value obtained by superimposing the d-axis Nth order harmonic current on the d-axis 0th order current and a value obtained by superposing the q-axis Nth order harmonic current on the q-axis 0th order current, respectively, as the d-axis current command value and the q-axis current. Processing to determine as a command value
  • N th harmonic torque ripple It has a value that lowers the component.
  • the integrated circuit device 500 includes an A / D converter 560 that converts an analog signal from the position sensor 120 into a digital signal and an analog signal from a sensor (not shown) that detects a current flowing through the winding of the motor 100 as a digital signal. And an A / D converter 580 for conversion into *
  • a command value such as a current command value or a torque command value and a sensor detection value are received, and a d-axis zero-order current and a q-axis zero-order current are determined.
  • a table that associates various command values and sensor detection values with the command values of the d-axis zero-order current and the q-axis zero-order current may be used.
  • Such a table can be recorded in a memory 95 or the like built in the motor control device 300.
  • the magnitudes of the d-axis zero-order current and the q-axis zero-order current can be determined based on, for example, a current command value, a torque command value, a motor rotation speed, a motor applied voltage, and the like.
  • the magnitudes of the d-axis zero-order current and the q-axis zero-order current may be determined based on a speed command and an actual speed output from a speed controller (not shown). *
  • step S2 the d-axis Nth harmonic current and the q-axis Nth harmonic current are determined according to the position of the rotor.
  • the amplitude i dN and the phase ⁇ dN of the d-axis N-order harmonic current and the amplitude of the q-axis N-order harmonic current are set so that the N-th order torque ripple is smaller than when no harmonic current is superimposed.
  • i qN and phase ⁇ qN are determined.
  • a table that relates the position of the rotor and the amplitude and phase of the harmonic current may be used. Such a table can be recorded in a memory built in the motor control device.
  • the amplitude of the Nth-order harmonic current can be calculated off-line by measuring the amplitude of the cogging torque offline.
  • the amplitude of the Nth harmonic current may be swept so that the current is actually passed through the motor, and the amplitude at which the torque ripple of the problem order is reduced to a predetermined level or less may be determined for each motor.
  • the phase and amplitude of the Nth harmonic current to be superimposed are both determined before shipment of the motor system, and data defining these phase and amplitude is recorded in the memory.
  • step S2 read from the memory such data in motor operation, the amplitude i dN and the phase theta dN of the d-axis N-order harmonic current, and determines the amplitude i qN and phase theta qN q-axis N-th harmonic current To do.
  • the determination of the amplitude i dN and the phase ⁇ dN of the d-axis N-order harmonic current may be omitted.
  • step S3 a value obtained by superimposing the d-axis Nth order harmonic current on the d-axis 0th order current and a value obtained by superposing the q-axis Nth order harmonic current on the q-axis 0th order current are respectively set to the d-axis current command value and Determined as q-axis current command value.
  • step S4 the d-axis voltage command value and the q-axis voltage command value are determined based on the d-axis current command value and the q-axis current command value.
  • each UVW phase voltage command value is determined based on the d-axis voltage command value and the q-axis voltage command value.
  • the amplitude of the Nth harmonic component of the torque ripple in the motor is smaller than the amplitude of the Nth harmonic component of the cogging torque.
  • a sixth harmonic current may be additionally superimposed in order to reduce the torque ripple caused by manufacturing variation, for example, the sixth radial force. . *
  • Example> The motor control method according to the embodiment of the present disclosure was performed on the surface magnet type motor 100 having an 8-pole 12-slot configuration including the stator 100S and the rotor 100R illustrated in FIGS. 4 and 5.
  • FIG. 10 shows the torque amplitude and electrical angle order obtained for a motor (normal model) in which the minimum or maximum value of the stator inner diameter has a difference smaller than 0.09% from the average inner diameter. It is a graph which shows a relationship. The rotational speed was 1000 revolutions per minute. Although the sixth torque ripple is generated, the second torque ripple is negligibly small. *
  • FIG. 11 shows the torque amplitude and electrical angle order obtained for a motor (variation model) in which the minimum or maximum value of the inner diameter of the stator shows a difference of 0.09% or more from the average value of the inner diameter due to manufacturing variations. It is a graph which shows the relationship. The average torque and the rotation speed are the same as in the example of FIG. In this example, a secondary torque ripple larger than the sixth torque ripple was generated. *
  • FIG. 12 shows the relationship between the torque amplitude and the electrical angle order obtained when the secondary harmonic current is superimposed on the q-axis current so as to cancel the secondary torque ripple when the motor of FIG. 11 is operated. It is a graph to show.
  • the amplitude of the q-axis second-order harmonic current necessary for “cancellation” was about 1/100 to 1/50 of the amplitude of the q-axis zero-order current.
  • the amplitude of the secondary torque ripple is sufficiently smaller than the amplitude of the sixth torque ripple.
  • the amplitude of the secondary torque ripple was smaller than 0.6% of the average torque.
  • FIG. 13 is a graph showing a change in torque over time when the second harmonic current is not superimposed on the “variation model” and the “normal model”.
  • FIG. 14 shows the time variation of the torque when the second harmonic current is not superimposed on the “variation model” and the torque when the second harmonic current is superimposed on the “variation model” (superimposition model). It is a graph which shows the time change of. *
  • FIG. 15 is a graph showing a secondary torque ripple (dotted line) when the second harmonic current is not superimposed on the q-axis current, and a secondary torque ripple (solid line) when the second harmonic current is superimposed on the q-axis current. It is. The effect of high frequency current superposition is obvious. *
  • the second harmonic current is superimposed on the q-axis current to cancel the cogging torque generated due to the deviation of the stator inner diameter from the perfect circle.
  • the third harmonic current may be superimposed on the q-axis current. The phase and amplitude of the superimposed harmonic current can be determined off-line so as to sufficiently reduce the torque ripple actually generated in each motor.
  • a method of manufacturing a motor system includes providing a plurality of permanent magnet synchronous motors (especially a surface magnet motor having a split stator) and cogging each of the plurality of motors. Measuring the amplitude of torque and / or torque ripple, and determining the phase and amplitude of a harmonic current that reduces the amplitude of torque ripple for a motor whose amplitude exceeds a predetermined value (eg, 0.7% of average torque) And storing a numerical value (a set or table of numerical values) defined by the determined phase and amplitude in a memory of a motor controller for the motor.
  • a predetermined value eg, 0.7% of average torque
  • the motor control device and the control method of the present disclosure, and the motor system are various permanent magnet synchronous motors that are required to reduce vibration or noise in order to reduce torque ripple of the motor by current control, and devices or systems including the permanent magnet motor Can be widely applied to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本開示のモータ制御装置は、実施形態において、ステータ(100S)およびロータ(100R)を有する永久磁石同期モータ(100)を制御するモータ制御装置であって、プロセッサ(90)と、プロセッサの動作を制御するプログラム(95)を記憶するメモリ(95)とを備える。プロセッサは、速度指令またはトルク指令に基づいて、ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、永久磁石同期モータにおけるコギングトルクのN次高調波成分の位相とは逆の位相を有するN次高調波電流をq軸電流に重畳した値をq軸電流指令値として決定することを実行する。

Description

モータ制御装置、モータ制御方法およびモータシステム
本開示は、永久磁石同期モータのためのモータ制御装置およびモータ駆動方法、ならびに当該モータ制御装置を備えるモータシステムに関する。
永久磁石同期モータのトルクは、本来、ロータの回転位置によらずに所定の大きさを示すことが望ましい。しかし、トルクには、さまざまな原因によって脈動(リプル)が発生し得る。このようなトルクリプルは、振動および騒音の原因になるため、トルクリプルを低減することが求められている。 
日本国公開公報特開2008-54386号公報は、モータの構造に起因して生じる第6次高調波のトルクリプル成分だけではなく、製造上の寸法ばらつきに起因して生じる得る第2次高調波のトルクリプル成分を低減する技術を開示している。この技術は、抑制したい高調波の周波数に合わせて電流制御ゲイン(比例ゲインおよび積分ゲイン)を調整することにより、その周波数におけるトルクリプルを低減することが可能である。 
日本国公開公報特開2013-085439号公報は、マグネットトルクに起因するトルクリプルを低減するため、通常のd軸およびq軸電流(0次電流)の少なくとも一方に電気角6次の高調波電流(以下、単に「6次高調波電流」と称する場合がある。)を重畳することを開示している。
日本国公開公報:特開2008-54386号公報 日本国公開公報:特開2013-85439号公報
トルクリプルの周波数に応じて電流制御器の各種ゲインを設定する従来技術には、電流指令に対する応答が遅くなる。また、電気角6次の高調波電流の重畳は6次のトルクリプル低減に効果を示すが、製造上の寸法ばらつきに起因して生じる得る低次のトルクリプルを低減する効果はない。 
本開示の実施形態は、製造上の寸法ばらつきに起因して生じるN次高調波成分を抑制する新しいモータ制御装置およびモータ制御方法を提供する。また、本開示の実施形態は、当該モータ制御装置を備えるモータシステムを提供する。
本開示のモータ制御装置は、例示的な実施形態において、ステータおよびロータを有する永久磁石同期モータを制御するモータ制御装置であって、プロセッサと、前記プロセッサの動作を制御するプログラムを記憶するメモリとを備え、前記プロセッサは、前記プログラムの指令に従って、速度指令またはトルク指令に基づいて、前記ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、前記永久磁石同期モータにおけるコギングトルクのN次高調波成分(Nは2以上の整数)の位相とは逆の位相を有するN次高調波電流を前記q軸電流に重畳した値をq軸電流指令値として決定することを実行する。 
本開示のモータ制御方法は、例示的な実施形態において、ステータおよびロータを有する永久磁石同期モータを制御するモータ制御方法であって、速度指令またはトルク指令に基づいて、前記ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、前記永久磁石同期モータにおけるコギングトルクのN次高調波成分の位相とは逆の位相を有するN次高調波電流の振幅および位相を決定すること、前記q軸電流に前記N次高調波電流を重畳した値をq軸電流指令値として決定すること、を含む。 
本開示のモータシステムは、例示的な実施形態において、分割ステータおよびロータを有する表面磁石型の永久磁石同期モータと、前記永久磁石同期モータに接続されたモータ駆動装置と、前記モータ駆動装置に接続されたモータ制御装置とを備える。前記モータ制御装置は、プロセッサと、前記プロセッサの動作を制御するプログラムを記憶するメモリとを備える。前記メモリは、更に、前記永久磁石同期モータにおけるコギングトルクのN次高調波成分の位相および振幅を記憶している。前記プロセッサは、前記プログラムの指令に従って、速度指令またはトルク指令に基づいて、前記ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、前記メモリに記憶されている前記位相および振幅を有する2次高調波電流を前記q軸電流に重畳した電流値をq軸電流指令値として決定すること、を実行し、前記永久磁石同期モータにおけるトルクリプルのN次高調波成分の振幅増加分は、前記コギングトルクのN次高調波成分の振幅よりも小さい。
本開示の実施形態によると、製造ばらつきに起因して発生したトルクリプルのN次高調波成分を効果的に低減することが可能になる。
図1は、本開示によるモータシステムの限定的ではない例示的な実施形態の構成を模式的に示す図である。 図2は、モータ100の構成例を示す図である。 図3は、本開示によるモータシステムにおけるモータ制御装置のハードウェア構成の例を示す図である。 図4は、本実施形態におけるステータ100Sの構成例を示す図である。 図5は、本実施形態におけるロータ100Rの構成例を示す図である。 図6は、製造ばらつきに起因して分割ステータの内周面に生じる変形を模式的に示す図である。 図7は、本開示によるモータシステムの限定的ではない例示的な他の実施形態の構成を模式的に示す図である。 図8は、本開示による集積回路装置の構成例を模式的に示す図である。 図9は、本開示によるモータ制御方法の実施形態における手順を示すフローチャートである。 図10は、ステータの内径の最小値または最大値が内径の平均値から0.09%よりも小さな差異しか有していないモータ(ノーマルモデル)について得られたトルクの振幅と電気角次数との関係を示すグラフである。 図11は、製造ばらつきに起因してステータの内径の最小値または最大値が内径の平均値から0.09%以上の差異を示すモータ(ばらつきモデル)について得られたトルクの振幅と電気角次数との関係を示すグラフである。 図12は、図11のモータを動作させるとき、2次トルクリプルを相殺するように2次高調波電流をq軸電流に重畳した場合(重畳モデル)に得られた、トルクの振幅と電気角次数との関係を示すグラフである。 図13は、「ばらつきモデル」および「ノーマルモデル」について2次高調波電流の重畳を行わなかった場合のトルクの時間変化を示すグラフである。 図14は、「ばらつきモデル」について2次高調波電流の重畳を行わなかった場合のトルクの時間変化と、「ばらつきモデル」について2次高調波電流の重畳を行った場合(重畳モデル)のトルクの時間変化とを示すグラフである。 図15は、q軸電流に2次高調波電流を重畳しない場合の2次トルクリプル(点線)と、q軸電流に2次高調波電流を重畳したときの2次トルクリプル(実線)とを示すグラフである。
ロータおよびステータを備える永久磁石同期モータ内において、ロータの外周面は、ステータティースの先端面が規定するステータ内周面にエアギャップを介して対向している。エアギャップを通る磁束は、主にラジアル方向と周方向に流れる。その結果、ステータとロータとの間には、周方向の力(トルク)とラジアル方向の力(ラジアル力)とが発生する。これらの力は「電磁力」と称されている。電磁力を生成する鎖交磁束は、ロータ内の永久磁石による鎖交磁束と、ステータの巻線に通電して形成される鎖交磁束とを含む。各ティースを貫通する磁束成分(鎖交磁束)の大きさは、空間的および時間的に変化するため、電磁力も空間的および時間的に変化する。これが電磁振動およびトルクリプルの原因になる。 
ステータの巻線を流れる電流に対して、特定条件を満足する振幅および位相を持つ高調波電流を重畳することにより、モータ駆動時のラジアル力に起因する振動および騒音を低減できることが知られている。 
本開示のモータ制御装置、モータ制御方法、モータシステムでは、ラジアル力ではなく、製造ばらつきに起因して発生する低次のトルクリプルを低減するために同次数の高調波電流を逆位相で重畳する。 
本開示の実施形態を説明する前に、トルクリプルが生じる主な原因を以下に説明する。 
一般に、トルクリプルの原因は大きく以下の2種類に分けられる。 
(1)空間高調波

 ロータの磁極がステータ巻線に形成する鎖交磁束数は、ロータの回転位置に応じて周期的に変化する。以下、ロータの回転位置を「角度位置」または「位置」と称し、固定座標系における基準方向からの角度θによって表す。ステータ巻線に電流を流したときに各ステータ巻線に形成される鎖交磁束数も、ロータの位置θに応じて周期的に変化し得るインダクタンスに依存する。ロータの磁極およびインダクタンスのそれぞれは、ロータの位置θを変数とする基本波成分以外に無視できない高調波成分(空間高調波成分)を含む場合がある。このような空間高調波成分は、ステータ巻線に電流を流しているときに生じるトルクにリプルを引き起こす。 
(2)コギングトルク

 ステータ巻線に電流を流していない状態(無負荷状態)でも、ロータとステータとの間にあるエアギャップには、ロータの磁極による磁束が存在し、磁気エネルギが蓄積される。このエアギャップは、ステータが有する複数のスロットの存在により、ロータの位置θに応じて周期的に変化するため、磁気エネルギはロータの位置θの関数である。ステータ巻線に電流が流れていない状態でエアギャップに蓄積される磁気エネルギをW(θ)とするとき、δW(θ)/δθで表される大きさのトルクが発生する。これを「コギングトルク」と称する。コギングトルクは、ステータ巻線の電流(駆動電流)の有無に依存しない。このため、ステータ巻線に電流を流してモータを動作させると、空間高調波に起因する成分とコギング現象に起因する成分とが重なったトルクリプルが発生する。 
従来、トルクリプルを低減するための種々の技術が提案されてきた。例えばロータおよびステータの構造、または巻線の分布を工夫して空間高調波成分を小さくすることが行われてきた。 
本発明者らの実験によると、ロータおよびステータの構造を最適化することによってトルクリプルを十分に低減できる場合においても、モータの製造ばらつきに起因してトルクリプルが増加することがある。本開示の実施形態では、このような製造ばらつきに起因するトルクリプルを、巻線電流に高調波電流を重畳することによって低減する。 
まず、巻線電流の高調波成分がトルクに与える影響を説明する。 
ステータの各ティースにおいて、磁束をφ、ティース先端の面積をS、鎖交磁束をΨ、巻線のターン数をNとすると、各ティース内の磁束密度Bは、下記の数式1で表される。  
Figure JPOXMLDOC01-appb-M000001
鎖交磁束Ψは、ロータの永久磁石が作る永久磁石成分Ψと、ステータの巻線を流れる電流が作る電流成分Ψとの線形結合によって表されるため、以下の数式2が成立する。  
Figure JPOXMLDOC01-appb-M000002
 UVW相の3相で駆動される永久磁石同期モータでは、トルクTは、以下の数式3で表される。
Figure JPOXMLDOC01-appb-M000003
 ここで、ΨmU、ΨmV、ΨmWは、それぞれ、ロータの永久磁石によるU、V、W相の鎖交磁束である。i、i、iは、それぞれ、U、V、W相の巻線電流である。L、L、Lは、それぞれ、U、V、W相の自己インダクタンスであり、MUV、MVW、MWUは、それぞれ、U、V、W相間の相互インダクタンスである。Pnは極対数である。 
ΨmU、ΨmV、ΨmWは、空間高調波成分を考慮すると、以下の数式4で表される。  
Figure JPOXMLDOC01-appb-M000004
、L、LおよびMUV、MVW、MWUは、空間高調波成分を考慮すると、それぞれ、以下の数式5および数式6で表される。  
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
前述の数式3について、dq/UVW変換を行うことにより、ロータの回転に同期して回転するdq軸座標系でトルクを表現することができる。dq軸座標系におけるd軸の「d」は「direct」の頭文字であり、d軸はロータの永久磁石のN極方向を向く。q軸の「q」は「quadrature」の頭文字であり、q軸はd軸に対して電気角90°で直交する方向を向く。 
ここでは簡単のため、dq軸座標系における電流ベクトルは、高調波電流が重畳されていない電流であるとする。すなわち、dq軸座標系における電流ベクトルは、d軸0次電流id0およびq軸0次電流iq0によって表される。数3の式にdq/UVW変換を行うと、以下の数式7が得られる。  
Figure JPOXMLDOC01-appb-M000007
 ここで、Ψmd0およびΨ’md6は、それぞれ、永久磁石によって生じるd軸鎖交磁束の0次成分および6次成分の振幅である。Ψ’mq6は、永久磁石によって生じるq軸鎖交磁束の6次成分の振幅である。また、Ld0およびLq0は、それぞれ、d軸自己インダクタンスの0次成分およびq軸自己インダクタンスの0次成分である。id0およびiq0は、それぞれ、高調波電流が重畳されない状態のd軸電流およびq軸電流(0次電流)である。 
なお、数式7における[C]は、UVW/dq変換を規定する行列であり、以下の数式8で表される。[C]の転置行列である[C]は、dq/UVW変換を規定する行列であり、以下の数式9で表される。  
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
これらの変換に際しては、以下の数式10および数式11が成立する。  
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
数式7から、dq軸座標系でのトルクは、以下の数式12に示すように、0次成分(定常成分)と6次高調波成分の和によって近似的に表される。  
Figure JPOXMLDOC01-appb-M000012
ここで、トルクの0次成分は、以下の数式13で表され、6次高調波成分は、以下の数式14で表される。  
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
巻線電流に高調波電流を重畳しないとき、dq軸座標系では、ロータの位置θに応じて変化する6次高調波成分の鎖交磁束が発生する。この6次高調波成分は、ロータの永久磁石によって生じるU、V、W相の鎖交磁束ΨmU、ΨmV、ΨmWが、それぞれ、ロータの位置θに応じて変化する1次、5次、7次の高調波成分の和として近似的に展開されるために発生する。 
ラジアル力およびトルクリプルの6次高調波成分を低減するため、以下の数式15に示すように、d軸電流およびq軸電流に対して、6次高調波を重畳することが提案されている。  
Figure JPOXMLDOC01-appb-M000015
  ここで、id6およびiq6は、重畳する6次高調波電流の振幅であり、θd6およびθq6は、6次高調波電流の位相である。 
上記の説明は、製造ばらつきのない理想的なモータについて成立する。実際のモータでは、製造ばらつきに起因して2次または3次という低次のコギングトルクが発生し得る。後述するように、特に分割ステータを有するモータの場合には、2次の高調波成分を持つコギングトルクが発生しやすい。更に、ロータにおける永久磁石の厚さばらつきに起因して3次の高調波成分を持つコギングトルクが発生することもある。 
本開示の実施形態では、例えば、このような個々のモータの製造ばらつきに起因して発生する電気角で2次または3次のコギングトルク(高調波成分)を相殺する位相および振幅を有するトルク(逆位相の高調波成分)を意図的に発生させるために、巻線電流に2次または3次の高調波電流を重畳する。より具体的には、数式7に示されているq軸0次電流iq0に、例えば2次高調波電流を重畳することにより、数式7のトルクTに2次高調波成分を生成させる。重畳する2次高調波電流の位相および振幅を調整することにより、生成されるトルクTの2次高調波成分によってコギングトルクの高調波成分を相殺することができる。 
なお、q軸電流(q軸0次電流iq0)およびd軸電流(d軸0次電流id0)については、電流指令またはトルク指令に基づいて、通常のベクトル制御アルゴリズムによって決定する。 
以下、本開示の実施形態を説明する。 
<モータシステムの構成例>

 以下、添付の図面を参照しながら、本開示によるモータシステムの限定的ではない例示的な実施形態を説明する。なお、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。本発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。これらによって特許請求の範囲に記載の主題を限定することを意図しない。 
まず、図1および図2を参照して、本実施形態におけるモータシステムの基本構成例を説明する。 
図1に示されているモータシステム1000は、ステータ100Sおよびロータ100Rを有する永久磁石同期モータ100と、永久磁石同期モータ100に接続されたモータ駆動装置200と、モータ駆動装置200に接続されたモータ制御装置300とを備えている。 
以下、永久磁石同期モータ100を単にモータ100と称する。このモータ100が有するステータ100Sは、図2に示されるように、複数のステータティース100Tと、各ステータティース100Tを励磁する巻線100Wとを有している。図2では、簡単のため、ある1個のステータティース100Tの周りに設けられた巻線100Wが記載されている。実際には、各ステータティース100Tの周りに巻線100Wが設けられている。ロータ100Rは、ロータコア100Cと、ロータコア100Cの外周面において周方向に配列された複数の永久磁石100Mを有している。ステータ100Sが有する巻線100Wには、モータ駆動装置200によって電圧が印加される。図2の例におけるモータ100は、8極12スロット構成を有している。本開示の実施形態で使用され得る永久磁石同期モータの構成は、8極12スロットに限定されない。 
再び図1を参照する。図1のモータ駆動装置200は、インバータを主回路として有する電力変換器である。主回路は、複数の電力半導体素子(図1において不図示)を構成要素として含む。モータ制御装置300は、モータ駆動装置200内における個々の電力半導体素子をスイッチングさせる制御信号(ゲート信号)を生成して出力する。 
モータシステム1000は、巻線100Wを流れる電流を測定する電流センサ(不図示)を有している。電流センサは、例えばカレントトランス(CT:Current Transformer)であり得るが、これに限定されない。モータ駆動装置200が1個または複数個のシャント抵抗を有する場合、各シャント抵抗の電圧降下を測定することにより、巻線を流れる電流を測定することができる。 
本開示の実施形態において、モータ制御装置300は、プロセッサ90と、プロセッサ90の動作を制御するプログラムを記憶するメモリ95とを備えている。プロセッサ90は、プログラムの指令に従って、以下の処理を実行する。

 (1)速度指令またはトルク指令に基づいて、ロータ100Rの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、

 (2)モータ100におけるコギングトルクのN次高調波成分(Nは2以上の整数)の位相とは逆の位相を有するN次高調波電流を、q軸電流に重畳した値をq軸電流指令値として決定すること。 
図3は、モータ制御装置300のハードウェア構成の例を示している。この例におけるモータ制御装置300は、互いにバス接続されたCPU(中央演算ユニット)320、PWM回路330、ROM(リードオンリーメモリ)340、RAM(ランダムアクセスメモリ)350、およびI/F(入出力インタフェース)360を有している。図示されていない他の回路またはデバイス(AD変換器など)が付加的にバスに接続されていても良い。PWM回路330は、モータ駆動装置200に駆動信号を与える。この駆動信号は、モータ駆動装置200におけるスイッチング素子のゲート端子に入力され、各スイッチング素子のオンオフが制御される。CPU320の動作を規定するプログラムおよびデータは、ROM340およびRAM350の少なくとも一方に記憶されている。このようなモータ制御装置300は、例えば32ビットの汎用的なマイクロコントローラによって実現され得る。そのようなマイクロコントローラは、例えば1個または複数の集積回路チップから構成され得る。 
モータ制御装置300が行う各種の動作は、プログラムによって規定されている。プログラムの内容の一部または全部を更新することにより、モータ制御装置300の動作の一部または全部を変更することも可能である。そのようなプログラムの更新は、プログラムを格納した記録媒体を用いて行ってもよいし、有線または無線の通信によって行っても良い。通信は、図3のI/F360を用いて行うことができる。モータ制御装置300の構成は、図3に示す例に限定されない。 
本開示の実施形態によれば、モータ100におけるトルクリプルのN次高調波成分の振幅がコギングトルクのN次高調波成分の振幅よりも小さくなる。例えば、コギングトルクのN次高調波成分の振幅が平均トルクの0.7%以上である場合において、トルクリプルのN次高調波成分の振幅は、この平均トルクの0.03%以下に低減され得る。これは、q軸電流に重畳するN次高調波電流が、コギングトルクのN次高調波成分の位相とは逆の位相を有するため、「相殺」の効果により、トルクリプルのN次高調波成分の振幅が小さくなるからである。言い換えると、コギングトルクのN次高調波成分を相殺するトルクを発生させるようなN次高調波電流がq軸電流に重畳される。この「相殺」の程度は完全である必要はなく、製造ばらつきで発生するコギングトルクの振幅を、高調波電流の重畳前の値に比べて低下させることができれば十分である。 
図1に示されるメモリ95は、モータ100におけるコギングトルクのN次高調波成分の位相および振幅によって規定される数値(数値のセット)を記憶している。この数値は、コギングトルクのN次高調波成分の「位相および振幅」そのものであってもよいし、その「逆位相および振幅」であってもよい。例えば2次高調波成分の場合、「逆位相」とは、コギングトルクの2次高調波成分に対して180°だけ位相をシフトさせることに相当する。逆位相の関係にある2個の波を重ねあわせると、2個の波の凹部と凸部と重なることにより、波全体の振幅は小さくなる。コギングトルクの2次高調波成分の振幅と同一または同程度の振幅を有するトルクの2次高調波成分を逆位相で生成すれば、コギングトルクの2次高調波成分を大きく低減できる。このようなトルクの2次高調波成分を逆位相で生成するために、本開示の実施形態では、コギングトルクの2次高調波成分に対して180°だけ位相をシフトさせた2次高調波電流をq軸電流に重畳する。例えば、コギングトルクの2次高調波成分の振幅が平均トルクの0.7%以上である場合、このような2次高調波電流の重畳を行うと、トルクリプルのN次高調波成分の振幅を平均トルクの0.03%以下に低下させることが可能になる。 
なお、モータによっては、製造ばらつきに起因するコギングトルクの2次高調波成分または3次高調波成分が充分に小さく、例えば平均トルクの0.7%を下回ることもある。そのような場合、本開示によるモータ制御を適用しなくてもよい。本開示によるモータ制御を適用しないモータシステムの場合、メモリ95には、コギングトルクのN次高調波成分の位相および振幅によって規定される数値を記憶させないか、あるいは、ゼロまたは他の特定の値を記憶させておいてもよい。 
モータ100を制御するとき、プロセッサ90は、メモリ95に記憶されている前記数値をメモリ95から取得する。取得した数値に基づいて、プロセッサ90は、q軸電流に重畳するN次高調波電流の位相および振幅を決定する。 
モータ100の構成は、前述した構成に限定されない。永久磁石がロータ100Rの表面に配列された表面磁石型モータ(SPM)であってもよいし、永久磁石がロータ100Rの内部に組み込まれた埋込磁石型モータ(IPM)であってもよい。本開示のモータ制御が好適に適用されるモータ100の例は表面磁石型モータである。一般に、表面磁石型モータは埋込磁石型モータに比べてトルクリプルが小さく、トルクリプルの少ないことが強く要求される用途に用いられる。このため、本開示のモータ制御技術を適用することにより、その要求に応えることが可能になる。 
ステータ100Sがロータ100Rの周方向に沿って配列された複数のコアを有する分割ステータである場合、製造ばらつきに起因して、コギングトルクの2次高調波成分が発生しやすい。また、永久磁石の厚さのばらつきに起因してコギングトルクの3次高調波成分が発生することがある。このため、N次高調波成分の典型例は、2次または3次の高調波成分である。本開示の実施形態におけるモータ制御は、分割ステータを有する表面磁石型モータに適用された場合に最も高い効果を発揮し得る。 
図4は、本実施形態におけるステータ100Sの構成例を示している。ステータ100Sは、中心軸の周りに配列された複数のコア100Spを有する分割ステータである。図4において、ステータ100Sの左側に、参考のため、1個のコア100Spが記載されている。それぞれが図示される構造を有するコア100Spを連結することにより、分割ステータが実現する。図4のステータ100Sでは、簡単のため、巻線100Wの記載が省略されている。実際のステータ100Sでは、それぞれのステータティース100Tの周りに巻線100Wが設けられている。ステータ100Sの内径は、理想的には真円の直径Rsである。しかし、後述するように、複数のコア100Spを組み合わせてステータ100Sを製造するとき、ステータ100Sの内周面は真円から変形した形状になり得る。 
図5は、本実施形態におけるロータ100Rの構成例を示している。ロータ100Rは、ロータコア100Cの外周面において周方向に配列された複数の永久磁石100Mを有している。この例において、永久磁石100Mの厚さはt、ロータ100Rの直径はRfである。 
図6は、製造ばらつきに起因して分割ステータの内周面に生じる変形を模式的に示す図である。図示されている例において、中心軸を挟んで対称に配置された6組のステータティースの間隔は、それぞれ、R1、R2、R3、R4、R5、R6である。製造ばらつきのない理想的な場合、R1=R2=R3=R4=R5=R6が成立する。しかし、現実には、製造ばらつきに起因してR1からR6がそれぞれ異なる値をとり得るため、2次のコギングトルクが発生し、最終的にトルクリプルの2次高調波成分(2次トルクリプル)が大きくなる。 
本発明者の検討によると、製造ばらつきの結果、ステータ100Sの内径の最小値または最大値は、内径の平均値から0.09%以上の差異を有する場合に、2次トルクリプルが現れる。このため、本実施形態のモータ制御は、ステータ100Sの内径の最小値または最大値が内径の平均値から0.09%以上の差異を有するモータに適用され得る。 
また、2次トルクリプルの振幅が平均トルクの0.7%以上であるモータに対して、2次高調波電流の重畳を行うようにしてもよい。 
<モータシステムの他の構成例>

 図7を参照して、本開示によるモータシステムの限定的ではない例示的な他の実施形態を説明する。図示されている例において、本実施形態のモータシステム1000は、ロータ100Rおよびステータ100Sを備える永久磁石同期モータ100と、ロータ100Rの位置を測定または推定するための位置センサ120と、永久磁石同期モータ100を制御するモータ制御装置300とを備えている。位置センサ120の典型例は、ホール素子またはホールICなどの磁気センサ、ロータリエンコーダ、レゾルバである。位置センサ120は不可欠ではなく、センサレスでロータ100Rの位置を推定する構成を採用し得る。 
モータ制御装置300は、公知のベクトル制御によって0次電流(d軸0次電流id0およびq軸0次電流iq0)を決定する第1回路10と、ロータ100Rの位置に応じて高調波電流(d軸N次高調波電流idhおよびq軸N次高調波電流iqh)を決定する第2回路20と、電流指令値を決定する第3回路30とを備えている。モータ100が表面磁石型である場合、d軸0次電流id0は、例えばゼロである。この場合、d軸N次高調波電流idhもゼロに設定され得る。 
第3回路30は、d軸0次電流id0にd軸N次高調波電流idhを重畳した値、およびq軸0次電流iq0にq軸N次高調波電流iqhを重畳した値を、それぞれ、d軸電流指令値iおよびq軸電流指令値iとして決定する。図示されている例において、第3回路30は、モータ制御装置300が備えるベクトル制御回路40に含まれている。ベクトル制御回路40は、d軸電流指令値iおよびq軸電流指令値iに基づいて、d軸電圧指令値vおよびq軸電圧指令値vを決定する。 
モータ制御装置300は、他に、UVW/dq変換を行う第1変換回路50、dq/UVW変換を行う第2変換回路60、インバータ70、および、位置センサ120の出力が示す機械角(θm)を電気角(θe)に変換する回路80を備えている。第1変換回路50は、d軸電圧指令値vおよびq軸電圧指令値vからU相電圧指令値vu、V相電圧指令値vv、W相電圧指令値vwを生成してインバータ70に出力する。インバータ70は、U相電圧u、V相電圧v、W相電圧wを、それぞれ、永久磁石同期モータ100のU相巻線、V相巻線、W相巻線に印加して、所望の電流を各相の巻線に流す。インバータ70の前段には、電圧指令値vu、vv、vwに基づいてPWM信号を生成する回路、PWM信号に基づいてインバータ70内のトランジスタをスイッチングするゲート駆動信号を生成するゲートドライバが設けられ得る。これらの要素は公知であり、簡単のため、記載が省略されている。 
第1回路10、第2回路20、第3回路30、ベクトル制御回路40、第1変換回路50、および第2変換回路60などの構成要素の一部または全部は、集積回路装置によって実現され得る。このような集積回路装置は、典型的には1個または複数個の半導体部品によって形成され得る。 
図8を参照して、上述した集積回路装置の例を説明する。図8に例示されている集積回路装置500は、信号処理プロセッサ520と、メモリ540とを備える。メモリ540は、信号処理プロセッサ520に、以下の処理を実行させるプログラムを格納している。

 ・d軸0次電流およびq軸0次電流を決定する処理

 ・ロータの位置に応じてd軸N次高調波電流およびq軸N次高調波電流を決定する処理

 ・d軸0次電流にd軸N次高調波電流を重畳した値、およびq軸0次電流にq軸N次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する処理
d軸N次高調波電流の振幅idNおよび位相θdN、ならびにq軸N次高調波電流の振幅iqNおよび位相θqNは、高周波重畳を行わない場合に比べて、トルクリプルのN次高調波成分を低下させる値を有している。 
この集積回路装置500は、位置センサ120からのアナログ信号をデジタル信号に変換するA/Dコンバータ560と、モータ100の巻線を流れる電流を検出するセンサ(不図示)からのアナログ信号をデジタル信号に変換するA/Dコンバータ580とを備えている。 
この例における集積回路装置500は、インバータ70に与えるPWM信号を出力する。インバータ70の少なくとも一部が集積回路装置500に含まれていても良い。このような集積回路装置500は、典型的には、1個また複数個の半導体チップを1個のパッケージ内で相互に接続することによって実現される。集積回路装置500の一部または全部は、例えば汎用的なマイクロコントローラユニット(MCU)に本開示に特有のプログラムを書き込むことによって実現され得る。 
<モータ制御方法の例>

 図9を参照して、本開示によるモータ制御方法の実施形態を説明する。 
まず、ステップS1において、電流指令値またはトルク指令値などの指令値およびセンサ検出値を受け取り、d軸0次電流およびq軸0次電流を決定する。決定に際しては、各種の指令値およびセンサ検出値と、d軸0次電流およびq軸0次電流の指令値とを関係づけるテーブルを用いても良い。そのようなテーブルは、モータ制御装置300が内蔵するメモリ95などに記録され得る。d軸0次電流およびq軸0次電流のそれぞれの大きさは、例えば、電流指令値、トルク指令値、モータ回転速度、モータ印加電圧などに基づいて決定することができる。また、不図示の速度制御器から出力される速度指令および実速度などに基づいて、d軸0次電流およびq軸0次電流のそれぞれの大きさを決定しても良い。 
ステップS2において、ロータの位置に応じてd軸N次高調波電流およびq軸N次高調波電流を決定する。このステップS2では、高調波電流を重畳しないときよりもN次のトルクリプルが小さくなるように、d軸N次高調波電流の振幅idNおよび位相θdN、ならびにq軸N次高調波電流の振幅iqNおよび位相θqNを決定する。決定に際しては、ロータの位置などと高調波電流の振幅および位相とを関係づけるテーブルを用いても良い。そのようなテーブルは、モータ制御装置が内蔵するメモリに記録され得る。 
N次高調波電流の振幅は、オフラインでコギングトルクの振幅を測定し、その測定値から算出され得る。また、N次高調波電流の振幅をスイープして実際にモータに電流を流し、問題の次数のトルクリプルが所定レベル以下に小さくなる振幅を個々のモータごと決定してもよい。このように、重畳すべきN次高調波電流の位相および振幅は、いずれも、モータシステムの出荷前に決定され、これらの位相および振幅を規定するデータがメモリに記録される。ステップS2では、このようなデータをモータ動作にメモリから読み出し、d軸N次高調波電流の振幅idNおよび位相θdN、ならびにq軸N次高調波電流の振幅iqNおよび位相θqNを決定する。なお、表面磁石型モータの場合、d軸N次高調波電流の振幅idNおよび位相θdNの決定は省略してもよい。 
ステップS3では、d軸0次電流にd軸N次高調波電流を重畳した値、およびq軸0次電流にq軸N次高調波電流を重畳した値を、それぞれ、d軸電流指令値およびq軸電流指令値として決定する。 
更に、ステップS4では、d軸電流指令値およびq軸電流指令値に基づいて、d軸電圧指令値およびq軸電圧指令値を決定する。 
ステップS5では、d軸電圧指令値およびq軸電圧指令値に基づいて、UVW相のそれぞれの電圧指令値を決定する。 
こうしたモータ制御の結果、モータにおけるトルクリプルのN次高調波成分の振幅は、コギングトルクのN次高調波成分の振幅よりも小さくなる。 
なお、本開示の実施形態において、製造ばらつきに起因するトルクリプルを低減すること以外の目的、例えば6次のラジアル力を低減するために、例えば6次高調波電流を追加的に重畳してもよい。 
<実施例>

 図4および図5に示すステータ100Sおよびロータ100Rを有する8極12スロット構成の表面磁石型のモータ100について、本開示の実施形態におけるモータ制御方法を実施した。 
図10は、ステータの内径の最小値または最大値が内径の平均値から0.09%よりも小さな差異しか有していないモータ(ノーマルモデル)について得られたトルクの振幅と電気角次数との関係を示すグラフである。回転速度は、毎分1000回転であった。6次トルクリプルが発生しているが、2次トルクリプルは無視できるほど小さい。 
図11は、製造ばらつきに起因してステータの内径の最小値または最大値が内径の平均値から0.09%以上の差異を示すモータ(ばらつきモデル)について得られたトルクの振幅と電気角次数との関係を示すグラフである。平均トルクおよび回転速度は、図10の例と同一である。この例では、6次トルクリプルよりも大きな2次トルクリプルが発生した。 
図12は、図11のモータを動作させるとき、2次トルクリプルを相殺するように2次高調波電流をq軸電流に重畳した場合に得られた、トルクの振幅と電気角次数との関係を示すグラフである。「相殺」に必要なq軸2次高調波電流の振幅は、q軸0次電流の振幅の1/100~1/50程度であった。この結果、2次トルクリプルの振幅は6次トルクリプルの振幅に比べて充分に小さくなった。具体的には、2次トルクリプルの振幅は、平均トルクの0.6%よりも小さくなった。 
図13は、「ばらつきモデル」および「ノーマルモデル」について2次高調波電流の重畳を行わなかった場合のトルクの時間変化を示すグラフである。図14は、「ばらつきモデル」について2次高調波電流の重畳を行わなかった場合のトルクの時間変化と、「ばらつきモデル」について2次高調波電流の重畳を行った場合(重畳モデル)のトルクの時間変化とを示すグラフである。 
図13および図14からわかるように、q軸電流に2次高調波電流を重畳することにより、「ばらつきモデル」でも「ノーマルモデル」と同様に小さな2次トルクリプルが実現している。 
図15は、q軸電流に2次高調波電流を重畳しない場合の2次トルクリプル(点線)と、q軸電流に2次高調波電流を重畳したときの2次トルクリプル(実線)とを示すグラフである。高周波電流重畳の効果が明らかである。 
この実施例では、q軸電流に2次高調波電流を重畳することにより、ステータ内径が真円からずれることに起因して発生するコギングトルクを相殺している。永久磁石の厚さのばらつきに起因して発生するコギングトルクを相殺するときには、q軸電流に3次高調波電流を重畳すればよい。重畳する高調波電流の位相と振幅は、個々のモータで現実に発生するトルクリプルを充分に小さくするようにオフラインで決定され得る。 
本開示によるモータシステムを製造する方法は、ある例示的な実施形態において、複数の永久磁石同期モータ(特に分割ステータを有する表面磁石型モータ)を用意する工程と、前記複数のモータのそれぞれについてコギングトルクおよび/またはトルクリプルの振幅を測定する工程と、前記振幅が所定値(平均トルクの例えば0.7%)を超えたモータについてトルクリプルの振幅を低減する高調波電流の位相および振幅を決定する工程と、決定した位相および振幅によって規定される数値(数値のセットまたはテーブル)を前記モータのためのモータ制御装置のメモリに記憶させる工程とを含む。  
本開示のモータ制御装置および制御方法、ならびにモータシステムは、電流制御によってモータのトルクリプルを低減するため、振動または騒音の低減が求められる各種の永久磁石同期モータ、および永久磁石モータを備える装置またはシステムに広く適用され得る。
10・・・第1回路、20・・・第2回路、30・・・第3回路、40・・・ベクトル制御回路、50・・・第1変換回路、60・・・第2変換回路、70・・・インバータ、90・・・プロセッサ、95・・・メモリ、100・・・永久磁石同期モータ、100S・・・ステータ、100R・・・ロータ、120・・・位置センサ、300・・・モータ制御装置、500・・・集積回路装置、1000・・・モータシステム

Claims (11)


  1.  ステータおよびロータを有する永久磁石同期モータを制御するモータ制御装置であって、

     プロセッサと、前記プロセッサの動作を制御するプログラムを記憶するメモリとを備え、

     前記プロセッサは、前記プログラムの指令に従って、

     速度指令またはトルク指令に基づいて、前記ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、

     前記永久磁石同期モータにおけるコギングトルクのN次高調波成分(Nは2以上の整数)の位相とは逆の位相を有するN次高調波電流を、前記q軸電流に重畳した値をq軸電流指令値として決定すること、

    を実行する、モータ制御装置。

  2.  前記永久磁石同期モータにおけるトルクリプルのN次高調波成分の振幅は、前記コギングトルクのN次高調波成分の振幅よりも小さい、請求項1に記載のモータ制御装置。

  3.  前記コギングトルクのN次高調波成分の振幅は、平均トルクの0.7%以上であり、

     前記トルクリプルのN次高調波成分の振幅は、前記平均トルクの0.03%以下である、請求項2に記載のモータ制御装置。

  4.  前記メモリは、前記永久磁石同期モータにおけるコギングトルクの前記N次高調波成分の位相および振幅によって規定される数値を記憶しており、

     前記プロセッサは、前記メモリに記憶されている前記数値を前記メモリから取得する、

    請求項1から3のいずれかに記載のモータ制御装置。

  5.  請求項1から4のいずれかに記載のモータ制御装置と、

     前記モータ制御装置に接続されたモータ駆動装置と、

     前記モータ駆動装置に接続された永久磁石同期モータと、

    を備える、モータシステム。

  6.  前記ステータは、前記ロータの周方向に沿って配列された複数のコアを有する分割ステータであり、

     Nは2または3である、請求項5に記載のモータシステム。

  7.  前記永久磁石同期モータは表面磁石型である、請求項5または6に記載のモータシステム。

  8.  前記ステータの内径の最小値または最大値は、内径の平均値から0.09%以上の差異を有する、請求項5から7のいずれかに記載のモータシステム。

  9.  前記永久磁石同期モータは8極12スロット構成を備えている、請求項5から8のいずれかに記載のモータシステム。

  10.  ステータおよびロータを有する永久磁石同期モータを制御するモータ制御方法であって、

     速度指令またはトルク指令に基づいて、前記ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、

     前記永久磁石同期モータにおけるコギングトルクのN次高調波成分の位相とは逆の位相を有するN次高調波電流の振幅および位相を決定すること、

     前記q軸電流に前記N次高調波電流を重畳した値をq軸電流指令値として決定すること、

    を含む、モータ制御方法。

  11.  分割ステータおよびロータを有する表面磁石型の永久磁石同期モータと、

     前記永久磁石同期モータに接続されたモータ駆動装置と、

     前記モータ駆動装置に接続されたモータ制御装置と、

    を備え、

     前記モータ制御装置は、

     プロセッサと、前記プロセッサの動作を制御するプログラムを記憶するメモリとを備え、

     前記メモリは、更に、前記永久磁石同期モータにおけるコギングトルクのN次高調波成分(Nは2以上の整数)の位相および振幅によって規定される数値を記憶しており、

     前記プロセッサは、前記プログラムの指令に従って、

     速度指令またはトルク指令に基づいて、前記ロータの回転に同期して回転するdq軸座標系におけるq軸電流を決定すること、

     前記メモリに記憶されている前記数値に基づくN次高調波電流を前記q軸電流に重畳した値をq軸電流指令値として決定すること、

    を実行し、

     前記永久磁石同期モータにおけるトルクリプルのN次高調波成分の振幅は、前記コギングトルクのN次高調波成分の振幅よりも小さい、モータシステム。
PCT/JP2019/021336 2018-06-01 2019-05-29 モータ制御装置、モータ制御方法およびモータシステム WO2019230818A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980036865.4A CN112204874A (zh) 2018-06-01 2019-05-29 电动机控制装置、电动机控制方法以及电动机***

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-106415 2018-06-01
JP2018106415 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019230818A1 true WO2019230818A1 (ja) 2019-12-05

Family

ID=68697502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021336 WO2019230818A1 (ja) 2018-06-01 2019-05-29 モータ制御装置、モータ制御方法およびモータシステム

Country Status (2)

Country Link
CN (1) CN112204874A (ja)
WO (1) WO2019230818A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441416A (en) * 1977-07-21 1979-04-02 Gen Electric Method of and circuit for measuring pulsating component of electromagnetic torque
JP2001095274A (ja) * 1999-09-22 2001-04-06 Toyoda Mach Works Ltd モータ制御装置
WO2005035333A1 (ja) * 2003-10-07 2005-04-21 Jtekt Corporation 電動パワーステアリング装置
US20140217938A1 (en) * 2008-09-02 2014-08-07 Stmicroelectronics, Inc. Motor controller with drive-signal conditioning

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860300A (zh) * 2010-06-09 2010-10-13 东南大学 基于空间矢量调制的永磁电机转矩脉动抑制方法
JP6064207B2 (ja) * 2012-12-17 2017-01-25 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
CN104579080A (zh) * 2015-02-10 2015-04-29 南车株洲电力机车研究所有限公司 一种永磁同步电机转矩脉动抑制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441416A (en) * 1977-07-21 1979-04-02 Gen Electric Method of and circuit for measuring pulsating component of electromagnetic torque
JP2001095274A (ja) * 1999-09-22 2001-04-06 Toyoda Mach Works Ltd モータ制御装置
WO2005035333A1 (ja) * 2003-10-07 2005-04-21 Jtekt Corporation 電動パワーステアリング装置
US20140217938A1 (en) * 2008-09-02 2014-08-07 Stmicroelectronics, Inc. Motor controller with drive-signal conditioning

Also Published As

Publication number Publication date
CN112204874A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
US9819289B2 (en) Control apparatus for rotating electric machine
JP4995518B2 (ja) 交流電動機の制御装置およびその鉄損抑制用重畳電流の演算方法
JP6869392B1 (ja) 交流回転電機の制御装置
JP7090758B2 (ja) 多群多相回転電機の制御装置および多群多相回転電機の駆動装置
JP2007274779A (ja) 電動駆動制御装置及び電動駆動制御方法
JP7203253B2 (ja) 交流回転機の制御装置、及び電動パワーステアリング装置
CN110121837B (zh) 马达控制装置、马达***、马达控制方法和集成电路装置
JP2007028889A (ja) 多相電動機の回転角検出装置
CN114208020B (zh) 交流旋转电机的控制装置及电动助力转向装置
JP6641051B1 (ja) 電動機の制御装置
WO2019230818A1 (ja) モータ制御装置、モータ制御方法およびモータシステム
JP6910418B2 (ja) 交流回転電機の制御装置
JP7351004B2 (ja) 交流回転機の制御装置
JP2012175747A (ja) モータ
WO2019150984A1 (ja) 三相同期電動機の制御装置
JP7321385B2 (ja) 回転機の制御装置
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
WO2023209803A1 (ja) 交流回転機の制御装置
US11323056B2 (en) Controller for AC rotary electric machine
WO2023228404A1 (ja) 回転電機制御装置
JP2024083692A (ja) 交流回転電機の制御装置
JP2007228773A (ja) モータ、モータ駆動装置及びモータ駆動方法
JP2023089904A (ja) 回転機制御装置
JP2023183492A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
JP2023183491A (ja) 交流回転機の制御装置、及び車両用発電電動機装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19811844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP