JP7351004B2 - 交流回転機の制御装置 - Google Patents

交流回転機の制御装置 Download PDF

Info

Publication number
JP7351004B2
JP7351004B2 JP2022522155A JP2022522155A JP7351004B2 JP 7351004 B2 JP7351004 B2 JP 7351004B2 JP 2022522155 A JP2022522155 A JP 2022522155A JP 2022522155 A JP2022522155 A JP 2022522155A JP 7351004 B2 JP7351004 B2 JP 7351004B2
Authority
JP
Japan
Prior art keywords
phase
command value
voltage command
normal
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022522155A
Other languages
English (en)
Other versions
JPWO2021229703A1 (ja
Inventor
裕也 夏原
勲 家造坊
辰也 森
賢太 田中
裕介 寶田
悠弥 竹内
淳 伊藤
扶 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021229703A1 publication Critical patent/JPWO2021229703A1/ja
Application granted granted Critical
Publication of JP7351004B2 publication Critical patent/JP7351004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/028Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the motor continuing operation despite the fault condition, e.g. eliminating, compensating for or remedying the fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Description

本願は、交流回転機の制御装置に関するものである。
交流回転機のインバータは、FET(Field Effect Transistor)等のスイッチング素子を備えている。特許文献1及び特許文献2には、スイッチング素子の短絡、交流回転機の巻線の接続端子の天絡又は地絡が発生したときに、故障が発生していない正常相を用いて交流回転機を、動作させる技術が開示されている。
特許第4772116号 特許第5720963号
1相の短絡故障が発生したときでも、正常相の電流を検出することが望まれる。例えば、正常相の電流検出値を用いて、正常相の異常を検出したり、電流フィードバック制御を行って交流回転機に所望のトルクを出力させたりすることができる。
しかし、電流センサが、インバータの正極側のスイッチング素子又は負極側のスイッチング素子に直列接続されている場合は、電流を検出するために、電流センサが直列接続された正極側のスイッチング素子又は負極側のスイッチング素子を、所定期間以上オンにする必要がある。特に、短絡故障が発生した場合は、特有のスイッチング素子のオンオフ制御を行うため、電流を検出するための特別な制御を行わない限り、正常相の電流を検出できない場合がある。
しかし、特許文献1には、短絡故障の発生時に、電流を検出するための技術が開示されていない。特許文献2の技術では、電流センサが、インバータと巻線との接続経路に設けられており、正常相の電流を検出するために、スイッチング素子をオンする必要がなく、電流を検出するための技術が開示されていない。
そこで、本願は、電流センサが、インバータの正極側のスイッチング素子又は負極側のスイッチング素子に直列接続されている装置において、1相の短絡故障が生じた場合に、確実に正常相の電流を検出できる交流回転機の制御装置を提供することを目的とする。
本願に係る交流回転機の制御装置は、n相(nは、3以上の自然数)の巻線を有する交流回転機を制御する交流回転機の制御装置であって、
直流電源の正極側に接続される正極側のスイッチング素子と前記直流電源の負極側に接続される負極側のスイッチング素子とが直列接続され、直列接続の接続点が対応する相の前記巻線に接続される直列回路を、n相各相に対応してnセット設けたインバータと、
n相各相の前記正極側のスイッチング素子又は前記負極側のスイッチング素子である検出対象素子に直列接続され、電流を検出するn相の電流センサと、
各相の巻線に印加する各相の電圧指令値を算出する電圧指令値算出部と、
各相の前記電圧指令値に基づいて、PWM制御により各相の前記スイッチング素子をオンオフ制御するPWM制御部と、
各相の前記検出対象素子がオンになるタイミングで、各相の前記電流センサの出力信号に基づいて、各相の電流を検出する電流検出部と、
前記インバータの各相の直列回路における前記正極側のスイッチング素子の部分の短絡故障である正極側の短絡故障、及び前記負極側のスイッチング素子の部分の短絡故障である負極側の短絡故障を判定する故障判定部と、を備え、
前記電圧指令値算出部は、いずれか1相の直列回路の前記正極側の短絡故障又は前記負極側の短絡故障が発生したと判定されているときに、短絡故障が発生していない正常なn-1相の電圧指令値を算出し、
少なくとも電流検出タイミングで、正常なn-1相の各相の前記検出対象素子のオン期間が、電流の検出に必要な長さ以上になるように、正常なn-1相の電圧指令値を変化させ
前記PWM制御部は、短絡故障が発生したと判定されているときは、短絡故障が発生したと判定されていないときよりも、前記PWM制御の制御周期を長くするものである。

本願に係る交流回転機の制御装置によれば、1相の短絡故障が発生したときに、正常なn-1相の電圧指令値が算出され、交流回転機を動作させることができる。この際、電流を検出できないような正常なn-1相の電圧指令値が算出されているときでも、正常なn-1相の検出対象素子のオン期間が、電流の検出に必要な長さ以上になるように、正常なn-1相の電圧指令値が変化されるので、正常な2相の電流を検出することができる。
実施の形態1に係る交流回転機及び交流回転機の制御装置の構成図である。 実施の形態1に係る制御器の概略ブロック図である。 実施の形態1に係る制御器のハードウェア構成図である。 実施の形態1に係るPWM制御及び電流検出タイミングを説明するためのタイムチャートである。 実施の形態1に係るV相の短絡故障の発生時の故障時算出部のブロック図である。 実施の形態1に係るV相の正極側の短絡故障の発生時の電圧指令値の算出を説明するためのタイムチャートである。 実施の形態1に係るV相の負極側の短絡故障の発生時の電圧指令値の算出を説明するためのタイムチャートである。 実施の形態1に係る電圧指令値の上限制限及び電流検出タイミングを説明するためのタイムチャートである。 実施の形態2に係るV相の短絡故障の発生時の故障時算出部のブロック図である。 実施の形態3に係る電圧指令値の上限制限及び電流検出タイミングを説明するためのタイムチャートである。 実施の形態5に係る交流回転機及び交流回転機の制御装置の構成図である。 実施の形態5に係るPWM制御及び電流検出タイミングを説明するためのタイムチャートである。 実施の形態5に係るV相の負極側の短絡故障の発生時の電圧指令値の算出を説明するためのタイムチャートである。 実施の形態6に係る電動パワーステアリング装置、交流回転機、及び交流回転機の制御装置の概略構成図である。
1.実施の形態1
以下、実施の形態1に係る交流回転機の制御装置10(以下、単に、制御装置10と称す)について図面を参照して説明する。図1は、本実施の形態に係る交流回転機1、制御装置10の概略構成図である。
1-1.交流回転機1
交流回転機1は、n相(nは、3以上の自然数)の巻線を有している。本実施の形態では、交流回転機1は、U相、V相、W相の3相の巻線Cu、Cv、Cwを有している。交流回転機1は、ステータと、ステータの径方向内側に配置されたロータと、を備えている。ステータには、3相の巻線Cu、Cv、Cwが巻装されている。本実施の形態では、ロータには永久磁石が設けられており、永久磁石式の同期回転機とされている。なお、交流回転機1は、ロータに電磁石が設けられている界磁巻線型の同期回転機、又はロータに永久磁石が設けられていない誘導機であってもよい。3相の巻線は、スター結線されてもよいし、デルタ結線されてもよい。
ロータには、ロータの回転角度を検出するための回転センサ2が備えられている。回転センサ2には、レゾルバ、エンコーダ、MRセンサ等が用いられる。回転センサ2の出力信号は、制御器30に入力される。
1-2.インバータ4
インバータ4は、直流電源3の正極側に接続される正極側のスイッチング素子SPと直流電源3の負極側に接続される負極側のスイッチング素子SNとが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相の巻線に接続されている。
具体的には、U相の直列回路では、U相の正極側のスイッチング素子SPuとU相の負極側のスイッチング素子SNuとが直列接続され、2つのスイッチング素子の接続点がU相の巻線Cuに接続されている。V相の直列回路では、V相の正極側のスイッチング素子SPvとV相の負極側のスイッチング素子SNvとが直列接続され、2つのスイッチング素子の接続点がV相の巻線Cvに接続されている。W相の直列回路では、Wの正極側のスイッチング素子SPwとW相の負極側のスイッチング素子SNwとが直列接続され、2つのスイッチング素子の接続点がW相の巻線Cwに接続されている。
スイッチング素子には、ダイオードが逆並列接続されたFET(Field Effect Transistor)、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御器30に接続されている。各スイッチング素子は、制御器30から出力されたスイッチング信号GPu~GNwによりオン又はオフされる。
直流電源3は、インバータ4に直流電圧Vdcを出力する。直流電源3として、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等の直流電圧を出力する機器であれば、どのような機器であってもよい。直流電源3には、直流電源3の直流電圧Vdcを検出する電圧センサが設けられ、電圧センサの出力信号が制御器30に入力されてもよい。制御器30は、検出した直流電圧Vdcを用いて、制御を行ってもよい。
1-3.電流センサ5
3相各相の正極側のスイッチング素子SP又は負極側のスイッチング素子SNである検出対象素子に直列接続され、電流を検出する3相の電流センサ5u、5v、5wが設けられている。本実施の形態では、検出対象素子は、負極側のスイッチング素子SNであり、各相の電流センサ5は、各相の負極側のスイッチング素子SNの負極側に直列接続されている。なお、各相の電流センサ5は、負極側のスイッチング素子SNの正極側に直列接続されてもよい。よって、各相の電流センサ5は、各相の負極側のスイッチング素子SNを流れる電流を検出することができる。
具体的には、U相の電流センサ5uは、U相の負極側のスイッチング素子SNuの負極側に直列接続されている。V相の電流センサ5vは、V相の負極側のスイッチング素子SNvの負極側に直列接続されている。W相の電流センサ5wは、W相の負極側のスイッチング素子SNwの負極側に直列接続されている。各相の電流センサ5には、シャント抵抗が用いられる。ホール素子、CT(Current Transformer)が用いられてもよい。各相の電流センサ5の信号は、制御器30に入力される。
1-4.制御器30
制御器30は、インバータ4を介して交流回転機1を制御する。図2に示すように、制御器30は、回転検出部31、電流検出部32、電圧指令値算出部33、PWM制御部34、及び故障判定部35等を備えている。制御器30の各機能は、制御器30が備えた処理回路により実現される。具体的には、制御器30は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転センサ2、電流センサ5等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御器30が備える図2の各制御部31~35等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御器30の他のハードウェアと協働することにより実現される。なお、各制御部31~35等が用いる故障時の電圧指令値等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御器30の各機能について詳細に説明する。
1-4-1.回転検出部31
回転検出部31は、電気角でのロータの磁極位置θ(ロータの回転角度θ)及び回転角速度ωを検出する。本実施の形態では、回転検出部31は、回転センサ2の出力信号に基づいて、ロータの磁極位置θ(回転角度θ)及び回転角速度ωを検出する。磁極位置は、ロータに設けられた永久磁石のN極の向きに設定される。なお、回転検出部31は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。
1-4-2.電流検出部32
電流検出部32は、電流センサ5の出力信号に基づいて、3相各相の巻線に流れる電流Iu、Iv、Iwを検出する。電流検出部32は、U相の電流センサ5uの出力信号に基づいて、U相の巻線に流れる電流Iuを検出し、V相の電流センサ5vの出力信号に基づいて、V相の巻線に流れる電流Ivを検出し、W相の電流センサ5wの出力信号に基づいて、W相の巻線に流れる電流Iwを検出する。
本実施の形態では、電流センサ5は、負極側のスイッチング素子SNに直列接続されている。電流検出部32は、負極側のスイッチング素子SNがオンになるタイミングで、電流を検出する。本実施の形態では、電流検出部32は、後述するキャリア波CAが山の頂点になるPWM周期ごとのタイミングで、電流を検出する。電流検出部32は、検出した各相の電流検出値を、次回の電流検出タイミングまで保持する。
1-4-3.故障判定部35
故障判定部35は、インバータ4の各相の直列回路における正極側のスイッチング素子の部分の短絡故障である正極側の短絡故障、及び負極側のスイッチング素子の部分の短絡故障である負極側の短絡故障を判定する。
故障判定部35は、各相について、正極側のスイッチング素子が常時オンする短絡故障、又は直列回路と巻線との接続経路が直流電源の正極側に短絡する短絡故障が発生したと判定したときに、正極側の短絡故障が発生したと判定する。また、故障判定部35は、各相について、負極側のスイッチング素子が常時オンする短絡故障、又は直列回路と巻線との接続経路が直流電源の負極側に短絡する短絡故障が発生したと判定したときに、負極側の短絡故障が発生したと判定する。
例えば、故障判定部35は、各相の正極側及び負極側のスイッチング素子のオンオフパターン及び各相の電流検出値に基づいて、各相の正極側の短絡故障及び負極側の短絡故障の発生を判定する。例えば、故障判定部35は、各相の電流検出値が、各スイッチング素子のオンオフパターンに基づいて決定した各相の電流検出値の正常範囲を逸脱した場合に、オンオフパターンに対応する正極側又は負極側の短絡故障が発生したと判定する。判定には、公知の各種の方法が用いられる。
各スイッチング素子のドライブ回路に各スイッチング素子の故障を検出する故障検出回路が設けられている場合は、故障判定部35は、故障検出回路による故障検出結果に基づいて、各スイッチング素子の短絡故障を判定してもよい。
<二次故障の判定>
本実施の形態では、故障判定部35は、いずれか1相の直列回路の正極側の短絡故障又は負極側の短絡故障が発生したと判定しているときに、正常な2相の電流検出値に基づいて、正常な2相の各相の直列回路の故障を判定する。例えば、故障判定部35は、正常な2相の電流検出値が、各スイッチング素子のオンオフパターンに基づいて決定した各相の電流検出値の正常範囲を逸脱した場合に、オンオフパターンに対応する正極側又は負極側の短絡故障が発生したと判定する。
1-4-4.PWM制御部34
PWM制御部34は、後述する電圧指令値算出部33により算出された各相の電圧指令値Vu、Vv、Vwに基づいて、PWM制御(Pulse Width Modulation)により各相のスイッチング素子をオンオフ制御する。
本実施の形態では、図4に示すように、PWM制御部34は、0と直流電圧Vdcとの間を、PWM制御の制御周期Tc(以下、PWM周期Tcと称す)で振動するキャリア波CAと、各相の電圧指令値Vu、Vv、Vwとを比較し、比較結果に基づいて、各相のスイッチング素子をオンオフ制御する。
キャリア波CAは、PWM周期Tcで、0と直流電圧Vdcとの間をPWM周期Tcで振動する三角波とされている。PWM制御部34は、各相について、キャリア波CAが電圧指令値を下回った場合は、正極側のスイッチング素子のスイッチング信号GPをオン(本例では、1)して、正極側のスイッチング素子をオンし、キャリア波CAが電圧指令値を上回った場合は、正極側のスイッチング素子のスイッチング信号GPをオフ(本例では、0)して、正極側のスイッチング素子をオフする。一方、PWM制御部34は、各相について、キャリア波CAが電圧指令値を下回った場合は、負極側のスイッチング素子のスイッチング信号GNをオフ(本例では、0)して、負極側のスイッチング素子をオフして、負極側のスイッチング素子をオフし、キャリア波CAが電圧指令値を上回った場合は、負極側のスイッチング素子のスイッチング信号GNをオン(本例では、1)して、負極側のスイッチング素子をオンする。なお、各相について、正極側のスイッチング素子のオン期間と負極側のスイッチング素子のオン期間との間には、正極側及び負極側のスイッチング素子の双方をオフにする短絡防止期間(デッドタイム)が設けられてもよい。
<電流検出のための、電圧指令値の上限値Vup>
図4に示すように、キャリア波CAの山の頂点を中心にした区間Dにおいて、3相全ての負極側のスイッチング信号GNu、GNv、GNwがオンになっており、この区間Dにおいて、電流センサ5により3相の巻線に流れる電流を検出できる。本実施の形態では、上述したように、電流検出部32は、キャリア波CAの山の頂点のタイミングで、電流を検出するように構成されている。
各相の電流を検出するためには、各相の負極側のスイッチング素子をオンする必要がある。しかし、電圧指令値が直流電圧Vdcに一致すると、負極側のスイッチング素子が常時オフになるため、電流センサ5により電流を検出できなくなる。
一方、電圧指令値を直流電圧Vdcよりも小さくすれば、負極側のスイッチング素子がオンになるため、電流センサにより電流を検出できる。しかし、負極側のスイッチング素子のオン期間が短すぎると電流を正確に検出できないため、負極側のスイッチング素子のオン期間を、電流の検出に必要な長さ以上に設定する必要がある。これは、負極側のスイッチング素子をオンした後、リンギング等の影響により、負極側のスイッチング素子を流れる電流が安定するまでには、安定遅れ時間Tdlyがあるためである。そのため、負極側のスイッチング素子をオンした後、安定遅れ時間Tdlyが経過するまでに、電流を検出すると、電流を正確に検出できない。
本実施の形態では、負極側のスイッチング素子のオン期間の中心が、電流検出タイミングになるため、負極側のスイッチング素子のオン期間を、安定遅れ時間Tdlyの2倍値以上にする必要がある。安定遅れ時間Tdlyの2倍値が、電流の検出に必要な長さに相当する。よって、負極側のスイッチング素子のオン期間Tonが、安定遅れ時間Tdlyの2倍値になる電圧指令値まで、電圧指令値を直流電圧Vdcから低下量ΔVdwnだけ低下させる必要がある。
本実施の形態では、低下量ΔVdwn、及び電流の検出に必要な電圧指令値の上限値Vupは、次式になる。低下量ΔVdwnは、ばらつきを考慮し、余裕をもって設定されてもよい。また、上述した短絡防止期間が設けられる場合は、短絡防止期間を考慮して、低下量ΔVdwnが設定される。
Ton=Tdly×2
ΔVdwn=Ton/Tc×Vdc
Vup=Vdc-ΔVdwn ・・・(1)
例えば、電流の検出に必要な負極側のスイッチング素子のオン期間Tonが、5μsであり、PWM周期Tcが、50μsである場合は、低下量ΔVdwnは、直流電圧Vdcの10%になり、上限値Vupは、直流電圧Vdcの90%に設定される。
故障判定部35により故障が判定されていない場合は、1相の電圧指令値が、上限値Vupより大きくなり、その相の電流を検出できない場合でも、通常、残りの2相の電圧指令値が、上限値Vup以下になる。よって、3相の電流の合計値が0になるというキルヒホッフの法則を利用し、2相の電流検出値から、1相の電流を算出できる。或いは、電圧指令値が上限値Vupよりも大きくならないように3相の電圧指令値に変調を加えることにより、3相の電流を検出できる。
故障判定部35により故障が判定された場合は、後述するように、正常な2相の電圧指令値を上限値Vup以下にして、電流を検出する必要がある。
1-4-5.電圧指令値算出部33
電圧指令値算出部33は、各相の巻線に印加する各相の電圧指令値を算出する。電圧指令値算出部33は、故障判定部35により故障が判定されていない場合に電圧指令値を算出する正常時算出部331と、故障判定部35により故障が判定されている場合に電圧指令値を算出する故障時算出部332と、を備えている。
1-4-5-1.正常時算出部331
正常時算出部331は、故障判定部35により故障が判定されていないときに各相の電圧指令値を算出する。正常時算出部331は、公知のベクトル制御により、3相の電圧指令値Vu、Vv、Vwを算出する。正常時算出部331は、回転角度θに基づいて、3相の電流検出値を、d軸及びq軸の電流検出値Id、Iqに変換し、d軸及びq軸の電流検出値Id、Iqが、それぞれ、d軸及びq軸の電流指令値Ido、Iqoに近づくように、d軸及びq軸の電圧指令値Vd、Vqを変化させ、回転角度θに基づいて、d軸及びq軸の電圧指令値Vd、Vqを3相の電圧指令値Vu、Vv、Vwに変換する。3相の電圧指令値Vu、Vv、Vwに、変調が加えられてもよい。本実施の形態では、3相の電圧指令値Vu、Vv、Vwは、0から直流電圧Vdcの範囲内を振動するように算出される。正常時算出部331は、トルク指令値Toに基づいて、各種のベクトル制御の方法を用い、d軸及びq軸の電流指令値Ido、Iqoを設定する。
1-4-5-2.故障時算出部332
故障時算出部332は、故障判定部35により故障が判定されているときに各相の電圧指令値を算出する。故障時算出部332は、いずれか1相の直列回路の正極側の短絡故障又は負極側の短絡故障が発生したと判定されているときに、短絡故障が発生していない正常な2相の電圧指令値を算出する。
特許文献1のように、故障時に、3相の正極側のスイッチング素子又は3相の負極側のスイッチング素子をオンにして、3相の巻線を相互に短絡させて、ブレーキトルクを発生させると、交流回転機1のトルクが出力される動力装置に悪影響を与える。そこで、本実施の形態では、ブレーキトルクが生じないような、正常な2相の電圧指令値が算出されるように構成されている。
故障箇所が判明している場合、ブレーキトルクの元となる誘起電流は、回転角度θ、回転角速度ωから求めることができる。よって、少なくとも回転角度θに基づいて、ブレーキトルクの発生を抑制し、トルク指令値Toに近いトルクを発生させる電圧指令を算出することができる。
<故障時の電圧指令値の算出>
故障時算出部332は、正極側の短絡故障が発生したと判定されているときは、図6に示すように、短絡故障が生じた異常相の電圧指令値を、直流電圧Vdcに設定すると共に、回転角度θに応じて、直流電圧Vdcを基準に振動する、正常な2相の電圧指令値を算出する。一方、故障時算出部332は、負極側の短絡故障が発生したと判定されているときは、図7に示すように、短絡故障が生じた異常相の電圧指令値を、0に設定すると共に、回転角度θに応じて、0を基準に振動する、正常な2相の電圧指令値を算出する。
本実施の形態では、故障時算出部332は、直流電圧Vdcの半分値を基準に振動する、正常な2相の電圧指令値の基本値を算出し、正極側の短絡故障又は負極側の短絡故障に応じて、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ正側又は負側にオフセットさせるように構成されている。以下で、詳細に説明する。
<電圧指令値の基本値の算出>
図5に、V相の正極側又は負極側の短絡故障が発生している場合の処理を表す制御ブロック図を示す。故障時算出部332は、正常相基本値算出部3321、異常相指令値算出部3322、及び正常相指令値算出部3323を備えている。
正常相基本値算出部3321は、回転角度θに応じて、直流電圧Vdcの半分値を基準に振動する、正常な2相の電圧指令値の基本値を算出する。例えば、正常相基本値算出部3321は、回転角度θと正常な2相の電圧指令値との関係が予め設定された基本値設定データを参照し、現在の回転角度θに対応する2相の電圧指令値の基本値を算出する。基本値設定データは、複数の回転角速度ωごとに予め設定されており、現在の回転角速度ωに対応する基本値設定データが用いられる。基本値設定データの代わりに、演算式が用いられてもよい。
基本値設定データは、正常な2相の組み合わせごとに設定されている。例えば、U相が故障している場合は、回転角度θとV相及びW相の電圧指令値の基本値と関係が予め設定されたV相及びW相の基本値設定データが参照される。V相が故障している場合は、回転角度θとU相及びW相の電圧指令値の基本値と関係が予め設定されたU相及びW相の基本値設定データが参照される。W相が故障している場合は、回転角度θとU相及びV相の電圧指令値の基本値と関係が予め設定されたU相及びV相の基本値設定データが参照される。
正常相基本値算出部3321は、トルク指令値Toに応じて、正常な2相の電圧指令値の基本値の振幅を、直流電圧Vdcの半分値を中心に増減させる。トルク指令値Toは、制御器30の内部で演算されてもよいし、制御器30の外部から伝達されてもよい。トルク指令値Toとして、トルクに相当する電流指令値であるトルク電流指令値が用いられてもよい。
<正極側の短絡故障時の設定>
正極側の短絡故障が発生したと判定されているときは、異常相指令値算出部3322は、短絡故障が生じた異常相の電圧指令値を、直流電圧Vdcに設定する。そして、正常相指令値算出部3323は、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ正方向にオフセットさせて、正常な2相の電圧指令値を算出する。
図6に、V相の正極側の短絡故障が発生していると判定されているときの、V相の異常相の電圧指令値Vv、オフセット後の正常なU相及びV相の電圧指令値Vu、Vwの算出例を示す。横軸は、回転角度θである。
このように、異常相の電圧指令値が、直流電圧Vdcに設定されるので、PWM制御により異常相の負極側のスイッチング素子が常時オフにされ、異常相の直列回路が短絡し、大電流が流れることを防止できる。なお、故障時算出部332は、異常相の電圧指令値を設定せず、PWM制御を行うことなく、異常相の負極側のスイッチング素子を常時オフしてもよい。また、異常相の正極側のスイッチング素子を、安全サイドに、常時オフしてもよい。この場合も、異常相の電圧指令値が、直流電圧Vdcに設定されることに相当する。
正常な2相の電圧指令値が、故障相の電圧指令値と異なっていると、相間の電圧差により電流が流れる。異常相の電圧指令値が直流電圧Vdcに設定されるので、直流電圧Vdcの半分値を基準に振動する正常な2相の電圧指令値の基本値との間に、常時、同じ方向の電圧差が生じ、同じ方向の電流が流れるので好ましくない。よって、上記の構成のように、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ正方向にオフセットさせることにより、正常な2相の電圧指令値を、直流電圧Vdcを基準に振動させることができる。巻線への印加電圧は、直流電圧Vdcにより上限制限されるため、正常な2相の電圧指令値も、直流電圧Vdcにより上限制限される。なお、正常な2相の電圧指令値を直流電圧Vdcにより上限制限しなくてもよいが、0と直流電圧Vdcとの間を振動するキャリア波CAと比較されるため、PWM制御の結果は同じになる。
よって、正常な2相の電圧指令値が、故障相の電圧指令値と同じ直流電圧Vdcに一致している期間では、相間の電圧差が生じず、相間の電圧差により電流が流れることを防止できる。一方、正常な2相の電圧指令値が、直流電圧Vdcより小さくなる期間では、トルク指令値Toに応じたトルクを発生させるための電流を流すことができる。トルク指令値Toに応じたトルクを発生させるために、一方の正常相の電流を0Aより大きくし、他方の正常相の電流を0Aより小さくしたい場合は、一方の正常相の電圧指令値を直流電圧Vdcに設定し、他方の正常相の電圧指令値を直流電圧Vdcから低下させればよい。なお、故障により、トルク指令値Toに応じたトルクを発生できない角度区間もある。よって、巻線電流の増加を抑制しつつ、可能な限りトルク指令値Toに応じたトルクを発生させることができる。
<負極側の短絡故障時の設定>
負極側の短絡故障が発生したと判定されているときは、異常相指令値算出部3322は、短絡故障が生じた異常相の電圧指令値を、0に設定する。そして、正常相指令値算出部3323は、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ負方向にオフセットさせて、正常な2相の電圧指令値を算出する。
図7に、V相の負極側の短絡故障が発生していると判定されているときの、V相の異常相の電圧指令値Vv、オフセット後の正常なU相及びV相の電圧指令値Vu、Vwの算出例を示す。横軸は、回転角度θである。
このように、異常相の電圧指令値が、0に設定されるので、PWM制御により異常相の正極側のスイッチング素子が常時オフにされ、異常相の直列回路が短絡し、大電流が流れることを防止できる。なお、故障時算出部332は、異常相の電圧指令値を設定せず、PWM制御を行うことなく、異常相の正極側のスイッチング素子を常時オフしてもよい。また、異常相の負極側のスイッチング素子を、安全サイドに、常時オフしてもよい。これらの場合も、異常相の電圧指令値が、0に設定されることに相当する。
正常な2相の電圧指令値が、故障相の電圧指令値と異なっていると、相間の電圧差により電流が流れる。異常相の電圧指令値が0に設定されるので、直流電圧Vdcの半分値を基準に振動する正常な2相の電圧指令値の基本値との間に、常時、同じ方向の電圧差が生じ、同じ方向の電流が流れるので好ましくない。よって、上記の構成のように、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ負方向にオフセットさせることにより、正常な2相の電圧指令値を、0を基準に振動させることができる。巻線への印加電圧は、0により下限制限されるため、正常な2相の電圧指令値も、0により下限制限される。なお、正常な2相の電圧指令値を0により下限制限しなくてもよいが、0と直流電圧Vdcとの間を振動するキャリア波CAと比較されるため、PWM制御の結果は同じになる。
よって、正常な2相の電圧指令値が、故障の電圧指令値が設定された0に一致している期間では、相間の電圧差が生じず、相間の電圧差により電流が流れることを防止できる。一方、正常な2相の電圧指令値が、0より大きくなる期間では、トルク指令値Toに応じたトルクを発生させるための電流を流すことができる。トルク指令値Toに応じたトルクを発生させるために、一方の正常相の電流を0Aより大きくし、他方の正常相の電流を0Aより小さくしたい場合は、一方の正常相の電圧指令値を0から増加させ、他方の正常相の電圧指令値を0に設定すればよい。なお、故障により、トルク指令値Toに応じたトルクを発生できない角度区間もある。よって、巻線電流の増加を抑制しつつ、可能な限りトルク指令値Toに応じたトルクを発生させることができる。
<正常な2相の電圧指令値の上限制限>
正極側の短絡故障時は、図6に示したように、正常な2相の電圧指令値の一方又は双方が、直流電圧Vdcに一致する区間がある。よって、正常な2相の負極側のスイッチング素子のオン期間が短くなり、電流センサにより電流を検出できなくなる。
図6では、正常な1相又は2相の電流を検出できる角度区間が存在するが、トルク指令値Toが小さくなると、正常な2相の電圧指令値の振幅が小さくなり、全ての角度区間において、正常な1相又は2相の電流を検出できる角度区間が存在しなくなる。
そこで、故障時算出部332は、少なくとも電流検出タイミングで、正常な2相の各相の負極側のスイッチングのオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を変化させる。
この構成によれば、1相の故障が判定されているときに、正常な2相の電流を検出することができる。よって、正常な2相の電流検出値を用いて、故障時の制御を行うことができる。本実施の形態では、上述したように、故障判定部35が、正常な2相の電流検出値を用いて、正常な2相の直列回路の故障を判定することができる。よって、故障発生時の交流回転機の動作をより信頼性の高いものにできる。
本実施の形態では、検出対象素子は、負極側のスイッチング素子である。故障時算出部332は、短絡故障が発生したと判定されているときに、正常な2相の各相の負極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を、直流電圧Vdcよりも小さい値に設定された上限値Vupにより上限制限する。上限値Vupは、式(1)を用いて説明したように設定される。
この構成によれば、正常な2相の負極側のスイッチング素子のオン期間を、電流の検出に必要な長さ以上にすることができ、正常な2相の電流を精度よく検出することができる。負極側のスイッチング素子のオン期間が、電流の検出に必要な最小限の長さになるように、上限値Vupを設定すれば、正常相の電圧指令値に対する影響を最小限にすることができ、電流制御及びトルク制御に対する影響を抑制することができる。
上限値Vupによる上限制限は、上限値Vupを超える電圧指令値だけを、上限値Vupに設定してもよいし、正常な2相の電圧指令値が上限値Vupを超えないように、正常な2相の電圧指令値を、同じオフセット電圧だけ低下させてもよいし、正常な2相の電圧指令値に1より小さい係数を乗算してもよい。
本実施の形態では、図8に示すように、PWM周期Tcごとに電流が検出されるように構成されており、正常相の電圧指令値は、直流電圧Vdcの90%に設定された上限値Vupにより常時上限制限されている。そのため、各PWM周期Tcのキャリア波CAの山の頂点付近で、負極側のスイッチング素子がオンになり、電流センサを電流が流れる。なお、図には、スイッチング素子をオンにした後、電流が安定するまでの挙動は省略している。各PWM周期Tcのキャリア波CAの山の頂点で、電流を検出することできる。電流検出値は、次回の電流検出タイミングまで保持される。
なお、電流センサの故障の検知、電流センサの出力信号の補正などの目的のため、電流検出部32は、電流センサに電流が流れていないタイミングで、電流センサの出力信号を検出するように構成されてもよい。この場合は、故障時算出部332は、短絡故障が発生したと判定されているときに、正常な2相の各相の負極側のスイッチング素子のオフ期間が生じるように、正常な2相の電圧指令値を、0よりも大きい値に設定された下限値により下限制限してもよい。特に、負極側の短絡故障が発生しているときは、正常な2相の電圧指令値は、0を基準に振動するため、0になる頻度が高くなり、下限値により下限制限する必要性が生じる。下限値により下限制限する場合は、電流検出部32は、キャリア波のCAの谷の頂点において、電流センサの出力信号を検出してもよい。
2.実施の形態2
実施の形態2に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転機1及び制御装置10の基本的な構成は実施の形態1と同様であるが、短絡故障時に正常な2相の電流検出値を用いて、電圧指令値を算出する点が実施の形態1と異なる。
実施の形態では、電圧指令値算出部33は、短絡故障が発生したと判定されているときに、正常な2相の電流検出値に基づいて、正常な2相の電圧指令値を算出する。
<正常な2相の電流指令値の算出>
図9に、V相の正極側又は負極側の短絡故障が発生している場合の処理を表す制御ブロック図を示す。特許文献2の図9と同様に構成される。故障時算出部332は、正常相電流指令値算出部3320、正常相基本値算出部3321、異常相指令値算出部3322、及び正常相指令値算出部3323を備えている。
正常相電流指令値算出部3320は、回転角度θに応じて、0を基準に振動する、正常な2相の電流指令値を算出する。例えば、正常相電流指令値算出部3320は、回転角度θと正常な2相の電流指令値との関係が予め設定された電流指令値設定データを参照し、現在の回転角度θに対応する2相の電流指令値を算出する。電流指令値設定データは、複数の回転角速度ωごとに予め設定されており、現在の回転角速度ωに対応する電流指令値設定データが用いられる。電流指令値設定データの代わりに、演算式が用いられてもよい。
電流指令値設定データは、正常な2相の組み合わせごとに設定さている。例えば、U相が故障している場合は、回転角度θとV相及びW相の電流指令値と関係が予め設定されたV相及びW相の電流指令値設定データが参照される。V相が故障している場合は、回転角度θとU相及びW相の電流指令値と関係が予め設定されたU相及びW相の電流指令値設定データが参照される。W相が故障している場合は、回転角度θとU相及びV相の電流指令値と関係が予め設定されたU相及びV相の電流指令値設定データが参照される。
正常相電流指令値算出部3320は、トルク指令値Toに応じて、正常な2相の電流指令値の振幅を、0を中心に増減させる。
正常相基本値算出部3321は、正常な2相の電流検出値が、正常な2相の電流指令値に近づくように、正常な2相の電圧指令値の基本値をそれぞれ変化させる電流フィードバック制御を行う。例えば、V相が故障している場合は、正常相基本値算出部3321は、U相の電流検出値Iuが、U相の電流指令値Iuoに近づくように、U相の電圧指令値の基本値Vu0を変化させ、W相の電流検出値Iwが、W相の電流指令値Iwoに近づくように、W相の電圧指令値の基本値Vw0を変化させる。電流偏差に基づいたPI制御等が用いられる。
このように算出される正常な2相の電圧指令値の基本値は、実施の形態1と同様に、回転角度θに応じて、直流電圧Vdcの半分値を基準に振動する。
<正極側の短絡故障時の設定>
実施の形態1と同様に、正極側の短絡故障が発生したと判定されているときは、異常相指令値算出部3322は、短絡故障が生じた異常相の電圧指令値を、直流電圧Vdcに設定する。正常相指令値算出部3323は、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ正方向にオフセットさせて、正常な2相の電圧指令値を算出する。
本実施の形態の正常な2相の電圧指令値は、実施の形態1の図6と同様な挙動になる。正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ正方向にオフセットさせることにより、正常な2相の電圧指令値を、直流電圧Vdcを基準に振動させることができる。よって、巻線電流の増加を抑制しつつ、可能な限りトルク指令値Toに応じたトルクを発生させることができる。
<負極側の短絡故障時の設定>
実施の形態1と同様に、負極側の短絡故障が発生したと判定されているときは、異常相指令値算出部3322は、短絡故障が生じた異常相の電圧指令値を、0に設定する。そして、正常相指令値算出部3323は、正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ負方向にオフセットさせて、正常な2相の電圧指令値を算出する。
本実施の形態の正常な2相の電圧指令値は、実施の形態1の図7と同様な挙動になる。正常な2相の電圧指令値の基本値を、直流電圧Vdcの半分値だけ負方向にオフセットさせることにより、正常な2相の電圧指令値を、0を基準に振動させることができる。よって、巻線電流の増加を抑制しつつ、可能な限りトルク指令値Toに応じたトルクを発生させることができる。
<正常な2相の電圧指令値の上限制限>
実施の形態1の図6と同様に、正極側の短絡故障時は、正常な2相の電圧指令値の一方又は双方が、直流電圧Vdcに一致する区間がある。よって、正常な2相の負極側のスイッチング素子のオン期間が短くなり、電流センサにより電流を検出できなくなる。
実施の形態1と同様に、故障時算出部332は、少なくとも電流検出タイミングで、正常な2相の各相の負極側のスイッチングのオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を変化させる。
この構成によれば、1相の故障が判定されているときに、正常な2相の電流を検出することができる。よって、正常な2相の電流検出値を用いて、故障時の電流フィードバック制御を行い、正常な2相の電圧指令値を算出することができる。
実施の形態1と同様に、故障時算出部332は、短絡故障が発生したと判定されているときに、正常な2相の各相の負極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を、直流電圧Vdcよりも小さい値に設定された上限値Vupにより上限制限する。
この構成によれば、正常な2相の負極側のスイッチング素子のオン期間を、電流の検出に必要な長さ以上にすることができ、正常な2相の電流を精度よく検出することができる。
なお、故障判定部35は、実施の形態1と同様に、正常な2相の電流検出値を用いて、正常な2相の直列回路の故障を判定してもよいし、実施の形態1と異なり、正常な2相の直列回路の故障を判定しなくてもよい。
3.実施の形態3
実施の形態3に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転機1及び制御装置10の基本的な構成は実施の形態1と同様であるが、複数のPWM周期ごとに電流が検出され、電圧指令値が変化される点が実施の形態1と異なる。
電流検出部32は、短絡故障が発生したと判定されているときに、複数のPWM周期ごとに電流を検出する。なお、電流検出部32は、短絡故障が発生したと判定されていないときは、PWM周期ごとに電流を検出する。
例えば、図10のタイムチャートに示すように、電流検出部32は、5つのPWM周期ごとのキャリア波CAの山の頂点で電流を検出する。
故障時算出部332は、短絡故障が発生したと判定されているときに、複数のPWM周期ごと(本例では、5つのPWM周期ごと)の電流検出タイミングで、正常な2相の各相の負極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を変化させる。
検出対象素子は、負極側のスイッチング素子である。故障時算出部332は、短絡故障が発生したと判定されているときに、複数のPWM周期ごとの電流検出タイミングで、正常な2相の各相の負極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を、直流電圧Vdcよりも小さい値に設定された上限値Vupにより上限制限する。
上限制限により、電圧指令値を上限値Vupまで低下させると、トルクの低下、電流の増加が生じる。上記の構成によれば、電圧指令値が上限値Vupにより上限制限される頻度を低下させることができる。よって、トルクの低下及び電流の増加の頻度を低下させることができ、平均的なトルクの低下量及び電流の増加量を、頻度に応じて低下させることができる。例えば、5つのPWM周期ごとに上限制限する場合は、PWM周期ごとに上限制限する場合に比べ、平均的なトルクの低下量及び電流の増加量を5分の1にすることができる。なお、電圧指令値が上限値Vupよりも低い場合は、上限制限されないため、電流検出の頻度の影響は生じない。
例えば、図10のタイムチャートに示すように、故障時算出部332は、5つのPWM周期ごとの電流検出タイミングで、電圧指令値の制限の実行フラグをオンにする。故障時算出部332は、電流検出タイミングであるキャリア波CAの山の頂点を中心したオン期間だけ、実行フラグをオンにする。実行フラグのオン期間は、上限値Vupに対応する負極側のスイッチング素子のオン期間よりも長くされる。
そして、故障時算出部332は、実行フラグがオンになっているときに、正常な2相の電圧指令値を上限値Vupにより上限制限する。図10には、直流電圧Vdcに設定されている正常な1相の電圧指令値を示している。実行フラグのオン期間で、電圧指令値が上限値Vupに上限制限され、電圧指令値が上限値Vupに設定されている。よって、5つのPWM周期ごとの電流検出タイミングで、負極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になり、電流が精度よく検出される。電流検出部32は、検出した各相の電流検出値を、5つのPWM周期後の次回の電流検出タイミングまで保持する。
正常な2相の電流検出値を用いて、実施の形態1で説明した正常相の故障判定が行われ、実施の形態2で説明した電流フィードバック制御が行われる。
なお、電流検出部32は、正常な2相の電圧指令値が上限値Vup以下であるときは、PWM周期ごとに電流を検出してもよい。
電流検出部32は、電流を検出しないPWM周期において、過去の複数の電流検出値に基づいて、電流検出値を算出してもよい。例えば、電流検出部32は、過去の複数の電流検出値に基づいて、一次予測、二次予測等の予測を行って、電流検出値を算出してもよく、過去の複数の電流検出値に対してローパスフィルタ処理を行って、電流検出値を算出してもよい。この構成によれば、電流を検出しないPWM周期において電流検出値を滑らかに変化させることができ、各処理に用いることができる。
<電流のサンプリング周期の設定>
電流のサンプリング周期が長くなるに従って、平均的なトルクの低下量及び電流の増加量を低減することができる。しかし、電流のサンプリング周波数が低下すると、ナイキスト周波数が低下する。そのため、電流のサンプリング周期を長くし過ぎると、電流フィードバック制御系の安定性が悪化する。
そこで、電流を検出する複数のPWM周期(電流のサンプリング周期)は、巻線を流れる電流を制御する制御系の応答時定数よりも短くなるように設定される。応答時定数は、電流指令値をステップ変化させてから、電流検出値が最終値の63.2%に到達するまでの時間と定義される。また、応答時定数は、電流フィードバック制御系のカットオフ周波数の逆数に相当する。
この構成によれば、電流のサンプリング周期を、応答時定数よりも短くするので、電流フィードバック制御系が不安定化しない範囲しないようにできる。
4.実施の形態4
実施の形態4に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転機1及び制御装置10の基本的な構成は実施の形態1と同様であるが、短絡故障が発生したときに、PWM周期が長くされる点が実施の形態1と異なる。
式(1)から、PWM周期Tcが長くなるに従って、直流電圧Vdcからの低下量ΔVdwnが減少し、上限値Vupが増加して、直流電圧Vdcに近づくことがわかる。上限値Vupが増加すると、電圧指令値の上限制限によるトルクの低下量及び電流の増加量が減少する。
そこで、PWM制御部34は、短絡故障が発生したと判定されているときは、短絡故障が発生したと判定されていないときよりも、PWM周期Tcを長くする。この構成によれば、PWM周期Tcを長くしない場合よりも、上限値Vupを大きくすることができ、電圧指令値の上限制限によるトルクの低下量及び電流の増加量を減少させることができる。
例えば、正常時のPWM周期Tcを、50μsに設定し、故障時のPWM周期Tcを、250μsに設定する。電流の検出に必要な負極側のスイッチング素子のオン期間Tonが、5μsである。故障時のPWM周期Tcを、正常時から変化させずに50μsに設定すると、低下量ΔVdwnは、直流電圧Vdcの10%であるが、故障時のPWM周期Tcを、正常時から長くして250μsに設定すると、低下量ΔVdwnは、直流電圧Vdcの2%になる。よって、故障時のPWM周期Tcを正常時から変化させない場合よりも、トルクの低下量及び電流の増加量を1/5に減少させることができる。
PWM周期Tcが長くなるに従って、トルクの低下量及び電流の増加量を低減することができる。一方、PWM周期Tcに比例して、電流のサンプリング周期が変化する。電流のサンプリング周波数が低下すると、ナイキスト周波数が低下する。そのため、PWM周期Tcを長くし過ぎると、電流フィードバック制御系の安定性が悪化する。
そこで、PWM周期Tc(電流のサンプリング周期)は、巻線を流れる電流を制御する制御系の応答時定数よりも短くなるように設定される。応答時定数は、電流指令値をステップ変化させてから、電流検出値が最終値の63.2%に到達するまでの時間と定義される。また、応答時定数は、電流フィードバック制御系のカットオフ周波数の逆数に相当する。
この構成によれば、PWM周期Tc(電流のサンプリング周期)を、応答時定数よりも短くするので、電流フィードバック制御系が不安定化しない範囲しないようにできる。
5.実施の形態5
実施の形態5に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転機1及び制御装置10の基本的な構成は実施の形態1と同様であるが、電流センサが正極側のスイッチング素子に直列接続され、検出対象素子が正極側のスイッチング素子である点が実施の形態1と異なる。図11は、本実施の形態に係る交流回転機1、制御装置10の概略構成図である。
各相の電流センサ5は、各相の正極側のスイッチング素子SPの正極側に直列接続されている。なお、各相の電流センサ5は、正極側のスイッチング素子SPの負極側に直列接続されてもよい。よって、各相の電流センサ5は、各相の正極側のスイッチング素子SPを流れる電流を検出することができる。
<電流検出のための、電圧指令値の下限値Vdwn>
本実施の形態では、図12に示すように、キャリア波CAの谷の頂点を中心にした区間Cにおいて、3相全ての正極側のスイッチング信号GPu、GPv、GPwがオンになっており、この区間Cにおいて、電流センサ5により3相の巻線に流れる電流を検出できる。本実施の形態では、電流検出部32は、キャリア波CAの谷の頂点のタイミングで、電流を検出するように構成されている。
各相の電流を検出するためには、各相の正極側のスイッチング素子をオンする必要がある。しかし、電圧指令値が0に一致すると、正極側のスイッチング素子が常時オフになるため、電流センサ5により電流を検出できなくなる。
一方、電圧指令値を0よりも大きくすれば、正極側のスイッチング素子がオンになるため、電流センサにより電流を検出できる。しかし、正極側のスイッチング素子のオン期間が短すぎると電流を正確に検出できないため、正極側のスイッチング素子のオン期間を、電流の検出に必要な長さ以上に設定する必要がある。これは、正極側のスイッチング素子をオンした後、リンギング等の影響により、正極側のスイッチング素子を流れる電流が安定するまでには、安定遅れ時間Tdlyがあるためである。そのため、正極側のスイッチング素子をオンした後、安定遅れ時間Tdlyが経過するまでに、電流を検出すると、電流を正確に検出できない。
本実施の形態では、正極側のスイッチング素子のオン期間の中心が、電流検出タイミングになるため、正極側のスイッチング素子のオン期間を、安定遅れ時間Tdlyの2倍値以上にする必要がある。安定遅れ時間Tdlyの2倍値が、電流の検出に必要な長さに相当する。よって、正極側のスイッチング素子のオン期間Tonが、安定遅れ時間Tdlyの2倍値になる電圧指令値まで、電圧指令値を0から増加量ΔVupだけ増加させる必要がある。
本実施の形態では、増加量ΔVup、及び電流の検出に必要な電圧指令値の下限値Vdwnは、次式になる。増加量ΔVupは、ばらつきを考慮し、余裕をもって設定されてもよい。また、上述した短絡防止期間が設けられる場合は、短絡防止期間を考慮して、増加量ΔVupが設定される。
Ton=Tdly×2
ΔVup=Ton/Tc×Vdc
Vdwn=0+ΔVup ・・・(2)
例えば、電流の検出に必要な負極側のスイッチング素子のオン期間Tonが、5μsであり、PWM周期Tcが、50μsである場合は、増加量ΔVupは、直流電圧Vdcの10%になり、下限値Vdwnは、直流電圧Vdcの10%に設定される。
<正常な2相の電圧指令値の下限制限>
図7と同様の図13に示すように、負極側の短絡故障時は、正常な2相の電圧指令値の一方又は双方が、0に一致する区間がある。よって、正常な2相の負極側のスイッチング素子のオン期間が短くなり、電流センサにより電流を検出できなくなる。
図13では、正常な1相又は2相の電流を検出できる角度区間が存在するが、トルク指令値Toが小さくなると、正常な2相の電圧指令値の振幅が小さくなり、全ての角度区間において、正常な1相又は2相の電流を検出できる角度区間が存在しなくなる。
そこで、故障時算出部332は、少なくとも電流検出タイミングで、正常な2相の各相の正極側のスイッチングのオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を変化させる。
本実施の形態では、検出対象素子は、正極側のスイッチング素子である。故障時算出部332は、短絡故障が発生したと判定されているときに、正常な2相の各相の正極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を、0よりも大きい値に設定された下限値Vdwnにより下限制限する。下限値Vdwnは、式(2)を用いて説明したように設定される。
この構成によれば、正常な2相の正極側のスイッチング素子のオン期間を、電流の検出に必要な長さ以上にすることができ、正常な2相の電流を精度よく検出することができる。正極側のスイッチング素子のオン期間が、電流の検出に必要な最小限の長さになるように、下限値Vdwnを設定すれば、正常相の電圧指令値に対する影響を最小限にすることができ、電流制御及びトルク制御に対する影響を抑制することができる。
下限値Vdwnによる下限制限は、下限値Vdwnを下回る電圧指令値だけを、下限値Vdwnに設定してもよいし、正常な2相の電圧指令値が下限値Vdwnを下回らないように、正常な2相の電圧指令値を、同じオフセット電圧だけ増加させてもよい。
なお、電流センサの故障の検知、電流センサの出力信号の補正などの目的のため、電流検出部32は、電流センサに電流が流れていないタイミングで、電流センサの出力信号を検出するように構成されてもよい。この場合は、故障時算出部332は、短絡故障が発生したと判定されているときに、正常な2相の各相の正極側のスイッチング素子のオフ期間が生じるように、正常な2相の電圧指令値を、直流電圧Vdcよりも小さい値に設定された上限値により上限制限してもよい。特に、正極側の短絡故障が発生しているときは、正常な2相の電圧指令値は、直流電圧Vdcを基準に振動するため、直流電圧Vdcになる頻度が高くなり、上限値により上限制限する必要性が生じる。上限値により上限制限する場合は、電流検出部32は、キャリア波のCAの山の頂点において、電流センサの出力信号を検出してもよい。
本実施の形態でも、実施の形態2と同様に、電圧指令値算出部33は、短絡故障が生じていると判定されているときに、正常な2相の電流検出値に基づいて、正常な2相の電圧指令値を算出してもよい。
本実施の形態でも、実施の形態3と同様に、電流検出部32は、短絡故障が発生したと判定されているときに、複数のPWM周期ごとのキャリア波CAの谷の頂点で電流を検出してもよい。故障時算出部332は、短絡故障が発生したと判定されているときに、複数のPWM周期ごとの電流検出タイミングで、正常な2相の各相の正極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常な2相の電圧指令値を変化させてもよい。
本実施の形態でも、実施の形態4と同様に、PWM制御部34は、短絡故障が発生したと判定されているときは、短絡故障が発生したと判定されていないときよりも、PWM周期Tcを長くしてもよい。
6.実施の形態6
実施の形態6に係る制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る交流回転機1及び制御装置10の基本的な構成は実施の形態1と同様であるが、交流回転機1が、電動パワーステアリング装置の駆動力源である点が実施の形態1と異なる。図14は、本実施の形態に係る電動パワーステアリング装置、交流回転機1、及び制御装置10の概略構成図である。
電動パワーステアリング装置は、運転者が左右に回転するハンドル53と、ハンドル53に連結されて、ハンドル53による操舵トルクを車輪56の操舵機構55に伝達するシャフト54と、シャフト54に取り付けられ、ハンドル53による操舵トルクを検出するトルクセンサ52と、交流回転機1の駆動力をシャフト54に伝達するウォームギヤ機構等の駆動力伝達機構57と、シャフト54の駆動力は、車輪56を操舵するラック・ピニオンギヤ等の操舵機構55と、を備えている。トルクセンサ52の出力信号は、制御器30に入力される。
制御器30(電圧指令値算出部33)は、トルクセンサ52の出力信号に基づいて、ハンドル53の操舵トルクを検出し、操舵トルクに基づいて、トルク指令値To(又は、トルク電流指令値)を算出する。
このような電動パワーステアリング装置において、実施の形態1から5のように構成することにより、短絡故障が発生した場合に、正常な2相の電流を検出することができる。また、短絡故障が発生した場合でも、交流回転機1にトルク指令値Toに応じたトルクを発生させることができる。正常な2相の電流検出値に基づいて、正常な2相の短絡故障を判定したり、電流フィードバック制御により交流回転機1にトルク指令値Toに応じたトルクを発生させたりすることができる。
〔その他の実施の形態〕
本願のその他の実施の形態について説明する。以下に説明する各実施の形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施の形態の構成と組み合わせて適用することも可能である。
(1)上記の各実施の形態においては、1組の3相の巻線が設けられ、1組のインバータが設けられ、制御器30は、1組の3相の巻線及びインバータに対応して構成されている場合を例として説明した。しかし、3相の巻線及びインバータは、複数組(例えば、2組)設けられてもよい。この場合は、交流回転機1(ステータ)には、3×組数の相数の巻線が設けられる。制御器30は、各組の3相の巻線及びインバータに対応する各制御部31~35を複数組備えてもよく、或いは、複数組の制御器30が設けられてもよい。
(2)上記の各実施の形態においては、交流回転機1には、3相の巻線が設けられている場合を例として説明した。しかし、交流回転機1には、2相の巻線が設けられてもよく、4相以上の巻線が設けられてもよい。インバータ及び制御器は、相数に応じて適切に設計される。
(3)上記の実施の形態6においては、交流回転機1が、電動パワーステアリング装置の駆動力源である場合を例として説明した。しかし、交流回転機1が、車輪の駆動力源とされるなど、各種の装置の駆動力源とされてもよい。
(4)上記の各実施の形態においては、電圧指令値及びキャリア波が、直流電源Vdcの半分値を中心に、0から直流電圧Vdcの間を変化する場合を例として説明した。しかし、電圧指令値及びキャリア波が、0を中心に、直流電圧Vdcの半分値に-1を乗算した値(-Vdc/2)から直流電圧Vdcの半分値(Vdc/2)の間を変化するように構成されてもよい。この場合は、電圧指令値算出部の各処理において、電圧指令値が、直流電圧Vdcの半分値だけ負側にオフセットされる。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 交流回転機、2 回転センサ、3 直流電源、4 インバータ、5 電流センサ、10 交流回転機の制御装置、30 制御器、31 回転検出部、32 電流検出部、33 電圧指令値算出部、34 PWM制御部、35 故障判定部、CA キャリア波、SP 正極側のスイッチング素子、SN 負極側のスイッチング素子、Tc PWM制御の制御周期(PWM周期)、Ton スイッチング素子のオン期間、Vdc 直流電圧、Vdwn 下限値、Vup 上限値

Claims (9)

  1. n相(nは、3以上の自然数)の巻線を有する交流回転機を制御する交流回転機の制御装置であって、
    直流電源の正極側に接続される正極側のスイッチング素子と前記直流電源の負極側に接続される負極側のスイッチング素子とが直列接続され、直列接続の接続点が対応する相の前記巻線に接続される直列回路を、n相各相に対応してnセット設けたインバータと、
    n相各相の前記正極側のスイッチング素子又は前記負極側のスイッチング素子である検出対象素子に直列接続され、電流を検出するn相の電流センサと、
    各相の巻線に印加する各相の電圧指令値を算出する電圧指令値算出部と、
    各相の前記電圧指令値に基づいて、PWM制御により各相の前記スイッチング素子をオンオフ制御するPWM制御部と、
    各相の前記検出対象素子がオンになるタイミングで、各相の前記電流センサの出力信号に基づいて、各相の電流を検出する電流検出部と、
    前記インバータの各相の直列回路における前記正極側のスイッチング素子の部分の短絡故障である正極側の短絡故障、及び前記負極側のスイッチング素子の部分の短絡故障である負極側の短絡故障を判定する故障判定部と、を備え、
    前記電圧指令値算出部は、いずれか1相の直列回路の前記正極側の短絡故障又は前記負極側の短絡故障が発生したと判定されているときに、短絡故障が発生していない正常なn-1相の電圧指令値を算出し、
    少なくとも電流検出タイミングで、正常なn-1相の各相の前記検出対象素子のオン期間が、電流の検出に必要な長さ以上になるように、正常なn-1相の電圧指令値を変化させ
    前記PWM制御部は、短絡故障が発生したと判定されているときは、短絡故障が発生したと判定されていないときよりも、前記PWM制御の制御周期を長くする交流回転機の制御装置。
  2. 前記PWM制御部は、前記検出対象素子が前記負極側のスイッチング素子である場合において、短絡故障が発生したと判定されているときに、正常なn-1相の各相の前記負極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常なn-1相の電圧指令値を、前記直流電源の直流電圧よりも小さい値に設定された上限値により上限制限し、
    前記検出対象素子が前記正極側のスイッチング素子である場合において、短絡故障が発生したと判定されているときに、正常なn-1相の各相の前記正極側のスイッチング素子のオン期間が、電流の検出に必要な長さ以上になるように、正常なn-1相の電圧指令値を、0よりも大きい値に設定された下限値により、下限制限する請求項1に記載の交流回転機の制御装置。
  3. 前記電圧指令値算出部は、前記正極側の短絡故障が発生したと判定されているときは、短絡故障が生じた異常相の電圧指令値を、前記直流電源の直流電圧に設定すると共に、前記交流回転機の回転角度に応じて、前記直流電源の直流電圧を基準に振動する、正常なn-1相の電圧指令値を算出し、
    前記負極側の短絡故障が発生したと判定されているときは、短絡故障が生じた異常相の電圧指令値を、0に設定すると共に、前記交流回転機の回転角度に応じて、0を基準に振動する、正常なn-1相の電圧指令値を算出する請求項1又は2に記載の交流回転機の制御装置。
  4. 前記電圧指令値算出部は、短絡故障が発生したと判定されているときに、前記交流回転機の回転角度に応じて、前記直流電源の直流電圧の半分値を基準に振動する、正常なn-1相の電圧指令値の基本値を算出し、
    前記正極側の短絡故障が発生したと判定されているときは、短絡故障が生じた異常相の電圧指令値を、前記直流電源の直流電圧に設定すると共に、正常なn-1相の電圧指令値の基本値を、前記直流電源の直流電圧の半分値だけ正方向にオフセットさせ、
    前記負極側の短絡故障が発生したと判定されているときに、短絡故障が生じた異常相の電圧指令値を、0に設定すると共に、正常なn-1相の電圧指令値の基本値を、前記直流電源の直流電圧の半分値だけ負方向にオフセットさせる請求項1からのいずれか一項に記載の交流回転機の制御装置。
  5. 前記故障判定部は、正常なn-1相の電流検出値に基づいて、正常なn-1相の各相の直列回路の故障を判定する請求項1からのいずれか一項に記載の交流回転機の制御装置。
  6. 前記電圧指令値算出部は、短絡故障が発生したと判定されているときに、正常なn-1相の電流検出値に基づいて、正常なn-1相の電圧指令値を算出する請求項1からのいずれか一項に記載の交流回転機の制御装置。
  7. 前記故障判定部は、各相について、前記正極側のスイッチング素子が常時オンする短絡故障、又は前記直列回路と前記巻線との接続経路が前記直流電源の正極側に短絡する短絡故障が発生したと判定したときに、前記正極側の短絡故障が発生したと判定し、
    各相について、前記負極側のスイッチング素子が常時オンする短絡故障、又は前記直列回路と前記巻線との接続経路が前記直流電源の負極側に短絡する短絡故障が発生したと判定したときに、前記負極側の短絡故障が発生したと判定する請求項1からのいずれか一項に記載の交流回転機の制御装置。
  8. 前記PWM制御部は、0と前記直流電源の直流電圧との間を、前記PWM制御の制御周期で振動するキャリア波と、各相の前記電圧指令値とを比較し、比較結果に基づいて、各相の前記スイッチング素子をオンオフ制御する請求項1からのいずれか一項に記載の交流回転機の制御装置。
  9. 前記交流回転機は、電動パワーステアリング装置の駆動力源である請求項1からのいずれか一項に記載の交流回転機の制御装置。
JP2022522155A 2020-05-13 2020-05-13 交流回転機の制御装置 Active JP7351004B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/019057 WO2021229703A1 (ja) 2020-05-13 2020-05-13 交流回転機の制御装置

Publications (2)

Publication Number Publication Date
JPWO2021229703A1 JPWO2021229703A1 (ja) 2021-11-18
JP7351004B2 true JP7351004B2 (ja) 2023-09-26

Family

ID=78526017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022522155A Active JP7351004B2 (ja) 2020-05-13 2020-05-13 交流回転機の制御装置

Country Status (4)

Country Link
EP (1) EP4152597A4 (ja)
JP (1) JP7351004B2 (ja)
CN (1) CN115516758A (ja)
WO (1) WO2021229703A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024044521A (ja) * 2022-09-21 2024-04-02 株式会社デンソー モータ制御装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158182A (ja) 2004-10-26 2006-06-15 Fuji Electric Fa Components & Systems Co Ltd 電動機駆動システム
JP2009118633A (ja) 2007-11-06 2009-05-28 Denso Corp 多相回転電機の制御装置及び多相回転電機装置
JP2010041846A (ja) 2008-08-06 2010-02-18 Mitsubishi Electric Corp 二相交流回転機の制御装置
JP5720963B2 (ja) 2010-03-29 2015-05-20 株式会社ジェイテクト モータ制御装置
JP2016103899A (ja) 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 インバータ制御装置、インバータ装置、およびインバータ制御方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2009782B1 (en) 2006-04-20 2021-06-23 Mitsubishi Electric Corporation Electric motor control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006158182A (ja) 2004-10-26 2006-06-15 Fuji Electric Fa Components & Systems Co Ltd 電動機駆動システム
JP2009118633A (ja) 2007-11-06 2009-05-28 Denso Corp 多相回転電機の制御装置及び多相回転電機装置
JP2010041846A (ja) 2008-08-06 2010-02-18 Mitsubishi Electric Corp 二相交流回転機の制御装置
JP5720963B2 (ja) 2010-03-29 2015-05-20 株式会社ジェイテクト モータ制御装置
JP2016103899A (ja) 2014-11-28 2016-06-02 日立オートモティブシステムズ株式会社 インバータ制御装置、インバータ装置、およびインバータ制御方法

Also Published As

Publication number Publication date
EP4152597A4 (en) 2023-06-28
WO2021229703A1 (ja) 2021-11-18
EP4152597A1 (en) 2023-03-22
US20230163712A1 (en) 2023-05-25
JPWO2021229703A1 (ja) 2021-11-18
CN115516758A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
US9257930B2 (en) Controller for multiple-phase rotating machine
JP5760830B2 (ja) 3相回転機の制御装置
US9013137B2 (en) Apparatus for calculating rotational position of rotary machine
JP5354369B2 (ja) 電力変換装置
CN113422564B (zh) 交流旋转机控制装置
JP2018074880A (ja) 回転電機システム
JP7203253B2 (ja) 交流回転機の制御装置、及び電動パワーステアリング装置
CN109964402B (zh) 旋转电机控制装置及具备该旋转电机控制装置的电动助力转向装置
JP6685452B1 (ja) 回転電機の制御装置
JP2012029378A (ja) 負荷制御装置
JP2021111989A (ja) 回転電機装置の制御装置
JP7351004B2 (ja) 交流回転機の制御装置
JP6674765B2 (ja) 電動機の制御装置及びそれを用いた電動車両
JP7351013B2 (ja) 電力変換装置および電動パワーステアリング装置
JP6910418B2 (ja) 交流回転電機の制御装置
US12047026B2 (en) Controller for AC rotary machine
JP5473071B2 (ja) 負荷制御装置
JP7391271B2 (ja) 回転電機の制御装置
JP6435993B2 (ja) 回転電機の制御装置
JP6818929B1 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP7317249B2 (ja) 回転電機の制御装置及び電動パワーステアリング装置
JP6928149B1 (ja) 交流回転電機の制御装置
WO2024009671A1 (ja) モータ制御装置、モータ制御方法、及びモータ制御プログラム
JP2024083692A (ja) 交流回転電機の制御装置
JP6497244B2 (ja) モータ制御装置及びモータ制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230913

R151 Written notification of patent or utility model registration

Ref document number: 7351004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151