WO2019218756A1 - 像素电路、补偿组件、显示装置及其驱动方法 - Google Patents

像素电路、补偿组件、显示装置及其驱动方法 Download PDF

Info

Publication number
WO2019218756A1
WO2019218756A1 PCT/CN2019/077192 CN2019077192W WO2019218756A1 WO 2019218756 A1 WO2019218756 A1 WO 2019218756A1 CN 2019077192 W CN2019077192 W CN 2019077192W WO 2019218756 A1 WO2019218756 A1 WO 2019218756A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
driving
pole
self
circuit
Prior art date
Application number
PCT/CN2019/077192
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
王海生
刘英明
刘伟
李昌峰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/613,293 priority Critical patent/US11094261B2/en
Publication of WO2019218756A1 publication Critical patent/WO2019218756A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/067Special waveforms for scanning, where no circuit details of the gate driver are given
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/141Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element
    • G09G2360/142Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light conveying information used for selecting or modulating the light emitting or modulating element the light being detected by light detection means within each pixel

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a pixel circuit, a compensation component, a display device, and a driving method thereof.
  • OLED Organic Light Emitting Diode
  • the OLED display device is mainly divided into AMOLED (Active Matrix OLED, Chinese name: Active Matrix Organic Light Emitting Diode) display device and PMOLED (Passive Matrix OLED, Chinese name: passive matrix organic light emitting diode) display device.
  • AMOLED Active Matrix OLED, Chinese name: Active Matrix Organic Light Emitting Diode
  • PMOLED Passive Matrix OLED, Chinese name: passive matrix organic light emitting diode
  • AMOLED is becoming more and more recognized by people because of its low manufacturing cost, large operating temperature range, DC drive for portable devices, and high-definition large-size display devices, and has gradually become the mainstream of OLED display devices. development trend.
  • a pixel circuit in one aspect, includes a pixel driving circuit and a photosensitive detecting circuit.
  • the pixel driving circuit comprises a self-light emitting device, and a driving sub circuit connected to the self-light emitting device.
  • the driver subcircuit is configured to drive the self-luminous device to emit light.
  • the photosensitive detecting circuit is configured to detect a luminance of the self-luminous device and transmit an electrical signal for characterizing the luminance of the self-luminous device to the read signal terminal.
  • the photosensitive detection circuit is coupled to the drive subcircuit.
  • the photosensitive detecting circuit is further configured to input a power supply voltage to the driving sub-circuit during a lighting and detecting phase, and stop inputting a power supply voltage to the driving sub-circuit during a reading phase.
  • the photosensitive detection circuit includes a photosensitive device.
  • the photosensitive device is configured to detect an emission luminance of the self-luminous device, and transmit an electrical signal for characterizing a luminance of the self-luminous device to the read signal terminal.
  • the photosensitive detection circuit further includes a read circuit.
  • the reading circuit is coupled to the photosensitive device and the read signal terminal, the read circuit configured to transmit an electrical signal output by the photosensitive device for characterizing a luminance of the self-luminous device to the Read the signal end.
  • the photosensitive device includes a photodiode, a first transistor, and a second transistor.
  • the first pole of the photodiode is connected to the first voltage end, and the second pole of the photodiode is connected to the first pole of the first transistor.
  • the control electrode of the first transistor is connected to the first control signal terminal, and the second electrode of the first transistor is connected to the output terminal.
  • the control electrode of the second transistor is connected to the second control signal terminal, the first electrode of the second transistor is connected to the second voltage terminal, and the second electrode of the second transistor is connected to the output terminal.
  • the photosensitive region of the photodiode is located in a light irradiation region when the self-luminous device emits light.
  • the read circuit includes a third transistor and a fourth transistor.
  • the control electrode of the third transistor is connected to the output end of the photosensitive device, the first electrode of the third transistor is connected to the second voltage terminal, and the second electrode of the third transistor is connected to the fourth transistor a first pole and the drive subcircuit.
  • the control electrode of the fourth transistor is connected to the third control signal end, and the second electrode of the fourth transistor is connected to the read signal terminal.
  • the driver subcircuit includes a drive transistor.
  • the control electrode of the driving transistor is connected to the data voltage terminal, the first electrode of the driving transistor is connected to the second electrode of the third transistor, and the second electrode of the driving transistor is connected to the self-light emitting device.
  • the driving subcircuit further includes a fifth transistor, a sixth transistor, and a storage capacitor.
  • a control electrode of the driving transistor is connected to the data voltage terminal through the fifth transistor.
  • the first electrode of the fifth transistor is connected to the data voltage terminal
  • the second electrode of the fifth transistor is connected to the control electrode of the driving transistor
  • the control electrode of the fifth transistor is connected to the scanning signal terminal.
  • a first pole of the storage capacitor is connected to a gate of the driving transistor and a second pole of the fifth transistor
  • a second pole of the storage capacitor is connected to a second pole of the driving transistor, and the self-light emitting device .
  • a control electrode of the sixth transistor is connected to the scan signal end
  • a first pole of the sixth transistor is connected to a second pole of the driving transistor
  • a second pole of the sixth transistor is connected to the read signal end .
  • the photosensitive detection circuit includes a photosensitive device.
  • the photosensitive device includes a photodiode, a first transistor, and a second transistor.
  • the first pole of the photodiode is connected to the first voltage end, and the second pole of the photodiode is connected to the first pole of the first transistor.
  • the control electrode of the first transistor is connected to the first control signal end, and the second electrode of the first transistor is connected to the output end.
  • the control electrode of the second transistor is connected to the second control signal terminal, the first electrode of the second transistor is connected to the power voltage terminal, and the second electrode of the second transistor is connected to the output terminal.
  • the photosensitive region of the photodiode is located in a light irradiation region when the self-luminous device emits light.
  • the photosensitive detection circuit further includes a read circuit.
  • the read circuit includes a third transistor, a fourth transistor, and a current source. Wherein the control electrode of the third transistor is connected to the output end of the photosensitive device, the first electrode of the third transistor is connected to the power supply voltage terminal, and the second electrode of the third transistor is connected to the fourth transistor The first pole and the current source.
  • the control electrode of the fourth transistor is connected to the third control signal end, and the second electrode of the fourth transistor is connected to the read signal terminal.
  • the driving subcircuit includes a fifth transistor, a sixth transistor, a driving transistor, and a storage capacitor.
  • the control electrode of the fifth transistor is connected to the scan signal terminal, the first electrode of the fifth transistor is connected to the data voltage terminal, and the second electrode of the fifth transistor is connected to the control electrode of the drive transistor.
  • a first pole of the driving transistor is connected to an output end of the photosensitive device, and a second pole of the driving transistor is connected to a first pole of the self-light emitting device.
  • a control electrode of the sixth transistor is connected to the scan signal end, a first pole of the sixth transistor is connected to a second pole of the driving transistor, and a second pole of the sixth transistor is connected to the read signal end .
  • a first pole of the storage capacitor is connected to a gate of the driving transistor and a second pole of the fifth transistor, a second pole of the storage capacitor is connected to a second pole of the driving transistor, and the self-light emitting device The first pole.
  • the second pole of the self-luminous device is connected to the third voltage terminal.
  • a compensation component in another aspect, includes at least one pixel circuit as described above, a source driving circuit, and a controller connected to both the pixel circuit and the source driving circuit.
  • the controller is configured to acquire an actual light-emitting brightness of the self-light-emitting device according to an electrical signal output by the pixel circuit for characterizing a light-emitting brightness of the self-luminous device, and according to an actual light-emitting brightness of the self-light-emitting device
  • the data voltage signal is compensated for by the difference from the target luminance.
  • the source driving circuit is configured to output a driving signal to the pixel driving circuit of the pixel circuit according to the compensated data voltage signal.
  • a display device in still another aspect, includes a compensation component as described above.
  • a compensation method for a compensation component as described above includes detecting an actual luminance of the self-luminous device. Comparing the actual illuminating brightness and the target illuminating brightness, and compensating for the data voltage signal according to the difference between the actual illuminating brightness and the target illuminating brightness. The driving signal is output according to the compensated data voltage signal.
  • a driving method of a display device as described above includes a lighting and detecting phase, and a reading phase.
  • the driving method includes: driving the self-luminous device to emit light during the illuminating and detecting phase, and simultaneously detecting the illuminating brightness of the self-illuminating device.
  • the reading phase an electrical signal for characterizing the luminance of the self-luminous device is transmitted to the read signal terminal.
  • the photosensitive detecting circuit of the pixel circuit in the display device includes a photodiode, a first transistor, a second transistor, a third transistor, and a fourth transistor; and the driving sub-circuit includes a fifth transistor and a sixth transistor , drive transistor and storage capacitor.
  • the driving self-illuminating device emits light, comprising:
  • the second transistor is controlled to be turned on, and the second transistor transmits a power voltage signal provided by the second voltage terminal to the control electrode of the third transistor, and controls the third transistor to be turned on.
  • the third transistor transmits the power voltage signal provided by the second voltage terminal to a first pole of the driving transistor.
  • the fifth transistor transmitting a data voltage signal provided by the data voltage terminal to a control electrode of the driving transistor and a first pole of the storage capacitor, the first The six transistor transmits a potential signal supplied from the read signal terminal to the second pole of the drive transistor.
  • the data voltage signal controls the driving transistor to be turned on, and the second electrode of the driving transistor outputs a driving signal to the self-light emitting device to drive the self-luminous device to emit light.
  • the simultaneously detecting the luminance of the self-luminous device includes:
  • the first transistor is controlled to be turned on before controlling the second transistor to turn on.
  • the first transistor is controlled to be turned off, and a voltage of the second electrode of the photodiode is varied under illumination of the self-luminous device.
  • the luminance of the self-luminous device is detected according to a voltage change of the second electrode of the photodiode.
  • the transmitting an electrical signal for characterizing the luminance of the self-luminous device to the read signal end includes:
  • the first transistor is controlled to be turned on to transfer the voltage of the second electrode of the photodiode to the gate of the third transistor.
  • FIG. 1 is a schematic structural diagram of a pixel circuit according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic structural diagram of still another pixel circuit according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of still another pixel circuit according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram showing an internal structure of the pixel circuit shown in FIG. 3;
  • FIG. 5 is a schematic diagram showing still another internal structure of the pixel circuit shown in FIG. 3;
  • FIG. 5 is a schematic diagram showing still another internal structure of the pixel circuit shown in FIG. 3;
  • FIG. 6 is a timing control diagram of the pixel circuit shown in FIG. 5;
  • FIG. 7 is a schematic diagram showing still another internal structure of the pixel circuit shown in FIG. 3;
  • FIG. 8 is a schematic structural view of a compensation assembly according to some embodiments of the present disclosure.
  • FIG. 9 is a flow diagram of a method of compensating a compensation component in accordance with some embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a display device according to some embodiments of the present disclosure.
  • FIG. 11 is a flow chart showing a driving method of a display device according to some embodiments of the present disclosure.
  • FIG. 12 is a timing control diagram of a display device during a driving process, in accordance with some embodiments of the present disclosure.
  • the pixel circuit 1 includes a pixel driving circuit 100 and a photosensitive detecting circuit 200.
  • the pixel driving circuit 100 includes a self-light emitting device 10 and a driving sub-circuit 11 connected to the self-light emitting device 10.
  • the driving sub-circuit 11 is configured to drive the self-luminous device 10 to emit light.
  • the photosensitive detecting circuit 200 is configured to detect the light emission luminance of the self-luminous device 10, and transmit an electric signal for characterizing the light emission luminance of the self-luminous device 10 to the read signal terminal Readout.
  • the pixel driving circuit 100 is used to implement a light-emitting function for a corresponding sub-pixel in the display device, and the essence thereof is that the self-light-emitting device 10 is driven by the driving sub-circuit 11 (electroluminescence) Devices such as OLEDs emit light.
  • the driving sub-circuit 11 electro-electron emission Devices
  • Some embodiments of the present disclosure do not specifically limit the structure of the driving sub-circuit 11 to be capable of driving the self-luminous device 10 to emit light.
  • the electrical signal generated by the light-sensing device 200 for characterizing the light-emitting brightness of the self-luminous device 10 may be an electrical signal directly reflecting the brightness of the light-emitting device, or may be an indirect signal. An electrical signal that reflects the brightness of the light. However, it can be determined that an electrical signal value corresponds to one illumination luminance value, and the actual illumination luminance of the self-luminous device 10 can be accurately obtained by the photosensitive detection circuit 200.
  • the photosensitive detecting circuit 200 is configured to detect the luminance of the light emitted from the light emitting device 10, and the position of the photosensitive detecting circuit 200 is necessarily such that it can detect the position at which the light is emitted from the light emitting device 10.
  • some embodiments of the present disclosure provide the pixel circuit 1 in at least one sub-pixel, which can be effectively utilized by the pixel circuit 1
  • the luminance of the self-luminous device 10 in the corresponding sub-pixel is compensated.
  • each of the sub-pixels in the display panel is provided with the pixel circuit 1 described above, the luminance of each of the self-luminous devices 10 in the display panel can be effectively compensated by using the corresponding pixel circuit 1, thereby ensuring that the display panel has a comparison. Good brightness compensation effect.
  • each pixel circuit 1 in the display panel can simultaneously compensate the luminance of the corresponding respective light-emitting device 10, or can be compensated in part by time division.
  • the threshold voltage of the driving transistor configured to drive the light emitted from the light emitting device 10 in each sub-pixel of the display panel is easy to be processed, material, design, etc. The cause of the drift occurs, resulting in uneven brightness of the display screen of the display panel.
  • the problem of the resistance drop (IR Drop) in the display panel that is, the problem that the power supply voltage in each sub-pixel transmitted to the display panel is easily lowered due to an increase in the distance to the power supply position, and the display panel
  • the problem of aging of other devices, including the self-luminous device 10 may also result in uneven brightness of the display screen of the display panel.
  • Some embodiments of the present disclosure provide the above-described pixel circuit 1 in a sub-pixel of the display panel, and the photosensitive light detecting circuit 200 in the pixel circuit 1 can be used to accurately detect the actual light-emitting luminance of the corresponding self-light-emitting device 10 in the same sub-pixel.
  • some embodiments of the present disclosure use the photosensitive detection circuit 200 to detect the actual luminance of the self-luminous device 10 in the corresponding sub-pixel, which may be according to the respective
  • the actual light-emitting luminance of the light-emitting device 10 accurately determines its current light-emitting capability, thereby performing luminance compensation on the self-light-emitting device 10 of each sub-pixel.
  • the brightness compensation is a compensation that is determined by combining various factors causing uneven brightness of the light emission. Therefore, it is possible to effectively improve unevenness of light emission due to aging of the self-light emitting device 10, IR drop, and the like. To improve the brightness compensation effect of the display panel.
  • the photosensitive detection circuit 200 is coupled to the drive sub-circuit 11.
  • the photosensitive detecting circuit 200 is also configured to input a power supply voltage to the driving sub-circuit 11 in the light emitting and detecting phase, and stop inputting the power supply voltage to the driving sub-circuit 11 in the reading phase.
  • the above-mentioned photosensitive detecting circuit 200 is used to control whether or not the power supply voltage is input to the driving sub-circuit 11, and the photosensitive detecting circuit 200 is necessarily connected to the power supply voltage terminal.
  • the photosensitive detecting circuit 200 is equivalent to a switch for controlling whether or not the power supply voltage terminal is in communication with the driving sub-circuit 11 while detecting the luminance of the light emitted from the light emitting device 10 in the corresponding sub-pixel.
  • the power supply voltage terminal supplies the power supply voltage to the photosensitive detecting circuit 200, and the power supply voltage can also be output to the driving sub-circuit 11 of the pixel driving circuit 100 through the photosensitive detecting circuit 200.
  • the illumination driving of the pixel driving circuit 100 and the luminance detection of the photosensitive detecting circuit 200 can use the power supply voltage supplied from the same power supply terminal, that is, the pixel driving circuit 100 and the photosensitive detecting circuit 200 can share the same power supply voltage terminal.
  • the arrangement of the traces in the display panel is reduced, the number of voltage terminals is reduced, and the integration degree of the pixel circuit 1 is further improved.
  • the photosensitive detection circuit 200 is configured to detect the luminance of the self-luminous device 10 in the corresponding sub-pixel, and the photosensitive detection circuit 200 generally includes the photosensitive device 20.
  • the photosensitive device 20 is configured to detect the luminance of the light emitted from the light emitting device 10, and transmit an electrical signal for characterizing the luminance of the light emitted from the light emitting device 10 to the read signal terminal Readout.
  • the photosensitive device 20 is disposed at a place where it can be irradiated with light emitted from the light emitting device 10.
  • the photosensitive detection circuit 200 further includes a read circuit 21.
  • the reading circuit 21 is connected to the output terminal A of the photosensitive device 20 and the read signal terminal Readout, and the reading circuit 21 is configured to output an electric signal for characterizing the luminance of the light emitted from the light emitting device 10 to the output terminal A of the aforementioned photosensitive device 20. Transfer to the read signal terminal Readout.
  • the read circuit 21 is used for signal reading, and its structure is designed to maximize the aperture ratio of the corresponding sub-pixels.
  • the photosensitive device 20 includes a photodiode D, a first transistor T1, and a second transistor T2.
  • the first pole of the photodiode D is connected to the first voltage terminal V1
  • the second pole of the photodiode D is connected to the first pole of the first transistor T1.
  • the control electrode of the first transistor T1 is connected to the first control signal terminal S1, and the second electrode of the first transistor T1 is connected to the output terminal A.
  • the control electrode of the second transistor T2 is connected to the second control signal terminal S2, the first electrode of the second transistor T2 is connected to the second voltage terminal V2, and the second electrode of the second transistor T2 is connected to the output terminal A.
  • the photosensitive region of the photodiode D is located in the light irradiation region of the corresponding sub-pixel when the light-emitting device 10 emits light, that is, the position of the photodiode D is ensured that the photosensitive region of the photodiode D can be emitted by the self-luminous device 10 to be detected.
  • the light is shining. It can be understood that if a photodiode D is only used to detect the luminance of a self-luminous device 10, the photodiode D is disposed at a position that ensures that it is not to be detected by the self-luminous device 10 other than the self-luminous device 10. The emitted light is illuminated.
  • a photodiode D is used to detect the luminance of the plurality of self-luminous devices 10, the photodiode D is disposed at a position to ensure that it is illuminated by the light emitted from each of the self-luminous devices 10 to be detected.
  • the self-luminous device 10 corresponding to the diode D should be illuminated at different time periods, respectively, so that the photodiode D can detect its corresponding plurality of self-luminous devices 10 in a time-sharing manner.
  • the photosensitive region of the photodiode D and the light irradiation region of the self-luminous device 10 are opposite, that is, the photosensitive region of the photodiode D is located in a direct region of the light emitted from the light emitting device 10, which can facilitate the photodiode D to obtain more light.
  • the detection effect of the photosensitive detecting circuit 200 is further improved.
  • the read circuit 21 includes a third transistor T3 and a fourth transistor T4.
  • the control terminal of the third transistor T3 is connected to the output terminal A of the photosensor 20, the first electrode of the third transistor T3 is connected to the second voltage terminal V2, and the second electrode of the third transistor T3 is connected to the first electrode of the fourth transistor T4.
  • a driving sub-circuit 11 in the pixel driving circuit 100 The control electrode of the fourth transistor T4 is connected to the third control signal terminal S3, and the second electrode of the fourth transistor T4 is connected to the read signal terminal Readout.
  • the driving sub-circuit 11 includes a driving transistor Td.
  • the control electrode of the driving transistor Td is connected to the data voltage terminal Data
  • the first electrode of the driving transistor Td is connected to the second electrode of the third transistor T3
  • the second electrode of the driving transistor Td is connected to the light emitting device 10.
  • the power supply voltage required to be received by the driving transistor Td during operation is provided by the second voltage terminal V2.
  • the power voltage supplied from the second voltage terminal V2 passes through the second transistor T2 in the photosensitive device 20 and the third transistor T3 in the reading circuit 21, and can be transmitted to the first pole of the driving transistor Td to
  • the driving sub-circuit 11 is driven to emit light from the light emitting device 10.
  • the driving sub-circuit 11 includes a fifth transistor T5, a sixth transistor T6, a driving transistor Td, and a storage capacitor Cst.
  • the control electrode of the fifth transistor T5 is connected to the scanning signal terminal G1
  • the first electrode of the fifth transistor T5 is connected to the data voltage terminal Data
  • the second electrode of the fifth transistor T5 is connected to the control electrode of the driving transistor Td.
  • the first electrode of the driving transistor Td is connected to the photosensitive detecting circuit 200
  • the second electrode of the driving transistor Td is connected to the first electrode of the light emitting device 10.
  • the second pole of the self-luminous device 10 is connected to the third voltage terminal V3.
  • the control electrode of the sixth transistor T6 is connected to the scanning signal terminal G1
  • the first electrode of the sixth transistor T6 is connected to the second electrode of the driving transistor Td
  • the second electrode of the sixth transistor T6 is connected to the reading signal terminal Readout.
  • the first pole of the storage capacitor Cst is connected to the gate of the driving transistor Td and the second pole of the fifth transistor T5, and the second pole of the storage capacitor Cst is connected to the second pole of the driving transistor Td.
  • the timing control chart of the driving process corresponding to the pixel circuit 1 is as shown in FIG. 6.
  • One frame time includes: a light emission and detection phase T1, and a read phase T2.
  • the scanning signal terminal G1 inputs an ON signal, and controls the fifth transistor T5 and the sixth transistor T6 to be turned on.
  • the data voltage signal of the data voltage terminal Data is transmitted to the G point via the fifth transistor T5, and the voltage signal of the read signal terminal Readout is transmitted to the S point via the sixth transistor T6, and the storage capacitor Cst stores the voltage difference between the G point and the S point. Vgs.
  • the second control signal terminal S2 inputs an enable signal, controls the second transistor T2 to be turned on, transmits the voltage signal provided by the second voltage terminal V2 to the output terminal A, and controls the third transistor T3 to be turned on.
  • the read signal terminal Readout cannot read the signal, and the voltage signal provided by the second voltage terminal V2 is transmitted to the first pole of the driving transistor Td via the third transistor T3, and the self-light emitting device 10 The light is driven by the driving current output from the second electrode of the driving transistor Td.
  • the first control signal terminal S1 inputs the turn-on signal to control the first transistor T1 to be turned on, and the voltage signal provided by the second voltage terminal V2 is transmitted through the second transistor T2 and the first transistor T1.
  • photodiode D is reverse biased.
  • the first control signal terminal S1 inputs an off signal, and the first transistor T1 is controlled to be turned off.
  • the second transistor T2 is always in an on state, and the self-luminous device 10 is in a light-emitting state.
  • the photodiode D generates a photocurrent under the illumination of the self-luminous device 10, reducing the potential of the second pole of the photodiode D.
  • the second control signal terminal S2 inputs an off signal, and the second transistor T2 is controlled to be turned off, and the self-luminous device 10 stops emitting light.
  • the first control signal terminal S1 inputs an enable signal to control the first transistor T1 to be turned on.
  • the third control signal terminal S3 inputs an enable signal to control the fourth transistor T4 to be turned on.
  • the potential on the second pole of the photodiode D is transmitted to the output terminal A through the first transistor T1, and the potential on the second pole of the photodiode D is also the amount of charge stored on the photodiode D, which is the second photodiode D.
  • the driving transistor Td if the difference between the source-drain voltage difference and the threshold voltage is less than its gate-source voltage, that is, Vds-Vth ⁇ Vgs (where Vds is the source-drain voltage difference of the driving transistor Td, Vth is When the threshold voltage of the driving transistor Td, Vgs is the gate-to-source voltage difference of the driving transistor Td, the driving transistor Td can be used equivalent to the current source.
  • the driving transistor Td serves as a current source of the reading circuit 21, and can form a voltage follower circuit with the reading circuit 21, thereby reading the voltage signal at the output terminal A of the photosensitive device 20.
  • the driving transistor Td fixes the current flowing through the third transistor T3 at a constant value such that the voltage difference between the gate electrode and the second electrode thereof is kept constant (ie, the voltage variation of the gate electrode of the third transistor T3) How much, the voltage of the second pole also changes, so as to ensure that the second pole voltage of the third transistor T3 is in phase with its gate voltage, so that the voltage change on the control pole of the third transistor T3 can be read at the signal end
  • the signal read is reflected.
  • the signal output from the output terminal A can be known by reading the signal read by the signal terminal Readout, thereby determining the luminance of the self-luminous device 10.
  • the scanning signal terminal G1 When entering the next frame display, the scanning signal terminal G1 inputs an enable signal, and controls the fifth transistor T5 and the sixth transistor T6 to be turned on, so that the G point and the S point are respectively reset, and the storage capacitor Cst stores the data provided by the data voltage terminal Data.
  • the voltage signal (this portion of the data voltage signal adjusts the information according to the light intensity ratio fed back by the photosensitive detecting circuit 200 in the previous frame).
  • the gate-source voltage difference Vgs of the driving transistor Td is constant, and the driving transistor Td drives the light-emitting device 10 to emit light.
  • the turn-on signal provided by the second control signal terminal S2 controls the second transistor T2 to be turned on, so that the voltage of the control electrode of the third transistor T3 is reset to release the control unit of the third transistor T3 due to the photoelectric integration in the previous frame. Accumulated charge.
  • the types of the respective transistors other than the third transistor T3 are not limited.
  • the first transistor T1, the second transistor T2, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the driving transistor Td are N-type transistors.
  • the first transistor T1, the second transistor T2, the fourth transistor T4, the fifth transistor T5, the sixth transistor T6, and the driving transistor Td are P-type transistors.
  • each of the transistors including the third transistor T3 in the pixel circuit 1 may be an enhancement transistor or a depletion transistor. Some embodiments of the present disclosure do not limit this.
  • the first extreme drain of each transistor is the second source.
  • the first source of each transistor is the first source and the second source is the drain.
  • the voltage signal provided by the second voltage terminal V2 needs to reverse bias the photodiode D, and the voltage signal provided by the second voltage terminal V2 is usually a high level signal.
  • the first pole of the third transistor T3 is connected to the second voltage terminal V2, and the third transistor T3 is configured to implement the voltage following function of the read circuit 21, that is, the voltage of the second pole of the third transistor T3 needs to follow the phase control The voltage of the pole, therefore, the third transistor T3 typically employs an N-type transistor with its first very drain and its second source.
  • the second voltage terminal V2 is configured as a power supply voltage terminal to provide a high-level power supply voltage signal VDD.
  • the first voltage terminal V1 and the third voltage terminal V3 are configured to provide a common voltage signal VSS of a low level.
  • VSS common voltage signal
  • the first voltage terminal V1 and the third voltage terminal V3 are the same voltage terminal. It should be added that the aforementioned high level and low level are only used to characterize the relative magnitude relationship between the voltage signals, and the magnitude of the corresponding voltage signal is not limited.
  • the pixel circuit 1 provided by some embodiments of the present disclosure can share the photosensitive detecting circuit 200 and some components or ports in the pixel driving circuit 100 under the premise of ensuring that the brightness of the self-luminous device 10 can be effectively detected.
  • the integration of the pixel circuit 1 is improved to save the manufacturing cost.
  • the second voltage terminal V2 is a power voltage terminal configured to provide a power voltage signal.
  • the driving sub-circuit 11 is directly connected to the output terminal A of the photosensitive device 20 in the photosensitive detecting circuit 200.
  • the first electrode of the driving transistor Td in the driving sub-circuit 11 is directly connected to the output terminal A of the photosensitive device 20.
  • the second voltage terminal V2 ie, the power supply voltage terminal
  • the power supply voltage is input, and the supply of the power supply voltage to the drive sub-circuit 11 is stopped in the reading phase.
  • the read circuit 21 in the photosensitive detecting circuit 200 is composed of a third transistor T3, a fourth transistor T4, and a current source I.
  • the control terminal of the third transistor T3 is connected to the output terminal A of the photosensitive device 20, the first electrode of the third transistor T3 is connected to the second voltage terminal V2 (ie, the power voltage terminal), and the second electrode of the third transistor T3 is connected to the fourth terminal.
  • the control electrode of the fourth transistor T4 is connected to the third control signal terminal S3, and the second electrode of the fourth transistor T4 is connected to the read signal terminal Readout.
  • the second pole of the third transistor T3 in the read circuit 21 is connected to the fourth voltage terminal V4 through an independent current source I.
  • the read circuit 21 is capable of independently implementing a voltage follow function.
  • the above is only one example of the pixel circuit 1 in some embodiments of the present disclosure, and some embodiments of the present disclosure are not limited to such a structure.
  • the compensation component 1000 includes at least one pixel circuit 1 as described in some embodiments above.
  • the compensation component 1000 further includes a source driving circuit 2, and a controller 3 connected to both the pixel circuit 1 and the source driving circuit 2.
  • the controller 3 is configured to acquire an actual light-emitting luminance of the self-luminous device 10 according to an electrical signal outputted by the pixel circuit 1 for characterizing the light-emitting luminance of the self-luminous device 10, and to actually emit light according to the self-light-emitting device 10
  • the difference between the brightness and the target brightness is compensated for the data voltage signal.
  • the source driving circuit 2 is configured to output a driving signal to the pixel driving circuit 100 of the pixel circuit 1 based on the compensated data voltage signal.
  • the thick solid line connecting the pixel circuit 1 and the controller 3 is the read signal line Readline, and the read signal line Readline is configured to transmit a signal to the read signal end Readout of the pixel circuit 1.
  • the dotted line connecting the pixel circuit 1 and the source drive circuit 2 is a drive line DL, and the drive line DL is configured to transmit a signal to the data voltage terminal Data of the pixel circuit 1.
  • the read signal line Readline and the drive line DL are insulated from each other.
  • the source driving circuit 2 can normally output a data voltage signal. If the difference between the actual light-emitting luminance of the self-luminous device 10 and the target light-emitting luminance is large, it is necessary to compensate the data voltage signal of the next frame.
  • the source driving circuit 2 outputs a driving signal to the pixel driving circuit 100 of the pixel circuit 1 based on the compensated data voltage signal.
  • the actual light-emitting luminance described above refers to the light-emitting luminance of the self-luminous device 10 detected by the light-sensitive detecting circuit 200 in the pixel circuit 1.
  • the target light-emitting brightness refers to the light-emitting brightness that the self-light-emitting device 10 should have when the self-light-emitting device 10 is under the action of a certain data voltage signal without considering factors such as device aging and IR Drop.
  • a plurality of pixel circuits 1 are arranged in an array.
  • the controller 3 can determine the degree of compensation of the data voltage signal of each pixel circuit 1 in the next frame display according to the difference between the actual light-emitting luminance of the self-light-emitting device 10 and the target light-emitting luminance in each pixel circuit 1 and The corresponding data voltage signal is compensated.
  • the controller 3 sends the compensated data voltage signal required by each pixel circuit 1 to the source driving circuit 2, the source driving circuit 2 inputs the compensated data voltage to the data voltage terminal Data connected to each pixel circuit 1.
  • the signal that is, the pixel driving circuit 100 in each pixel circuit 1 drives the corresponding self-luminous device 10 to emit light according to the compensated data voltage signal.
  • the controller 3 adopts a Single Chip Microcomputer or a Microcontroller Unit (MCU).
  • MCU Microcontroller Unit
  • the compensation component 1000 provided by some embodiments of the present disclosure can generate and interact with each pixel circuit by using the controller 3 after accurately detecting the actual light-emitting luminance of the corresponding self-light-emitting device 10 in the same sub-pixel by using the light-sensitive detecting circuit 200 in the pixel circuit 1.
  • 1 corresponding data voltage compensation signals. Since the data voltage compensation signal is generated for the difference between the actual light-emitting luminance of the self-light-emitting device 10 and the target light-emitting luminance, it comprehensively considers various influencing factors that may cause the brightness of the self-luminous device 10 to change, and thus can effectively improve the self-lighting factor.
  • the phenomenon that the luminance of the light-emitting device 10 is not uniform due to aging, resistance drop (IR Drop), etc., thereby improving the brightness compensation effect of the display panel.
  • the display device 2000 includes the compensation component 1000 described in some embodiments above.
  • the display device 2000 is a product or component having a display function, such as an OLED display, a digital photo frame, a mobile phone, a tablet computer, and a navigator.
  • the display device 2000 includes a display area A1 and a non-display area A2 located around the display area.
  • the controller 3 and the source drive circuit 2 in the compensation component 1000 are generally disposed in the non-display area A2.
  • the pixel circuit 1 in the compensation component 1000 is typically disposed in each of the sub-pixel regions in the display area A1.
  • the self-luminous device 10 in the pixel circuit 1 is usually disposed in the open area of the corresponding sub-pixel region.
  • the drive sub-circuit 11 and the read circuit 21 are usually disposed in an area other than the open area in the sub-pixel area.
  • the photodiode D in the photosensitive device 20 is usually disposed as close as possible to the edge of the corresponding opening region and is located in the light outgoing direction of the self-luminous device 10.
  • the compensation method includes S10-S30.
  • This step is performed by the pixel circuit 1 in the compensation component 1000 of some of the above embodiments.
  • the pixel circuit 1 transmits an electrical signal for characterizing the luminance of the self-luminous device 10 in its corresponding sub-pixel to a control element, such as the controller 3 in the compensation component 1000.
  • the control element recognizes the electrical signal used to characterize the luminance of the self-luminous device 10, and the actual luminance of the self-luminous device 10 can be obtained.
  • the control element compares the actual light-emitting brightness of the self-luminous device 10 obtained therefrom with the pre-stored target light-emitting brightness, and determines the brightness required to be compensated for the self-light-emitting device 10 according to the difference between the actual light-emitting brightness and the target light-emitting brightness. Thus, the data voltage signal required to drive the self-luminous device 10 to emit light is compensated.
  • the source driving circuit 2 can correspond to the corresponding pixel driving circuit 100 in the pixel circuit 1 according to the compensated data voltage signal. Enter the drive signal.
  • the driving method includes S100-S200.
  • the one frame time includes: a lighting and detecting phase T1, and a reading phase T2.
  • a plurality of sub-pixels of the display device are arranged in an array, and the pixel circuits 1 provided by some of the above embodiments are disposed in each of the sub-pixels.
  • the scanning signal terminals G1 of the pixel circuits 1 corresponding to each row of sub-pixels share the same gate line.
  • each gate line (G1-1, G1-2, G1-3, ..., G1-n) is turned on line by line to control self-luminescence in the corresponding sub-pixel.
  • Device 10 emits light row by row.
  • the light-sensitive detecting circuit 200 in the pixel circuit detects the light-emitting luminance of the self-light-emitting device 10 when it emits light from the light-emitting device 10.
  • an electrical signal for characterizing the luminance of the light emitted from the light emitting device 10 is transmitted to the read signal terminal Readout.
  • the third control signal terminal S3 controls the fourth transistor T4 to be turned on.
  • Each of the read circuits 21 of the pixel circuits 1 in the plurality of sub-pixels can simultaneously transmit the luminance information of the corresponding self-luminous device 10 to its read signal terminal Readout.
  • Each read signal terminal Readout is connected to the controller 3 through a read signal line Readline, and the luminance signal of the self-luminous device 10 it receives can be transmitted to the controller 3.
  • S10 and S20 are executed when each frame of the screen is displayed.
  • S10 and S20 are executed when a certain frame or a certain number of frames are displayed, and only S10 is executed when other frame frames are displayed.
  • the self-luminous device 10 does not emit light. Therefore, during the display process of the display device, the length of the reading phase T2 is shortened as much as possible, and the refresh frequency of the display device can be increased as much as possible to achieve a better display effect.
  • the driving of the self-luminous device 10 in the above S100 is performed, including:
  • the second transistor T2 is controlled to be turned on, and the second transistor T2 transmits the power voltage signal supplied from the second voltage terminal V2 to the gate of the third transistor T3, and controls the third transistor T3 to be turned on.
  • the third transistor T3 transmits the power supply voltage signal supplied from the second voltage terminal V2 to the first pole of the driving transistor Td.
  • the fifth transistor T5 and the sixth transistor T6 are controlled to be turned on, and the fifth transistor T5 transmits the data voltage signal supplied from the data voltage terminal Data to the control electrode of the driving transistor Td and the first electrode of the storage capacitor Cst, and the sixth transistor T6 will read The potential signal provided by the signal terminal Readout is transmitted to the second pole of the driving transistor Td.
  • the data voltage signal controls the driving transistor Td to be turned on, and the second electrode of the driving transistor Td outputs a driving signal to the self-light emitting device 10, and drives the self-light emitting device 10 to emit light.
  • the first transistor T1 is controlled to be turned on before controlling the second transistor T2 to turn on.
  • the power voltage signal provided by the second voltage terminal V2 is transmitted to the second electrode of the photodiode D to reverse bias the photodiode D.
  • the first transistor T1 is controlled to be turned off, and the voltage of the second electrode of the photodiode D is varied under illumination from the light-emitting device 10.
  • the luminance of the self-luminous device 10 is detected in accordance with the voltage change of the second electrode of the photodiode D.
  • the electrical signal for characterizing the luminance of the self-luminous device 10 is transmitted to the read signal terminal Readout in the above S200, including:
  • the first transistor T1 is controlled to be turned on, and the voltage of the second electrode of the photodiode D is transmitted to the gate of the third transistor T3.
  • the fourth transistor T4 is controlled to be turned on, and the voltage of the second electrode of the third transistor T3 is transmitted to the read signal terminal Readout.
  • the driving transistor Td connected to the second electrode of the third transistor T3 is used as a current source, and the voltage of the second electrode of the third transistor T3 is in phase with the voltage of the gate electrode of the third transistor T3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

提供一种像素电路、补偿组件、显示装置及其驱动方法。所述像素电路包括像素驱动电路和光敏检测电路。其中,所述像素驱动电路包括:自发光器件,以及与所述自发光器件连接的驱动子电路。所述驱动子电路被配置为驱动所述自发光器件发光。其中,所述光敏检测电路被配置为检测所述自发光器件的发光亮度,并将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端。

Description

像素电路、补偿组件、显示装置及其驱动方法
相关申请的交叉引用
本公开要求于2018年05月14日提交中国专利局、申请号为201810457879.0、申请名称为“一种像素电路、补偿组件、显示装置及其驱动方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种像素电路、补偿组件、显示装置及其驱动方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)显示装置,其因具有自发光、发光效率高、响应时间短、高清晰度和高对比度等优点,已成为当前最具发展潜力的显示装置之一。OLED显示装置主要分为AMOLED(Active Matrix OLED,中文名称:主动矩阵有机发光二极管)显示装置和PMOLED(Passive Matrix OLED,中文名称:被动矩阵有机发光二极管)显示装置两大类。其中,由于AMOLED制作成本低、工作温度范围大、可用于便携式设备的直流驱动、可用作高清晰度的大尺寸显示装置等优点,越来越被人们所认可,逐渐成为OLED显示装置的主流发展趋势。
发明内容
一方面,提供一种像素电路。所述像素电路包括像素驱动电路和光敏检测电路。其中,所述像素驱动电路包括自发光器件,以及与所述自发光器件连接的驱动子电路。所述驱动子电路被配置为驱动所述自发光器件发光。其中,所述光敏检测电路被配置为检测所述自发光器件的发光亮度,并将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端。
在本公开一些实施例中,所述光敏检测电路与所述驱动子电路连接。所述光敏检测电路还被配置为在发光与检测阶段向所述驱动子电路输入电源电压,在读取阶段停止向所述驱动子电路输入电源电压。
在本公开一些实施例中,所述光敏检测电路包括感光器件。其中,所述感光器件被配置为检测所述自发光器件的发光亮度,并将用于表征所述自发光器件的发光亮度的电信号传输至所述读取信号端。
在本公开一些实施例中,所述光敏检测电路还包括读取电路。所述读取电路连接所述感光器件和所述读取信号端,所述读取电路被配置为将所述感光器件输出的用于表征所述自发光器件的发光亮度的电信号传输至所述读取信号端。
在本公开一些实施例中,所述感光器件包括光敏二极管、第一晶体管和第二晶体管。其中,所述光敏二极管的第一极连接第一电压端,所述光敏二极管的第二极连接所述第一晶体管的第一极。所述第一晶体管的控制极连接第一控制信号端,所述第一 晶体管的第二极连接输出端。所述第二晶体管的控制极连接第二控制信号端,所述第二晶体管的第一极连接第二电压端,所述第二晶体管的第二极连接所述输出端。所述光敏二极管的感光区位于所述自发光器件发光时的光照射区内。
在本公开一些实施例中,所述读取电路包括第三晶体管和第四晶体管。其中,所述第三晶体管的控制极连接所述感光器件的输出端,所述第三晶体管的第一极连接第二电压端,所述第三晶体管的第二极连接所述第四晶体管的第一极以及所述驱动子电路。所述第四晶体管的控制极连接第三控制信号端,所述第四晶体管的第二极连接所述读取信号端。
在本公开一些实施例中,所述驱动子电路包括驱动晶体管。所述驱动晶体管的控制极连接数据电压端,所述驱动晶体管的第一极连接所述第三晶体管的第二极,所述驱动晶体管的第二极连接所述自发光器件。
在本公开一些实施例中,所述驱动子电路还包括第五晶体管、第六晶体管以及存储电容。所述驱动晶体管的控制极通过所述第五晶体管连接所述数据电压端。其中,所述第五晶体管的第一极连接所述数据电压端,所述第五晶体管的第二极连接所述驱动晶体管的控制极,所述第五晶体管的控制极连接扫描信号端。所述存储电容的第一极连接所述驱动晶体管的控制极以及所述第五晶体管的第二极,所述存储电容的第二极连接所述驱动晶体管的第二极以及所述自发光器件。所述第六晶体管的控制极连接所述扫描信号端,所述第六晶体管的第一极连接所述驱动晶体管的第二极,所述第六晶体管的第二极连接所述读取信号端。
在本公开一些实施例中,所述光敏检测电路包括感光器件。所述感光器件包括光敏二极管、第一晶体管和第二晶体管。所述光敏二极管的第一极连接第一电压端,所述光敏二极管的第二极连接所述第一晶体管的第一极。所述第一晶体管的控制极连接第一控制信号端,所述第一晶体管的第二极连接输出端。所述第二晶体管的控制极连接第二控制信号端,所述第二晶体管的第一极连接电源电压端,所述第二晶体管的第二极连接所述输出端。所述光敏二极管的感光区位于所述自发光器件发光时的光照射区内。
所述光敏检测电路还包括读取电路。所述读取电路包括第三晶体管、第四晶体管和电流源。其中,所述第三晶体管的控制极连接所述感光器件的输出端,所述第三晶体管的第一极连接所述电源电压端,所述第三晶体管的第二极连接所述第四晶体管的第一极以及所述电流源。所述第四晶体管的控制极连接第三控制信号端,所述第四晶体管的第二极连接所述读取信号端。
所述驱动子电路包括第五晶体管、第六晶体管、驱动晶体管和存储电容。其中,所述第五晶体管的控制极连接扫描信号端,所述第五晶体管的第一极连接数据电压端,所述第五晶体管的第二极连接所述驱动晶体管的控制极。所述驱动晶体管的第一极连接所述感光器件的输出端,所述驱动晶体管的第二极连接所述自发光器件的第一极。所述第六晶体管的控制极连接所述扫描信号端,所述第六晶体管的第一极连接所述驱动晶体管的第二极,所述第六晶体管的第二极连接所述读取信号端。所述存储电容的第一极连接所述驱动晶体管的控制极以及所述第五晶体管的第二极,所述存储电容的第二极连接所述驱动晶体管的第二极以及所述自发光器件的第一极。所述自发光器件 的第二极连接第三电压端。
另一方面,提供一种补偿组件。所述补偿组件包括:至少一个如上所述的像素电路、源极驱动电路、以及与所述像素电路及所述源极驱动电路均连接的控制器。其中,所述控制器被配置为根据所述像素电路输出的用于表征自发光器件的发光亮度的电信号获取所述自发光器件的实际发光亮度,并根据所述自发光器件的实际发光亮度与目标发光亮度的差值,对数据电压信号进行补偿。其中,所述源极驱动电路被配置为根据补偿后的数据电压信号向所述像素电路的像素驱动电路输出驱动信号。
又一方面,提供一种显示装置。所述显示装置包括如上所述的补偿组件。
又一方面,提供一种如上所述的补偿组件的补偿方法。所述补偿方法包括:检测自发光器件的实际发光亮度。对比所述实际发光亮度和目标发光亮度,并根据所述实际发光亮度和所述目标发光亮度的差值对数据电压信号进行补偿。根据补偿后的数据电压信号输出驱动信号。
又一方面,提供一种如上所述的显示装置的驱动方法。其中,一帧时间包括发光与检测阶段,以及读取阶段。所述驱动方法包括:在所述发光与检测阶段,驱动自发光器件发光,同时检测所述自发光器件的发光亮度。在所述读取阶段,将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端。
在本公开一些实施例中,所述显示装置中像素电路的光敏检测电路包括光敏二极管、第一晶体管、第二晶体管、第三晶体管和第四晶体管;驱动子电路包括第五晶体管、第六晶体管、驱动晶体管和存储电容。
所述驱动自发光器件发光,包括:
控制所述第二晶体管开启,所述第二晶体管将第二电压端提供的电源电压信号传输至第三晶体管的控制极,并控制所述第三晶体管开启。
所述第三晶体管将所述第二电压端提供的所述电源电压信号传输至所述驱动晶体管的第一极。
控制所述第五晶体管和所述第六晶体管开启,所述第五晶体管将数据电压端提供的数据电压信号传输至所述驱动晶体管的控制极以及所述存储电容的第一极,所述第六晶体管将读取信号端提供的电位信号传输至所述驱动晶体管的第二极。
所述数据电压信号控制所述驱动晶体管开启,所述驱动晶体管的第二极输出驱动信号至所述自发光器件,驱动所述自发光器件发光。
在本公开一些实施例中,所述同时检测所述自发光器件的发光亮度,包括:
在控制所述第二晶体管开启之前,控制所述第一晶体管开启。
控制所述第二晶体管开启后,将所述第二电压端提供的电源电压信号传输至所述光敏二极管的第二极,以使所述光敏二极管反向偏置。
控制所述第一晶体管截止,所述光敏二极管的第二极的电压在所述自发光器件的光照下变化。
根据所述光敏二极管的第二极的电压变化,检测所述自发光器件的发光亮度。
在本公开一些实施例中,所述将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端,包括:
控制所述第一晶体管开启,将所述光敏二极管的第二极的电压传输至所述第三晶 体管的控制极。
控制所述第四晶体管开启,将所述第三晶体管的第二极的电压传输至所述读取信号端,所述第三晶体管的第二极的电压同相跟随所述第三晶体管的控制极的电压。
附图说明
为了更清楚地说明本公开一些实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开一些实施例的一种像素电路的结构示意图;
图2为根据本公开一些实施例的又一种像素电路的结构示意图;
图3为根据本公开一些实施例的再一种像素电路的结构示意图;
图4为图3所示的像素电路的一种内部结构示意图;
图5为图3所示的像素电路的又一种内部结构示意图;
图6为图5所示像素电路的一种时序控制图;
图7为图3所示的像素电路的再一种内部结构示意图;
图8为根据本公开一些实施例的一种补偿组件的结构示意图;
图9为根据本公开一些实施例中补偿组件的一种补偿方法的流程示意图;
图10为根据本公开一些实施例的一种显示装置的结构示意图;
图11为根据本公开一些实施例中显示装置的一种驱动方法的流程示意图;
图12为根据本公开一些实施例的显示装置在驱动过程中的一种时序控制图。
具体实施方式
下面将结合本公开一些实施例中的附图,对本公开一些实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开一些实施例提供一种像素电路。请参阅图1,所述像素电路1包括像素驱动电路100和光敏检测电路200。其中,像素驱动电路100包括自发光器件10,以及与自发光器件10连接的驱动子电路11。驱动子电路11被配置为驱动自发光器件10发光。其中,光敏检测电路200被配置为检测自发光器件10的发光亮度,并将用于表征自发光器件10的发光亮度的电信号传输至读取信号端Readout。
需要说明的是,第一,本领域技术人员应该明白,像素驱动电路100用于使显示装置中对应的子像素实现发光功能,其本质在于利用驱动子电路11驱动自发光器件10(电致发光器件,比如OLED)发光。本公开一些实施例对驱动子电路11的结构不进行具体限定,以能够驱动自发光器件10发光即可。
第二,光敏检测电路200在检测自发光器件10的发光亮度后,其所生成的用于表征自发光器件10的发光亮度的电信号,可以是直接反应发光亮度的电信号,也可以是间接反应发光亮度的电信号。但能够确定的是,一个电信号值对应一个发光亮度值,利用光敏检测电路200可以准确获取自发光器件10的实际发光亮度。
第三,光敏检测电路200被配置为检测自发光器件10的发光亮度,光敏检测电路 200的设置位置必然是使其能检测到自发光器件10出射光的位置。
第四,当将上述像素电路1设置在显示装置的显示面板中时,由于显示面板包括多个子像素,本公开一些实施例在至少一个子像素中设置上述像素电路1,能够利用像素电路1有效补偿对应子像素中自发光器件10的发光亮度。当然,如果显示面板中的每个子像素均设置有上述像素电路1,那么显示面板中每个自发光器件10的发光亮度都可以利用对应的像素电路1进行有效补偿,从而可以确保显示面板具有比较好的亮度补偿效果。此外,显示面板中的各像素电路1,可以同时补偿对应的各自发光器件10的发光亮度,也可以分部分分时补偿。
可以理解的是,对于显示装置(尤其是AMOLED显示装置)而言,其显示面板的各子像素内被配置为驱动自发光器件10发光的驱动晶体管的阈值电压,容易因工艺、材料及设计等方面的原因产生漂移,从而造成显示面板的显示画面亮度不均。而且,由于显示面板中电阻压降(IR Drop)的问题,也就是传输至显示面板的各子像素中的电源电压容易因其至电源供电位置的距离增大而逐渐降低的问题,以及显示面板中包括自发光器件10在内的其他器件老化的问题等,也会导致显示面板的显示画面亮度不均。
本公开一些实施例在显示面板的子像素中设置上述像素电路1,能够利用像素电路1中的光敏检测电路200准确检测同一子像素中对应的自发光器件10的实际发光亮度。由于各像素电路1中自发光器件10的发光亮度不均一是由多方便原因引起的,本公开一些实施例利用光敏检测电路200检测对应子像素中自发光器件10的实际发光亮度,可以根据各自发光器件10的实际发光亮度准确确定其当前的发光能力,从而对各子像素的自发光器件10进行亮度补偿。此处的亮度补偿是对多种引起发光亮度不均一的因素进行综合后确定的补偿,因此,可以有效改善由于自发光器件10老化、电阻压降(IR Drop)等原因引起的发光亮度不均一,以提高显示面板的亮度补偿效果。
在本公开一些实施例中,请参阅图2,光敏检测电路200与驱动子电路11连接。光敏检测电路200还被配置为在发光与检测阶段向驱动子电路11输入电源电压,在读取阶段停止向驱动子电路11输入电源电压。
需要说明的是,上述光敏检测电路200用于控制是否向驱动子电路11输入电源电压,光敏检测电路200必然与电源电压端连接。光敏检测电路200在检测对应子像素中自发光器件10的发光亮度的同时,其还等同于一个控制电源电压端与驱动子电路11是否连通的开关。由此,在发光与检测阶段,电源电压端提供电源电压给光敏检测电路200,同时也可以通过光敏检测电路200将电源电压输出至像素驱动电路100的驱动子电路11。这也就是说,像素驱动电路100的发光驱动和光敏检测电路200的亮度检测可以使用同一电源端提供的电源电压,即像素驱动电路100和光敏检测电路200能够共用同一电源电压端。从而减少显示面板中走线的排布,减少电压端的数量,进而提高像素电路1的集成度。
在本公开一些实施例中,请参阅图3,光敏检测电路200被配置为检测对应子像素中自发光器件10的发光亮度,光敏检测电路200通常包括感光器件20。感光器件20被配置为检测自发光器件10的发光亮度,并将用于表征自发光器件10的发光亮度的电信号传输至读取信号端Readout。感光器件20设置在能够被自发光器件10发出的 光照射到的地方。当然,在本公开一些实施例中,请继续参阅图3,光敏检测电路200还包括读取电路21。读取电路21连接感光器件20的输出端A以及读取信号端Readout,读取电路21被配置为将前述感光器件20的输出端A输出的用于表征自发光器件10的发光亮度的电信号传输至读取信号端Readout。读取电路21用于信号读取,其结构设计以能尽量增大对应子像素的开口率为宗旨进行。
示例性地,在本公开一些实施例中,请参阅图4,感光器件20包括光敏二极管D、第一晶体管T1和第二晶体管T2。其中,光敏二极管D的第一极连接第一电压端V1,光敏二极管D的第二极连接第一晶体管T1的第一极。第一晶体管T1的控制极连接第一控制信号端S1,第一晶体管T1的第二极连接输出端A。第二晶体管T2的控制极连接第二控制信号端S2,第二晶体管T2的第一极连接第二电压端V2,第二晶体管T2的第二极连接输出端A。
其中,光敏二极管D的感光区位于对应子像素中自发光器件10发光时的光照射区内,即光敏二极管D设置的位置应确保光敏二极管D的感光区能被待检测的自发光器件10发出的光照射到。可以理解的是,若一个光敏二极管D仅用于检测一个自发光器件10的发光亮度时,该光敏二极管D的设置位置应确保其不会被待检测自发光器件10之外其他自发光器件10发出的光照射到。若一个光敏二极管D用于检测多个自发光器件10的发光亮度时,该光敏二极管D的设置位置应确保能被每个待检测的自发光器件10发出的光照射到,此时,一个光敏二极管D对应的自发光器件10应分别在不同的时段发光,以便于该光敏二极管D能够分时检测其对应的多个自发光器件10。
可选的,光敏二极管D的感光区和自发光器件10的光照射区正对,即光敏二极管D的感光区位于自发光器件10出射光的直射区,可以方便光敏二极管D获取较多的光线,从而进一步提高光敏检测电路200的检测效果。
示例性地,在本公开一些实施例中,请继续参阅图4,读取电路21包括第三晶体管T3和第四晶体管T4。其中,第三晶体管T3的控制极连接感光器件20的输出端A,第三晶体管T3的第一极连接第二电压端V2,第三晶体管T3的第二极连接第四晶体管T4的第一极以及像素驱动电路100中的驱动子电路11。第四晶体管T4的控制极连接第三控制信号端S3,第四晶体管T4的第二极连接读取信号端Readout。
请继续参阅图4,驱动子电路11包括驱动晶体管Td。驱动晶体管Td的控制极连接数据电压端Data,驱动晶体管Td的第一极连接第三晶体管T3的第二极,驱动晶体管Td的第二极连接自发光器件10。驱动晶体管Td在工作时所需接收的电源电压由第二电压端V2提供。在发光与检测阶段,第二电压端V2提供的电源电压通过感光器件20中的第二晶体管T2、以及读取电路21中的第三晶体管T3,可以传输至驱动晶体管Td的第一极,以使驱动子电路11驱动自发光器件10发光。
当然,像素驱动电路100中驱动子电路11的结构并不仅限于此。可选地,请参阅图5,在本公开一些实施例中,驱动子电路11包括第五晶体管T5、第六晶体管T6、驱动晶体管Td和存储电容Cst。其中,第五晶体管T5的控制极连接扫描信号端G1,第五晶体管T5的第一极连接数据电压端Data,第五晶体管T5的第二极连接驱动晶体管Td的控制极。驱动晶体管Td的第一极连接光敏检测电路200,驱动晶体管Td的第 二极连接自发光器件10的第一极。自发光器件10的第二极连接第三电压端V3。第六晶体管T6的控制极连接扫描信号端G1,第六晶体管T6的第一极连接驱动晶体管Td的第二极,第六晶体管T6的第二极连接读取信号端Readout。存储电容Cst的第一极连接驱动晶体管Td的控制极和第五晶体管T5的第二极,存储电容Cst的第二极连接驱动晶体管Td的第二极。
在本公开一些实施例中,驱动子电路11采用如图5所示的结构时,对应像素电路1驱动过程的时序控制图如图6所示。一帧时间包括:发光与检测阶段T1,以及,读取阶段T2。
在发光与检测阶段T1,扫描信号端G1输入开启信号,控制第五晶体管T5和第六晶体管T6开启。数据电压端Data的数据电压信号经第五晶体管T5传输至G点,读取信号端Readout的电压信号经第六晶体管T6传输至S点,存储电容Cst存储G点和S点之间的压差Vgs。第二控制信号端S2输入开启信号,控制第二晶体管T2开启,将第二电压端V2提供的电压信号传输至输出端A,并控制第三晶体管T3开启。此时由于第四晶体管T4处于截止状态,读取信号端Readout并无法读取信号,第二电压端V2提供的电压信号经第三晶体管T3传输至驱动晶体管Td的第一极,自发光器件10在驱动晶体管Td第二极输出的驱动电流的驱动下发光。
在第二控制信号端S2输入开启信号的同时,第一控制信号端S1输入开启信号控制第一晶体管T1开启,将第二电压端V2提供的电压信号经第二晶体管T2和第一晶体管T1传输至光敏二极管D的第二极,使光敏二极管D发生反向偏置。光敏二极管D反向偏置完成之后,第一控制信号端S1输入截止信号,控制第一晶体管T1截止。整个发光与检测阶段T1中,第二晶体管T2一直处于开启状态,自发光器件10处于发光状态。光敏二极管D在自发光器件10光照的作用下产生光电流,降低光敏二极管D第二极的电位。
在读取阶段T2,第二控制信号端S2输入截止信号,控制第二晶体管T2截止,自发光器件10停止发光。第一控制信号端S1输入开启信号,控制第一晶体管T1开启。第三控制信号端S3输入开启信号,控制第四晶体管T4开启。光敏二极管D第二极上的电位经第一晶体管T1传输至输出端A,光敏二极管D第二极上的电位也就是光敏二极管D上存储的电荷量,这部分电荷是由光敏二极管D第二极在一帧发光过程中因光电积分所积累得的电荷。
此阶段,对于驱动晶体管Td来讲,如果其源漏电压差与阈值电压的差值小于其栅源电压,即Vds-Vth<Vgs(其中,Vds为驱动晶体管Td的源漏电压差,Vth为驱动晶体管Td的阈值电压,Vgs为驱动晶体管Td的栅源电压差)时,驱动晶体管Td可以等同于电流源使用。由此,驱动晶体管Td作为读取电路21的电流源,可以与读取电路21构成一个电压跟随电路,从而读取感光器件20输出端A的电压信号。例如,驱动晶体管Td(电流源)将流经第三晶体管T3的电流固定在恒定值,使得其控制极和第二极之间的电压差保持恒定(即,第三晶体管T3控制极的电压变化多少,其第二极的电压也变化多少),从而保证第三晶体管T3的第二极电压同相跟随其控制极电压,使得第三晶体管T3的控制极上的电压变化能够在读取信号端Readout读取的信号中得到体现。这样一来,通过读取信号端Readout读取的信号即可得知输出端A输出的信 号,从而确定自发光器件10的发光亮度。
在进入下一帧显示时,扫描信号端G1输入开启信号,控制第五晶体管T5和第六晶体管T6开启,使得G点和S点分别被重置,存储电容Cst存储数据电压端Data提供的数据电压信号(此部分数据电压信号根据上一帧中光敏检测电路200反馈的光强比对信息进行调节)。此时,驱动晶体管Td的栅源电压差Vgs恒定,驱动晶体管Td驱动自发光器件10发光。第二控制信号端S2提供的开启信号控制第二晶体管T2导通,使得第三晶体管T3的控制极的电压被重置,以释放掉第三晶体管T3控制极上因上一帧中光电积分所积累的电荷。
需要说明的是,第一、本公开一些实施例对除第三晶体管T3外其他的各个晶体管的类型不做限定。例如,上述第一晶体管T1、第二晶体管T2、第四晶体管T4、第五晶体管T5、第六晶体管T6以及驱动晶体管Td为N型晶体管。或者,又例如,上述第一晶体管T1、第二晶体管T2、第四晶体管T4、第五晶体管T5、第六晶体管T6以及驱动晶体管Td为P型晶体管。
当然,根据晶体管内部导电方式的不同,上述像素电路1中包括第三晶体管T3在内的各个晶体管为增强型晶体管,或为耗尽型晶体管,均可。本公开一些实施例对此不作限制。
此外,上述除第三晶体管T3之外,各个晶体管的第一极为漏极,第二极为源极。或者,各个晶体管的第一极为源极,第二极为漏极。本公开一些实施例对此不作限制。
可以理解的是,第二电压端V2提供的电压信号需要使得光敏二极管D发生反向偏置,第二电压端V2提供的电压信号通常为高电平信号。第三晶体管T3的第一极与第二电压端V2连接,且第三晶体管T3被配置为实现读取电路21的电压跟随功能,即第三晶体管T3的第二极的电压需要同相跟随其控制极的电压,所以,第三晶体管T3通常采用N型晶体管,其第一极为漏极,其第二极为源极。
第二、本公开一些实施例中,第二电压端V2作为电源电压端,被配置为提供高电平的电源电压信号VDD。第一电压端V1和第三电压端V3被配置为提供低电平的公共电压信号VSS。当然,第一电压端V1和第三电压端V3接地,也是允许的。此外,可选地,第一电压端V1和第三电压端V3为同一电压端。需要补充的是,前述的高电平和低电平仅用于表征电压信号之间的相对大小关系,并不限定其对应电压信号的大小取值。
本公开一些实施例提供的像素电路1,在确保能够有效检测自发光器件10发光亮度的前提下,将光敏检测电路200和像素驱动电路100中的部分元器件或端口共用,能够很大程度上提高像素电路1的集成度,以节省制备成本。
值得一提的是,在本公开一些实施例中,请参阅图7,第二电压端V2为电源电压端,被配置为提供电源电压信号。在这种情况下,驱动子电路11与光敏检测电路200中感光器件20的输出端A直接相连。例如,驱动子电路11中驱动晶体管Td的第一极与感光器件20的输出端A直接相连。这样在第二控制信号端S2的控制下,第二电压端V2(即电源电压端)通过感光器件20中与其输出端A相连的第二晶体管T2,可以在发光与检测阶段向驱动子电路11输入电源电压,在读取阶段停止向驱动子电路11输入电源电压。
相应的,光敏检测电路200中的读取电路21由第三晶体管T3、第四晶体管T4和电流源I构成。其中,第三晶体管T3的控制极连接感光器件20的输出端A,第三晶体管T3的第一极连接第二电压端V2(即电源电压端),第三晶体管T3的第二极连接第四晶体管T4的第一极以及电流源I。第四晶体管T4的控制极连接第三控制信号端S3,第四晶体管T4的第二极连接读取信号端Readout。这样读取电路21中第三晶体管T3的第二极通过独立的电流源I与第四电压端V4相连。读取电路21能够独立地实现电压跟随功能。当然,上述仅是本公开一些实施例中像素电路1的一种示例,本公开一些实施例并不限于此种结构。
本公开一些实施例还提供一种补偿组件。请参阅图8,所述补偿组件1000包括至少一个如上述一些实施例所述的像素电路1。所述补偿组件1000还包括源极驱动电路2,以及与像素电路1及源极驱动电路2均连接的控制器3。
其中,控制器3被配置为根据像素电路1输出的用于表征自发光器件10的发光亮度的电信号获取所述自发光器件10的实际发光亮度,并根据所述自发光器件10的实际发光亮度与目标发光亮度的差值,对数据电压信号进行补偿。源极驱动电路2被配置为根据补偿后的数据电压信号向像素电路1的像素驱动电路100输出驱动信号。其中,如图8所示,连接像素电路1与控制器3的粗实线为读取信号线Readline,读取信号线Readline被配置为向像素电路1的读取信号端Readout传输信号。连接像素电路1与源极驱动电路2的点画线为驱动线DL,驱动线DL被配置为向像素电路1的数据电压端Data传输信号。读取信号线Readline与驱动线DL相互绝缘。
需要补充的是,如果自发光器件10的实际发光亮度与目标发光亮度一致,即其实际发光亮度与目标发光亮度的差值为零或接近与零,则数据电压信号无需进行补偿。源极驱动电路2正常输出数据电压信号即可。如果自发光器件10的实际发光亮度与目标发光亮度的差值较大,则需要对下一帧的数据电压信号进行补偿。源极驱动电路2根据补偿后的数据电压信号输出驱动信号至像素电路1的像素驱动电路100。
上述实际发光亮度是指利用像素电路1中光敏检测电路200检测得到的自发光器件10的发光亮度。目标发光亮度是指自发光器件10在某一数据电压信号作用下,若不考虑器件老化、IR Drop等因素时自发光器件10应该具备的发光亮度。
在本公开一些实施例中,多个像素电路1阵列设置。控制器3根据各像素电路1中自发光器件10的实际发光亮度与目标发光亮度的差值,可以确定每一个像素电路1在下一帧显示时其数据电压信号所需要补偿的程度,并对其相应的数据电压信号进行补偿。当控制器3将每一个像素电路1所需的补偿后的数据电压信号发送至源极驱动电路2后,源极驱动电路2向各像素电路1连接的数据电压端Data输入补偿后的数据电压信号,即可使得每个像素电路1中的像素驱动电路100根据补偿后的数据电压信号,驱动对应的自发光器件10发光。
可选地,控制器3采用单片微型计算机(Single Chip Microcomputer)或微控制单元(Microcontroller Unit,简称MCU)。
本公开一些实施例提供的补偿组件1000,在利用像素电路1中的光敏检测电路200准确检测同一子像素中对应的自发光器件10的实际发光亮度之后,能够利用控制器3生成与各像素电路1分别对应的数据电压补偿信号。由于该数据电压补偿信号是针对 自发光器件10实际发光亮度与目标发光亮度的差值生成的,其综合考虑了可能引起自发光器件10亮度变化的多种影响因素,因此,可以有效改善因自发光器件10老化、电阻压降(IR Drop)等原因引起的发光亮度不均一的现象,从而提高显示面板的亮度补偿效果。
本公开一些实施例还提供一种显示装置。请参阅图10,所述显示装置2000包括上述一些实施例所述的补偿组件1000。其中,显示装置2000是OLED显示器、数码相框、手机、平板电脑、导航仪等任一项具有显示功能的产品或者部件。
其中,显示装置2000包括显示区A1和位于显示区周边的非显示区A2。补偿组件1000中的控制器3和源极驱动电路2通常设置在非显示区A2。补偿组件1000中的像素电路1通常设置在显示区A1中的每个子像素区。
需要补充的是,像素电路1中的自发光器件10通常设置在对应子像素区的开口区。驱动子电路11和读取电路21通常设置在子像素区中开口区以外的区域。感光器件20中的光敏二极管D通常设置在尽量靠近对应开口区边缘的区域,且位于自发光器件10的出光方向上。
本公开一些实施例提供的显示装置所能实现的有益效果,与上述一些实施例中补偿组件所能实现的技术效果相同,此处不做赘述。
本公开一些实施例还提供一种补偿方法。请参阅图9,所述补偿方法包括S10-S30。
S10、检测自发光器件10的实际发光亮度。
此步骤由上述一些实施例的补偿组件1000中的像素电路1完成。像素电路1将用于表征其对应子像素中自发光器件10发光亮度的电信号传输至控制元件,例如补偿组件1000中的控制器3。控制元件对用于表征自发光器件10发光亮度的电信号进行识别,可以获得自发光器件10的实际发光亮度。
S20、对比前述实际发光亮度和目标发光亮度,并根据所述实际发光亮度和所述目标发光亮度的差值对数据电压信号进行补偿。
控制元件将其获得的自发光器件10的实际发光亮度,与其预存储的目标发光亮度进行比较,即可根据该实际发光亮度和目标发光亮度的差值确定对应自发光器件10所需要补偿的亮度,从而对驱动自发光器件10发光时所需的数据电压信号进行补偿。
S30、根据补偿后的数据电压信号输出驱动信号。
补偿组件1000中的控制器3在将补偿后的数据电压信号发送至源极驱动电路2后,源极驱动电路2可以根据补偿后的数据电压信号,对像素电路1中对应的像素驱动电路100输入驱动信号。
本公开一些实施例提供的补偿方法所能实现的有益效果,与上述一些实施例中补偿组件所能实现的技术效果相同,此处不做赘述。
本公开一些实施例还提供一种显示装置的驱动方法。请参阅图11,所述驱动方法包括S100-S200。其中,一帧时间包括:发光与检测阶段T1,以及,读取阶段T2。
S100,在发光与检测阶段T1,驱动自发光器件10发光,同时检测自发光器件10的发光亮度。
示例性地,显示装置的多个子像素呈阵列状排布,且每个子像素中均设置有上述一些实施例提供的像素电路1。其中,每一行子像素对应的各像素电路1的扫描信号 端G1共用同一条栅线。请参阅图12,在一帧显示的驱动过程中,各条栅线(G1-1,G1-2,G1-3,……G1-n)逐行开启,以控制对应子像素中的自发光器件10逐行发光。每个子像素中,当其自发光器件10发光时,像素电路中的光敏检测电路200对该自发光器件10的发光亮度进行检测。
S200、在读取阶段T2,将用于表征自发光器件10的发光亮度的电信号传输至读取信号端Readout。
示例性地,请继续参阅图12,各条栅线(G1-1,G1-2,G1-3,……G1-n)逐行开启之后,第三控制信号端S3控制第四晶体管T4开启,多个子像素中的像素电路1的各读取电路21可以同时将与其对应的自发光器件10的亮度信息传输至其读取信号端Readout。每个读取信号端Readout通过读取信号线Readline与控制器3连接,可以将其接收的自发光器件10的亮度信号发送至控制器3。
需要说明的是,第一,显示装置的整个画面显示过程中,在显示每一帧画面时均执行S10和S20。或者,在显示某一帧或某几帧画面时执行S10和S20,并在显示此外的其他帧画面时只执行S10。
第二,在读取阶段T2,自发光器件10不发光。因此,在显示装置的显示过程中,尽量缩短读取阶段T2的时长,可以尽量提高显示装置的刷新频率,以达到较好的显示效果。
可选地,在本公开一些实施例中,像素电路1采用如图5所示的结构时,上述S100中驱动自发光器件10发光,包括:
控制第二晶体管T2开启,第二晶体管T2将第二电压端V2提供的电源电压信号传输至第三晶体管T3的控制极,并控制第三晶体管T3开启。
第三晶体管T3将第二电压端V2提供的电源电压信号传输至驱动晶体管Td的第一极。
控制第五晶体管T5和第六晶体管T6开启,第五晶体管T5将数据电压端Data提供的数据电压信号传输至驱动晶体管Td的控制极以及存储电容Cst的第一极,第六晶体管T6将读取信号端Readout提供的电位信号传输至驱动晶体管Td的第二极。
所述数据电压信号控制驱动晶体管Td开启,驱动晶体管Td的第二极输出驱动信号至自发光器件10,驱动自发光器件10发光。
在本公开一些实施例中,请继续参阅图5,上述S100中同时检测自发光器件10的发光亮度,包括:
在控制第二晶体管T2开启之前,控制第一晶体管T1开启。
控制第二晶体管T2开启后,将第二电压端V2提供的电源电压信号传输至光敏二极管D的第二极,以使光敏二极管D反向偏置。
控制第一晶体管T1截止,光敏二极管D的第二极的电压在自发光器件10的光照下变化。
根据光敏二极管D的第二极的电压变化,检测自发光器件10的发光亮度。
在本公开一些实施例中,请继续参阅图5,上述S200中将用于表征自发光器件10的发光亮度的电信号传输至读取信号端Readout,包括:
控制第一晶体管T1开启,将光敏二极管D的第二极的电压传输至第三晶体管T3 的控制极。
控制第四晶体管T4开启,将第三晶体管T3的第二极的电压传输至读取信号端Readout。此时,与第三晶体管T3的第二极连接的驱动晶体管Td作为电流源使用,第三晶体管T3的第二极的电压同相跟随第三晶体管T3的控制极的电压。
本公开一些实施例提供的显示装置的驱动方法所能实现的有益效果,与上述一些实施例中显示装置所能实现的有益效果相同,此处不做赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种像素电路,包括像素驱动电路和光敏检测电路;
    其中,所述像素驱动电路包括:
    自发光器件;
    以及,与所述自发光器件连接的驱动子电路,所述驱动子电路被配置为驱动所述自发光器件发光;
    其中,所述光敏检测电路被配置为检测所述自发光器件的发光亮度,并将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端。
  2. 根据权利要求1所述的像素电路,其中,
    所述光敏检测电路与所述驱动子电路连接;
    所述光敏检测电路还被配置为在发光与检测阶段向所述驱动子电路输入电源电压,在读取阶段停止向所述驱动子电路输入电源电压。
  3. 根据权利要求1所述的像素电路,其中,所述光敏检测电路包括感光器件;
    所述感光器件被配置为检测所述自发光器件的发光亮度,并将用于表征所述自发光器件的发光亮度的电信号传输至所述读取信号端。
  4. 根据权利要求3所述的像素电路,其中,所述光敏检测电路还包括读取电路;
    所述读取电路连接所述感光器件以及所述读取信号端,所述读取电路被配置为将所述感光器件输出的用于表征所述自发光器件的发光亮度的电信号传输至所述读取信号端。
  5. 根据权利要求4所述的像素电路,其中,所述感光器件包括光敏二极管、第一晶体管和第二晶体管;
    所述光敏二极管的第一极连接第一电压端,所述光敏二极管的第二极连接所述第一晶体管的第一极;
    所述第一晶体管的控制极连接第一控制信号端,所述第一晶体管的第二极连接所述输出端;
    所述第二晶体管的控制极连接第二控制信号端,所述第二晶体管的第一极连接第二电压端,所述第二晶体管的第二极连接输出端;
    所述光敏二极管的感光区位于所述自发光器件发光时的光照射区内。
  6. 根据权利要求5所述的像素电路,其中,所述读取电路包括第三晶体管和第四晶体管;
    所述第三晶体管的控制极连接所述感光器件的输出端,所述第三晶体管的第一极连接第二电压端,所述第三晶体管的第二极连接所述第四晶体管的第一极以及所述驱动子电路;
    所述第四晶体管的控制极连接第三控制信号端,所述第四晶体管的第二极连接所述读取信号端。
  7. 根据权利要求6所述的像素电路,其中,所述驱动子电路包括驱动晶体管;
    所述驱动晶体管的控制极连接数据电压端,所述驱动晶体管的第一极连接所述第三晶体管的第二极,所述驱动晶体管的第二极连接所述自发光器件。
  8. 根据权利要求7所述的像素电路,其中,所述驱动子电路还包括第五晶体管、第六晶体管以及存储电容;
    所述驱动晶体管的控制极通过所述第五晶体管连接所述数据电压端;其中,所述第五晶体管的第一极连接所述数据电压端,所述第五晶体管的第二极连接所述驱动晶体管的控制极,所述第五晶体管的控制极连接扫描信号端;
    所述存储电容的第一极连接所述驱动晶体管的控制极以及所述第五晶体管的第二极,所述存储电容的第二极连接所述驱动晶体管的第二极以及所述自发光器件;
    所述第六晶体管的控制极连接所述扫描信号端,所述第六晶体管的第一极连接所述驱动晶体管的第二极,所述第六晶体管的第二极连接所述读取信号端。
  9. 根据权利要求2所述的像素电路,其中,所述光敏检测电路包括感光器件;所述感光器件包括光敏二极管、第一晶体管和第二晶体管;
    所述光敏二极管的第一极连接第一电压端,所述光敏二极管的第二极连接所述第一晶体管的第一极;
    所述第一晶体管的控制极连接第一控制信号端,所述第一晶体管的第二极连接输出端;
    所述第二晶体管的控制极连接第二控制信号端,所述第二晶体管的第一极连接电源电压端,所述第二晶体管的第二极连接所述输出端;
    所述光敏二极管的感光区位于所述自发光器件发光时的光照射区内。
  10. 根据权利要求9所述的像素电路,其中,所述光敏检测电路还包括读取电路;所述读取电路包括第三晶体管、第四晶体管和电流源;
    所述第三晶体管的控制极连接所述感光器件的输出端,所述第三晶体管的第一极连接所述电源电压端,所述第三晶体管的第二极连接所述第四晶体管的第一极以及所述电流源;
    所述第四晶体管的控制极连接第三控制信号端,所述第四晶体管的第二极连接所述读取信号端。
  11. 根据权利要求10所述的像素电路,其中,所述驱动子电路包括第五晶体管、第六晶体管、驱动晶体管和存储电容;
    所述第五晶体管的控制极连接扫描信号端,所述第五晶体管的第一极连接数据电压端,所述第五晶体管的第二极连接所述驱动晶体管的控制极;
    所述驱动晶体管的第一极连接所述感光器件的所述输出端,所述驱动晶体管的第二极连接所述自发光器件的第一极;
    所述第六晶体管的控制极连接所述扫描信号端,所述第六晶体管的第一极连接所述驱动晶体管的第二极,所述第六晶体管的第二极连接所述读取信号端;
    所述存储电容的第一极连接所述驱动晶体管的控制极以及所述第五晶体管的第二极,所述存储电容的第二极连接所述驱动晶体管的第二极以及所述自发光器件的第一极;
    所述自发光器件的第二极连接第三电压端。
  12. 一种补偿组件,包括:
    至少一个如权利要求1-11任一项所述的像素电路;
    源极驱动电路;
    以及,与所述像素电路及所述源极驱动电路均连接的控制器;
    其中,所述控制器被配置为根据所述像素电路输出的用于表征自发光器件的发光亮度的电信号获取所述自发光器件的实际发光亮度,并根据所述自发光器件的实际发光亮度与目标发光亮度的差值,对数据电压信号进行补偿;
    其中,所述源极驱动电路被配置为根据补偿后的数据电压信号向所述像素电路的像素驱动电路输出驱动信号。
  13. 一种显示装置,包括如权利要求12所述的补偿组件。
  14. 一种如权利要求12所述的补偿组件的补偿方法,包括:
    检测自发光器件的实际发光亮度;
    对比所述实际发光亮度和目标发光亮度,并根据所述实际发光亮度和所述目标发光亮度的差值对数据电压信号进行补偿;
    根据补偿后的数据电压信号输出驱动信号。
  15. 一种如权利要求13所述的显示装置的驱动方法,其中,一帧时间包括:发光与检测阶段,以及,读取阶段;
    所述驱动方法包括:在所述发光与检测阶段,驱动自发光器件发光,同时检测所述自发光器件的发光亮度;
    在所述读取阶段,将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端。
  16. 根据权利要求15所述的驱动方法,其中,所述显示装置中像素电路的光敏检测电路包括光敏二极管、第一晶体管、第二晶体管、第三晶体管和第四晶体管;驱动子电路包括第五晶体管、第六晶体管、驱动晶体管和存储电容;
    所述驱动自发光器件发光,包括:
    控制所述第二晶体管开启,所述第二晶体管将第二电压端提供的电源电压信号传输至第三晶体管的控制极,并控制所述第三晶体管开启;
    所述第三晶体管将所述第二电压端提供的所述电源电压信号传输至所述驱动晶体管的第一极;
    控制所述第五晶体管和所述第六晶体管开启,所述第五晶体管将数据电压端提供的数据电压信号传输至所述驱动晶体管的控制极以及所述存储电容的第一极,所述第六晶体管将读取信号端提供的电位信号传输至所述驱动晶体管的第二极;
    所述数据电压信号控制所述驱动晶体管开启,所述驱动晶体管的第二极输出驱动信号至所述自发光器件,驱动所述自发光器件发光。
  17. 根据权利要求16所述的驱动方法,其中,
    所述同时检测所述自发光器件的发光亮度,包括:
    在控制所述第二晶体管开启之前,控制所述第一晶体管开启;
    控制所述第二晶体管开启后,将所述第二电压端提供的电源电压信号传输至所述光敏二极管的第二极,以使所述光敏二极管反向偏置;
    控制所述第一晶体管截止,所述光敏二极管的第二极的电压在所述自发光器件的光照下变化;
    根据所述光敏二极管的第二极的电压变化,检测所述自发光器件的发光亮度。
  18. 根据权利要求17所述的驱动方法,其中,所述将用于表征所述自发光器件的发光亮度的电信号传输至读取信号端,包括:
    控制所述第一晶体管开启,将所述光敏二极管的第二极的电压传输至所述第三晶体管的控制极;
    控制所述第四晶体管开启,将所述第三晶体管的第二极的电压传输至所述读取信号端,所述第三晶体管的第二极的电压同相跟随所述第三晶体管的控制极的电压。
PCT/CN2019/077192 2018-05-14 2019-03-06 像素电路、补偿组件、显示装置及其驱动方法 WO2019218756A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/613,293 US11094261B2 (en) 2018-05-14 2019-03-06 Pixel circuit, compensation assembly, display apparatus and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810457879.0 2018-05-14
CN201810457879.0A CN110164370B (zh) 2018-05-14 2018-05-14 一种像素电路、补偿组件、显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2019218756A1 true WO2019218756A1 (zh) 2019-11-21

Family

ID=67644910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/077192 WO2019218756A1 (zh) 2018-05-14 2019-03-06 像素电路、补偿组件、显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US11094261B2 (zh)
CN (1) CN110164370B (zh)
WO (1) WO2019218756A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556408A (zh) * 2019-09-10 2019-12-10 京东方科技集团股份有限公司 显示基板及其控制方法、和显示装置
CN111624799B (zh) * 2020-06-29 2023-05-23 京东方科技集团股份有限公司 显示基板及显示装置
TWI735338B (zh) * 2020-09-16 2021-08-01 友達光電股份有限公司 畫素驅動電路
TWI785831B (zh) * 2021-10-06 2022-12-01 友達光電股份有限公司 顯示裝置
CN113903300B (zh) * 2021-10-12 2023-06-02 维沃移动通信有限公司 显示面板、校准方法、校准装置和电子设备
CN116246575A (zh) * 2022-12-23 2023-06-09 惠科股份有限公司 像素驱动电路、显示面板及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1685390A (zh) * 2002-09-23 2005-10-19 皇家飞利浦电子股份有限公司 带有光敏单元的矩阵显示器件
CN101197107A (zh) * 2001-10-31 2008-06-11 剑桥显示技术公司 控制有源矩阵显示器中的电-光显示元件亮度的方法
CN101976679A (zh) * 2010-03-11 2011-02-16 友达光电股份有限公司 具有光反馈补偿的主动矩阵式有机发光二极管显示器
CN107863065A (zh) * 2017-11-24 2018-03-30 京东方科技集团股份有限公司 像素单元电路、驱动方法和像素电路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0318613D0 (en) * 2003-08-08 2003-09-10 Koninkl Philips Electronics Nv Electroluminescent display devices
JP2006030317A (ja) * 2004-07-12 2006-02-02 Sanyo Electric Co Ltd 有機el表示装置
EP1886298A2 (en) * 2005-05-19 2008-02-13 Koninklijke Philips Electronics N.V. Electroluminescent display devices
WO2007042973A1 (en) 2005-10-13 2007-04-19 Koninklijke Philips Electronics N.V. Emissive display devices
JP4385059B2 (ja) * 2007-05-16 2009-12-16 シャープ株式会社 イメージセンサ
JP5277926B2 (ja) * 2008-12-15 2013-08-28 ソニー株式会社 表示装置及びその駆動方法と電子機器
JP5381721B2 (ja) * 2010-01-07 2014-01-08 ソニー株式会社 表示装置、光検出方法、電子機器
TWI442374B (zh) * 2011-08-16 2014-06-21 Hannstar Display Corp 有機發光二極體補償電路
US9576535B2 (en) * 2013-01-17 2017-02-21 Samsung Display Co., Ltd. Pixel and organic light emitting display using the same
CN103280181B (zh) * 2013-05-29 2015-12-23 中国科学院上海高等研究院 Amoled像素亮度的补偿方法及补偿***
CN103325343B (zh) * 2013-07-01 2016-02-03 京东方科技集团股份有限公司 一种像素电路、显示装置及像素电路的驱动方法
CN103700345B (zh) * 2013-12-27 2015-09-23 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法、显示面板
KR102154501B1 (ko) * 2014-04-16 2020-09-11 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
JP2016109911A (ja) * 2014-12-08 2016-06-20 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 表示装置、表示方法、及びプログラム
CN106782272B (zh) * 2017-01-18 2021-01-15 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN106981268B (zh) * 2017-05-17 2019-05-10 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN107908310B (zh) * 2017-11-13 2019-12-06 京东方科技集团股份有限公司 像素电路及其驱动方法、显示装置
CN108538255A (zh) * 2018-04-11 2018-09-14 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法、阵列基板和显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101197107A (zh) * 2001-10-31 2008-06-11 剑桥显示技术公司 控制有源矩阵显示器中的电-光显示元件亮度的方法
CN1685390A (zh) * 2002-09-23 2005-10-19 皇家飞利浦电子股份有限公司 带有光敏单元的矩阵显示器件
CN101976679A (zh) * 2010-03-11 2011-02-16 友达光电股份有限公司 具有光反馈补偿的主动矩阵式有机发光二极管显示器
CN107863065A (zh) * 2017-11-24 2018-03-30 京东方科技集团股份有限公司 像素单元电路、驱动方法和像素电路

Also Published As

Publication number Publication date
CN110164370A (zh) 2019-08-23
US11094261B2 (en) 2021-08-17
CN110164370B (zh) 2021-08-10
US20210134222A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2019218756A1 (zh) 像素电路、补偿组件、显示装置及其驱动方法
WO2018176777A1 (zh) Oled显示装置及其亮度调节方法和控制器
US20210118361A1 (en) Amoled pixel driving circuit, driving method, and display panel
CN106782319B (zh) 一种像素电路、像素驱动方法、显示装置
US11393397B2 (en) Pixel driving circuit, pixel unit and driving method, array substrate, and display device
WO2019196405A1 (zh) 像素驱动电路、像素驱动方法、阵列基板和显示装置
WO2017118055A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2017041453A1 (zh) 像素电路、其驱动方法及相关装置
US10380946B2 (en) OLED pixel circuitry, driving method thereof and display device
WO2019037300A1 (zh) Amoled像素驱动电路
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
WO2017156826A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2016011707A1 (zh) 像素电路及其驱动方法和显示装置
WO2016188012A1 (zh) 像素电路、其驱动方法及显示装置
US10777138B2 (en) Pixel circuits and driving methods thereof, display devices
WO2017177501A1 (zh) Amoled像素驱动电路及像素驱动方法
US20180330663A1 (en) Emission-control circuit, display apparatus having the same, and driving method thereof
WO2015196597A1 (zh) 像素电路、显示面板和显示装置
WO2017117952A1 (zh) 像素电路及其驱动方法、显示面板以及显示器
JP2009133914A (ja) 表示装置
US11348516B2 (en) Amoled pixel driving circuit and driving method
US10762841B2 (en) Pixel circuit, driving method thereof and display device
WO2020042522A1 (en) Display panel and driving method thereof
WO2019037285A1 (zh) 顶发射amoled像素电路及其驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803358

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803358

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19803358

Country of ref document: EP

Kind code of ref document: A1