WO2019214007A1 - 多参数动态采集的人工地层冻结的实验装置与实验方法 - Google Patents

多参数动态采集的人工地层冻结的实验装置与实验方法 Download PDF

Info

Publication number
WO2019214007A1
WO2019214007A1 PCT/CN2018/090842 CN2018090842W WO2019214007A1 WO 2019214007 A1 WO2019214007 A1 WO 2019214007A1 CN 2018090842 W CN2018090842 W CN 2018090842W WO 2019214007 A1 WO2019214007 A1 WO 2019214007A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil sample
temperature
freezer
data
disposed
Prior art date
Application number
PCT/CN2018/090842
Other languages
English (en)
French (fr)
Inventor
王彬
荣传新
程桦
姚直书
施鑫
董艳宾
蔡海兵
王晓健
宋海清
黎明镜
唐彬
段寅
王志
彭世龙
杨凡
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Priority to JP2018560773A priority Critical patent/JP6745497B2/ja
Publication of WO2019214007A1 publication Critical patent/WO2019214007A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/42Low-temperature sample treatment, e.g. cryofixation

Definitions

  • the invention relates to the field of artificial ground freezing method, in particular to an experimental device and an experimental method for artificial layer freezing of multi-parameter dynamic acquisition.
  • the artificial stratum freezing method is the main construction method for the underground construction of the water-rich soft soil layer. This method has been widely used in the construction of vertical shafts and tunnels in China. In recent years, in the process of building subway tunnels in the eastern coastal areas of China, a large number of offshore saline strata have been encountered. The stratum has the characteristics of high salt content and active groundwater. The soil is accompanied by water migration and salt migration during the freezing process. Complex physical changes such as frost heaving and salt swelling result in large differences between the physical and mechanical parameters of frozen soil and conventional frozen soil. At present, there is a lack of systematic research on the coastal saline soil.
  • the frozen soil test block test can accurately reflect the various characteristics of the test block, but there is a big difference with the freezing law of the middle soil in the actual project.
  • the data provided by the test block test cannot directly guide the actual project; Similar model test is an important test method for engineering feasibility analysis.
  • the accuracy of the test results is mainly limited by the similarity between the test model and the actual project. The greater the similarity ratio, the higher the degree of reduction of the model to the project. The greater the reference value of the project.
  • the object of the present invention is to provide an experimental device and an experimental method for artificial layer freezing of multi-parameter dynamic acquisition.
  • the experimental device can freeze or forcibly thaw the soil sample of the artificial stratum, and can dynamically collect data of multiple parameters such as water, salt, temperature and displacement of the soil sample during the freezing process.
  • the present invention provides the following technical solutions:
  • a multi-parameter dynamic acquisition artificial ground freezing experimental device capable of freezing or forcibly thawing a soil sample of the artificial stratum for simulating a test environment for freezing of an offshore saline formation, characterized in that the experiment
  • the apparatus includes a soil sample container, a data collection system, and a freezing system, wherein the soil sample container includes an upper cover, a cylindrical body, and a bottom plate, the bottom plate is fixedly coupled to a bottom end of the cylindrical body, and the upper cover is placed at the bottom On the top end of the cylinder, the upper cover, the cylindrical body and the bottom plate enclose a cavity, the upper cover can be moved up and down, and the upper cover is provided with a central hole, the cylindrical body a plurality of first lead holes are disposed on the sidewall;
  • the data acquisition system includes a data acquisition panel, a moisture collection device, and a salt collection device.
  • the data acquisition panel is horizontally disposed in the cavity and divides the cavity into a first receiving space and a second receiving space. a first receiving space is located above the second receiving space, the first receiving space is for accommodating the soil sample, and the data collecting panel is provided with a plurality of salt collecting elements and a plurality of moisture collecting elements,
  • the moisture collecting device dynamically collects moisture data of the soil sample through the moisture collecting component
  • the salt collecting device dynamically collects salt data of the soil sample through the salt collecting component, wherein the data collecting panel can be in the cavity Moving up and down the body;
  • the freezing system includes a freezing machine, a liquid supply pipe, a liquid return pipe and a freezer.
  • the freezer is vertically disposed in the first receiving space, and the bottom end of the freezer is connected to the data collecting panel. a top end of the freezer extends out of the soil sample container through the central hole, and the freezer is connected to a top end of the freezer through the liquid supply pipe and the liquid return pipe, respectively, the freezing machine
  • the freezing machine, the liquid supply pipe, the freezer, the liquid return pipe and the freezing machine are sequentially connected to form a circulation loop for the medium, The medium exchanges heat with the soil sample in the freezer for freezing or forcibly thawing the soil sample.
  • the upper cover is an annular structure, and the upper cover is composed of an inner cover plate and an outer cover plate, and the inner cover plate is made of plastic, and the outer layer is The cover plate is made of metal, and the outer cover plate is disposed on the upper surface of the inner cover plate, and the lower surface of the inner cover plate contacts the soil sample; preferably, the inner cover plate Connected by a plurality of annular inner plates, the joints of the two annular inner plates are respectively provided with upwardly extending flanges, and the convex edges extend above the outer cover, and the convex edges are a plurality of bolt holes are disposed, and the plurality of first bolts sequentially connect the plurality of the fan-shaped inner plates through the plurality of the bolt holes; preferably, the outer cover plate is composed of a plurality of fan-shaped outer plates, a plurality of the upper surfaces of the fan-shaped inner plates are each provided with a fan-shaped annular groove, and the plurality of the fan-shaped outer plates are embedded in
  • the cylindrical body includes an outer cylinder and an inner cylinder disposed inside the outer cylinder, the inner cylinder is made of plastic, and the outer cylinder is made of metal, and the outer cylinder
  • the outer wall of the outer wall is provided with a plurality of annular stiffeners, wherein one of the stiffeners is equidistantly disposed at a same height with a plurality of circular second grooves, and the first lead holes are disposed in the second concave
  • the first lead hole penetrates the stiffener, the outer cylinder and the inner cylinder, and an inner wall of the first lead hole is provided with a thread and can be mounted with a plastic screw, the inner wall of the inner cylinder a vertical scale line is disposed, the inner wall of the inner cylinder is provided with a bearing ring, and the bearing ring is used for carrying the data acquisition panel;
  • the bottom plate is provided with a second lead hole, and the outer edge of the bottom plate is provided with a plurality of threaded holes for connecting with the cylindrical body, the bottom plate is provided with a boss, and the lower surface of the bottom plate is provided with a first lead groove, the first lead groove passes through the second lead hole;
  • the inner diameter of the cylindrical body is 0.1 to 2 m, and the depth is 0.5 to 2 m; preferably, the inner diameter of the cylindrical body is 1 m, a depth of 1 m; preferably, three of the stiffening ribs are respectively disposed at a top end, a bottom end and a middle portion of the outer cylinder;
  • the inner cylinder is made of polyvinyl chloride; preferably, the outer cylinder
  • the material is an aluminum alloy; preferably, the stiffening ribs disposed at the bottom end of the cylinder are provided with a plurality of vertical threaded holes, and the plurality of second bolts pass through the plurality of the threaded holes to The bottom plate
  • the data acquisition panel is composed of an upper panel and a lower panel
  • the data acquisition panel is provided with a third lead hole
  • a center of the upper panel is provided with a freezer base
  • a freezer is connected to the freezer base
  • a plurality of second sealing rings are disposed on an outer edge of the upper panel
  • a plurality of second lead slots are disposed on the upper layer plate in a radial direction, each of the second leads
  • the slot is provided with a plurality of component arrangement holes
  • each of the component arrangement holes is provided with a salt collection component and a moisture collection component
  • the salt collection component is composed of a salt collection probe, a component base and a salt data line.
  • the salt collection probe is disposed in the soil sample and is fixedly disposed in the component arrangement hole through the component base, and the salt collection probe is connected to the salt data line, and the moisture collection component Consisting of a moisture collecting probe, a component base and a moisture data line, the moisture collecting probe is disposed in the soil sample and fixedly disposed through the component base
  • the moisture collecting probe is connected to the moisture data line, and the salt data line and the moisture data line are both disposed in the second lead slot and sequentially pass through the third.
  • the salt data line is connected to a data line of the salt collecting device, the moisture data line and the moisture collecting device Data line connection, preferably, the salt data line and the moisture data line in the second receiving space are both arranged as spring cables;
  • the material of the upper panel is plastic
  • the material of the lower panel is metal
  • the lower panel is disposed in a circular groove of the lower surface of the upper panel, preferably, the second sealing ring
  • the upper panel is made of polyvinyl chloride; preferably, the lower panel is made of an aluminum alloy; preferably, each of the second lead slots is provided with five The component is arranged in the hole position.
  • the data acquisition system further includes a temperature collection panel, the temperature collection panel is horizontally disposed in the soil sample in the middle of the first accommodation space, and the temperature collection panel is composed of an inner ring, The outer ring and the plurality of steel strands are respectively connected to the inner ring and the outer ring, and each of the steel strands is uniformly provided with a plurality of the temperature collecting components.
  • Each of the temperature collecting components is connected with a temperature data line, an outer edge of the outer ring is provided with a third lead slot, and the temperature data line is disposed in the third lead slot; all of the temperature data After the summation, the wires enter the first lead hole and are connected to the data line of the temperature collecting device through the first lead hole, and are assembled by the spring wire sleeve outside all the temperature data lines during the summation, and the temperature
  • the data line is connected to the data line of the temperature data collecting device after passing through the first lead hole, and the temperature collecting device dynamically collects temperature data of the soil sample through the temperature collecting component, the temperature
  • the collecting panel can move up and down in the cylinder; preferably, the steel strands are provided with six, which are radially evenly distributed; preferably, the temperature collecting component is a thermocouple string made of constantan and copper wires. .
  • the hydraulic system is composed of an oil pressure control device, an oil pipe and a hydraulic oil cylinder, and the oil pressure control device supplies oil to the hydraulic oil cylinder through the oil pipe, and a plurality of The hydraulic cylinder is disposed in the second receiving space, the bottom end of the hydraulic cylinder is connected to the bottom plate, the top end of the hydraulic cylinder is in contact with the data collecting panel, and the oil pressure control device can pass
  • the oil pipe controls the lifting and lowering of the hydraulic oil cylinder, and the lifting and lowering of the hydraulic oil cylinder can push the data collecting panel to be lifted and lowered
  • the hydraulic oil cylinder is a multi-stage hydraulic oil cylinder; preferably, the hydraulic oil cylinder is provided with four; preferably A plurality of cylinder slots are disposed on the boss, and bottom ends of the hydraulic cylinders are respectively disposed in the cylinder slots; preferably, the cylinder slots are provided with four.
  • the freezing machine includes a refrigerating device, a heating device, and a pumping device, and is capable of freezing or forcibly thawing the soil sample; the bottom end of the freezer is provided with a threaded end
  • the freezer is threadedly coupled to the freezer base by the threaded end, the top end of the freezer extending through the central bore to the outside of the upper cover, the freezer being a sleeve structure
  • the freezer is composed of an inner tube and an outer tube sleeved on the outer circumference of the inner tube, the outer tube has an outer diameter of 8 to 159 mm, and the outer diameter of the inner tube is an outer diameter of the outer tube.
  • the bottom end of the outer tube is closed, the bottom of the inner tube is in communication with the bottom of the outer tube, the top end of the inner tube is in communication with the liquid supply tube, and the liquid return tube is connected to the outer tube a sidewall of the upper section of the tube, the top end of the outer tube is provided with a protruding ring for sealing the outer tube;
  • a control valve is disposed at one end of the liquid supply pipe and the liquid return pipe near the freezing machine, for opening and closing the liquid supply pipe and the liquid return pipe, the liquid supply pipe and the liquid supply pipe a manual regulating valve is disposed on one end of the liquid return pipe near the freezer, and a flow meter is disposed on the liquid supply pipe and the liquid return pipe, and a portion of the freezer extending outside the upper cover is provided
  • the thermal insulation sleeve is deformable to accommodate movement of the upper cover; preferably, the medium is alcohol; preferably, the inner tube and the outer tube are made of a copper tube; preferably The outer diameter of the freezer is 80 mm.
  • the displacement collecting device is composed of a displacement dial gauge, a beam, a column and a displacement device base.
  • the column is disposed at a top end of the cylinder through the displacement device base, and the beam is disposed in parallel with the upper cover.
  • One end of the beam is sleeved on the column and fixed by a knob bolt, the beam can be moved up and down along the column, and the displacement dial is vertically disposed on the upper surface of the upper cover.
  • the bottom end of the displacement dial is abutted against the upper surface of the upper cover, and the displacement dial is fixed to the other end of the beam disposed by a knob bolt.
  • the present invention also provides a method for conducting an experiment using an artificial layer freezing experimental device for multi-parameter dynamic acquisition, which is characterized in that it comprises the following steps:
  • Installation and inspection test equipment Inspect the location of the soil sample container in advance by using the level meter to ensure that the soil sample container is placed on a horizontal floor, remove the upper cover, open the hydraulic control device of the hydraulic system, and push it through the hydraulic cylinder.
  • the data acquisition panel rises, so that the data acquisition panel rises to the top of the soil sample container, and the moisture collection probe and the salt collection probe disposed on the data acquisition panel are inspected.
  • the data acquisition panel is played back by controlling the hydraulic cylinder.
  • To the bottom of the soil sample container install the freezer on the freezer base of the data acquisition panel;
  • Step 1.1) After the installation inspection is completed, the soil sample is layered into the soil sample container.
  • the soil sample filling plane is tested with a spirit level. Flatness, adjust the soil sample filling up to the plane level, then install the temperature acquisition panel into the soil sample container, take the temperature data line out from the first lead hole, and seal the gap of the first lead hole through the inner tube
  • the upper tick line controls the height of the filled soil sample, continues to fill the soil sample to the position of the lower surface of the upper cover, uses the spirit level to test the flatness of the soil sample plane, adjust the soil sample plane to the level of the plane, and then install the upper cover. And using the level tester to test whether the upper cover is horizontal, and when the upper cover reaches the horizontal requirement, the displacement collecting device is mounted on the upper surface of the upper cover;
  • step 1.2 Connect the freezing tube: After the soil sample is filled in step 1.2), install the thermal insulation sleeve on the part of the freezer that extends out of the upper cover.
  • the inner tube of the freezer is connected to the freezing machine through the liquid supply tube, and the outer tube of the freezer passes back.
  • the liquid pipe is connected with the freezing machine, and the manual regulating valve is respectively installed on the liquid supply pipe and the liquid return pipe near one end of the freezer, the control valve is respectively installed at one end near the freezing machine, and the manual regulating valve and the control valve are separately installed.
  • Data acquisition system connection Connect the temperature acquisition component to the data line of the temperature acquisition device through the temperature data line, connect the salt collection component to the data line of the salt collection device through the salt data line, and pass the moisture collection component through the moisture.
  • the data line is connected to the data line of the moisture collecting device;
  • the temperature monitoring data of the same circle obtained at the same time in a single test is screened, and the data which is different from other data is excluded, and the correct data is averaged, and the temperature test data at the time and the position will be the same
  • the temperature of different positions on the plane is plotted as a curve with time, and the same method is used to sort out salt, moisture and frost heave.
  • the soil of the soil sample is one of clay, sand and sandy clay, and the soil sample has a water content of 0-40%, preferably 20-40%;
  • the salt content of the aqueous solution of the soil sample is set to be 1% to 3%;
  • the test time interval of the temperature collecting device is 10 to 60 min
  • the test time interval of the moisture collecting device and the salt collecting device is 30 to 60 min
  • the data collecting time interval of the displacement collecting device is 30 to 60 min;
  • the hydraulic cylinder has a pushing elevation of 5 to 20 cm at a time.
  • the present invention discloses an experimental device and an experimental method for artificial layer freezing of multi-parameter dynamic acquisition
  • the experimental device includes a soil sample container, a data acquisition system, a hydraulic system and a freezing system
  • the experimental device can freeze or force the artificial freezing.
  • the soil sample of the stratum can dynamically collect data of multiple parameters such as water, salt, temperature and displacement of the soil sample during the freezing process.
  • the experimental device can simulate the test environment of the frozen salt formation in the offshore area and is used to study the salt water.
  • the freezing law of frozen soil provides reference for the design and construction of freezing plan for coastal saline formation.
  • FIG. 1 is a schematic structural view of an embodiment of the present invention.
  • FIG. 2 is a top plan view of an upper cover according to an embodiment of the present invention.
  • FIG 3 is a front elevational view of a cylinder according to an embodiment of the present invention.
  • FIG. 4 is a top plan view of a bottom plate according to an embodiment of the invention.
  • FIG. 5 is a schematic top view of a data acquisition panel according to an embodiment of the invention.
  • FIG. 6 is a top plan view of a temperature acquisition panel according to an embodiment of the invention.
  • FIG. 7 is a schematic structural diagram of a displacement collection device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of a freezer according to an embodiment of the present invention.
  • Figure 9 is a schematic view showing the assembly of a salt collecting member and a moisture collecting member according to an embodiment of the present invention.
  • Fig. 10 is an enlarged schematic view showing a portion A of Fig. 1.
  • Figure 11 is an enlarged schematic view of the portion B of Figure 1.
  • they may be fixed or detachable; they may be directly connected or indirectly connected through intermediate members; It is a wired electrical connection, a radio connection, or a wireless communication signal connection.
  • a wired electrical connection a radio connection, or a wireless communication signal connection.
  • an artificial ground freezing experimental device for multi-parameter dynamic acquisition, which can freeze or forcibly thaw the soil sample of the artificial stratum, and can The data of a plurality of parameters such as moisture, salt, temperature and displacement of the soil sample are dynamically collected.
  • the experimental device comprises a soil sample container 1, a data acquisition system 2 and a freezing system 4.
  • the soil sample container 1 is a hollow cylindrical structure, and the soil sample container 1 includes an upper cover 11, a cylindrical body 12 and a bottom plate 13, and the bottom plate 13 is fixedly connected to the bottom end of the cylindrical body 12, and the upper cover 11 is placed on the top end of the cylindrical body 12,
  • the cover 11, the cylinder 12 and the bottom plate 13 enclose a cavity, the upper cover 11 is used to cover the soil sample and can move up and down, and a center hole 113 is arranged at the center of the upper cover 11, and the side wall of the cylinder 12 is provided with A plurality of first lead holes 124.
  • the data acquisition system 2 includes a data acquisition panel 21, a moisture collection device 25, and a salt collection device 26.
  • the data acquisition panel 21 is horizontally disposed in the cavity and divides the cavity into a first receiving space 15 and a second receiving space 16, the first receiving The space 15 is located above the second accommodation space 16, and the first accommodation space 15 is for accommodating a soil sample.
  • the data collection panel 21 is provided with a plurality of salt collection elements 213 and a plurality of moisture collection elements 214.
  • the moisture collection device 25 dynamically collects the moisture data of the soil sample through the moisture collection element 214
  • the salt collection device 26 dynamically collects the soil through the salt collection element 213.
  • the salt collection data, the data acquisition panel 21 can be moved up and down within the barrel 12.
  • the freezing system 4 includes a freezing machine 41, a liquid supply pipe 42, a liquid return pipe 43, and a freezer 44.
  • the freezer 44 is vertically disposed in the soil sample of the first receiving space 15, and the bottom end of the freezer 44 and the data collecting panel 21 Connecting, the top end of the freezer 44 extends out of the soil sample container 1 through the center hole 113, and the freezer is connected to the top end of the freezer 44 through the liquid supply pipe 42 and the liquid return pipe 43, respectively, and the freezer 41 is used for generating and pumping the low temperature or
  • the high temperature medium, the freezer 41, the liquid supply pipe 42, the freezer 44, the liquid return pipe 43, and the freezer are sequentially connected to form a circulation loop for the medium, and the freezer 44 can freeze or forcibly thaw the soil sample.
  • the freezing machine 41 lowers or raises the temperature of the medium and pumps the medium through the liquid supply pipe 42 to the freezer 44, and the freezer 44 exchanges heat with the soil sample, thereby being able to freeze or forcibly thaw the soil sample to complete the heat.
  • the exchanged medium is returned to the freezer 41 through the return pipe 43 to complete the cycle.
  • the moisture collecting component 214 and the salt collecting component 213 disposed in the soil sample dynamically collect the moisture and salt data of the soil sample, and transmit the data to the moisture collecting device 25 and the salt collecting separately.
  • the device 26 processes the data by the computer and draws a graph according to the law to study the freezing law of the salted frozen soil, and provides reference for the design and construction of the freezing scheme of the coastal saline formation.
  • the upper cover 11 is an annular structure, and the upper cover 11 is formed by combining an inner cover 111 and an outer cover 112.
  • the inner cover 111 is made of plastic and the outer cover 112.
  • the material is metal
  • the outer cover 112 is disposed on the upper surface of the inner cover 111
  • the lower surface of the inner cover 111 is in contact with the soil sample.
  • the inner cover 111 is connected by a plurality of annular inner plates, and the joints of the two annular inner plates are respectively provided with upwardly extending flanges 114, and the flanges 114 extend above the outer cover 112
  • a plurality of bolt holes are disposed on the protruding edge 114, and the plurality of first bolts 115 are sequentially connected to the plurality of annular inner plates through the plurality of bolt holes.
  • the inner cover 111 is composed of two fan-shaped inner plates.
  • the outer cover plate is composed of a plurality of fan-shaped outer plates, and the upper surfaces of the plurality of fan-shaped inner plates are respectively provided with fan-shaped annular grooves, and the plurality of fan-shaped outer plates are embedded in the fan-shaped annular grooves.
  • the inner cover 111 is made of polyvinyl chloride, and the minimum temperature of the polyvinyl chloride is -40 ° C, and the heat preservation effect is good.
  • the material of the outer cover 112 is aluminum alloy, and the aluminum alloy has good deformation resistance, small density and simple processing technology.
  • the first bolts 115 on each ledge 114 are provided with three.
  • the upper cover 11 is composed of two fan-shaped inner cover plates 111.
  • each of the annular outer plates is provided with a first recess 117.
  • the first recess 117 is provided with a handle 118.
  • the handle 118 is rotatably connected with the annular outer plate, and the handle 118 is placed flat when not in use.
  • a horizontal tester 116 is further disposed in the first groove 117 for measuring the levelness of the upper cover 11.
  • the outer circumference of the upper cover 11 is provided with two first sealing rings 119 for sealing the gap between the upper cover 11 and the cylindrical body 12 to prevent the loss of the temperature of the soil sample.
  • the cylinder 12 includes an outer cylinder 121 and an inner cylinder 122 disposed inside the outer cylinder 121.
  • the inner wall of the outer cylinder 121 is in contact with the outer wall of the inner cylinder 122, and the inner cylinder 122 is made of plastic.
  • the material of the cylinder 121 is made of metal.
  • the outer wall of the outer cylinder 121 is sleeved with a plurality of annular stiffeners 123.
  • the first stiffeners 123 located in the middle of the outer cylinder 121 are equidistantly disposed at the same height.
  • the groove 125 is preferably provided with four second grooves 125.
  • the first lead holes 124 are disposed in the second recess 125, and each of the first lead holes 124 penetrates the stiffener rib 123, the outer cylinder 121, and the inner cylinder 122 located at the center of the outer cylinder 121.
  • the inner wall of the first lead hole 124 is provided with a thread and can be mounted with a plastic screw 126 composed of a screw and a cylindrical end with a cross-shaped groove, the cylindrical end being slightly smaller in size than the second groove 125
  • the inner cylinder 122 is fixed to the inner wall of the outer cylinder 121 by a plastic screw 126, and is arranged to prevent the inner cylinder 122 from moving during the upward movement of the soil sample by the data collecting panel 21.
  • the inner wall of the inner cylinder 122 is provided with a vertical scale line for controlling the filling amount of the soil sample.
  • a bearing ring 128 is disposed on the inner wall of the inner tube 122 near the bottom end, and the bearing ring 128 is coupled to the data collecting panel 21 for positioning the data collecting panel 21 and the auxiliary bearing to prevent the data collecting panel 21 from moving downward during the downward movement. Large, and the auxiliary hydraulic cylinder 33 is loaded during the test.
  • the stiffening ribs 123 are provided with three, which are respectively disposed at the top end, the bottom end and the middle portion of the outer cylinder 121.
  • the material of the inner cylinder 122 is polyvinyl chloride
  • the material of the outer cylinder 121 is stainless steel.
  • a plurality of vertical threaded holes are disposed on the stiffeners 123 disposed at the bottom end of the barrel 12, and the plurality of second bolts 127 fixedly connect the barrel 12 to the bottom plate 13;
  • the spacing of adjacent freezing pipes is about 1m, and the maximum diameter of a single freezing pipe is 2m.
  • the diameter of the cylinder 12 is The similarity ratio with the actual project determines that the similarity ratio can be 1-20, so the inner diameter of the cylinder 12 is 0.1-2 m.
  • the similarity ratio is 2, and the inner diameter of the corresponding cylinder 12 is 1 m.
  • the height of the cylinder 12 needs to meet the installation space requirement of the test component, and at the same time, it is necessary to provide the freezer 44 with a sufficient depth of action.
  • the depth of the cylinder 12 is 0.5 to 2 m, in order to reduce the amount of excavation of the earth and reduce the salt collection.
  • the arrangement difficulty of the element 213, the moisture collecting element 214, and the temperature collecting element 231, preferably, the height of the barrel 12 is 1 m.
  • a second lead hole 131 is disposed at a center of the bottom plate 13, and an outer edge of the bottom plate 13 is uniformly provided with a plurality of screw holes for connecting the bottom plate 13 and the barrel 12 through the second bolt 127.
  • a boss 132 is disposed on the bottom plate 13, and a lower surface of the bottom plate 13 is provided with a first lead groove 134 in a diameter direction.
  • the data acquisition panel 21 is composed of an upper panel 215 and a lower panel 216.
  • the upper panel 215 is made of plastic, preferably polyvinyl chloride, and the lower panel 216 is made of metal, preferably aluminum.
  • the lower panel 216 is embedded in a circular recess in the lower surface of the upper panel 215, and the data collecting panel 21 is provided with a third lead hole 218.
  • the center of the upper panel 215 is provided with a freezer base 219 for mounting the freezer 44. .
  • a plurality of second lead grooves 211 are disposed on the upper layer panel 215 in the radial direction and are evenly distributed around the center of the upper layer panel 215.
  • Each of the second lead grooves 211 is provided with a plurality of element arrangement holes 212 having a diameter of 2 cm, preferably five and equidistantly distributed, and each of the element arrangement holes 212 is provided with a salt collection element 213 and a moisture collecting element. 214.
  • the outer edge of the upper panel 215 is provided with a plurality of second sealing rings 217, preferably two, so as to ensure that there is no gap between the data collecting panel 21 and the inner cylinder 122, preventing freezing during the experiment. The soil sample fell from the gap, affecting the experimental results.
  • the salt collecting member 213 is composed of a salt collecting probe 220, a component base 221, and a salt data line 222.
  • the salt collecting probe 220 is disposed in the soil sample and is fixedly disposed in the component mounting hole through the component base 221 Within 212, the salt collection probe 220 is coupled to the salt data line 222 through the component mount 221 .
  • the moisture collecting component 214 is composed of a moisture collecting probe 223, a component base 221 and a moisture data line 224.
  • the moisture collecting probe 223 is disposed in the soil sample and is fixedly disposed in the component arrangement hole 212 through the component base 221, and the moisture collecting probe The needle 223 is connected to the moisture data line 224 through the element base 221 .
  • the component base 221 is a semi-circular structure
  • the component mount 221 of the salt acquisition component 213 is combined with the component mount 221 of the moisture acquisition component 214 to form a circular structure and conform to the shape of the component arrangement aperture 212.
  • the salt data line 222 and the moisture data line 224 are both disposed in the second lead groove 211 and sequentially led out to the outside of the barrel 12 through the third lead hole 218, the second receiving space 16 and the second lead hole 131, and the salt data line 222 and
  • the data line connection and the moisture data of the salt collecting device 26 are connected to the data line of the moisture collecting device 25, wherein the salt data line 222 and the moisture data line 224 in the second receiving space 16 are both set as spring cables, so that the salt content can be improved.
  • the moisture collecting component 214 can adopt a moisture testing device in which the diameter of the component base 221 is smaller than the component arrangement hole 212 (ie, the diameter of the component base 221 is less than 2 cm), considering the convenience of data collection and adaptability to a low temperature environment, the moisture collecting device 25 is preferably TDR3000 moisture speed measuring instrument, TDR3000 moisture speed measuring instrument can be connected with computer through serial communication interface, can realize automatic collection of moisture data, its collecting temperature ranges from -40 to 70 °C, meets the temperature of freezing experiment Claim.
  • the salt collecting member 213 can employ a salt testing device having a smaller diameter of the component base 221 than the component arrangement hole 212 (i.e., the diameter of the component base 221 is less than 2 cm).
  • the salt collecting device 26 is preferably a TZS-EC salt in consideration of the convenience of data collection.
  • the content collection device, the TZS-EC salt content collection device can be connected with a computer to realize the collection of multi-point salt data.
  • the data acquisition system 2 further includes a temperature collection panel 23, as shown in FIG. 6, the temperature collection panel 23 is horizontally disposed in the soil sample in the middle of the first accommodation space 15, and the temperature collection panel 23 is composed of the inner ring 232 and the outer circle.
  • the ring 233 and the plurality of steel strands 234 are formed.
  • the steel strands 234 are respectively connected to the inner ring 232 and the outer ring 233.
  • the steel strands 234 are provided with six radially evenly distributed.
  • a plurality of temperature collecting elements 231 are evenly disposed on each of the steel strands 234, and each of the temperature collecting elements 231 can collect the temperature of one position, thereby realizing the collection of temperature data at different positions, by measuring the same circle.
  • Each temperature collecting component 231 is connected with a temperature data line 235, the outer edge of the outer ring 233 is provided with a third lead slot 236, the temperature data line 235 is disposed in the third lead slot 236, and all temperature collecting data lines are summarized.
  • the spring wire sleeve 237 is sleeved outside the temperature collecting data lines.
  • the temperature collecting data line is connected to the data line of the temperature data collecting device after passing through the first lead hole 124, and the temperature collecting device 24 dynamically collects the temperature data of the soil sample through the temperature collecting component 231, and the temperature collecting panel 23 can be inside the barrel 12.
  • the arrangement of the spring sleeve 237 can improve the resistance to the tensile damage of the temperature data line 235 and ensure the integrity of the temperature acquisition panel 23, thereby improving the reuse rate.
  • the temperature collecting element 231 is a thermocouple string made of constantan and copper wire.
  • the experimental apparatus further includes a hydraulic system 3 composed of an oil pressure control device 31, an oil pipe 32, and a hydraulic oil cylinder 33.
  • the oil pipe 32 is led out from the first lead groove 134 to the outside of the soil sample container 1 and is controlled by oil pressure.
  • the device 31 is in communication, and the hydraulic control device 31 supplies oil to the hydraulic cylinder 33 through the oil pipe 32, and the plurality of hydraulic cylinders 33 are disposed in the second accommodation space 16.
  • the top end of the hydraulic cylinder 33 is in contact with the data acquisition panel 21, and the hydraulic control device 31 can control the elevation of the hydraulic cylinder 33 through the oil pipe 32, and the lifting and lowering of the hydraulic cylinder 33 can push the data collection panel 21 up and down.
  • the hydraulic cylinder 33 is a multi-stage hydraulic cylinder 33, and the hydraulic cylinder 33 is provided with four, and the multi-stage hydraulic cylinder 33 takes up less space and can provide a larger push elevation.
  • cylinder slots 133 are disposed on the boss 132.
  • the bottom ends of the hydraulic cylinders 33 are respectively disposed in the cylinder slots 133.
  • the diameter of the cylinder slots 133 is slightly larger than the diameter of the bottom of the hydraulic cylinders 33, facilitating the installation of the hydraulic cylinders 33.
  • Fixed, the boss 132 can provide a greater push elevation for the hydraulic ram 33.
  • the freezing machine 41 includes a refrigerating device, a heating device, and a pumping device, and is capable of freezing or forcibly thawing the soil sample.
  • the bottom end of the freezer 44 is provided with a threaded end 443.
  • the freezer 44 is screwed to the freezer base 219 by a threaded end 443. After the freezer 44 is mounted on the base 219, the bottom end of the freezer 44 is in close contact with the base 219. To prevent the effect of insulation and to prevent the soil sample from falling.
  • the top end of the freezer 44 extends through the center hole 113 to the outside of the upper cover 11.
  • the freezer 44 is a sleeve structure, and the freezer 44 is composed of an inner tube 441 and an outer tube 442 sleeved on the outer circumference of the inner tube 441.
  • the bottom end of the outer tube 442 is closed, and the bottom and outer portions of the inner tube 441 are closed.
  • the bottom of the tube 442 is connected, the top end of the inner tube 441 is in communication with the liquid supply tube 42, the liquid return tube 43 is connected to the side wall of the upper portion of the outer tube 442, and the top end of the outer tube 442 is provided with a protruding ring 444 for blocking the outer tube 442.
  • the medium exchanges heat with the soil sample in the freezer 44, and then freezes or forcibly thaws the soil sample.
  • the liquid supply pipe 42 and the liquid return pipe 43 are disposed at one end of the freezing machine 41 with a control valve 45, and the control valve 45 is used for opening and
  • the liquid supply pipe 42 and the liquid return pipe 43 are closed, and one end of the liquid supply pipe 42 and the liquid return pipe 43 near the freezer 44 is provided with a manual regulating valve 46, and the liquid supply pipe 42 and the liquid return pipe 43 are provided with a flow meter 47.
  • the portion of the freezer 44 that extends beyond the upper cover 11 is provided with a thermal insulation sleeve 48.
  • the thermal insulation sleeve 48 is deformable to accommodate movement of the upper cover 11.
  • the medium is alcohol
  • the alcohol has a freezing point of -117.3 ° C and a boiling point of 78 ° C, which can simultaneously satisfy the requirements of high temperature or low temperature of the medium.
  • the inner tube 441 and the outer tube 442 are made of a copper tube, and the copper tube has good thermal conductivity and can improve the efficiency of freezing or forcibly thawing the soil sample.
  • the outer diameter of the freezer is 159 mm
  • the outer diameter of the freezer 44 is determined by the similarity ratio
  • the similarity ratio may be 1-20
  • the outer diameter of the outer tube 442 of the corresponding freezer may be 8 ⁇ 159mm
  • the similarity ratio of the freezer 44 should be consistent with the similarity ratio of the barrel 12, so the similarity ratio of the freezer 44 is 2
  • the outer diameter of the outer tube 442 of the corresponding freezer 44 is 80 mm
  • the outer diameter of the inner tube 441 For the outer diameter of the outer tube 442 Double (ie, the outer diameter of the inner tube 441 is 56 mm).
  • the experimental device further includes a displacement collecting device 27, the two displacement collecting devices are oppositely disposed on the upper surface of the upper cover, and the data collecting device is used to collect the upper cover 11 in the soil during the freezing of the soil sample
  • the amount of displacement under the action of frost heave is determined by averaging the data of the displacement dial gauge 271 to determine the final frost heave ratio.
  • the displacement collecting device 27 is composed of a displacement dial gauge 271, a displacement device base 272, a column 274, and a beam 275.
  • the column 274 is disposed at the top end of the cylinder 12 through the displacement device base 272.
  • the beam 275 is disposed in parallel with the upper cover 11.
  • the displacement dial gauge 271 is vertically disposed on the upper surface of the upper cover 11, the bottom end of the displacement dial 271 is abutted against the upper surface of the upper cover 11, and the displacement dial 271 is fixed to the beam 275 disposed by the knob bolt 273. The other end.
  • the displacement device base 272 is processed by a neodymium iron boron magnet, and the displacement device base 272 is adsorbed on the outer edge of the top end of the cylinder 12 by the strong adsorption force of the neodymium iron boron magnet, so that the installation is convenient for installation. And adjusting the beam 275 and the displacement dial gauge 271.
  • the invention also discloses an experimental method for artificial layer freezing using an artificial ground freezing experimental device for multi-parameter dynamic acquisition, comprising the following steps:
  • Installation inspection test equipment The location of the soil sample container 1 is detected by the level meter in advance, and the soil sample container 1 is placed on a horizontal floor, the upper cover 11 is removed, and the hydraulic control device 31 of the hydraulic system 3 is opened. The data acquisition panel 21 is pushed up by the hydraulic cylinder 33, the data acquisition panel 21 is raised to the top end of the soil sample container 1, and the moisture collection probe 223 and the salt collection probe 220 disposed on the data collection panel 21 are inspected and inspected. After the completion, the data collecting panel 21 is played back to the bottom position of the soil sample container 1 by controlling the hydraulic cylinder 33, and the freezer 44 is mounted on the freezer base 219 of the data collecting panel 21;
  • the flatness of the filling plane is adjusted and the soil sample filling is adjusted to the level of the plane according to the test result, and then the temperature collecting panel 23 is installed into the soil sample container 1, and the temperature data line 235 is taken out from the first lead hole 124, and is first
  • the gap of the lead hole 124 is sealed with epoxy resin, and the height of the filled soil sample is controlled by the scale line on the inner cylinder 122, and the soil sample is continuously filled to the position of the lower surface of the upper cover 11, and the horizontal plane is measured by the level meter.
  • the soil sample plane is adjusted to the level of the plane, and then the upper cover 11 is installed, and the level tester 116 is used to test whether the upper cover 11 is horizontal.
  • the displacement collecting device 27 is mounted thereon. On the upper surface of the cover 11.
  • step 1.2 Connecting the freezing tube: After the soil sample filling is completed in step 1.2), the heat insulating sleeve 48 is attached to the portion of the freezer 44 that extends out of the upper cover 11, and the inner tube 441 of the freezer 44 is connected to the freezing machine 41 through the liquid supply tube 42.
  • the outer tube 442 of the freezer communicates with the freezing machine 41 through the liquid return pipe 43, and the manual regulating valve 46 is attached to the one end of the liquid supply pipe 42 and the liquid return pipe 43 near the freezer 44, respectively, at one end near the freezing machine 41, respectively.
  • the temperature collecting component 231 is connected to the data line of the temperature collecting device 24 through the temperature data line 235, and the salt collecting component 213 is connected to the data line of the salt collecting device 26 through the salt data line 222 to collect moisture.
  • Element 214 is coupled to the data line of moisture collection device 25 via moisture data line 224;
  • the temperature monitoring data of the same lap obtained at the same time in a single test is screened, and the data that is different from other data is excluded, and the remaining correct temperature data is averaged as the temperature test data at the time and the position.
  • the temperature of different locations on the same plane is plotted as a graph of time, and the same method is used to sort out salt, moisture, and frost heave.
  • the soil of the soil sample may be various soils.
  • the soil of the soil sample is one of clay, sand and sandy clay, and the soil of clay, sand and sandy clay. It has a wide distribution range for the offshore area and can reflect the physical properties of the offshore stratum as a whole.
  • the moisture content of the soil sample is 0-40% (such as 0%, 10%, 20%, 30%, 40%), preferably, soil.
  • the moisture content is 20-40% (such as 20%, 25%, 30%, 35%, 40%).
  • the salt content of the aqueous solution in which the soil sample is disposed is 1% to 3% (for example, 1%, 2%, 3%).
  • step 1.3 the test time interval of the temperature collecting device 24 is 10 to 60 min, the test time interval of the moisture collecting device 25 and the salt collecting device 26 is 30 to 60 min, and the data collecting time interval of the displacement collecting device 27 is 30 to 60 min. ;
  • the hydraulic cylinder 33 has a pushing elevation of 5 to 20 cm each time.
  • the pushing elevation per time is preferably 10 cm.
  • an experimental device and an experimental method for artificial layer freezing of multi-parameter dynamic acquisition comprises a soil sample container, a data acquisition system, a hydraulic system and a freezing system, and the experimental device can freeze or forcibly thaw the soil sample of the artificial ground layer, During the freezing process, the data of multiple parameters such as water, salt, temperature and displacement of the soil sample can be dynamically collected.
  • the experimental device can simulate the test environment of the frozen salt formation in the offshore.
  • the freezing machine 41 lowers or raises the temperature of the medium and pumps the medium through the liquid supply pipe 42 to the freezer 44, and the freezer 44 exchanges heat with the soil sample, thereby freezing or forcibly thawing the soil sample, and completing the medium for heat exchange.
  • the circulation is completed by returning to the freezer 41 through the liquid return pipe 43.
  • the moisture collecting component 214, the salt collecting component 213 and the temperature collecting component 231 disposed in the soil sample dynamically collect data of moisture, salt and temperature of the soil sample, and the data are respectively transmitted to the moisture.
  • the collecting device 25, the salt collecting device 26 and the temperature collecting device 24 are arranged to dynamically collect the data of the frost heave rate of the soil sample with the displacement percentage table 271 of the upper surface of the upper cover 11. After the data is collected, the computer is responsible for the moisture, salt and temperature.
  • the data of frost heave rate are processed and plotted into a graph according to the law, which is used to study the freezing law of salted frozen soil and provide reference for the design and construction of freezing plan of coastal saline soil.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种多参数动态采集的人工地层冻结的实验装置。该实验装置包括土样容器(1)、数据采集***(2)、液压***(3)和冻结***(4),所述土样容器(1)包括上盖(11)、筒体(12)和底板(13),所述数据采集***(2)包括数据采集面板(21)、水分采集设备(214)和盐分采集设备(213),所述冻结***(4)包括冻结机(41)、供液管(42)、回液管(43)和冻结器(44),所述冻结机(41)用于产生以及泵送低温或高温介质,所述介质在所述冻结器(41)内与所述土样进行热量交换。该实验装置能够冻结或强制解冻人工地层的土样,在冻结过程中能够对土样的水分、盐分、温度以及位移等多个参数的数据进行动态采集,该实验装置能够模拟近海盐渍地层冻结的试验环境,用于研究盐渍冻土的冻结规律,为近海盐渍地层冻结方案设计与施工提供参考。一种上述实验方法进行多参数动态采集的方法。

Description

多参数动态采集的人工地层冻结的实验装置与实验方法 技术领域
本发明涉及人工地层冻结法领域,特别涉及一种多参数动态采集的人工地层冻结的实验装置与实验方法。
背景技术
人工地层冻结法是目前富水软土层地下工程施工的主要工法,该工法已经在我国的立井掘砌、隧道建设中得到了广泛的运用。近些年在我国东部沿海地区地铁隧道建设的过程中,遇到了大量近海盐渍地层,该地层具有盐分含量高、地下水活跃的特点,该处土体在冻结过程中伴随着水分迁移、盐分迁移、冻胀、盐胀等复杂的物理变化过程,导致冻土的物理力学参数与常规冻土之间存在较大的差异,而目前针对近海盐渍冻土缺乏***的试验研究。
冻土试块试验可以比较准确的反映试块的各种特性,但与实际工程的中土体的冻结规律存在较大的差别,试块试验提供的数据无法直观的为实际的工程提出指导;相似模型试验是对工程可行性分析的重要的试验手段,其试验结果的精度主要受限于试验模型与实际工程的相似比,相似比越大,模型对工程的还原度越高,试验结果对工程的参考价值越大。
发明内容
本发明的目的在于提供一种多参数动态采集的人工地层冻结的实验装置与实验方法。该实验装置能够冻结或强制解冻人工地层的土样,在冻结过程中能够对土样的水分、盐分、温度以及位移等多个参数的数据进行动态采集。
为了实现上述目的,本发明提供如下技术方案:
一种多参数动态采集的人工地层冻结的实验装置,所述实验装置能够冻结或强制解冻所述人工地层的土样,用于模拟近海盐渍地层冻结的试验环境,其特征在于,所述实验装置包括土样容器、数据采集***和冻结***,其中,所述土样容器包括上盖、筒体和底板,所述底板与所述筒体的底端固定连接, 所述上盖放置在所述筒体的顶端上,所述上盖、所述筒体和所述底板围成一个腔体,所述上盖能够上下移动,在所述上盖上设置有中心孔,所述筒体的侧壁上设置有多个第一引线孔;
所述数据采集***包括数据采集面板、水分采集设备和盐分采集设备,所述数据采集面板水平设置于所述腔体内并将所述腔体分割为第一容纳空间和第二容纳空间,所述第一容纳空间位于所述第二容纳空间的上方,所述第一容纳空间用于容纳所述土样,所述数据采集面板上设置有多个盐分采集元件和多个水分采集元件,所述水分采集设备通过所述水分采集元件动态采集所述土样的水分数据、所述盐分采集设备通过所述盐分采集元件动态采集所述土样的盐分数据,所述数据采集面板能够在所述腔体内上下移动;
所述冻结***包括冻结机、供液管、回液管和冻结器,所述冻结器竖向设置于所述第一容纳空间内,所述冻结器的底端与所述数据采集面板连接,所述冻结器的顶端通过所述中心孔延伸出所述土样容器外,所述冻结机分别通过所述供液管和所述回液管与所述冻结器的顶端相连,所述冻结机用于产生以及泵送低温或高温介质,所述冻结机、所述供液管、所述冻结器、所述回液管和所述冻结机依次连通形成用于所述介质的循环回路,所述介质在所述冻结器内与所述土样进行热量交换,用于实现冻结或强制解冻所述土样。
进一步地,在上述实验装置中,所述上盖为环形结构,所述上盖由内层盖板和外层盖板组合而成,所述内层盖板的材质为塑料,所述外层盖板的材质为金属,所述外层盖板设置在所述内层盖板的上表面上,所述内层盖板的下表面接触所述土样;优选地,所述内层盖板由多块扇环形内板连接而成,两块所述扇环形内板的连接处均设置有向上延伸的凸沿,所述凸沿延伸至外层盖板的上方,所述凸沿上均设置有多个螺栓孔,多个第一螺栓穿过多个所述螺栓孔将多块所述扇环形内板依次连接;优选地,所述外层盖板由多块扇环形外板构成,多块所述扇环形内板的上表面均设置有扇环形凹槽,多块所述扇环形外板嵌入所述扇环形凹槽内;优选地,所述内层盖板由两块所述扇环形内板构成;优选地,所述内层盖板的材质为聚氯乙烯;优选地,所述外层盖板的材质为铝合金;优选地,每块所述扇环形外板上均设置有第一凹槽,所述第一凹槽内设置有把手,所述把手与所述扇环形外板转动连接,所述第一凹槽内还设置有水平测试仪;优选地,所述上盖的外周设置有第一密封圈。
进一步地,在上述实验装置中,所述筒体包括外筒和设置于所述外筒内侧的内筒,所述内筒的材质为塑料,所述外筒的材质为金属,所述外筒的外壁上套设有多道环形的加劲肋,其中一个所述加劲肋上在同一高度等距设置有多个圆形的第二凹槽,所述第一引线孔设置在所述第二凹槽内,所述第一引线孔穿透所述加劲肋、所述外筒和所述内筒,所述第一引线孔的内壁设置有螺纹且能够安装塑料螺钉,所述内筒的内壁上设置有竖向的刻度线,所述内筒的内壁上设置有承重环,所述承重环用于承载所述数据采集面板;
所述底板上设置有第二引线孔,所述底板的外缘设置有多个螺纹孔,用于与所述筒体连接,所述底板上设置有凸台,所述底板的下表面设置有第一引线槽,所述第一引线槽经过所述第二引线孔;所述筒体的内直径为0.1~2m、深度为0.5~2m;优选地,所述筒体的内直径为1m、深度为1m;优选地,三道所述加劲肋分别设置于所述外筒的顶端、底端和中部;优选地,所述内筒的材质为聚氯乙烯;优选地,所述外筒的材质为铝合金;优选地,设置于所述筒体底端的所述加劲肋上设置有多个竖向的螺纹孔,多个第二螺栓穿过多个所述螺纹孔将所述筒体与所述底板固定连接。
进一步地,在上述实验装置中,所述数据采集面板由上层面板和下层面板构成,所述数据采集面板上设置有第三引线孔,所述上层面板的中心位置设置有冻结器底座,所述冻结器与所述冻结器底座连接,所述上层面板的外缘设置有多个第二密封圈,所述上层面板上沿半径方向设置有多个第二引线槽,每个所述第二引线槽上设置有多个元件布置孔位,每个所述元件布置孔位设置有一个盐分采集元件和一个水分采集元件,所述盐分采集元件由盐分采集探针、元件底座和盐分数据线组成,所述盐分采集探针设置于所述土样中,并通过所述元件底座固定设置在所述元件布置孔位内,所述盐分采集探针与所述盐分数据线连接,所述水分采集元件由水分采集探针、元件底座和水分数据线组成,所述水分采集探针设置于所述土样中,并通过所述元件底座固定设置在所述元件布置孔位内,所述水分采集探针与所述水分数据线连接,所述盐分数据线和所述水分数据线均布设于所述第二引线槽内并依次通过所述第三引线孔、所述第二容纳空间和所述第二引线孔引出至所述筒体外,所述盐分数据线与所述盐分采集设备的数据线连接、所述水分数据线与所述水分采集设备的数据线连接,优选地,在所述第二容纳空间内的所述盐分数 据线和所述水分数据线均设置为弹簧电缆;
优选地,所述上层面板的材质为塑料,所述下层面板的材质为金属,所述下层面板设置在所述上层面板的下表面的圆形凹槽内,优选地,所述第二密封圈设置有两个;优选地,所述上层面板的材质为聚氯乙烯;优选地,所述下层面板的材质为铝合金;优选地,每个所述第二引线槽上设置有五个所述元件布置孔位。
进一步地,在上述实验装置中,所述数据采集***还包括温度采集面板,所述温度采集面板水平设置于所述第一容纳空间中部的土样中,所述温度采集面板由内圆环、外圆环以及多根钢绞线构成,所述钢绞线分别与所述内圆环和所述外圆环连接,每根所述钢绞线上均匀设置有多个所述温度采集元件,每个所述温度采集元件均连接有温度数据线,所述外圆环的外缘设置有第三引线槽,所述温度数据线布设于所述第三引线槽中;所有的所述温度数据线在汇总后进入所述第一引线孔并在通过所述第一引线孔与所述温度采集设备的数据线相连接,汇总时由弹簧线套套设在所有的所述温度数据线外部,温度采集数据线穿过所述第一引线孔后与所述温度数据采集设备的数据线连接,所述温度采集设备通过所述温度采集元件动态采集所述土样的温度数据,所述温度采集面板能够在所述筒体内上下移动;优选地,所述钢绞线设置有六根,呈放射形均匀分布;优选地,所述温度采集元件为康铜与铜线制作而成的热电偶串。
进一步地,在上述实验装置中,还包括液压***,所述液压***由油压控制设备、油管和液压油缸构成,所述油压控制设备通过所述油管向所述液压油缸供油,多个所述液压油缸设置于所述第二容纳空间内,所述液压油缸的底端与所述底板连接,所述液压油缸的顶端与所述数据采集面板抵接,所述油压控制设备能够通过所述油管控制所述液压油缸的升降,所述液压油缸的升降能够推动所述数据采集面板升降,所述液压油缸为多级液压油缸;优选地,所述液压油缸设置有四个;优选地,在所述凸台上设置有多个油缸槽,所述液压油缸的底端分别设置在所述油缸槽内;优选地,所述油缸槽设置有四个。
进一步地,在上述实验装置中,所述冻结机包括制冷设备、制热设备以及泵送设备,能够实现冻结或强制解冻所述土样的功能;所述冻结器的底端 设置有螺纹端头,所述冻结器通过所述螺纹端头与所述冻结器底座螺纹连接,所述冻结器的顶端通过所述中心孔延伸至所述上盖外,所述冻结器为套管结构,所述冻结器由内管和套设于所述内管外周的外管组成,所述外管的外直径8~159mm,所述内管的外直径为所述外管的外直径的
Figure PCTCN2018090842-appb-000001
倍,所述外管的底端封闭,所述内管的底部和所述外管的底部连通,所述内管的顶端与所述供液管连通,所述回液管连接在所述外管的上段的侧壁上,所述外管的顶端设置有突出圆环,用于封堵所述外管;
所述供液管和所述回液管靠近所述冻结机的一端均设置有控制阀,用于所述供液管和所述回液管的开启与关闭,所述供液管和所述回液管靠近所述冻结器的一端均设置有手动调节阀,所述供液管和所述回液管上均设置有流量计,所述冻结器延伸出所述上盖外的部分设置有保温套;优选地,所述保温套能够变形以适应所述上盖的移动;优选地,所述介质为酒精;优选地,所述内管和所述外管材质为紫铜管;优选地,所述冻结器的外直径为80mm。
进一步地,在上述实验装置中,还包括位移采集装置,两个所述位移采集装置设置于所述上盖的上表面上,用于采集所述上盖在冻结所述土样过程中的位移量,所述位移采集装置由位移百分表、横梁、立柱和位移装置底座构成,所述立柱通过所述位移装置底座设置在所述筒体的顶端,所述横梁与所述上盖平行设置,所述横梁的一端套设于所述立柱上并通过旋钮螺栓进行固定,所述横梁能够沿所述立柱上下移动,所述位移百分表竖直设置于所述上盖上表面上,所述位移百分表的底端与所述上盖的上表面抵接,所述位移百分表通过旋钮螺栓固定设置在的所述横梁的另一端。
另一方面,本发明还提供了一种利用多参数动态采集的人工地层冻结的实验装置进行实验的方法,其特征在于,包括如下步骤:
1)试验准备:
1.1)安装检验试验设备:提前利用水平仪对土样容器安置地点进行检测,保证土样容器被放置在一个水平的地面上,移除上盖,开启液压***的油压控制设备,通过液压油缸推动数据采集面板上升,使数据采集面板上升至土样容器的顶端,并对设置于数据采集面板上的水分采集探针和盐分采集探针进行检验,检查完毕后通过控制液压油缸将数据采集面板回放到土样容器的底部位置,将冻结器安装到数据采集面板的冻结器底座上;
1.2)土样填充:步骤1.1)安装检验完成后,将土样分层填入土样容器中,当土样填充至与土样容器的第一引线孔水平时,用水平仪测试土样填充平面的平整度,调整土样填充直至该平面水平,随后将温度采集面板安装至土样容器内,将温度数据线从第一引线孔引出,并对第一引线孔的空隙进行密封,通过内筒上的刻度线对所填充的土样的高度进行控制,继续填充土样至上盖下表面所在位置,利用水平仪测试土样平面的平整度,调整土样平面直至该平面水平,然后安装上盖,并利用水平测试仪测试上盖是否水平,当上盖达到水平要求后,将位移采集装置安装至上盖的上表面上;
1.3)连接冻结管:在步骤1.2)土样填充完成后,在冻结器延伸出上盖的部分安装保温套,冻结器的内管通过供液管与冻结机连通,冻结器的外管通过回液管与冻结机连通,在供液管以及回液管上靠近冻结器的一端的分别安装手动调节阀、在靠近冻结机的一端分别安装控制阀、在手动调节阀与控制阀之间分别安装流量计;
1.4)数据采集***连接:将与温度采集元件通过温度数据线与温度采集设备的数据线进行连接,将盐分采集元件通过盐分数据线与盐分采集设备的数据线进行连接,将水分采集元件通过水分数据线与水分采集设备的数据线进行连接;
2)进行试验
2.1)开启冻结机的制冷设备,将介质的温度降低至-30℃;
2.2)分别开启供液管和回液管上的控制阀、手动调节阀,随后开启冻结机的泵送装置,根据流量计利用手动调节阀控制介质的流量;
2.3)开启温度采集设备、水分采集设备和盐分采集设备,分别对土样的温度、水分和盐分的数据进行自动采集,利用位移采集装置对土样的冻胀率进行手动采集;
2.4)当温度采集设备所采集的温度数据的值连续三次相同时,土样进入稳定冻结状态,停止泵送介质,关闭数据采集***;
2.5)利用冻结机的制冷设备将介质加热至40℃并泵送介质,对被冻土样进行强制解冻,利用温度采集设备对解冻情况进行监测,当土样温度达到0℃以上时解冻结束,关闭控制阀停止介质的循环,在对土样解冻过程中重复步骤(2.3),分别对土样的温度、水分、盐分和冻胀率的数据进行自动采集;
2.6)断开供液管和回液管与冻结器之间的连接,利用液压油缸推动数据采集面板向上移动,进而推动土体上移,当数据采集面板被推送至接近第一引线孔所在的平面位置时,清理土样容器内第一引线孔所在平面以上的土样,然后断开温度数据线与温度采集设备的数据线之间的连接,移除温度采集面板,将第一引线孔利用塑料螺钉进行封堵,然后通过液压油缸继续推送数据采集面板至土样容器的顶端,移除所有土样,并对数据采集面板进行清理,并对水分采集探针和盐分采集探针进行检验,检验完毕后通过控制液压油缸将数据采集面板回放到土样容器的底部位置;
2.7)更换土样,重复步骤1.2)-1.4)及步骤2),对另外一份的土样进行试验,并对其进行温度、水分、盐分和冻胀率的数据的自动采集;
3)试验数据的处理:
将单次试验同一时刻获得的同一圈径的温度监测数据进行筛选,剔除与其他数据差别较大的数据,对正确的数据取平均值,作为该时刻、该位置的温度测试数据,将同一个平面上的不同位置的温度随时间的变化规律绘制成曲线图,采取同样的方法对盐分、水分、冻胀进行整理。
进一步地,在利用上述实验装置进行的试验方法中,
在所述步骤1.2)中,所述土样的土质为黏土、砂土和砂质黏土中的一种,所述土样的含水率为0~40%,优选为20-40%;
在所述步骤1.2)中,配置所述土样的水溶液的含盐量为1%~3%;
在所述步骤1.3)中,温度采集设备的测试时间间隔为10~60min,水分采集设备以及盐分采集设备的测试时间间隔为30~60min,位移采集装置的数据采集时间间隔为30~60min;
在所述步骤2.6)中,液压油缸每次的推送高程为5~20cm。
分析可知,本发明公开一种多参数动态采集的人工地层冻结的实验装置与实验方法,该实验装置包括土样容器、数据采集***、液压***和冻结***,该实验装置能够冻结或强制解冻人工地层的土样,在冻结过程中能够对土样的水分、盐分、温度以及位移等多个参数的数据进行动态采集,该实验装置能够模拟近海盐渍地层冻结的试验环境,用于研究盐渍冻土的冻结规律,为近海盐渍地层冻结方案设计与施工提供参考。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。其中:
图1为本发明一实施例的结构示意图。
图2为本发明一实施例的上盖的俯视示意图。
图3为本发明一实施例的筒体的主视示意图。
图4为本发明一实施例的底板的俯视示意图。
图5为本发明一实施例的数据采集面板的俯视示意图。
图6为本发明一实施例的温度采集面板的俯视示意图。
图7为本发明一实施例的位移采集装置的结构示意图。
图8为本发明一实施例的冻结器的结构示意图。
图9为本发明一实施例的盐分采集元件和水分采集元件的装配示意图。
图10为图1的A处放大示意图。
图11为图1的B处放大示意图。
附图标记说明:1土样容器;11上盖;111内层盖板;112外层盖板;113中心孔;114凸沿;115第一螺栓;116水平测试仪;117第一凹槽;118把手;119第一密封圈;12筒体;121外筒;122内筒;123加劲肋;124第一引线孔;125第二凹槽;126塑料螺钉;127第二螺栓;128承重环;13底板;131第二引线孔;132凸台;133油缸槽;134第一引线槽;15第一容纳空间;16第二容纳空间;2数据采集***;21数据采集面板;211第二引线槽;212元件布置孔位;213盐分采集元件;214水分采集元件;215上层面板;216下层面板;217第二密封圈;218第三引线孔;219冻结器底座;220盐分采集探针;221元件底座;222盐分数据线;223水分采集探针;224水分数据线;23温度采集面板;231温度采集元件;232内圆环;233外圆环;234钢绞线;235温度数据线;236第三引线槽;237弹簧线套;24温度采集设备;25水分采集设备;26盐分采集设备;27位移采集装置;271位移百分表;272位移装置底座;273旋钮螺栓;274立柱;275横梁;3液压***;31油压控制设备;32油管;33液压油缸;4冻结***;41冻结机;42供液管;43回液管;44冻结器;441内管;442外管;443螺纹端头;444突出圆环;45 控制阀;46手动调节阀;47流量计;48保温套。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。各个示例通过本发明的解释的方式提供而非限制本发明。实际上,本领域的技术人员将清楚,在不脱离本发明的范围或精神的情况下,可在本发明中进行修改和变型。例如,示为或描述为一个实施例的一部分的特征可用于另一个实施例,以产生又一个实施例。因此,所期望的是,本发明包含归入所附权利要求及其等同物的范围内的此类修改和变型。
在本发明的描述中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“中”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。本发明中使用的术语“相连”、“连接”、“设置”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是直接相连,也可以通过中间部件间接相连;可以是有线电连接、无线电连接,也可以是无线通信信号连接,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
如图1至图11所示,根据本发明的实施例,提供了一种多参数动态采集的人工地层冻结的实验装置,实验装置能够冻结或强制解冻人工地层的土样,在冻结过程中能够对土样的水分、盐分、温度以及位移等多个参数的数据进行动态采集,该实验装置包括土样容器1、数据采集***2和冻结***4。
土样容器1为空心圆柱体结构,土样容器1包括上盖11、筒体12和底板13,底板13与筒体12的底端固定连接,上盖11放置在筒体12的顶端,上盖11、筒体12和底板13围成一个腔体,上盖11用于覆盖土样并能够上下移动,在上盖11的圆心处设置有中心孔113,筒体12的侧壁上设置有多个第一引线孔124。
数据采集***2包括数据采集面板21、水分采集设备25和盐分采集设备26,数据采集面板21水平设置于腔体内并将腔体分割为第一容纳空间15和第二容纳空间16,第一容纳空间15位于第二容纳空间16的上方,第一容纳空间15用于容纳土样。数据采集面板21上设置有多个盐分采集元件213 和多个水分采集元件214,水分采集设备25通过水分采集元件214动态采集土样的水分数据、盐分采集设备26通过盐分采集元件213动态采集土样的盐分数据,数据采集面板21能够在筒体12内上下移动。
冻结***4包括冻结机41、供液管42、回液管43和冻结器44,冻结器44竖向设置于第一容纳空间15的土样内,冻结器44的底端与数据采集面板21连接,冻结器44的顶端通过中心孔113延伸出土样容器1外,冻结机分别通过供液管42和回液管43与冻结器44的顶端相连,冻结机41用于产生以及泵送低温或高温的介质,冻结机41、供液管42、冻结器44、回液管43和冻结机依次连通形成用于介质的循环回路,冻结器44能够冻结或强制解冻土样。
具体地,冻结机41降低或升高介质的温度并通过供液管42将介质泵送至冻结器44中,冻结器44与土样进行热量交换,进而能够冻结或强制解冻土样,完成热量交换的介质通过回液管43回到冻结机41中,完成循环。在土样被冻结或强制解冻过程中,设置于土样中的水分采集元件214和盐分采集元件213动态采集土样的水分和盐分的数据,并将数据分别传输给水分采集设备25和盐分采集设备26,由计算机对数据进行处理并按规律绘制成曲线图,用于研究盐渍冻土的冻结规律,为近海盐渍地层冻结方案设计与施工提供参考。
进一步地,如图2所示,上盖11为环形结构,上盖11由内层盖板111和外层盖板112组合而成,内层盖板111的材质为塑料,外层盖板112的材质为金属,外层盖板112设置在内层盖板111的上表面上,内层盖板111的下表面接触土样。优选地,内层盖板111由多块扇环形内板连接而成,两块扇环形内板的连接处均设置有向上延伸的凸沿114,凸沿114延伸至外层盖板112的上方,凸沿114上均设置有多个螺栓孔,多个第一螺栓115穿过多个螺栓孔将多块扇环形内板依次连接。为了便于组装与拆卸,并减小因为上盖11的安装给土样造成的扰动,内层盖板111由两块扇环形内板构成。优选地,外层盖板由多块扇环形外板构成,多块扇环形内板的上表面均设置有扇环形凹槽,多块扇环形外板嵌入扇环形凹槽内。优选地,内层盖板111的材质为聚氯乙烯,聚氯乙烯最低承受温度达到-40℃,且保温效果良好。外层盖板112的材质为铝合金,铝合金抗变形能力好、密度较小且加工工艺简单。 优选地,每个凸沿114上的第一螺栓115设置有三个。优选地,上盖11由两块扇环形的内层盖板111构成。为了便于上盖11的安装以及拆卸,并且为了避免把手118为后续的元件安装造成不便。优选地,每块扇环形外板上均设置有第一凹槽117,第一凹槽117内设置有把手118,把手118与扇环形外板转动连接,把手118在不被使用时平放在第一凹槽117中,第一凹槽117内还设置有水平测试仪116,用于测量上盖11的水平度。
优选地,如图10所示,上盖11的外周设置有两个第一密封圈119,用于对上盖11与筒体12之间的缝隙进行密封,防止土样温度的流失。
进一步地,如图3所示,筒体12包括外筒121和设置于外筒121内侧的内筒122,外筒121的内壁与内筒122的外壁接触,内筒122的材质为塑料,外筒121的材质为金属,外筒121的外壁上套设有多道环形的加劲肋123,其中位于外筒121中部的一个加劲肋123上在同一高度等距设置有多个圆形的第二凹槽125,优选地设置有四个第二凹槽125。第一引线孔124设置在第二凹槽125内,第一引线孔124均穿透位于外筒121中部的加劲肋123、外筒121和内筒122。第一引线孔124的内壁设置有螺纹且能够安装塑料螺钉126,塑料螺钉126由螺杆和带有十字形凹槽的圆柱形端头构成,圆柱形端头的尺寸略小于第二凹槽125的开口,内筒122通过塑料螺钉126固定在外筒121内壁,如此设置能够防止在数据采集面板21推动土样上移的过程中内筒122发生移动。内筒122的内壁上设置有竖向的刻度线,用来控制土样的填充量。内筒122的靠近底端的内壁上设置有承重环128,承重环128卡接数据采集面板21,用于定位数据采集面板21以及辅助承重,防止数据采集面板21在下移的过程中下移量过大,并且辅助液压油缸33在试验过程中承重。优选地,加劲肋123设置有三根,分别设置于外筒121的顶端、底端和中部。优选地,内筒122的材质为聚氯乙烯、外筒121的材质为不锈钢。设置于筒体12底端的加劲肋123上设置有多个竖向的螺纹孔,多个第二螺栓127将筒体12与底板13固定连接;
在近海盐渍地层冻结工程中相邻冻结管的布置间距为1m左右,单根冻结管作用的最大直径为2m,为了实现对现场单管冻结过程的比较真实的再现,筒体12的直径由与实际工程的相似比决定,相似比可以为1~20,因此筒体12的内直径为0.1~2m,为了保证相似模型试验的效果,同时减小土方 换填的工作量,优选地,取相似比为2,对应筒体12的内直径为1m。筒体12的高度需要满足测试元件的布置空间要求,同时需要给冻结器44提供足够的作用深度,筒体12的深度为0.5~2m,为了减小土方的开挖量,同时减小盐分采集元件213、水分采集元件214和温度采集元件231的布置难度,优选地,筒体12的高度为1m。
进一步地,如图4所示,底板13圆心处设置有第二引线孔131,底板13的外缘均匀设置有多个螺纹孔,用于通过第二螺栓127将底板13与筒体12连接,优选地,螺纹孔的数量有六个。底板13上设置有凸台132,底板13的下表面沿直径方向设置有第一引线槽134。
进一步地,如图5所示,数据采集面板21由上层面板215和下层面板216构成,上层面板215的材质为塑料,优选为聚氯乙烯,下层面板216的材质为金属,优选为铝合金。下层面板216嵌入在上层面板215的下表面的圆形凹槽内,数据采集面板21上设置有第三引线孔218,上层面板215的中心位置设置有冻结器底座219,用于安装冻结器44。上层面板215上沿半径方向设置有多个第二引线槽211,优选为四个且围绕上层面板215的圆心均匀分布。每个第二引线槽211上设置有多个直径为2cm的元件布置孔位212,优选为五个且等距分布,每个元件布置孔位212设置有一个盐分采集元件213和一个水分采集元件214。
如图11所示,上层面板215的外缘设置有多个第二密封圈217,优选为两个,如此设置保证数据采集面板21与内筒122之间不会有缝隙,防止冻结实验过程中土样从缝隙掉落,影响实验效果。
如图9所示,盐分采集元件213由盐分采集探针220、元件底座221和盐分数据线222组成,盐分采集探针220设置于土样中,并通过元件底座221固定设置在元件布置孔位212内,盐分采集探针220穿过元件底座221与盐分数据线222连接。水分采集元件214由水分采集探针223、元件底座221和水分数据线224组成,水分采集探针223设置于土样中,并通过元件底座221固定设置在元件布置孔位212内,水分采集探针223穿过元件底座221与水分数据线224连接。
优选地,元件底座221为半圆形结构,盐分采集元件213的元件底座221与水分采集元件214的元件底座221组合在一起形成圆形结构并与元件布置 孔位212的形状相吻合。
盐分数据线222和水分数据线224均布设于第二引线槽211内并依次通过第三引线孔218、第二容纳空间16和第二引线孔131引出至筒体12外,盐分数据线222与盐分采集设备26的数据线连接、水分数据与水分采集设备25的数据线连接,其中在第二容纳空间16内的盐分数据线222和水分数据线224均设置为弹簧电缆,如此设置能够提高盐分数据线222和水分数据线224的抗拉扯破坏的能力,并保证数据采集面板21的完整性,从而提高了重复利用率。
水分采集元件214可采用元件底座221的直径小于元件布置孔位212的水分测试设备(即元件底座221的直径小于2cm),考虑到数据采集的便捷性以及对低温环境的适应性,水分采集设备25优选为TDR3000水分速测仪,TDR3000水分速测仪能够通过串行通信接口与计算机连接,可以实现对水分数据的自动采集,其采集温度的范围为-40~70℃,满足冻结实验的温度要求。
盐分采集元件213可采用元件底座221的直径小于元件布置孔位212的盐分测试设备(即元件底座221的直径小于2cm),考虑到数据采集的便捷性,盐分采集设备26优选为TZS-EC盐分含量采集设备,TZS-EC盐分含量采集设备能够与计算机连接实现对多点盐分数据的采集。
进一步地,数据采集***2还包括温度采集面板23,如图6所示,温度采集面板23水平设置于第一容纳空间15中部的土样中,温度采集面板23由内圆环232、外圆环233以及多根钢绞线234构成,钢绞线234分别与内圆环232和外圆环233连接,优选地钢绞线234设置有六根呈放射形均匀分布。每根钢绞线234上均匀设置有多个温度采集元件231,每个温度采集元件231可以采集一个位置的温度,以此来实现对不同位置温度数据的采集,通过对同一圈径上的测点的正常数据取平均值的方法提高数据的精确性。每个温度采集元件231均连接有温度数据线235,外圆环233的外缘设置有第三引线槽236,温度数据线235布设于第三引线槽236中,所有的温度采集数据线在汇总后进入第一引线孔124并在通过第一引线孔124后与温度数据采集设备的数据线连接,汇总时由将弹簧线套237套设在所有的温度采集数据线外部。温度采集数据线穿过第一引线孔124后与温度数据采集设备的数据线相连接,温度采集设备24通过温度采集元件231动态采集土样的温度数 据,温度采集面板23能够在筒体12内上下移动,弹簧线套237的设置可以给提高温度数据线235的抗拉扯破坏的能力,并保证了温度采集面板23的完整性,从而提高了重复利用率。优选地,温度采集元件231为康铜与铜线制作而成的热电偶串。
进一步地,该实验装置还包括液压***3,液压***3由油压控制设备31、油管32和液压油缸33构成,油管32由第一引线槽134引出到土样容器1外并与油压控制设备31连通,油压控制设备31通过油管32向液压油缸33供油,多个液压油缸33设置于第二容纳空间16内。液压油缸33顶端与数据采集面板21抵接,油压控制设备31能够通过油管32控制液压油缸33的升降,液压油缸33的升降能够推动数据采集面板21升降。
优选地,液压油缸33为多级液压油缸33,液压油缸33设置有四个,多级液压油缸33占用空间较小,并且能够提供较大的推送高程。
优选地,在凸台132上设置有四个油缸槽133,液压油缸33的底端分别设置在油缸槽133内,油缸槽133直径略为大于液压油缸33底部的直径,便于液压油缸33的安装与固定,凸台132能够为液压油缸33提供更大的推送高程。
进一步地,冻结机41包括制冷设备、制热设备以及泵送设备,能够实现冻结或强制解冻土样的功能。冻结器44的底端设置有螺纹端头443,冻结器44通过螺纹端头443与冻结器底座219螺纹连接,冻结器44安装到底座219上后,冻结器44的底端与底座219紧密接触,防止影响保温效果以及防止土样掉落。冻结器44的顶端通过中心孔113延伸至上盖11外。
如图8所示,冻结器44为套管结构,冻结器44由内管441和套设于内管441外周的外管442组成,外管442的底端封闭,内管441的底部和外管442的底部连通,内管441的顶端与供液管42连通,回液管43连接在外管442上段的侧壁上,外管442的顶端设置有突出圆环444,用于封堵外管442。
介质在冻结器44中与土样进行热量交换,进而冻结或强制解冻土样,供液管42和回液管43靠近冻结机41的一端均设置有控制阀45,控制阀45用于开启与关闭供液管42和回液管43,供液管42和回液管43靠近冻结器44的一端均设置有手动调节阀46,供液管42和回液管43上均设置有流量计47。冻结器44延伸出上盖11外的部分设置有保温套48,优选地,保温套48能 够变形以适应上盖11的移动。优选地,介质为酒精,酒精的冰点为-117.3℃,沸点达为78℃,能够同时满足介质的高温或低温的要求。优选地,内管441和外管442材质均为紫铜管,紫铜管的导热性能较好,能够提高冻结或强制解冻土样的效率。
在近海盐渍地层冻结工程中冻结器的外直径为159mm,冻结器44的外直径由相似比确定,相似比可以为1~20,对应的冻结器的外管442的外直径可以为8~159mm,冻结器44的相似比应与筒体12的相似比保持一致,因此冻结器44的相似比取2,对应的冻结器44的外管442的外直径为80mm,内管441的外直径为外管442外直径的
Figure PCTCN2018090842-appb-000002
倍(即内管441的外直径为56mm)。
进一步地,该实验装置还包括位移采集装置27,两个所述位移采集装置相对设置于所述上盖的上表面上,在冻结土样过程中移数据采集装置用于采集上盖11在土样冻胀作用下的位移量,通过位移百分表271的数据取平均值的方法来确定最终的冻胀率。如图7所示,位移采集装置27由位移百分表271、位移装置底座272、立柱274和横梁275构成。立柱274通过位移装置底座272设置在筒体12的顶端,横梁275与上盖11平行设置,横梁275的一端套设于立柱274上并通过旋钮螺栓273进行固定,横梁275能够沿立柱274上下移动,位移百分表271竖直设置于上盖11上表面上,位移百分表271的底端与上盖11的上表面抵接,位移百分表271通过旋钮螺栓273固定设置在的横梁275的另一端。
优选地,位移装置底座272由钕铁硼磁铁加工而成,通过钕铁硼磁铁超强的吸附力,使位移装置底座272被吸附在筒体12的顶端的外缘上,如此设置,便于安装和调整横梁275和位移百分表271。
本发明还公开了一种利用多参数动态采集的人工地层冻结的实验装置进行人工地层冻结的实验方法,包括如下步骤:
1)试验准备:
1.1)安装检验试验设备:提前利用水平仪对土样容器1安置地点进行检测,保证土样容器1被放置在一个水平的地面上,移除上盖11,开启液压***3的油压控制设备31,通过液压油缸33推动数据采集面板21上升,使数据采集面板21上升至土样容器1的顶端,对设置于数据采集面板21上的水 分采集探针223和盐分采集探针220进行检验,检查完毕后通过控制液压油缸33将数据采集面板21回放到土样容器1的底部位置,将冻结器44安装到数据采集面板21的冻结器底座219上;
1.2)土样填充:步骤1.1)安装检验完成后,将土样分层填入土样容器1中,当土样填充至与土样容器1的第一引线孔124水平时,用水平仪测试土样填充平面的平整度并根据测试结果调整土样填充直至该平面水平,随后将温度采集面板23安装至土样容器1内,将温度数据线235从第一引线孔124引出,并对第一引线孔124的空隙用环氧树脂进行密封,通过内筒122上的刻度线对所填充的土样的高度进行控制,继续填充土样至上盖11下表面所在位置,利用水平仪测量土样平面的平整度并根据测试结果,调整土样平面直至该平面水平,然后安装上盖11,利用水平测试仪116测试上盖11是否水平,当上盖11达到水平要求后,将位移采集装置27安装至上盖11的上表面上。
1.3)连接冻结管:在步骤1.2)土样填充完成后,在冻结器44延伸出上盖11的部分安装保温套48,冻结器44的内管441通过供液管42与冻结机41连通,冻结器的外管442通过回液管43与冻结机41连通,在供液管42以及回液管43上靠近冻结器44的一端的分别安装手动调节阀46、在靠近冻结机41的一端分别安装控制阀45、在手动调节阀46与控制阀45之间分别安装流量计47;
1.4)数据线连接:温度采集元件231通过温度数据线235与温度采集设备24的数据线进行连接,将盐分采集元件213通过盐分数据线222与盐分采集设备26的数据线进行连接,将水分采集元件214通过水分数据线224与水分采集设备25的数据线进行连接;
2)进行试验
2.1)开启冻结机的制冷设备,将介质的温度降低至-30℃;
2.2)分别开启供液管42和回液管43上的控制阀45、手动调节阀46,随后开启冻结机41的泵送装置,根据流量计47利用手动调节阀46控制介质的流量;
2.3)开启温度采集设备24、水分采集设备25和盐分采集设备26,分别对土样的温度、水分和盐分的数据进行自动采集,利用位移采集装置27对土 样的冻胀率进行手动采集;
2.4)当温度采集设备24所采集的温度数据的值连续三次相同时,土样进入稳定冻结状态,停止泵送介质;
2.5)利用冻结机41的制冷设备将介质加热至40℃并泵送介质,对被冻土样进行强制解冻,利用温度采集设备24对解冻情况进行监测,当土样温度达到0℃以上时强制解冻结束,关闭控制阀45停止介质的循环,在对土样解冻过程中重复步骤(2.3),分别对土样的温度、水分、盐分和冻胀率的数据进行自动采集;
2.6)断开供液管42和回液管43与冻结器44之间的连接,利用液压油缸33推动数据采集面板21向上移动,进而推动土体上移,当数据采集面板21被推送至接近第一引线孔124所在的平面位置时,清理土样容器1内第一引线孔124所在平面以上的土样,然后断开温度数据线235与温度采集设备24的数据线之间的连接,移除温度采集面板23,将第一引线孔124利用塑料螺钉126进行封堵,然后通过液压油缸33继续推送数据采集面板21至土样容器1的顶端,移除所有土样并对数据采集面板21进行清理,对水分采集探针223和盐分采集探针220进行检验,检验完毕后通过控制液压油缸33将数据采集面板21回放到土样容器1的底部位置;
2.7)更换土样,重复步骤1.2)-1.4)及步骤2),并对其进行温度、水分、盐分和冻胀率的数据的自动采集,直至所有土样全部测试完成;
3)试验数据的处理:
将单次试验同一时刻获得的同一圈径的温度监测数据进行筛选,剔除与其他数据差别较大的数据,对剩余正确的温度数据取平均值,作为该时刻、该位置的温度测试数据,将同一个平面上的不同位置的温度随时间的变化规律绘制成曲线图,采取同样的方法对盐分、水分、冻胀进行整理。通过对数据的整理总结盐渍土层的冻结规律,为盐渍地层冻结法施工冻结方案的设计提出指导建议。
进一步地,在步骤1.2)中,土样的土质可以为各种土质,优选地,土样的土质为黏土、砂土和砂质黏土中的一种,黏土、砂土和砂质黏土的土质为近海区域分布范围较广,可以从总体上反应近海地层物理特性,土样的含水率为0~40%(比如0%、10%、20%、30%、40%),优选地,土样的含水率 为20-40%(比如20%、25%、30%、35%、40%)。
配置土样的水溶液的含盐量为1%~3%(比如1%、2%、3%)。
在步骤1.3)中,温度采集设备24的测试时间间隔为10~60min,水分采集设备25以及盐分采集设备26的测试时间间隔为30~60min,位移采集装置27的数据采集时间间隔为30~60min;
在步骤2.6)中,液压油缸33每次的推送高程为5~20cm,为了提高工作效率,同时保证操作的精度,每次的推送高程优选为10cm。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
一种多参数动态采集的人工地层冻结的实验装置与实验方法,该实验装置包括土样容器、数据采集***、液压***和冻结***,该实验装置能够冻结或强制解冻人工地层的土样,在冻结过程中能够对土样的水分、盐分、温度以及位移等多个参数的数据进行动态采集,该实验装置能够模拟近海盐渍地层冻结的试验环境。
冻结机41降低或升高介质的温度并通过供液管42将介质泵送至冻结器44中,冻结器44与土样进行热量交换,进而能够冻结或强制解冻土样,完成热量交换的介质通过回液管43回到冻结机41中,完成循环。在土样被冻结或强制解冻过程中,设置于土样中的水分采集元件214、盐分采集元件213和温度采集元件231动态采集土样的水分、盐分和温度的数据,数据被分别传输给水分采集设备25、盐分采集设备26和温度采集设备24,设置与上盖11上表面的位移百分表271动态采集土样冻胀率的数据,数据采集完成后,由计算机对水分、盐分、温度和冻胀率的数据进行处理并按规律绘制成曲线图,用于研究盐渍冻土的冻结规律,为近海盐渍地层冻结方案设计与施工提供参考。
以上所述仅为本发明的优选实施例,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种多参数动态采集的人工地层冻结的实验装置,所述实验装置能够冻结或强制解冻所述人工地层的土样,用于模拟近海盐渍地层冻结的试验环境,其特征在于,所述实验装置包括土样容器、数据采集***和冻结***,其中,
    所述土样容器包括上盖、筒体和底板,所述底板与所述筒体的底端固定连接,所述上盖放置在所述筒体的顶端上,所述上盖、所述筒体和所述底板围成一个腔体,所述上盖能够上下移动,在所述上盖上设置有中心孔,所述筒体的侧壁上设置有多个第一引线孔;
    所述数据采集***包括数据采集面板、水分采集设备和盐分采集设备,所述数据采集面板水平设置于所述腔体内并将所述腔体分割为第一容纳空间和第二容纳空间,所述第一容纳空间位于所述第二容纳空间的上方,所述第一容纳空间用于容纳所述土样,所述数据采集面板上设置有多个盐分采集元件和多个水分采集元件,所述水分采集设备通过所述水分采集元件动态采集所述土样的水分数据、所述盐分采集设备通过所述盐分采集元件动态采集所述土样的盐分数据,所述数据采集面板能够在所述腔体内上下移动;
    所述冻结***包括冻结机、供液管、回液管和冻结器,所述冻结器竖向设置于所述第一容纳空间内,所述冻结器的底端与所述数据采集面板连接,所述冻结器的顶端通过所述中心孔延伸出所述土样容器外,所述冻结机分别通过所述供液管和所述回液管与所述冻结器的顶端相连,所述冻结机用于产生以及泵送低温或高温介质,所述冻结机、所述供液管、所述冻结器、所述回液管和所述冻结机依次连通形成用于所述介质的循环回路,所述介质在所述冻结器内与所述土样进行热量交换,用于实现冻结或强制解冻所述土样。
  2. 根据权利要求1所述的实验装置,其特征在于,所述上盖为环形结构,所述上盖由内层盖板和外层盖板组合而成,所述内层盖板的材质为塑料,所述外层盖板的材质为金属,所述外层盖板设置在所述内层盖板的上表面上,所述内层盖板的下表面接触所述土样;
    优选地,所述内层盖板由多块扇环形内板连接而成,两块所述扇环形内板的连接处均设置有向上延伸的凸沿,所述凸沿延伸至外层盖板的上方,所 述凸沿上均设置有多个螺栓孔,多个第一螺栓穿过多个所述螺栓孔将多块所述扇环形内板依次连接;
    优选地,所述外层盖板由多块扇环形外板构成,多块所述扇环形内板的上表面均设置有扇环形凹槽,多块所述扇环形外板嵌入所述扇环形凹槽内;
    优选地,所述内层盖板由两块所述扇环形内板构成;
    优选地,所述内层盖板的材质为聚氯乙烯;
    优选地,所述外层盖板的材质为铝合金;
    优选地,每块所述扇环形外板上均设置有第一凹槽,所述第一凹槽内设置有把手,所述把手与所述扇环形外板转动连接,所述第一凹槽内还设置有水平测试仪;
    优选地,所述上盖的外周设置有第一密封圈。
  3. 根据权利要求1所述的实验装置,其特征在于,所述筒体包括外筒和设置于所述外筒内侧的内筒,所述内筒的材质为塑料,所述外筒的材质为金属,所述外筒的外壁上套设有多道环形的加劲肋,其中一个所述加劲肋上在同一高度等距设置有多个圆形的第二凹槽,所述第一引线孔设置在所述第二凹槽内,所述第一引线孔穿透所述加劲肋、所述外筒和所述内筒,所述第一引线孔的内壁设置有螺纹且能够安装塑料螺钉,所述内筒的内壁上设置有竖向的刻度线,所述内筒的内壁上设置有承重环,所述承重环用于承载所述数据采集面板;
    所述底板上设置有第二引线孔,所述底板的外缘设置有多个螺纹孔,用于与所述筒体连接,所述底板上设置有凸台,所述底板的下表面设置有第一引线槽,所述第一引线槽经过所述第二引线孔;
    所述筒体的内直径为0.1~2m、深度为0.5~2m;
    优选地,所述筒体的内直径为1m、深度为1m;
    优选地,三道所述加劲肋分别设置于所述外筒的顶端、底端和中部;
    优选地,所述内筒的材质为聚氯乙烯;
    优选地,所述外筒的材质为铝合金;
    优选地,设置于所述筒体底端的所述加劲肋上设置有多个竖向的螺纹孔,多个第二螺栓穿过多个所述螺纹孔将所述筒体与所述底板固定连接。
  4. 根据权利要求1所述的实验装置,其特征在于,
    所述数据采集面板由上层面板和下层面板构成,所述数据采集面板上设置有第三引线孔,所述上层面板的中心位置设置有冻结器底座,所述冻结器与所述冻结器底座连接,所述上层面板的外缘设置有多个第二密封圈,所述上层面板上沿半径方向设置有多个第二引线槽,每个所述第二引线槽上设置有多个元件布置孔位,每个所述元件布置孔位设置有一个盐分采集元件和一个水分采集元件,
    所述盐分采集元件由盐分采集探针、元件底座和盐分数据线组成,所述盐分采集探针设置于所述土样中,并通过所述元件底座固定设置在所述元件布置孔位内,所述盐分采集探针与所述盐分数据线连接,
    所述水分采集元件由水分采集探针、元件底座和水分数据线组成,所述水分采集探针设置于所述土样中,并通过所述元件底座固定设置在所述元件布置孔位内,所述水分采集探针与所述水分数据线连接,
    所述盐分数据线和所述水分数据线均布设于所述第二引线槽内并依次通过所述第三引线孔、所述第二容纳空间和所述第二引线孔引出至所述筒体外,所述盐分数据线与所述盐分采集设备的数据线连接、所述水分数据线与所述水分采集设备的数据线连接,
    优选地,在所述第二容纳空间内的所述盐分数据线和所述水分数据线均设置为弹簧电缆;
    优选地,所述上层面板的材质为塑料,所述下层面板的材质为金属,所述下层面板设置在所述上层面板的下表面的圆形凹槽内,
    优选地,所述第二密封圈设置有两个;
    优选地,所述上层面板的材质为聚氯乙烯;
    优选地,所述下层面板的材质为铝合金;
    优选地,每个所述第二引线槽上设置有五个所述元件布置孔位。
  5. 根据权利要求1所述的实验装置,其特征在于,
    所述数据采集***还包括温度采集面板,所述温度采集面板水平设置于所述第一容纳空间中部的土样中,所述温度采集面板由内圆环、外圆环以及 多根钢绞线构成,所述钢绞线分别与所述内圆环和所述外圆环连接,每根所述钢绞线上均匀设置有多个所述温度采集元件,每个所述温度采集元件均连接有温度数据线,所述外圆环的外缘设置有第三引线槽,所述温度数据线布设于所述第三引线槽中;
    所有的所述温度数据线在汇总后进入所述第一引线孔并在通过所述第一引线孔与所述温度采集设备的数据线相连接,汇总时由弹簧线套套设在所有的所述温度数据线外部,温度采集数据线穿过所述第一引线孔后与所述温度数据采集设备的数据线连接,所述温度采集设备通过所述温度采集元件动态采集所述土样的温度数据,所述温度采集面板能够在所述筒体内上下移动;
    优选地,所述钢绞线设置有六根,呈放射形均匀分布;
    优选地,所述温度采集元件为康铜与铜线制作而成的热电偶串。
  6. 根据权利要求1所述的实验装置,其特征在于,还包括液压***,所述液压***由油压控制设备、油管和液压油缸构成,所述油压控制设备通过所述油管向所述液压油缸供油,多个所述液压油缸设置于所述第二容纳空间内,所述液压油缸的底端与所述底板连接,所述液压油缸的顶端与所述数据采集面板抵接,所述油压控制设备能够通过所述油管控制所述液压油缸的升降,所述液压油缸的升降能够推动所述数据采集面板升降,所述液压油缸为多级液压油缸;
    优选地,所述液压油缸设置有四个;
    优选地,在所述凸台上设置有多个油缸槽,所述液压油缸的底端分别设置在所述油缸槽内;
    优选地,所述油缸槽设置有四个。
  7. 根据权利要求1所述的实验装置,其特征在于,
    所述冻结机包括制冷设备、制热设备以及泵送设备,能够实现冻结或强制解冻所述土样的功能;
    所述冻结器的底端设置有螺纹端头,所述冻结器通过所述螺纹端头与所述冻结器底座螺纹连接,所述冻结器的顶端通过所述中心孔延伸至所述上盖外,所述冻结器为套管结构,所述冻结器由内管和套设于所述内管外周的外 管组成,所述外管的外直径8~159mm,所述内管的外直径为所述外管的外直径的
    Figure PCTCN2018090842-appb-100001
    倍,所述外管的底端封闭,所述内管的底部和所述外管的底部连通,所述内管的顶端与所述供液管连通,所述回液管连接在所述外管的上段的侧壁上,所述外管的顶端设置有突出圆环,用于封堵所述外管;
    所述供液管和所述回液管靠近所述冻结机的一端均设置有控制阀,用于所述供液管和所述回液管的开启与关闭,所述供液管和所述回液管靠近所述冻结器的一端均设置有手动调节阀,所述供液管和所述回液管上均设置有流量计,所述冻结器延伸出所述上盖外的部分设置有保温套;
    优选地,所述保温套能够变形以适应所述上盖的移动;
    优选地,所述介质为酒精;
    优选地,所述内管和所述外管材质为紫铜管;
    优选地,所述冻结器的外直径为80mm。
  8. 根据权利要求1所述的实验装置,其特征在于,还包括位移采集装置,两个所述位移采集装置设置于所述上盖的上表面上,用于采集所述上盖在冻结所述土样过程中的位移量,所述位移采集装置由位移百分表、横梁、立柱和位移装置底座构成,所述立柱通过所述位移装置底座设置在所述筒体的顶端,所述横梁与所述上盖平行设置,所述横梁的一端套设于所述立柱上并通过旋钮螺栓进行固定,所述横梁能够沿所述立柱上下移动,所述位移百分表竖直设置于所述上盖上表面上,所述位移百分表的底端与所述上盖的上表面抵接,所述位移百分表通过旋钮螺栓固定设置在的所述横梁的另一端。
  9. 利用权利要求1至8中任一项的实验装置进行多参数动态采集的人工地层冻结的实验方法,其特征在于,包括如下步骤:
    1)试验准备:
    1.1)安装检验试验设备:提前利用水平仪对土样容器安置地点进行检测,保证土样容器被放置在一个水平的地面上,移除上盖,开启液压***的油压控制设备,通过液压油缸推动数据采集面板上升,使数据采集面板上升至土样容器的顶端,并对设置于数据采集面板上的水分采集探针和盐分采集探针进行检验,检查完毕后通过控制液压油缸将数据采集面板回放到土样容器的 底部位置,将冻结器安装到数据采集面板的冻结器底座上;
    1.2)土样填充:步骤1.1)安装检验完成后,将土样分层填入土样容器中,当土样填充至与土样容器的第一引线孔水平时,用水平仪测试土样填充平面的平整度,调整土样填充直至该平面水平,随后将温度采集面板安装至土样容器内,将温度数据线从第一引线孔引出,并对第一引线孔的空隙进行密封,通过内筒上的刻度线对所填充的土样的高度进行控制,继续填充土样至上盖下表面所在位置,利用水平仪测试土样平面的平整度,调整土样平面直至该平面水平,然后安装上盖,并利用水平测试仪测试上盖是否水平,当上盖达到水平要求后,将位移采集装置安装至上盖的上表面上;
    1.3)连接冻结管:在步骤1.2)土样填充完成后,在冻结器延伸出上盖的部分安装保温套,冻结器的内管通过供液管与冻结机连通,冻结器的外管通过回液管与冻结机连通,在供液管以及回液管上靠近冻结器的一端的分别安装手动调节阀、在靠近冻结机的一端分别安装控制阀、在手动调节阀与控制阀之间分别安装流量计;
    1.4)数据采集***连接:将与温度采集元件通过温度数据线与温度采集设备的数据线进行连接,将盐分采集元件通过盐分数据线与盐分采集设备的数据线进行连接,将水分采集元件通过水分数据线与水分采集设备的数据线进行连接;
    2)进行试验
    2.1)开启冻结机的制冷设备,将介质的温度降低至-30℃;
    2.2)分别开启供液管和回液管上的控制阀、手动调节阀,随后开启冻结机的泵送装置,根据流量计利用手动调节阀控制介质的流量;
    2.3)开启温度采集设备、水分采集设备和盐分采集设备,分别对土样的温度、水分和盐分的数据进行自动采集,利用位移采集装置对土样的冻胀率进行手动采集;
    2.4)当温度采集设备所采集的温度数据的值连续三次相同时,土样进入稳定冻结状态,停止泵送介质,关闭数据采集***;
    2.5)利用冻结机的制冷设备将介质加热至40℃并泵送介质,对被冻土样进行强制解冻,利用温度采集设备对解冻情况进行监测,当土样温度达到0度以上时解冻结束,关闭控制阀停止介质的循环,在对土样解冻过程中重复 步骤(2.3),分别对土样的温度、水分、盐分和冻胀率的数据进行自动采集;
    2.6)断开供液管和回液管与冻结器之间的连接,利用液压油缸推动数据采集面板向上移动,进而推动土体上移,当数据采集面板被推送至接近第一引线孔所在的平面位置时,清理土样容器内第一引线孔所在平面以上的土样,然后断开温度数据线与温度采集设备的数据线之间的连接,移除温度采集面板,将第一引线孔利用塑料螺钉进行封堵,然后通过液压油缸继续推送数据采集面板至土样容器的顶端,移除所有土样,并对数据采集面板进行清理,并对水分采集探针和盐分采集探针进行检验,检验完毕后通过控制液压油缸将数据采集面板回放到土样容器的底部位置;
    2.7)更换土样,重复步骤1.2)-1.4)及步骤2),对另外一份的土样进行试验,并对其进行温度、水分、盐分和冻胀率的数据的自动采集;
    3)试验数据的处理:
    将单次试验同一时刻获得的同一圈径的温度监测数据进行筛选,剔除与其他数据差别较大的数据,对正确的数据取平均值,作为该时刻、该位置的温度测试数据,将同一个平面上的不同位置的温度随时间的变化规律绘制成曲线图,采取同样的方法对盐分、水分、冻胀进行整理。
  10. 根据权利要求9所述的实验方法,其特征在于,
    在所述步骤1.2)中,所述土样的土质为黏土、砂土和砂质黏土中的一种,所述土样的含水率为0~40%,优选为20-40%;
    在所述步骤1.2)中,配置所述土样的水溶液的含盐量为1%~3%;
    在所述步骤1.3)中,温度采集设备的测试时间间隔为10~60min,水分采集设备以及盐分采集设备的测试时间间隔为30~60min,位移采集装置的数据采集时间间隔为30~60min;
    在所述步骤2.6)中,液压油缸每次的推送高程为5~20cm。
PCT/CN2018/090842 2018-05-23 2018-06-12 多参数动态采集的人工地层冻结的实验装置与实验方法 WO2019214007A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018560773A JP6745497B2 (ja) 2018-05-23 2018-06-12 マルチパラメータ動的採取可能な人工地層凍結の実験装置及び実験方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810502702.8 2018-05-23
CN201810502702.8A CN108956937B (zh) 2018-05-23 2018-05-23 多参数动态采集的人工地层冻结的实验装置与实验方法

Publications (1)

Publication Number Publication Date
WO2019214007A1 true WO2019214007A1 (zh) 2019-11-14

Family

ID=64499492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090842 WO2019214007A1 (zh) 2018-05-23 2018-06-12 多参数动态采集的人工地层冻结的实验装置与实验方法

Country Status (3)

Country Link
JP (1) JP6745497B2 (zh)
CN (1) CN108956937B (zh)
WO (1) WO2019214007A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033993A (zh) * 2020-08-20 2020-12-04 北京中煤矿山工程有限公司 定量动态模拟地下水补给的管幕冻结相似模拟试验装置
CN112629993A (zh) * 2021-01-28 2021-04-09 东北电力大学 用于土壤冻结试验的冷冻装置及以其制备冻土模型的方法
CN113405937A (zh) * 2021-06-15 2021-09-17 西南交通大学 一种隧道周围土体冻胀率测试装置
CN113607919A (zh) * 2021-07-29 2021-11-05 海南大学 一种冻胀融沉试验装置
CN113671151A (zh) * 2021-07-27 2021-11-19 西安科技大学 一种冰碛土聚冰演化过程室内模型试验***
CN114910507A (zh) * 2022-05-11 2022-08-16 中国科学院西北生态环境资源研究院 土样冻结测试方法及相关设备
CN115343324A (zh) * 2022-10-18 2022-11-15 北京建筑大学 用于冻胀融沉测试的装置
CN115876975A (zh) * 2022-11-23 2023-03-31 山东大学 一种高温富水隧道液氮降温物理模拟试验装置及方法
CN116223505A (zh) * 2023-05-09 2023-06-06 深圳市长勘勘察设计有限公司 土质检测分析仪器
CN117054315A (zh) * 2023-10-13 2023-11-14 东北林业大学 一种冻土渗透系数测量***
CN117949640A (zh) * 2024-03-27 2024-04-30 中国科学院地理科学与资源研究所 一种冻土退化过程的室内模拟试验装置
US12031971B2 (en) 2022-05-11 2024-07-09 Northwest Institute Of Eco-Environment And Resources, Chinese Academy Of Sciences Method for testing frost susceptibility of soils and associated apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108956937B (zh) * 2018-05-23 2020-05-12 安徽理工大学 多参数动态采集的人工地层冻结的实验装置与实验方法
CN109374463A (zh) * 2018-12-10 2019-02-22 中铁第勘察设计院集团有限公司 水平冻结法冻胀融沉受力实验模拟装置
CN109540959A (zh) * 2018-12-25 2019-03-29 武汉市市政建设集团有限公司 富水粉细砂地层冻结法施工效果模拟***及方法
CN109765259B (zh) * 2019-01-18 2021-05-25 安徽建筑大学 一种基于土壤水盐变化确定冻土上限变化规律方法及装置
CN109668923B (zh) * 2019-01-18 2021-05-28 安徽建筑大学 一种冻土上限变化规律测试方法
CN109945928B (zh) * 2019-04-08 2020-11-17 兰州理工大学 一种实现水热力耦合作用的盐冻胀测试仪
CN111735846B (zh) * 2020-07-16 2023-03-24 安徽理工大学 一种围压作用下材料保温隔冷性能试验装置及试验方法
CN111855735B (zh) * 2020-08-06 2021-06-22 兰州理工大学 一种盐溶液盐胀及冻胀高效、精准测量装置
CN113602496B (zh) * 2021-09-06 2023-11-07 安徽理工大学 一种卫星导航定位无人机装载微型监测设备
CN113668500A (zh) * 2021-09-15 2021-11-19 中国建筑第八工程局有限公司 用于人工地层冻结的冻结器
CN115266810B (zh) * 2022-08-03 2023-05-05 哈尔滨工业大学 一种热棒路基冻胀试验装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520003A (zh) * 2011-11-29 2012-06-27 中国科学院寒区旱区环境与工程研究所 环境温度梯度式冻融过程试验装置
CN102636630A (zh) * 2012-03-29 2012-08-15 中国地质大学(武汉) 大型包气带土壤非饱和渗流物理模拟装置
CN103743771A (zh) * 2013-12-04 2014-04-23 新疆农业大学 一种适用于天然盐渍土的冻融循环检测装置
CN106053522A (zh) * 2016-07-13 2016-10-26 东华理工大学 渗流冻结试验装置
CN107024498A (zh) * 2017-03-31 2017-08-08 河南理工大学 一种基于透明土的井筒冻结实验装置及其安装方法
CN108956937A (zh) * 2018-05-23 2018-12-07 安徽理工大学 多参数动态采集的人工地层冻结的实验装置与实验方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198920B (zh) * 2016-04-12 2018-10-30 北京林业大学 模拟盐碱地水盐运动的实验装置及利用该装置筛选盐碱地防止返盐措施的方法
CN107085085B (zh) * 2017-03-06 2018-04-17 安徽理工大学 水热力三场耦合人工冻结扰动土注浆试验装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520003A (zh) * 2011-11-29 2012-06-27 中国科学院寒区旱区环境与工程研究所 环境温度梯度式冻融过程试验装置
CN102636630A (zh) * 2012-03-29 2012-08-15 中国地质大学(武汉) 大型包气带土壤非饱和渗流物理模拟装置
CN103743771A (zh) * 2013-12-04 2014-04-23 新疆农业大学 一种适用于天然盐渍土的冻融循环检测装置
CN106053522A (zh) * 2016-07-13 2016-10-26 东华理工大学 渗流冻结试验装置
CN107024498A (zh) * 2017-03-31 2017-08-08 河南理工大学 一种基于透明土的井筒冻结实验装置及其安装方法
CN108956937A (zh) * 2018-05-23 2018-12-07 安徽理工大学 多参数动态采集的人工地层冻结的实验装置与实验方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112033993B (zh) * 2020-08-20 2023-08-04 北京中煤矿山工程有限公司 定量动态模拟地下水补给的管幕冻结相似模拟试验装置
CN112033993A (zh) * 2020-08-20 2020-12-04 北京中煤矿山工程有限公司 定量动态模拟地下水补给的管幕冻结相似模拟试验装置
CN112629993A (zh) * 2021-01-28 2021-04-09 东北电力大学 用于土壤冻结试验的冷冻装置及以其制备冻土模型的方法
CN113405937B (zh) * 2021-06-15 2022-05-03 西南交通大学 一种隧道周围土体冻胀率测试装置
CN113405937A (zh) * 2021-06-15 2021-09-17 西南交通大学 一种隧道周围土体冻胀率测试装置
CN113671151A (zh) * 2021-07-27 2021-11-19 西安科技大学 一种冰碛土聚冰演化过程室内模型试验***
CN113671151B (zh) * 2021-07-27 2024-04-02 西安科技大学 一种冰碛土聚冰演化过程室内模型试验***
CN113607919A (zh) * 2021-07-29 2021-11-05 海南大学 一种冻胀融沉试验装置
CN113607919B (zh) * 2021-07-29 2022-03-29 海南大学 一种冻胀融沉试验装置
CN114910507A (zh) * 2022-05-11 2022-08-16 中国科学院西北生态环境资源研究院 土样冻结测试方法及相关设备
US12031971B2 (en) 2022-05-11 2024-07-09 Northwest Institute Of Eco-Environment And Resources, Chinese Academy Of Sciences Method for testing frost susceptibility of soils and associated apparatus
CN115343324A (zh) * 2022-10-18 2022-11-15 北京建筑大学 用于冻胀融沉测试的装置
CN115876975A (zh) * 2022-11-23 2023-03-31 山东大学 一种高温富水隧道液氮降温物理模拟试验装置及方法
CN116223505A (zh) * 2023-05-09 2023-06-06 深圳市长勘勘察设计有限公司 土质检测分析仪器
CN116223505B (zh) * 2023-05-09 2023-07-21 深圳市长勘勘察设计有限公司 土质检测分析仪器
CN117054315A (zh) * 2023-10-13 2023-11-14 东北林业大学 一种冻土渗透系数测量***
CN117054315B (zh) * 2023-10-13 2024-01-09 东北林业大学 一种冻土渗透系数测量***
CN117949640A (zh) * 2024-03-27 2024-04-30 中国科学院地理科学与资源研究所 一种冻土退化过程的室内模拟试验装置
CN117949640B (zh) * 2024-03-27 2024-05-24 中国科学院地理科学与资源研究所 一种冻土退化过程的室内模拟试验装置

Also Published As

Publication number Publication date
CN108956937A (zh) 2018-12-07
JP6745497B2 (ja) 2020-08-26
JP2020520422A (ja) 2020-07-09
CN108956937B (zh) 2020-05-12

Similar Documents

Publication Publication Date Title
WO2019214007A1 (zh) 多参数动态采集的人工地层冻结的实验装置与实验方法
CN106680129B (zh) 岩样循环干湿冻融环境模拟及损伤劣化测试装置
CN103743771B (zh) 一种适用于天然盐渍土的冻融循环检测装置
CN102590468B (zh) 深部土冻融过程试验***
CN108801799B (zh) 岩石压裂物理模拟***及试验方法
CN104749205A (zh) 土体冻结过程水热力综合试验***及试验方法
CN109459313A (zh) 真实采动应力影响下煤岩体的力学行为和渗流特性原位测试方法及***
CN110954675A (zh) 一种季节性冻土室内试验专用装置及研究方法
CN104597222A (zh) 具有补水功能和冻胀测试功能的大型冻土模型试验***
CN106645261B (zh) 大型多功能人工冻结平台
CN107024499A (zh) 一维土柱冻胀变形测定仪
CN203587589U (zh) 一种适用于天然盐渍土的冻融循环检测装置
CN108318633A (zh) 一种海底无上覆致密盖层水合物开采诱发灾害实验模拟研究装置与实验方法
CN204536237U (zh) 一种土体冻结过程水热力综合试验***
CN110595893A (zh) 一种含水合物沉积物固结静探贯入模拟装置及方法
CN109239124A (zh) 不同土性的人工冻土与井壁共同作用的试验装置及方法
CN204903300U (zh) 一种土体原位钻孔剪切测试装置
CN115420255A (zh) 一种埋入式地面沉降监测装置
CN209606283U (zh) 一种用于测定土层渗透系数的自动化试验装置
CN113049465B (zh) 一种冻土退化条件下水理特征模拟装置及测试方法
CN112595833A (zh) 一种可移动崩塌试验装置及其***和试验方法
CN109557128B (zh) 一种用于冻结施工的模拟试验箱
CN113671151B (zh) 一种冰碛土聚冰演化过程室内模型试验***
CN207528297U (zh) 一种农田排灌试验测坑水位测量装置
CN108343431B (zh) 一种基岩裂隙地下水***流网探究方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560773

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917588

Country of ref document: EP

Kind code of ref document: A1