WO2019208708A1 - ポリアリーレンサルファイド系樹脂組成物及びインサート成形品 - Google Patents

ポリアリーレンサルファイド系樹脂組成物及びインサート成形品 Download PDF

Info

Publication number
WO2019208708A1
WO2019208708A1 PCT/JP2019/017676 JP2019017676W WO2019208708A1 WO 2019208708 A1 WO2019208708 A1 WO 2019208708A1 JP 2019017676 W JP2019017676 W JP 2019017676W WO 2019208708 A1 WO2019208708 A1 WO 2019208708A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
inorganic filler
parts
polyarylene sulfide
resin composition
Prior art date
Application number
PCT/JP2019/017676
Other languages
English (en)
French (fr)
Inventor
大西 克平
竜也 金塚
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Priority to US17/049,750 priority Critical patent/US11091635B1/en
Priority to JP2019556283A priority patent/JP6834024B2/ja
Priority to CN201980028684.7A priority patent/CN112041395B/zh
Publication of WO2019208708A1 publication Critical patent/WO2019208708A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the present invention relates to a polyarylene sulfide-based resin composition and an insert molded product.
  • An insert molded product is a molded product obtained by integrally molding an insert member made of a metal, an inorganic solid, or the like and a resin member made of a thermoplastic resin composition, and is widely used for automobile parts, electric / electronic parts, OA equipment parts, and the like. Applied to the field. However, the metal forming the insert molded product and the thermoplastic resin composition are greatly different in thermal expansion coefficient and shrinkage rate due to temperature change, and the insert molded product may be destroyed due to temperature change during use. . Therefore, high-low temperature impact resistance (heat shock resistance) is required for insert molded products.
  • Polyarylene sulfide resin is known as a resin having relatively excellent heat shock resistance among thermoplastic resins.
  • polyarylene sulfide-based resins have poor toughness and are fragile, the structure of the insert member is complicated and the resin member is, for example, a component such as a power module or a reactor used in a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • heat shock resistance may be reduced.
  • Patent Document 1 there is a technique of blending a polyarylene sulfide-based resin with a fibrous filler having a flat cross-sectional shape
  • the polyarylene sulfide-based resin is a crystalline resin, it has a so-called shrinkage rate anisotropy in which the shrinkage rate of the resin in the cooling process is different between the flow direction of the resin and the direction perpendicular thereto. Due to the anisotropy of the shrinkage rate, warpage and sink may occur in the obtained insert molded product, and the dimensional accuracy may be lowered.
  • a fibrous reinforcing agent having a flat cross-sectional shape is added to a substantially linear polyarylene sulfide resin having a specific Na content and a resin pH in a specific range.
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-161693 JP 2006-328291 A
  • An object of the present invention is to provide a polyarylene sulfide-based resin composition excellent in heat shock resistance, low warpage, and fluidity, and an insert molded product using the resin composition.
  • the present inventor combined a fibrous filler having different diameter ratios and each having a predetermined diameter ratio as an inorganic filler to be blended with a polyarylene sulfide resin together with an olefin copolymer. It has been found that, by blending, excellent heat shock resistance can be maintained even when used as a resin member of an insert-molded product having a structure in which heat shock resistance is likely to be lowered, and further low warpage can be achieved.
  • the moldability may decrease due to the decrease in fluidity of the resin, but in the formulation of the inorganic filler found by the present inventors, It has been found that by using a combination of a plurality of olefin copolymers having a predetermined composition, excellent heat shock resistance can be achieved while suppressing a decrease in fluidity of the resin composition, and the present invention is completed. It came to.
  • the polyarylene sulfide-based resin composition according to the present invention contains the polyarylene sulfide-based resin A, the inorganic filler B, the olefin-based copolymer C, and the olefin-based copolymer D, and the inorganic filler B is The fibrous inorganic filler B1 having a different diameter ratio of 1.5 or less, which is the ratio of the major axis to the minor axis of the cross section perpendicular to the longitudinal direction, and the fibrous inorganic filler having the different diameter ratio of 3.0 or more
  • the mass ratio B1 / B2 of the fibrous inorganic filler B1 and the fibrous inorganic filler B2 is 0.2 or more and 5.0 or less
  • the olefin copolymer C is ⁇ -An olefin-derived structural unit and a structural unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid, and the
  • the inorganic filler B further contains a non-fibrous inorganic filler B3.
  • the total content of the inorganic filler B is more preferably 90 parts by mass or more and 220 parts by mass or less with respect to 100 parts by mass of the polyarylene sulfide-based resin A.
  • the content of the fibrous inorganic filler B2 is 20 parts by mass or more with respect to 100 parts by mass of the polyarylene sulfide-based resin A100
  • the content of the non-fibrous inorganic filler B3 is 100 masses of the polyarylene sulfide-based resin A100. It is preferable that it is 20 mass parts or more with respect to a part.
  • the average particle size of the non-fibrous inorganic filler B3 is preferably 10 ⁇ m or more.
  • An insert molded product according to the present invention includes an insert member formed using a metal, an alloy, or an inorganic solid material, and a resin member that covers at least a part of the surface of the insert member, and the resin member is the polyarylene described above. It is formed using a sulfide-based resin composition.
  • the resin member includes a welded portion where the flow ends of the resin composition are joined to each other, and a weakened portion extending in a predetermined direction consisting of either or both of a stress concentration portion where stress generated by expansion and contraction is concentrated.
  • the gate mark may be formed on a surface having at least one and extending in a direction substantially perpendicular to the direction in which at least one weakened portion extends.
  • the polyarylene sulfide-based resin composition (hereinafter also simply referred to as “resin composition”) is a resin composition containing a resin having a polyarylene sulfide-based resin as a main component. “Main component” means 80% by mass or more, 85% by mass or more, and 90% by mass or more in the resin component.
  • the resin composition according to this embodiment contains a polyarylene sulfide resin A, an inorganic filler B, an olefin copolymer C, and an olefin copolymer D.
  • the polyarylene sulfide-based resin A is a resin having a repeating unit represented by the following general formula (I). -(Ar-S)-(I) (However, Ar represents an arylene group.)
  • the arylene group is not particularly limited, and examples thereof include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, p, p′-diphenylene sulfone group, p, p′-biphenylene group, p, A p′-diphenylene ether group, a p, p′-diphenylenecarbonyl group, a naphthalene group and the like can be mentioned.
  • the polyarylene sulfide-based resin A may be a homopolymer using the same repeating unit among the repeating units represented by the general formula (I) or a copolymer containing different types of repeating units depending on applications. .
  • the homopolymer preferably has a p-phenylene sulfide group having a p-phenylene group as an arylene group and a repeating unit. This is because a homopolymer having a p-phenylene sulfide group as a repeating unit has extremely high heat resistance, and exhibits high strength, high rigidity, and high dimensional stability in a wide temperature range. By using such a homopolymer, a molded product having very excellent physical properties can be obtained.
  • a combination of two or more kinds of arylene sulfide groups different from the arylene sulfide groups containing the above arylene groups can be used.
  • a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is preferable from the viewpoint of obtaining a molded product having high physical properties such as heat resistance, moldability, and mechanical properties.
  • a polymer containing 70 mol% or more of p-phenylene sulfide group is more preferable, and a polymer containing 80 mol% or more is more preferable.
  • the polyarylene sulfide-based resin A having a phenylene sulfide group is a polyphenylene sulfide resin (PPS resin).
  • the polyarylene sulfide-based resin A is generally known to have a molecular structure that is substantially linear and has no branching or cross-linking structure, and one that has a branching or cross-linking structure depending on the production method. In the form, any type is effective.
  • the melt viscosity of the polyarylene sulfide-based resin A measured at 310 ° C. and a shear rate of 1216 sec ⁇ 1 is preferably 5 Pa ⁇ s or more and 50 Pa ⁇ s or less, and is 7 Pa ⁇ s or more and 40 Pa ⁇ s or less. It is more preferable. When the melt viscosity is 5 Pa ⁇ s or more and 50 Pa ⁇ s or less, excellent heat shock resistance and good fluidity can be maintained.
  • the production method of the polyarylene sulfide-based resin A is not particularly limited, and can be produced by a conventionally known production method.
  • the polyarylene sulfide-based resin A can be produced by synthesizing a low-molecular-weight polyarylene sulfide-based resin A and then polymerizing it at a high temperature in the presence of a known polymerization aid to increase the molecular weight.
  • the inorganic filler B has a different ratio of different diameters and a fibrous inorganic filler B1 and a fibrous inorganic filler B2 (hereinafter also referred to as “inorganic fillers B1 and B2”) each having a predetermined different diameter ratio. Containing.
  • the ratio of different diameters is “the major axis of the cross section perpendicular to the longitudinal direction (longest linear distance of the cross section) / the minor axis of the cross section (the longest linear distance perpendicular to the major axis)”.
  • “Fibrous” refers to a shape having a different diameter ratio of 1 to 10 and an average fiber length (cut length) of 0.01 to 3 mm.
  • the term “fibrous” refers to “plate shape” (a shape having a different diameter ratio of greater than 10 and an aspect ratio of 1 or more and 500 or less), and “granular” (a different diameter ratio is less than 10). 1 to 10 and the aspect ratio is 1 to 2).
  • the “aspect ratio” is “the longest linear distance in the longitudinal direction / the short axis of the cross section perpendicular to the longitudinal direction (the longest straight line distance in the direction perpendicular to the longest straight line in the cross section)”. Both the different diameter ratio and the aspect ratio can be calculated using a scanning electron microscope and image processing software.
  • the average fiber length (cut length) may be a manufacturer value (a numerical value published by a manufacturer in a catalog or the like).
  • a fibrous inorganic filler B1 having a different diameter ratio of 1.5 or less and a fibrous inorganic filler B2 having a different diameter ratio of 3.0 or more are contained in combination.
  • the fibrous inorganic filler B1 is a fibrous inorganic filler having a different diameter ratio of 1.5 or less, preferably 1.0 or more and 1.3 or less. By containing the inorganic filler B1 having such a different diameter ratio, the molding shrinkage rate and the linear expansion coefficient of the insert-molded product can be reduced, and the mechanical properties and heat shock resistance can be improved.
  • Examples of the inorganic filler B1 include a general fibrous inorganic filler whose cross-sectional shape perpendicular to the longitudinal direction is circular or substantially circular.
  • the cross-sectional area of the fibrous inorganic filler B1 is preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 mm 2 from the viewpoint of enhancing the ease of production and the reinforcing effect, and 2 ⁇ 10 ⁇ 5 to 8 More preferably, it is ⁇ 10 ⁇ 3 mm 2 .
  • “Cross-sectional area” is the longest diameter when the longest straight distance of the cross section of the fibrous inorganic filler B1 measured using a scanning electron microscope and image processing software is the longest diameter, and the shortest straight distance is the shortest diameter. The value obtained by multiplying the minor axis can be further multiplied by the circumferential ratio ⁇ . Further, for the purpose of reducing the specific gravity of the resin composition, it is possible to use hollow fibers as the fibrous inorganic filler B1.
  • the material of the fibrous inorganic filler B1 is glass fiber, carbon fiber, zinc oxide fiber, titanium oxide fiber, wollastonite, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber.
  • mineral fiber such as potassium titanate fiber, metal fiber materials such as stainless steel fiber, aluminum fiber, titanium fiber, copper fiber, brass fiber, etc., and these can be used alone or in combination.
  • glass fiber and carbon fiber are preferable.
  • the fibrous inorganic filler B1 may be surface-treated with various surface treatment agents such as generally known epoxy compounds, isocyanate compounds, silane compounds, titanate compounds, and fatty acids. By the surface treatment, the adhesion with the polyarylene sulfide-based resin A can be improved.
  • the surface treatment agent may be applied to the fibrous inorganic filler B1 in advance before the material preparation and subjected to a surface treatment or a convergence treatment, or may be added simultaneously with the material preparation.
  • the content of the fibrous inorganic filler B1 is preferably 10 parts by mass or more, more preferably 100 parts by mass with respect to 100 parts by mass of the polyarylene sulfide-based resin A in terms of further improving mechanical properties and heat shock resistance. 20 parts by mass or more and 110 parts by mass or less.
  • the fibrous inorganic filler B2 is an inorganic filler having a different diameter ratio of 3.0 or more, preferably 3.5 or more, more preferably 3.8 or more.
  • the upper limit of the different diameter ratio is 10.0 or less, preferably 8.0 or less, and more preferably 6.0 or less.
  • the fibrous inorganic filler B1 is used alone, or the fibrous inorganic filler B1 is used as a non-fibrous inorganic filler (for example, non-fiber described later) More excellent in both heat shock resistance and low warpage than using in combination with other inorganic filler B3) and / or other fibrous inorganic filler (for example, fibrous inorganic filler B4 described later) Effects can be obtained.
  • fibrous inorganic filler B2 examples include a fibrous inorganic filler whose cross-sectional shape perpendicular to the longitudinal direction is an oval, an ellipse, a semicircle, an eyebrow, a rectangle, or a similar shape thereof. it can.
  • the “eyebrows shape” is a shape in which the vicinity of the center in the longitudinal direction of an oval is recessed inward.
  • the cross-sectional area of the fibrous inorganic filler B2 is 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 mm 2 from the viewpoint of improving the ease of manufacturing and the effect of the combination with the fibrous inorganic filler B1. It is preferably 1 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 4 mm 2 .
  • Cross-sectional area is the longest diameter when the longest linear distance of the cross section of the fibrous inorganic filler B2 measured using a scanning electron microscope and image processing software is the major axis, and the shortest linear distance is the minor axis. The value obtained by multiplying the minor axis can be further multiplied by the circumferential ratio ⁇ .
  • the average length of the fibrous inorganic filler B2 is not particularly limited, but the average fiber length in the molded product is preferably 50 to 1000 ⁇ m in consideration of the mechanical properties and molding processability of the molded product.
  • the “average fiber length” is as described above.
  • the inorganic filler B2 hollow fibers can be used in the same manner as the fibrous inorganic filler B1. Since the material of the fibrous inorganic filler B2 and the surface treatment performed as necessary are the same as those of the fibrous inorganic filler B1, the description is omitted here.
  • the content of the fibrous inorganic filler B2 is 20 parts by mass or more with respect to 100 parts by mass of the polyarylene sulfide-based resin A in that the effect of the combination with the inorganic filler B1 is further enhanced to further improve the heat shock resistance. More preferably, it is 25 parts by mass or more and 100 parts by mass or less.
  • the content ratio of the inorganic fillers B1 and B2 is 0.2 or more and 5.0 or less, preferably 0.3 or more and 4.0 or less, as the mass ratio B1 / B2 of the inorganic fillers B1 and B2. Preferably they are 0.4 or more and 4.0 or less, More preferably, they are 0.4 or more and 3.8 or less.
  • Inorganic filler B can contain other inorganic fillers as necessary in addition to the above-described inorganic fillers B1 and B2 for improving dimensional stability, suppressing generation of metal corrosive gas, and the like.
  • examples of other fillers include non-fibrous inorganic fillers B3 and other fibrous inorganic fillers B4 having different diameter ratios from the inorganic fillers B1 and B2. These other fillers can also be surface-treated as described above.
  • non-fibrous inorganic filler B3 examples include a granular inorganic filler and a plate-like inorganic filler.
  • the “powder” is a shape having a different diameter ratio of 1 or more and 10 or less and an aspect ratio of 1 or more and 2 or less as described above. The shape is large and has an aspect ratio of 1 to 500.
  • the granular inorganic fillers include carbon black, silica, quartz powder, glass beads, glass powder, talc (granular), calcium silicate, aluminum silicate, diatomaceous earth and other silicic acids.
  • Metal oxides such as salts, iron oxide, titanium oxide, zinc oxide, alumina, metal carbonates such as calcium carbonate and magnesium carbonate, metal sulfates such as calcium sulfate and barium sulfate, other silicon carbide, silicon nitride, boron nitride, Various metal powders etc. can be mentioned. Of these, calcium carbonate and glass beads can be preferably used.
  • non-fibrous inorganic filler B3 examples include glass flakes, talc (plate-like), mica, kaolin, clay, alumina, and various metal foils. Among these, glass flakes and talc can be preferably used.
  • the non-fibrous inorganic filler B3 can be used by mixing two or more of the inorganic fillers described above for the purpose of improving dimensional accuracy, improving mechanical properties, and the like.
  • the average particle size (50% d) of the non-fibrous inorganic filler B3 is that the mechanical strength and heat shock resistance are further improved.
  • the initial shape (the shape before melt-kneading) Is preferably 10 ⁇ m or more, more preferably 12 ⁇ m or more, and further preferably 15 ⁇ m or more.
  • the upper limit is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the initial shape (the shape before melt-kneading) is preferably 10 ⁇ m or more and 1000 ⁇ m or less, more preferably 15 ⁇ m or more and 900 ⁇ m or less, and 20 ⁇ m or more and 800 ⁇ m or less. Is particularly preferred.
  • the average particle diameter (50% d) means a median diameter of 50% integrated value in the particle size distribution measured by the laser diffraction / scattering method.
  • the blending amount of the non-fibrous inorganic filler B3 is preferably 20 parts by mass or more with respect to 100 parts by mass of the polyarylene sulfide-based resin A in terms of further improving mechanical strength and heat shock resistance. Preferably it is 25 parts by mass or more.
  • the content of the above-described fibrous inorganic filler B2 and non-fibrous inorganic filler B3 is preferably 20 parts by mass or more with respect to 100 parts by mass of the polyarylene sulfide-based resin A, and 22 parts by mass. More preferably, it is more preferably 25 parts by mass or more.
  • the insert molded product is resistant to heat shock. Even when it has a structure in which the properties tend to decrease, it is possible to achieve better heat shock resistance.
  • the upper limit of the blending amount of the non-fibrous inorganic filler B3 is preferably 80 or less, more preferably in terms of the mass ratio with the polyarylene sulfide-based resin A, from the viewpoint of suppressing a decrease in mechanical properties. 65 or less.
  • fibrous inorganic fillers B4 may include fibrous inorganic fillers having a different diameter ratio of more than 1.5, or 1.6 or more and less than 3.0. Since the material of the fibrous inorganic filler B4 is the same as the above-described fibrous inorganic fillers B1 and B2, description thereof is omitted here.
  • the total content of the inorganic filler B is 90 with respect to 100 parts by mass of the polyarylene sulfide resin A in that the action of the combination of the inorganic fillers B1 and B2 is exhibited while maintaining the characteristics of the polyarylene sulfide resin A. It is preferable that it is no less than 220 parts by mass, more preferably no less than 100 parts by mass and no greater than 200 parts by mass, and particularly preferably no less than 110 parts by mass and no greater than 180 parts by mass.
  • the olefin copolymer C contains a structural unit derived from ⁇ -olefin and a structural unit derived from a glycidyl ester of an ⁇ , ⁇ -unsaturated acid as a copolymerization component. Since such olefin copolymer C is contained, the heat shock resistance of the insert molded product can be remarkably improved.
  • the olefin copolymer C is preferably an olefin copolymer further containing a structural unit derived from a (meth) acrylic acid ester.
  • the olefin copolymer can be used alone or in combination of two or more.
  • (meth) acrylic acid ester is also referred to as (meth) acrylate.
  • glycidyl (meth) acrylate is also referred to as glycidyl (meth) acrylate.
  • (meth) acrylic acid means both acrylic acid and methacrylic acid
  • (meth) acrylate” means both acrylate and methacrylate.
  • the ⁇ -olefin is not particularly limited.
  • ethylene propylene, butylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene, 4-methyl-1-hexene Etc.
  • ethylene is preferable.
  • the ⁇ -olefin one or more selected from the above can be used.
  • the content of the copolymer component derived from the ⁇ -olefin is not particularly limited, but can be, for example, 1% by mass or more and 8% by mass or less in the total resin composition.
  • Examples of the glycidyl ester of ⁇ , ⁇ -unsaturated acid include those having a structure represented by the following general formula (II). (However, R1 represents hydrogen or an alkyl group having 1 to 10 carbon atoms.)
  • Examples of the compound represented by the general formula (II) include glycidyl acrylate, glycidyl methacrylate, and glycidyl ethacrylate. Of these, glycidyl methacrylate is preferable.
  • the glycidyl ester of ⁇ , ⁇ -unsaturated acid can be used alone or in combination of two or more.
  • the content of the copolymer component derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is preferably 0.05% by mass or more and 0.6% by mass or less in the total resin composition. When the content of the copolymer component derived from the glycidyl ester of ⁇ , ⁇ -unsaturated acid is within this range, the deposition of mold deposits can be further suppressed while maintaining the heat shock resistance.
  • the (meth) acrylic acid ester is not particularly limited.
  • the (meth) acrylic acid ester can be used alone or in combination of two or more.
  • content of the copolymerization component derived from (meth) acrylic acid ester is not specifically limited, For example, it can be 0.5 mass% or more and 3 mass% or less in all the resin compositions.
  • Olefin-based copolymer containing a structural unit derived from ⁇ -olefin and a structural unit derived from a glycidyl ester of ⁇ , ⁇ -unsaturated acid, and an olefin-based copolymer containing a structural unit derived from (meth) acrylic acid ester The coalescence can be produced by performing copolymerization by a conventionally known method.
  • the olefin copolymer can be obtained by copolymerization by a well-known radical polymerization reaction.
  • the type of the olefin copolymer is not particularly limited, and may be, for example, a random copolymer or a block copolymer.
  • olefin copolymer examples include polymethyl methacrylate, polyethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, poly-2-ethylhexyl acrylate, polystyrene, polyacrylonitrile.
  • An olefin-based graft copolymer in which acrylonitrile-styrene copolymer, butyl acrylate-styrene copolymer, or the like is chemically bonded in a branched or cross-linked structure may be used.
  • the olefin copolymer C used in the present embodiment can contain structural units derived from other copolymer components as long as the effects of the present invention are not impaired.
  • examples of the olefin copolymer C include a glycidyl methacrylate-modified ethylene copolymer and a glycidyl ether-modified ethylene copolymer. Among them, a glycidyl methacrylate-modified ethylene copolymer is preferable. .
  • Examples of the glycidyl methacrylate-modified ethylene copolymer include glycidyl methacrylate graft-modified ethylene polymer, ethylene-glycidyl methacrylate copolymer, ethylene-glycidyl methacrylate-methyl acrylate copolymer, ethylene-glycidyl methacrylate-ethyl acrylate copolymer, ethylene -Glycidyl methacrylate-propyl acrylate copolymer, ethylene-glycidyl methacrylate-butyl acrylate copolymer, and the like.
  • an ethylene-glycidyl methacrylate copolymer and an ethylene-glycidyl methacrylate-methyl acrylate copolymer are preferable, and an ethylene-glycidyl methacrylate-methyl acrylate copolymer is particularly preferable because a particularly excellent metal resin composite molded body can be obtained.
  • Specific examples of the ethylene-glycidyl methacrylate copolymer and the ethylene-glycidyl methacrylate-methyl acrylate copolymer include “Bond First” (manufactured by Sumitomo Chemical Co., Ltd.).
  • Examples of the glycidyl ether-modified ethylene copolymer include glycidyl ether graft-modified ethylene copolymer, glycidyl ether-ethylene copolymer, and the like.
  • the content of the olefin copolymer C is 3 parts by mass or more and less than 19 parts by mass with respect to 100 parts by mass of the polyarylene sulfide-based resin A.
  • 100 parts by mass of the polyarylene sulfide-based resin A 100 Is preferably 5 parts by mass or more, more preferably 7 parts by mass or more, and still more preferably 9 parts by mass or more.
  • the content of the olefin copolymer C is preferably less than 19 parts by weight, more preferably 18 parts by weight or less, based on 100 parts by weight of the polyarylene sulfide-based resin A. More preferably, it is 17 parts by mass or less.
  • the olefin copolymer D includes one or more olefin copolymers selected from the group consisting of the olefin copolymer D1 and the olefin copolymer D2 described below.
  • the polyarylene sulfide-based resin composition of the present embodiment contains not only the olefin copolymer C but also the olefin copolymer D, thereby improving the heat shock resistance of the insert molded product as a resin composition. It will have a certain fluidity.
  • the total content of the olefin copolymer D is 3 to 30 parts by mass, more preferably 5 to 25 parts by mass, more preferably 6 parts by mass with respect to 100 parts by mass of the polyarylene sulfide-based resin A. More preferably, it is 20 parts by mass or less.
  • the olefin copolymer D1 contains ethylene and ⁇ -olefin as copolymerization components.
  • the ⁇ -olefin has preferably 3 to 20, more preferably 5 to 20, and even more preferably 5 to 15 carbon atoms.
  • the olefin copolymer D1 may be a random copolymer or a block copolymer.
  • the olefin copolymer D1 may be a copolymer composed of 5 to 95% by mass of ethylene and 5 to 95% by mass of ⁇ -olefin.
  • the olefin copolymer D1 include an ethylene-octene copolymer (EO), an ethylene-propylene copolymer, an ethylene-butylene copolymer, an ethylene-pentene copolymer, an ethylene-hexene copolymer, Examples thereof include ethylene-heptene copolymers, and these copolymers can also be used by mixing them.
  • EO ethylene-octene copolymer
  • EO ethylene-propylene copolymer
  • an ethylene-butylene copolymer an ethylene-pentene copolymer
  • an ethylene-hexene copolymer examples thereof include ethylene-heptene copolymers, and these copolymers can also be used by mixing them.
  • the olefin copolymer D2 contains a constituent unit derived from ⁇ -olefin and a constituent unit derived from ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester as a copolymer component, and is a random, block or graft copolymer. Alternatively, the copolymer may be modified with at least one selected from the group consisting of unsaturated carboxylic acids and acid anhydrides and derivatives thereof.
  • the ⁇ -olefin in the olefin copolymer D2 is not particularly limited.
  • ethylene propylene, butylene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene, 4-methyl-1-hexene and the like can be mentioned. Of these, ethylene is preferable.
  • ⁇ -olefin one or more selected from the above can be used.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid alkyl ester in the olefin copolymer D2 include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Isobutyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, isobutyl methacrylate, methacrylic acid 2-ethylhexyl, hydroxyethyl methacrylate and the like can be used.
  • Examples of unsaturated carboxylic acids or acid anhydrides used as modifiers include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methyl fumaric acid, mesaconic acid, citraconic acid, and glutacone.
  • Examples include acids, monomethyl maleate, monoethyl maleate, monoethyl fumarate, methyl itaconate, methyl maleic anhydride, maleic anhydride, methyl maleic anhydride, citraconic anhydride, and the like.
  • the Specific examples of the olefin copolymer D2 include copolymers of ethylene and (meth) acrylic acid esters such as ethylene ethyl acrylate copolymer (EEA) and ethylene methyl methacrylate copolymer.
  • the content of the olefin copolymer C and the content of the olefin copolymer D are not particularly limited as long as they are within the specified range, but from the viewpoint of heat shock resistance, the content of the olefin copolymer C is It is more preferable that the content of the olefin copolymer D is equal to or more than that. Moreover, as the olefin copolymer D, it is more preferable to use the olefin copolymer D2 among the olefin copolymer D1 and the olefin copolymer D2.
  • the resin composition is a known additive that is generally added to a thermoplastic resin and a thermosetting resin in order to impart desired characteristics according to the purpose within a range not impairing the effects of the present invention, that is, burr suppression.
  • Agents, mold release agents, lubricants, plasticizers, flame retardants, coloring agents such as dyes and pigments, crystallization accelerators, crystal nucleating agents, various antioxidants, thermal stabilizers, weathering stabilizers, corrosion inhibitors, etc. Can be blended according to the required performance.
  • the burr suppressor include branched polyphenylene sulfide resins and silane compounds having a very high melt viscosity as described in International Publication No. 2006/068161 and International Publication No.
  • the silane compound include various types such as vinyl silane, methacryloxy silane, epoxy silane, amino silane, and mercapto silane, such as vinyl trichlorosilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, Examples include ⁇ -aminopropyltriethoxysilane and ⁇ -mercaptotrimethoxysilane, but are not limited thereto.
  • the content of the additive can be, for example, 5% by mass or less in the total resin composition.
  • thermoplastic resin components can be supplementarily used in a small amount in combination with the resin composition depending on the purpose. Any other thermoplastic resin may be used as long as it is stable at high temperatures.
  • aromatic polyesters such as polyethylene terephthalate and polybutylene terephthalate, aromatic polyesters composed of aromatic dicarboxylic acid and diol, oxycarboxylic acid, polyamide, polycarbonate, ABS, polyphenylene oxide, polyalkyl acrylate, polysulfone, polyethersulfone, poly Examples include ether imide, polyether ketone, and fluororesin.
  • these thermoplastic resins can also be used in mixture of 2 or more types.
  • the content of other thermoplastic resin components can be, for example, 20% by mass or less, 15% by mass or less, or 10% by mass or less in the total resin composition.
  • the resin composition can be easily prepared using equipment and methods generally used as a conventional resin composition preparation method. For example, 1) A method in which each component is mixed and then kneaded and extruded by a single-screw or twin-screw extruder to prepare pellets, and thereafter molded, 2) once pellets having different compositions are prepared, and a predetermined amount of the pellets are prepared Any of a method of mixing and molding to obtain a molded product of the desired composition after molding, 3) a method of directly charging one or more of each component into a molding machine, etc. can be used. Further, a method of adding a part of the resin component as a fine powder and mixing it with other components is a preferable method for achieving uniform blending of these components.
  • the polyarylene sulfide-based resin composition of the present embodiment is a resin composition excellent in heat shock resistance, low warpage and fluidity, and is useful for various applications by taking advantage of such properties. Especially, it is a structure which has a part which has a complicated and large thickness change of a resin member, or is used especially preferably for the insert member related to the motor vehicle which is used in the environment where a high and low temperature change is large.
  • automobile / vehicle-related parts include parts around the engine, drive system parts, and cooling system parts.
  • parts around the engine include an inverter case, a current sensor, a capacitor case, a reactor, and a bus bar part in a hybrid electric vehicle (HEV).
  • HEV hybrid electric vehicle
  • Examples of the drive system parts include a motor insulator and a rotation sensor.
  • Examples of the cooling system parts include a water pump, an oil pump, and a flow rate control part. Among these, application to inverter cases, current sensors, reactors, and bus bar parts is particularly preferable.
  • the insert molded product 1 has the insert member 11 and the resin member 12 which covers at least one part of the surface of an insert member.
  • the insert member 11 is formed of a metal, an alloy, or an inorganic solid, has a prismatic shape having four corner portions 120a to 120d, and a part thereof is embedded in the resin member 12.
  • the resin member 12 is formed of the polyarylene sulfide-based resin composition described above, and has four weak portions 130a to 130d including both a weld portion and a stress concentration portion.
  • the fragile portions 130a to 130d are formed in a substantially rectangular shape so as to extend in a predetermined direction.
  • the fragile portions 130a to 130d may be configured by only one of a weld portion and a stress concentration portion.
  • the “stress concentration part” is a part where stress generated by expansion and contraction of the resin composition is concentrated.
  • the stress concentration portion include a corner portion (corner portion), a notch portion, a flaw portion, a through hole, a thinned portion, a thin portion, a portion having a large thickness change, a flow mark portion, and the like.
  • One or two or more stress concentration portions may be formed.
  • the corner portions 120 a to 120 d of the quadrangular columnar insert member 11 are arranged so as to face the side surface of the resin member 12.
  • the distance d between the tip of the corner (sharp corner) of the insert member 11 and the side surface of the resin member 12 is about 1 mm, and the vicinity thereof is a thin stress concentration portion 130a to 130d.
  • the fragile portions 130a to 130d are formed in a substantially rectangular shape from the ridgeline of the region embedded in the resin member 12 at the corners 120a to 120d of the insert member 1 to the side surface of the resin member 12, as indicated by the hatched region. .
  • the “weld portion” is a portion where the flow ends of the resin composition are joined (welded).
  • the weld portion tends to have lower mechanical strength than other portions.
  • the manner in which the weld portion is formed will be described with reference to FIGS.
  • the insert molded product 1 is manufactured by a mold having a gate on the bottom surface X side, and has a gate mark (not shown) on the bottom surface X.
  • the resin composition is introduced into the mold cavity from the mold gate (not shown) on the bottom surface X side of the insert molded product 1. Injected.
  • the injected resin flow Q is divided into a plurality of resin flows Q 1 and Q 2 starting from the bottom surface of the insert member 11.
  • the resin flows Q 1 and Q 2 flow along the side surfaces of the insert member 11, respectively, and the angles of attack ⁇ 1 and ⁇ 2 are 90 ° with respect to the ridge lines at the ridge lines of the corner portions 120a to 120d of the insert member 11, respectively.
  • This joint portion becomes a weld portion and constitutes the weak portions 130a to 130d.
  • FIG. 2 only the fragile portion 130 c is shown for convenience of explanation, but the fragile portions 130 a to 130 d are formed in a rectangular shape from each ridgeline of the corner portions 120 a to 120 d of the insert member 1 to the side surface of the resin member 12.
  • the weld portions and the stress concentration portions are formed at the same position, and the fragile portions 130a to 130d are formed to include both the weld portions and the stress concentration portions.
  • the insert-molded product 1 molded as described above has a surface X having at least one fragile portion 130a-d extending in a predetermined direction and extending in a direction substantially perpendicular to the direction in which the at least one fragile portion 130a-d extends. There is a gate mark on the top.
  • the “substantially right angle” means an angle of about 75 ° to 105 ° including a right angle. According to the insert-molded product 1 having the resin member containing the resin composition according to the present embodiment, even if it has such a structure, the insert-molded product having excellent heat shock resistance by preventing the heat shock resistance from decreasing. can do. At the same time, low warpage can be achieved and dimensional accuracy can be increased.
  • the metal, alloy, or inorganic solid material constituting the insert member 11 is not particularly limited, but is preferably one that does not deform or melt when it comes into contact with the resin during molding.
  • Examples thereof include metals such as aluminum, magnesium, copper, and iron, alloys of the above metals such as brass, and inorganic solids such as glass and ceramics.
  • the method for producing the insert-molded product is not particularly limited, and for example, the above-described resin composition and an insert member that has been previously molded into a desired shape can be insert-molded.
  • insert molding for example, an insert member is mounted in advance on a mold, and the resin composition is filled on the outside by injection molding, extrusion compression molding, or the like, and then composite molding can be performed.
  • the shape and size of the insert molded product are not particularly limited.
  • Examples 1 to 9, Comparative Examples 1 to 10 Using the materials shown below, a polyarylene sulfide-based resin, an inorganic filler, and an olefin-based copolymer were dry blended with the compositions and content ratios shown in Table 1. This was put into a twin screw extruder having a cylinder temperature of 320 ° C. and melt kneaded to obtain resin composition pellets of Examples and Comparative Examples.
  • Polyarylene sulfide resin Polyarylene sulfide resin A: Polyphenylene sulfide resin (PPS), “Fortron KPS” manufactured by Kureha Corporation (melt viscosity: 20 Pa ⁇ s (shear rate: 1216 sec ⁇ 1 , 310 ° C.)) (Measurement of melt viscosity of polyarylene sulfide resin) The melt viscosity of the polyarylene sulfide-based resin A was measured as follows.
  • Fibrous inorganic filler B1 Glass fiber, substantially circular in cross section, major axis 10.5 ⁇ m, minor axis 10.5 ⁇ m, major axis / minor axis ratio 1.0, “Chopped Strand ECS03T-747H” manufactured by Nippon Electric Glass Co., Ltd.
  • Fibrous inorganic filler B2 Glass fiber, cross section is oval, major axis 28 ⁇ m, minor axis 7 ⁇ m, major axis / minor axis ratio 4.0, “Non-shaped cross-section chopped strand CSG 3PA-830”
  • Fibrous inorganic filler glass fiber, cross section is oval, major axis 20 ⁇ m, minor diameter 10 ⁇ m, major axis / minor axis ratio 2.0, “Non-shaped section chopped strand CSG 3PL-962” manufactured by Nitto Boseki Co., Ltd.
  • Fibrous inorganic filler glass fiber, eyebrow cross section, major axis 24 ⁇ m, minor axis 12 ⁇ m, major axis / minor axis ratio 2.0, “Non-shaped cross-section chopped strand CSH 3PA-860”
  • Non-fibrous inorganic filler B3 Calcium carbonate, average particle size (50% d) 25 ⁇ m, “MC-35W” manufactured by Asahi Kou Sue Co., Ltd. (Olefin copolymer) Olefin-based copolymer C: “Bond First 7M” manufactured by Sumitomo Chemical Co., Ltd.
  • Olefin-based copolymer D1 ethylene octene copolymer, “engage 8440” manufactured by Dow Chemical Japan Co., Ltd.
  • Olefin copolymer D2 Ethylene ethyl acrylate copolymer, “NUC-6570” manufactured by NUC Corporation
  • This test piece was fragile every 20 cycles, using a thermal shock tester (manufactured by Espec Co., Ltd.), repeating the cycle of cooling at ⁇ 40 ° C. for 1.5 hours and then heating at 180 ° C. for 1.5 hours. The part was observed. The number of cycles when a crack occurred in the fragile portion was evaluated as an index of heat shock resistance. The results are shown in Table 1. The heat shock resistance is excellent when the number of cycles is 150 or more, and the heat shock resistance is particularly excellent when the number of cycles is 170 or more.
  • a flat resin of 80 mm ⁇ 80 mm ⁇ 1.5 mm in thickness is obtained by injection molding under the conditions of a cylinder temperature of 320 ° C., a mold temperature of 150 ° C., and a holding pressure of 70 MPa. Five molded products 2 were produced. The first flat plate-shaped resin molded product 2 is placed on a horizontal plane, and a CNC image measuring machine (model: QVBHU404-PRO1F) manufactured by Mitutoyo Corporation is used at nine locations on the flat plate-shaped resin molded product 2. The height from the horizontal plane was measured, and the average height was calculated from the obtained measurement values.
  • a CNC image measuring machine model: QVBHU404-PRO1F

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

【課題】耐ヒートショック性、低反り性及び流動性が優れるポリアリーレンサルファイド系樹脂組成物及びその樹脂組成物を用いたインサート成形品を提供する。 【解決手段】ポリアリーレンサルファイド系樹脂A、無機充填剤B、及び所定の構成単位をそれぞれ有するオレフィン系共重合体C,Dを含有し、無機充填剤Bが、異径比が1.5以下である繊維状無機充填剤B1と、異径比が3.0以上である繊維状無機充填剤B2と、を含有し、繊維状無機充填剤B1と繊維状無機充填剤B2との質量比B1/B2が0.2以上5.0以下であり、オレフィン系共重合体C,Dの含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対してそれぞれ3質量部以上19質量部未満、3質量部以上30質量部以下であることを特徴とするポリアリーレンサルファイド系樹脂組成物とする。

Description

ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
 本発明は、ポリアリーレンサルファイド系樹脂組成物及びインサート成形品に関する。
 インサート成形品は、金属や無機固体物等からなるインサート部材と熱可塑性樹脂組成物からなる樹脂部材とを一体的に成形した成形品であり、自動車部品や電気電子部品、OA機器部品等の広い分野に応用されている。しかし、インサート成形品を構成する金属等と熱可塑性樹脂組成物とは、温度変化による熱膨張率や収縮率が大きく異なるため、使用中の温度変化でインサート成形品が破壊してしまう場合がある。そのため、インサート成形品には、高低温衝撃性(耐ヒートショック性)が求められている。
 ポリアリーレンサルファイド系樹脂は、熱可塑性樹脂の中では比較的に耐ヒートショック性が優れている樹脂として知られている。しかし、ポリアリーレンサルファイド系樹脂は、靱性に乏しく脆弱であるため、例えばハイブリッド電気自動車(HEV)に用いられるパワーモジュールやリアクトル等の部品のように、インサート部材の構造が複雑でありかつ樹脂部材が肉厚変化の大きい部分を有する場合や、自動車のエンジン回りの部品のように、使用される環境の高低温度変化が大きい場合は、耐ヒートショック性が低下してしまう場合がある。これらの問題を解決する方法として、ポリアリーレンサルファイド系樹脂に扁平な断面形状を有する繊維状の充填剤を配合する技術がある(特許文献1)。
 また、ポリアリーレンサルファイド系樹脂は、結晶性樹脂であるため、冷却過程における樹脂の収縮率が樹脂の流動方向とその直角方向とで異なる、いわゆる収縮率の異方性を有している。こうした収縮率の異方性によって、得られるインサート成形品に反りやひけが生じて寸法精度が低下する場合がある。ひけの発生を抑制する方法として、特定のNa含有量で、かつレジンのpHが特定の範囲である実質的に直鎖状のポリアリーレンサルファイド樹脂に、扁平な断面形状を有する繊維状強化剤を配合する技術がある(特許文献2)。
特開2005-161693号公報 特開2006-328291号公報
 本発明は、耐ヒートショック性、低反り性及び流動性が優れるポリアリーレンサルファイド系樹脂組成物及びその樹脂組成物を用いたインサート成形品を提供することを課題とする。
 本発明者は研究の過程で、ポリアリーレンサルファイド系樹脂にオレフィン系共重合体と共に配合する無機充填剤として、異径比が異なりかつそれぞれが所定の異径比を有する繊維状充填剤を組み合わせて配合することによって、耐ヒートショック性が低下しやすい構造を有するインサート成形品の樹脂部材に用いた場合でも優れた耐ヒートショック性を維持でき、さらに低反り性も両立できることを見出した。加えて、組成物中に含まれる無機充填剤の種類や組み合わせによっては樹脂の流動性が低下することにより成形性が低下する場合があるが、本発明者が見出した無機充填剤の配合では、所定の組成を有する複数のオレフィン系共重合体を組み合わせて用いることで、樹脂組成物の流動性が低下することを抑制しつつ優れた耐ヒートショック性を達成できることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るポリアリーレンサルファイド系樹脂組成物は、ポリアリーレンサルファイド系樹脂A、無機充填剤B、オレフィン系共重合体C、及びオレフィン系共重合体Dを含有し、無機充填剤Bが、長手方向に直角な断面の長径と短径との比である異径比が1.5以下である繊維状無機充填剤B1と、前記異径比が3.0以上である繊維状無機充填剤B2と、を含有し、繊維状無機充填剤B1と繊維状無機充填剤B2との質量比B1/B2が、0.2以上5.0以下であり、オレフィン系共重合体Cが、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含有し、オレフィン系共重合体Dが、エチレン・α-オレフィン系共重合体D1及びα-オレフィン由来の構成単位とα,β-不飽和カルボン酸アルキルエステル由来の構成単位とを含有するオレフィン系共重合体D2からなる群から選択される少なくとも1種のオレフィン系共重合体を含有し、オレフィン系共重合体Cの含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対して3質量部以上19質量部未満であり、オレフィン系共重合体Dの含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対し合計して3質量部以上30質量部以下であることを特徴とする。
 本発明において、無機充填剤Bが、さらに非繊維状無機充填剤B3を含有することが好ましい。本発明において、無機充填剤Bの総含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対して90質量部以上220質量部以下であることがより好ましい。
 本発明において、繊維状無機充填剤B2の含有量がポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上であり、非繊維状無機充填剤B3の含有量がポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上であることが好ましい。非繊維状無機充填剤B3の平均粒子径が10μm以上であることが好ましい。
 本発明に係るインサート成形品は、金属、合金又は無機固体物を用いて形成されたインサート部材と、インサート部材の表面の少なくとも一部を覆う樹脂部材とを有し、樹脂部材が上記のポリアリーレンサルファイド系樹脂組成物を用いて形成されたことを特徴とする。
 本発明において、樹脂部材が、前記樹脂組成物の流動末端同士が接合したウェルド部、及び膨張収縮により発生する応力が集中する応力集中部のいずれか又は両方からなり所定の方向に延びる脆弱部を少なくとも一つ有し、かつ、少なくとも一つの脆弱部が延びる方向に略直角方向に延びる表面上にゲート痕を有するように構成することができる。
 本発明によれば、耐ヒートショック性、低反り性及び流動性が優れるポリアリーレンサルファイド系樹脂組成物及びその樹脂組成物を用いたインサート成形品を提供することができる。
インサート成形品の一実施形態を模式的に示す図であって、(A)は斜視図であり、(B)は平面図である。 ウェルド部が形成される様子を模式的に示す図である。 低反り性の測定位置についての説明図である。
 以下、本発明の一実施形態について詳細に説明する。本発明は、以下の実施形態に限定されるものではなく、本発明の効果を阻害しない範囲で適宜変更を加えて実施することができる。
[ポリアリーレンサルファイド系樹脂組成物]
 ポリアリーレンサルファイド系樹脂組成物(以下、単に「樹脂組成物」ともいう。)は、ポリアリーレンサルファイド系樹脂を主成分とする樹脂を含む樹脂組成物である。「主成分とする」とは、樹脂成分中、80質量%以上、85質量%以上、90質量%以上であることを意味する。本実施形態に係る樹脂組成物は、ポリアリーレンサルファイド系樹脂A、無機充填剤B、オレフィン系共重合体C及びオレフィン系共重合体Dを含有する。
(ポリアリーレンサルファイド系樹脂A)
 ポリアリーレンサルファイド系樹脂Aは、以下の一般式(I)で示される繰り返し単位を有する樹脂である。
 -(Ar-S)-  ・・・(I)
 (但し、Arは、アリーレン基を示す。)
 アリーレン基は、特に限定されないが、例えば、p-フェニレン基、m-フェニレン基、o-フェニレン基、置換フェニレン基、p,p’-ジフェニレンスルフォン基、p,p’-ビフェニレン基、p,p’-ジフェニレンエーテル基、p,p’-ジフェニレンカルボニル基、ナフタレン基等を挙げることができる。ポリアリーレンサルファイド系樹脂Aは、上記一般式(I)で示される繰り返し単位の中で、同一の繰り返し単位を用いたホモポリマーの他、用途によっては異種の繰り返し単位を含むコポリマーとすることができる。
 ホモポリマーとしては、アリーレン基としてp-フェニレン基を有する、p-フェニレンサルファイド基を繰り返し単位とするものが好ましい。p-フェニレンサルファイド基を繰り返し単位とするホモポリマーは、極めて高い耐熱性を持ち、広範な温度領域で高強度、高剛性、さらに高い寸法安定性を示すからである。このようなホモポリマーを用いることで非常に優れた物性を備える成形品を得ることができる。
 コポリマーとしては、上記のアリーレン基を含むアリーレンサルファイド基の中で異なる2種以上のアリーレンサルファイド基の組み合わせが使用できる。これらの中では、p-フェニレンサルファイド基とm-フェニレンサルファイド基とを含む組み合わせが、耐熱性、成形性、機械的特性等の高い物性を備える成形品を得るという観点から好ましい。p-フェニレンサルファイド基を70mol%以上含むポリマーがより好ましく、80mol%以上含むポリマーがさらに好ましい。なお、フェニレンサルファイド基を有するポリアリーレンサルファイド系樹脂Aは、ポリフェニレンサルファイド樹脂(PPS樹脂)である。
 ポリアリーレンサルファイド系樹脂Aは、一般にその製造方法により、実質的に線状で分岐や架橋構造を有しない分子構造のものと、分岐や架橋を有する構造のものが知られているが、本実施形態においてはそのいずれのタイプのものについても有効である。
 ポリアリーレンサルファイド系樹脂Aの溶融粘度は、310℃及びせん断速度1216sec-1で測定した溶融粘度が、5Pa・s以上50Pa・s以下であることが好ましく、7Pa・s以上40Pa・s以下であることがより好ましい。溶融粘度が5Pa・s以上50Pa・s以下の場合、優れた耐ヒートショック性及び良好な流動性を維持することができる。
 ポリアリーレンサルファイド系樹脂Aの製造方法は、特に限定されず、従来公知の製造方法によって製造することができる。例えば、低分子量のポリアリーレンサルファイド系樹脂Aを合成後、公知の重合助剤の存在下で、高温下で重合して高分子量化することでポリアリーレンサルファイド系樹脂Aを製造することができる。
(無機充填剤B)
 無機充填剤Bは、異径比が互いに異なり、かつそれぞれ所定の異径比を有する繊維状無機充填剤B1及び繊維状無機充填剤B2(以下、「無機充填剤B1及びB2」ともいう。)を含有する。
 「異径比」とは、「長手方向に直角の断面の長径(断面の最長の直線距離)/当該断面の短径(長径と直角方向の最長の直線距離)」である。「繊維状」とは、異径比が1以上10以下、かつ、平均繊維長(カット長)が0.01~3mmの形状をいう。本実施形態では、「繊維状」との用語は、後述する「板状」(異径比が10より大きく、かつアスペクト比が1以上500以下の形状)、「粉粒状」(異径比が1以上10以下、かつ、アスペクト比が1以上2以下)とは区別される。なお、これらの形状は、いずれも初期形状(溶融混練前の形状)である。「アスペクト比」とは、「長手方向の最長の直線距離/長手方向に直角の断面の短径(当該断面における最長距離の直線と直角方向の最長の直線距離)」である。異径比及びアスペクト比は、いずれも、走査型電子顕微鏡及び画像処理ソフトを用いて算出することができる。また、平均繊維長(カット長)はメーカー値(メーカーがカタログなどにおいて公表している数値)を採用することができる。
 本実施形態では、異径比が1.5以下である繊維状無機充填剤B1と、異径比が3.0以上である繊維状無機充填剤B2とを組み合わせて含有する。これにより、インサート成形品が耐ヒートショック性が低下しやすい構造を有する場合でも、耐ヒートショック性が優れ、かつ低反り性に優れ寸法精度が高いインサート成形品を製造することができる。
(繊維状無機充填剤B1)
 繊維状無機充填剤B1は、異径比が1.5以下であり、好ましくは、1.0以上、1.3以下である繊維状の無機充填剤である。このような異径比を有する無機充填剤B1を含有することで、インサート成形品の成形収縮率及び線膨張係数を低下させ、機械的物性及び耐ヒートショック性を向上させることができる。無機充填剤B1としては、例えば、長手方向に直角な断面形状が、円形又は略円形である一般的な繊維状の無機充填剤を挙げることができる。
 繊維状無機充填剤B1の断面積は、製造しやすさ及び補強効果をより高める点で、1×10-5~1×10-3mmであることが好ましく、2×10-5~8×10-3mmであることがより好ましい。「断面積」は、走査型電子顕微鏡及び画像処理ソフトを用いて測定した繊維状無機充填剤B1の断面の最長の直線距離を長径とし、最短の直線距離を短径とした場合に、長径と短径とを乗じた値にさらに円周率πを乗じた値とすることができる。
 また、樹脂組成物の比重を軽くする等の目的で、繊維状無機充填剤B1として中空の繊維を使用することも可能である。
 繊維状無機充填剤B1の材料としては、ガラス繊維、カーボン繊維、酸化亜鉛繊維、酸化チタン繊維、ウォラストナイト、シリカ繊維、シリカ-アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化ケイ素繊維、硼素繊維、チタン酸カリ繊維、等の鉱物繊維、ステンレス繊維、アルミニウム繊維、チタン繊維、銅繊維、真鍮繊維等の金属繊維状物質等が挙げられ、これらを1種又は2種以上用いることができる。中でも、ガラス繊維、カーボン繊維が好ましい。
 繊維状無機充填剤B1は、一般的に知られているエポキシ系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物、脂肪酸等の各種表面処理剤により表面処理されていてもよい。表面処理により、ポリアリーレンサルファイド系樹脂Aとの密着性を向上させることができる。表面処理剤は、材料調製の前に予め繊維状無機充填剤B1に適用して表面処理又は収束処理を施しておくか、または材料調製の際に同時に添加してもよい。
 繊維状無機充填剤B1の含有量は、機械的物性及び耐ヒートショック性をより向上させる点で、ポリアリーレンサルファイド系樹脂A100質量部に対して10質量部以上であることが好ましく、より好ましくは20質量部以上、110質量部以下である。
(繊維状無機充填剤B2)
 繊維状無機充填剤B2は、異径比が3.0以上であり、好ましくは、3.5以上、より好ましくは、3.8以上の繊維状である無機充填剤である。異径比の上限値は、10.0以下であり、好ましくは、8.0以下であり、より好ましくは、6.0以下である。このような異径比を有する無機充填剤B2を含有することで、インサート成形品の成形収縮率及び線膨張係数の異方性を低下させ、低反り性、機械的物性及び耐ヒートショック性を向上させることができる。繊維状無機充填剤B2を繊維状無機充填剤B1と組み合わせることで、繊維状無機充填剤B1を単独で使用する、或いは繊維状無機充填剤B1を非繊維状無機充填材(例えば後述する非繊維状無機充填材B3)及び/又は他の繊維状無機充填材(例えば後述する繊維状無機充填材B4)と組み合わせて使用するよりも、耐ヒートショック性と低反り性とを両立した、より優れた効果を得ることができる。
 繊維状無機充填剤B2としては、例えば、長手方向に直角な断面形状が、長円形、楕円形、半円、まゆ形、矩形又はこれらの類似形である繊維状の無機充填剤を挙げることができる。なお、「まゆ形」は、長円形の長手方向の中央付近が内側に窪んだ形状である。
 繊維状無機充填剤B2の断面積は、製造しやすさ及び繊維状無機充填剤B1との組み合わせの効果をより高める点で、1×10-5~1×10-3mmであることが好ましく、1×10-4~5×10-4mmであることがより好ましい。「断面積」は、走査型電子顕微鏡及び画像処理ソフトを用いて測定した繊維状無機充填剤B2の断面の最長の直線距離を長径とし、最短の直線距離を短径とした場合に、長径と短径とを乗じた値にさらに円周率πを乗じた値とすることができる。繊維状無機充填剤B2の平均長さは、特に限定されないが、成形品の機械的物性、成形加工性等を考慮し、成形品内の平均繊維長で50~1000μmが好ましい。「平均繊維長」は、上記のとおりである。無機充填剤B2としては、繊維状無機充填剤B1と同様に、中空の繊維を使用することも可能である。繊維状無機充填剤B2の材料及び必要に応じて行う表面処理についても、上記した繊維状無機充填剤B1と同じであるので、ここでは記載を省略する。
 繊維状無機充填剤B2の含有量は、無機充填剤B1との組み合わせの効果をより高めて耐ヒートショック性をより向上させる点で、ポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上であることが好ましく、より好ましくは25質量部以上、100質量部以下である。
 無機充填剤B1及びB2の含有割合は、無機充填剤B1とB2との質量比B1/B2として0.2以上5.0以下であり、好ましくは0.3以上4.0以下であり、より好ましくは0.4以上4.0以下であり、さらに好ましくは0.4以上3.8以下である。B1/B2を0.2以上5.0以下にすることで、耐ヒートショック性及び低反りの両方が優れた樹脂組成物にすることができる。
(その他の充填剤)
 無機充填剤Bは、寸法安定性改良、金属腐食性ガスの発生抑制等のために、上記した無機充填剤B1及びB2の他に、必要に応じて他の無機充填剤を含有することができる。他の充填剤としては、非繊維状無機充填剤B3や、異径比が上記無機充填剤B1及びB2とは異なる他の繊維状無機充填剤B4等を挙げることができる。これらのその他の充填剤についても、上記のように表面処理することができる。
 非繊維状無機充填剤B3としては、粉粒状無機充填剤、板状無機充填剤等を挙げることができる。なお、「粉粒状」とは、上記のように、異径比が1以上10以下、かつ、アスペクト比が1以上2以下の形状であり、「板状」とは、異径比が10より大きく、かつアスペクト比が1以上500以下の形状である。
 非繊維状無機充填剤B3のうち、粉粒状無機充填剤としては、カーボンブラック、シリカ、石英粉末、ガラスビーズ、ガラス粉、タルク(粒状)、ケイ酸カルシウム、ケイ酸アルミニウム、珪藻土等のケイ酸塩、酸化鉄、酸化チタン、酸化亜鉛、アルミナ等の金属酸化物、炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩、硫酸カルシウム、硫酸バリウム等の金属硫酸塩、その他炭化ケイ素、窒化ケイ素、窒化硼素、各種金属粉末等を挙げることができる。中でも、炭酸カルシウム、ガラスビーズを好ましく用いることができる。
 非繊維状無機充填剤B3のうち、板状無機充填剤としては、例えば、ガラスフレーク、タルク(板状)、マイカ、カオリン、クレイ、アルミナ、各種の金属箔等を挙げることができる。中でも、ガラスフレーク、タルクを好ましく用いることができる。非繊維状無機充填剤B3は、寸法精度の向上、機械的物性の改善等の目的で、上記した無機充填剤を2種以上混合して用いることができる。
 非繊維状無機充填剤B3の平均粒子径(50%d)は、機械的強度や耐ヒートショック性をより向上させる点で、粉粒状充填剤の場合は、初期形状(溶融混練前の形状)において、10μm以上であることが好ましく、12μm以上であることがより好ましく、15μm以上であることがさらに好ましい。また上限値は、50μm以下であることが好ましく、45μm以下であることがより好ましく、40μm以下であることがより好ましい。板状充填剤の場合は、初期形状(溶融混練前の形状)において、10μm以上、1000μm以下であることが好ましく、15μm以上、900μm以下であることがより好ましく、20μm以上、800μm以下であることが特に好ましい。なお、平均粒子径(50%d)とは、レーザー回折・散乱法により測定した粒度分布における積算値50%のメジアン径を意味する。
 非繊維状無機充填剤B3の配合量は、機械的強度や耐ヒートショック性をより向上させる点で、ポリアリーレンサルファイド系樹脂A100質量部に対して、20質量部以上であることが好ましく、より好ましくは25質量部以上である。特に、上記した繊維状無機充填剤B2及び非繊維状無機充填剤B3の含有量が、いずれも、ポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上であることが好ましく、22質量部以上であることがより好ましく、25質量部以上であることが特に好ましい。繊維状無機充填剤B2及び非繊維状無機充填剤B3の含有量が、いずれも、ポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上である場合に、インサート成形品が、耐ヒートショック性が低下しやすい構造を有する場合でも、より優れた耐ヒートショック性を達成することができる。非繊維状無機充填剤B3の配合量の上限値は、機械的物性が低下することを抑制する点で、ポリアリーレンサルファイド系樹脂Aとの質量比で80以下とすることが好ましく、より好ましくは65以下である。
 他の繊維状無機充填剤B4としては、異径比が1.5を超える、又は1.6以上、3.0未満の繊維状の無機充填剤を挙げることができる。繊維状無機充填剤B4の材料は、上記した繊維状無機充填剤B1及びB2と同じであるからここでは記載を省略する。
 無機充填剤Bの総含有量は、ポリアリーレンサルファイド系樹脂Aの特性を維持しながら上記無機充填剤B1,B2の組み合わせによる作用を発揮させる点で、ポリアリーレンサルファイド樹脂A100質量部に対して90質量部以上220質量部以下であることが好ましく、より好ましくは、100質量部以上200質量部以下であり、特に好ましくは110質量部以上180質量部以下である。
(オレフィン系共重合体C)
 オレフィン系共重合体Cは、共重合成分としてα-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含有する。こうしたオレフィン系共重合体Cを含有するので、インサート成形品の耐ヒートショック性を著しく高めることができる。オレフィン系共重合体Cは、中でも、さらに(メタ)アクリル酸エステル由来の構成単位を含有するオレフィン系共重合体であることが好ましい。オレフィン系共重合体は、1種単独で又は2種以上組み合わせて使用することができる。なお、以下、(メタ)アクリル酸エステルを(メタ)アクリレートともいう。例えば、(メタ)アクリル酸グリシジルエステルをグリシジル(メタ)アクリレートともいう。また、本明細書において、「(メタ)アクリル酸」は、アクリル酸とメタクリル酸との両方を意味し、「(メタ)アクリレート」は、アクリレートとメタクリレートとの両方を意味する。
 α-オレフィンとしては、特に限定されないが、例えば、エチレン、プロピレン、ブチレン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等を挙げることができる。中でも、エチレンが好ましい。α-オレフィンは、上記から選択される1種又は2種以上を用いることができる。α-オレフィンに由来する共重合成分の含有量は、特に限定されないが、例えば、全樹脂組成物中1質量%以上8質量%以下とすることができる。
 α,β-不飽和酸のグリシジルエステルとしては、例えば、以下の一般式(II)に示される構造を有するものを挙げることができる。
Figure JPOXMLDOC01-appb-C000001
(但し、R1は、水素又は炭素数1以上10以下のアルキル基を示す。)
 上記一般式(II)で示される化合物としては、例えば、アクリル酸グリシジルエステル、メタクリル酸グリシジルエステル、エタクリル酸グリシジルエステル等を挙げることができる。中でも、メタクリル酸グリシジルエステルが好ましい。α,β-不飽和酸のグリシジルエステルは、1種単独で使用することもでき、2種以上を併用することもできる。α,β-不飽和酸のグリシジルエステルに由来する共重合成分の含有量は、全樹脂組成物中0.05質量%以上0.6質量%以下であることが好ましい。α,β-不飽和酸のグリシジルエステルに由来する共重合成分の含有量がこの範囲である場合、耐ヒートショック性を維持しつつモールドデポジットの析出をより抑制することができる。
 (メタ)アクリル酸エステルとしては、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸-n-ヘキシル、アクリル酸イソブチル、アクリル酸-n-アミル、アクリル酸-n-オクチル等のアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸-n-ヘキシル、メタクリル酸イソブチル、メタクリル酸-n-アミル、メタクリル酸-n-オクチル等のメタクリル酸エステルを挙げることができる。中でも、アクリル酸メチルが好ましい。(メタ)アクリル酸エステルは、1種単独で使用することもでき、2種以上を併用することもできる。(メタ)アクリル酸エステルに由来する共重合成分の含有量は、特に限定されないが、例えば、全樹脂組成物中0.5質量%以上3質量%以下とすることができる。
 α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含むオレフィン系共重合体、及び、さらに(メタ)アクリル酸エステル由来の構成単位を含むオレフィン系共重合体は、従来公知の方法で共重合を行うことにより製造することができる。例えば、通常よく知られたラジカル重合反応により共重合を行うことによって、上記オレフィン系共重合体を得ることができる。オレフィン系共重合体の種類は、特に問われず、例えば、ランダム共重合体であっても、ブロック共重合体であってもよい。また、上記オレフィン系共重合体に、例えば、ポリメタアクリル酸メチル、ポリメタアクリル酸エチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリアクリル酸-2エチルヘキシル、ポリスチレン、ポリアクリロニトリル、アクリロニトリル-スチレン共重合体、アクリル酸ブチル-スチレン共重合体等が、分岐状に又は架橋構造的に化学結合したオレフィン系グラフト共重合体であってもよい。
 本実施形態で用いるオレフィン系共重合体Cは、本発明の効果を害さない範囲で、他の共重合成分由来の構成単位を含有することができる。
 オレフィン系共重合体Cとしては、より具体的には、例えば、グリシジルメタクリレート変性エチレン系共重合体、グリシジルエーテル変性エチレン共重合体等が挙げられ、中でも、グリシジルメタクリレート変性エチレン系共重合体が好ましい。
 グリシジルメタクリレート変性エチレン系共重合体としては、グリシジルメタクリレートグラフト変性エチレン重合体、エチレン-グリシジルメタクリレート共重合体、エチレン-グリシジルメタクリレート-メチルアクリレート共重合体、エチレン-グリシジルメタクリレート-エチルアクリレート共重合体、エチレン-グリシジルメタクリレート-プロピルアクリレート共重合体、エチレン-グリシジルメタクリレート-ブチルアクリレート共重合体等を挙げることができる。中でも、特に優れた金属樹脂複合成形体が得られることから、エチレン-グリシジルメタクリレート共重合体及びエチレン-グリシジルメタクリレート-メチルアクリレート共重合体が好ましく、エチレン-グリシジルメタクリレート-メチルアクリレート共重合体が特に好ましい。エチレン-グリシジルメタクリレート共重合体及びエチレン-グリシジルメタクリレート-メチルアクリレート共重合体の具体例としては、「ボンドファースト」(住友化学株式会社製)等を挙げることができる。
 グリシジルエーテル変性エチレン共重合体としては、例えば、グリシジルエーテルグラフト変性エチレン共重合体、グリシジルエーテル-エチレン共重合体等を挙げることができる。
 オレフィン系共重合体Cの含有量は、ポリアリーレンサルファイド系樹脂A100質量部に対して3質量部以上19質量部未満であり、耐ヒートショック性の観点からは、ポリアリーレンサルファイド系樹脂A100質量部に対して5質量部以上であることが好ましく、7質量部以上であることがより好ましく、9質量部以上であることがさらに好ましい。一方、流動性の観点からオレフィン系共重合体Cの含有量は、ポリアリーレンサルファイド系樹脂A100質量部に対して19質量部未満であることが好ましく、18質量部以下であることがより好ましく、17質量部以下であることがさらに好ましい。
(オレフィン系共重合体D)
 オレフィン系共重合体Dは、以下に記載するオレフィン系共重合体D1及びオレフィン系共重合体D2からなる群から選択される1以上のオレフィン系共重合体を含む。本実施形態のポリアリーレンサルファイド系樹脂組成物は、オレフィン系共重合体Cだけでなくオレフィン系共重合体Dを含有することにより、インサート成形品の耐ヒートショック性を高めつつ、樹脂組成物として一定の流動性を有することとなる。
 オレフィン系共重合体Dの含有量は、ポリアリーレンサルファイド系樹脂A100質量部に対し合計して3質量部以上30質量部以下であり、5質量部以上25質量部以下がより好ましく、6質量部以上20質量部以下であることがさらに好ましい。
(オレフィン系共重合体D1)
 オレフィン系共重合体D1は、共重合成分としてエチレンとα-オレフィンとを含有する。オレフィン系共重合体D1において、α-オレフィンの炭素数は、3~20が好ましく、5~20がより好ましく、5~15がさらに好ましい。なお、オレフィン系共重合体D1はランダム共重合体であっても、ブロック共重合体であってもよい。オレフィン系共重合体D1は、エチレン5~95質量%とα-オレフィン5~95質量%からなる共重合体であってもよい。オレフィン系共重合体D1の具体例としては、エチレン-オクテン共重合体(EO)、エチレン-プロピレン共重合体、エチレン-ブチレン共重合体、エチレン-ペンテン共重合体、エチレン-ヘキセン共重合体、エチレン-ヘプテン共重合体等が挙げられ、さらにこれらの共重合体を混合しても使用できる。
(オレフィン系共重合体D2)
 オレフィン系共重合体D2は、共重合成分としてα-オレフィン由来の構成単位とα,β-不飽和カルボン酸アルキルエステル由来の構成単位とを含有するものであり、ランダム、ブロック又はグラフト共重合体や、その共重合体を不飽和カルボン酸及びその酸無水物及びそれらの誘導体からなる群より選択される少なくとも1種で変性したものであってもよい。オレフィン系共重合体D2におけるα-オレフィンとしては、特に限定されないが、例えば、エチレン、プロピレン、ブチレン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン等を挙げることができる。中でも、エチレンが好ましい。α-オレフィンは、上記から選択される1種又は2種以上を用いることができる。オレフィン系共重合体D2におけるα,β-不飽和カルボン酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸イソブチル、アクリル酸2エチルヘキシル、アクリル酸ヒドロキシエチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸イソブチル、メタクリル酸2エチルヘキシル、メタクリル酸ヒドロキシエチル等を用いることができる。
 変性剤として用いられる不飽和カルボン酸又はその酸無水物としては、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコン酸、グルタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、フマル酸モノエチル、イタコン酸メチル、無水メチルマレイン酸、無水マレイン酸、無水メチルマレイン酸、無水シトラコン酸等が挙げられ、これらは一種または二種以上で使用される。
 オレフィン系共重合体D2の具体例としては、エチレンアクリル酸エチル共重合体(EEA)、エチレンメタクリル酸メチル共重合体等のエチレンと(メタ)アクリル酸エステルとの共重合体等が挙げられる。
 オレフィン系共重合体Cの含有量とオレフィン系共重合体Dの含有量は、規定範囲内であれば特に限定されないが、耐ヒートショック性の観点から、オレフィン系共重合体Cの含有量は、オレフィン系共重合体Dの含有量と同じか、それ以上であることが、より好ましい。
 また、オレフィン系共重合体Dとしては、オレフィン系共重合体D1及びオレフィン系共重合体D2の中でも、オレフィン系共重合体D2を用いることが、より好ましい。
(その他の添加剤等)
 樹脂組成物は、本発明の効果を損なわない範囲で、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の添加剤、即ちバリ抑制剤、離型剤、潤滑剤、可塑剤、難燃剤、染料や顔料等の着色剤、結晶化促進剤、結晶核剤、各種酸化防止剤、熱安定剤、耐候性安定剤、腐食防止剤等を要求性能に応じ配合することが可能である。バリ抑制剤としては、例えば、国際公開第2006/068161号や国際公開第2006/068159号等に記載されているような、溶融粘度が非常に高い分岐型ポリフェニレンサルファイド系樹脂、シラン化合物等を挙げることができる。シラン化合物としては、ビニルシラン、メタクリロキシシラン、エポキシシラン、アミノシラン、メルカプトシラン等の各種タイプが含まれ、例えばビニルトリクロロシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-メルカプトトリメトキシシラン等が例示されるが、これらに限定されるものではない。添加剤の含有量は、例えば、全樹脂組成物中5質量%以下にすることができる。
 また、樹脂組成物には、その目的に応じ前記成分の他に、他の熱可塑性樹脂成分を補助的に少量併用することも可能である。ここで用いられる他の熱可塑性樹脂としては、高温において安定な樹脂であればいずれのものでもよい。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等の、芳香族ジカルボン酸とジオール、或いはオキシカルボン酸等からなる芳香族ポリエステル、ポリアミド、ポリカーボネート、ABS、ポリフェニレンオキサイド、ポリアルキルアクリレート、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリエーテルケトン、フッ素樹脂等を挙げることができる。また、これらの熱可塑性樹脂は、2種以上混合して使用することもできる。他の熱可塑性樹脂成分の含有量は、例えば、全樹脂組成物中20質量%以下、15質量%以下、又は10質量%以下にすることができる。
 樹脂組成物の調製は、従来の樹脂組成物調製法として一般に用いられる設備と方法を用いて容易に調製できる。例えば、1)各成分を混合した後、1軸又は2軸の押出機により練り込み押出してペレットを調製し、その後成形する方法、2)一旦組成の異なるペレットを調製し、そのペレットを所定量混合して成形し成形後に目的組成の成形品を得る方法、3)成形機に各成分の1又は2以上を直接仕込む方法等、いずれも使用できる。また、樹脂成分の一部を細かい粉体として、これ以外の成分と混合して添加する方法は、これらの成分の均一配合を図る上で好ましい方法である。
 本実施形態のポリアリーレンサルファイド系樹脂組成物は、耐ヒートショック性、低反り性及び流動性に優れた樹脂組成物であり、かかる特性を生かして、各種用途に有用である。中でも、複雑かつ樹脂部材の肉厚変化が大きい部分を有する構造である、あるいは、高低温度変化が大きい環境下で使用される自動車・車両関連のインサート部材用として、特に好ましく用いられる。自動車・車両関連部品としては、エンジンまわりの部品や、駆動系部品、冷却系部品等が挙げられる。エンジンまわりの部品としては、ハイブリッド電気自動車(HEV)におけるインバーターケース、電流センサー、コンデンサーケース、リアクトル、バスバー部品等が挙げられる。駆動系部品としては、モーターインシュレーター、回転センサー等が挙げられる。冷却系部品としてはウォーターポンプ、オイルポンプ、流量制御部品等が挙げられる。中でも特にインバーターケース、電流センサー、リアクトル、バスバー部品への適用が好ましい。
[インサート成形品]
 図1(A),(B)に、本実施形態に係るインサート成形品の一例を模式的に示す。(A)は斜視図であり、(B)は(A)の平面図である。図1(A)に示すように、インサート成形品1は、インサート部材11と、インサート部材の表面の少なくとも一部を覆う樹脂部材12とを有する。インサート部材11は、金属、合金又は無機固体物で形成されており、4つの角部120a~dを有する角柱状で、一部が樹脂部材12に埋設されている。樹脂部材12は、上記したポリアリーレンサルファイド系樹脂組成物で形成され、ウェルド部及び応力集中部の両方からなる脆弱部130a~dを4か所に有している。脆弱部130a~dは、所定の方向に延びるように、略長方形状に形成されている。なお、脆弱部130a~dは、ウェルド部又は応力集中部のいずれかのみからなる構成であってもよい。
 「応力集中部」は、樹脂組成物の膨張収縮により発生する応力が集中する部分である。応力集中部としては、例えば、角部(コーナー部)、切り欠き部、傷部、貫通孔、肉抜き部、肉薄部、肉厚変化が大きい箇所及びフローマーク部等を挙げることができる。応力集中部は、1又は2以上形成されていてもよい。図1(A)に示すインサート成形品1は、四角柱状のインサート部材11の角部120a~dが、樹脂部材12の側面に向かうように配置されている。そして、インサート部材11の角部(シャープコーナー)の先端と、樹脂部材12の側面との距離dは約1mmであり、その近傍が肉薄な応力集中部130a~dとなっている。脆弱部130a~dは、斜線領域で示すように、インサート部材1の角部120a~dの樹脂部材12に埋設されている領域の稜線から樹脂部材12の側面にかけて略長方形状に構成されている。
 「ウェルド部」は、樹脂組成物の流動末端同士が接合(溶接)した部分である。ウェルド部は、他の箇所よりも機械的な強度が劣る傾向にある。図1,2を参照して、ウェルド部が形成される様子を説明する。インサート成形品1は、底面X側にゲートを有する金型で製造されており、底面X上に図示しないゲート痕を有する。このインサート成形品1を射出成形する際は、図1,2に示すように、インサート成形品1の底面X側にある金型のゲート(図示しない)から金型のキャビティ内に樹脂組成物が注入される。注入された樹脂流Qは、インサート部材11の底面を起点として複数の樹脂流Q,Qに分流する。樹脂流Q,Qは、インサート部材11の側面に沿ってそれぞれ流れ、インサート部材11の角部120a~dの稜線部分で、該稜線に対してそれぞれ迎え角θ,θが90°未満(例えば、0°以上45°以下)となる角度で再度合流してその界面で接合される。この接合部分がウェルド部となり、脆弱部130a~dを構成する。なお、図2では、説明の便宜上、脆弱部130cのみ図示しているが、インサート部材1の角部120a~dの各稜線から樹脂部材12の側面にかけてそれぞれ脆弱部130a~dが長方形状に形成されている。インサート成形品1では、ウェルド部及び応力集中部の形成位置が一致しており、脆弱部130a~dは、ウェルド部及び応力集中部の両方からなるように形成されている。
 上記のように成形されたインサート成形品1は、所定の方向に延びる少なくとも一つの脆弱部130a~dを有し、かつ少なくとも一つの脆弱部130a~dが延びる方向に略直角方向に延びる表面X上にゲート痕を有する。「略直角」とは、直角を含め、およそ75°~105°程度の角度のことをいう。本実施形態に係る樹脂組成物を含む樹脂部材を有するインサート成形品1によれば、こうした構造を有していても耐ヒートショック性の低下を防いで耐ヒートショック性が優れたインサート成形品とすることができる。また、同時に低反り性を達成して寸法精度を高めることもできる。
 インサート部材11を構成する金属、合金又は無機固体物は、特に限定されないが、成形時に樹脂と接触したとき、変形したり溶融したりしないものが好ましい。例えば、アルミニウム、マグネシウム、銅、鉄等の金属、真鍮等の上記金属の合金、及びガラス、セラミックス等の無機固体物等を挙げることができる。
 インサート成形品の製造方法は、特に限定されず、例えば、上記した樹脂組成物と予め所望の形状に成形されたインサート部材とをインサート成形することができる。インサート成形は、例えば、金型にインサート部材を予め装着し、その外側に上記樹脂組成物を射出成形又は押出圧縮成形等により充填して複合成形することができる。なお、インサート成形品の形状及び大きさは、特に限定されない。
 以下に実施例を示して本発明をさらに具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
[実施例1~9、比較例1~10]
 以下に示す材料を用いて、表1に示す組成及び含有割合で、ポリアリーレンサルファイド系樹脂、無機充填剤、及びオレフィン系共重合体をドライブレンドした。これをシリンダー温度320℃の二軸押出機に投入して溶融混練することで、実施例及び比較例の樹脂組成物ペレットを得た。
(ポリアリーレンサルファイド系樹脂)
 ポリアリーレンサルファイド系樹脂A:ポリフェニレンサルファイド樹脂(PPS)、株式会社クレハ製「フォートロンKPS」(溶融粘度:20Pa・s(せん断速度:1216sec-1,310℃))
(ポリアリーレンサルファイド系樹脂の溶融粘度の測定)
 上記ポリアリーレンサルファイド系樹脂Aの溶融粘度は以下のようにして測定した。
 東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmL/フラットダイを使用し、バレル温度310℃、せん断速度1216sec-1での溶融粘度を測定した。
(無機充填剤)
 繊維状無機充填剤B1:ガラス繊維、断面が略円形、長径10.5μm、短径10.5μm、長径/短径の比1.0、日本電気硝子株式会社製「チョップドストランドECS03T-747H」
 繊維状無機充填剤B2:ガラス繊維、断面が長円形、長径28μm、短径7μm、長径/短径の比4.0、日東紡績株式会社製「異形断面チョップドストランド CSG 3PA-830」
 繊維状無機充填剤:ガラス繊維、断面が長円形、長径20μm、短径10μm、長径/短径の比2.0、日東紡績株式会社製「異形断面チョップドストランド CSG 3PL-962」
 繊維状無機充填剤:ガラス繊維、断面がまゆ形、長径24μm、短径12μm、長径/短径の比2.0、日東紡績株式会社製「異形断面チョップドストランド CSH 3PA-860」
 非繊維状無機充填剤B3:炭酸カルシウム、平均粒子径(50%d)25μm、旭鉱末株式会社製「MC-35W」
(オレフィン系共重合体)
 オレフィン系共重合体C:住友化学株式会社製「ボンドファースト7M」、共重合成分として、エチレンを67質量%、メタクリル酸グリシジルエステルを6質量%、及びアクリル酸メチルを27質量%含む。
 オレフィン系共重合体D1:エチレンオクテン共重合体、ダウ・ケミカル日本株式会社製「Engage 8440」
 オレフィン系共重合体D2:エチレンエチルアクリレート共重合体、株式会社NUC製「NUC-6570」
[評価]
(流動性)
 東洋精機製作所製キャピログラフを用い、キャピラリーとして1mmφ×20mmL/フラットダイを使用し、バレル温度310℃、剪断速度1000sec-1での溶融粘度(Pa・s)を測定した。結果を表1に示す。溶融粘度が250Pa・s以下の場合、流動性に優れている。
(耐ヒートショック性)
 実施例及び比較例で得られた樹脂組成物と、JIS G4051:2005 機械構造用炭素鋼鋼材で規定されるS35C製のインサート部材(1.41cm×1.41cm×高さ2.4cmの角柱形状)とを用い、射出成形によりシリンダー温度320℃、金型温度150℃の条件で、図1中の面X側にあるゲートから樹脂組成物を金型内に流し込み、樹脂部の最小肉厚が1mmとなるようにインサート射出成形し、図1に示すインサート成形品1を製造し試験片とした。
 この試験片について、冷熱衝撃試験機(エスペック株式会社製)を用い、-40℃にて1.5時間冷却後、180℃にて1.5時間加熱するというサイクルを繰り返し、20サイクル毎に脆弱部を観察した。脆弱部にクラックが発生したときのサイクル数を耐ヒートショック性の指標として評価した。結果を表1に示す。サイクル数が150以上である場合に耐ヒートショック性が優れており、170以上である場合に耐ヒートショック性が特に優れている。
(低反り性)
 実施例及び比較例で得られた樹脂組成物を用いて、射出成形によりシリンダー温度320℃、金型温度150℃、保圧力70MPaの条件で、80mm×80mm×厚さ1.5mmの平板状樹脂成形品2を5枚作製した。1枚目の平板状樹脂成形品2を水平面に静置し、株式会社ミツトヨ製のCNC画像測定機(型式:QVBHU404-PRO1F)を用いて、上記平板状樹脂成形品2上の9箇所において、上記水平面からの高さを測定し、得られた測定値から平均の高さを算出した。図3中に黒丸で高さを測定した位置を示す(d=3mm、d=37mm)。上記水平面からの高さが上記平均の高さと同一であり上記水平面と平行な面を基準面とした。上記9箇所で測定された高さから、基準面からの最大高さと最小高さとを選択し、両者の差を算出した。同様にして、他の4枚の平板状樹脂成形品についても上記の差を算出し、得られた5個の値を平均して、反り量の値とした。結果を表1に示す。反り量が少ない程、低反り性が優れている。

Figure JPOXMLDOC01-appb-T000002
1   インサート成形品
2   平板状樹脂成形品
11  インサート部材
12  樹脂部材
120a~d 角部
130a~d 脆弱部
Q   樹脂流

Claims (7)

  1.  ポリアリーレンサルファイド系樹脂A、無機充填剤B、オレフィン系共重合体C、及びオレフィン系共重合体Dを含有し、
     無機充填剤Bが、長手方向に直角な断面の長径と短径との比である異径比が1.5以下である繊維状無機充填剤B1と、前記異径比が3.0以上である繊維状無機充填剤B2と、を含有し、
     繊維状無機充填剤B1と繊維状無機充填剤B2との質量比B1/B2が、0.2以上5.0以下であり、
     オレフィン系共重合体Cが、α-オレフィン由来の構成単位とα,β-不飽和酸のグリシジルエステル由来の構成単位とを含有し、
     オレフィン系共重合体Dが、エチレン・α-オレフィン系共重合体D1及びα-オレフィン由来の構成単位とα,β-不飽和カルボン酸アルキルエステル由来の構成単位とを含有するオレフィン系共重合体D2からなる群から選択される少なくとも1種のオレフィン系共重合体を含有し、
     オレフィン系共重合体Cの含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対して3質量部以上19質量部未満であり、
     オレフィン系共重合体Dの含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対し合計して3質量部以上30質量部以下であることを特徴とする、ポリアリーレンサルファイド系樹脂組成物。
  2.  無機充填剤Bが、さらに非繊維状無機充填剤B3を含有する、請求項1に記載のポリアリーレンサルファイド系樹脂組成物。
  3.  無機充填剤Bの総含有量が、ポリアリーレンサルファイド系樹脂A100質量部に対して90質量部以上220質量部以下である、請求項1又は2に記載のポリアリーレンサルファイド系樹脂組成物。
  4.  繊維状無機充填剤B2の含有量がポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上であり、非繊維状無機充填剤B3の含有量がポリアリーレンサルファイド系樹脂A100質量部に対して20質量部以上である、請求項2又は3に記載のポリアリーレンサルファイド系樹脂組成物。
  5.  非繊維状無機充填剤B3の平均粒子径が10μm以上である、請求項2から4のいずれか一項に記載のポリアリーレンサルファイド系樹脂組成物。
  6.  金属、合金又は無機固体物を用いて形成されたインサート部材と、インサート部材の表面の少なくとも一部を覆う樹脂部材とを有し、樹脂部材が請求項1から5のいずれか一項に記載のポリアリーレンサルファイド系樹脂組成物を用いて形成されたことを特徴とする、インサート成形品。
  7.  樹脂部材が、前記樹脂組成物の流動末端同士が接合したウェルド部、及び膨張収縮により発生する応力が集中する応力集中部のいずれか又は両方からなり所定の方向に延びる脆弱部を少なくとも一つ有し、かつ、
     少なくとも一つの脆弱部が延びる方向に略直角方向に延びる表面上にゲート痕を有する、請求項6に記載のインサート成形品。
PCT/JP2019/017676 2018-04-27 2019-04-25 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品 WO2019208708A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/049,750 US11091635B1 (en) 2018-04-27 2019-04-25 Polyarylene sulfide-based resin composition and insert-molded product
JP2019556283A JP6834024B2 (ja) 2018-04-27 2019-04-25 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
CN201980028684.7A CN112041395B (zh) 2018-04-27 2019-04-25 聚芳硫醚系树脂组合物和嵌入成型品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-086942 2018-04-27
JP2018086942 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208708A1 true WO2019208708A1 (ja) 2019-10-31

Family

ID=68294034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017676 WO2019208708A1 (ja) 2018-04-27 2019-04-25 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品

Country Status (4)

Country Link
US (1) US11091635B1 (ja)
JP (1) JP6834024B2 (ja)
CN (1) CN112041395B (ja)
WO (1) WO2019208708A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019208706A1 (ja) * 2018-04-27 2020-04-30 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2022004327A1 (ja) * 2020-06-29 2022-01-06 ポリプラスチックス株式会社 押出成形又はブロー成形用ポリアリーレンサルファイド樹脂組成物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023150060A1 (en) * 2022-02-01 2023-08-10 Ticona Llc Polymer composition with a high degree of thermal shock resistance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328291A (ja) * 2005-05-30 2006-12-07 Polyplastics Co ポリアリーレンサルファイド樹脂組成物および射出成形品
JP2016535147A (ja) * 2013-08-22 2016-11-10 東レ株式会社 ポリフェニレンサルファイド樹脂組成物、及びその成形品とその成形品の製造方法
CN106147230A (zh) * 2015-04-09 2016-11-23 东丽先端材料研究开发(中国)有限公司 高流动性高刚性的聚苯硫醚树脂组合物及其成型品
WO2018079704A1 (ja) * 2016-10-31 2018-05-03 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2018105437A1 (ja) * 2016-12-09 2018-06-14 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2018198850A1 (ja) * 2017-04-27 2018-11-01 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263586A (ja) * 1999-03-19 2000-09-26 Polyplastics Co インサート成形品
JP4788032B2 (ja) 2000-10-20 2011-10-05 東レ株式会社 ポリフェニレンスルフィド樹脂組成物および成形体
JP2001316587A (ja) 2001-04-16 2001-11-16 Toray Ind Inc 筐体材料
JP3993002B2 (ja) 2001-10-05 2007-10-17 ポリプラスチックス株式会社 インサート成形品
JP2005161693A (ja) 2003-12-03 2005-06-23 Polyplastics Co インサート成形品
JP2005306926A (ja) 2004-04-19 2005-11-04 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物および成形体
JP2008075049A (ja) 2006-09-25 2008-04-03 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物および成形品
KR20100015680A (ko) * 2007-04-20 2010-02-12 이데미쓰 고산 가부시키가이샤 전자태그 밀봉용 수지 조성물, 수지 밀봉 전자태그 및 그의 제조방법
JP2009030030A (ja) 2007-06-27 2009-02-12 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP5177089B2 (ja) 2008-07-30 2013-04-03 東レ株式会社 ポリアリーレンスルフィド樹脂組成物、ポリアリーレンスルフィド樹脂組成物錠剤およびそれらから得られる成形品
JP2011026439A (ja) * 2009-07-24 2011-02-10 Teijin Chem Ltd ガラス繊維強化樹脂組成物
JP2011173946A (ja) * 2010-02-23 2011-09-08 Toray Ind Inc ポリフェニレンサルファイド樹脂組成物および成形体
WO2014103814A1 (ja) 2012-12-27 2014-07-03 ポリプラスチックス株式会社 樹脂組成物及び平板状インサート成形体
JP6707810B2 (ja) 2015-03-30 2020-06-10 東レ株式会社 ポリフェニレンスルフィド樹脂組成物からなる自動車用冷却モジュール
JP6668688B2 (ja) 2015-11-06 2020-03-18 東レ株式会社 ポリフェニレンスルフィド樹脂組成物およびそれからなる成形品
JP2021120422A (ja) * 2018-04-27 2021-08-19 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
CN111971344B (zh) * 2018-04-27 2021-08-20 宝理塑料株式会社 聚芳硫醚系树脂组合物和嵌入成型品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328291A (ja) * 2005-05-30 2006-12-07 Polyplastics Co ポリアリーレンサルファイド樹脂組成物および射出成形品
JP2016535147A (ja) * 2013-08-22 2016-11-10 東レ株式会社 ポリフェニレンサルファイド樹脂組成物、及びその成形品とその成形品の製造方法
CN106147230A (zh) * 2015-04-09 2016-11-23 东丽先端材料研究开发(中国)有限公司 高流动性高刚性的聚苯硫醚树脂组合物及其成型品
WO2018079704A1 (ja) * 2016-10-31 2018-05-03 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2018105437A1 (ja) * 2016-12-09 2018-06-14 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2018198850A1 (ja) * 2017-04-27 2018-11-01 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019208706A1 (ja) * 2018-04-27 2020-04-30 ポリプラスチックス株式会社 ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2022004327A1 (ja) * 2020-06-29 2022-01-06 ポリプラスチックス株式会社 押出成形又はブロー成形用ポリアリーレンサルファイド樹脂組成物
JP2022010654A (ja) * 2020-06-29 2022-01-17 ポリプラスチックス株式会社 押出成形又はブロー成形用ポリアリーレンサルファイド樹脂組成物

Also Published As

Publication number Publication date
CN112041395B (zh) 2021-11-26
JPWO2019208708A1 (ja) 2020-05-07
CN112041395A (zh) 2020-12-04
US11091635B1 (en) 2021-08-17
JP6834024B2 (ja) 2021-02-24
US20210246311A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
CN110050034B (zh) 聚芳硫醚系树脂组合物和嵌件成型品
WO2018079704A1 (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2018198850A1 (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2019208708A1 (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
WO2019208709A1 (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
JP3876141B2 (ja) ポリエステル系樹脂組成物およびその成形品
JP5616532B2 (ja) ポリブチレンテレフタレート樹脂組成物及び溶着体
EP3239240B1 (en) Polyarylene sulfide resin composition and insert molded article
JP6823840B2 (ja) 金属樹脂複合体及びその製造方法
WO2019208706A1 (ja) ポリアリーレンサルファイド系樹脂組成物及びインサート成形品
JP7465639B2 (ja) ポリアリーレンサルファイド樹脂成形品
JP2000263586A (ja) インサート成形品
WO2019026869A1 (ja) ポリアリーレンサルファイド樹脂組成物及び燃料接触体
JP2006257338A (ja) レーザー溶着用樹脂組成物およびそれを用いた複合成形体
JP2020105502A (ja) ポリアリーレンサルファイド系樹脂組成物及びその成形品
JP2013075996A (ja) 高放熱性ポリアリーレンスルフィド樹脂組成物および成形体
JP7382541B2 (ja) ポリアリーレンサルファイド樹脂組成物及びインサート成形品
JP6993390B2 (ja) 車載カメラ用ケーシング部材及びその製造方法
JP2023091755A (ja) ポリアリーレンサルファイド樹脂組成物及びインサート成形品
JP2023101325A (ja) ポリアリーレンサルファイド樹脂組成物、並びに金属樹脂複合成形体及びその製造方法
JP2023026340A (ja) ポリアリーレンサルファイド樹脂組成物、並びに金属樹脂複合成形体及びその製造方法
WO2024048558A1 (ja) ポリアリーレンサルファイド樹脂組成物
JPH07324164A (ja) ポリアリーレンサルファイド樹脂組成物

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019556283

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792402

Country of ref document: EP

Kind code of ref document: A1