WO2019206124A1 - 阵列基板、显示装置及修复阵列基板的导线断路的方法 - Google Patents

阵列基板、显示装置及修复阵列基板的导线断路的方法 Download PDF

Info

Publication number
WO2019206124A1
WO2019206124A1 PCT/CN2019/083836 CN2019083836W WO2019206124A1 WO 2019206124 A1 WO2019206124 A1 WO 2019206124A1 CN 2019083836 W CN2019083836 W CN 2019083836W WO 2019206124 A1 WO2019206124 A1 WO 2019206124A1
Authority
WO
WIPO (PCT)
Prior art keywords
shielding pattern
conductive light
substrate
wire
array substrate
Prior art date
Application number
PCT/CN2019/083836
Other languages
English (en)
French (fr)
Inventor
徐姗姗
王文超
徐旭
王宝强
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/640,186 priority Critical patent/US11515336B2/en
Publication of WO2019206124A1 publication Critical patent/WO2019206124A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • H01L21/76894Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an array substrate, a display device, and a method of repairing a wire break of an array substrate.
  • Open circuit is often difficult to repair, resulting in a significant reduction in product yield and a corresponding increase in production costs.
  • an array substrate comprising: a substrate, a plurality of sub-pixel units located on the substrate, and between adjacent two sub-pixel units of the plurality of sub-pixel units The wire and the first conductive light shielding pattern.
  • the first conductive light-shielding pattern is electrically insulated from the wire, and the first conductive light-shielding pattern includes two first regions, and an orthographic projection of the two first regions on the substrate is opposite to the wire The orthographic projections on the substrate overlap.
  • the sub-pixel unit includes a common electrode including a plurality of strip electrodes spaced apart and electrically connected to each other, an extending direction of the plurality of strip electrodes and an extending direction of the wires The same, and the first conductive light-shielding pattern is electrically connected to the strip-shaped electrode of the plurality of strip electrodes closest to the wire.
  • the common electrode further includes a plurality of connections electrically connected between the plurality of strip electrodes.
  • connection is located at an end of the strip electrode that is electrically connected thereto.
  • the strip electrodes of the common two electrodes of the adjacent two sub-pixel units that are closest to the wire are electrically insulated from each other.
  • the array substrate further includes a second conductive light shielding pattern between the adjacent two sub-pixel units, wherein the second conductive light shielding pattern is electrically insulated from the wires, and the second conductive
  • the light blocking pattern includes two second regions, the orthographic projection of the two second regions on the substrate overlapping the orthographic projection of the wires on the substrate.
  • an orthographic projection of each of the two first regions on the substrate coincides with an orthographic projection of a corresponding one of the two second regions on the substrate.
  • an orthographic projection of the first conductive light-shielding pattern on the substrate and an orthographic projection of the second conductive light-shielding pattern on the substrate are located on the substrate on the substrate The opposite sides of the orthographic projection.
  • a display device including the array substrate according to any of the embodiments of the present disclosure is provided.
  • a method of repairing a wire break of an array substrate includes a substrate, a plurality of sub-pixel units on the substrate, and a wire and a first conductive light-shielding pattern between adjacent two of the plurality of sub-pixel units, wherein
  • the first conductive light-shielding pattern is electrically insulated from the wire, and the first conductive light-shielding pattern includes two first regions, an orthographic projection of the two first regions on the substrate and the wire are in the An orthographic projection on the substrate overlaps to form two overlapping regions, each overlapping region corresponding to a segment of the first conductive light-shielding pattern and a segment of the wire, the circuit being interposed between the two overlapping regions Between each of the segments of the wire corresponding to the method, wherein the method comprises:
  • the sub-pixel unit includes a common electrode including a plurality of strip electrodes spaced apart and electrically connected to each other, an extending direction of the plurality of strip electrodes and an extending direction of the wires The same, and the first conductive light-shielding pattern is electrically connected to the strip-shaped electrode of the plurality of strip electrodes closest to the wire, wherein the method further comprises:
  • the step of electrically connecting the segment of the first conductive blackout pattern corresponding to each overlap region and the segment of the wire comprises:
  • FIG. 1 schematically shows the structure of an array substrate in the related art
  • FIGS. 2A and 2B schematically illustrate top and cross-sectional views of an array substrate in accordance with an embodiment of the present disclosure
  • FIG. 2C schematically illustrates a top view of an array substrate in accordance with another embodiment of the present disclosure
  • 2D schematically illustrates a top view of an array substrate in accordance with yet another embodiment of the present disclosure
  • FIGS. 3A and 3B schematically illustrate top and cross-sectional views of an array substrate in accordance with still another embodiment of the present disclosure
  • FIG. 4 schematically illustrates a top view of a common electrode of an array substrate in accordance with an embodiment of the present disclosure
  • FIG. 5 schematically illustrates another cross-sectional view of an array substrate in accordance with an embodiment of the present disclosure
  • FIGS. 6A and 6B schematically illustrate cross-sectional views of a repaired array substrate using a method of repairing a wire break of an array substrate according to an embodiment of the present disclosure
  • FIG. 7 schematically illustrates a flow chart of a method of repairing a wire break of an array substrate in accordance with an embodiment of the present disclosure
  • FIG. 8 schematically illustrates a top view of a repaired array substrate using a method of repairing a wire break of an array substrate in accordance with an embodiment of the present disclosure.
  • a plurality of wires are arranged on the array substrate of the display panel.
  • the wire may be broken due to the presence of particulate matter or poor stability of the manufacturing process. If the wire is broken and not repaired, the array substrate becomes a defective product. As a result, product yields are reduced and production costs are increased accordingly. Therefore, the repair method for the array substrate and its data line disconnection needs further study.
  • Various wires such as data lines, scan lines, signal lines, and the like may be included on the array substrate.
  • the present disclosure will be described by taking a data line as an example, but it should be understood that the content of the present disclosure is equally applicable to other types of wires.
  • Fig. 1 schematically shows the structure of an array substrate in the related art.
  • a plurality of sub-pixel units 40 are arranged on the array substrate 10.
  • the space between the sub-pixel units is small. This results in the inability to perform a repair method such as tungsten powder when the data line 20 is broken. Therefore, it is difficult to repair the broken data line.
  • no other route in the array substrate 10 can replace the broken data line. This makes the array substrate unusable, resulting in low product yield and increased production costs.
  • an array substrate is provided. 2A and 2B schematically illustrate top and cross-sectional views of an array substrate in accordance with an embodiment of the present disclosure.
  • the array substrate includes a substrate 10 and a plurality of sub-pixel units 40 on the substrate 10.
  • a wire for example, the data line 20
  • the first conductive light-shielding pattern 30 are included between adjacent two sub-pixel units 40 distributed along the first direction X.
  • the data line 20 and the first conductive light-shielding pattern 30 are insulated from each other and extend in the second direction Y, respectively.
  • the first conductive light shielding pattern 30 is disposed on the substrate 10.
  • the data line 20 is disposed on a side of the first conductive light-shielding pattern 30 that faces away from the substrate 10.
  • the first conductive light shielding pattern 30 includes two first regions 31 and 32. In some embodiments, as shown in FIG. 2A, the first regions 31 and 32 are flush with respect to the opposite edges of the sub-pixel unit 40 in the second direction Y. It should be understood that the first regions 31 and 32 may also protrude from opposite edges of the sub-pixel unit 40 in the second direction Y.
  • FIG. 2C schematically illustrates a top view of an array substrate in which two first regions of the first conductive light-shielding pattern 30 protrude from upper and lower edges of the sub-pixel unit 40, according to another embodiment of the present disclosure.
  • the term "overlapping" means that the two projections have intersecting portions, and the two projections may be completely coincident or may be partially coincident.
  • Each overlap region corresponds to a segment of the data line 20.
  • 2D schematically illustrates a top view of an array substrate in accordance with yet another embodiment of the present disclosure.
  • the first regions 31 and 32 may extend beyond the overlap region (refer to FIG. 2A) in the first direction X, or may be flush with the overlap region (refer to FIG. 2D). As shown in FIG. 2A, in some embodiments, the first direction X and the second direction Y intersect.
  • the data line 20 and the first conductive light-shielding pattern 30 are electrically insulated from each other. As shown in FIG. 2B, the data line 20 and the first conductive light-shielding pattern 30 are separated by an insulating layer so that the two are not connected to each other.
  • the data line 20 is disconnected and the disconnection position is between the segments of the data lines corresponding to the two overlapping regions 231 and 232 (such as at A in FIG. 2A), the first overlap region 231 may be made to correspond.
  • a segment of the data line is electrically coupled to the segment of the first conductive light-shielding pattern and electrically interconnects the first conductive light-shielding pattern corresponding to the second overlap region 232 and the segment of the data line.
  • the current on the wire can be transferred by means of the first conductive light-shielding pattern (see the arrow in Fig. 2A), thereby realizing the repair of the above-mentioned open circuit.
  • the term “the conductive light-shielding pattern extends in the second direction” herein refers to guiding at least one continuous connecting line between the first end and the second end of the electric shading pattern in the second direction, so that The first end and the second end are electrically connected.
  • specific types of substrates include, but are not limited to, a glass substrate and a polymer substrate as long as the use requirements are met.
  • the substrate can be a conventional substrate known in the art.
  • the material forming the wire may include a metal or a metal alloy such as a material such as copper, silver, molybdenum, aluminum, or a molybdenum-tungsten alloy.
  • a metal or a metal alloy such as a material such as copper, silver, molybdenum, aluminum, or a molybdenum-tungsten alloy.
  • the conductive light-shielding pattern is mainly used to shield a region where light leakage is likely to occur, such as a weak region, to avoid light leakage.
  • the material forming the conductive light-shielding pattern may include a metal or a metal alloy such as a material such as molybdenum, aluminum or a molybdenum-tungsten alloy. Thereby, light leakage can be effectively prevented. Since the conductive light-shielding pattern has electrical conductivity, in the solution of the present disclosure, when an open circuit occurs between segments of the corresponding data line of the first overlap region and the second overlap region, the conductive light-shielding pattern can be used for the data line. Repair, help complete the transmission of data signals, and thus improve product yield.
  • the array substrate may further include a second conductive light shielding pattern 35 between the adjacent two sub-pixel units.
  • 3A and 3B schematically illustrate top and cross-sectional views of an array substrate in accordance with yet another embodiment of the present disclosure.
  • the second conductive light shielding pattern 35 is electrically insulated from the wires 20.
  • the second conductive light-shielding pattern 35 includes two second regions 36 and 37, the orthographic projection of the two second regions on the substrate overlapping the orthographic projection of the wires on the substrate.
  • An orthographic projection of the first conductive light-shielding pattern 30 on the substrate 10 and an orthographic projection of the second conductive light-shielding pattern 35 on the substrate 10 are located on the substrate 10 on the substrate 10. Both sides of the orthographic projection.
  • an orthographic projection of each of the two first regions on the substrate coincides with an orthographic projection of a corresponding one of the two second regions on the substrate. More specifically, in some embodiments, each of the two first regions coincides with a corresponding one of the two second regions, that is, the first region 31 and the second region 36 coincide, first Region 32 coincides with second region 37.
  • the combination of the first conductive light-shielding pattern 30 and the second conductive light-shielding pattern 35 has a closed loop shape. Thereby, the signal of the wire can be transmitted through the conductive light-shielding patterns on both sides thereof, and the reliability is higher.
  • the combination of the first conductive light-shielding pattern 30 and the second conductive light-shielding pattern 35 may not be closed as long as one conductive light-shielding pattern can be used in the method of repairing the open circuit. It is sufficient to electrically connect both sides of the break of the wire 20. Thus, after the wires corresponding to the overlapping regions and the segments of the conductive light-shielding pattern are electrically connected, the signals of the wires are transmitted only through one conductive light-shielding pattern.
  • the wire and the conductive light shielding pattern may be electrically connected by a method of laser melting.
  • the method of repairing a wire break according to an embodiment of the present disclosure is easy to operate, has a high success rate, and is low in cost.
  • the wires and the conductive shading pattern are electrically insulated from each other, as shown in FIGS. 2B and 3B.
  • various insulating layers may exist between the wires and the conductive shading pattern.
  • the first direction and the second direction cross each other, but the angle of intersection thereof is not limited. Those skilled in the art can design according to the production requirements, and the vertical crossover shown in the drawing is only an embodiment, and is not a limitation on the crossing angle.
  • the plurality of sub-pixel units may include a red sub-pixel, a green sub-pixel, and a blue sub-pixel. According to another embodiment of the present disclosure, the plurality of sub-pixel units may include a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel. According to still another embodiment of the present disclosure, the plurality of sub-pixel units may include a red sub-pixel, a green sub-pixel, a blue sub-pixel, a white sub-pixel, and a yellow sub-pixel. Thereby, different usage requirements can be met.
  • the sub-pixel unit may include a common electrode.
  • the conductive light shielding pattern is connected to a common electrode in a sub-pixel unit adjacent thereto.
  • FIG. 4 schematically illustrates a top view of a common electrode in accordance with an embodiment of the present disclosure.
  • the common electrode 45 includes a plurality of strip electrodes 41 spaced apart in the first direction and electrically connected to each other.
  • the strip electrode 41 extends in the second direction.
  • the first conductive light shielding pattern 30 is electrically connected to the strip electrode 41 closest to the data line 20 among the strip electrodes.
  • the first conductive light blocking pattern 30 is electrically connected to the strip electrode closest to the plurality of strip electrodes.
  • the strip electrode 41 closest to the wire among the common electrodes can provide a stable voltage to the conductive light-shielding pattern, preventing the conductive light-shielding pattern from generating a floating electric field whose intensity cannot be controlled.
  • the common electrode has a vertical slit structure, which facilitates the use of the conductive light-shielding pattern to repair the electrical connection between the common electrode (the remaining strip electrode) and the conductive light-shielding pattern when the wire is broken, thereby avoiding the interaction between the common electrode signal and the wire signal.
  • the common electrode further includes a plurality of connections.
  • the connecting portion 42 is located between the adjacent two strip electrodes.
  • the strip electrode 41 is electrically connected to the connecting portion 42.
  • the connecting portion 42 is located at at least one end of the strip electrode 41 electrically connected thereto in the second direction Y.
  • the connecting portion 42 electrically connects the plurality of strip electrodes 41 to ensure that the common electrode has a stable voltage.
  • the manner in which the conductive shading pattern is connected to the strip electrode 41 closest to the conductor among the common electrodes can be selected as needed.
  • the orthographic projection of the strip electrode 41 closest to the wire in the common electrode on the substrate has an overlapping area with the orthographic projection of the conductive light-shielding pattern on the substrate.
  • the conductive light-shielding pattern and the strip of the common electrode closest to the data line 20 can be made by providing via holes at the strip electrodes corresponding to the overlapping regions in the insulating layer and the segments of the conductive light-shielding pattern.
  • the electrodes 41 are electrically connected. This type of connection is simple to operate and easy to implement.
  • the strip electrodes closest to the wires among the respective common electrodes of the adjacent two sub-pixel units 40 are not directly connected to each other.
  • the leftmost strip electrode of the left common electrode and the leftmost strip electrode of the right common electrode are not connected to each other. Therefore, in the direction perpendicular to the substrate, there is no overlapping area between the data line and the common electrode, that is, no capacitance is generated, thereby reducing the data line load and improving the usability.
  • the strip electrodes in the common electrode are transparent electrodes, thereby not affecting light transmission.
  • Materials forming the strip electrodes include, but are not limited to, transparent conductive oxides such as indium tin oxide and the like. Thereby, the electrical conductivity is good and the use effect is good.
  • FIG. 5 schematically shows a cross-sectional view of the array substrate taken along line C-C' of FIG.
  • the first conductive light shielding pattern 30 and the pixel electrode 50 are disposed on the surface of the substrate 10.
  • the first insulating layer 60 is formed on the surface of the substrate 10 and covers the first conductive light-shielding pattern 30 and the pixel electrode 50.
  • the data line 20 is disposed on a side of the first insulating layer 60 remote from the substrate 10, and its orthographic projection on the substrate does not overlap the orthographic projection of the first conductive light-shielding pattern 30 on the substrate.
  • the second insulating layer 70 is formed on a side of the first insulating layer 60 away from the substrate 10 and covers the data line 20.
  • the strip electrode 41 is disposed on a side of the second insulating layer 70 away from the substrate 10.
  • the D-D' cross section is different from the C-C' cross section because the first region of the first conductive light blocking pattern exists on the D-D' cross section.
  • a cross section of D-D' is shown in Fig. 2B.
  • the orthographic projection of data line 20 on the substrate has an overlapping area with the orthographic projection of first conductive light-shielding pattern 30 on the substrate.
  • the strip electrode 41 closest to the data line 20 is electrically connected to the first conductive light shielding pattern 30 through the via hole.
  • the array substrate in FIG. 2B is in a state where the data line is not broken.
  • 6A and 6B are schematic cross-sectional views showing the structure of a repaired array substrate.
  • the respective conductive shading patterns and segments of the data lines of the overlapping regions may be electrically connected by a means such as laser melting to overcome the problem of disconnection.
  • the array substrate may include other structures or components, such as a thin film transistor, a pixel electrode, a flat layer, and the like, in addition to the wires, the conductive light-shielding pattern, and the common electrode described above.
  • the repair space is relatively large. Therefore, the repair of the data line breaking can be realized by the tungsten plating powder.
  • a display device includes an array substrate according to an embodiment of the present disclosure.
  • Such a display device has an improved production yield and a reduced production cost.
  • the display device has all the features and advantages of the array substrate described above, and will not be further described herein.
  • the specific types of the above display devices are not limited, and those skilled in the art can flexibly select according to actual conditions.
  • the display device may be a mobile phone, a tablet computer, a television, a game machine, or any electronic device having a display function.
  • the display device may include other structures or components in addition to the array substrate, such as a color film substrate, a liquid crystal layer, a cover plate, a sound processing module, a camera module, a fingerprint module, and a CPU processor.
  • Figure 7 schematically shows a flow chart of the method.
  • the open circuit is between the segments of the respective wires of the two overlapping regions.
  • the method includes:
  • step S100 - electrically connecting the segment of the first conductive light-shielding pattern corresponding to each overlap region and the segment of the wire (step S100).
  • the signal can be delivered by means of a conductive shading pattern (see arrows in Figure 2A).
  • step S100 can be accomplished by a method of laser melting. Therefore, the operation is easy, the success rate is high, and the implementation cost is low.
  • the sub-pixel unit 40 includes a common electrode including a plurality of strip electrodes 41 that are spaced apart and electrically connected to each other.
  • the strip electrode extends in the same direction as the wire extends.
  • the first conductive light shielding pattern 30 is connected to the strip electrode 41 closest to the wire 20 among the common electrodes.
  • the method further includes:
  • step S200 breaking the electrical connection between the strip electrodes 41 closest to the wires 20 of the plurality of strip electrodes and the other strip electrodes of the plurality of strip electrodes.
  • the connection between the strip electrodes can be cut.
  • Fig. 8 is a schematic plan view showing the array substrate after the connection portion is cut, in which the connection portion at B is cut. Therefore, the requirement of providing a stable voltage to the conductive shading pattern can be satisfied, and the requirement that the data line and the common electrode are not connected can be realized, so as to avoid mutual interference between the data signal and the common electrode, thereby improving product yield and improving market competitiveness. .
  • the above repair method may be used to repair a case where a wire of the aforementioned array substrate is broken at a corresponding position. All requirements for various structures such as wires, conductive shading patterns, strip electrodes, etc. are consistent and will not be described too much herein.
  • the present disclosure proposes an array substrate, a display device, and a method of repairing a wire break of an array substrate.
  • the array substrate includes a substrate, a plurality of sub-pixel units on the substrate, and a wire and a first conductive light shielding pattern between adjacent two of the plurality of sub-pixel units.
  • the first conductive light shielding pattern is electrically insulated from the wire, and the first conductive light shielding pattern includes two first regions.
  • An orthographic projection of the two first regions on the substrate overlaps an orthographic projection of the wires on the substrate.
  • the conductive shading pattern can be used to repair the data lines to help complete the transmission of data signals, thereby improving product yield.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
  • the description with reference to the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” and the like means a specific feature described in connection with the embodiment or example.
  • a structure, material, or feature is included in at least one embodiment or example of the present disclosure.
  • the schematic representation of the above terms is not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.
  • those skilled in the art can combine and combine the different embodiments or examples described in the specification and the features of the different embodiments or examples without departing from the scope of the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种阵列基板、显示装置及修复阵列基板的导线断路的方法。阵列基板包括衬底(10)、位于衬底(10)上的多个子像素单元(40)、和位于多个子像素单元中的相邻的两个子像素单元(40)之间的导线(20)和第一导电遮光图案(30)。第一导电遮光图案(30)与导线(20)电绝缘,并且第一导电遮光图案(30)包括两个第一区域(31,32)。两个第一区域(31,32)在衬底(10)上的正投影与导线(20)在衬底(10)上的正投影交叠。

Description

阵列基板、显示装置及修复阵列基板的导线断路的方法
相关专利申请
本申请主张于2018年4月28日提交的中国专利申请No.201810401165.8的优先权,其全部内容通过引用结合于此。
技术领域
本公开涉及显示技术领域,具体涉及阵列基板、显示装置及修复阵列基板的导线断路的方法。
背景技术
在显示面板的生产过程中,面板中诸如数据线、扫描线、信号线之类的导线有可能出现断路。断路通常难以修复,导致产品良率大大降低,生产成本相应提高。
发明内容
根据本公开的一方面,提供了一种阵列基板,包括:衬底,位于所述衬底上的多个子像素单元,和位于所述多个子像素单元中的相邻的两个子像素单元之间的导线和第一导电遮光图案。所述第一导电遮光图案与所述导线电绝缘,并且所述第一导电遮光图案包括两个第一区域,所述两个第一区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠。
在一些实施例中,所述子像素单元包括公共电极,所述公共电极包括间隔设置并相互电连接的多个条形电极,所述多个条形电极的延伸方向与所述导线的延伸方向相同,并且所述第一导电遮光图案与所述多个条形电极中最靠近所述导线的条形电极是电连接的。
在一些实施例中,所述公共电极还包括电连接在所述多个条形电极之间的多个连接部。
在一些实施例中,所述连接部位于与其电连接的所述条形电极的端部。
在一些实施例中,所述相邻的两个子像素单元的所述公共电极各自最靠近所述导线的所述条形电极彼此电绝缘。
在一些实施例中,阵列基板还包括位于所述相邻的两个子像素单元之间的第二导电遮光图案,其中所述第二导电遮光图案与所述导线电绝缘,并且所述第二导电遮光图案包括两个第二区域,所述两个第二区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠。
在一些实施例中,所述两个第一区域中的每个区域在所述衬底上的正投影与所述两个第二区域中的对应区域在所述衬底上的正投影重合。
在一些实施例中,所述第一导电遮光图案在所述衬底上的正投影和所述第二导电遮光图案在所述衬底上的正投影位于所述导线在所述衬底上的正投影的相对两侧。
根据本公开的一方面,提供了一种显示装置,包括如本公开任一实施例所述的阵列基板。
根据本公开的一方面,提供了一种修复阵列基板的导线断路的方法。所述阵列基板包括衬底、位于所述衬底上的多个子像素单元、和位于所述多个子像素单元中的相邻的两个子像素单元之间的导线和第一导电遮光图案,其中所述第一导电遮光图案与所述导线电绝缘,并且所述第一导电遮光图案包括两个第一区域,所述两个第一区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠以形成两个交叠区域,每个交叠区域对应于所述第一导电遮光图案的片段和所述导线的片段,断路介于所述两个交叠区域各自对应的所述导线的片段之间,其中所述方法包括:
-将每个交叠区域所对应的所述第一导电遮光图案的片段和所述导线的片段电连接。
在一些实施例中,所述子像素单元包括公共电极,所述公共电极包括间隔设置并相互电连接的多个条形电极,所述多个条形电极的延伸方向与所述导线的延伸方向相同,并且所述第一导电遮光图案与所述多个条形电极中最靠近所述导线的条形电极是电连接的,其中所述方法还包括:
-断开所述多个条形电极中与所述第一导电遮光图案电连接的条形电极与所述多个条形电极中的其他条形电极之间的电连接。
在一些实施例中,将每个交叠区域所对应的所述第一导电遮光图 案的片段和所述导线的片段电连接的步骤包括:
-利用激光熔融每个交叠区域所对应的所述导电遮光图案的片段和所述导线的片段以使其彼此电连接。
附图说明
本公开的实施例参考附图更详细地并且通过非限制性示例的方式予以描述,在附图中:
图1示意性地示出了相关技术中的阵列基板的结构;
图2A和2B示意性地示出了根据本公开实施例的阵列基板的俯视图和截面图;
图2C示意性地示出了根据本公开另一实施例的阵列基板的俯视图;
图2D示意性地示出了根据本公开又一实施例的阵列基板的俯视图;
图3A和3B示意性地示出了根据本公开再一实施例的阵列基板的俯视图和截面图;
图4示意性地示出了根据本公开实施例的阵列基板的公共电极的俯视图;
图5示意性地示出了根据本公开实施例的阵列基板的另一截面图;
图6A和6B示意性地示出了利用根据本公开实施例的修复阵列基板的导线断路的方法来修复后的阵列基板的截面图;
图7示意性地示出了根据本公开实施例的修复阵列基板的导线断路的方法的流程图;以及
图8示意性地示出了利用根据本公开实施例的修复阵列基板的导线断路的方法来修复后的阵列基板的俯视图。
具体实施方式
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
显示面板的阵列基板上布置有多种导线。在生产过程,由于颗粒物的存在或制作工艺的稳定性差等原因,导线可能出现断路。如果导线断路且没有被修复,则该阵列基板就会成为不合格产品。因此产品良率会降低,且生产成本会相应提高。因此,关于阵列基板及其数据 线断路的修复方法有待深入研究。阵列基板上可能包括各种导线,诸如数据线、扫描线、信号线等。为了便于理解,本公开将以数据线为例进行描述,但应理解,本公开的内容同样适用于其他类型的导线。
图1示意性地示出了相关技术中的阵列基板的结构。阵列基板10上布置有多个子像素单元40。为了保证较好的开口率,子像素单元之间的空间较小。这导致了当数据线20发生断路时,无法实施镀钨粉等修复方式。因此难以将断路的数据线修复。同时,阵列基板10中没有其他的路线能代替断路的数据线。这使得该阵列基板无法投入应用,最终导致产品良率低,生产成本增加。
根据本公开的一个方面,提供了一种阵列基板。图2A和2B示意性地示出了根据本公开实施例的阵列基板的俯视图和截面图。如图2A和2B所示,该阵列基板包括衬底10和位于衬底10上的多个子像素单元40。在所述多个子像素单元40中,沿第一方向X分布的相邻的两个子像素单元40之间包括导线(例如,数据线20)和第一导电遮光图案30。数据线20和第一导电遮光图案30彼此绝缘,且分别沿第二方向Y延伸。第一导电遮光图案30设置在衬底10上。数据线20设置在第一导电遮光图案30的背离衬底10的一侧。第一导电遮光图案30包括两个第一区域31和32。在一些实施例中,如图2A所示,第一区域31和32相对于子像素单元40在第二方向Y上的相对两边缘平齐。应理解,第一区域31和32也可以凸出于子像素单元40在第二方向Y上的相对两边缘。例如,图2C示意性地示出了根据本公开另一实施例的阵列基板的俯视图,其中,第一导电遮光图案30的两个第一区域突出于子像素单元40的上下边缘。第一导电遮光图案30的第一区域31和32在衬底10上的正投影与数据线20在衬底10上的正投影交叠,并且因此形成两个交叠区域231和232。术语“交叠”表示两个投影具有交叉的部分,两个投影可能完整的重合,也可能局部地重合。每个交叠区域对应于数据线20的一个片段。图2D示意性地示出了根据本公开又一实施例的阵列基板的俯视图。第一区域31和32在第一方向X上可以延伸超过交叠区域(参考图2A),也可以与交叠区域齐平(参考图2D)。如图2A所示,在一些实施例中,第一方向X和第二方向Y相交。
当数据线20不存在断路时,数据线20与第一导电遮光图案30之 间彼此电绝缘。如图2B所示,数据线20与第一导电遮光图案30之间被绝缘层隔开,使得二者互不连接。当数据线20发生断路,且断路位置在两个交叠区域231和232所对应的数据线的片段之间(比如图2A中的A处)时,可使得第一交叠区域231所对应的数据线的片段与第一导电遮光图案的片段电连接,并使得第二交叠区域232所对应的第一导电遮光图案和数据线的片段电连接。由此,导线上的电流可借助第一导电遮光图案完成传递(参见图2A中的箭头),从而实现对上述断路的修复。这解决了相关技术中导线断路后修复困难的技术难题,提高了产品的良率,降低生产成本,且特别适用于采用竖向slit电极的ADS显示模式的阵列基板。
需要说明的是,本文中的术语“导电遮光图案沿第二方向延伸”是指导电遮光图案在第二方向上的第一端和第二端之间至少形成有一条连续的连接线路,以使得第一端和第二端之间导通。
根据本公开的实施例,衬底的具体种类包括但不限于玻璃衬底和聚合物衬底,只要能满足使用需求即可。本领域技术人员可以根据需要灵活选择,例如衬底可以为本领域已知的常规衬底。
根据本公开的实施例,形成导线的材料可以包括金属或金属合金,比如铜、银、钼、铝或钼钨合金等材料。由此,导电性好,材料来源广。
根据本公开的实施例,导电遮光图案主要用于遮光容易发生漏光的区域,如配向弱区,以避免发生漏光。为了满足上述使用要求,形成导电遮光图案的材料可以包括金属或金属合金,比如钼、铝或钼钨合金等材料。由此,可以有效防止漏光。由于导电遮光图案具有导电性,在本公开的方案中,当第一交叠区域和第二交叠区域各自对应的数据线的片段之间发生断路时,导电遮光图案可以用于对数据线的修复,帮助完成数据信号的传递,进而提高产品良率。
在一些实施例中,为了更好的保证信号线的修复,阵列基板还可以包括位于所述相邻的两个子像素单元之间的第二导电遮光图案35。图3A和3B示意性地示出了根据本公开又一实施例的阵列基板的俯视图和截面图。如图3A和3B所示,所述第二导电遮光图案35与所述导线20电绝缘。所述第二导电遮光图案35包括两个第二区域36和37,所述两个第二区域在所述衬底上的正投影与所述导线在所述衬底上的 正投影交叠。所述第一导电遮光图案30在所述衬底10上的正投影和所述第二导电遮光图案35在所述衬底10上的正投影位于所述导线20在所述衬底10上的正投影的两侧。
在一些实施例中,所述两个第一区域中的每个区域在所述衬底上的正投影与所述两个第二区域中的对应区域在所述衬底上的正投影重合。更具体地,在一些实施例中,所述两个第一区域中的每个区域与所述两个第二区域中的对应区域重合,即第一区域31与第二区域36重合,第一区域32与第二区域37重合。换句话说,第一导电遮光图案30和第二导电遮光图案35的组合呈封闭的环形。由此,导线的信号可通过其两侧的导电遮光图案传递,可靠性更高。在本公开的另一些实施例中,例如参照图2A,第一导电遮光图案30与第二导电遮光图案35的组合也可以不封闭,只要一个导电遮光图案能够在修复断路的方法中被用于与导线20的断路处的两侧电连接即可。如此,在交叠区域对应的导线和导电遮光图案的片段被电连接之后,导线的信号只通过一个导电遮光图案进行传递。
根据本公开的实施例,可以通过激光熔融的方法实现将导线和导电遮光图案进行电连接。由此,根据本公开实施例的修复导线断路的方法易操作、成功率高且成本低。
需要说明的是,数据线不发生断路时,导线与导电遮光图案之间是彼此电绝缘的,如图2B和3B所示。例如,导线与导电遮光图案之间可能存在各种绝缘层。此外,第一方向和第二方向相互交叉,但其交叉角度没有限制要求。本领域技术人员根据制作需求设计即可,附图中所示出的垂直交叉只是一种实施例,并非是对交叉角度的限制。
根据本公开的实施例,多个子像素单元可以包括红色子像素、绿色子像素和蓝色子像素。根据本公开的另一实施例,多个子像素单元可以包括红色子像素、绿色子像素、蓝色子像素和白色子像素。根据本公开的又一实施例,多个子像素单元可以包括红色子像素、绿色子像素、蓝色子像素、白色子像素和黄色子像素。由此,可以满足不同的使用需求。
根据本公开的一些实施例,子像素单元可以包括公共电极。导电遮光图案和与其相邻的子像素单元中的公共电极相连接。图4示意性地示出了根据本公开实施例的公共电极的俯视图。在一些实施例中, 参照图4,公共电极45包括在第一方向上间隔设置并相互电连接的多个条形电极41。条形电极41沿第二方向延伸。第一导电遮光图案30与条形电极中最靠近数据线20的条形电极41是电连接的。在更具体的实施例中,第一导电遮光图案30与多个条形电极中与之最接近的条形电极电连接。由此,公共电极中最靠近导线的条形电极41可以给导电遮光图案提供一个稳定的电压,避免导电遮光图案产生强度无法控制的悬浮电场。公共电极具有竖向slit结构,便于采用导电遮光图案修复导线断路时切断公共电极(中的其余条形电极)与导电遮光图案之间的电连接,避免公共电极信号和导线信号之间交互影响。
在一些实施例中,所述公共电极还包括多个连接部。连接部42位于相邻的两个条形电极之间。所述条形电极41与所述连接部42电连接。连接部42位于与其电连接的条形电极41在第二方向Y的至少一个端部处。连接部42将多个条形电极41电连接,保证公共电极具有稳定的电压。
导电遮光图案与公共电极中最靠近导线的条形电极41的连接方式可以根据需要来选择。例如,参考图4和图3B,公共电极中最靠近导线的条形电极41在衬底上的正投影与导电遮光图案在衬底上的正投影有交叠区域。由此,可以通过在在绝缘层中的、交叠区域所对应的条形电极和导电遮光图案的片段处设置过孔的方式,使得导电遮光图案与公共电极中最靠近数据线20的条形电极41电连接。这种连接方式操作简单,易于实现。
根据本公开的实施例,为了降低数据线的负载,如图4所示,相邻两个子像素单元40各自的公共电极中最靠近导线的条形电极彼此不直接相连。或者说,上述两个条形电极之间不存在连接线路来将两者直接相连。更具体的,在图4的视角中,左侧公共电极中最右侧的条形电极与右侧公共电极中最左侧的条形电极彼此不连接。由此,在垂直于衬底的方向上,数据线与公共电极不存在交叠区域,即不会产生电容,进而可以降低数据线负载,提高其使用性能。
根据本公开的实施例,公共电极中的条形电极为透明电极,由此不会影响透光。形成条形电极的材料包括但不限于透明导电氧化物,如氧化铟锡等。由此,导电性能好,使用效果佳。
图5示意性地示出了沿图4的C-C′线的阵列基板的截面图。如图5 所示,第一导电遮光图案30和像素电极50设置在衬底10的表面上。第一绝缘层60形成在衬底10的表面上,并覆盖第一导电遮光图案30和像素电极50。数据线20设置于第一绝缘层60的远离衬底10的一侧,且其在衬底上的正投影不与第一导电遮光图案30在衬底上的正投影交叠。第二绝缘层70形成在第一绝缘层60的远离衬底10的一侧,并覆盖数据线20。条形电极41设置在第二绝缘层70的远离衬底10的一侧。
D-D′截面与C-C′截面不同,因为在D-D′截面上存在第一导电遮光图案的第一区域。D-D’的截面如图2B所示。在D-D′处,数据线20在衬底上的正投影与第一导电遮光图案30在衬底上的正投影具有交叠区域。最靠近数据线20的条形电极41通过过孔与第一导电遮光图案30电连接。图2B中的阵列基板处于数据线没有断路的状态。图6A和6B示意性地示出了修复后的阵列基板的结构的截面图。如果数据线发生断路,且断路位置介于交叠区域所对应的导线片段之间时,需对数据线进行修复。在一些实施例中,可以通过一定手段(比如,激光熔融)使得交叠区域各自对应的导电遮光图案和数据线的片段电连接,从而克服断路的问题。
当然,本领域技术人员可以理解,阵列基板除了前面所述的导线、导电遮光图案以及公共电极之外,还可能包括其它结构或部件,比如薄膜晶体管、像素电极、平坦层等。
在一些实施例中,当断路位置不在上述交叠区域对应的导线片段之间时,由于这种情况意味着断路位于电路分布区域而不是显示区,所以修复空间相对大。因此,可以通过镀钨粉实现对数据线断路的修复。
根据本公开的另一方面,提供了一种显示装置。所述显示装置包括根据本公开实施例的阵列基板。这种显示装置具有提高的制作良率和降低的生产成本。该显示装置具有前面所述的阵列基板的所有特征和优点,在此不再一一赘述。上述显示装置的具体种类没有限制要求,本领域技术人员可以根据实际情况灵活选择。在本公开的实施例中,上述显示装置可以为手机、平板电脑、电视、游戏机或一切具有显示功能的电子设备。
上述显示装置除了阵列基板还可以包括其它结构或部件,例如彩膜基板、液晶层、盖板、声音处理模组、照相模组、指纹模组以及CPU 处理器等结构。
在本公开的又一方面,提供了一种修复阵列基板的导线断路的方法。图7示意性地示出了所述方法的流程图。断路介于两个交叠区域各自对应的导线的片段之间。该方法包括:
-将每个交叠区域所对应的第一导电遮光图案的片段和导线的片段电连接(步骤S100)。在电连接后,信号可借助导电遮光图案完成传递(参见图2A中的箭头)。这样就实现了上述断路的修复,解决了修复困难的技术难题,进而提高了产品的良率,降低生产成本。
在一些实施例中,步骤S100可以通过激光熔融的方法实现。由此,易操作,成功率高,且实施成本低。
在一些实施例中,子像素单元40包括公共电极,其包括间隔设置并相互电连接的多个条形电极41。条形电极的延伸方向与导线的延伸方向相同。第一导电遮光图案30与公共电极中最靠近导线20的条形电极41相连接。所述方法还包括:
-断开多个条形电极中最靠近导线20的条形电极41与多个条形电极中的其他条形电极之间的电连接(步骤S200)。例如,条形电极之间的连接部可以被切断。图8示意性地示出了连接部被切断后的阵列基板的俯视图,其中B处的连接部被切断。由此,既可以满足对导电遮光图案提供稳定电压的要求,又可以实现数据线与公共电极不连接的要求,以避免数据信号与公共电极相互干扰,进而提高产品的良率,提高市场竞争力。
根据本公开的实施例,上述修复方法可以用于修复前述阵列基板的导线在对应位置发生断路的情况。对导线、导电遮光图案、条形电极等各个结构的所有要求是一致的,在此不再过多的叙述。
综上所述,本公开提出了一种阵列基板、显示装置和修复阵列基板的导线断路的方法。所述阵列基板包括衬底、位于所述衬底上的多个子像素单元、和位于所述多个子像素单元中的相邻的两个子像素单元之间的导线和第一导电遮光图案。所述第一导电遮光图案与所述导线电绝缘,并且所述第一导电遮光图案包括两个第一区域。所述两个第一区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠。导电遮光图案可以用于对数据线的修复,帮助完成数据信号的传递,进而提高产品良率。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同 实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (12)

  1. 一种阵列基板,包括:
    衬底,
    位于所述衬底上的多个子像素单元,和
    位于所述多个子像素单元中的相邻的两个子像素单元之间的导线和第一导电遮光图案,
    其中所述第一导电遮光图案与所述导线电绝缘,并且所述第一导电遮光图案包括两个第一区域,所述两个第一区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠。
  2. 根据权利要求1所述的阵列基板,其中所述子像素单元包括公共电极,所述公共电极包括间隔设置并相互电连接的多个条形电极,所述多个条形电极的延伸方向与所述导线的延伸方向相同,并且所述第一导电遮光图案与所述多个条形电极中最靠近所述导线的条形电极是电连接的。
  3. 根据权利要求2所述的阵列基板,其中所述公共电极还包括电连接在所述多个条形电极之间的多个连接部。
  4. 根据权利要求3所述的阵列基板,其中所述连接部位于与其电连接的所述条形电极的端部。
  5. 根据权利要求2所述的阵列基板,其中所述相邻的两个子像素单元的所述公共电极各自最靠近所述导线的所述条形电极彼此电绝缘。
  6. 根据权利要求1所述的阵列基板,还包括位于所述相邻的两个子像素单元之间的第二导电遮光图案,
    其中所述第二导电遮光图案与所述导线电绝缘,并且所述第二导电遮光图案包括两个第二区域,所述两个第二区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠。
  7. 根据权利要求6所述的阵列基板,其中所述两个第一区域中的每个区域在所述衬底上的正投影与所述两个第二区域中的对应区域在所述衬底上的正投影重合。
  8. 根据权利要求6所述的阵列基板,其中所述第一导电遮光图案在所述衬底上的正投影和所述第二导电遮光图案在所述衬底上的正投 影位于所述导线在所述衬底上的正投影的相对两侧。
  9. 一种显示装置,包括如权利要求1-8中任意一项所述的阵列基板。
  10. 一种修复阵列基板的导线断路的方法,所述阵列基板包括衬底、位于所述衬底上的多个子像素单元、和位于所述多个子像素单元中的相邻的两个子像素单元之间的导线和第一导电遮光图案,其中所述第一导电遮光图案与所述导线电绝缘,并且所述第一导电遮光图案包括两个第一区域,所述两个第一区域在所述衬底上的正投影与所述导线在所述衬底上的正投影交叠以形成两个交叠区域,每个交叠区域对应于所述第一导电遮光图案的片段和所述导线的片段,断路介于所述两个交叠区域各自对应的所述导线的片段之间,
    其中所述方法包括:
    -将每个交叠区域所对应的所述第一导电遮光图案的片段和所述导线的片段电连接。
  11. 根据权利要求10所述的方法,其中,所述子像素单元包括公共电极,所述公共电极包括间隔设置并相互电连接的多个条形电极,所述多个条形电极的延伸方向与所述导线的延伸方向相同,并且所述第一导电遮光图案与所述多个条形电极中最靠近所述导线的条形电极是电连接的,
    其中所述方法还包括:
    -断开所述多个条形电极中与所述第一导电遮光图案电连接的条形电极与所述多个条形电极中的其他条形电极之间的电连接。
  12. 根据权利要求10所述的方法,其中将每个交叠区域所对应的所述第一导电遮光图案的片段和所述导线的片段电连接的步骤包括:
    -利用激光熔融每个交叠区域所对应的所述导电遮光图案的片段和所述导线的片段以使其彼此电连接。
PCT/CN2019/083836 2018-04-28 2019-04-23 阵列基板、显示装置及修复阵列基板的导线断路的方法 WO2019206124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/640,186 US11515336B2 (en) 2018-04-28 2019-04-23 Array substrate, display device and method for repairing wire break of array substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810401165.8 2018-04-28
CN201810401165.8A CN108594551A (zh) 2018-04-28 2018-04-28 阵列基板及其数据线断路的修复方法和显示装置

Publications (1)

Publication Number Publication Date
WO2019206124A1 true WO2019206124A1 (zh) 2019-10-31

Family

ID=63619244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083836 WO2019206124A1 (zh) 2018-04-28 2019-04-23 阵列基板、显示装置及修复阵列基板的导线断路的方法

Country Status (3)

Country Link
US (1) US11515336B2 (zh)
CN (1) CN108594551A (zh)
WO (1) WO2019206124A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11864326B2 (en) 2020-06-28 2024-01-02 Chongqing Boe Optoelectronics Technology Co., Ltd. Substrate, maintenance method and display device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108594551A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 阵列基板及其数据线断路的修复方法和显示装置
CN208705628U (zh) * 2018-09-30 2019-04-05 惠科股份有限公司 阵列基板、显示面板及显示装置
US10847099B2 (en) 2018-09-30 2020-11-24 HKC Corporation Limited Array substrate, display panel and display apparatus
CN109254431A (zh) * 2018-11-12 2019-01-22 成都中电熊猫显示科技有限公司 阵列基板和阵列基板的断线修复方法
CN111768702B (zh) * 2019-07-24 2022-03-29 友达光电股份有限公司 可挠性显示器
CN114578590B (zh) * 2020-11-30 2024-07-19 合肥京东方显示技术有限公司 阵列基板及其断线修复方法
CN118076917A (zh) * 2022-08-19 2024-05-24 京东方科技集团股份有限公司 一种显示面板、其维修方法及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050051355A (ko) * 2003-11-27 2005-06-01 엘지.필립스 엘시디 주식회사 표시 소자용 박막 트랜지스터 기판 및 그 제조 방법
CN102141710A (zh) * 2009-12-31 2011-08-03 乐金显示有限公司 薄膜晶体管阵列基板、包括该基板的液晶显示器及制造该基板的方法
CN203277384U (zh) * 2013-04-25 2013-11-06 合肥京东方光电科技有限公司 一种阵列基板及显示装置
US8654269B2 (en) * 2003-06-24 2014-02-18 Lg Display Co., Ltd. Liquid crystal display device
CN104880876A (zh) * 2015-06-18 2015-09-02 京东方科技集团股份有限公司 阵列基板、阵列基板的数据线开路修复方法以及显示装置
CN107065369A (zh) * 2017-06-20 2017-08-18 京东方科技集团股份有限公司 一种阵列基板及其维修方法、显示装置
CN108594551A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 阵列基板及其数据线断路的修复方法和显示装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100707009B1 (ko) * 1999-12-24 2007-04-11 비오이 하이디스 테크놀로지 주식회사 박막 트랜지스터 액정표시소자
TW499606B (en) * 2000-11-06 2002-08-21 Hannstar Display Corp Signal line repairing structure and forming method thereof
KR20130015992A (ko) * 2011-08-05 2013-02-14 엘지디스플레이 주식회사 박막 트랜지스터 기판, 그의 리페어 방법 및 그의 제조 방법
CN102629606B (zh) * 2011-09-26 2015-02-04 北京京东方光电科技有限公司 阵列基板及其制备方法和显示装置
CN102967971B (zh) * 2012-11-02 2015-09-23 京东方科技集团股份有限公司 阵列基板以及显示装置
CN102969282B (zh) * 2012-11-16 2014-11-12 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
TWI521272B (zh) * 2014-08-29 2016-02-11 友達光電股份有限公司 顯示面板
CN104516133B (zh) * 2015-01-27 2017-12-29 深圳市华星光电技术有限公司 阵列基板及该阵列基板的断线修补方法
CN105467706B (zh) * 2016-01-15 2018-10-26 武汉华星光电技术有限公司 阵列基板结构及阵列基板断线修复方法
CN105549281B (zh) * 2016-03-16 2018-09-04 京东方科技集团股份有限公司 阵列基板及修复方法、显示面板和显示装置
CN105892186A (zh) * 2016-06-13 2016-08-24 深圳市华星光电技术有限公司 阵列基板结构、及其数据线断线修补方法和显示装置
CN106707645A (zh) * 2017-01-18 2017-05-24 京东方科技集团股份有限公司 显示基板、显示基板的修复方法、显示面板及显示装置
CN107065329A (zh) * 2017-06-05 2017-08-18 京东方科技集团股份有限公司 显示基板以及制备方法、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654269B2 (en) * 2003-06-24 2014-02-18 Lg Display Co., Ltd. Liquid crystal display device
KR20050051355A (ko) * 2003-11-27 2005-06-01 엘지.필립스 엘시디 주식회사 표시 소자용 박막 트랜지스터 기판 및 그 제조 방법
CN102141710A (zh) * 2009-12-31 2011-08-03 乐金显示有限公司 薄膜晶体管阵列基板、包括该基板的液晶显示器及制造该基板的方法
CN203277384U (zh) * 2013-04-25 2013-11-06 合肥京东方光电科技有限公司 一种阵列基板及显示装置
CN104880876A (zh) * 2015-06-18 2015-09-02 京东方科技集团股份有限公司 阵列基板、阵列基板的数据线开路修复方法以及显示装置
CN107065369A (zh) * 2017-06-20 2017-08-18 京东方科技集团股份有限公司 一种阵列基板及其维修方法、显示装置
CN108594551A (zh) * 2018-04-28 2018-09-28 京东方科技集团股份有限公司 阵列基板及其数据线断路的修复方法和显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11864326B2 (en) 2020-06-28 2024-01-02 Chongqing Boe Optoelectronics Technology Co., Ltd. Substrate, maintenance method and display device

Also Published As

Publication number Publication date
CN108594551A (zh) 2018-09-28
US11515336B2 (en) 2022-11-29
US20200365458A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
WO2019206124A1 (zh) 阵列基板、显示装置及修复阵列基板的导线断路的方法
CN111180494B (zh) 一种显示面板及显示装置
CN108445686B (zh) 阵列基板、显示面板与显示装置
US9529460B2 (en) Panel structure
TWI579750B (zh) 觸控面板與其製作方法
CN106773390B (zh) 显示面板
CN113075825B (zh) 阵列基板及显示面板
WO2021023175A1 (zh) 触控基板及其制造方法以及显示装置
CN109991788B (zh) 显示面板及显示装置
US8179494B2 (en) Liquid crystal display and substrate thereof
US11315956B2 (en) Array substrate, manufacturing method thereof and display panel
CN111863931B (zh) 显示面板及显示装置
CN109300995B (zh) 一种薄膜晶体管及其制作方法、阵列基板和显示面板
CN111580316A (zh) 显示面板及电子装置
CN106444197B (zh) 一种阵列基板、显示面板以及显示装置
US20220310759A1 (en) Display substrate and display device
CN111427207B (zh) 一种显示面板和显示装置
TW201732763A (zh) 顯示器及其畫素結構
WO2019015308A1 (zh) 阵列基板和显示装置
CN113257879B (zh) 一种阵列基板及显示面板
CN107861303B (zh) 一种阵列基板、显示面板及显示装置
WO2021190049A1 (zh) 显示基板及其制作方法、和显示面板
CN114256317A (zh) 一种显示面板及显示装置
CN111430371A (zh) 阵列基板、显示面板、显示装置及制作方法
CN220155913U (zh) 一种信号转接结构、显示器及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791702

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791702

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19791702

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19791702

Country of ref document: EP

Kind code of ref document: A1