WO2019205802A1 - 一种紫外光(uv)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法 - Google Patents

一种紫外光(uv)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法 Download PDF

Info

Publication number
WO2019205802A1
WO2019205802A1 PCT/CN2019/076331 CN2019076331W WO2019205802A1 WO 2019205802 A1 WO2019205802 A1 WO 2019205802A1 CN 2019076331 W CN2019076331 W CN 2019076331W WO 2019205802 A1 WO2019205802 A1 WO 2019205802A1
Authority
WO
WIPO (PCT)
Prior art keywords
psi
reaction
silicone oil
curing
ultraviolet
Prior art date
Application number
PCT/CN2019/076331
Other languages
English (en)
French (fr)
Inventor
薛小强
蒋必彪
黄文艳
杨宏军
蒋其民
孙佳悦
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810390687.2A external-priority patent/CN108484915A/zh
Priority claimed from CN201810390616.2A external-priority patent/CN108503840A/zh
Priority claimed from CN201810390617.7A external-priority patent/CN108530634A/zh
Priority claimed from CN201810390608.8A external-priority patent/CN108586752A/zh
Application filed by 常州大学 filed Critical 常州大学
Priority to US16/770,355 priority Critical patent/US20200299462A1/en
Publication of WO2019205802A1 publication Critical patent/WO2019205802A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the invention belongs to the field of polymer material science, and in particular relates to a method for preparing ultraviolet light (UV) curing type methyl silicone oil material.
  • Polymethyl siloxane is methyl silicone oil. It has many excellent physicochemical properties due to its unique chemical structure.
  • the structure is mainly composed of silicon-oxygen bonds. It has excellent compliant structure and exhibits high and low temperature resistance. And it is used in a wide temperature range.
  • the silicon oxide structure has superior weather resistance, corrosion resistance, electrical insulation, ozone resistance, water resistance, flame retardancy, physiological inertness, etc. compared with conventional polymers. Performance, widely used in aerospace, daily materials, electrical and electronic, chemical machinery, medical and health, transportation and other national economic industries.
  • UV curing Ultraviolet (UV) curing is a new energy-saving and environmentally-friendly technology. It has the advantages of fast curing (several seconds film formation), uniform curing, room temperature curing, energy saving and high efficiency, and environmental friendliness. It is especially suitable for heat-sensitive component molding methods and localization. Photocopying and lithography of semiconductor circuits, therefore, photocuring is a very promising curing method. Therefore, by introducing the silicon oxide main chain into the ultraviolet curable functional group, cross-linking curing under ultraviolet light irradiation shows many advantages such as high efficiency, rapid curing molding, clean environmental protection, energy saving, etc., and the obtained material has temperature resistance and weather resistance.
  • the methyl silicone oil material containing acrylate functional groups has ultraviolet light active silicone polymer, generally high photopolymerization activity, fast reaction rate, A certain anti-oxidation polymerization ability, coupled with low price, makes it the largest prepolymer in UV curing products. It can be applied to the rapid processing of release film of different substrates. It not only retains organic after curing.
  • the early acrylate-modified methyl silicone oil is prepared by hydrolysis-condensation reaction of dichlorosilane and hydroxyethyl acrylate (HEA) in polymethylsiloxane under base catalysis, but the modified polysiloxane contains The humidity-sensitive Si-OC bond has poor hydrolysis stability, and the HEA structure is easily dissociated and deactivated. Therefore, it is necessary to synthesize a highly stable Si-C structure of acrylate-based polymethylsiloxane, which is mainly synthesized.
  • the method is a hydrosilylation method, an esterification method and a dealcoholization method.
  • the hydrosilyl-containing polymethylsiloxane undergoes a hydrosilylation reaction directly with a symmetric diacrylate (Oestreich S, Struck S. MacromolSymp., 2002, 187(1), 333.), H 2 PtO 6 6H Under the catalysis of 2 O, an acrylate-based polysiloxane is obtained. Since the diacrylate has the same activity, a cross-linking reaction between polymer chains occurs during the addition reaction, and the effect is large. It is more expensive and limits the application of the reaction.
  • the acrylated polysiloxane was prepared by esterification using a terminal epoxy polymethylsiloxane and acrylic acid under catalyst catalysis (Carter GR, Watson SL, Pines AN, US 4293678, 1981.); The polymethylsiloxane is esterified with acrylic acid to obtain an acrylated polysiloxane (Hockemeyer F, Preiner G.
  • the object of the present invention is to provide a high grafting rate and a low cost methacrylate-based polymethylsiloxane with excellent performance, which solves the problem that the catalyst in the prior art is expensive, the reaction process is easy to crosslink, and the acrylate
  • the technical problem is that the grafting efficiency is low, and the preparation of the photoinitiator in the curing process is cumbersome and expensive.
  • the obtained methacrylate-based polymethylsiloxane has the advantages of simple preparation, low preparation cost, convenient use, high grafting rate of acrylate and high activity, and is a high-efficiency mild and controllable preparation method, and ultraviolet curing molding.
  • the photoinitiator does not need to be tediously prepared for the silicone oil-modified photoinitiator, and the commercially available compound photoinitiator is inexpensive, and the cured silicone film material has high temperature resistance, good weather resistance, good electrical insulation and low Surface tension and other advantages, widely used in release coatings, coatings, leather additives and packaging industries.
  • UV curing polyalkylsiloxane PSi-MA containing an acrylate structure having the structural formula of the formula [1] or [2]:
  • m 15-200, the molecular weight is 1700 to 15700; wherein m is an integer.
  • the PSi-MA is prepared by a Michael addition reaction of the prepared asymmetric diene methacrylate ethylene glycol acrylate and amino silicone oil, and the reaction equation is [1]:
  • m 15-200, the molecular weight is 1700 to 15700; wherein m is an integer.
  • the PSi-MA is prepared by a Michael addition reaction of the prepared asymmetric diene methacrylate ethylene glycol acrylate and amino silicone oil, and the reaction equation is [2]:
  • the raw material B is an asymmetric diene structure and is ethylene glycol methacrylate.
  • the purpose of the design is that the activity of the acrylate structure and the amino addition reaction is much higher during the Michael addition reaction.
  • the reactivity of the methacrylate structure therefore, the methacrylate structure at the end of the addition reaction into the polymethylsiloxane is relatively stable, avoiding further chain-to-chain addition to the amino structure of the polymer.
  • the free acrylate small molecule preferentially reacts with the remaining amino structure in the polymer. Therefore, it is only necessary to add B of the same molar group to complete the reaction without excessive addition. B, the controllability of the reaction is improved, and the Michael addition reaction activity is high, and the graft ratio of the methacrylate is as high as 95% or more, and the reaction has good controllability and mild reaction.
  • the Michael addition reaction conditions are carried out at room temperature, and the solvent may be a good solvent such as tetrahydrofuran, ethyl acetate, toluene, xylene or methyl ethyl ketone, the reaction time is 5 hours, and the post-treatment is steamed under reduced pressure.
  • the solvent can be recycled and reused, and the entire process is simple and controllable.
  • the polymethicone material (PSi-MA) having a terminal group containing a methacrylate structure has an extremely high graft ratio of methacrylate of 95% or more.
  • a photoinitiator ultraviolet light (UV) irradiation is rapidly cured at room temperature, or coated on a film, and the curing time is 1 to 5 seconds.
  • the photocuring reaction has rapid curing, uniform curing, and room temperature curing.
  • the silicone film material has the advantages of high temperature resistance, good weather resistance, good electrical insulation and low surface tension. It is widely used in release coatings, coatings, leather additives and packaging industries. .
  • the photoinitiator is a commercially available conventional initiator, which has good compatibility with PSi-MA. Further, the photoinitiator activity and efficiency are improved by the complex photoinitiator, and the silicon oil-modified photoinitiation is not required to be complicatedly prepared. The agent greatly simplifies the preparation method and reduces the preparation cost of the product.
  • the conventional photoinitiator is: 1-hydroxycyclohexyl phenyl ketone (184), 2-hydroxy-4'-(2-hydroxyethoxyl) 2-methylpropiophenone, 2,4,6(trimethylbenzoyl)diphenylphosphine oxide, ethyl 2,4,6-trimethylbenzoylphosphonate, 2-isopropyl
  • a radical-type photoinitiator such as thioxanthone or 4-dimethylamino-benzoic acid ethyl ester is compounded with the above two or more photoinitiators to prepare a high-efficiency silicone photoinitiator.
  • the polymethicone structure-containing polymethylsiloxane material is cured by ultraviolet light to obtain a release film, which has excellent low surface energy and excellent release effect: the residual adhesiveness of the standard tape is as high as 93%, the release force is stable at around 9.5g/in. It is a solvent-free, metal-free catalyst that does not require high temperature curing.
  • Figure 1 is a nuclear magnetic spectrum of asymmetric diene acrylate ethylene glycol acrylate
  • Example 2 is a nuclear magnetic spectrum of the amino silicone oil of Example 1;
  • Example 3 is a nuclear magnetic spectrum of a polymethylsiloxane material (PSi-MA) containing an acrylate structure of Example 1;
  • Figure 4 is an infrared contrast diagram of the amino silicone oil of the reaction formula [1] and the polymethylsiloxane material (PSi-MA) of the terminal acrylate structure;
  • FIG. 5 is a contact angle test chart of the ultraviolet curable film formation of the acrylate structure-containing polymethylsiloxane on a PET substrate (A: silicone oil cured film, B: PET film);
  • Figure 6 is a nuclear magnetic spectrum of the amino silicone oil in Example 9;
  • Figure 7 is a nuclear magnetic spectrum of a polymethicone material (PSi-MA) having a pendant methacrylate structure obtained in Example 9;
  • Figure 8 is an infrared contrast diagram of the amino silicone oil of the reaction formula [2] and the polymethylsiloxane material (PSi-MA) having a pendant methacrylate structure;
  • Fig. 9 is a graph showing the contact angle of a film of a methacrylate structure-containing polymethylsiloxane on a PET substrate by UV-curing to form a film (A: PET film, B: silicone oil cured film).
  • B is ethylene glycol methacrylate, asymmetric diene structure, self-made, controllable to Michael addition reaction
  • Figure 1 is the nuclear magnetic spectrum of ethylene glycol methacrylate, structure of protons One-to-one correspondence with the nuclear magnetic signal peak, and the integral ratio is consistent with the proton ratio, indicating the target reactant.
  • A is a terminal amino silicone oil, that is, a terminal amino polymethoxysiloxane, and the structure is as shown in the formula [1], and is self-made.
  • the structure of the PSi-MA can be analyzed by the nuclear magnetic signal to correspond to the nuclear magnetic proton peak, and the integral ratio is also matched.
  • the methacrylic acid is calculated by the nuclear magnetic integral.
  • the graft ratio of the ester was 97% and the molecular weight was 2000.
  • Figure 4 shows the infrared spectrum of the terminal amino silicone oil and PSi-MA. It is found that the vibration peak of the ester of 1730 cm -1 is contained in PSi-MA, and the ethylene glycol methacrylate structure is linked to the polymethylsiloxane end group. It shows that PSi-MA is successfully prepared, and the label PSi-MA01 is successfully prepared. No additional addition of ethylene glycol methacrylate is required. No side reaction such as cross-linking occurs during the process, and no catalyst is added, and the preparation is simple, gentle and efficient at room temperature. Propionate polymethylsiloxane.
  • Example 1 Without changing the other conditions of Example 1, the masses of aminosilicone oil and ethylene glycol methacrylate were respectively: 11.5g and 3.68g, the solvent amount was unchanged, and ethyl acetate, toluene, and the like were used. Toluene, butanone and the like were used instead of tetrahydrofuran. The operation process was unchanged. The NMR and infrared characterization confirmed that PSi-MA was successfully prepared, the molecular weight was 3000, and the graft ratio of methacrylate was 95%. Label PSi-MA02.
  • Example 2 Without changing the other conditions of Example 1, the masses of aminosilicone oil and ethylene glycol methacrylate were 11.1 g and 1.84 g, respectively, and the solvent amount was unchanged. Ethyl acetate, toluene, and the like were used. Toluene, butanone and the like were used instead of tetrahydrofuran. The operation process was unchanged. The NMR and infrared characterization confirmed that PSi-MA was successfully prepared with a molecular weight of 5200 and a graft ratio of methacrylate of 93%. Label PSi-MA03.
  • Example 1 Without changing the other conditions of Example 1, the masses of aminosilicone oil and ethylene glycol methacrylate were 8.9 g and 0.74 g, respectively, and the solvent amount was unchanged. Ethyl acetate, toluene, and the like were used. Toluene, butanone and the like were used instead of tetrahydrofuran. The operation process was unchanged. The NMR and infrared characterization confirmed that PSi-MA was successfully prepared with a molecular weight of 9600 and a graft ratio of methacrylate of 90%. Label PSi-MA04.
  • the photoinitiator was compounded with 1-hydroxycyclohexyl phenyl ketone (184) and 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone in a mass ratio of 1:1.
  • the PSi-MA synthesized by the reaction formula [1] and the above complex photoinitiator are mixed in a mass ratio of 100:1, mixed into a homogeneous phase, and an inert gas such as high-purity nitrogen (99.99%) or argon is used for bubbling.
  • an inert gas such as high-purity nitrogen (99.99%) or argon is used for bubbling.
  • the solution was roll coated on a PET film in a nitrogen atmosphere, and subjected to ultraviolet light irradiation for 5 seconds to prepare a PSi-MA film.
  • the PSi-MA prepared in Examples 1 to 4 was solidified into a film, and the numbers were PSi-MA01A, PSi-MA02A, PSi-MA03A, PSi-MA04A, respectively.
  • the cured film was tested for release properties.
  • Table 1 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that PSi-MA02A has the highest residual adhesion rate of up to 95%, while the release force is 9.2 g/in, and the contact angle is from The 70° before modification is increased to 89°.
  • other polymer films of the same type also meet the requirements, while PSi-MA02 has the best preparation effect, and the molecular weight of 3000 is the most reasonable and is the optimal reaction condition.
  • the photoinitiator was compounded: 2,4,6 (trimethylbenzoyl)diphenylphosphine oxide, 4-dimethylamino-benzoic acid ethyl ester, mass ratio 1:1 mixing.
  • the PSi-MA prepared in Examples 1 to 4 was cured into a film without changing the other conditions of Example 5, and the labels were PSi-MA01B, PSi-MA02B, PSi-MA03B, PSi-MA04B, respectively.
  • the cured film was tested for release properties.
  • Table 2 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that the residual adhesion of PSi-MA02B is the highest, up to 94%, while the release force is 9.1 g/in, and the contact angle is from The 70° before modification is raised to 88°, and other polymer films of the same type also meet the requirements, while PSi-MA02 has the best preparation effect, and the molecular weight of 3000 is the most reasonable, which is the optimal reaction condition.
  • the ultraviolet curing reaction of the polymethicone material (PSi-MA) having a terminal acrylate structure is different from that of Example 5 in that a photoinitiator is compounded: 2,4,6-trimethylbenzoylphosphonic acid Ethyl ester, 2-isopropyl thioxanthone, mixed at a mass ratio of 1:1.
  • the PSi-MA prepared in Examples 1 to 4 was cured into a film without changing the other conditions of Example 5, and the labels were PSi-MA01C, PSi-MA02C, PSi-MA03C, PSi-MA04C, respectively.
  • the cured film was tested for release properties.
  • Table 3 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that the residual adhesion of PSi-MA02C is the highest, up to 95%, while the release force is 9.6 g/in, and the contact angle is from The 70° before modification is raised to 88°, and other polymer films of the same type also meet the requirements, while PSi-MA02 has the best preparation effect, and the molecular weight of 3000 is the most reasonable, which is the optimal reaction condition.
  • the PSi-MA film was prepared by measuring the mass ratio of PSi-MA and compound photoinitiator to 200:1 without changing the other conditions of Example 5, and the release property was tested.
  • Table 4 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that PSi-MA02D has the highest residual adhesion rate of up to 90%, while the release force is 10.2 g/in, and the contact angle is from Compared with Example 5, the residual adhesion of PSi-MA02D was lower than that of PSi-MA02A. Therefore, the optimum amount of initiator was greater than 1% of the mass of PSi-MA.
  • Example 5 and Examples 6 and 7 it can be seen from Example 5 and Examples 6 and 7 that the use of the complex initiator of the present invention can effectively induce PSi-MA, and the effect is not large, indicating that PSi-MA has a good broad spectrum of initiator. It is not sensitive to the structure of the initiator and is beneficial to popularization and application; PSi-MA02 has the best preparation effect, and the molecular weight of 3000 is the most reasonable structure.
  • Example 1 is the optimal reaction condition. Further, in Comparative Examples 5 and 8, the optimum amount of the initiator was 1% by mass of the PSi-MA based on cost considerations.
  • B is ethylene glycol methacrylate, asymmetric diene structure, self-made, controllable to Michael addition reaction
  • Figure 1 is a nuclear magnetic resonance spectrum of ethylene glycol methacrylate.
  • the protons of the structure correspond one-to-one with the nuclear magnetic signal peak, and the integral ratio is consistent with the proton ratio, indicating that it is the target reactant.
  • a silicone oil (10.00 g, 0.00125 mol) and a solvent tetrahydrofuran (100 mL) were separately added to a 250 mL three-necked flask equipped with a constant pressure bottom funnel and a magnetic stirrer. Under stirring at room temperature, a solution of ethylene glycol methacrylate (3.50 g, 0.019 mol) in tetrahydrofuran (50 mL) was added dropwise to the reaction solution, and the mixture was added dropwise for 30 min, the reaction was continued for 5 h, and the solvent was distilled off under reduced pressure to obtain a solvent.
  • a pendant polymethylsiloxane material (PSi-MA) having a methacrylate structure. Fig.
  • FIG. 7 is a nuclear magnetic resonance spectrum of the PSi-MA obtained by the reaction formula [2].
  • the structure of the PSi-MA can be analyzed by the nuclear magnetic signal to correspond to the nuclear magnetic proton peak, and the integral ratio is also matched. The methyl group is calculated by the nuclear magnetic integral. The graft ratio of acrylate was 97%.
  • Fig. 8 is an infrared spectrum of amino silicone oil and PSi-MA in reaction formula [2]. It is found that PSi-MA contains a vibration peak of an ester of 1730 cm -1 , and an ethylene glycol methacrylate structure is linked in a polymethyl group. On the side chain of the siloxane, it was proved that PSi-MA was successfully prepared, and the label PSi-MA01 was prepared. No additional addition of ethylene glycol methacrylate was required. No side reaction such as cross-linking occurred during the process, and no catalyst was added. The simple and gentle preparation of the propionate polymethylsiloxane is carried out.
  • the weight fraction of amino silicone oil and ethylene glycol methacrylate in the preparation process are: 10 parts and 7 parts, respectively, and the solvent amount is unchanged, and ethyl acetate, toluene, and the like can be used.
  • Xylene, butanone and the like were substituted for tetrahydrofuran, and the operation process was unchanged.
  • the nuclear magnetic resonance spectrum and infrared characterization confirmed that PSi-MA was successfully prepared, and the graft ratio of methacrylate was 95%.
  • Example 9 Without changing the other conditions of Example 9, the weight fraction of aminosilicone oil and ethylene glycol methacrylate in the preparation process were: 10 parts and 2.5 parts, respectively, and the solvent amount was unchanged, and ethyl acetate, toluene, and the like. Xylene, butanone and the like were substituted for tetrahydrofuran, and the operation process was unchanged. The nuclear magnetic resonance spectrum and infrared characterization confirmed that PSi-MA was successfully prepared, and the graft ratio of methacrylate was 95%. Label PSi-MA03.
  • Example 9 Without changing the other conditions of Example 9, the weight fraction of amino silicone oil and ethylene glycol methacrylate in the preparation process were: 10 parts and 3.5 parts, respectively, and the solvent amount was unchanged, and ethyl acetate, toluene, and the like, Xylene, methyl ethyl ketone and the like were substituted for tetrahydrofuran, and the operation process was unchanged.
  • the nuclear magnetic resonance spectrum and infrared characterization confirmed that PSi-MA was successfully prepared, and the graft ratio of methacrylate was 92%. Label PSi-MA04.
  • the photoinitiator was compounded with 1-hydroxycyclohexyl phenyl ketone (184) and 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone in a mass ratio of 1:1.
  • the PSi-MA of Example 9 and the above-mentioned compound photoinitiator were mixed in a mass ratio of 100:1, mixed into a homogeneous phase, and an inert gas such as high-purity nitrogen (99.99%) or argon gas was used for bubbling oxygen removal.
  • the solution was roll-coated on a PET film in a nitrogen atmosphere, and subjected to ultraviolet light irradiation for 5 seconds to prepare a PSi-MA film.
  • the PSi-MA prepared in Examples 1 to 4 was solidified into a film, and the numbers were PSi-MA01A, PSi-MA02A, PSi-MA03A, PSi-MA04A, respectively.
  • the cured film was tested for release properties.
  • Table 5 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that PSi-MA01A has the highest residual adhesion rate of up to 95%, while the release force is 9.5 g/in, and the contact angle is from The 70° before modification is raised to 85°.
  • other polymer films are also in compliance with the requirements, while PSi-MA01 has the best preparation and the most reasonable structure, which is the optimal reaction condition.
  • the photoinitiator was compounded: 2,4,6 (trimethylbenzoyl)diphenylphosphine oxide, 4-dimethylamino-benzoic acid ethyl ester, mass ratio 1:1 mixing.
  • the PSi-MA prepared in Examples 9 to 12 was cured into a film without changing the other conditions of Example 13, and the labels were PSi-MA01B, PSi-MA02B, PSi-MA03B, PSi-MA04B, respectively.
  • the cured film was tested for release properties.
  • Table 6 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that the residual adhesion rate of PSi-MA01B is the highest, up to 94%, and the release force is 9.1 g/in.
  • the contact angle is from The 70° before modification is upgraded to 86°, and other polymer films of the same type also meet the requirements, while PSi-MA01 has the best preparation effect and the most reasonable structure, which is the optimal reaction condition.
  • a photoinitiator was prepared: ethyl 2,4,6-trimethylbenzoylphosphonate and 2-isopropylthioxanthone, and the mixture was mixed at a mass ratio of 1:1.
  • the PSi-MA prepared in Examples 9 to 12 was cured into a film without changing the other conditions of Example 13, and the labels were PSi-MA01C, PSi-MA02C, PSi-MA03C, PSi-MA04C, respectively.
  • the cured film was tested for release properties.
  • Table 7 shows the release properties of PSi-MA films with different structures under the same compounding initiator conditions, indicating that the residual adhesion of PSi-MA01C is the highest, up to 97%, while the release force is 9.7 g/in, and the contact angle is from The 70° before modification is upgraded to 87°, and other polymer films of the same type also meet the requirements, while PSi-MA01 has the best preparation effect and the most reasonable structure, which is the optimal reaction condition.
  • the PSi-MA film was prepared by measuring the mass ratio of PSi-MA and compound photoinitiator to 200:1 without changing the other conditions of Example 13, and the release property was tested.
  • Table 8 shows the release properties of PSi-MA films with different structures under the same compounding agent conditions, indicating that PSi-MA01D has the highest residual adhesion rate of up to 90%, while the release force is 7.5 g/in, and the contact angle is from The pre-modification 70° was raised to 86°.
  • the residual adhesion of PSi-MA01D was lower than that of PSi-MA01A. Therefore, the optimum amount of initiator was greater than 1% of the mass of PSi-MA.
  • Example 13 and Examples 14 and 15 it can be seen from Example 13 and Examples 14 and 15 that the use of the complex initiator of the present invention can effectively induce PSi-MA, and the effect is not large, indicating that PSi-MA has a good broad spectrum of initiator. It is not sensitive to the structure of the initiator and is beneficial to popularization and application; PSi-MA01 has the best preparation effect and the most reasonable structure, and Example 9 is the optimal reaction condition. Further, in Comparative Example 13 and Example 16, the optimum amount of the initiator was 1% by mass of the PSi-MA based on cost considerations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Silicon Polymers (AREA)

Abstract

本发明涉及一种紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,通过非对称双烯丙烯酸甲基丙烯酸乙二醇酯与氨基硅油进行迈克尔加成反应,非对称双烯的双键的活性差距较大,丙烯酸结构优先与氨基进行加成,甲基丙烯酸结构成功链接到甲基硅油侧链中,制备出结构可控的侧基含甲基丙烯酸酯结构的甲基硅油,反应接枝率高,是一种高效温和可控的制备方法;选用常规复配光引发剂,涂覆在基材上紫外光固化,室温下快速固化成膜,清洁无污染的特点,无需繁复地制备硅油改性的光引发剂,制备出有机硅具有耐高温,耐候性佳、电气绝缘性好、离型效果出色和低表面张力等优点,广泛应用于离型涂层、涂料、皮革助剂和包装等行业。

Description

一种紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法 技术领域
本发明属于高分子材料科学领域,尤其是涉及一种紫外光(UV)固化型甲基硅油材料的制备方法。
背景技术
聚甲基硅氧烷即为甲基硅油,由其独特的化学结构而具有许多优异的物化性能,结构以硅氧键为主链,具有极好的柔顺结构特点,同时表现出耐高低温,且在较宽的温度范围内使用,此外,硅氧结构与常规聚合物相比,更具有优异的耐候性、耐腐蚀性、电气绝缘性,耐臭氧型、防水、阻燃性、生理惰性等性能,广泛应用于航空航天、日用材料、电子电气、化工机械、医疗卫生、交通运输等国民经济各个行业。
目前,传统有机硅是通过高效催化剂在高温下进行固化成型的,不仅固化速度慢,能耗高、固化效率低,甚至固化过程中产生溶剂以及小分子有机物挥发污染环境,金属催化剂的残留影响产品性能和应用点,因此,这极大程度上限制了有机硅的应用和推广。
紫外光(UV)固化是一种节能环保的新技术,具有快速固化(数秒成膜),固化均匀、室温固化、节能高效、环境友好等优点,尤其适用于热敏性元部件成型方法,以及定域性的复印和半导体电路的光刻,因此,光固化是一种非常有应用前景的固化方法。因此,通过将硅氧主链引入可紫外光固化的官能团,在紫外光辐照下进行交联固化则显示了高效、快速固化成型、清洁环保、节能等诸多优势,所得材料具有耐温、耐候、电气绝缘、低表面张力和低表面能等优点,因此,含丙烯酸酯类功能基的甲基硅油材料具有紫外光活性有机硅高分子,光聚合反应活性一般较高、反应速率较快、具有一定的抗氧聚合能力,再加上价格低廉,使其成为目前紫外光固化产品中用量最大的预聚物,可应用于不同基材的离型薄膜流水化快速制造,固化后不仅保留了有机硅的优势,同时具有丙烯酸酯的成膜性、保色性好,光泽高,粘接性能优异,提升了有机硅的应用和推广,如涂层、油漆、皮革助剂、包装等行业。
早期丙烯酸酯改性甲基硅油是通过聚甲基硅氧烷中的二氯硅烷与丙烯酸羟 乙酯(HEA)在碱催化下的水解缩合反应制得,但此改性聚硅氧烷含有对湿度敏感的Si-O-C键,水解稳定性较差,HEA结构容易解离而失活,因此,有必要合成稳定性高的Si-C结构的丙烯酸酯基化聚甲基硅氧烷,主要合成方法为有硅氢加成法、酯化法和脱醇法。含硅氢基的聚甲基硅氧烷直接与对称型双丙烯酸酯进行硅氢加成反应(Oestreich S,Struck S.MacromolSymp.,2002,187(1),333.),H 2PtO 66H 2O的催化下,便得到丙烯酸酯基化聚硅氧烷,由于双丙烯酸酯具有同等活性,在加成反应过程中,会发生聚合物链之间交联反应,影响较大,此外,催化剂较为昂贵,限制了该反应的应用推广。利用端环氧聚甲基硅氧烷与丙烯酸在催化剂催化下,酯化法制备出丙烯酸酯化聚硅氧烷(Carter G R,Watson S L,Pines A N,US 4293678,1981.);端羟烷基聚甲基硅氧烷与丙烯酸发生酯化反应,得到丙烯酸酯化聚硅氧烷(Hockemeyer F,Preiner G.US 4554339,1985.);何华等以氯丙基聚硅氧烷和丙烯酸羟丙酯反应,合成出丙烯酸酯基化聚硅氧烷,作为隔离剂研究紫外光固化特性及其防粘性能等(何华,陶永杰,李冰,粘接,2005,26(6),7.)。酯化反应的活性限制了酯化效率较低,丙烯酸酯的接枝率影响有机硅的应用。
随着科学技术的发展,人们对聚甲基硅氧烷快速固化体系的需求越来越广泛,它在航空航天、日用材料、电子电气、化工机械、医疗卫生、交通运输等行业中起着非常重要的作用,可以大大节约时间,提高工艺效率,产品产量得到指数提升,因此,提升丙烯酸酯的接枝效率和降低制备成本有效提升了UV固化型聚甲基硅氧烷的推广。
发明内容
本发明的目的在于提供了性能优异的高接枝率和低成本的甲基丙烯酸酯基化的聚甲基硅氧烷,解决了现有技术中催化剂昂贵,反应过程易发生交联,丙烯酸酯接枝效率低,固化过程光引发剂制备繁琐昂贵等技术问题。所得甲基丙烯酸酯基化的聚甲基硅氧烷具有制备简单,制备成本低,使用方便,丙烯酸酯接枝率高,活性高,是一种高效温和可控的制备方法,紫外光固化成型时间短,光引发剂无需繁琐制备硅油改性的光引发剂,选用价格低廉的市售复配光引发剂,固化后的有机硅膜材料具有耐高温,耐候性佳、电气绝缘性好和低表面张力等优点,广泛应用于离型涂层、涂料、皮革助剂和包装等行业。
本发明采用如下技术方案为:
一种紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷(PSi-MA),具有式[1]或[2]的结构通式:
Figure PCTCN2019076331-appb-000001
式[1]中:m=15-200,分子量为1700~15700;其中m为整数。
所述的PSi-MA通过制备的非对称双烯丙烯酸甲基丙烯酸乙二醇酯与氨基硅油进行迈克尔加成反应纯化制得,其反应方程为[1]:
Figure PCTCN2019076331-appb-000002
所述的原料A为端氨基硅油,自制,结构中m可以为任意整数,可设定为 m=15-200,分子量为1000~15000。
或式[2]的结构通式
Figure PCTCN2019076331-appb-000003
式[2]中:m=15-200,分子量为1700~15700;其中m为整数。
所述的PSi-MA通过制备的非对称双烯丙烯酸甲基丙烯酸乙二醇酯与氨基硅油进行迈克尔加成反应纯化制得,其反应方程为[2]:
Figure PCTCN2019076331-appb-000004
所述的原料A为氨基硅油,自制,结构中m可以为任意整数,可设定为m=15-200,分子量为1000~15000。
所述的原料B为非对称双烯结构,为丙烯酸甲基丙烯酸乙二醇酯,自制,设计的目的为,在迈克尔加成反应过程中,丙烯酸酯结构与氨基加成反应的活性远高于甲基丙烯酸酯结构的反应活性,因此,当加成反应进入聚甲基硅氧烷末端的甲基丙烯酸酯结构相对稳定,避免了进一步与聚合物的氨基结构进行链与链之间的加成而发生支化,甚至交联副反应,游离的丙烯酸酯小分子优先与聚合物中 剩余氨基结构加成反应,因此,只需加入相同摩尔基团的B就能使反应进行彻底,无需加入过量B,提升了该反应的可控性,同时迈克尔加成反应活性较高,甲基丙烯酸酯的接枝率高达95%以上,反应具有较好的可控性和反应温和性。
所述的迈克尔加成反应条件为,常温下进行,溶剂可选用四氢呋喃、乙酸乙酯、甲苯、二甲苯、丁酮等良溶剂,反应时间为5小时即可,后处理通过减压旋蒸,溶剂可回收再利用,整个工艺流程简单可控。
所述的端基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)具有极高的甲基丙烯酸酯的接枝率,达95%以上。在光引发剂存在下,常温下紫外光(UV)辐照快速固化成型,或涂覆在薄膜上成膜,固化时间为1~5秒,光固化反应具有快速固化、固化均匀、室温固化、节能高效、环境友好等优点,制备出有机硅膜材料具有耐高温,耐候性佳、电气绝缘性好和低表面张力等优点,广泛应用于离型涂层、涂料、皮革助剂和包装等行业。
所述的光引发剂为市售的常规引发剂,与PSi-MA相容性好,进一步,通过复配型光引发剂提升了光引发活性及效率,无需繁复地制备硅油改性的光引发剂,极大的简化了制备方法,降低了产品的制备成本,常规的光引发剂为:1-羟基环己基苯基甲酮(184)、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮、2,4,6(三甲基苯甲酰基)二苯基氧化膦、2,4,6一三甲基苯甲酰基膦酸乙酯、2-异丙基硫杂蒽酮、4-二甲胺基-苯甲酸乙酯等类似自由基型光引发剂,对以上两种或两种以上光引发剂进行复配,制得高效有机硅光引发剂。
所述的含甲基丙烯酸酯结构的聚甲基硅氧烷材料经紫外光固化成膜,获得离型膜,具有优异的低表面能,且优异的离型效果:标准胶带的残余黏着率高达93%,离型力稳定在9.5g/in左右,是一款无溶剂、无金属催化剂,无需高温固化的快速有机硅光固化体系。
附图说明
图1为非对称双烯丙烯酸甲基丙烯酸乙二醇酯的核磁图谱;
图2为实施例1氨基硅油的核磁图谱;
图3为实施例1含丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的核磁谱图;
图4为反应式[1]的氨基硅油和端丙烯酸酯结构的聚甲基硅氧烷材料 (PSi-MA)红外对比图;
图5为实施例5含丙烯酸酯结构的聚甲基硅氧烷在PET基材上紫外光固化成膜的接触角测试图(A:硅油固化膜,B:PET膜);
图6为实施例9中氨基硅油的核磁图谱;
图7为实施例9中得到的侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的核磁谱图;
图8为反应式[2]的氨基硅油和侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)红外对比图;
图9为实施例13含甲基丙烯酸酯结构的聚甲基硅氧烷在PET基材上紫外光固化成膜的接触角测试图(A:PET膜,B:硅油固化膜)。
具体实施方式
下面结合实施例对本发明做进一步说明:
实施例1
端丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式[1]为:
Figure PCTCN2019076331-appb-000005
其中,B为丙烯酸甲基丙烯酸乙二醇酯,非对称双烯结构,自制,对迈克尔加成反应具有可控性,图1为丙烯酸甲基丙烯酸乙二醇酯的核磁谱图,结构的质子与核磁信号峰一一对应,且积分比与质子比相符,表明为目标反应物。
A为端氨基硅油,即端氨基聚甲氧基硅氧烷,结构如式[1]中所示,自制, 图2为式[1]中端氨基硅油的核磁谱图,结构与核磁质子峰一一对应,通过积分计算,m=15,分子量为1200。
向带有恒压底液漏斗和磁力搅拌子的250mL三口烧瓶中分别加入氨基硅油(12.00g,0.01mol)和溶剂四氢呋喃(100mL)。常温搅拌下,将丙烯酸甲基丙烯酸乙二醇酯(7.36g,0.04mol)四氢呋喃溶液(50mL)滴加到反应溶液中,滴加30min,继续反应5h,反应结束减压蒸馏出溶剂,制得端丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)。图3是式[1]得到的PSi-MA的核磁谱图,通过核磁信号可以分析出PSi-MA的结构与核磁质子峰一一对应,且积分比例也吻合,经核磁积分计算得甲基丙烯酸酯的接枝率达97%,分子量为2000。同时,图4为端氨基硅油和PSi-MA红外谱图,比较发现PSi-MA含有1730cm -1的酯的振动峰,丙烯酸甲基丙烯酸乙二醇酯结构链接在聚甲基硅氧烷端基上,表明成功制备出PSi-MA,标号PSi-MA01,无需额外添加过量的丙烯酸甲基丙烯酸乙二醇酯,过程中不发生交联等副反应,且无需添加催化剂,室温下简单温和高效制备丙酸酸酯聚甲基硅氧烷。
实施例2
端丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式同实施例1。
与实施例1不同的是,式[1]中端基氨基硅油的分子量为2300,m=30。
在不改变实施例1的其他条件的情况下,制备过程中氨基硅油和丙烯酸甲基丙烯酸乙二醇酯质量分别为:11.5g和3.68g,溶剂用量不变,可用乙酸乙酯、甲苯、二甲苯、丁酮等代替四氢呋喃,操作过程不变,核磁谱图和红外表征证实成功制备出PSi-MA,分子量为3000,甲基丙烯酸酯的接枝率达95%。标号PSi-MA02。
实施例3
侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式同实施例1。
与实施例1不同的是,式[1]中氨基硅油的分子量为4500,m=60。
在不改变实施例1的其他条件的情况下,制备过程中氨基硅油和丙烯酸甲基丙烯酸乙二醇酯质量分别为:11.25g和1.84g,溶剂用量不变,可用乙酸乙 酯、甲苯、二甲苯、丁酮等代替四氢呋喃,操作过程不变,核磁谱图和红外表征证实成功制备出PSi-MA,分子量为5200,甲基丙烯酸酯的接枝率达93%。标号PSi-MA03。
实施例4
端丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式同实施例1。
与实施例1不同的是,式[1]中氨基硅油的分子量为8900,m=120。
在不改变实施例1的其他条件的情况下,制备过程中氨基硅油和丙烯酸甲基丙烯酸乙二醇酯质量分别为:8.9g和0.74g,溶剂用量不变,可用乙酸乙酯、甲苯、二甲苯、丁酮等代替四氢呋喃,操作过程不变,核磁谱图和红外表征证实成功制备出PSi-MA,分子量为9600,甲基丙烯酸酯的接枝率达90%。标号PSi-MA04。
实施例5
端甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的紫外光固化反应。
复配光引发剂:1-羟基环己基苯基甲酮(184)和2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮,质量比1:1混合。
将反应式[1]合成的PSi-MA和上述的复配光引发剂质量配比为100:1,混合成均相,选用惰性气体,如高纯氮气(99.99%)或氩气进行鼓泡除氧气,在氮气氛围中,将溶液滚涂在PET膜上,连续化进行紫外光辐照,5秒,制得PSi-MA薄膜。
将实施例1~4中制备的PSi-MA,固化成膜,标号分别为PSi-MA01A,PSi-MA02A,PSi-MA03A,PSi-MA04A。对固化膜进行离型性能测试。
表1 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000006
表1是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA02A的残余黏着率最高,高达95%,同时离型力9.2g/in,接触角从改性前70°提升到89°,如图5所示,其他标号的聚合物膜也符合要求,而PSi-MA02制备效果最佳,分子量为3000结构最为合理,是最优的反应条件。
实施例6
端丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的紫外光固化反应。
与实施例5不同的是,复配光引发剂:2,4,6(三甲基苯甲酰基)二苯基氧化膦、4-二甲胺基-苯甲酸乙酯,质量比1:1混合。
在不改变实施例5的其他条件的情况下,将实施例1~4中制备的PSi-MA,固化成膜,标号分别为PSi-MA01B,PSi-MA02B,PSi-MA03B,PSi-MA04B。对固化膜进行离型性能测试。
表2 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000007
表2是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA02B的残余黏着率最高,高达94%,同时离型力9.1g/in,接触角从改性前70°提升到88°,其他标号的聚合物膜也符合要求,而PSi-MA02制备效果最佳,分子量为3000结构最为合理,是最优的反应条件。
实施例7
端丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的紫外光固化反应与实施例5不同的是,复配光引发剂:2,4,6一三甲基苯甲酰基膦酸乙酯、2-异丙基硫杂蒽酮,质量比1:1混合。
在不改变实施例5的其他条件的情况下,将实施例1~4中制备的PSi-MA, 固化成膜,标号分别为PSi-MA01C,PSi-MA02C,PSi-MA03C,PSi-MA04C。对固化膜进行离型性能测试。
表3 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000008
表3是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA02C的残余黏着率最高,高达95%,同时离型力9.6g/in,接触角从改性前70°提升到88°,其他标号的聚合物膜也符合要求,而PSi-MA02制备效果最佳,分子量为3000结构最为合理,是最优的反应条件。
实施例8
在不改变实施例5的其他条件的情况下,将PSi-MA和复配光引发剂质量配比为200:1,制备出PSi-MA膜,测试离型性能。
表4 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000009
表4是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA02D的残余黏着率最高,高达90%,同时离型力10.2g/in,接触角 从改性前70°提升到87°,对比实施例5,PSi-MA02D残余黏着率低于PSi-MA02A,因此,引发剂最佳用量为大于PSi-MA质量的1%。
通过实施例5与实施例6、7可知,使用本发明所述复配引发剂均可有效的引发PSi-MA,效果差距不大,表明PSi-MA对引发剂的具有较好的广谱性,对引发剂结构不敏感,有利于推广应用;PSi-MA02制备效果最佳,分子量为3000结构最为合理,实施例1是最优的反应条件。此外对比实施例5和8,基于成本考虑,引发剂的最佳用量为PSi-MA质量的1%。
以下为反应式[2]的实施例:
实施例9
侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式[2]为。
Figure PCTCN2019076331-appb-000010
其中,B为丙烯酸甲基丙烯酸乙二醇酯,非对称双烯结构,自制,对迈克尔加成反应具有可控性,
图1为丙烯酸甲基丙烯酸乙二醇酯的核磁谱图,结构的质子与核磁信号峰一一对应,且积分比与质子比相符,表明为目标反应物。
其中,A为氨基硅油,即氨基聚甲氧基硅氧烷,结构如式[2],分子量为8200,自制,图6为氨基硅油的核磁谱图,结构与核磁质子峰一一对应,通过积分计算,m=100,n=5,含氨基甲基硅氧烷摩尔含量为4.8%。
向带有恒压底液漏斗和磁力搅拌子的250mL三口烧瓶中分别加入氨基硅油(10.00g,0.00125mol)和溶剂四氢呋喃(100mL)。常温搅拌下,将丙烯酸甲基丙烯酸乙二醇酯(3.50g,0.019mol)四氢呋喃溶液(50mL)滴加到反应 溶液中,滴加30min,继续反应5h,反应结束减压蒸馏出溶剂,制得侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)。图7是反应式[2]得到的PSi-MA的核磁谱图,通过核磁信号可以分析出PSi-MA的结构与核磁质子峰一一对应,且积分比例也吻合,经核磁积分计算得甲基丙烯酸酯的接枝率达97%。同时,图8为反应式[2]中氨基硅油和PSi-MA红外谱图,比较发现PSi-MA含有1730cm -1的酯的振动峰,丙烯酸甲基丙烯酸乙二醇酯结构链接在聚甲基硅氧烷侧链上,表明成功制备出PSi-MA,标号PSi-MA01,无需额外添加过量的丙烯酸甲基丙烯酸乙二醇酯,过程中不发生交联等副反应,且无需添加催化剂,室温下简单温和高效制备丙酸酸酯聚甲基硅氧烷。
实施例10
侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式同实施例9。
与实施例9不同的是,氨基硅油的分子量为8200,m=90,n=10,含氨基甲基硅氧烷摩尔含量为10%。
在不改变实施例1的其他条件的情况下,制备过程中氨基硅油和丙烯酸甲基丙烯酸乙二醇酯重量份分别为:10份和7份,溶剂用量不变,可用乙酸乙酯、甲苯、二甲苯、丁酮等代替四氢呋喃,操作过程不变,核磁谱图和红外表征证实成功制备出PSi-MA,甲基丙烯酸酯的接枝率达95%。标号PSi-MA02。
实施例11
侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反应式同实施例9。
与实施例9不同的是,氨基硅油的分子量为8200,m=104,n=3,含氨基甲基硅氧烷摩尔含量为2.8%。
在不改变实施例9的其他条件的情况下,制备过程中氨基硅油和丙烯酸甲基丙烯酸乙二醇酯重量份分别为:10份和2.5份,溶剂用量不变,可用乙酸乙酯、甲苯、二甲苯、丁酮等代替四氢呋喃,操作过程不变,核磁谱图和红外表征证实成功制备出PSi-MA,甲基丙烯酸酯的接枝率达95%。标号PSi-MA03。
实施例12
侧基含甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的合成。合成反 应式同实施例9。
与实施例9不同的是,氨基硅油的分子量为4100,m=50,n=3,含氨基甲基硅氧烷摩尔含量为5.7%。
在不改变实施例9的其他条件的情况下,制备过程中氨基硅油和丙烯酸甲基丙烯酸乙二醇酯重量份分别为:10份和3.5份,溶剂用量不变,可用乙酸乙酯、甲苯、二甲苯、丁酮等代替四氢呋喃,操作过程不变,核磁谱图和红外表征证实成功制备出PSi-MA,甲基丙烯酸酯的接枝率达92%。标号PSi-MA04。
实施例13
甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的紫外光固化反应。
复配光引发剂:1-羟基环己基苯基甲酮(184)和2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮,质量比1:1混合。
将实施例9的PSi-MA和上述的复配光引发剂质量配比为100:1,混合成均相,选用惰性气体,如高纯氮气(99.99%)或氩气进行鼓泡除氧气,在氮气氛围中,将溶液滚涂在PET膜上,连续化进行紫外光辐照,5秒,制得PSi-MA薄膜。
将实施例1~4中制备的PSi-MA,固化成膜,标号分别为PSi-MA01A,PSi-MA02A,PSi-MA03A,PSi-MA04A。对固化膜进行离型性能测试。
表5 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000011
表5是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA01A的残余黏着率最高,高达95%,同时离型力9.5g/in,接触角从改性前70°提升到85°,如图9所示,其他标号的聚合物膜也符合要求,而 PSi-MA01制备效果最佳,结构最为合理,是最优的反应条件。
实施例14
甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的紫外光固化反应
与实施例13不同的是,复配光引发剂:2,4,6(三甲基苯甲酰基)二苯基氧化膦、4-二甲胺基-苯甲酸乙酯,质量比1:1混合。
在不改变实施例13的其他条件的情况下,将实施例9~12中制备的PSi-MA,固化成膜,标号分别为PSi-MA01B,PSi-MA02B,PSi-MA03B,PSi-MA04B。对固化膜进行离型性能测试。
表6 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000012
表6是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA01B的残余黏着率最高,高达94%,同时离型力9.1g/in,接触角从改性前70°提升到86°,其他标号的聚合物膜也符合要求,而PSi-MA01制备效果最佳,结构最为合理,是最优的反应条件。
实施例15
甲基丙烯酸酯结构的聚甲基硅氧烷材料(PSi-MA)的紫外光固化反应
与实施例13不同的是,复配光引发剂:2,4,6一三甲基苯甲酰基膦酸乙酯、2-异丙基硫杂蒽酮,质量比1:1混合。
在不改变实施例13的其他条件的情况下,将实施例9~12中制备的PSi-MA,固化成膜,标号分别为PSi-MA01C,PSi-MA02C,PSi-MA03C,PSi-MA04C。对固化膜进行离型性能测试。
表7 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000013
表7是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA01C的残余黏着率最高,高达97%,同时离型力9.7g/in,接触角从改性前70°提升到87°,其他标号的聚合物膜也符合要求,而PSi-MA01制备效果最佳,结构最为合理,是最优的反应条件。
实施例16
在不改变实施例13的其他条件的情况下,将PSi-MA和复配光引发剂质量配比为200:1,制备出PSi-MA膜,测试离型性能。
表8 PSi-MA膜的离型参数
Figure PCTCN2019076331-appb-000014
表8是在相同复配引发剂条件下不同结构的PSi-MA膜的离型性能结果,表明PSi-MA01D的残余黏着率最高,高达90%,同时离型力7.5g/in,接触角从改性前70°提升到86°,相比与实施例9,PSi-MA01D残余黏着率低于PSi-MA01A,因此,引发剂最佳用量为大于PSi-MA质量的1%。
通过实施例13与实施例14、15可知,使用本发明所述复配引发剂均可有效的引发PSi-MA,效果差距不大,表明PSi-MA对引发剂的具有较好的广谱性, 对引发剂结构不敏感,有利于推广应用;PSi-MA01制备效果最佳,结构最为合理,实施例9是最优的反应条件。此外对比实施例13和实施例16,基于成本考虑,引发剂的最佳用量为PSi-MA质量的1%。
以上所述仅为本发明优选的实施例而已,并不用于限制本发明,对本领域的技术人员来说,其依然可以对前述各实施例中所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于,通过非对称双烯结构的丙烯酸甲基丙烯酸乙二醇酯与氨基硅油进行迈克尔加成反应制得,其中甲基丙烯酸酯的接枝率达95%以上;
    所述的聚甲基硅氧烷的反应方程式为[1]:
    Figure PCTCN2019076331-appb-100001
    或反应方程式为[2]:
    Figure PCTCN2019076331-appb-100002
  2. 根据权利要求1所述的紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于:所述方程式[1]中,所述的原料A端氨基硅油的结构中m为任意整数,可设定为m=15~200,分子量为1000~15000;原料B为非对称双烯结构,丙烯酸甲基丙烯酸乙二醇酯,原料B用量为等摩尔量的氨基硅油的氨基中氢量。
  3. 根据权利要求1所述的紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于:所述式[2]中,原料A氨基硅油的结构中m和n可以为任意整数,可设定为m=20~150,n=1~20,m:n=1:1~50:1,分子量为1000~20000;原料B为非对称双烯结构,丙烯酸甲基丙烯酸乙二醇酯,原料B用量为等摩尔量的氨基硅油的氨基中氢量。
  4. 根据权利要求1所述的紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于由以下步骤制备而成:
    (1)向带有恒压底液漏斗和磁力搅拌子的反应器中分别加入氨基硅油和溶剂四氢呋喃,常温搅拌下,将丙烯酸甲基丙烯酸乙二醇酯四氢呋喃溶液滴加到反应溶液中,滴加30min,继续反应5h,反应结束减压蒸馏出溶剂,制得含丙烯酸酯结构的聚甲基硅氧烷(PSi-MA);
    (2)将PSi-MA和复配光引发剂混合成均相,选用惰性气体进行鼓泡除氧气,将溶液滚涂在PET膜上,连续化进行紫外光辐照,1~5秒,制得PSi-MA薄膜。
  5. 根据权利要求4所述的紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于,步骤(1)所述反应温度为25℃室温;反应时间为5小时,减压旋蒸得到PSi-MA,溶剂可回收再利用,整个工艺流程简单可控。
  6. 根据权利要求4所述的紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于,步骤(2)所述光引发剂为1-羟基环己基苯基甲酮(184)、2-羟基-4'-(2-羟乙氧基)-2-甲基苯丙酮、2,4,6(三甲基苯甲酰基)二苯基氧化膦、2,4,6一三甲基苯甲酰基膦酸乙酯、2-异丙基硫杂蒽酮、4-二甲胺基-苯甲酸乙酯中两种或两种以上光引发剂进行复配。
  7. 根据权利要求4所述的紫外光(UV)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法,其特征在于,复配光引发剂用量为PSi-MA质量含量为0.1%-2%,混合成均相,选用如高纯氮气(99.99%)或氩气等惰性气体作为保护气体,进行紫外光辐照1~5秒,制得PSi-MA膜。
PCT/CN2019/076331 2018-04-27 2019-02-27 一种紫外光(uv)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法 WO2019205802A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,355 US20200299462A1 (en) 2018-04-27 2019-02-27 Method for preparing ultraviolet (uv) curing polymethyl siloxane containing acrylate structure

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201810390687.2A CN108484915A (zh) 2018-04-27 2018-04-27 一种紫外光(uv)固化端丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN201810390616.2A CN108503840A (zh) 2018-04-27 2018-04-27 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN201810390617.7 2018-04-27
CN201810390617.7A CN108530634A (zh) 2018-04-27 2018-04-27 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷
CN201810390608.8 2018-04-27
CN201810390616.2 2018-04-27
CN201810390608.8A CN108586752A (zh) 2018-04-27 2018-04-27 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的应用
CN201810390687.2 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019205802A1 true WO2019205802A1 (zh) 2019-10-31

Family

ID=68294826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076331 WO2019205802A1 (zh) 2018-04-27 2019-02-27 一种紫外光(uv)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法

Country Status (2)

Country Link
US (1) US20200299462A1 (zh)
WO (1) WO2019205802A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124756B (zh) * 2022-07-14 2023-06-06 中国人民解放军国防科技大学 一种紫外辅助3d打印聚合物交联氧化硅气凝胶的制备方法
CN116023902A (zh) * 2022-12-05 2023-04-28 哈尔滨工业大学无锡新材料研究院 一种uv-湿气固化耐老化的有机硅压敏胶材料及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331175A (ja) * 1994-06-14 1995-12-19 Shin Etsu Chem Co Ltd 紫外線硬化性コーティング用組成物
EP0906930A1 (de) * 1997-10-02 1999-04-07 Wacker-Chemie GmbH Polysiloxane mit heterocyclischen Funktionen, deren Herstellung und Verwendung
CN102807805A (zh) * 2011-05-31 2012-12-05 比亚迪股份有限公司 一种紫外光固化涂料组合物及其制备方法
CN103013299A (zh) * 2012-12-17 2013-04-03 青岛森淼实业有限公司 一种紫外线光固化涂料制备方法
CN103013300A (zh) * 2012-12-17 2013-04-03 青岛中科润美润滑材料技术有限公司 一种紫外线光固化涂料制备方法
CN108484915A (zh) * 2018-04-27 2018-09-04 常州大学 一种紫外光(uv)固化端丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN108503840A (zh) * 2018-04-27 2018-09-07 常州大学 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN108530634A (zh) * 2018-04-27 2018-09-14 常州大学 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷
CN108586752A (zh) * 2018-04-27 2018-09-28 常州大学 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697026A (en) * 1986-01-06 1987-09-29 Dow Corning Corporation Acryl functional silicone compounds
CN101307181B (zh) * 2008-07-02 2010-06-02 天津大学 阴离子聚氨酯与氨基硅油复合的水分散液及其制备和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331175A (ja) * 1994-06-14 1995-12-19 Shin Etsu Chem Co Ltd 紫外線硬化性コーティング用組成物
EP0906930A1 (de) * 1997-10-02 1999-04-07 Wacker-Chemie GmbH Polysiloxane mit heterocyclischen Funktionen, deren Herstellung und Verwendung
CN102807805A (zh) * 2011-05-31 2012-12-05 比亚迪股份有限公司 一种紫外光固化涂料组合物及其制备方法
CN103013299A (zh) * 2012-12-17 2013-04-03 青岛森淼实业有限公司 一种紫外线光固化涂料制备方法
CN103013300A (zh) * 2012-12-17 2013-04-03 青岛中科润美润滑材料技术有限公司 一种紫外线光固化涂料制备方法
CN108484915A (zh) * 2018-04-27 2018-09-04 常州大学 一种紫外光(uv)固化端丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN108503840A (zh) * 2018-04-27 2018-09-07 常州大学 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN108530634A (zh) * 2018-04-27 2018-09-14 常州大学 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷
CN108586752A (zh) * 2018-04-27 2018-09-28 常州大学 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, HONGBO ET AL.: "Synthesis of New Polyorganosiloxane Modified Acrylate and its Influences in UV-Curable System", SPECIALITY PETROCHEMICALS, vol. 26, no. 6, 30 November 2009 (2009-11-30), pages 5 - 7 *

Also Published As

Publication number Publication date
US20200299462A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
EP2954022B1 (en) Clustered functional polyorganosiloxanes, processes for forming same and methods for their use
TWI613270B (zh) 安定的熱自由基可固化聚矽氧黏著劑組合物
US9593209B2 (en) Process for preparing clustered functional polyorganosiloxanes, and methods for their use
EP2499185B1 (en) Process for preparing clustered functional polyorganosiloxanes, and methods for their use
JPH0346511B2 (zh)
JP2016513151A (ja) 官能基密集型ポリオルガノシロキサン及びシリコーン反応性希釈剤を含む硬化性シリコーン組成物
JPH0128792B2 (zh)
CN108913023A (zh) 一种紫外光固化丙烯酸酯聚硅氧烷透明涂层的制备方法
CN110183665B (zh) 一种含巯基mtq树脂的制备方法及其应用
WO2019205802A1 (zh) 一种紫外光(uv)固化含丙烯酸酯结构的聚甲基硅氧烷的制备方法
Li et al. One-step synthesis of novel multifunctional silicone acrylate prepolymers for use in UV-curable coatings
CN114574097A (zh) 一种双组分常温固化环氧改性mq硅树脂涂料
CN114409905B (zh) 一种丙烯酸酯改性有机硅树脂及其在uv/湿气双重固化有机硅三防漆中的应用
CN114106333B (zh) 一种聚氨酯丙烯酸酯杂化多臂星形硅树脂、制备方法及应用
CN108530634A (zh) 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷
CN108586752A (zh) 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的应用
TW201809146A (zh) 含有金屬非質子性有機矽烷氧化物化合物之配方
CN108484915A (zh) 一种紫外光(uv)固化端丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN110183664B (zh) 一种紫外光固化型含甲基丙烯酸酯硅油的制备方法与应用
CN113831536B (zh) 一种酯环环氧丙烯酸酯杂化硅树脂、制备方法及应用
WO2023100991A1 (ja) シルセスキオキサン誘導体、硬化性組成物、ハードコート剤、硬化物、ハードコート及び基材
JPH07103204B2 (ja) 放射線硬化性組成物
CN108503840A (zh) 一种紫外光(uv)固化型侧基含甲基丙烯酸酯结构的聚甲基硅氧烷的制备方法
CN115558111A (zh) 一种可uv/湿气双固化有机硅树脂及其合成方法和应用
CN115160979B (zh) 一种光固化型有机硅压敏胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793033

Country of ref document: EP

Kind code of ref document: A1