WO2019200825A1 - 直下式背光模组及其制作方法 - Google Patents

直下式背光模组及其制作方法 Download PDF

Info

Publication number
WO2019200825A1
WO2019200825A1 PCT/CN2018/105611 CN2018105611W WO2019200825A1 WO 2019200825 A1 WO2019200825 A1 WO 2019200825A1 CN 2018105611 W CN2018105611 W CN 2018105611W WO 2019200825 A1 WO2019200825 A1 WO 2019200825A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
layer
mini
backlight module
reflective layer
Prior art date
Application number
PCT/CN2018/105611
Other languages
English (en)
French (fr)
Inventor
查国伟
马长文
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/097,275 priority Critical patent/US10816850B2/en
Publication of WO2019200825A1 publication Critical patent/WO2019200825A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a direct type backlight module and a manufacturing method thereof.
  • LCDs liquid crystal displays
  • Various consumer electronic products such as digital assistants, digital cameras, notebook computers, and desktop computers have become mainstream in display devices.
  • liquid crystal display devices which include a liquid crystal display panel and a backlight module.
  • the working principle of the liquid crystal display panel is to place liquid crystal molecules in two parallel glass substrates. There are many vertical and horizontal small wires between the two glass substrates, and the liquid crystal molecules are controlled to change direction by energizing or not, and the light of the backlight module is changed. Refracted to produce a picture.
  • the backlight module is divided into a side-in type backlight module and a direct-type backlight module according to different incident positions of the light source.
  • the direct type backlight module is configured such that a backlight such as a cathode fluorescent lamp (CCFL) or a light emitting diode (LED) light source is disposed behind the liquid crystal display panel, and the light is uniformized by the diffusion plate to form a surface. The light source is supplied to the liquid crystal display panel.
  • CCFL cathode fluorescent lamp
  • LED light emitting diode
  • the upper and left and right borders of the display can be compressed to a minimum to meet the needs of the full screen at this stage, but the lower border is needed.
  • the bonding driver chip and the side-in backlight module make the bottom frame difficult to further compress and cannot meet the requirements of the full screen.
  • the side-in backlight module needs to be disposed at the lower frame, because the side-in backlight module is before the light is emitted. A certain light-mixing distance is required for sufficient diffusion, so that the compression of the lower frame is difficult to achieve an effective breakthrough.
  • the direct-type backlight module is directly disposed behind the liquid crystal display panel, and has the advantage of a narrow bezel, and is widely used in the field of large-size display. But facing the problem of increased thickness.
  • the Mini-LED is a small LED with a size of about 100 microns. Applying the Mini-LED to the backlight module can reduce the thickness of the liquid crystal display device while achieving a narrow bezel.
  • the direct-back backlight module using the Mini-LED also needs to adopt a structure such as a brightness enhancement film and a reflection sheet to enhance the brightness of the front surface.
  • the basic principle of the most commonly used brightness enhancement film is that it can converge some of the large angle light to the central area, while the rest of the light can be re-entered into the light guide plate by total reflection and recycled.
  • the direct-light backlight module of the Mini-LED is not designed with a light guide plate, but is coated with a white reflective ink (ie, white oil) on the drive substrate, because The reflective properties of the white oil are such that the reflected light and the incident light generally have the same angle, or are re-entered into the brightness enhancement film and then totally reflected back, or are reflected to the low reflection area of the driving substrate (such as the Mini-LED surface, Mini- The space between the LED and the white oil is lost, resulting in a large loss of overall light return efficiency and low light extraction efficiency.
  • a white reflective ink ie, white oil
  • the object of the present invention is to provide a direct type backlight module, which can improve the optical path structure of the backlight module and improve light extraction efficiency.
  • Another object of the present invention is to provide a direct-lit backlight module, which has a good optical path structure and high light-emitting efficiency.
  • the present invention provides a direct type backlight module, comprising: a driving substrate, a reflective layer disposed on the driving substrate, and a plurality of Mini-LEDs arranged on the reflective layer, and spaced apart a plurality of reflective bumps distributed on the reflective layer and located between the respective Mini-LEDs, and an optical film set disposed on the Mini-LED, the reflective bump and the reflective layer, the plurality of Mini-LEDs and the The drive substrate is electrically connected.
  • the reflective layer includes a plurality of dielectric layers stacked in a stack, the plurality of dielectric layers having different refractive indices; and the material of the reflective bumps is a white reflective ink.
  • the plurality of Mini-LEDs are electrically connected to the driving substrate through a plurality of via holes penetrating the reflective layer.
  • the driving substrate is a flexible circuit board substrate, and the driving substrate comprises: a protective layer, a first conductive layer disposed on the protective layer, a spacer layer disposed on the first conductive layer, and a spacer layer disposed on the spacer layer a second conductive layer, wherein the plurality of Mini-LEDs are electrically connected to the second conductive layer through a plurality of via holes penetrating the reflective layer.
  • the optical film set includes: a fluorescent film disposed on the reflective layer, the Mini-LED and the reflective bump, a diffusion film disposed on the fluorescent film, and a diffusion film disposed on the diffusion film Brighten the diaphragm.
  • the invention also provides a method for manufacturing a direct type backlight module, comprising the following steps:
  • Step S1 providing a driving substrate, forming a reflective layer on the driving substrate;
  • Step S2 performing a patterning process on the reflective layer to form a plurality of via holes penetrating the reflective layer
  • Step S3 forming a plurality of Mini-LEDs arranged in an array on the reflective layer, wherein the plurality of Mini-LEDs are electrically connected to the driving substrate through a plurality of via holes respectively;
  • Step S4 forming a plurality of reflective bumps spaced apart in a region between the respective Mini-LEDs on the reflective layer;
  • Step S5 providing an optical film set on the Mini-LED, the reflective bump, and the reflective layer.
  • the reflective layer includes a plurality of dielectric layers stacked in a stack, the plurality of dielectric layers having different refractive indices; and the material of the reflective bumps is a white reflective ink.
  • the reflective layer is formed by a coating process
  • the reflective bump is formed by an inkjet printing process in the step S4.
  • the driving substrate is a flexible circuit board substrate, and the driving substrate comprises: a protective layer, a first conductive layer disposed on the protective layer, a spacer layer disposed on the first conductive layer, and a spacer layer disposed on the spacer layer a second conductive layer, wherein the plurality of Mini-LEDs are electrically connected to the second conductive layer through a plurality of via holes.
  • the optical film set includes: a fluorescent film disposed on the reflective layer, the Mini-LED and the reflective bump, a diffusion film disposed on the fluorescent film, and a diffusion film disposed on the diffusion film Brighten the diaphragm.
  • the present invention provides a direct-lit backlight module including: a driving substrate, a reflective layer disposed on the driving substrate, and a plurality of Mini-LEDs arranged on the reflective layer; a plurality of reflective bumps spaced apart on the reflective layer and located between the respective Mini-LEDs, and an optical film set disposed on the Mini-LED, the reflective bump and the reflective layer, the plurality of Mini-LEDs and
  • the driving substrate is electrically connected, and a reflective layer is disposed on the driving substrate, a plurality of reflective bumps are disposed on the reflective layer, and a light extraction dot structure is formed by using the plurality of reflective bumps.
  • the light extraction dot structure scatters light to different angles to improve the light extraction efficiency of the backlight module.
  • the invention also provides a direct-type backlight module, and the obtained backlight module has a good optical path structure and high light-emitting efficiency.
  • FIG. 1 is a structural view of a direct type backlight module of the present invention
  • FIG. 2 is a structural view of a driving substrate in a direct type backlight module of the present invention
  • FIG. 3 is a flow chart of a method for fabricating a direct type backlight module of the present invention.
  • the present invention provides a direct-lit backlight module, including: a driving substrate 10 , a reflective layer 20 disposed on the driving substrate 10 , and a plurality of Mini-arrays arranged on the reflective layer 20 .
  • the plurality of Mini-LEDs 30 are electrically connected to the drive substrate 10 .
  • the plurality of Mini-LEDs 30 are electrically connected to the driving substrate 10 through a plurality of vias 60 penetrating the reflective layer 20 respectively.
  • the reflective layer 20 includes a plurality of dielectric layers 21 stacked in a stack, the plurality of dielectric layers 21 having different refractive indices, and the reflective layer 20 has a contrast ratio by the cooperation of the plurality of dielectric layers 21
  • the white reflective ink has a greater reflectivity.
  • the reflective layer 20 has a reflectance greater than 90%.
  • the reflective layer 20 has a reflectance greater than 99%.
  • the reflective layer 20 includes a first dielectric layer and a second dielectric layer stacked in a stack, the first dielectric layer and the second dielectric layer having different refractive indices, The cooperation of the first dielectric layer and the second dielectric layer causes the reflectivity of the reflective layer 20 to increase.
  • the material of the reflective bump 40 is a white reflective ink.
  • the plurality of reflective bumps 40 together form a light extraction dot structure.
  • the light passes through the light extraction dot structure, the light is scattered by the light extraction dot structure in different directions.
  • the direct type backlight module when the optical film group 50 reflects light to the reflective layer 20, or when the reflective layer 20 reflects light to the optical film group 50, the light is extracted by the light extraction dot The structure is scattered to different directions to improve the light extraction efficiency of the direct type backlight module.
  • the driving substrate 10 is a Flexible Printed Circuit (FPC) substrate, and the driving substrate 10 includes: a protective layer 11 disposed on the a first conductive layer 12 on the protective layer 11, a spacer layer 13 disposed on the first conductive layer 12, and a second conductive layer 14 disposed on the spacer layer 13, wherein the Mini-LEDs 30 pass through a plurality of through-holes
  • the via 60 of the reflective layer 20 is electrically connected to the second conductive layer 14 .
  • the materials of the first conductive layer 12 and the second conductive layer 14 are both copper.
  • the driving substrate 10 may also be a Printed Circuit Board (PCB) substrate.
  • PCB Printed Circuit Board
  • the optical film set 50 includes: a fluorescent film 51 disposed on the reflective layer 20, the Mini-LED 30, and the reflective bump 40, and is disposed on the fluorescent film.
  • the fluorescent film 51 comprises transparent silica gel and phosphor particles.
  • the optical film set 50 may further include other optical films such as wide viewing angle films.
  • the Mini-LED 30 includes an electrode layer and a light emitting layer disposed on the electrode layer, and the electrode layer is disposed on the reflective layer 20 and passes through the via 60 and the second conductive layer of the driving substrate 10
  • the material of the electrode layer may be copper, silver or aluminum.
  • the material of the electrode layer is silver or aluminum with higher reflectivity.
  • the present invention provides a method for fabricating a direct-lit backlight module, including the following steps:
  • step S1 a driving substrate 10 is provided, and a reflective layer 20 is formed on the driving substrate 10.
  • the driving substrate 10 is a Flexible Printed Circuit (FPC) substrate, and the driving substrate 10 includes: a protective layer 11 disposed on the a first conductive layer 12 on the protective layer 11, a spacer layer 13 disposed on the first conductive layer 12, and a second conductive layer 14 disposed on the spacer layer 13.
  • the materials of the first conductive layer 12 and the second conductive layer 14 are both copper.
  • the driving substrate 10 may also be a Printed Circuit Board (PCB) substrate.
  • PCB Printed Circuit Board
  • the reflective layer 20 includes a plurality of dielectric layers 21 stacked in a stack, the plurality of dielectric layers 21 having different refractive indices, and the reflective layer 20 has a contrast ratio by the cooperation of the plurality of dielectric layers 21
  • the white reflective ink has a greater reflectivity.
  • the reflective layer 20 has a reflectance greater than 90%.
  • the reflective layer 20 has a reflectance greater than 99%.
  • the reflective layer 20 includes a first dielectric layer and a second dielectric layer stacked in a stack, the first dielectric layer and the second dielectric layer having different refractive indices, The cooperation of the first dielectric layer and the second dielectric layer causes the reflectivity of the reflective layer 20 to increase.
  • the reflective layer 20 is formed by the coating process in the step S1.
  • Step S2 Perform a patterning process on the reflective layer 20 to form a plurality of vias 60 penetrating the reflective layer 20.
  • Step S3 forming a plurality of Mini-LEDs 30 arranged in an array on the reflective layer 20, and the plurality of Mini-LEDs 30 are electrically connected to the driving substrate 10 through a plurality of vias 60, respectively.
  • Mini-LEDs 30 are electrically connected to the second conductive layer 14 through a plurality of vias 60 penetrating the reflective layer 20, respectively.
  • the Mini-LED 30 includes an electrode layer and a light emitting layer disposed on the electrode layer, and the electrode layer is disposed on the reflective layer 20 and passes through the via 60 and the second conductive layer of the driving substrate 10
  • the material of the electrode layer may be copper, silver or aluminum.
  • the material of the electrode layer is silver or aluminum with higher reflectivity.
  • Step S4 forming a plurality of reflective bumps 40 spaced apart in a region between the respective Mini-LEDs 30 on the reflective layer 20.
  • the plurality of reflective bumps 40 are formed by the inkjet printing process in the step S4.
  • the material of the reflective bump 40 is a white reflective ink.
  • the plurality of reflective bumps 40 together form a light extraction dot structure.
  • the light passes through the light extraction dot structure, the light is scattered by the light extraction dot structure in different directions.
  • the direct type backlight module when the optical film group 50 reflects light to the reflective layer 20, or when the reflective layer 20 reflects light to the optical film group 50, the light is extracted by the light extraction dot The structure is scattered to different directions to improve the light extraction efficiency of the direct type backlight module.
  • Step S5 the optical film group 50 is disposed on the Mini-LED 30, the reflective bump 40, and the reflective layer 20.
  • the optical film set 50 includes: a fluorescent film 51 disposed on the reflective layer 20, the Mini-LED 30, and the reflective bump 40, and is disposed on the fluorescent film.
  • the fluorescent film 51 comprises transparent silica gel and phosphor particles.
  • the optical film set 50 may further include other optical films such as wide viewing angle films.
  • the present invention provides a direct type backlight module, comprising: a driving substrate, a reflective layer disposed on the driving substrate, and a plurality of Mini-LEDs arranged on the reflective layer, and spaced apart a plurality of reflective bumps distributed on the reflective layer between the respective Mini-LEDs and an optical film set disposed on the Mini-LED, the reflective bumps and the reflective layer, the Mini-LED and the driving
  • the substrate is electrically connected, and a reflective layer is disposed on the driving substrate, a plurality of reflective bumps are disposed on the reflective layer, and a light extraction dot structure is formed by using the plurality of reflective bumps, and the light extraction is performed by the light extraction
  • the dot structure scatters light to different angles to improve the light extraction efficiency of the backlight module.
  • the invention also provides a direct-type backlight module, and the obtained backlight module has a good optical path structure and high light-emitting efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种直下式背光模组及其制作方法。直下式背光模组包括:驱动基板(10)、设于驱动基板(10)上的反射层(20)、阵列排布于反射层(20)上的多个Mini-LED(30)、间隔分布于反射层(20)上且位于各个Mini-LED(30)之间的多个反射凸点(40)以及设于Mini-LED(30)、反射凸点(40)以及反射层(20)上的光学膜片组(50),多个Mini-LED(30)与驱动基板(10)电性连接,其通过在驱动基板(10)上设置反射层(20),在反射层(20)上设置多个反射凸点(40),利用多个反射凸点(40)形成一光提取网点结构,通过光提取网点结构散射光线至不同的角度,提升背光模组的出光效率。

Description

直下式背光模组及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种直下式背光模组及其制作方法。
背景技术
随着显示技术的发展,液晶显示器(Liquid Crystal Display,LCD)等平面显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
现有市场上的液晶显示装置大部分为背光型液晶显示装置,其包括液晶显示面板及背光模组(backlight module)。液晶显示面板的工作原理是在两片平行的玻璃基板当中放置液晶分子,两片玻璃基板中间有许多垂直和水平的细小电线,通过通电与否来控制液晶分子改变方向,将背光模组的光线折射出来产生画面。
由于液晶显示面板本身不发光,需要借由背光模组提供的光源来正常显示影像,因此,背光模组成为液晶显示装置的关键组件之一。背光模组依照光源入射位置的不同分成侧入式背光模组与直下式背光模组两种。直下式背光模组是将背光源例如阴极萤光灯管(Cold Cathode Fluorescent Lamp,CCFL)或发光二极管(Light Emitting Diode,LED)光源设置在液晶显示面板后方,光线经扩散板均匀化后形成面光源提供给液晶显示面板。
随着显示技术发展,窄边框和全面屏技术是目前热门的显示技术之一,现在显示屏的上边框和左右边框均可以压缩至极小,来满足现阶段全面屏的需求,但下边框由于需要邦定驱动芯片和设置侧入式背光模组,使得下边框难以进一步压缩无法满足全面屏的要求,尤其是下边框处需要设置侧入式背光模组,由于侧入式背光模组的出光前需要一定的混光距离进行充分的扩散,使得下边框的压缩难以取得有效突破,直下式背光模组直接设置在液晶显示面板的后方,具有窄边框的优势,在大尺寸显示领域得到广泛的应用,但是面临着厚度增加的问题。迷你发光二极管(Mini-LED)是一种尺寸在100微米左右的小型LED,将Mini-LED应用到背光模组中,能够在实现窄边框的同时,减少液晶显示装置的厚度增加。
进一步地,与传统侧入式背光模组类似,采用Mini-LED的直下背光模 组也需要采用增亮膜、反射片等结构以提升正面的亮度。目前最常使用的增亮膜的基本原理在于能够将部分大角度光线往中心区域收敛,而其余部分光线能够通过全反射重新进入导光板并得到重新回收利用。不同于侧入式背光的导光板回光***,采用Mini-LED的直下背光模组无导光板设计,而是通过在驱动基板上涂覆白色反光油墨(即白油)方式进行回光,由于白油的反射特性使得反射光与入射光通常具有相同的角度,要么反射后重新进入增亮膜再次被全反射回来,要么被反射至驱动基板的低反射区(如Mini-LED表面、Mini-LED与白油之间的间隔区)被损耗,导致整体回光效率出现较大损失,出光效率不高。
发明内容
本发明的目的在于提供一种直下式背光模组,能够改善背光模组的光路结构,提升出光效率。
本发明的目的还在于提供一种直下式背光模组的制作,制得的背光模组具有良好的光路结构和较高的出光效率。
为实现上述目的,本发明提供了一种直下式背光模组,包括:驱动基板、设于所述驱动基板上的反射层、阵列排布于所述反射层上的多个Mini-LED、间隔分布于反射层上且位于各个Mini-LED之间的多个反射凸点以及设于所述Mini-LED、反射凸点以及反射层上的光学膜片组,所述多个Mini-LED与所述驱动基板电性连接。
所述反射层包括层叠设置的多个介质层,所述多个介质层具有不同的折射率;所述反射凸点的材料为白色反光油墨。
所述多个Mini-LED分别通过多个贯穿所述反射层的过孔与所述驱动基板电性连接。
所述驱动基板为柔性电路板基板,所述驱动基板包括:保护层、设于所述保护层上的第一导电层、设于第一导电层上的间隔层以及设于所述间隔层上的第二导电层,所述多个Mini-LED分别通过多个贯穿所述反射层的过孔与所述第二导电层电性连接。
所述光学膜片组包括:设于所述反射层、Mini-LED及反射凸点上的荧光膜片、设于所述荧光膜片上的扩散膜片及设于所述扩散膜片上的增亮膜片。
本发明还提供一种直下式背光模组的制作方法,包括如下步骤:
步骤S1、提供一驱动基板,在所述驱动基板上形成反射层;
步骤S2、对所述反射层进行图案化制程,形成多个贯穿所述反射层的 过孔;
步骤S3、在所述反射层上形成阵列排布的多个Mini-LED,所述多个Mini-LED分别通过多个过孔与所述驱动基板电性连接;
步骤S4、在所述反射层上各个Mini-LED之间的区域形成间隔分布的多个反射凸点;
步骤S5、在所述Mini-LED、反射凸点以及反射层设置光学膜片组。
所述反射层包括层叠设置的多个介质层,所述多个介质层具有不同的折射率;所述反射凸点的材料为白色反光油墨。
所述步骤S1中采用涂布制程形成所述反射层,所述步骤S4中采用喷墨打印制程形成所述反射凸点。
所述驱动基板为柔性电路板基板,所述驱动基板包括:保护层、设于所述保护层上的第一导电层、设于第一导电层上的间隔层以及设于所述间隔层上的第二导电层,所述多个Mini-LED分别通过多个过孔与所述第二导电层电性连接。
所述光学膜片组包括:设于所述反射层、Mini-LED及反射凸点上的荧光膜片、设于所述荧光膜片上的扩散膜片及设于所述扩散膜片上的增亮膜片。
本发明的有益效果:本发明提供了一种直下式背光模组,包括:驱动基板、设于所述驱动基板上的反射层、阵列排布于所述反射层上的多个Mini-LED、间隔分布于反射层上且位于各个Mini-LED之间的多个反射凸点以及设于所述Mini-LED、反射凸点以及反射层上的光学膜片组,所述多个Mini-LED与所述驱动基板电性连接,其通过在所述驱动基板上设置反射层,在所述反射层上设置多个反射凸点,利用所述多个反射凸点形成一光提取网点结构,通过所述光提取网点结构散射光线至不同的角度,提升背光模组的出光效率。本发明还提供一种直下式背光模组的制作,制得的背光模组具有良好的光路结构和较高的出光效率。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为本发明的直下式背光模组的结构图;
图2为本发明的直下式背光模组中驱动基板的结构图;
图3为本发明的直下式背光模组的制作方法的流程图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种直下式背光模组,包括:驱动基板10、设于所述驱动基板10上的反射层20、阵列排布于所述反射层20上的多个Mini-LED30、间隔分布于反射层20上且位于各个Mini-LED30之间的多个反射凸点40以及设于所述Mini-LED30、反射凸点40以及反射层20上的光学膜片组50,所述多个Mini-LED30与所述驱动基板10电性连接。
具体地,所述多个Mini-LED30分别通过多个贯穿所述反射层20的过孔60与所述驱动基板10电性连接。
具体地,所述反射层20包括层叠设置的多个介质层21,所述多个介质层21具有不同的折射率,通过所述多个介质层21的配合使得所述反射层20具有比传统的白色反光油墨更大的反射率,具体地,所述反射层20的反射率大于90%,更进一步地,所述反射层20的反射率大于99%。举例来说,在本发明的一些实施例中所述反射层20包括层叠设置的第一介质层和第二介质层,所述第一介质层和第二介质层具有不同的折射率,通过所述第一介质层和第二介质层的配合使得所述反射层20的反射率提升。
优选地,所述反射凸点40的材料为白色反光油墨。
需要说明的是,所述多个反射凸点40共同形成一光提取网点结构,当有光线通过所述光提取网点结构时,所述光线会被所述光提取网点结构向不同方向散射,具体到所述直下式背光模组中,当光学膜片组50向反射层20反射光线时,或所述反射层20向光学膜片组50反射光线时,所述光线会被所述光提取网点结构散射至不同的方向,提升直下式背光模组的出光效率。
具体地,请参阅图2,在本发明的一些实施例中,所述驱动基板10为柔性电路板(Flexible Printed Circuit,FPC)基板,所述驱动基板10包括:保护层11、设于所述保护层11上的第一导电层12、设于第一导电层12上的间隔层13以及设于所述间隔层13上的第二导电层14,所述Mini-LED30分别通过多个贯穿所述反射层20的过孔60与所述第二导电层14电性连接。优选地,所述第一导电层12和第二导电层14的材料均为铜。
当然,这并不是对本发明的限制,在本发明的其他实施例中,所述驱 动基板10还可以为印刷电路板(Printed Circuit Board,PCB)基板。
具体地,在本发明的一些实施例中,所述光学膜片组50包括:设于所述反射层20、Mini-LED30及反射凸点40上的荧光膜片51、设于所述荧光膜片51上的扩散膜片52及设于所述扩散膜片52上的增亮膜片53。优选地,所述荧光膜片51包括透明硅胶和荧光粉颗粒。
当然,这并不是对本发明的限制,在本发明的其他实施例中,所述光学膜片组50还可以包括宽视角膜片等其他光学膜片。
进一步地,所述Mini-LED30包括:电极层以及设于所述电极层上的发光层,所述电极层设于所述反射层20上并通过过孔60与驱动基板10的第二导电层14电性连接,所述电极层的材料可以为铜、银或铝,优选地,所述电极层的材料为具有更高反射率的银或铝。
请参阅图3,本发明提供一种直下式背光模组的制作方法,包括如下步骤:
步骤S1、提供一驱动基板10,在所述驱动基板10上形成反射层20。
具体地,请参阅图2,在本发明的一些实施例中,所述驱动基板10为柔性电路板(Flexible Printed Circuit,FPC)基板,所述驱动基板10包括:保护层11、设于所述保护层11上的第一导电层12、设于第一导电层12上的间隔层13以及设于所述间隔层13上的第二导电层14。优选地,所述第一导电层12和第二导电层14的材料均为铜。
当然,这并不是对本发明的限制,在本发明的其他实施例中,所述驱动基板10还可以为印刷电路板(Printed Circuit Board,PCB)基板。
具体地,所述反射层20包括层叠设置的多个介质层21,所述多个介质层21具有不同的折射率,通过所述多个介质层21的配合使得所述反射层20具有比传统的白色反光油墨更大的反射率,具体地,所述反射层20的反射率大于90%,更进一步地,所述反射层20的反射率大于99%。举例来说,在本发明的一些实施例中所述反射层20包括层叠设置的第一介质层和第二介质层,所述第一介质层和第二介质层具有不同的折射率,通过所述第一介质层和第二介质层的配合使得所述反射层20的反射率提升。
具体地,所述步骤S1中通过涂布制程形成所述反射层20。
步骤S2、对所述反射层20进行图案化制程,形成多个贯穿所述反射层20的过孔60。
步骤S3、在所述反射层20上形成阵列排布的多个Mini-LED30,所述多个Mini-LED30分别通过多个过孔60与所述驱动基板10电性连接。
具体地,所述Mini-LED30分别通过多个贯穿所述反射层20的过孔60 与所述第二导电层14电性连接。
进一步地,所述Mini-LED30包括:电极层以及设于所述电极层上的发光层,所述电极层设于所述反射层20上并通过过孔60与驱动基板10的第二导电层14电性连接,所述电极层的材料可以为铜、银或铝,优选地,所述电极层的材料为具有更高反射率的银或铝。
步骤S4、在所述反射层20上各个Mini-LED30之间的区域形成间隔分布的多个反射凸点40。
具体地,所述步骤S4中通过喷墨打印制程形成所述多个反射凸点40。
优选地,所述反射凸点40的材料为白色反光油墨。
需要说明的是,所述多个反射凸点40共同形成一光提取网点结构,当有光线通过所述光提取网点结构时,所述光线会被所述光提取网点结构向不同方向散射,具体到所述直下式背光模组中,当光学膜片组50向反射层20反射光线时,或所述反射层20向光学膜片组50反射光线时,所述光线会被所述光提取网点结构散射至不同的方向,提升直下式背光模组的出光效率。
步骤S5、在所述Mini-LED30、反射凸点40以及反射层20设置光学膜片组50。
具体地,在本发明的一些实施例中,所述光学膜片组50包括:设于所述反射层20、Mini-LED30及反射凸点40上的荧光膜片51、设于所述荧光膜片51上的扩散膜片52及设于所述扩散膜片52上的增亮膜片53。优选地,所述荧光膜片51包括透明硅胶和荧光粉颗粒。
当然,这并不是对本发明的限制,在本发明的其他实施例中,所述光学膜片组50还可以包括宽视角膜片等其他光学膜片。
综上所述,本发明提供了一种直下式背光模组,包括:驱动基板、设于所述驱动基板上的反射层、阵列排布于所述反射层上的多个Mini-LED、间隔分布于反射层上且位于各个Mini-LED之间的多个反射凸点以及设于所述Mini-LED、反射凸点以及反射层上的光学膜片组,所述Mini-LED与所述驱动基板电性连接,其通过在所述驱动基板上设置反射层,在所述反射层上设置多个反射凸点,利用所述多个反射凸点形成一光提取网点结构,通过所述光提取网点结构散射光线至不同的角度,提升背光模组的出光效率。本发明还提供一种直下式背光模组的制作,制得的背光模组具有良好的光路结构和较高的出光效率。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims (10)

  1. 一种直下式背光模组,包括:驱动基板、设于所述驱动基板上的反射层、阵列排布于所述反射层上的多个Mini-LED、间隔分布于反射层上且位于各个Mini-LED之间的多个反射凸点以及设于所述Mini-LED、反射凸点以及反射层上的光学膜片组,所述多个Mini-LED与所述驱动基板电性连接。
  2. 如权利要求1所述的直下式背光模组,其中,所述反射层包括层叠设置的多个介质层,所述多个介质层具有不同的折射率;所述反射凸点的材料为白色反光油墨。
  3. 如权利要求1所述的直下式背光模组,其中,所述多个Mini-LED分别通过多个贯穿所述反射层的过孔与所述驱动基板电性连接。
  4. 如权利要求3所述的直下式背光模组,其中,所述驱动基板为柔性电路板基板,所述驱动基板包括:保护层、设于所述保护层上的第一导电层、设于第一导电层上的间隔层以及设于所述间隔层上的第二导电层,所述Mini-LED分别通过多个贯穿所述反射层的过孔与所述第二导电层电性连接。
  5. 如权利要求1所述的直下式背光模组,其中,所述光学膜片组包括:设于所述反射层、Mini-LED及反射凸点上的荧光膜片、设于所述荧光膜片上的扩散膜片及设于所述扩散膜片上的增亮膜片。
  6. 一种直下式背光模组的制作方法,包括如下步骤:
    步骤S1、提供一驱动基板,在所述驱动基板上形成反射层;
    步骤S2、对所述反射层进行图案化制程,形成多个贯穿所述反射层的过孔;
    步骤S3、在所述反射层上形成阵列排布的多个Mini-LED,所述多个Mini-LED分别通过多个过孔与所述驱动基板电性连接;
    步骤S4、在所述反射层上各个Mini-LED之间的区域形成间隔分布的多个反射凸点;
    步骤S5、在所述Mini-LED、反射凸点以及反射层设置光学膜片组。
  7. 如权利要求6所述的直下式背光模组的制作方法,其中,所述反射层包括层叠设置的多个介质层,所述多个介质层具有不同的折射率;所述反射凸点的材料为白色反光油墨。
  8. 如权利要求6所述的直下式背光模组的制作方法,其中,所述步骤 S1中采用涂布制程形成所述反射层,所述步骤S4中采用喷墨打印制程形成所述反射凸点。
  9. 如权利要求6所述的直下式背光模组的制作方法,其中,所述驱动基板为柔性电路板基板,所述驱动基板包括:保护层、设于所述保护层上的第一导电层、设于第一导电层上的间隔层以及设于所述间隔层上的第二导电层,所述多个Mini-LED分别通过多个过孔与所述第二导电层电性连接。
  10. 如权利要求6所述的直下式背光模组的制作方法,其中,所述光学膜片组包括:设于所述反射层、Mini-LED及反射凸点上的荧光膜片、设于所述荧光膜片上的扩散膜片及设于所述扩散膜片上的增亮膜片。
PCT/CN2018/105611 2018-04-20 2018-09-14 直下式背光模组及其制作方法 WO2019200825A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/097,275 US10816850B2 (en) 2018-04-20 2018-09-14 Direct-lit backlight module and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810362823.7 2018-04-20
CN201810362823.7A CN108535916B (zh) 2018-04-20 2018-04-20 直下式背光模组及其制作方法

Publications (1)

Publication Number Publication Date
WO2019200825A1 true WO2019200825A1 (zh) 2019-10-24

Family

ID=63478042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105611 WO2019200825A1 (zh) 2018-04-20 2018-09-14 直下式背光模组及其制作方法

Country Status (2)

Country Link
CN (1) CN108535916B (zh)
WO (1) WO2019200825A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148428B (zh) * 2018-07-16 2021-07-30 海迪科(南通)光电科技有限公司 一种应用于mini和micro背光的直下式背光源结构及其制造方法
TWI660018B (zh) * 2018-10-19 2019-05-21 住華科技股份有限公司 背光模組及應用其之面板及其之製造方法
CN109557720B (zh) * 2018-12-04 2022-07-12 厦门天马微电子有限公司 一种背光模组及显示装置
CN109683394A (zh) * 2019-01-25 2019-04-26 惠州市华星光电技术有限公司 背光源及其制备方法
CN109782487A (zh) * 2019-02-19 2019-05-21 惠州市华星光电技术有限公司 液晶显示器
US11048121B2 (en) * 2019-03-06 2021-06-29 Sharp Kabushiki Kaisha Lighting device and display device
CN109754711B (zh) * 2019-03-08 2021-03-02 京东方科技集团股份有限公司 一种背光模组及其制备方法、显示装置
CN110018593B (zh) * 2019-04-17 2022-05-17 Oppo广东移动通信有限公司 板上芯片封装基板及其制作方法、显示装置、电子设备
CN110061116B (zh) * 2019-04-29 2020-10-30 惠州市华星光电技术有限公司 Mini-LED背光及其制作方法
CN110147009A (zh) * 2019-04-30 2019-08-20 武汉华星光电技术有限公司 显示面板及显示装置
CN110491866A (zh) * 2019-07-31 2019-11-22 武汉华星光电技术有限公司 背光模组及其制备方法
CN110420776B (zh) * 2019-08-06 2021-03-02 京东方科技集团股份有限公司 一种掩膜组件及Mini LED背光模组的制作方法
CN112582524A (zh) * 2019-09-12 2021-03-30 群创光电股份有限公司 发光装置及其制造方法
CN110806659A (zh) * 2019-11-21 2020-02-18 业成科技(成都)有限公司 背光模组、其制作方法及显示装置
CN111221177A (zh) * 2019-11-29 2020-06-02 维沃移动通信有限公司 背光模组及电子设备
CN110908193A (zh) * 2019-12-25 2020-03-24 深圳市光科全息技术有限公司 一种应用于Mini—LED阵列光源的扩散薄膜
CN110985902A (zh) * 2019-12-30 2020-04-10 上海摩软通讯技术有限公司 MiniLED组装方法及组件
CN111446354A (zh) * 2020-03-27 2020-07-24 深圳市隆利科技股份有限公司 mini-LED背光模组的制备方法
CN111668235B (zh) * 2020-06-08 2023-10-17 Tcl华星光电技术有限公司 显示面板及其制备方法
CN111668233B (zh) * 2020-06-08 2023-06-30 Tcl华星光电技术有限公司 显示面板及其制备方法
CN111812890A (zh) * 2020-08-06 2020-10-23 惠州视维新技术有限公司 发光结构、背光模组、显示装置
CN112241088B (zh) * 2020-10-15 2021-09-03 Tcl华星光电技术有限公司 一种微型发光二极管灯板、背光模组及其制备方法
CN112198713A (zh) * 2020-10-21 2021-01-08 业成科技(成都)有限公司 光源组件、其制备方法、背光模组及显示装置
CN112309243B (zh) * 2020-11-06 2022-08-23 武汉华星光电技术有限公司 背光模组及显示装置
CN112701114B (zh) * 2020-12-23 2023-04-07 惠州市华星光电技术有限公司 背光装置及其制作方法
CN112736178B (zh) * 2020-12-23 2022-04-26 惠州市华星光电技术有限公司 mini-LED装置及制作方法
CN112992885B (zh) * 2021-02-02 2023-12-05 Tcl华星光电技术有限公司 发光面板及显示装置
CN113138496B (zh) * 2021-04-16 2022-08-05 武汉华星光电半导体显示技术有限公司 背光模组及显示装置
CN114040573A (zh) * 2021-09-28 2022-02-11 广域兴智能(南通)科技有限公司 一种使用移印堆叠制程方式的MiniLED PCB表面高反射结构
CN114035375B (zh) * 2021-11-19 2023-09-26 武汉华星光电半导体显示技术有限公司 背光模组
CN114759135A (zh) * 2022-04-27 2022-07-15 广州华星光电半导体显示技术有限公司 驱动背板及其制作方法、发光基板及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004516A (zh) * 2006-01-20 2007-07-25 Lg.菲利浦Lcd株式会社 液晶显示装置
CN101701693A (zh) * 2009-11-25 2010-05-05 友达光电股份有限公司 发光装置
CN202469681U (zh) * 2012-02-06 2012-10-03 京东方科技集团股份有限公司 Led灯条
US20150369454A1 (en) * 2013-02-14 2015-12-24 Lg Electronics Inc Display apparatus
CN105988243A (zh) * 2014-10-01 2016-10-05 Lg电子株式会社 光学构件、背光单元以及显示装置
CN107884987A (zh) * 2016-09-30 2018-04-06 深圳市玲涛光电科技有限公司 光源组件及其显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101131150B1 (ko) * 2010-02-25 2012-03-28 에스에스씨피 주식회사 Led를 이용한 디스플레이용 백라이트 유닛
KR101446918B1 (ko) * 2012-03-08 2014-10-06 엘지이노텍 주식회사 조명 장치
CN105334665A (zh) * 2015-11-24 2016-02-17 深圳市华星光电技术有限公司 背光模组及显示器
CN107703678A (zh) * 2017-09-11 2018-02-16 青岛海信电器股份有限公司 一种直下式背光模组以及显示装置
CN107908041A (zh) * 2017-11-24 2018-04-13 珠海晨新科技有限公司 一种全面屏底部光源模块及全面屏

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004516A (zh) * 2006-01-20 2007-07-25 Lg.菲利浦Lcd株式会社 液晶显示装置
CN101701693A (zh) * 2009-11-25 2010-05-05 友达光电股份有限公司 发光装置
CN202469681U (zh) * 2012-02-06 2012-10-03 京东方科技集团股份有限公司 Led灯条
US20150369454A1 (en) * 2013-02-14 2015-12-24 Lg Electronics Inc Display apparatus
CN105988243A (zh) * 2014-10-01 2016-10-05 Lg电子株式会社 光学构件、背光单元以及显示装置
CN107884987A (zh) * 2016-09-30 2018-04-06 深圳市玲涛光电科技有限公司 光源组件及其显示装置

Also Published As

Publication number Publication date
CN108535916A (zh) 2018-09-14
CN108535916B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2019200825A1 (zh) 直下式背光模组及其制作方法
TWI391746B (zh) 具降低之燈電流洩漏的背光總成以及具有該背光總成的液晶顯示裝置
CN109143687B (zh) 背光模组、液晶显示模组以及电子设备
US8542332B2 (en) Liquid crystal display device comprising a protection sheet attached to a reflector and including a protruding part that extends along a first direction from an edge of the protection sheet
US10816850B2 (en) Direct-lit backlight module and manufacturing method thereof
WO2019223202A1 (zh) 面光源背光模组及液晶显示面板
WO2020056912A1 (zh) 背光模组
US10754190B2 (en) Lighting device and display device
US20210080785A1 (en) Backlight module
EP2369375B1 (en) Backlight unit with a light guide plate
WO2021190414A1 (zh) 一种显示装置
US20060109395A1 (en) Area light source device and liquid crystal display device including the same
CN113568220A (zh) 一种显示装置
WO2020087651A1 (zh) 背光模组及显示装置
CN109407403B (zh) 背光模组及显示装置
CN214751236U (zh) 一种显示装置
CN1561457A (zh) 透射反射式液晶显示器
KR20040083891A (ko) 얇은 두께를 가진 직하형 백라이트용 모듈 및 이를 적용한시스템
CN109521516B (zh) 背光模组及其制作方法
KR20140006252A (ko) 에어 제로 갭 본딩을 이용한 패널 일체형 lcd 모듈
KR20120130919A (ko) 백라이트 유닛 및 이를 구비한 액정표시장치
CN115407551B (zh) 一种显示装置
CN115424538A (zh) 显示装置及其制备方法
KR20040009603A (ko) 백라이트
CN110018594B (zh) 背光模组及显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915172

Country of ref document: EP

Kind code of ref document: A1