WO2020056912A1 - 背光模组 - Google Patents

背光模组 Download PDF

Info

Publication number
WO2020056912A1
WO2020056912A1 PCT/CN2018/117182 CN2018117182W WO2020056912A1 WO 2020056912 A1 WO2020056912 A1 WO 2020056912A1 CN 2018117182 W CN2018117182 W CN 2018117182W WO 2020056912 A1 WO2020056912 A1 WO 2020056912A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backlight module
light source
source module
quantum dot
Prior art date
Application number
PCT/CN2018/117182
Other languages
English (en)
French (fr)
Inventor
刘凡成
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/308,896 priority Critical patent/US11150509B2/en
Publication of WO2020056912A1 publication Critical patent/WO2020056912A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present disclosure relates to a backlight module, and more particularly to a direct type backlight module.
  • flat-panel display devices are widely used in mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, and desktop computers due to their advantages such as high picture quality, power saving, and thin body.
  • Electronic products have become the mainstream in display devices.
  • LCD Liquid Crystal Display
  • OLED Organic Electroluminescence Display
  • TFTs Thin film transistors
  • LCD display technology is committed to improving performance indicators such as display color gamut range, contrast, and brightness.
  • LCD display technology it is difficult to improve the overall performance of the traditional side-type backlight with LCD. Specifically, when an edge-lit backlight is applied to a large-sized LCD, the weight and cost of the light guide plate will increase as the size increases, and the brightness and uniformity of the light-emitting will not be satisfactory.
  • the light guide plate cannot realize the area dynamic control of the LCD, and can only achieve simple one-dimensional dimming.
  • an object of the present disclosure is to provide a backlight module, which adopts a direct-type backlight partitioning technology and can further be designed with a quantum dot backlight.
  • the present disclosure can effectively improve the luminous efficiency of the quantum dots, thereby improving the brightness of the display device.
  • the present disclosure provides a backlight module including: a light source module for emitting a plurality of point-shaped lights; a reflection plate provided on the light source module; a brightness enhancement film provided on the reflection A plate; and a diffusion plate disposed on the brightness enhancement film to make the light emitted by the light source module uniform, wherein the reflection plate is located between the light source module and the brightness enhancement film, and A plurality of through holes corresponding to the plurality of point-shaped lights are provided on the reflection plate, so that the plurality of point-shaped lights emitted by the light source module pass through the corresponding holes on the reflection plate.
  • a hole penetrates into the brightness enhancement film and the diffusion plate; and wherein the backlight module further includes a quantum dot layer, which is disposed on the reflection plate and is used to excite a corresponding one after being illuminated by the spot light. Color light.
  • the quantum dot layer is disposed on the reflecting plate on the entire surface.
  • the quantum dot layer is composed of a plurality of first patterned units, the plurality of first patterned units are spaced apart from each other, and the first patterned units are located at Inside the corresponding through hole of the reflection plate.
  • the backlight module further includes an optical functional film disposed between the quantum dot layer and the light source module, wherein the optical functional film has a blue light transmittance greater than 98%, and the reflectance of red and green light is greater than 95%.
  • the optical function film is disposed on the reflecting plate on the entire surface, and is located between the reflecting plate and the light source module.
  • the optical functional film is composed of a plurality of second patterned units, the plurality of second patterned units are spaced apart from each other, and the second patterned units are located at Inside the corresponding through hole of the reflection plate.
  • the second patterned unit of the optical functional film is located closer to the light source module than the first patterned unit of the quantum dot layer.
  • the optical functional film includes a blue light transmitting film.
  • the present disclosure also provides a backlight module, which comprises: a light source module for emitting a plurality of point-shaped lights; a diffusion plate for making the light emitted by the light source module uniform; and a reflection plate provided at The light source module is located between the light source module and the diffusion plate, and a plurality of through holes corresponding to the plurality of point lights are provided on the reflection plate, so that the light source module The plurality of spot-shaped lights emitted by the group are incident on the diffusion plate through the corresponding through holes on the reflection plate.
  • the light source module includes a substrate and a plurality of point light sources, wherein the plurality of point light sources are arranged in an array on the substrate for emitting the plurality of point light .
  • the backlight module further includes a quantum dot layer, which is disposed on the reflecting plate and is used to excite the corresponding color light after being illuminated by the spot light.
  • the quantum dot layer is disposed on the reflecting plate on the entire surface.
  • the quantum dot layer is composed of a plurality of first patterned units, the plurality of first patterned units are spaced apart from each other, and the first patterned units are located at Inside the corresponding through hole of the reflection plate.
  • the backlight module further includes an optical functional film disposed between the quantum dot layer and the light source module, wherein the optical functional film has a blue light transmittance greater than 98%, and the reflectance of red and green light is greater than 95%.
  • the optical function film is disposed on the reflecting plate on the entire surface, and is located between the reflecting plate and the light source module.
  • the optical functional film is composed of a plurality of second patterned units, the plurality of second patterned units are spaced apart from each other, and the second patterned units are located at Inside the corresponding through hole of the reflection plate.
  • the second patterned unit of the optical functional film is located closer to the light source module than the first patterned unit of the quantum dot layer.
  • the optical functional film includes a blue light transmitting film.
  • the present disclosure provides a reflective plate on the light source module, which can reflect the light again toward the brightening film and the diffusion plate, thereby improving the light utilization ratio of the backlight module.
  • a quantum dot layer is provided on the reflective plate to effectively improve the display color gamut range.
  • the quantum dot layer is a patterned design rather than a full-surface design, which can effectively save costs and reduce the total amount of the harmful substance Ge element.
  • the yellow and green light can be prevented from being scattered to the surroundings without affecting the transmission of blue light, thereby improving light utilization efficiency.
  • FIG. 1 is a cross-sectional view of a backlight module according to a first preferred embodiment of the present disclosure
  • FIG. 2 shows a top view of the reflective plate of the backlight module of FIG. 1;
  • FIG. 3 is a cross-sectional view of a backlight module according to a second preferred embodiment of the present disclosure
  • FIG. 4 is a cross-sectional view of a backlight module according to a third preferred embodiment of the present disclosure.
  • FIG. 5 is a graph showing the transmittance and reflectance of the optical functional film of the backlight module of FIG. 4 as a function of wavelength
  • FIG. 6 is a cross-sectional view of a backlight module according to a fourth preferred embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view of a backlight module 10 according to a first preferred embodiment of the present disclosure.
  • the backlight module 10 can be assembled with the panel P to form a display device, and the display device can be a medium-to-large-sized display device, and can be applied to a vehicle display, a notebook computer, a television, and the like.
  • the backlight module 10 includes a light source module 11, a reflection plate 12, a brightness enhancement film 13, and a diffusion plate 14 which are disposed in this order.
  • the light source module 11 includes a substrate 111 and a plurality of point light sources 112, wherein the plurality of point light sources 112 are arranged on the substrate 111 in an array form and are used to emit a plurality of point light.
  • the substrate 111 is a printed circuit board
  • the point light source 112 is a light emitting diode (Light Emitting Diode, LED for short) electrically connected to the substrate 111.
  • the reflection plate 12 is disposed on the light source module 11 for improving brightness and saving energy consumption.
  • the brightness-enhancing film 13 achieves the purposes of light collection, improvement of front light emission, and brightness enhancement through the refraction and reflection of light. Since the traveling direction of the light transmitted through the point light source 112 and the reflecting plate 12 is not concentrated, the traveling direction of the light can be corrected by the brightness enhancement film 13 so that the brightness of the overall backlight module 10 is improved.
  • the diffusion plate 14 is used to improve the light distribution and make the light emitted by the light source module 11 more uniform.
  • the diffusing plate 14 may be formed by coating a diffusing agent and a resin on a bottom plate, wherein the minute diffusing particles in the diffusing agent are uniformly dispersed between the resins.
  • the diffusing plate 14 When light passes through the diffuser plate 14, the light will pass through two media with different refractive indices, namely, diffusion particles and resin. At this time, the light will generate refraction, scattering, and reflection phenomena, thereby achieving the effect of light diffusion.
  • FIG. 2 shows a top view of the reflective plate 12 of the backlight module 10 of FIG. 1.
  • the reflection plate 12 is provided with a plurality of through holes 121 corresponding to the plurality of point lights 112 of the light source module 11, so that the plurality of point lights emitted by the light source module 11 pass through the corresponding through holes 121 on the reflection plate 12.
  • the through hole 121 may be circular, rectangular, polygonal, etc., and is not limited thereto.
  • the backlight module 10 uses a direct-type backlight partitioning technology.
  • the light source module 11 is divided into multi-region independent control units, and the light sources in each partition are automatically adjusted according to the light and dark information in each frame of the image.
  • the brightness of the module 11 combined with the dynamic image processing technology further improves the dynamic contrast and significantly improves the screen display quality.
  • FIG. 3 is a cross-sectional view of a backlight module 20 according to a second preferred embodiment of the present disclosure.
  • the backlight module 20 can be assembled with the panel P to form a display device.
  • the backlight module 20 includes a light source module 21, a reflection plate 22, a quantum dot layer 25, a brightness enhancement film 23, and a diffusion plate 24 arranged in this order.
  • the light source module 21 includes a substrate 211 and a plurality of point light sources 212.
  • the structures and functions of the light source module 21, the reflection plate 22, the brightness enhancement film 23, and the diffusion plate 24 of the second preferred embodiment are the same as those of the light source module 11, the reflection plate 12, the brightness enhancement film 13, and
  • the diffuser plates 14 are substantially the same and will not be described in detail here.
  • the quantum dot layer 25 is disposed on the reflective plate 22 over the entire surface and is located between the reflective plate 22 and the brightness enhancement film 13. Color light.
  • the range of the display color gamut can be effectively improved by the setting of the quantum dot layer 25, for example, to meet the ITU BT.2020 video signal color gamut standard.
  • FIG. 4 is a cross-sectional view of a backlight module 30 according to a third preferred embodiment of the present disclosure.
  • the backlight module 30 can be assembled with the panel P to form a display device.
  • the backlight module 30 includes a light source module 31, an optical functional film 36, a reflection plate 32, a quantum dot layer 35, a brightness enhancement film 33, and a diffusion plate 34, which are disposed in this order.
  • the light source module 31 includes a substrate 311 and a plurality of point light sources. 312.
  • the structures and functions of the light source module 31, the reflection plate 32, the brightness enhancement film 33, and the diffusion plate 34 of the third preferred embodiment are the same as those of the light source module 11, the reflection plate 12, the brightness enhancement film 13, and
  • the diffuser plates 14 are substantially the same and will not be described in detail here.
  • the quantum dot layer 35 is constituted by a plurality of first patterned units 351, and the plurality of first patterned units 351 are spaced from each other, and the first patterned units 351 are corresponding to the reflection plate 32. Inside the through hole.
  • the quantum dot layer 35 is used to excite the corresponding color light after being irradiated with the point light emitted from the light source module 31.
  • the setting of the quantum dot layer 35 can effectively improve the display color gamut range, for example, to achieve compliance with the ITU BT.2020 video signal color gamut standard.
  • the shape and size of the first patterning unit 351 correspond to the shape and size of the corresponding through hole of the reflecting plate 32, that is, the edge of each first patterning unit 351 is a hole wall that is in contact with the through hole of the reflecting plate 32. Tightly connected, so as to ensure that all the light passing through the through hole will pass through the quantum dot layer 35.
  • the quantum dot layer 35 is a patterned design rather than a full-surface design, it can effectively save costs and reduce the total amount of germanium (Ge), a harmful substance.
  • the optical functional film 36 is disposed on the reflecting plate 32 over the entire surface, and is located between the quantum dot layer 35 and the light source module 31.
  • FIG. 5 shows a graph of the transmittance and reflectance corresponding to the wavelength of the optical functional film 36 of the backlight module 30 of FIG. 4.
  • ⁇ 0 in FIG. 5 indicates a transmission cutoff wavelength
  • ⁇ 1 indicates a reflection cutoff wavelength.
  • the optical function film 36 of FIG. 4 is implemented by using a Blue Light Transmission Film (BLTF)
  • the transmittance of the optical function film 36 to blue light is greater than 98%, that is, at a wavelength of about 450 nm to 480 nm.
  • the range of light transmission is greater than 98%.
  • the reflectivity of the optical functional film 36 to red light and green light is greater than 95%, that is, the light reflectance in a wavelength range of about 500 nm to 750 nm is greater than 95%.
  • the yellow and green light can be prevented from being scattered to the surroundings without affecting the blue light transmission, thereby improving the light utilization rate.
  • the quantum dot layer 35 is excited by the light to emit the corresponding color light, and the emitted color light will advance in all directions, and part of the light directed to the reflection plate 32 and the light source module 31 passes through the optical function film 36 It can be reflected back, and then proceed to the direction of the brightness enhancement film 33, without reflecting back and forth between the reflection plate 32 and the light source module 31 to attenuate and lose. This can improve the light utilization rate and the overall luminous brightness of the backlight module 30 .
  • FIG. 6 is a cross-sectional view of a backlight module 40 according to a fourth preferred embodiment of the present disclosure.
  • the backlight module 40 can be assembled with the panel P to form a display device.
  • the backlight module 40 includes a light source module 41, an optical functional film 46, a reflection plate 42, a quantum dot layer 45, a brightness enhancement film 43, and a diffusion plate 44 arranged in this order.
  • the light source module 41 includes a substrate 411 and a plurality of point light sources. 412.
  • the structures and functions of the light source module 41, the reflection plate 42, the brightness enhancement film 43, and the diffusion plate 44 of the fourth preferred embodiment are the same as those of the light source module 11, the reflection plate 12, the brightness enhancement film 13, and The diffuser plates 14 are substantially the same and will not be described in detail here.
  • the quantum dot layer 45 is constituted by a plurality of first patterned units 451, and the plurality of first patterned units 451 are spaced from each other, and the first patterned units 451 are corresponding to the reflection plate 42. Inside the through hole.
  • the quantum dot layer 45 is used to excite the corresponding color light after being irradiated with the point light emitted from the light source module 41.
  • the setting of the quantum dot layer 45 can effectively improve the display color gamut range, for example, to achieve compliance with the ITU BT.2020 video signal color gamut standard.
  • the shape and size of the first patterning unit 451 correspond to the shape and size of the corresponding through hole of the reflecting plate 42, that is, the edge of each first patterning unit 451 is a hole wall that is in contact with the through hole of the reflecting plate 42. Tightly connected, so as to ensure that all light passing through the through hole will pass through the quantum dot layer 45.
  • the quantum dot layer 45 is a patterned design rather than a full-surface design, this can effectively save costs and reduce the total amount of the harmful substance Ge element.
  • the optical functional film 46 is composed of a plurality of second patterning units 461, and the plurality of second patterning units 461 are disposed at a distance from each other, and the second patterning units 461 are located on the phase of the reflecting plate 42.
  • the shape and size of the second patterning unit 461 correspond to the shape and size of the corresponding through hole of the reflecting plate 42, that is, the edge of each second patterning unit 461 is a hole wall that is in contact with the through hole of the reflecting plate 42. Tightly connected, so as to ensure that all the light passing through the through hole will pass through the second patterning unit 461 of the optical functional film 46.
  • the second patterning unit 461 of the optical functional film 46 is located closer to the light source module 41 than the first patterning unit 451 of the quantum dot layer 45.
  • the optical function film 46 of this embodiment is implemented by using a blue light transmitting film
  • the optical function film 46 has a transmittance of blue light greater than 98%, that is, light transmission in a wavelength range of about 450 nm to 480 nm The rate is greater than 98%.
  • the reflectivity of the optical functional film 46 to red light and green light is greater than 95%, that is, the light reflectance in a wavelength range of about 500 nm to 750 nm is greater than 95%.
  • the optical functional film 46 is a patterned design rather than a full-surface design, which can effectively save costs.
  • the yellow and green light can be prevented from being scattered to the surroundings without affecting the transmission of blue light, thereby improving light utilization efficiency.
  • the quantum dot layer 45 is excited by the light to emit the corresponding color light, and the emitted color light will advance in all directions, and part of the light directed to the reflection plate 42 and the light source module 41 passes through the optical functional film 46 It can be reflected back, and then proceed in the direction of the brightness enhancement film 43 without reflecting back and forth between the reflection plate 42 and the light source module 41 and attenuating loss, so that the light utilization ratio of the backlight module 40 and the overall luminous brightness can be improved .
  • the present disclosure can reflect the light again toward the brightness enhancement film and the diffusion plate, thereby improving the light utilization ratio of the backlight module.
  • a quantum dot layer is provided on the reflective plate to effectively improve the display color gamut range.
  • the quantum dot layer is a patterned design rather than a full-surface design, which can effectively save costs and reduce the total amount of the harmful substance Ge element.
  • the yellow and green light can be prevented from being scattered to the surroundings without affecting the transmission of blue light, thereby improving light utilization efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

一种背光模组(10),包含:光源模组(11),用于发出多个点状光;扩散板(14)用于使光源模组(11)射出的光线更为均匀;反射板(12),设置在光源模组(11)上且位于光源模组(11)与扩散板(14)之间,其中反射板(12)上设置有与多个点状光相对应的多个通孔(121),使得光源模组(11)发出的多个点状光通过反射板(14)上相对应的通孔(121)射入扩散板(14)。

Description

背光模组 技术领域
本揭示涉及一种背光模组,特别是涉及一种直下式背光模组。
背景技术
在显示技术领域,平板显示装置因具有高画质、省电、机身薄等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
目前常见的平板显示装置主要包括:液晶显示装置(Liquid Crystal Display,简称LCD)和有机电致发光显示装置(Organic Light-Emitting Diode,简称OLED)。薄膜晶体管(Thin Film Transistor,简称TFT)是LCD和OLED显示装置的主要驱动元件。为了与OLED显示技术相抗衡,LCD显示技术致力于提升显示色域范围、对比度、亮度等性能指标。然而,在LCD显示技术中,使用传统的侧入式背光源搭配LCD,其整体性能已很难以再提升。具体来说,侧光式背光源应用在中大尺寸的LCD上时,导光板重量和成本会随着尺寸增加而增加,并且发光亮度和均匀性表现不理想,同时侧光式背光LCD因为采用导光板不能实现LCD的区域动态控制,只能实现简单的一维调光。并且,为了提高LCD的显示色域范围,就必需要牺牲亮度,且LCD的静态对比度的提升也陷入瓶颈。
有鉴于此,有必要提出一种背光模组,以解决现有技术中存在的问题。
技术问题
为解决上述现有技术的问题,本揭示的目的在于提供一种背光模组,其采用直下式背光分区技术,并且可进一步搭配量子点背光源设计。相较于传统的背光结构,本揭示能有效地提高量子点的发光效率,进而提高显示装置的亮度。
技术解决方案
为达成上述目的,本揭示提供一种背光模组,包含:光源模组,用于发出多个点状光;反射板,设置在所述光源模组上;增亮膜,设置在所述反射板上;以及扩散板,设置在所述增亮膜上,用于使所述光源模组射出的光线均匀,其中所述反射板位于所述光源模组与所述增亮膜之间,并且所述反射板上设置有与所述多个点状光相对应的多个通孔,使得所述光源模组发出的所述多个点状光通过所述反射板上相对应的所述通孔射入所述增亮膜和所述扩散板;以及其中所述背光模组还包含量子点层,设置在所述反射板上,用于在被所述点状光照射后激发出对应的颜色光。
本揭示其中之一优选实施例中,所述量子点层是整面地设置在所述反射板上。
本揭示其中之一优选实施例中,所述量子点层是以多个第一图案化单元构成,且所述多个第一图案化单元彼此间隔设置,以及所述第一图案化单元位在所述反射板的相对应的所述通孔内。
本揭示其中之一优选实施例中,所述背光模组还包含光学功能膜,设置在所述量子点层与所述光源模组之间,其中所述光学功能膜对蓝光的透过率大于98%,以及对红光和绿光的反射率大于95%。
本揭示其中之一优选实施例中,所述光学功能膜是整面地设置在所述反射板上,且位在所述反射板与所述光源模组之间。
本揭示其中之一优选实施例中,所述光学功能膜是以多个第二图案化单元构成,且所述多个第二图案化单元彼此间隔设置,以及所述第二图案化单元位在所述反射板的相对应的所述通孔内。
本揭示其中之一优选实施例中,所述光学功能膜的所述第二图案化单元相较于所述量子点层的所述第一图案化单元位在较接近所述光源模组的位置。
本揭示其中之一优选实施例中,所述光学功能膜包含蓝光透过膜。
本揭示还提供一种背光模组,其特征在于,包含:光源模组,用于发出多个点状光;扩散板,用于使所述光源模组射出的光线均匀;反射板,设置在所述光源模组上且位于所述光源模组与所述扩散板之间,其中所述反射板上设置有与所述多个点状光相对应的多个通孔,使得所述光源模组发出的所述多个点状光通过所述反射板上相对应的所述通孔射入所述扩散板。
本揭示其中之一优选实施例中,所述光源模组包含基板和多个点光源,其中所述多个点光源以阵列形式排列在所述基板上,用于发出所述多个点状光。
本揭示其中之一优选实施例中,所述背光模组还包含量子点层,设置在所述反射板上,用于在被所述点状光照射后激发出对应的颜色光。
本揭示其中之一优选实施例中,所述量子点层是整面地设置在所述反射板上。
本揭示其中之一优选实施例中,所述量子点层是以多个第一图案化单元构成,且所述多个第一图案化单元彼此间隔设置,以及所述第一图案化单元位在所述反射板的相对应的所述通孔内。
本揭示其中之一优选实施例中,所述背光模组还包含光学功能膜,设置在所述量子点层与所述光源模组之间,其中所述光学功能膜对蓝光的透过率大于98%,以及对红光和绿光的反射率大于95%。
本揭示其中之一优选实施例中,所述光学功能膜是整面地设置在所述反射板上,且位在所述反射板与所述光源模组之间。
本揭示其中之一优选实施例中,所述光学功能膜是以多个第二图案化单元构成,且所述多个第二图案化单元彼此间隔设置,以及所述第二图案化单元位在所述反射板的相对应的所述通孔内。
本揭示其中之一优选实施例中,所述所述光学功能膜的所述第二图案化单元相较于量子点层的所述第一图案化单元位在较接近所述光源模组的位置。
本揭示其中之一优选实施例中,所述光学功能膜包含蓝光透过膜。
有益效果
相较于先前技术,本揭示通过在光源模组上设置反射板,其可将光线再次反射至朝增亮膜和扩散板前进,从而提高背光模组的光利用率。又,通过在反射板上设置量子点层以有效地提高显示色域范围。优选地,量子点层是采用图案化设计而不是采用整面式的设计,如此可有效地节省成本,以及减少有害物质Ge元素的总使用量。再者,通过采用将光学功能膜与量子点层结合的设计,可在不影响蓝光透射的前提下,防止黄、绿光向四周散射,从而提升光利用率。
附图说明
图1显示一种根据本揭示第一优选实施例的背光模组的剖面图;
图2显示图1的背光模组的反射板的上视图;
图3显示一种根据本揭示第二优选实施例的背光模组的剖面图;
图4显示一种根据本揭示第三优选实施例的背光模组的剖面图;
图5显示图4的背光模组的光学功能膜的透过率与反射率对应波长的曲线图;以及
图6显示一种根据本揭示第四优选实施例的背光模组的剖面图。
本发明的实施方式
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。
请参照图1,其显示一种根据本揭示第一优选实施例的背光模组10的剖面图。背光模组10可与面板P组装以形成显示装置,且所述显示装置可为中大尺寸的显示装置,可被应用在车载显示、笔记本计算机、电视等。背光模组10包括依次设置的光源模组11、反射板12、增亮膜13、和扩散板14。光源模组11包含基板111和多个点光源112,其中多个点光源112以阵列形式排列在基板111上,用于发出多个点状光。可选地,基板111为印刷电路板,以及点光源112为电连接在基板111的发光二极管(Light Emitting Diode,简称LED)。反射板12设置在光源模组11上,用于提高亮度和节约能耗。增亮膜13是通过光的折射和反射来达到集光、提高正面出光、辉度提升等目的。因为经由点光源112和反射板12传递过来的光线,其行进方向不集中,故通过增亮膜13可修正光线的行进方向,使得整体背光模组10的辉度提升。扩散板14是用于改善光线的分布,使光源模组11射出的光线更为均匀。具体来说,扩散板14可由扩散剂与树脂涂布在底板上而形成,其中扩散剂中的微小扩散粒子会均匀地分散在树脂之间。当光线经过扩散板14时,光线会通过两种折射率不同的介质,即扩散粒子和树脂,此时光线会产生折射、散射、和反射现象,进而达到光线扩散的效果。
参照图1和图2所示,图2显示图1的背光模组10的反射板12的上视图。反射板12上设置有与光源模组11的多个点状光112相对应的多个通孔121,使得光源模组11发出的多个点状光通过反射板12上相对应的通孔121射入增亮膜13和扩散板14。可以理解的是,一部分的光线会被增亮膜13反射回反射板12,通过反射板12可将此部分的光线再次反射回去并且朝增亮膜13和扩散板14前进,从而提高背光模组10的光线利用率。应当注意的是,通孔121可为圆形、矩形、多边形等,不局限于此。
在本揭示中,为了提升对比度,背光模组10采用了直下式背光分区技术,将光源模组11划分为多区域独立控制单元,并且根据每一帧图像中的明暗信息自动调节各个分区的光源模组11的亮度,再结合动态图像处理技术,进而提高动态对比度,和显着提升画面显示质量。
请参照图3,其显示一种根据本揭示第二优选实施例的背光模组20的剖面图。背光模组20可与面板P组装以形成显示装置。背光模组20包括依次设置的光源模组21、反射板22、量子点层25、增亮膜23、和扩散板24,其中光源模组21包含基板211和多个点光源212。第二优选实施例的光源模组21、反射板22、增亮膜23、和扩散板24的结构和功能与第一优选实施例的光源模组11、反射板12、增亮膜13、和扩散板14大致相同,在此不加以赘述。
如图3所示,量子点层25整面地设置在反射板22上且位于反射板22与增亮膜13之间,用于在被光源模组21发出的点状光照射后激发出对应的颜色光。在本揭示的第二优选实施例的背光模组20中,通过量子点层25的设置可有效的提高显示色域范围,例如达到符合ITU BT.2020的影像信号色域标准。
请参照图4,其显示一种根据本揭示第三优选实施例的背光模组30的剖面图。背光模组30可与面板P组装以形成显示装置。背光模组30包括依次设置的光源模组31、光学功能膜36、反射板32、量子点层35、增亮膜33、和扩散板34,其中光源模组31包含基板311和多个点光源312。第三优选实施例的光源模组31、反射板32、增亮膜33、和扩散板34的结构和功能与第一优选实施例的光源模组11、反射板12、增亮膜13、和扩散板14大致相同,在此不加以赘述。
如图4所示,量子点层35是以多个第一图案化单元351构成,并且多个第一图案化单元351彼此间隔设置,以及第一图案化单元351位在反射板32的相对应的通孔内。量子点层35用于在被光源模组31发出的点状光照射后激发出对应的颜色光。通过量子点层35的设置可有效的提高显示色域范围,例如达到符合ITU BT.2020的影像信号色域标准。优选地,第一图案化单元351的形状和大小对应反射板32的相对应的通孔的形状和大小,即每一第一图案化单元351的边缘是与反射板32的通孔的孔壁紧密连接,如此可确保通过通孔的光线皆会通过量子点层35。在本实施例中,由于量子点层35是采用图案化设计而不是采用整面式的设计,如此可有效地节省成本,以及减少有害物质锗(Germanium,Ge)元素的总使用量。
如图4所示,光学功能膜36是整面地设置在反射板32上,且位于量子点层35与光源模组31之间。请参照图5,其显示图4的背光模组30的光学功能膜36的透过率与反射率对应波长的曲线图。图5中的λ 0表示透射截止波长,以及λ 1表示反射截止波长。当图4的光学功能膜36采用蓝光透过膜(Blue Light Transmission Film,简称BLTF)来实施时,光学功能膜36对蓝光的透过率大于98%,即在约450纳米至480纳米的波长范围的光透过率大于98%。并且光学功能膜36对红光和绿光的反射率大于95%,即在约500纳米至750纳米的波长范围的光反射率大于95%。在本实施例中,通过采用将光学功能膜36与量子点层35结合的设计,可在不影响蓝光透射的前提下,防止黄、绿光向四周散射,从而提升光利用率。具体来说,因为量子点层35在被光照射后激发出对应的颜色光,且发出的颜色光会朝各方向前进,其中部分朝向反射板32和光源模组31的光通过光学功能膜36可被反射回去,进而朝增亮膜33的方向前进,而不会在反射板32和光源模组31之间来回反射而衰减损失,如此可提高背光模组30的光利用率和整体发光亮度。
请参照图6,其显示一种根据本揭示第四优选实施例的背光模组40的剖面图。背光模组40可与面板P组装以形成显示装置。背光模组40包括依次设置的光源模组41、光学功能膜46、反射板42、量子点层45、增亮膜43、和扩散板44,其中光源模组41包含基板411和多个点光源412。第四优选实施例的光源模组41、反射板42、增亮膜43、和扩散板44的结构和功能与第一优选实施例的光源模组11、反射板12、增亮膜13、和扩散板14大致相同,在此不加以赘述。
如图6所示,量子点层45是以多个第一图案化单元451构成,并且多个第一图案化单元451彼此间隔设置,以及第一图案化单元451位在反射板42的相对应的通孔内。量子点层45用于在被光源模组41发出的点状光照射后激发出对应的颜色光。通过量子点层45的设置可有效的提高显示色域范围,例如达到符合ITU BT.2020的影像信号色域标准。优选地,第一图案化单元451的形状和大小对应反射板42的相对应的通孔的形状和大小,即每一第一图案化单元451的边缘是与反射板42的通孔的孔壁紧密连接,如此可确保通过通孔的光线皆会通过量子点层45。在本实施例中,由于量子点层45是采用图案化设计而不是采用整面式的设计,如此可有效地节省成本,以及减少有害物质Ge元素的总使用量。
如图6所示,光学功能膜46是是以多个第二图案化单元461构成,并且多个第二图案化单元461彼此间隔设置,以及第二图案化单元461位在反射板42的相对应的通孔内。优选地,第二图案化单元461的形状和大小对应反射板42的相对应的通孔的形状和大小,即每一第二图案化单元461的边缘是与反射板42的通孔的孔壁紧密连接,如此可确保通过通孔的光线皆会通过光学功能膜46的第二图案化单元461。光学功能膜46的第二图案化单元461相较于量子点层45的第一图案化单元451位在较接近光源模组41的位置。优选地,本实施例的光学功能膜46是采用蓝光透过膜来实施时,光学功能膜46对蓝光的透过率大于98%,即在约450纳米至480纳米的波长范围的光透过率大于98%。并且光学功能膜46对红光和绿光的反射率大于95%,即在约500纳米至750纳米的波长范围的光反射率大于95%。在本实施例中,光学功能膜46是采用图案化设计而不是采用整面式的设计,如此可有效地节省成本。
如图6所示,通过采用将光学功能膜46与量子点层45结合的设计,可在不影响蓝光透射的前提下,防止黄、绿光向四周散射,从而提升光利用率。具体来说,因为量子点层45在被光照射后激发出对应的颜色光,且发出的颜色光会朝各方向前进,其中部分朝向反射板42和光源模组41的光通过光学功能膜46可被反射回去,进而朝增亮膜43的方向前进,而不会在反射板42和光源模组41之间来回反射而衰减损失,如此可提高背光模组40的光利用率和整体发光亮度。
综上所述,本揭示通过在光源模组上设置反射板,其可将光线再次反射至朝增亮膜和扩散板前进,从而提高背光模组的光利用率。又,通过在反射板上设置量子点层以有效地提高显示色域范围。优选地,量子点层是采用图案化设计而不是采用整面式的设计,如此可有效地节省成本,以及减少有害物质Ge元素的总使用量。再者,通过采用将光学功能膜与量子点层结合的设计,可在不影响蓝光透射的前提下,防止黄、绿光向四周散射,从而提升光利用率。
以上仅是本揭示的优选实施方式,应当指出,对于所属领域技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (18)

  1. 一种背光模组,包含:
    光源模组,用于发出多个点状光;
    反射板,设置在所述光源模组上;
    增亮膜,设置在所述反射板上;以及
    扩散板,设置在所述增亮膜上,用于使所述光源模组射出的光线均匀,
    其中所述反射板位于所述光源模组与所述增亮膜之间,并且所述反射板上设置有与所述多个点状光相对应的多个通孔,使得所述光源模组发出的所述多个点状光通过所述反射板上相对应的所述通孔射入所述增亮膜和所述扩散板;以及
    其中所述背光模组还包含量子点层,设置在所述反射板上,用于在被所述点状光照射后激发出对应的颜色光。
  2. 如权利要求1的背光模组,其中所述量子点层是整面地设置在所述反射板上。
  3. 如权利要求1的背光模组,其中所述量子点层是以多个第一图案化单元构成,且所述多个第一图案化单元彼此间隔设置,以及所述第一图案化单元位在所述反射板的相对应的所述通孔内。
  4. 如权利要求3的背光模组,其中所述背光模组还包含光学功能膜,设置在所述量子点层与所述光源模组之间,其中所述光学功能膜对蓝光的透过率大于98%,以及对红光和绿光的反射率大于95%。
  5. 如权利要求4的背光模组,其中所述光学功能膜是整面地设置在所述反射板上,且位在所述反射板与所述光源模组之间。
  6. 如权利要求4的背光模组,其中所述光学功能膜是以多个第二图案化单元构成,且所述多个第二图案化单元彼此间隔设置,以及所述第二图案化单元位在所述反射板的相对应的所述通孔内。
  7. 如权利要求6的背光模组,其中所述光学功能膜的所述第二图案化单元相较于所述量子点层的所述第一图案化单元位在较接近所述光源模组的位置。
  8. 如权利要求4的背光模组,其中所述光学功能膜包含蓝光透过膜。
  9. 一种背光模组,包含:
    光源模组,用于发出多个点状光;
    扩散板,用于使所述光源模组射出的光线均匀;以及
    反射板,设置在所述光源模组上且位于所述光源模组与所述扩散板之间,其中所述反射板上设置有与所述多个点状光相对应的多个通孔,使得所述光源模组发出的所述多个点状光通过所述反射板上相对应的所述通孔射入所述扩散板。
  10. 如权利要求9的背光模组,其中所述光源模组包含基板和多个点光源,其中所述多个点光源以阵列形式排列在所述基板上,用于发出所述多个点状光。
  11. 如权利要求9的背光模组,其中所述背光模组还包含量子点层,设置在所述反射板上,用于在被所述点状光照射后激发出对应的颜色光。
  12. 如权利要求11的背光模组,其中所述量子点层是整面地设置在所述反射板上。
  13. 如权利要求11的背光模组,其中所述量子点层是以多个第一图案化单元构成,且所述多个第一图案化单元彼此间隔设置,以及所述第一图案化单元位在所述反射板的相对应的所述通孔内。
  14. 如权利要求13的背光模组,其中所述背光模组还包含光学功能膜,设置在所述量子点层与所述光源模组之间,其中所述光学功能膜对蓝光的透过率大于98%,以及对红光和绿光的反射率大于95%。
  15. 如权利要求14的背光模组,其中所述光学功能膜是整面地设置在所述反射板上,且位在所述反射板与所述光源模组之间。
  16. 如权利要求14的背光模组,其中所述光学功能膜是以多个第二图案化单元构成,且所述多个第二图案化单元彼此间隔设置,以及所述第二图案化单元位在所述反射板的相对应的所述通孔内。
  17. 如权利要求16的背光模组,其中所述光学功能膜的所述第二图案化单元相较于所述量子点层的所述第一图案化单元位在较接近所述光源模组的位置。
  18. 如权利要求14的背光模组,其中所述光学功能膜包含蓝光透过膜。
PCT/CN2018/117182 2018-09-19 2018-11-23 背光模组 WO2020056912A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/308,896 US11150509B2 (en) 2018-09-19 2018-11-23 Backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811091203.0A CN108983499A (zh) 2018-09-19 2018-09-19 背光模组
CN201811091203.0 2018-09-19

Publications (1)

Publication Number Publication Date
WO2020056912A1 true WO2020056912A1 (zh) 2020-03-26

Family

ID=64545795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117182 WO2020056912A1 (zh) 2018-09-19 2018-11-23 背光模组

Country Status (3)

Country Link
US (1) US11150509B2 (zh)
CN (1) CN108983499A (zh)
WO (1) WO2020056912A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709716A (zh) * 2019-02-11 2019-05-03 深圳扑浪创新科技有限公司 一种背光模组、显示装置及其驱动方法
US11048121B2 (en) * 2019-03-06 2021-06-29 Sharp Kabushiki Kaisha Lighting device and display device
CN109976038B (zh) * 2019-04-09 2021-04-27 深圳市华星光电半导体显示技术有限公司 一种面光源器件及其制备方法、显示装置
CN110568653B (zh) * 2019-09-12 2021-01-01 武汉华星光电技术有限公司 显示面板及显示装置
CN110703496A (zh) * 2019-09-18 2020-01-17 武汉华星光电技术有限公司 背光模组
CN113192997B (zh) * 2021-04-28 2022-10-04 武汉华星光电技术有限公司 背光模组及显示装置
CN113820888A (zh) 2021-09-29 2021-12-21 联想(北京)有限公司 背光组件及其制作方法及显示装置
CN114253030A (zh) * 2021-12-21 2022-03-29 重庆惠科金渝光电科技有限公司 背光模组及其显示装置
CN114509895B (zh) * 2022-02-08 2023-11-28 广州华星光电半导体显示技术有限公司 背光模组及其制备方法和显示装置
CN114627750B (zh) * 2022-03-22 2024-04-26 广州华星光电半导体显示技术有限公司 一种背光模组及显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299674B1 (ko) * 2012-05-10 2013-08-26 주식회사 나노스퀘어 양자점 필름 키트
CN203455561U (zh) * 2013-09-25 2014-02-26 京东方科技集团股份有限公司 反射片、背光模组及显示装置
CN203771205U (zh) * 2014-03-26 2014-08-13 京东方科技集团股份有限公司 背光模组及显示装置
CN105319774A (zh) * 2015-11-16 2016-02-10 深圳市华星光电技术有限公司 使用量子点膜片的显示装置
CN205507310U (zh) * 2016-02-22 2016-08-24 友达光电股份有限公司 背光模块
CN106641872A (zh) * 2016-08-23 2017-05-10 友达光电股份有限公司 背光模块及其制造方法
CN107515491A (zh) * 2017-09-20 2017-12-26 青岛海信电器股份有限公司 一种量子点背光模组及其反射片
CN208737152U (zh) * 2018-09-19 2019-04-12 武汉华星光电技术有限公司 背光模组

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174634A (ja) * 2011-02-24 2012-09-10 Sharp Corp 光源モジュールおよび光学部材
CN104633521A (zh) * 2013-11-06 2015-05-20 富泰华精密电子(郑州)有限公司 背光模组
CN104932142A (zh) * 2015-06-10 2015-09-23 青岛海信电器股份有限公司 量子点发光器件及背光模组
FI129889B (en) * 2015-10-09 2022-10-31 Inkron Ltd Dielectric siloxane particle films and devices containing them
CN105319773A (zh) * 2015-11-03 2016-02-10 青岛海信电器股份有限公司 一种背光模组和液晶显示设备
JP6857496B2 (ja) * 2016-12-26 2021-04-14 日亜化学工業株式会社 発光装置
CN109212826B (zh) * 2017-06-29 2021-07-27 中强光电股份有限公司 光源模块
KR102474580B1 (ko) * 2017-09-27 2022-12-06 도레이 카부시키가이샤 광원 유닛
KR102297644B1 (ko) * 2017-09-28 2021-09-02 엘지디스플레이 주식회사 백라이트 유닛 및 이를 포함하는 액정표시장치
CN108279532B (zh) * 2018-01-26 2019-12-03 青岛海信电器股份有限公司 背光模组及显示装置
TWI669545B (zh) * 2018-02-23 2019-08-21 友達光電股份有限公司 顯示裝置及其背光模組
US20200073174A1 (en) * 2018-08-30 2020-03-05 Sharp Kabushiki Kaisha Lighting device and display device provided with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101299674B1 (ko) * 2012-05-10 2013-08-26 주식회사 나노스퀘어 양자점 필름 키트
CN203455561U (zh) * 2013-09-25 2014-02-26 京东方科技集团股份有限公司 反射片、背光模组及显示装置
CN203771205U (zh) * 2014-03-26 2014-08-13 京东方科技集团股份有限公司 背光模组及显示装置
CN105319774A (zh) * 2015-11-16 2016-02-10 深圳市华星光电技术有限公司 使用量子点膜片的显示装置
CN205507310U (zh) * 2016-02-22 2016-08-24 友达光电股份有限公司 背光模块
CN106641872A (zh) * 2016-08-23 2017-05-10 友达光电股份有限公司 背光模块及其制造方法
CN107515491A (zh) * 2017-09-20 2017-12-26 青岛海信电器股份有限公司 一种量子点背光模组及其反射片
CN208737152U (zh) * 2018-09-19 2019-04-12 武汉华星光电技术有限公司 背光模组

Also Published As

Publication number Publication date
CN108983499A (zh) 2018-12-11
US11150509B2 (en) 2021-10-19
US20210223623A1 (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US11150509B2 (en) Backlight module
US9140426B2 (en) Backlight unit and display apparatus using the same
WO2019200825A1 (zh) 直下式背光模组及其制作方法
TWI536081B (zh) 背光單元及使用該背光單元的顯示裝置
WO2019148591A1 (zh) 直下式背光模组以及液晶显示器
JP5179651B2 (ja) 照明装置、表示装置、及びテレビ受信装置
JP2007149451A (ja) 導光板、バックライト装置とその製造方法及び液晶表示装置
US20210080785A1 (en) Backlight module
TWM565322U (zh) Direct type backlight module and display device
US11320696B2 (en) Backlight module, display, and mobile terminal
WO2021190414A1 (zh) 一种显示装置
WO2020077615A1 (zh) 一种背光模组和显示装置
WO2021036586A1 (zh) 背光模组及电子设备
US20240168328A1 (en) Hybrid display device and spliced display device
US11054698B2 (en) Backlight module and display device
CN109375421B (zh) 液晶显示器
CN115407551B (zh) 一种显示装置
WO2021190399A1 (zh) 一种显示装置
US20190361297A1 (en) Backlight module and display device
KR20110022970A (ko) 표시장치
US10353233B2 (en) Liquid crystal display
US20240053635A1 (en) Display panel and display device
US11353742B2 (en) Backlight module and display device
CN208737152U (zh) 背光模组
KR102639988B1 (ko) 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934344

Country of ref document: EP

Kind code of ref document: A1