WO2019196132A1 - 戊二胺癸二酸盐及其晶体 - Google Patents

戊二胺癸二酸盐及其晶体 Download PDF

Info

Publication number
WO2019196132A1
WO2019196132A1 PCT/CN2018/083637 CN2018083637W WO2019196132A1 WO 2019196132 A1 WO2019196132 A1 WO 2019196132A1 CN 2018083637 W CN2018083637 W CN 2018083637W WO 2019196132 A1 WO2019196132 A1 WO 2019196132A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
pentamethylenediamine
sebacate
pentanediamine
sebacic acid
Prior art date
Application number
PCT/CN2018/083637
Other languages
English (en)
French (fr)
Inventor
杨朋朋
应汉杰
李子涵
王森
李晓洁
黎青青
吴菁岚
陈勇
庄伟�
欧阳平凯
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2019196132A1 publication Critical patent/WO2019196132A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/20Sebacic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Definitions

  • the present invention belongs to the field of crystallization technology, and in particular to a monomeric pentanediamine sebacate of bio-based nylon 510, a crystal structure thereof, and a crystalline powder thereof, and a process for the preparation thereof.
  • Polyamide is one of the top five engineering plastics due to its good mechanical properties, heat resistance, wear resistance, chemical resistance and self-lubrication. It is widely used in aviation, packaging materials, textiles, household appliances, Automotive parts manufacturing and medical fields. At present, the main varieties are polyamide 6 and polyamide 66. Among them, the monomer of the polyamide 6 is a crystalline powder caprolactam, and the monomer of the polyamide 66 is a crystal of hexamethylenediamine adipate. Both polyamide 6 and polyamide 66 are produced by chemical methods using petroleum as a raw material. The raw material monomer hexamethylene diamine of synthetic polyamide 66 has long been monopolized by a few foreign companies, and China is totally dependent on imports.
  • Nylon 510 is polymerized from pentanediamine and sebacic acid under certain conditions and has excellent mechanical properties.
  • pentanediamine sebacic acid crystal salt has not been reported, and high quality and high purity crystalline monomer salt is a key factor for obtaining high performance nylon 510.
  • the technical problem to be solved by the present invention is to provide a high-purity pentamodiamine sebacate and a crystal thereof in a molar ratio of pentamethyleneamine to sebacic acid, and provide two groups of pentamethylenediamine and sebacic acid.
  • the pentaamine azelaic acid crystalline salt obtained by the present invention can be directly used as a monomer for the polymerization of nylon 510.
  • the polymerization reaction diagram is shown in Formula III:
  • the present invention is intended to provide a monomer of a bio-based nylon 510 material, pentanediamine sebacate, a crystal structure thereof, and a crystalline powder thereof, and a preparation method.
  • the product of the pentamethylenediamine sebacate provided by the present invention is obtained by crystallization, and the product is pentamethylenediamine. It is presented in the form of a crystal with a molar ratio of sebacic acid, which can be directly used for polymerization, has structural stability, high chemical purity, good particle size, and has advantages in transportation, use, storage and quality.
  • the invention discloses a pentanediamine sebacate in a solid state, also known as cadaverine sebacate, and the pentamethylenediamine sebacate is a divalent cation of pentamethylenediamine and a divalent anion of sebacic acid.
  • a salt which exhibits a solid state at a normal temperature in a molar ratio of 1:1, and its molecular structure is as shown in Formula I:
  • the invention also discloses a crystal of pentanediamine sebacate, which has the formula C 15 H 32 N 2 O 4 , does not contain crystal water, and has a molecular structural formula as shown in formula II:
  • the method and apparatus for detecting the crystal structure of the pentamethylenediamine sebacate obtained by the present invention are as follows:
  • Crystal structure and analytical method for single crystal X-ray diffraction a single crystal of pentanediamine sebacate with good quality was cut and cut into a block of about 0.11 ⁇ 0.30 ⁇ 0.32 mm 3 by Bruker APEX- II CCD diffractometer Mo K ⁇ radioactive source (graphite monochromator, The sample is irradiated, and the diffraction data is collected. The diffraction data is reduced by SAINT, and then structurally analyzed by SHELXL-97 software direct method, and refined based on F 2 full matrix least squares method, all non-hydrogen atoms pass through the directions Heterosexual refinement. The final data is plotted by Mercury or Diamond software.
  • the smallest asymmetric unit number in the unit cell, Z 2, contains one pentamethylenediamine cation and one sebacic acid anion in its smallest asymmetric unit.
  • Powder X-ray Diffraction The sample after grinding was taken to be about 0.1 g, and the diffraction data was collected by a powder X-ray diffractometer (Japanese physics Smartlab or Bruker D8 Advance) at room temperature, and the light source was CuK ⁇ ray.
  • the scanning step is 0.02°, the scanning voltage is set to 40 kV, the current is 40 mA, the scanning rate is 0.2 s/0.02°, and the scanning range is 2 to 50°.
  • the data is processed by JADE software.
  • the crystal of the pentamethylenediamine sebacate of the present invention has a diffraction pattern as shown in Fig. 4 by diffraction analysis using CuK? rays as characteristic X-rays.
  • the crystalline powder of the above pentanediamine sebacate is white.
  • the crystalline powder formed by the above crystals has a bulk density of more than 0.22 g/mL, preferably more than 0.31 g/mL, more preferably a bulk density of more than 0.41 g/mL.
  • the crystalline powder formed by the above crystals has a tap density of more than 0.27 g/mL, preferably more than 0.33 g/mL, more preferably more than 0.46 g/mL.
  • Crystals formed above crystalline powder having a greater than 21 ⁇ m d 50, preferably greater than of 30 m, and more preferably greater than 41 m, most preferably greater than the d 50 55 ⁇ m.
  • the d 50 and d 10 described in the present invention are the usual amounts for indicating the particle size distribution.
  • the d 50 is a value for the particle size such that 50 vol.% of the crystal has a size smaller than this value.
  • the d 10 is a value for the particle size such that 10 vol.% of the crystal has a size lower than this value.
  • the bulk density and tap density are amounts related to the flow characteristics of the powder. In general, high bulk density and tap density values are desired.
  • the bulk density indicates the weight per unit volume of the powder under predetermined conditions, expressed as the weight per unit of volume, usually in g/mL.
  • the tap density also indicates the weight of the powder per volume unit, and in the holder of the powder, it is subjected to tapping or vibration under predetermined conditions.
  • the tap density is expressed as the weight per unit of volume, usually in g/mL. More powder can be supplied to the holder by tapping or vibrating. Therefore, for the same powder, the tap density is higher than the bulk density.
  • the powder with large bulk density and high tap density tends to have a large specific gravity, which can reflect that the crystal product is thicker and has a texture, and its stability is relatively better. From another point of view, the product with high bulk density, the particle The liquidity is generally good and it is also easy to store and transport.
  • the method for measuring the particle size distribution, bulk density, and tap density of the crystal powder is as follows:
  • the particle size distribution (including d 10 and d 50 ) of the sample from the mixer was determined using a Microtrac S3500 particle size analyzer, dry assay;
  • the bulk density of the particles is determined by USP Method II (page 1914);
  • the tapping density of the particles is determined by the FZS4-4 economical tap density meter according to GB/T 5162-2006. Specifically, the measurement conditions were as follows: the vibration stroke of the tapping device was 3 ⁇ 0.1 MM, and the vibration frequency was 250 ⁇ 15 times per minute.
  • the pH of the system is between 3.0 and 9.8, preferably between 3.5 and 9.5, more preferably between 5.0 and 8.5, most preferably between 6.0 and 8.0.
  • the solid or solid powder of the present invention is an aggregated state of the substance, including amorphous and crystalline.
  • the crystalline powder according to the present invention refers to a powder having a certain degree of crystallinity, which is relative to amorphous.
  • the crystal according to the present invention is a solid having a clear diffraction pattern for X-rays, and its atoms or molecules are repeatedly arranged in a regular cycle in space.
  • the invention also discloses a composition
  • a composition comprising
  • the above composition makes the ratio of the moles of pentanediamine to sebacic acid in the mixture not equal to 1:1.
  • the present invention discloses a method for preparing crystals of the above pentamethyleneamine sebacate, comprising crystallizing pentamidine azelaic acid salt from a solution containing dissolved pentamethyleneamine and sebacic acid; The crystals are separated; the separated crystals are dried.
  • solution containing dissolved pentamethylenediamine and sebacic acid is prepared according to any of the following methods:
  • the solvent for dissolving the pentanediamine and the solvent for dissolving the solid of the sebacic acid may be the same or different.
  • the solvent comprises one of methanol, ethanol, water, n-propanol, ethyl acetate, ethyl formate, methyl acetate, isopropanol, acetone, methyl ethyl ketone, petroleum ether, tetrahydrofuran and DMSO or
  • the mixed solvent is preferably a mixed solvent of one or more of methanol, ethanol, water, acetone, n-propanol, isopropanol, methyl ethyl ketone, and DMSO.
  • the azelaic acid can be added in various ways, for example, directly added to the solvent in a solid manner, or slowly added to the solvent in a solid manner, or the azelaic acid can be used first. Dissolved and then added in one portion or added to the cadaverine solution in multiple portions. Preference is given to the mode of operation in which the sebacic acid is dissolved in the solvent and then added to the cadaverine solution.
  • a method for preparing a crystal of the above pentanediamine sebacate specifically, for example, adding pentamethylenediamine to an organic solvent, or a binary solvent of water and an organic solvent, or a mixed solvent of water and a plurality of organic solvents.
  • adding azelaic acid slowly crystallize under stirring at a temperature of 10 to 50 ° C, and white crystals precipitate after 0.5 to 72 hours, and the crystal slurry is subjected to suction filtration or The solid-liquid separation is carried out by centrifugation, and the obtained solid is dried under vacuum at 35 to 70 ° C to obtain a pentanediamine sebacate crystal powder, or a composition according to the present invention.
  • the ratio of the weight g of the pentamethylenediamine to the volume mL of the solvent in the preparation of the crystal may be 1:0.5-30; the molar amount of the sebacic acid may be 0.4 to 2.0, preferably, etc. The molar ratio of.
  • the pentanediamine and the sebacic acid are reacted and crystallized in an equimolar ratio, and the obtained solid product is more likely to form an equimolar ratio of pentamidine cation and sebacic acid anion.
  • the pH of the 5 wt% aqueous solution of the diacid salt crystal is between 6.0 and 8.0, preferably between 6.5 and 7.5. If the total moles of sebacic acid added during crystal preparation is greater or less than the number of moles of the initial addition of pentamethylenediamine, then the resulting solid product is more likely to form the composition of the present invention, the 5 wt% aqueous solution of the product.
  • the pH will show non-neutral.
  • the obtained powder when the number of moles of sebacic acid added is greater than the number of moles of the initial pentamethylenediamine, the obtained powder will exhibit weak acidity or acidity; when the mole number of sebacic acid added is less than the number of moles of the initial pentamethylenediamine, The resulting powder will show weakly alkaline or basic.
  • the condensation temperature can be set according to the difference of the refrigerant. Different temperatures, such as -10 to 20 °C.
  • the refrigerant may be ethanol, ethylene glycol or water.
  • the solid after solid-liquid separation, the solid may be washed with a detergent to remove impurities in the crystallization mother liquid carried on the solid surface, and the detergent may be used in the crystallization preparation process.
  • the solvent may be used in the crystallization preparation process.
  • the drying process has a certain influence on the quality of the pentamethylenediamine sebacate powder, and the lower drying temperature may cause insufficient drying to cause the solvent residue to exceed the standard or agglomerate. Phenomenon; too high drying temperature tends to make the product yellow.
  • the drying method is preferably vacuum drying and microwave drying, or a combination of the two, the drying temperature may be from 30 to 70 ° C, preferably from 45 to 60 ° C, and the degree of vacuum is less than 300 mbar, preferably less than 100 mbar. More preferably, it is less than 50 mbar.
  • the source of the pentamethylenediamine in the process may be a single component of pentamethylenediamine or a biological process for preparing pentamethylenediamine in the late stage of separation.
  • the crystallization process can be carried out batchwise or continuously. When the process is carried out intermittently, it is preferred to add seed crystals to the crystallization system. Preferably, the crystallization is carried out continuously.
  • the present invention discloses a monomeric pentanediamine sebacate of bio-based nylon 510, a crystal structure thereof, and a crystalline powder thereof, and a preparation method thereof.
  • the characteristics are as follows: (1) pentamethylenediamine exists in the form of a colorless viscous fuming liquid under normal temperature and pressure, has a foul smell similar to ammonia gas, and easily absorbs carbon dioxide in the air to form pentamethylene carbonate. Greatly affect the purity of pentamethylenediamine.
  • the invention directly combines pentanediamine with sebacic acid to form a solid salt, which not only changes the existence form thereof, improves the stability of the product, but also greatly reduces the original odor and is beneficial to improving the working environment of the worker; 2)
  • the nylon 510 crystal salt provided by the invention not only facilitates storage and transportation, but also improves the operability of the subsequent polymerization process; (3) the nylon 510 monomer salt provided by the invention exists in a highly crystalline state, and has high purity. It can be directly used for the polymerization of nylon 510.
  • Figure 2 is a diagram showing the unit cell structure along the c-axis direction of pentamethyleneamine sebacate
  • Figure 3 is a view of a cell stack along the c-axis direction of pentamethyleneamine sebacate
  • Figure 6 shows the crystals of pentamodiamine sebacate and its structure
  • Figure 8 key angle information (Deg) in the structure of pentamethyleneamine sebacate
  • Figure 11 is a representation of the product
  • Figure 12 shows the stability experiment.
  • the pentanediamine sebacate crystalline powder of the present invention and the preparation method of the composition of the present invention are further clarified by the following non-limiting examples, and the following examples are merely illustrative and not limiting. It is not intended to limit the scope of the invention.
  • the smallest asymmetric unit map of the unit cell and the unit cell stacking diagram are as shown in FIG. 1 and FIG. 3, respectively.
  • the diffraction data was collected at 298 (2) K. When it was formulated into an aqueous solution having a mass fraction of 5%, the pH of the system was 5.6.
  • the powder has good particle properties, fluidity and stability.
  • aqueous solution of pentamethylenediamine was concentrated 8 times using a thin film evaporator or a rotary concentrator, that is, the volume after concentration was 1/8 of the original volume, and then placed in a crystallizer, stirred.
  • the ethyl pentaamine solution was dropped into the azelaic acid solution by means of a pump at a rate of 4 mL/min.
  • the amount of the substance of the pentamethylenediamine added was 10% of the amount of the azelaic acid substance, 0.2 was added.
  • the temperature is controlled at 10 ° C, when the end of the complete addition, stirring is continued for 10 h, the crystallization is finished, the lower tank is subjected to solid-liquid separation, and then the filter cake is washed with 100 mL of anhydrous acetone and dried at 70 ° C for 6 h under vacuum. That is, the pentanediamine sebacate crystal powder is obtained, and when it is formulated into an aqueous solution having a mass fraction of 5%, the pH of the system is 3.0 to 6.5.
  • the pentamidine butanone solution is directly poured into the azelaic acid solution, maintaining the system temperature at 25 ° C, the rotation speed is 250 r / min, stirring for 1.0 h, the crystallization is finished, the lower tank is subjected to solid-liquid separation, and then used.
  • the filter cake was washed with 80 mL of anhydrous butanone and dried under microwave at 50-70 ° C for 5 h to obtain a pentanediamine sebacate crystal powder having a water content of 0, which was formulated into an aqueous solution having a mass fraction of 5%.
  • the pH of the system is 7.0 to 9.8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了戊二胺癸二酸盐及其晶体,及其制备方法。所述的戊二胺癸二酸盐是戊二胺二价阳离子与癸二酸二价阴离子以摩尔比为1:1的方式结合而成的常温下呈现固体状态的盐。其晶体结构为C11H24N2O4,单斜晶系,C2空间群,a=20.0833(18)Å,b=8.5161(9)Å,c=5.3379(7)A,β=92.394(2)°,晶胞体积V=912.15(17)Å3,晶胞内最小不对称单元数Z=2。所述制备方法包括:从含有溶解的戊二胺和癸二酸的溶液中结晶出戊二胺癸二酸盐,从所述溶液中分离出晶体,和干燥所分离的晶体。

Description

戊二胺癸二酸盐及其晶体 技术领域
本发明属于结晶技术领域,具体地说,是涉及生物基尼龙510的单体戊二胺癸二酸盐,及其晶体结构、及其结晶粉末,以及其制备方法。
背景技术
聚酰胺由于具备良好的力学性能、耐热性、耐磨损性、耐化学腐蚀性、自润滑等优点位列五大工程塑料之首,广泛应用于航空领域、包装材料、纺织领域、家用电器、汽车零件制造以及医疗等领域。目前,主要品种为聚酰胺6和聚酰胺66。其中,聚酰胺6的单体是结晶性粉末己内酰胺,聚酰胺66的单体是己二胺己二酸盐结晶体。聚酰胺6和聚酰胺66均以石油为原料采用化学法生产。合成聚酰胺66的原料单体己二胺长期被国外少数几个公司垄断,中国完全依赖进口。时至今日还没有明显的突破,这极大地限制了中国聚酰胺行业的发展并威胁着国家的战略安全。近几年,国内关于戊二胺的生物法制备技术日渐成熟(CN201610317272.3),尤其是下游分离纯化技术的创新(CN201420807159.X)使得戊二胺的生产成本大幅度下降,目前已经进入企业化推广应用阶段。尼龙510是由戊二胺和癸二酸在一定条件下聚合而成的,具有优良的力学性能。然而,关于尼龙510的聚合单体原料——戊二胺癸二酸结晶盐未见报道,而高品质高纯度的结晶单体盐是获得高性能尼龙510的关键因素。
发明内容
本发明所要解决的技术问题是提供一种戊二胺与癸二酸等摩尔比的高纯度的戊二胺癸二酸盐及其晶体,并提供一种由戊二胺和癸二酸两组分化合物来生产戊二胺癸二酸结晶盐的制备工艺。本发明制得的戊二胺癸二酸结晶性盐,可以作为单体,直接用于尼龙510的聚合。聚合反应示意图如式III所示:
Figure PCTCN2018083637-appb-000001
本发明意在提供一种生物基尼龙510材料的单体,戊二胺癸二酸盐,及其晶体结构,及其结晶粉末,以及制备方法。相对于传统的需要戊二胺和癸二酸两个组分才能进行的尼龙510聚合工艺,本发明提供的这种戊二胺癸二酸盐的产品,通过结晶方式获得,产品以戊二胺与癸二酸等摩尔比的晶体的方式呈现,可以直接用于聚合,在结构上具有稳定性,化学纯度高、颗粒性好,在运输、使用、储存及质量方面均有优势。
本发明采用的技术方案如下:
本发明公开了一种固体状态的戊二胺癸二酸盐,又称尸胺癸二酸盐,所述的戊二胺癸二酸盐是戊二胺二价阳离子与癸二酸二价阴离子以摩尔比为1:1的方式结合而成的常温下呈现固体状态的盐,其分子结构如式I所示:
Figure PCTCN2018083637-appb-000002
本发明还公开了一种戊二胺癸二酸盐的晶体,所述的分子式为C 15H 32N 2O 4,不含结晶水,分子结构式如式II所示:
Figure PCTCN2018083637-appb-000003
本发明所得的戊二胺癸二酸盐的晶体结构的检测方法及仪器如下:
单晶X-ray衍射测定晶体结构与解析方法:取培养出的质量较好的戊二胺癸二酸盐单晶,切割成约0.11×0.30×0.32mm 3大小的块状,经布鲁克APEX-II CCD衍射仪Mo Kα放射源(石墨单色器,
Figure PCTCN2018083637-appb-000004
)对样品进行照射,并收集衍射数据,衍射数据经SAINT进行还原后用SHELXL-97软件直接法进行结构解析,并基于F 2的全矩阵最小二 乘法精修,所有的非氢原子通过各向异性精修。最终数据通过Mercury或Diamond软件作图。本发明所述的戊二胺癸二酸盐的晶体结构属于单斜晶系,C2空间群,晶胞参数为
Figure PCTCN2018083637-appb-000005
β=92.394(2)°,晶胞体积
Figure PCTCN2018083637-appb-000006
Figure PCTCN2018083637-appb-000007
晶胞内最小不对称单元数Z=2,在其最小不对称单元中,含有1个戊二胺阳离子和1个癸二酸阴离子。
粉末X-ray衍射:研磨后的样品,取约0.1g,通过粉末X射线衍射仪(日本理学Smartlab或Bruker D8 Advance)在室温下进行衍射数据收集,光源为CuKα射线
Figure PCTCN2018083637-appb-000008
Figure PCTCN2018083637-appb-000009
扫描步长为0.02°,设定扫描电压40kV,电流40mA,扫描速率0.2s/0.02°,扫描范围2θ为5~50°,数据通过JADE软件处理作图。本发明所述的戊二胺癸二酸盐的晶体,具有如图4所示的用CuKα射线作为特征X射线进行衍射分析的衍射图谱。
上述戊二胺癸二酸盐的结晶粉末,呈白色。
上述晶体形成的结晶粉末,具有大于0.22g/mL的堆积密度,优选大于0.31g/mL,更优选大于0.41g/mL的堆积密度。
上述晶体形成的结晶粉末,具有大于0.27g/mL的振实密度,优选大于0.33g/mL,更优选大于0.46g/mL。
上述晶体形成的结晶粉末,具有大于21μm的d 50,优选大于30μm,更优选大于41μm,最优选大于55μm的d 50
上述晶体形成的结晶粉末,具有大于8μm的d 10,优选大于10μm,更优选大于12μm,最优选大于15μm的d 10
本发明所述的d 50和d 10是用于表明粒度分布的通常的量。所述的d 50是用于粒度的值,使得50vol.%的晶体具有小于这个值的尺寸。所述的d 10是用于粒度的值,使得10vol.%的晶体具有低于这个值的尺寸。
所述的堆积密度和振实密度是与粉末的流动特性相关的量。总体上,希望高的堆密度和振实密度值。堆密度指出在预定条件下每体积单位粉末的重量,表示为通常以g/mL计的每体积单位的重量。振实密度也表明了每体积单位粉末的重量,在该粉末的保持器中,经受在预定条件下的拍打或振动。振实密度表示为通常以g/mL计的每体积单位的重量。通过拍打或振动,更多的粉末可以供给到该保持器中。因此,对于同一粉末,其振实密度高于堆密度。
堆积密度与振实密度大的粉末,其比重往往较大,可以反映出晶体产品比较厚实, 有质感,其稳定性也会相对较好;从另一个角度讲,堆积密度大的产品,颗粒的流动性一般较好,也便于储存和运输。
那么具体地,所述晶体粉末颗粒尺寸分布、堆积密度、振实密度的测量方法如下:
使用Microtrac S3500颗粒粒度分析仪确定来自混合器的样品的颗粒尺寸分布(包括d 10和d 50),干法测定;
颗粒的堆积密度按USP方法II(第1914页)来测定;
颗粒的振实密度依据GB/T 5162-2006,通过FZS4-4经济型振实密度测定仪进行测定。具体地,测定条件为:拍实装置的振动冲程为3±0.1MM,振动频率为每分钟250±15次。
将上述晶体配制成质量分数为5%的水溶液时,体系pH值在3.0~9.8之间,优选3.5~9.5,更优选5.0~8.5,最优选6.0~8.0。
本发明所述的固体或固体粉末是物质的一种聚集状态,包括无定形和晶体。
本发明所述的结晶粉末,指具有一定结晶度的粉末,是相对于无定形而言。
本发明所述的晶体是对X射线有明确衍射图案的固体,其原子或分子在空间按一定规律周期重复地排列。
本发明还公开了一种组合物,包含
(i)本发明所述的戊二胺癸二酸盐的晶体和
(ii)(a)癸二酸固体;或
    (b)戊二胺。
上述组合物使得混合物中戊二胺与癸二酸的摩尔数之比不等于1:1。
本发明最后公开了上述戊二胺癸二酸盐的晶体的制备方法,包括,从含有溶解的戊二胺和癸二酸的溶液中结晶出戊二胺癸二酸盐;从所述溶液中分离出晶体;干燥所分离的晶体。
其中,包括在干燥过程中或干燥后对晶体进行机械冲压。
其中,所述的含有溶解的戊二胺和癸二酸的溶液按照下述任一种方式制备得到:
(i)将癸二酸固体和戊二胺同时加入溶剂中;
(ii)将癸二酸固体和戊二胺先后加入溶剂中;
(iii)将戊二胺加入溶剂中形成戊二胺溶液;将癸二酸固体加入溶剂中形成癸二酸溶液或形成含有部分未溶解癸二酸固体的癸二酸溶液,而后将两者混合;其中,溶解戊二胺的溶剂和溶解癸二酸固体的溶剂可以相同也可以不同。
其中,所述的溶剂包括甲醇、乙醇、水、正丙醇、乙酸乙酯、甲酸乙酯、乙酸甲酯、异丙醇、丙酮、丁酮、石油醚、四氢呋喃和DMSO的一种或它们的混合溶剂,优选甲醇、乙醇、水、丙酮、正丙醇、异丙醇、丁酮、DMSO中的一种或几种的混合溶剂。
其中,癸二酸的加入方式可以多种多样,比如以固体的方式一次性直接加入到溶剂之中,或者以固体的方式多次缓慢加入溶剂之中,或者先将癸二酸用所述溶剂溶解,而后一次性加入或者分多次加入到尸胺溶液之中。优选先将癸二酸用所述溶剂溶解后再加入到尸胺溶液之中的操作方式。
上述戊二胺癸二酸盐的晶体的制备方法,具体地,比如将戊二胺加入到有机溶剂中,或水与有机溶剂的二元溶剂中,或水与多种有机溶剂的混合溶剂中,或者水相之中,充分混匀后,加入癸二酸,在温度10~50℃范围内,在搅拌状态下缓慢析晶,0.5~72h小时后有白色晶体析出,晶浆经过抽滤或离心进行固液分离,所得固体在35~70℃下真空干燥,即得戊二胺癸二酸盐结晶粉末,或本发明所述的组合物。
其中,晶体制备过程中戊二胺的重量g与溶剂的体积mL的比可以为1:0.5~30;癸二酸的加入量,其与戊二胺的摩尔比可以为0.4~2.0,优选等摩尔比。
需要指出的是,戊二胺与癸二酸以等摩尔比的形式进行反应结晶,那么所获得的固体产品就更容易形成以戊二胺阳离子和癸二酸阴离子等摩尔比的戊二胺癸二酸盐结晶体,其5wt%水溶液的pH值在6.0~8.0之间,优选6.5~7.5之间。如果晶体制备过程中所加入的癸二酸的总摩尔数大于或小于初始加入戊二胺的摩尔数,那么所得固体产品就更容易形成本发明所述的组合物,其产品的5wt%水溶液的pH将显示非中性。
具体地,当所加入的癸二酸的摩尔数大于初始戊二胺的摩尔数时,所得粉末将显示弱酸性或酸性;当所加入的癸二酸的摩尔数小于初始戊二胺的摩尔数时,所得粉末将显示弱碱性或碱性。
需要指出的是,在本发明所述制备方法里,在有机溶剂存在条件下的结晶过程,为了减少有机溶剂挥发,可以考虑在结晶器上安装冷凝回流装置,冷凝温度依据冷媒的不同可以设定不同温度,比如-10~20℃。所述的冷媒可以使用乙醇,乙二醇或水。
需要指出的是,在本发明所述的制备方法里,在固液分离后,可以使用洗涤剂洗涤 固体,以除去固体表面携带的结晶母液中的杂质,洗涤剂可以为结晶制备过程中使用的所述溶剂。
需要指出的是,在本发明所述制备方法里,干燥的过程对戊二胺癸二酸盐粉末的品质有一定影响,较低的干燥温度可能引起干燥不充分导致溶剂残留超标或者结块的现象;过高的干燥温度容易使得产品发黄。在本发明所述的制备方法下,干燥方式优选真空干燥和微波干燥,或者二者的组合,干燥温度可以从30~70℃,优选45~60℃,真空度低于300mbar,优选低于100mbar,更优选低于50mbar。
需要指出的是,在本发明所述的制备方法里,工艺中戊二胺的来源,可以是单一组分的戊二胺,也可以是生物法制备戊二胺过程中在分离后期的含有戊二胺的溶液。
需要指出的是,结晶过程可以间歇或者连续地进行。当该工艺过程间歇进行时,优选向结晶体系中添加晶种。优选结晶连续地进行。
另外,本发明所涉及的尸胺癸二酸盐晶体结构的更加详细的信息,在说明书附图中给出。
有益效果:本发明公开了一种生物基尼龙510的单体戊二胺癸二酸盐,及其晶体结构、及其结晶粉末,以及其制备方法。具备特点如下:(1)戊二胺在常温常压下以无色粘稠的发烟液体形式存在,具有类似氨气的恶臭气味,且易吸收空气中的二氧化碳生成戊二胺碳酸盐,极大影响戊二胺的自身纯度。本发明使得戊二胺与癸二酸直接结合形成固体盐,不仅改变了其存在形态,提高了产品的稳定性,而且极大地降低了原有的恶臭气味,有利于改善工人的工作环境;(2)本发明提供的尼龙510晶体盐,不仅方便储藏和运输,而且改善了后续聚合工艺的可操作性;(3)本发明提供的尼龙510单体盐,以高度结晶的状态存在,纯度高,可以直接用于尼龙510的聚合。
附图说明
图1戊二胺癸二酸盐的最小不对成单元的分子椭球图;
图2戊二胺癸二酸盐的沿c轴方向的晶胞结构图;
图3戊二胺癸二酸盐的沿c轴方向的晶胞堆积图;
图4戊二胺癸二酸盐的X-ray粉末衍射图谱;
图5戊二胺癸二酸盐X-ray粉末衍射的特征谱线;
图6戊二胺癸二酸盐晶体及其结构相关信息;
图7戊二胺癸二酸盐结构中的键长信息(Angstrom);
图8戊二胺癸二酸盐结构中的键角信息(Deg);
图9戊二胺癸二酸盐结构中的二面角信息(Deg);
图10戊二胺癸二酸盐结构中的氢键信息(Angstrom,Deg);
图11产品的表征;
图12稳定性实验。
具体实施方式
本发明涉及的戊二胺癸二酸盐结晶粉末以及本发明所述的组合物的制备方法,通过下面非限制性的实施例将进一步阐明,以下实施例只是描述性的,不是限制性的,不能以限定本发明的保护范围。
实施例1:
将15.00g的戊二胺加入到130g甲醇溶液中,充分搅匀,形成戊二胺甲醇溶液。将29.69g的癸二酸溶解于350g甲醇中,在25℃下,以2mL/min的流速滴入戊二胺甲醇溶液中,在搅拌状态下进行结晶,并监测过程pH变化,在pH 10.5左右,加入0.15g晶种,暂停流加,养晶3h后,以0.7mL/min的流速将癸二酸甲醇溶液滴入结晶体系,待完全流加结束后,继续搅拌2h,下罐,通过抽滤进行晶桨的固液分离,而后用80~100mL甲醇洗涤,而后于45℃下真空鼓风干燥8h,获得戊二胺癸二酸盐结晶粉末其粉末X射线衍射图谱如图4所示,以衍射角2θ±0.1表示为:9.62,11.06,17.54,19.96,21.08,22.24,27.28等。将其配制成质量分数为5%的水溶液时,体系pH值为7.5。该粉末具有良好的颗粒性、流动性、稳定性。
实施例2:
将15.00g戊二胺加入到100mL 90%乙醇水溶液中(乙醇体积分数为90%),充分搅匀,形成戊二胺乙醇水溶液。将35g癸二酸固体加入到350mL 90%的乙醇水溶液中(乙醇体积分数为90%),形成癸二酸的乙醇水溶液,而后将二者混合于500mL结晶器中,控制温度在25℃,搅拌48h,出现白色晶体物质,下罐,抽滤的方式进行固液分离,用150mL 95%的乙醇洗涤固体,而后微波干燥固体8h,维持温度45~60℃,即得 戊二胺癸二酸盐结晶粉末,产品的粉末X射线图谱如附图4所示,以衍射角2θ±0.1表示为:19.96,24.06,9.62,27.28,25.42,21.08,24.48,11.06,26.14,23.68,30.52等,如附图5所示。其晶体结构如图6所示,属于单斜晶系,C2空间群,
Figure PCTCN2018083637-appb-000010
Figure PCTCN2018083637-appb-000011
β=92.394(2)°,晶胞体积
Figure PCTCN2018083637-appb-000012
晶胞内最小不对称单元数Z=2。在其最小不对称单元中,含有1个戊二胺阳离子和1个癸二酸阴离子,其晶胞的最小不对称单元图以及晶胞堆积图分别如附图1和附图3所示,其晶体结构的详细数据——键长信息如图7所示,键角信息如图8所示,二面角信息如图9所示,氢键信息如图10所示。其晶体结构测定过程中,衍射数据在298(2)K下进行收集。将其配制成质量分数为5%的水溶液时,体系pH值为5.6。该粉末具有良好的颗粒性、流动性、稳定性。
实施例3:
将45.00g癸二酸溶解于500g的无水乙醇之中,呈均一的癸二酸乙醇溶液,而后移入1000mL的结晶器中。将30.00g的戊二胺溶于300mL 95%的丙酮水(丙酮体积分数占95%)溶液之中,形成戊二胺丙酮水溶液。而后用泵将戊二胺丙酮水溶液以3mL/min的方式滴入癸二酸乙醇溶液之中,当加入的戊二胺的物质的量为癸二酸物质的量的20%时,加入0.3g晶种,以0.3mL/min加入剩余戊二胺丙酮水溶液,整个过程在搅拌状态下进行,温度控制在50℃,当完全流加结束时,以2℃/h的速率降温至15℃,结晶结束,下罐进行固液分离,而后用100mL无水乙醇洗涤滤饼,并置于35~45℃下微波真空干燥8h,即获得戊二胺癸二酸盐结晶粉末,将其配制成质量分数为5%的水溶液时,体系pH值为8.8。该粉末具有良好的颗粒性、流动性、稳定性。
实施例4:
含有50g/L的戊二胺水溶液中,使用薄膜蒸发器或者旋蒸浓缩器,将此水溶液浓缩8倍,即浓缩后体积为原有体积的1/8,而后置于结晶器中,搅拌状态下降温至15℃,而后加入2倍于料液体积的15℃下的无水乙醇,充分混匀后,加入癸二酸固体,加入的量与体系中戊二胺的摩尔数相当,搅拌结晶48h,下罐进行固液分离,用2倍于料液体积的95%的乙醇进行洗涤,而后60℃下真空干燥10h,即得戊二胺癸二酸结晶粉末, 粉末含水量为0,将其配制成质量分数为5%的水溶液时,体系pH值为7.1。该粉末具有良好的颗粒性、流动性、稳定性,无恶臭气味。
实施例5:
将50.00g癸二酸溶解于350g的正丙醇之中,呈均一的癸二酸正丙醇溶液,然后再加入乙酸乙酯、甲酸乙酯、乙酸甲酯、异丙醇中的一种或几种的混合液,添加量为250mL,而后移入1000mL的结晶器中。将20.00g的戊二胺溶于350mL的乙酸乙酯中,形成戊二胺乙酸乙酯溶液。而后用泵将戊二胺乙酸乙酯溶液以4mL/min的方式滴入癸二酸溶液之中,当加入的戊二胺的物质的量为癸二酸物质的量的10%时,加入0.2g晶种,温度控制在10℃,当完全流加结束时,继续搅拌10h,结晶结束,下罐进行固液分离,而后用100mL无水丙酮洗涤滤饼,并置于70℃下真空干燥6h,即获得戊二胺癸二酸盐结晶粉末,将其配制成质量分数为5%的水溶液时,体系pH值为3.0~6.5。
实施例6:
将50.00g癸二酸溶解于300g的正丙醇-DMSO溶液之中(正丙醇与DMSO的体积比为4:1),呈均一的癸二酸溶液,然后再加入丁酮、石油醚、四氢呋喃中的一种或几种的混合液,添加量为200mL,而后移入1000mL的结晶器中。将50.00g的戊二胺溶于250mL的丁酮,形成戊二胺丁酮溶液。而后在搅拌状态下,将戊二胺丁酮溶液直接倒入癸二酸溶液之中,维持体系温度25℃,转速250r/min,搅拌1.0h,结晶结束,下罐进行固液分离,而后用80mL无水丁酮洗涤滤饼,并于50~70℃下微波真空干燥5h,即获得戊二胺癸二酸盐结晶粉末,粉末含水量为0,将其配制成质量分数为5%的水溶液时,体系pH值为7.0~9.8。
实施例7:
取实施例1至6中所得的样品,分别测试其d 10,d 50,堆积密度,振实密度及溶剂残留,以说明本发明所述工艺所得戊二胺癸二酸盐产品具有良好的颗粒性和流动性,而且产品的有机溶剂残留几乎检测不到,结果如图11所示。
取实施例1至6中所得的样品,将其放置于60℃下进行稳定性实验,间隔48h分别测试其在430nm下的透光,并用初始样品做对照,结果如图12所示,发现六种实施例中所得样品,颜色均没有发生变化,T 430nm没有明显下降,说明所得样品稳定性良好。

Claims (13)

  1. 一种戊二胺癸二酸盐,其特征在于,所述的戊二胺癸二酸盐是戊二胺二价阳离子与癸二酸二价阴离子以摩尔比为1:1的方式结合而成的常温下呈现固体状态的盐,其分子结构如式I所示:
    Figure PCTCN2018083637-appb-100001
  2. 一种戊二胺癸二酸盐的晶体,其特征在于,所述的分子式为C 15H 32N 2O 4,不含结晶水,分子结构式如式II所示:
    Figure PCTCN2018083637-appb-100002
  3. 根据权利要求2所述的戊二胺癸二酸盐的晶体,其特征在于,其晶体结构属于单斜晶系,C2空间群,晶胞参数为
    Figure PCTCN2018083637-appb-100003
    β=92.394(2)°,晶胞体积
    Figure PCTCN2018083637-appb-100004
    晶胞内最小不对称单元数Z=2,在其最小不对称单元中,含有1个戊二胺阳离子和1个癸二酸阴离子。
  4. 根据权利要求2所述的戊二胺癸二酸盐的晶体,其特征在于,具有如图4所示的用CuKα射线作为特征X射线进行衍射分析的衍射图谱。
  5. 根据权利要求2~4中任意一项所述的戊二胺癸二酸盐的晶体,其特征在于,结晶粉末具有大于0.22g/mL的堆积密度。
  6. 根据权利要求2~4中任意一项所述的戊二胺癸二酸盐的晶体,其特征在于,结晶粉末具有大于0.27g/mL的振实密度。
  7. 根据权利要求2~4中任意一项所述的戊二胺癸二酸盐的晶体,其特征在于,结晶粉末具有大于21μm的d 50
  8. 根据权利要求2~4中任意一项所述的戊二胺癸二酸盐的晶体,其特征在于,结晶粉末具有大于8μm的d 10
  9. 根据权利要求2~4中任意一项所述的戊二胺癸二酸盐的晶体,其特征在于,将所述晶体配制成质量分数为5%的水溶液时,体系pH值在3.0~9.8之间。
  10. 一种组合物,包含
    (i)根据权利要求2~4中任一项所述的晶体,和
    (ii)(a)癸二酸固体;或
    (b)戊二胺。
  11. 权利要求2~4中任意一项所述的戊二胺癸二酸盐的晶体的制备方法,其特征在于,从含有溶解的戊二胺和癸二酸的溶液中结晶出戊二胺癸二酸盐;从所述溶液中分离出晶体;干燥所分离的晶体。
  12. 根据权利要求11所述的制备方法,其特征在于,所述的含有溶解的戊二胺和癸二酸的溶液按照下述任一种方式制备得到:
    (i)将癸二酸固体和戊二胺同时加入溶剂中;
    (ii)将癸二酸固体和戊二胺先后加入溶剂中;
    (iii)将戊二胺加入溶剂中形成戊二胺溶液;将癸二酸固体加入溶剂中形成癸二酸溶液或形成含有部分未溶解的癸二酸固体的溶液;而后将两者混合。
  13. 根据权利要求12所述的方法,其特征在于,所述的溶剂包括甲醇、乙醇、水、正丙醇、乙酸乙酯、甲酸乙酯、乙酸甲酯、异丙醇、丙酮、丁酮、石油醚和DMSO的一种或它们的混合溶剂。
PCT/CN2018/083637 2018-04-13 2018-04-19 戊二胺癸二酸盐及其晶体 WO2019196132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810335906.7A CN108586265A (zh) 2018-04-13 2018-04-13 戊二胺癸二酸盐及其晶体
CN201810335906.7 2018-04-13

Publications (1)

Publication Number Publication Date
WO2019196132A1 true WO2019196132A1 (zh) 2019-10-17

Family

ID=63622389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083637 WO2019196132A1 (zh) 2018-04-13 2018-04-19 戊二胺癸二酸盐及其晶体

Country Status (2)

Country Link
CN (1) CN108586265A (zh)
WO (1) WO2019196132A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979450A (zh) * 2019-12-12 2021-06-18 南通新宙邦电子材料有限公司 一种壬二酸氢铵的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305022B (zh) * 2019-07-30 2020-12-22 南京工业大学 一种利用微波提取戊二胺的方法
CN116003266A (zh) * 2021-10-22 2023-04-25 中国石油化工股份有限公司 一种长碳链尼龙盐的制备方法及其应用
CN115894250B (zh) * 2022-12-20 2024-04-19 南京工业大学 尼龙513盐晶体及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201314A (zh) * 2010-11-26 2013-07-10 尤尼吉可株式会社 尼龙盐粉末的制造方法及尼龙的制造方法
WO2016095137A1 (zh) * 2014-12-17 2016-06-23 上海凯赛生物技术研发中心有限公司 一种尼龙盐及其制备方法
CN105777553A (zh) * 2014-12-17 2016-07-20 上海凯赛生物技术研发中心有限公司 一种尼龙盐的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201314A (zh) * 2010-11-26 2013-07-10 尤尼吉可株式会社 尼龙盐粉末的制造方法及尼龙的制造方法
WO2016095137A1 (zh) * 2014-12-17 2016-06-23 上海凯赛生物技术研发中心有限公司 一种尼龙盐及其制备方法
CN105777553A (zh) * 2014-12-17 2016-07-20 上海凯赛生物技术研发中心有限公司 一种尼龙盐的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979450A (zh) * 2019-12-12 2021-06-18 南通新宙邦电子材料有限公司 一种壬二酸氢铵的制备方法
CN112979450B (zh) * 2019-12-12 2023-11-03 南通新宙邦电子材料有限公司 一种壬二酸氢铵的制备方法

Also Published As

Publication number Publication date
CN108586265A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2019196132A1 (zh) 戊二胺癸二酸盐及其晶体
CN109265353B (zh) 戊二胺十二烷二酸盐及其晶体
WO2019037438A1 (zh) 戊二胺己二酸盐及其晶体
CN106146520B (zh) 一种高介电常数、低介电损耗低温相变化合物制备方法及其应用
CN102311124B (zh) 一种Silicalite-1/ZSM-5复合分子筛的制备方法
CN101045554A (zh) 水热合成制备均分散四方相钛酸钡纳米晶的方法
WO2019230685A1 (ja) 2,2'-ビス(カルボキシメトキシ)-1,1'-ビナフチルの結晶体
JP7295692B2 (ja) 2,2’-ビス(カルボキシメトキシ)-1,1’-ビナフチルの結晶体
CN109180494B (zh) 戊二胺丁二酸盐及其晶体
CN109265355B (zh) 戊二胺辛二酸盐及其晶体
CN112266485B (zh) 一种普适性的二维稀土MOFs材料及其无溶剂化学剥离方法和应用
CN114437005B (zh) 丁二胺呋喃二甲酸盐及其晶体
CN109265354B (zh) 戊二胺乙二酸盐及其晶体
CN111087295B (zh) 一种戊二胺丁二酸对苯二甲酸共晶盐及其制备方法
CN115894250B (zh) 尼龙513盐晶体及其制备方法
CN113444044A (zh) 基于方酸的介电转变材料及其制备方法
WO2019128995A1 (zh) 一种铵盐、钙钛矿材料和应用
CN110698683B (zh) 一维镝聚合物及其制备方法
CN117385469B (zh) 一种利用天然石膏制备α-半水石膏晶种的方法
CN104788507B (zh) 一种镁掺杂金属‑有机框架DMMg0.5Mn0.5F单晶材料及其制备方法
US4430511A (en) Method for producing terephthalic acid
CN112850739B (zh) 一种大晶粒ltj沸石及其制备方法
US4356105A (en) Low viscosity slurry and method of preparing same
CN116375598A (zh) 一种4,4′-偶氮二苯甲酸菲罗啉染料共晶及其制备方法
CN110872233B (zh) 一种有机铵盐、钙钛矿材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914346

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914346

Country of ref document: EP

Kind code of ref document: A1