WO2019189805A1 - 水分バリア性積層体 - Google Patents

水分バリア性積層体 Download PDF

Info

Publication number
WO2019189805A1
WO2019189805A1 PCT/JP2019/014121 JP2019014121W WO2019189805A1 WO 2019189805 A1 WO2019189805 A1 WO 2019189805A1 JP 2019014121 W JP2019014121 W JP 2019014121W WO 2019189805 A1 WO2019189805 A1 WO 2019189805A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
layer
trap layer
barrier
barrier laminate
Prior art date
Application number
PCT/JP2019/014121
Other languages
English (en)
French (fr)
Inventor
美理 八木澤
瞬也 南郷
真平 奥山
圭将 高山
芳弘 太田
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to CN201980035606.XA priority Critical patent/CN112203839B/zh
Priority to US17/042,680 priority patent/US11565508B2/en
Priority to KR1020207030922A priority patent/KR102501001B1/ko
Priority to EP19774667.0A priority patent/EP3778212B1/en
Publication of WO2019189805A1 publication Critical patent/WO2019189805A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1023Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1024Zirconia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/716Degradable
    • B32B2307/7163Biodegradable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/728Hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/08Polymers of acrylic acid esters, e.g. PMA, i.e. polymethylacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/206Organic displays, e.g. OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08J2367/03Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the hydroxy and the carboxyl groups directly linked to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a moisture barrier laminate having a moisture trap layer.
  • organic electroluminescence organic EL
  • solar cells solar cells
  • touch panels electronic paper
  • electronic paper etc.
  • inorganic barrier layer made of silicon oxide or the like on the surface of the plastic substrate by vapor deposition.
  • Patent Document 1 a film provided with such an inorganic thin film is widely used as a barrier film.
  • Such a barrier film is insufficient to satisfy the moisture barrier property required for the electronic device as described above, and the residual moisture of the resin used for the plastic substrate significantly deteriorates the device.
  • Patent Document 2 a moisture barrier laminate having a structure in which a moisture trap layer using a hygroscopic ionic polymer as a matrix is also proposed by the present applicant (Patent Document 2). ).
  • the moisture trap layer as described above is formed by applying a coating composition for forming a trap layer containing an ionic polymer on an inorganic barrier layer formed on the surface of a plastic film by vapor deposition or the like and curing it.
  • the formation of such a layer exhibits excellent moisture barrier properties.
  • an object of the present invention is to provide a moisture barrier laminate having an excellent moisture barrier property by providing a moisture trap layer and maximizing the moisture trap performance of the moisture trap layer.
  • the present invention includes a gas barrier film substrate A having a gas barrier layer, and a moisture trap layer B formed using the film substrate A as a base, and the film substrate A of the moisture trap layer B is A protective resin layer C having a moisture permeability of 40 ⁇ 10 ° C. and 90% RH in the range of 4.0 ⁇ 10 to 5.0 ⁇ 10 4 g / m 2 / day is laminated on the opposite surface.
  • a moisture barrier laminate is provided.
  • the moisture trap layer B has a water content measured at 230 ° C. in accordance with JIS-7251 being maintained at 0.15 g / g or less, (2)
  • the moisture trap layer B contains a hygroscopic polymer, (3)
  • the moisture trap layer B has a structure in which a hygroscopic agent having a lower reach humidity than the matrix is further dispersed in a hygroscopic matrix made of an ionic polymer.
  • the ionic polymer contained in the moisture trap layer B is a cationic polymer
  • the protective resin layer C is formed of an acrylic resin, a urethane resin or a polyester resin, (6)
  • the protective resin layer C has a thickness of 0.1 to 15 ⁇ m, (7)
  • metal oxide particles as a refractive index adjuster are blended, (8)
  • the metal oxide is silica, alumina, titania or zirconia, (9)
  • a transparent conductive film is provided on the protective layer (C), Is preferred.
  • the moisture barrier laminate of the present invention has a basic structure in which a moisture trap layer B is formed with a gas barrier film substrate A having a gas barrier layer as a base. Is characterized in that a protective resin layer C having a moisture permeability of 4.0 ⁇ 10 to 5.0 ⁇ 10 4 g / m 2 / day is laminated. By stacking the protective resin layer C having humidity, moisture absorption of the moisture trap layer in the manufacturing process of the moisture barrier laminate can be effectively prevented, and as a result, the moisture trap layer is in a dry state.
  • the moisture barrier laminate can be used for use while being held, and the moisture barrier property of the moisture trap layer can be maximized.
  • the moisture trap layer B formed with the gas barrier film substrate A as a base must be dried after the formation to release moisture absorbed in the moisture trap layer B. That is, as the moisture absorption moisture of the moisture trap layer B increases, the moisture content of the moisture trap layer B is saturated in a short time, and the moisture trap property is impaired.
  • the moisture trap layer formed on the plastic substrate is formed on the barrier film provided with the second inorganic barrier layer. It has the structure laminated
  • the moisture trap layer is dried by attaching a desiccant sheet in which a desiccant is dispersed and supplying the sheet to a heated dry atmosphere. If drying is performed without attaching the desiccant sheet, the moisture released from the moisture trap layer will be absorbed again by the moisture trap layer. In addition, the desiccant effect of the desiccant sheet increases the drying efficiency.
  • the dried film having been subjected to the moisture trap layer drying process in this manner is wound and stored on a roll or the like, if necessary, and unwound from the roll at an appropriate time to peel off the desiccant sheet.
  • the barrier film provided with the second inorganic barrier layer is laminated.
  • the moisture trap layer is dried and the barrier film is laminated, but according to the study by the present inventors, after the desiccant sheet is peeled off, a short time until the barrier film is laminated is short. It was found that the moisture trap layer absorbs moisture over time, and the moisture trap layer performance deteriorates due to moisture absorption at this time. In addition, the moisture absorption in such a short time is more remarkable as the performance of the moisture trap layer is higher, and the performance degradation is larger.
  • the line speed should be increased and the barrier film may be laminated immediately after peeling off the desiccant sheet. There is a limit to increasing such a line speed.
  • the moisture trap layer when a protective resin layer having a moisture permeability in the range of 4.0 ⁇ 10 to 5.0 ⁇ 10 4 g / m 2 / day is formed on the moisture trap layer according to the present invention, the moisture content after 30 seconds is included.
  • the increase in the amount of water is reduced to about 0.10 g or less per 1 g of the trap layer. That is, according to the present invention, by providing the protective resin layer C having an appropriate moisture permeability, the moisture trap layer after the desiccant sheet is peeled off can be effectively prevented from absorbing moisture. The performance degradation of the layer can be effectively avoided.
  • the moisture permeability of the protective resin layer C is lower, the moisture trapping effect of the moisture trap layer B is higher.
  • the moisture vapor transmission rate of the protective resin layer C is set to the predetermined range.
  • the schematic sectional side view which shows an example of the layer structure of the moisture-barrier laminated body of this invention.
  • the moisture barrier laminate of the present invention indicated as 1 as a whole comprises a gas barrier film substrate A and a moisture trap layer B formed using the film substrate A as a base. And a structure in which a protective resin layer C is provided on the surface of the moisture trap layer B, that is, on the surface opposite to the film base A.
  • Such a moisture barrier laminate 1 is used by being attached to various devices that dislike moisture intrusion. For example, as shown in FIG. It is located outside (under a high humidity atmosphere), and is disposed and used so that the protective resin layer C is located inside the device (on the low humidity side).
  • the gas barrier film substrate A is a film having a considerably low moisture permeability as compared with a protective resin layer C described later.
  • the moisture permeability at 40 ° C. and a relative humidity of 90% is 1.0 g / m 2 / day. It is in the following range.
  • Such a film substrate A is composed of a gas barrier resin such as an ethylene / vinyl alcohol copolymer or an aromatic polyamide, or a layer of a gas barrier resin made of polyolefin, polyester, or the like through an adhesive resin layer as appropriate.
  • a gas barrier resin such as an ethylene / vinyl alcohol copolymer or an aromatic polyamide
  • a layer of a gas barrier resin made of polyolefin, polyester, or the like through an adhesive resin layer as appropriate.
  • the inorganic barrier layer a1 has a plastic base layer a2 as a base. It is preferable to have a formed structure.
  • the inorganic barrier layer a1 is a layer formed using the plastic substrate layer a2 as a base, and may be a known one, for example, from JP-A-2015-96320, and is representative of sputtering, vacuum deposition, ion plating, and the like.
  • Inorganic vapor deposition films formed by physical vapor deposition or chemical vapor deposition typified by plasma CVD for example, films formed of various metals or metal oxides can be said to ensure high oxygen barrier properties.
  • it is preferably formed by plasma CVD in that it is uniformly formed even on a surface having unevenness and exhibits excellent barrier properties against moisture as well as oxygen. .
  • the vapor deposition film formed by plasma CVD includes a film-forming metal or the metal in which a plastic substrate layer a2 in the form of a film serving as a base of the inorganic barrier layer a1 is disposed in a plasma processing chamber maintained at a predetermined degree of vacuum.
  • Compound gas (reaction gas) and oxidizing gas (usually oxygen or NOx gas) are shielded by a metal wall with a carrier gas such as argon or helium, as appropriate, and sealed to a predetermined vacuum level.
  • a glow discharge is generated by a microwave electric field or a high-frequency electric field, a plasma is generated by the electric energy, and the decomposition reaction product of the compound is supplied to the plastic substrate layer a2. It is obtained by depositing on the surface and forming a film.
  • the reaction gas has a flexible region containing a carbon component at the interface of the underlying base material layer a2 and a film having a region with a high degree of oxidation and excellent barrier properties.
  • a gas such as an organometallic compound, for example, an organoaluminum compound such as trialkylaluminum, an organotitanium compound, an organozirconium compound, or an organosilicon compound, and particularly compare the inorganic barrier layer a1 having a high barrier property against oxygen.
  • Organosilicon compounds are most preferred because they can be formed easily and efficiently.
  • the thickness of the above-described inorganic barrier layer a1 is set to a thickness that can satisfy a predetermined moisture permeability according to the thickness of the plastic base material layer a2 serving as a base, and is generally 4 to 500 nm, particularly 30. It suffices to have a thickness of about 400 nm.
  • the inorganic barrier layer a1 can be formed on the plastic substrate layer a2 by coating or the like without depending on a technique such as vapor deposition. That is, the inorganic barrier layer a1 formed by coating has lower characteristics such as oxygen barrier properties than those formed by vapor deposition described above, but depending on the required barrier properties against oxygen or the like, the coating may be performed. Thus, the inorganic barrier layer a1 can be formed.
  • the inorganic barrier layer a1 formed by coating contains polysilazane, a polycondensable silane compound (eg, alkoxysilane) or the like, and a polycondensable alumina compound (eg, alkoxyaluminum) as a film-forming component.
  • a polycondensable silane compound eg, alkoxysilane
  • a polycondensable alumina compound eg, alkoxyaluminum
  • an organic solvent solution in which inorganic fine particles such as alumina and alumina are mixed is applied to a predetermined surface, heated, and evaporated to evaporate the organic solvent to form a film.
  • the plastic base layer a2 is a base for the inorganic barrier layer a1, and is usually injection- or co-injection molding, extrusion, or extrusion with a thermoplastic or thermosetting resin depending on the form. Molded by coextrusion molding, film or sheet molding, compression moldability, cast polymerization and the like.
  • thermoplastic resin is preferable from the viewpoint of moldability, cost, and the like.
  • thermoplastic resins include low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene.
  • Polyolefins such as random or block copolymers of ⁇ -olefins such as: Cyclic olefin resins such as cyclic olefin copolymers and cyclic olefin polymers, ethylene / vinyl acetate copolymers, ethylene / vinyl alcohol copolymers, ethylene / chlorides Ethylene / vinyl compound copolymer such as vinyl copolymer; Styrenic resin such as polystyrene, acrylonitrile / styrene copolymer, ABS, ⁇ -methylstyrene / styrene copolymer; polyvinyl chloride, polyvinylidene chloride, vinyl chloride -Vinylidene chloride copolymer, Polyvinyl compounds such as polymethyl acrylate and polymethyl methacrylate; polyamides such as nylon 6, nylon 6-6, nylon 6-10, nylon 11 and nylon 12, polyethylene terephthalate (PET),
  • the plastic substrate layer a2 can be formed of a gas barrier resin having excellent oxygen barrier properties such as an ethylene / vinyl alcohol copolymer, and a multilayer structure including a layer formed of such a gas barrier resin. You may have. That is, the above-described inorganic barrier layer a1 can be formed using the plastic substrate layer a2 containing such a gas barrier resin as a base.
  • a film of a polyester resin such as polyethylene terephthalate (PET), polybutylene terephthalate, or polyethylene naphthalate, or a film of a cyclic olefin resin such as a polyimide resin, a cyclic olefin copolymer, or a cyclic olefin polymer as the base layer 5.
  • PET polyethylene terephthalate
  • a cyclic olefin resin such as a polyimide resin, a cyclic olefin copolymer, or a cyclic olefin polymer
  • the thickness of the plastic substrate layer a2 described above is not particularly limited. However, if the thickness is excessively large, the moisture permeability of the film substrate A increases, and it may be difficult to satisfy the moisture permeability described above. There is. Further, since the flexibility of the film substrate A is lost, the thickness of the substrate layer a1 is usually 200 ⁇ m or less, more preferably 125 ⁇ m or less, and in this range, the moisture permeability of the barrier film 1 is within the range described above. Is set to be
  • the moisture trap layer B described below is formed using such a gas barrier film substrate A as a base.
  • the moisture trap layer B is formed using the inorganic barrier layer a1 as a base, but it is also possible to form the moisture trap layer B using the plastic substrate layer a2 as a base.
  • the moisture trap layer B blocks moisture flowing in the thickness direction of the gas barrier film substrate A described above, and is provided when it is required to impart moisture barrier properties.
  • the moisture trap layer B is not particularly limited as long as it exhibits moisture barrier properties, and may be a layer known per se such as a material in which a hygroscopic agent such as zeolite is dispersed in a predetermined resin layer.
  • a high barrier property against moisture for example, a water permeability of 10 ⁇ 5 g / m 2 / day or less, further 10 ⁇ 6 g / m 2 / day or less (23 ° C., RH 50%).
  • a hygroscopic agent having a low ultimate humidity is dispersed effectively avoids deformation such as swelling caused by moisture absorption. Because it can.
  • the ionic polymer that is preferably used for forming the moisture trap layer B includes a cationic polymer and an anionic polymer.
  • Cationic polymers include amine monomers such as allylamine, ethyleneimine, vinylbenzyltrimethylamine, [4- (4-vinylphenyl) -methyl] -trimethylamine, vinylbenzyltriethylamine; nitrogen-containing compounds such as vinylpyridine and vinylimidazole Polymerize or copolymerize at least one cationic monomer typified by a heterocyclic monomer; and salts thereof; together with another copolymerizable monomer as appropriate. Those obtained by partial neutralization by acid treatment are used.
  • a cationic polymer is described in detail in JP-A-2015-96320 and the like, and details thereof are omitted, but in general, polyallylamine is preferable from the viewpoint of film formability and the like.
  • examples of the anionic polymer include carboxylic acid monomers such as methacrylic acid, acrylic acid, and maleic anhydride; sulfonic acid monomers such as ⁇ -halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid. Polymerization of at least one anionic monomer represented by a phosphonic acid monomer such as vinyl phosphate; and salts of these monomers together with other copolymerizable monomers as appropriate Or what is obtained by carrying out copolymerization and further neutralizing partially by alkali treatment as needed is used. Such anionic polymers are also described in detail in JP-A-2015-96320 and the details are omitted, but in general, poly (meth) acrylic acid and partially neutralized products thereof (for example, one Part is Na salt).
  • a hygroscopic agent that can suitably prevent deformation due to swelling by blending in the ionic polymer that is, as a hygroscopic agent having a lower ultimate humidity than the ionic polymer, for example, humidity 80% RH and temperature 30 ° C.
  • the ultimate humidity under the environmental conditions is 6% or less. In other words, if the humidity reached by this hygroscopic agent is higher than that of the ionic polymer, the moisture absorbed in the matrix is not sufficiently confined, and the release of moisture is likely to occur, but the moisture absorption is lower than that of the ionic polymer.
  • the agent When the agent is incorporated in the ionic polymer, not only can moisture be trapped effectively even in a low humidity atmosphere, but moisture absorbed by the ionic polymer can be trapped by the hygroscopic agent. Therefore, release of moisture can be suppressed and high moisture barrier properties can be exhibited.
  • the above-mentioned hygroscopic agents generally have a water absorption rate of 20% or more (JIS K-7209-1984) in an atmosphere with a humidity of 80% RH and a temperature of 30 ° C. is there.
  • inorganic hygroscopic agents include clay minerals such as zeolite, alumina, activated carbon, and montmorillonite, silica gel, calcium oxide, and magnesium sulfate.
  • examples of the organic hygroscopic agent include a crosslinked product of an anionic polymer or a partially neutralized product thereof.
  • anionic polymer examples include carboxylic acid monomers (such as (meth) acrylic acid and maleic anhydride), sulfonic acid monomers (such as halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid), and phosphones.
  • carboxylic acid monomers such as (meth) acrylic acid and maleic anhydride
  • sulfonic acid monomers such as halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid
  • phosphones examples include those obtained by polymerizing or copolymerizing at least one of an anionic monomer represented by an acid monomer (such as vinyl phosphoric acid) and salts of these monomers with other monomers. be able to.
  • organic moisture absorbents are effective.
  • fine particles of crosslinked poly (meth) acrylic acid Na are typical organic moisture absorbents.
  • a hygroscopic agent having a small particle size is preferable from the viewpoint of having a large specific surface area and high hygroscopicity (for example, an average primary particle size of 100 nm or less, particularly 80 nm or less).
  • An organic polymer hygroscopic agent with a small diameter is most suitable. That is, the organic polymer hygroscopic agent has a very good dispersibility in the matrix of the ionic polymer and can be uniformly dispersed, and as a polymerization method for producing this, emulsion polymerization, suspension polymerization, etc.
  • the particle shape can be made into a fine and uniform spherical shape, and by mixing this to a certain extent, extremely high transparency can be ensured.
  • the organic polymer hygroscopic agent with a small particle size not only exhibits extremely low humidity as described above, but also exhibits high hygroscopicity, and the volume change due to swelling can be extremely reduced by crosslinking, thus suppressing the volume change.
  • it is most suitable for reducing the humidity to a place where the environmental atmosphere is completely dry or close to the dry condition.
  • the amount of the hygroscopic agent as described above sufficiently exerts the characteristics, effectively suppresses the moisture barrier property and effectively suppresses the dimensional change due to swelling, and at the same time than the barrier property exhibited by the inorganic barrier layer a1.
  • the type of ionic polymer For example, when the moisture trap layer B is formed by dispersing the hygroscopic agent in a cationic polymer, the amount is generally 50 parts by mass or more, particularly 100 to 900 parts by mass per 100 parts by mass of the cationic polymer. It is preferably present, and more preferably in an amount of 200 to 600 parts by weight.
  • the hygroscopic agent When the hygroscopic agent is dispersed in the anionic polymer, it is preferably present in an amount of 50 parts by weight or more, particularly 100 to 1300 parts by weight, more preferably 150 to 1200 parts by weight per 100 parts by weight of the anionic polymer. More preferred is the amount of parts.
  • a crosslinked structure is introduced into the ionic polymer.
  • a crosslinked structure when water is absorbed, the molecules of the ionic polymer are bound to each other by crosslinking, and volume change due to swelling (water absorption) is suppressed. Improvement in mechanical strength and dimensional stability.
  • Such a crosslinked structure can be introduced by blending a crosslinking agent in the coating composition for forming the moisture trap layer B.
  • the cross-linking agent for introducing such a cross-linked structure is slightly different between a case where a cross-linked structure is introduced into a cationic polymer and a case where a cross-linked structure is introduced into an anionic polymer.
  • a crosslinking agent for a cationic polymer for example, as described in JP-A-2015-96320, a crosslinkable functional group (for example, an epoxy group) capable of reacting with a cationic group, hydrolysis and dehydration
  • a crosslinkable functional group for example, an epoxy group
  • a compound having a functional group for example, an alkoxysilyl group capable of forming a siloxane structure in the crosslinked structure through condensation
  • X-SiR 1 n (OR 2 ) 3-n (1)
  • X is an organic group having an epoxy group at the terminal
  • R 1 and R 2 are each a methyl group, an ethyl group, or an isopropyl group
  • n is 0, 1, or 2
  • the organic group X having an epoxy group in the above formula (1) is typically a ⁇ -glycidoxyalkyl group, such as ⁇ -glycidoxypropyltrimethoxysilane or ⁇ - Glycidoxypropylmethyldimethoxysilane is preferably used as a crosslinking agent.
  • the epoxy group in the said Formula (1) is an alicyclic epoxy group like an epoxy cyclohexyl group is also suitable as a crosslinking agent.
  • an alicyclic ring is included in the cross-linked structure of the matrix together with the siloxane structure.
  • a structure is introduced. The introduction of such an alicyclic structure can more effectively exert the function of a matrix that forms a network structure of a space suitable for moisture absorption.
  • a compound having a plurality of epoxy groups and alicyclic groups for example, the following formula (2):
  • G is a glycidyl group;
  • A is a divalent hydrocarbon group having an aliphatic ring, for example, a cycloalkylene group.
  • the diglycidyl ester represented by these can be used as a crosslinking agent.
  • a typical example of such a diglycidyl ester is represented by the following formula (2-1).
  • the diglycidyl ester of the formula (2) does not have an alkoxysilyl group, but introduces an alicyclic structure into the cross-linked structure, thereby forming a network structure of a space suitable for moisture absorption in the matrix. It is effective.
  • the above-mentioned cross-linking agent is desirably used in an amount of 5 to 60 parts by weight, particularly 15 to 50 parts by weight, based on 100 parts by weight of the cationic polymer. It is desirable that the weight percent or more is the silane compound of the formula (1) described above.
  • a crosslinking agent for introducing a crosslinked structure into an anionic polymer as described in JP-A-2015-96320, a crosslinking agent capable of reacting with an ionic group possessed by an anionic polymer.
  • a compound having two or more functional groups for example, epoxy groups
  • G is a glycidyl group
  • A is a divalent hydrocarbon group having an aliphatic ring, for example, a cycloalkylene group.
  • the diglycidyl ester represented by these is used suitably.
  • an epoxy group reacts with an anionic group, and a crosslinked structure including an alicyclic structure with a divalent group A is formed in the matrix.
  • a cross-linked structure including an alicyclic structure is used to suppress swelling.
  • Particularly preferred among the above-mentioned diglycidyl esters are listed above, and are represented by the above formula (2-1) from the viewpoint that a network structure of a space suitable for moisture absorption can be formed.
  • Diglycidyl ester is most preferred.
  • Such a crosslinking agent for an anionic polymer is desirably used in an amount of 1 to 50 parts by weight, particularly 10 to 40 parts by weight, per 100 parts by weight of the anionic polymer.
  • the moisture trap layer B is formed by applying a coating composition prepared by dissolving or dispersing a predetermined hygroscopic polymer, hygroscopic agent, or the like in an organic solvent to the surface of the gas barrier film substrate A, particularly an inorganic barrier. It can apply by apply
  • the moisture content of the moisture trap layer (230 ° C., conforming to JIS-7251) is 0.15 g / g or less, particularly 0.1 g / g or less by providing the protective resin layer C described below. It is preferable that the water trapping layer B is maintained within the above range, whereby the performance of the moisture trap layer B can be sufficiently exerted and excellent moisture barrier properties can be secured.
  • the protective resin layer C is provided on the moisture trap layer B formed as described above.
  • the protective resin layer C has a moisture permeability of 4.0 ⁇ 10 to 5.0 ⁇ 10 4 g / m 2 / day at 40 ° C. and a relative humidity of 90%, preferably 4 Must be in the range of 0.0 ⁇ 10 2 to 3.0 ⁇ 10 4 g / m 2 / day. That is, when the moisture permeability is larger than the above range, the moisture absorption rate after the desiccant sheet is peeled off is high after the drying treatment described later, and the moisture content of the moisture trap layer B is set in the above range, for example. It becomes difficult.
  • the moisture permeability is smaller than the above range, the release of moisture from the moisture trap layer B is greatly limited. As a result, not only cannot drying be performed efficiently, but in some cases, the moisture content is In some cases, it becomes impossible to release moisture from the moisture trap layer B so as to be within the range.
  • the thickness is set so as to obtain a desired moisture permeability according to the degree of moisture barrier property of the resin used for forming the protective resin layer C.
  • the protective resin layer C can be formed of various plastic materials, and is usually thermoplastic in that the protective resin layer C can be easily formed by coating the surface of the moisture trap layer B. Made of plastic.
  • the protective resin layer C itself does not improve the moisture barrier property or oxygen barrier property, the thickness thereof is, for example, in the range of about 0.1 to 15 ⁇ m, particularly about 0.3 to 10 ⁇ m from the viewpoint of productivity. It is desirable. Accordingly, a resin for forming the protective resin layer C is preferably a resin exhibiting an appropriate moisture barrier property in that the above-described moisture permeability can be ensured with the above-described thickness.
  • (Meta) (Meth) acrylic resins such as alkyl acrylate, polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate (PEN), urethane resins, epoxy resins, olefin resins, and these resins may be appropriately copolymerized.
  • the protective layer C can be formed of a modified one.
  • the protective resin layer C is prepared by preparing a coating solution in which the resin is dissolved in a suitable volatile solvent, and the coating solution is applied to the surface of the moisture trap layer B, that is, the gas barrier film substrate A. It can be easily formed by coating the surface opposite to the side where is provided and heating the formed coating layer to volatilize the organic solvent.
  • ⁇ Drying process> In the present invention, after the protective layer C is formed on the moisture trap layer B as described above, a drying process is performed in order to release moisture contained in the moisture trap layer B.
  • Such a drying treatment is usually performed by appropriately heating the obtained laminate 1 under reduced pressure.
  • this drying treatment is performed by attaching a desiccant sheet on the protective layer C. It is done in the attached state. That is, since the protective layer C described above exhibits appropriate moisture permeability, the moisture contained in the moisture trap layer B is captured via the protective layer C by attaching a desiccant sheet to the protective layer C. Thus, the moisture content in the moisture trap layer B can be efficiently and greatly reduced.
  • moisture trapping layer B absorbs moisture during storage after drying treatment, and the performance of moisture trapping layer B cannot be fully exhibited during actual use. Because it ends up. Further, only by heat drying under reduced pressure, a part of the moisture released from the moisture trap layer B is again trapped in the moisture trap layer B, so that the moisture content of the moisture trap layer B is within the above-mentioned range. It becomes difficult to do.
  • the desiccant sheet As the above desiccant sheet, a known sheet in which a desiccant such as silica gel is dispersed in the resin can be used, but in order to more reliably maintain the moisture content in the above-described range, FIG. It is preferable to use the desiccant sheet 10 having the structure shown in FIG.
  • the desiccant sheet 10 includes a hygroscopic resin layer 11 and a surface protective resin layer 13 provided on one surface of the hygroscopic resin layer 11, and the other of the hygroscopic resin layer 11.
  • the surface (the surface on which the surface protective resin layer 13 is not provided) is a hygroscopic functional surface 15, and this surface 15 is detachably attached to the surface of the protective layer C described above.
  • the hygroscopic resin layer 11 is a resin layer in which a desiccant is dispersed.
  • a desiccant a publicly known inorganic or organic desiccant is used.
  • the inorganic desiccant include clay minerals such as zeolite, alumina, activated carbon, and montmorillonite, silica gel, calcium oxide, barium oxide, calcium chloride, and magnesium sulfate.
  • the organic desiccant include a crosslinked product of an anionic polymer or a partially neutralized product thereof.
  • anionic polymer examples include carboxylic acid monomers (such as (meth) acrylic acid and maleic anhydride), sulfonic acid monomers (such as halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid), and phosphones. Listed are those obtained by polymerizing or copolymerizing at least one of an anionic monomer represented by an acid monomer (such as vinyl phosphoric acid) and salts of these monomers with other monomers. be able to.
  • carboxylic acid monomers such as (meth) acrylic acid and maleic anhydride
  • sulfonic acid monomers such as halogenated vinyl sulfonic acid, styrene sulfonic acid, and vinyl sulfonic acid
  • phosphones examples include those obtained by polymerizing or copolymerizing at least one of an anionic monomer represented by an acid monomer (such as vinyl phosphoric acid) and salts of these monomers with other mono
  • the chemical adsorption by reaction with water rather than a desiccant that captures moisture by physical adsorption such as zeolite or silica gel.
  • Desirable desiccants such as calcium oxide are preferably used.
  • the above desiccant is preferably small in particle size from the viewpoint that it can be uniformly dispersed in the resin and has a large specific surface area, for example, in terms of volume measured by a laser diffraction scattering method.
  • the average primary particle diameter (D50) is preferably 20 ⁇ m or less, and is usually preferably dispersed in the hygroscopic resin layer 11 in an amount of 5 to 80 parts by mass per 100 parts by mass of the matrix resin. It is.
  • the resin that is a matrix in the hygroscopic resin layer 11 is not particularly limited, and a known thermoplastic resin can be used.
  • the surface protective resin layer 13 or moisture of the desiccant sheet is used.
  • an olefin resin such as low density polyethylene, high density polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene or ethylene
  • a random or block copolymer of ⁇ -olefins such as propylene, 1-butene and 4-methyl-1-pentene, or a cyclic olefin copolymer is preferably used.
  • the hygroscopicity is low, the release of moisture from the hygroscopic resin layer 11 is effectively prevented, and the deactivation of the desiccant before use is prevented.
  • Low density polyethylene (LDPE), linear low density polyethylene (LLDPE), polypropylene (PP) and blends thereof are preferred, among which low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) are preferred.
  • the surface protective resin layer 13 is a layer for preventing moisture from entering the hygroscopic resin layer 11 from the atmosphere.
  • the surface protective resin layer 13 is at 40 ° C. and 90% RH. It is preferable that the moisture permeability of the water is 40 g / m 2 / day or less, particularly 20 g / m 2 / day or less. That is, when this moisture permeability is high, the hygroscopicity of the desiccant in the hygroscopic resin layer 11 is impaired in a short time due to the intrusion of moisture from the atmosphere in the manufacturing process and handling stage before the drying treatment. It will be.
  • the resin for forming the surface protective resin layer 13 is not particularly limited as long as it can secure the above-described moisture permeability.
  • the hygroscopic resin layer. 11 is preferable, and thermoplastic polyesters such as polyethylene terephthalate (PET), polybutylene terephthalate, and polyethylene naphthalate (PEN) are preferably used. More preferably, olefin resin is used, and hygroscopic resin is used. From the viewpoint of good adhesion to the layer 11, an ethylene resin or a propylene resin is optimal.
  • a predetermined moisture permeability can be satisfied when the thickness is 40 ⁇ m or less, particularly 30 ⁇ m or less.
  • the surface protective resin layer 13 prevents moisture from entering the hygroscopic resin layer 11 from the atmosphere, and the hygroscopic resin layer.
  • the other surface of 11 becomes the hygroscopic functional surface 15, and moisture entering from this surface 15 is captured by the desiccant.
  • the moisture content of the moisture trap layer C is obtained by attaching the hygroscopic functional surface 15 of the desiccant sheet 10 to the surface of the protective layer C described above, performing a drying treatment, and storing it as it is. Can be maintained within a predetermined range.
  • the desiccant sheet 10 is affixed to the protective layer C using the blocking property of the resin that forms the hygroscopic functional surface 15, and the hygroscopic functional surface 15 is temporarily directly on the surface of the protective layer C.
  • the pressure-sensitive adhesive layer has a higher water permeability than the surface protective resin layer 13 described above, for example, 40 ° C.
  • the moisture permeability at 90% RH needs to be 40 g / m 2 / day or more, particularly 60 g / m 2 / day or more.
  • pressure-sensitive adhesive known pressure-sensitive adhesives such as (meth) acrylic pressure-sensitive adhesives and urethane-based pressure-sensitive adhesives can be used, and the water permeability as described above is ensured by these pressure-sensitive adhesives. What is necessary is just to form the adhesive layer below a fixed thickness (for example, 30 micrometers or less). Further, ethylene / vinyl acetate copolymer (EVA), soft polyolefin (LLDPE), metallocene polyolefin-based elastomer, and the like can also be used as the pressure-sensitive adhesive.
  • EVA ethylene / vinyl acetate copolymer
  • LLDPE soft polyolefin
  • metallocene polyolefin-based elastomer and the like can also be used as the pressure-sensitive adhesive.
  • said adhesive is adjusted so that the adhesive force with respect to the surface of the protective layer C which affixes this desiccant sheet 10 may be 0.3 N / 25mm or less.
  • the adhesive strength can be adjusted by introducing a cross-linked structure in the polymer forming the adhesive or adding a lubricant or the like in the adhesive depending on the material of the protective layer C to which the desiccant sheet 10 is attached. It can be performed by blending.
  • the desiccant sheet 10 described above can be easily molded by coextrusion using, for example, a desiccant-containing resin composition for forming the hygroscopic resin layer 11 and a resin for forming the surface protective resin layer 13.
  • a pressure-sensitive adhesive is roll-applied on the surface of the hygroscopic resin layer 11 formed as described above, or a solvent-containing pressure-sensitive adhesive coating composition is applied and dried appropriately.
  • it can also shape
  • the moisture barrier laminate film 1 is usually wound on a roll with the desiccant sheet 10 still attached. Stored. That is, in the state of being wound on the roll, the moisture barrier laminate 1 is held in a form sandwiched by 10 on the desiccant sheet. Therefore, in such a storage state, the moisture trap layer B Is effectively prevented, and the moisture content of the moisture trap layer B can be maintained within the above-described range.
  • Such a moisture barrier laminate 1 is used after the desiccant sheet 10 has been peeled off. At this time, the excellent effect of the present invention is exhibited. That is, in the moisture barrier laminate 1 of the present invention, the protective resin layer C is provided on the surface of the moisture trap layer B, and the protective resin layer C exhibits an appropriate moisture barrier property. The increase in the water content of B is suppressed. For example, upon exposure for 30 seconds, the water content of the moisture trap layer B is maintained within the above-described range (0.15 g / g or less, particularly 0.1 g / g or less). .
  • moisture trap layer B absorbs moisture during such a laminating operation. It can be effectively prevented by the protective resin layer C. That is, such a laminating operation is usually performed by peeling off the desiccant sheet 10 and then roll-coating an acrylic, epoxy or urethane dry laminate adhesive on the surface of the protective resin layer C, The gas barrier film substrate A of another moisture barrier laminate 1 is bonded to the application surface.
  • the presence of the protective resin layer C effectively absorbs moisture from the moisture trap layer B during such lamination work.
  • an increase in the water content of the moisture trap layer B is effectively avoided. That is, moisture absorption of the moisture trap layer B can be avoided without performing a laminating operation at an extremely high line speed, which is a great advantage of the present invention.
  • the moisture trap layer B can be reduced in water content by vacuum heat drying or oven baking when the trap layer B is applied and formed.
  • the increase in the thickness can be effectively prevented by the protective resin layer C.
  • the moisture barrier laminate 1 of the present invention can maximize the moisture barrier property of the moisture trap layer B, it can be used alone or as a multilayer structure as described above, for example, a known pressure sensitive adhesive or the like. It can be used as a sealing material by sticking to various devices using, effectively avoiding the intrusion of moisture into the inside of the device and keeping the inside of the device in a dry state. Inconvenience such as leakage can be effectively prevented.
  • Such a device is not particularly limited, and examples thereof include an organic EL element, a solar cell, a touch panel, an electronic panel, and the like, particularly an organic device that dislikes charge leakage due to moisture.
  • the circuit board in the device is provided with a transparent conductive film.
  • the above-described drying treatment is performed. After performing and peeling off the desiccant sheet 10, a transparent conductive film can be provided on the surface of the protective resin layer C, and the circuit of various devices can be obtained using the moisture barrier laminate provided with such a transparent conductive film.
  • a substrate can also be formed.
  • the transparent conductive film is made of, for example, ITO (tin oxide doped indium oxide), zinc oxide doped with Ga, Al, or the like, and can be provided on the surface of the protective resin layer C by vapor deposition. That is, even in the process of providing such a transparent conductive film, the present invention can effectively prevent moisture absorption of the moisture trap layer B during the process.
  • the protective resin layer C is blended with a metal oxide for adjusting the refractive index, By securing a refractive index comparable to that of the device substrate (for example, the refractive index of the transparent conductive film), it is possible to effectively avoid a decrease in light extraction efficiency due to the moisture barrier laminate 1.
  • the metal oxide for adjusting the refractive index is not particularly limited, but generally silica, alumina, titania or zirconia is used from the viewpoint of cost and the like.
  • Such a metal oxide is usually blended in the protective resin layer C in the form of fine particles having an average particle diameter (volume-converted average particle diameter D 50 by laser diffraction scattering method) of about 5 to 100 nm.
  • the amount is usually about 100 to 400 parts by mass per 100 parts by mass of the resin.
  • LDPE Quantumitomo Chemical Co., Ltd., Sumikasen
  • LDPE a thermoplastic resin
  • the hygroscopic functional component here, calcium oxide
  • the hygroscopic functional component was mixed to 25 parts by weight with respect to 75 parts by weight of the component, and was put into an extruder for the hygroscopic resin layer.
  • the moisture barrier laminates and the desiccant sheets prepared in the examples and comparative examples described later are cut to a size of 5 cm ⁇ 5 cm, respectively, and the hygroscopicity of the protective resin layer C of the moisture barrier laminate and the desiccant sheet.
  • the resin layers were stacked one by one so that the resin layers were in close contact, sealed in an aluminum bag, degassed, left in an oven at 70 ° C. for 7 days, and dried.
  • ⁇ Moisture evaluation 2 of moisture barrier laminate> The moisture barrier laminates produced in Examples and Comparative Examples described later were subjected to a drying treatment by the method of moisture content evaluation 1 to produce a moisture barrier laminate having a reduced moisture content in the moisture trap layer.
  • the barrier film laminate the PET surfaces of a commercially available barrier film having a silicon oxide layer (inorganic barrier layer) (GL-RD, substrate: PET (12 ⁇ m)) having a thickness of 1.
  • a dry laminate was made using an 8 ⁇ m urethane adhesive (A-980 / A-19 manufactured by Mitsui Chemicals). Next, after the desiccant sheet was peeled from the moisture barrier laminate in an environment of 23 ° C.
  • the barrier film laminate was immediately removed from the urethane adhesive (Mitsui, Ltd.) with a thickness of 1.8 ⁇ m.
  • the surface of the moisture barrier laminate having the moisture trap layer formed thereon and the barrier film laminate are dry-laminated via A-980 / A-19, manufactured by Chemical Co., Ltd., and the adhesive is cured.
  • a multilayer moisture barrier laminate was obtained.
  • the resulting laminate was measured for moisture content by the Karl Fischer method (detected moisture content ⁇ ).
  • a multilayer moisture barrier laminate without a moisture trap layer was prepared, and the moisture content of the laminate was similarly measured by the Karl Fischer method (detected moisture content ⁇ ).
  • the water content (B) of the moisture trap layer after the drying treatment was calculated.
  • Increase in moisture content of moisture trap layer (B) [g / g] [( ⁇ - ⁇ ) / C] -D ⁇ : Detected moisture content of multilayer moisture barrier laminate ⁇ : Reference detected moisture content
  • C Weight of moisture trap layer
  • D Moisture content of moisture trap layer calculated in Evaluation 1 (A)
  • the water content (B) was evaluated as follows. A: Less than 0.10 [g / g] B: More than 0.10 [g / g] and less than 0.15 [g / g] x: More than 0.15 [g / g]
  • the polymer solution and the crosslinking agent solution are mixed so that ⁇ -glycidoxypropyltrimethoxysilane is 20 parts by weight with respect to 100 parts by weight of polyallylamine, and further, as a moisture absorbent, Polyacrylic acid Na cross-linked product (Toyobo Co., Ltd., Tuftic HU-820E, water dispersion, solid content 13%) is added so as to be 420 parts by weight with respect to polyallylamine, and the solid content is further reduced to 5%. The mixture was adjusted with water and stirred well to prepare a coating liquid (B1) for the moisture trap layer.
  • a coating liquid (B1) for the moisture trap layer.
  • diglycidyl 1,2-cyclohexanedicarboxylate as a crosslinking agent was blended so as to be 20 parts by weight with respect to the partially neutralized polyacrylic acid, and then ⁇ - (3,4- (Epoxycyclohexyl) ethyltrimethoxysilane is blended so as to be 3 parts by weight with respect to the partially neutralized polyacrylic acid, and further, a granular moisture absorbent (Toyobo Co., Ltd., Tuftic HU-820E, water dispersion, solid content 13%) is blended so as to be 431 parts by weight with respect to the partially neutralized polyacrylic acid, and further a water / acetone mixed solvent (80/20 by weight) so that the total solid content becomes 5% by weight. Then, the mixture was thoroughly stirred and a coating liquid (B2) for the moisture trap layer was prepared.
  • a coating liquid (B2) for the moisture trap layer was prepared.
  • Acrylic resin (Arakawa Chemical Industries, Alacoat DA-105, solid content 35%) was prepared.
  • polyisocyanate Arakawa Chemical Industries, Ltd., Aracoat CL-100A, solid content 40%
  • a protective resin layer coating solution (C) having a solid content of 20%.
  • Urethane adhesive (Mitsui) with a thickness of 1.8 ⁇ m between PET surfaces of a commercially available barrier film (GL-RD, substrate: PET (12 ⁇ m) manufactured by Toppan Printing Co., Ltd.) having a silicon oxide layer (inorganic barrier layer)
  • a barrier film laminate was prepared by dry lamination using A980 / A19, manufactured by Chemical Co., Ltd.
  • the moisture trap layer coating solution (B1) using the cationic polymer was applied with a bar coater, and the peak temperature was 100 ° C. and the peak temperature holding time was 3 minutes. And a moisture trap layer (B) having a thickness of 4 ⁇ m was formed, and a coating film B was obtained.
  • the protective resin layer coating solution C was applied onto the moisture trap layer B of the coating film B obtained above by a bar coater immediately after the formation of the moisture trap layer.
  • the coated film was heat-treated in a box-type electric oven under conditions of a peak temperature of 120 ° C. and a peak temperature holding time of 10 seconds to form a protective resin layer C having a thickness of 1 ⁇ m, and a moisture barrier laminate was obtained.
  • Example 2 A moisture barrier laminate and a moisture barrier laminate were produced in the same manner as in Example 1 except that the thickness of the protective resin layer C was 0.5 ⁇ m.
  • Example 3 A moisture barrier laminate and a moisture barrier laminate were produced in the same manner as in Example 1 except that the thickness of the protective resin layer C was 3.0 ⁇ m.
  • Example 4 A moisture barrier laminate and a moisture barrier laminate were produced in the same manner as in Example 1 except that the thickness of the protective resin layer C was 15.0 ⁇ m.
  • Example 5 A moisture barrier laminate was produced in the same manner as in Example 1 except that the moisture trap layer coating solution (B2) using an anionic polymer was used.
  • Example 6 A moisture barrier laminate was produced in the same manner as in Example 5 except that the main polymer of the protective resin layer was urethane resin (Arikawa Chemical Industries, Ltd., Juliano 5319).
  • Example 7 The protective resin layer C is dissolved in 2-butanone so that the solid content is 20% polyester resin (byron GK880, manufactured by Toyobo Co., Ltd.) as the main polymer, and polyisocyanate (“D A moisture barrier laminate was prepared in the same manner as in Example 1 except that the amount of -110N ", 75% solids) was added to 10 parts by weight with respect to the solid content of the main polymer.
  • Example 8 Immediately after forming the moisture trap layer on the moisture trap layer B of the coating film B obtained in Example 1, via a urethane adhesive having a thickness of 1.8 ⁇ m (A980 / A19, manufactured by Mitsui Chemicals, Inc.). Then, a 12 ⁇ m thick PET film (Lumirror, manufactured by Toray Industries, Inc.) was dry laminated to obtain a moisture barrier laminate.
  • Example 1 A moisture barrier laminate was produced in the same manner as in Example 1 except that the protective resin layer C was not provided.
  • Moisture barrier laminate A Gas barrier film base a1: Inorganic barrier layer a2: Film base layer B: Moisture trap layer C: Protective resin layer 9: Organic layer 10: Desiccant sheet 11: Hygroscopic resin layer 13: Surface protective resin layer 15: Hygroscopic functional surface

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明の目的は、水分トラップ層を備え、この水分トラップ層の水分トラップ性能が最大限に発揮され、優れた水分バリア性を示す水分バリア性積層体を提供することである。本発明の水分バリア性積層体は、ガスバリア層a1を有するガスバリア性フィルム基材Aと、フィルム基材Aを下地として形成された水分トラップ層Bとを含み、水分トラップ層Bのフィルム基材Aとは反対側の表面には、40℃、90%RHでの透湿度が4.0×10~5.0×10g/m・dayの範囲にある保護樹脂層Cが積層されていることを特徴とする。

Description

水分バリア性積層体
 本発明は、水分トラップ層を備えた水分バリア性積層体に関するものである。
 近年において開発され、実用されている各種の電子デバイス、例えば有機エレクトロルミネッセンス(有機EL)、太陽電池、タッチパネル、電子ペーパーなどでは、水分による電荷のリーク等を回避するため、高度の水分バリア性が要求される。
 ところで、各種プラスチック基材の特性、特にガスバリア性を改善するための手段として、プラスチック基材の表面に、蒸着により、ケイ素酸化物などからなる無機薄膜(無機バリア層)を形成することが知られており(特許文献1)、このような無機薄膜を備えたフィルムは、バリアフィルムとして広く使用されている。このようなバリアフィルムは、上記のような電子デバイスに要求される水分バリア性を満足させるには不十分であると共にプラスチック基材に用いられる樹脂の残留水分がデバイスを著しく劣化させる。
 また、このような要求を満たすため、吸湿性を有するイオン性ポリマーをマトリックスとする水分トラップ層が積層された構造を有する水分バリア性積層体も、本出願人により提案されている(特許文献2)。
 上記のような水分トラップ層は、蒸着等によりプラスチックフィルムの表面に形成されている無機バリア層上に、イオン性ポリマーを含むトラップ層形成用の塗布組成物を塗布し、硬化させることにより成膜されるものであり、このような層の形成により優れた水分バリア性を示すというものである。
 しかしながら、高い水分トラップ性能を有する水分トラップ層が設けられているバリアフィルムを用いたとしても、その水分バリア性が十分に発揮されないという問題があった。
特開2000-255579号公報 特開2015-96320号
 従って、本発明の目的は、水分トラップ層を備え、この水分トラップ層の水分トラップ性能が最大限に発揮されることにより、優れた水分バリア性を示す水分バリア性積層体を提供することにある。
 本発明によれば、ガスバリア層を有するガスバリア性フィルム基材Aと、該フィルム基材Aを下地として形成された水分トラップ層Bとを含み、該水分トラップ層Bの該フィルム基材Aとは反対側の表面には、40℃、90%RHでの透湿度が4.0×10~5.0×10g/m/dayの範囲にある保護樹脂層Cが積層されていることを特徴とする水分バリア性積層体が提供される。
 本発明の水分バリア性積層体においては、
(1)前記水分トラップ層Bは、JIS-7251に準拠して230℃で測定した含水量が0.15g/g以下に保持されていること、
(2)前記水分トラップ層Bが、吸湿性のポリマーを含有していること、
(3)前記水分トラップ層Bが、イオン性ポリマーからなる吸湿性マトリックス中に、さらに該マトリックスよりも到達湿度が低湿度である吸湿剤が分散された構造を有していること、
(4)前記水分トラップ層B中に含まれるイオン性ポリマーが、カチオン性ポリマーであること、
(5)前記保護樹脂層Cが、アクリル樹脂、ウレタン樹脂またはポリエステル樹脂により形成されていること、
(6)前記保護樹脂層Cが、0.1~15μmの厚みを有していること、
(7)前記保護樹脂層Cには、屈折率調整剤としての金属酸化物粒子が配合されていること、
(8)前記金属酸化物が、シリカ、アルミナ、チタニアまたはジルコニアであること、
(9)前記保護層(C)の上に透明導電膜が設けられていること、
が好適である。
 本発明の水分バリア性積層体は、ガスバリア層を有するガスバリア性フィルム基材Aを下地として水分トラップ層Bが形成されているという基本構造を有しているが、このような水分トラップ層の上に透湿度が4.0×10~5.0×10g/m/dayの範囲にある保護樹脂層Cが積層されているという点に大きな特徴を有するものであり、このような透湿度を有する保護樹脂層Cが積層されていることにより、この水分バリア性積層体の製造過程での水分トラップ層の吸湿を有効に防止することができ、この結果、水分トラップ層が乾燥状態に保持されたままの状態で水分バリア性積層体を使用に供することができ、水分トラップ層による水分バリア性が最大限に発揮させることができる。
 ガスバリア性フィルム基材Aを下地として形成された水分トラップ層Bは、形成後、乾燥処理を行い、水分トラップ層B中の吸湿水分を放出させておくことが必要である。即ち、水分トラップ層Bの吸湿水分が多いほど、水分トラップ層Bの含水量が短時間で飽和してしまい、水分トラップ性が損なわれてしまうからである。
 例えば、本出願人が提案している特許文献2に開示されている積層体では、プラスチック基材上に形成されている水分トラップ層は、第2の無機バリア層を備えたバリアフィルムに、第2の無機バリア層の下地となっている有機層に積層された構造を有している。このような構造の積層体において、水分トラップ層の乾燥処理は、第2の無機バリア層を備えたバリアフィルムに積層する前の段階で行われる。バリアフィルムを積層した後では、水分トラップ層が2つの無機バリア層にサンドイッチされた構造となってしまうため、水分トラップ層中の吸湿水分を放出させることができないからである。
 また、水分トラップ層の乾燥は、乾燥剤が分散されている乾燥剤シートを貼り付け、これを加熱された乾燥雰囲気中に供給することにより行われる。乾燥剤シートを貼り付けることなく乾燥を行った場合、水分トラップ層から放出された水分が再び水分トラップ層に吸湿されてしまうため、乾燥剤シートを貼り付けることにより、水分トラップ層の再吸湿を防止し、さらに、乾燥剤シートによるデシカント効果により、乾燥効率を高めるわけである。
 このようにして水分トラップ層の乾燥処理が行われた乾燥処理フィルムは、必要に応じて、ロール等に巻き取られて保管され、適宜の時に、ロールから巻き出され、乾燥剤シートを引き剥がしながら、上記の第2の無機バリア層を備えたバリアフィルムを積層していくことになる。
 このようにして水分トラップ層の乾燥が行われ且つバリアフィルムの積層が行われるのであるが、本発明者等の検討によると、乾燥剤シートを引き剥がした後、バリアフィルムを積層するまでの短時間で水分トラップ層の吸湿が生じ、このときの吸湿により、水分トラップ層の性能低下が生じていることが判った。しかも、このような短時間での吸湿は、水分トラップ層の性能が高いものほど顕著であり、その性能低下が大きい。
 例えば、乾燥された水分トラップ層を、23℃、40%RHの環境下に暴露したとき、この水分トラップ層の含水量は、30秒後には、トラップ層1g当り約0.15g増大する。従って、乾燥剤シートを引き剥がした後の水分トラップ層の吸湿を防止するためには、ライン速度をより速くし、乾燥剤シート引き剥がし後、直ちにバリアフィルムの積層を行なえばよいのであるが、このようなライン速度を速くするには限界がある。
 しかるに、本発明に従い、透湿度が4.0×10~5.0×10g/m/dayの範囲にある保護樹脂層を水分トラップ層の上に形成したときには、30秒後の含水量の増大量は、トラップ層1g当り約0.10g以下に低減する。
 即ち、本発明によれば、適度な透湿度を有している保護樹脂層Cを設けておくことにより、乾燥剤シートを引き剥がした後の水分トラップ層の吸湿を有効に防止し、水分トラップ層の性能低下を有効に回避することができる。
 尚、本発明においては、保護樹脂層Cの透湿度が低い程、水分トラップ層Bの吸湿防止効果が高いが、この透湿度が過度に低くなると、水分トラップ層の乾燥時において、水分トラップ層からの吸湿水分の放出が制限されてしまうし、また、水分トラップ層によるデシカント効果も低下してしまう。このため、本発明では、保護樹脂層Cの透湿度を所定の範囲に設定しているわけである。
本発明の水分バリア性積層体の層構造の一例を示す概略側断面図。 図1の水分バリア性積層体に設けられている水分トラップ層Bの乾燥に使用する乾燥剤シートの一例を示す概略側断面図。
 図1に示す例において、全体として1で示されている本発明の水分バリア性積層体は、ガスバリア性フィルム基材Aと、このフィルム基材Aを下地として形成された水分トラップ層Bとを備え、この水分トラップ層Bの表面、即ち、フィルム基材Aとは反対側の面に、保護樹脂層Cが設けられた構造を有している。
 このような水分バリア性積層体1は、水分の侵入を嫌う各種デバイスに装着されて使用されるものであり、例えば、図1に示されているように、ガスバリア性フィルム基材Aがデバイスの外側(高湿度雰囲気下)に位置し、保護樹脂層Cがデバイスの内部(低湿度側)に位置するように配置されて使用される。
<ガスバリア性フィルム基材A>
 このガスバリア性フィルム基材Aは、後述する保護樹脂層Cに比して透湿度がかなり低いフィルムであり、例えば、40℃、相対湿度90%での透湿度が1.0g/m/day以下の範囲にある。
 このようなフィルム基材Aは、エチレン・ビニルアルコール共重合体や芳香族ポリアミドなどのガスバリア性樹脂、或いはガスバリア性樹脂の層が、適宜、接着剤樹脂層を介してポリオレフィンやポリエステルなどからなる内外層の間の中間層として設けられた多層構造を有するものであってもよいが、一般的には、図1に示されているように、無機バリア層a1がプラスチック基材層a2を下地として形成された構造を有していることが好ましい。
 無機バリア層a1は、プラスチック基材層a2を下地として形成される層であり、例えば特開2015-96320号公報等により公知のものであってよく、スパッタリング、真空蒸着、イオンプレーティングなどに代表される物理蒸着や、プラズマCVDに代表される化学蒸着などによって形成される無機質の蒸着膜、例えば各種金属乃至金属酸化物により形成される膜であることが、高い酸素バリア性を確保できると言う点で好適であり、特に、凹凸を有する面にも均一に成膜され、酸素のみならず水分に対しても優れたバリア性を発揮するという点で、プラズマCVDにより形成されていることが好ましい。
 尚、プラズマCVDによる蒸着膜は、所定の真空度に保持されたプラズマ処理室内に無機バリア層a1の下地となるフィルム形態のプラスチック基材層a2を配置し、膜形成する金属若しくは該金属を含む化合物のガス(反応ガス)及び酸化性ガス(通常酸素やNOxのガス)を、適宜、アルゴン、ヘリウム等のキャリアガスと共に、ガス供給管を用いて、金属壁でシールドされ且つ所定の真空度に減圧されているプラズマ処理室に供給し、この状態でマイクロ波電界や高周波電界などによってグロー放電を発生させ、その電気エネルギーによりプラズマを発生させ、上記化合物の分解反応物をプラスチック基材層a2の表面に堆積させて成膜することにより得られる。
 上記の反応ガスとしては、一般に、下地の基材層a2の界面に炭素成分を含む柔軟な領域を有し且つその上に酸化度の高いバリア性に優れた領域を有する膜を形成できるという観点から有機金属化合物、例えばトリアルキルアルミニウムなどの有機アルミニウム化合物や、有機チタン化合物、有機ジルコニウム化合物、有機ケイ素化合物等のガスを用いることが好ましく、特に、酸素に対するバリア性の高い無機バリア層a1を比較的容易に効率良く形成できるという点で、有機ケイ素化合物が最も好ましい。
 また、上述した無機バリア層a1の厚みは、下地となるプラスチック基材層a2の厚みに応じて、所定の水分透過率を満足させ得るような厚みに設定され、一般に、4乃至500nm、特に30乃至400nm程度の厚みを有していればよい。
 さらに、上記の無機バリア層a1は、蒸着等の手法によらず、コーティング等によってプラスチック基材層a2上に形成することもできる。即ち、コーティングにより形成される無機バリア層a1は、上述した蒸着等により形成されるものと比較すると、酸素バリア性等の特性は低いが、要求される酸素等に対するバリア性の程度によっては、コーティングにより無機バリア層a1を形成することもできる。
 コーティングにより形成される無機バリア層a1としては、ポリシラザンや、重縮合性のシラン化合物(例えばアルコキシシランなど)、重縮合性のアルミナ化合物(例えばアルコキシアルミニウムなど)を成膜成分として含み、適宜、シリカやアルミナ等の無機微粒子が混合された有機溶媒溶液を用い、これを所定の面に塗布し、加熱し、有機溶媒を揮散して成膜するものが代表的である。
 プラスチック基材層a2は、既に述べたとおり、無機バリア層a1の下地となるものであり、通常、熱可塑性或いは熱硬化性の樹脂により、その形態に応じて、射出乃至共射出成形、押出乃至共押出成形、フィルム乃至シート成形、圧縮成形性、注型重合等により成形される。
 一般的には、成形性やコスト等の観点から、熱可塑性樹脂が好適である。
 このような熱可塑性樹脂の例としては、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同志のランダムあるいはブロック共重合体等のポリオレフィン;環状オレフィンコポリマーや環状オレフィンポリマー等の環状オレフィン系樹脂、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体等のエチレン・ビニル化合物共重合体;ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α-メチルスチレン・スチレン共重合体等のスチレン系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等のポリビニル化合物;ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等のポリアミド、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等の熱可塑性ポリエステル;ポリカーボネート;ポリフエニレンオキサイド;その他ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、フッ素樹脂、アリル樹脂、ポリウレタン樹脂、セルロース樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ケトン樹脂、アミノ樹脂、或いは生分解性樹脂(例えばポリ乳酸)等により形成される。
 さらに、これらのブレンド物や、これら樹脂が適宜共重合により変性されたもの(例えば、酸変性オレフィン樹脂など)であってもよい。
 またこのプラスチック基材層a2は、エチレン・ビニルアルコール共重合体の如き酸素バリア性に優れたガスバリア性樹脂などにより形成することもでき、このようなガスバリア性樹脂により形成された層を含む多層構造を有していてもよい。即ち、このようなガスバリア性樹脂を含むプラスチック基材層a2を下地として、前述した無機バリア層a1を形成することができる。
 本発明においては、入手のし易さ、コスト、成形性、或いは酸素や水分に対して多少なりともバリア性を示し、さらには、後述する無機バリア層a1の下地として好適であるという観点から、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル樹脂や、ポリイミド樹脂、環状オレフィンコポリマーや環状オレフィンポリマー等の環状オレフィン系樹脂のフィルムを基材層5として使用することがより好適である。
 上述したプラスチック基材層a2の厚みは特に制限されないが、この厚みが過度に厚いと、このフィルム基材Aの水分透過率が大きくなり、前述した水分透過率を満足させることが困難となるおそれがある。また、フィルム基材Aのフレキシブル性がなくなるため、この基材層a1の厚みは、通常、200μm以下とし、より好ましくは125μm以下とし、この範囲でバリアフィルム1の水分透過率が前述した範囲となるように設定される。
 このようなガスバリア性フィルム基材Aを下地として以下に述べる水分トラップ層Bが形成される。
 尚、図1の例では、水分トラップ層Bが、無機バリア層a1を下地として形成されているが、勿論、プラスチック基材層a2を下地として水分トラップ層Bを形成することもできる。但し、無機バリア層a1の傷付等を防止するという点で、無機バリア層a1を下地として水分トラップ層Bを形成することが望ましい。
<水分トラップ層B>
 本発明において、水分トラップ層Bは、上述したガスバリア性フィルム基材Aの厚み方向に流れる水分を遮断するものであり、水分バリア性を付与することが要求される場合に設けられる。
 この水分トラップ層Bは、水分遮断性を示すものであれば、特に制限されず、所定の樹脂層中にゼオライト等の吸湿剤を分散させたものなど、それ自体公知の層であってよい。しかしながら、特に、水分に対する高いバリア性が要求される場合、例えば10-5g/m/day以下、さらには、10-6g/m/day以下の水分透過率(23℃、RH50%)を実現させるためには、特開2015-96320号等に開示されているイオン性ポリマーにより水分トラップ層Bを形成することが好ましく、さらには、このイオン性ポリマーをマトリックスとし、このマトリックス中にイオン性ポリマーよりも到達湿度が低い吸湿剤を分散させることにより水分トラップ層Bを形成することが好適である。特に、このようなイオン性ポリマーをマトリックスとするものは、水分捕捉性が優れ、さらに到達湿度が低い吸湿剤が分散されているものは、水分吸収に起因する膨潤などの変形を有効に回避することができるからである。
 水分トラップ層Bの形成に好適に使用されるイオン性ポリマーには、カチオン性ポリマーとアニオン性ポリマーとがある。
 カチオン性ポリマーとしては、アリルアミン、エチレンイミン、ビニルベンジルトリメチルアミン、[4-(4-ビニルフェニル)-メチル]-トリメチルアミン、ビニルベンジルトリエチルアミン等のアミン系単量体;ビニルピリジン、ビニルイミダゾール等の含窒素複素環系単量体;及び、それらの塩類;に代表されるカチオン性単量体の少なくとも1種を、適宜、共重合可能な他の単量体と共に、重合乃至共重合し、さらに必要により、酸処理により部分中和させて得られるものが使用される。
 このようなカチオン性ポリマーについては、特開2015-96320号等に詳述されており、その詳細は省略するが、一般的には、ポリアリルアミンが成膜性等の観点から好適である。
 一方、アニオン性ポリマーとしては、例えば、メタクリル酸、アクリル酸、無水マレイン酸等のカルボン酸系単量体;α-ハロゲン化ビニルスルホン酸、スチレンスルホン酸、ビニルスルホン酸等のスルホン酸系単量体;ビニルリン酸等のホスホン酸系単量体;及びこれら単量体の塩類;などに代表されるアニオン性単量体の少なくとも1種を、適宜、共重合可能な他の単量体と共に重合乃至共重合させ、さらに必要により、アルカリ処理により部分中和させて得られるものが使用される。
 このようなアニオン性ポリマーについても、特開2015-96320号等に詳述されており、その詳細は省略するが、一般的には、ポリ(メタ)アクリル酸及びその部分中和物(例えば一部がNa塩であるもの)である。
 また、上記のイオン性ポリマー中に配合することにより膨潤による変形を好適に防止できる吸湿剤、即ち、イオン性ポリマーよりも到達湿度が低い吸湿剤としては、例えば、湿度80%RH及び温度30℃の環境条件での到達湿度が6%以下のものを挙げることができる。即ち、この吸湿剤の到達湿度がイオン性ポリマーよりも高いと、マトリックスに吸収された水分の閉じ込めが十分でなく、水分の放出等を生じ易くなるが、イオン性ポリマーよりも到達湿度の低い吸湿剤がイオン性ポリマー中に配合されている場合には、低湿度雰囲気でも水分を効果的にトラップすることができるばかりか、イオン性ポリマーに吸収された水分を該吸湿剤により捕捉することができるため、水分の放出を抑制し、高い水分バリア性を発揮させることができる。
 また、上記のような吸湿剤は、一般に湿度80%RH及び温度30℃雰囲気下において20%以上の吸水率(JIS K-7209-1984)を有しており、無機系及び有機系のものがある。
 無機系の吸湿剤としては、ゼオライト、アルミナ、活性炭、モンモリロナイト等の粘土鉱物、シリカゲル、酸化カルシウム、硫酸マグネシウムなどを挙げることができる。
 有機系の吸湿剤としては、アニオン系ポリマー若しくはその部分中和物の架橋物を挙げることができる。このアニオン系ポリマーとしては、カルボン酸系単量体((メタ)アクリル酸や無水マレイン酸など)、スルホン酸系単量体(ハロゲン化ビニルスルホン酸、スチレンスルホン酸、ビニルスルホン酸など)、ホスホン酸系単量体(ビニルリン酸など)及びこれら単量体の塩類等に代表されるアニオン性単量体の少なくとも1種を、重合或いは他の単量体と共重合させて得られるものを挙げることができる。特に透明性が求められる用途においては、有機系の吸湿剤が有効である。例えば、架橋ポリ(メタ)アクリル酸Naの微細粒子などが代表的な有機系吸湿剤である。
 また、上記の吸湿剤の中では、比表面積が大となり、高い吸湿性を示すという観点から粒径が小さな吸湿剤が好ましく(例えば、平均一次粒子径が100nm以下、特に80nm以下)、特に粒径の小さな有機系ポリマーの吸湿剤が最適である。
 即ち、有機系ポリマーの吸湿剤は、イオン性ポリマーのマトリックスに対する分散性が極めて良好であり、均一に分散させることができるばかりか、これを製造するための重合法として乳化重合や懸濁重合などを採用することにより、その粒子形状を微細で且つ揃った球形状とすることができ、これをある程度以上配合することにより、極めて高い透明性を確保することが可能となる。
 また、粒径の小さな有機系ポリマーの吸湿剤では、前述した到達湿度が著しく低く、高い吸湿性を示すばかりか、架橋によって膨潤による体積変化も極めて少なくすることができ、従って、体積変化を抑制しながら、環境雰囲気を絶乾状態もしくは絶乾状態に近いところまで湿度を低下させる上で最適である。
 このような有機系の吸湿剤の微粒子としては、例えば架橋ポリアクリル酸Na微粒子(平均粒子径約70nm)がコロイド分散液(pH=10.4)の形で東洋紡株式会社よりタフチックHU-820Eの商品名で市販されている。
 本発明において、上記のような吸湿剤の量は、その特性を十分に発揮させ、水分バリア性の著しい向上及び膨潤による寸法変化を有効に抑制させると同時に、無機バリア層a1が示すバリア性よりも高い水分バリア性を長期間にわたって確保するという観点から、イオン性ポリマーの種類に応じて設定される。
 例えば、カチオン性ポリマー中に上記の吸湿剤を分散させて水分トラップ層Bを形成する場合には、一般に、カチオン性ポリマー100質量部当り、50質量部以上、特に100乃至900質量部の量で存在することが好ましく、更には200乃至600重量部の量であることがより好ましい。また、アニオン性ポリマー中に吸湿剤を分散させる場合には、アニオン性ポリマー100重量部当り、50重量部以上、特に100乃至1300重量部の量で存在することが好ましく、更には150乃至1200重量部の量であることがより好ましい。
 また、上記のようなイオン性ポリマーを用いて形成される水分トラップ層Bでは、イオン性ポリマーに架橋構造が導入されていることが好適である。即ち、イオン性ポリマー中に架橋構造が導入されていると、水を吸収したとき、イオン性ポリマーの分子が架橋によって互いに拘束されることとなり、膨潤(水分吸収)による体積変化を抑制し、機械的強度や寸法安定性の向上がもたらされる。
 このような架橋構造は、水分トラップ層Bを形成するための塗布組成物中に架橋剤を配合しておくことにより導入することができる。特にアニオン性ポリマーの場合、カチオン性ポリマーとは異なって、水素結合による水の補足のみなので、吸湿に適した空間の網目構造(架橋構造)をマトリックス中に導入することにより、その吸湿性を大きく高めることができる。
 このような架橋構造を導入するための架橋剤は、カチオン性ポリマーに架橋構造を導入する場合と、アニオン性ポリマーに架橋構造を導入する場合とで若干異なっている。
 カチオン性ポリマー用の架橋剤としては、例えば特開2015-96320号等にも記載されているように、カチオン性基と反応し得る架橋性官能基(例えば、エポキシ基)と、加水分解と脱水縮合を経て架橋構造中にシロキサン構造を形成し得る官能基(例えば、アルコシシリル基)を有している化合物を使用することができ、具体的には、下記式(1):
  X-SiR (OR3-n     (1)
   式中、Xは、末端にエポキシ基を有する有機基であり、
     R及びRは、それぞれ、メチル基、エチル基、もしくはイソ
    プロピル基であり、
     nは、0、1、もしくは2である、
で表されるシラン化合物が好適に使用される。
 このようなシラン化合物において、上記式(1)中のエポキシ基を有する有機基Xとしては、γ-グリシドキシアルキル基が代表的であり、例えばγ-グリシドキシプロピルトリメトキシシランやγ-グリシドキシプロピルメチルジメトキシシランが架橋剤として好適に使用される。
 また、上記式(1)中のエポキシ基が、エポキシシクロヘキシル基のような脂環式エポキシ基であるものも架橋剤として好適である。例えば、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランのような脂環式エポキシ基を有する化合物を架橋剤として使用した場合には、マトリックスの架橋構造中に、シロキサン構造と共に、脂環構造が導入される。このような脂環構造の導入は、吸湿に適した空間の網目構造を形成するというマトリックスの機能を更に効果的に発揮させることができる。
 さらに、上記の架橋構造中に脂環構造を導入するために、複数のエポキシ基と脂環基とを有している化合物、例えば、下記式(2):
  G-O(C=O)-A-(C=O)O-G   (2)
   式中、Gは、グリシジル基であり、
     Aは、脂肪族環を有する2価の炭化水素基、例えばシクロアルキ
    レン基である、
で表されるジグリシジルエステルを、架橋剤として使用することができる。このようなジグリシジルエステルの代表的なものは、下記の式(2-1)で表される。
Figure JPOXMLDOC01-appb-C000001
 即ち、式(2)のジグリシジルエステルは、アルコキシシリル基を有していないが、架橋構造中に脂環構造を導入するため、マトリックス中に吸湿に適した空間の網目構造を形成するという点で効果的である。
 上述した架橋剤は、カチオン性ポリマー100重量部当り、5乃至60重量部、特に15乃至50重量部の量で使用することが望ましく、このような架橋剤の少なくとも70重量%以上、好ましくは80重量%以上が、前述した式(1)のシラン化合物であることが望ましい。
 また、アニオン性ポリマーに架橋構造を導入するための架橋剤としては、やはり特開2015-96320号等に記載されているように、アニオン性ポリマーが有しているイオン性基と反応し得る架橋性官能基(例えばエポキシ基)を2個以上有している化合物を使用することができ、カチオン性マトリックス用のコーティング組成物でも挙げられた式(2):
  G-O(C=O)-A-(C=O)O-G   (2)
   式中、Gは、グリシジル基であり、
     Aは、脂肪族環を有する2価の炭化水素基、例えばシクロアルキ
    レン基である、
で表されるジグリシジルエステルが好適に使用される。
 即ち、上記式(2)のジグリシジルエステルにおいては、エポキシ基がアニオン性基と反応し、2価の基Aによる脂環構造を含む架橋構造がマトリックス中に形成される。このような脂環構造を含む架橋構造によりされ、膨潤の抑制がもたらされる。
 特に、上記のジグリシジルエステルの中でも好適なものは、先にも挙げられており、特に、吸湿に適した空間の網目構造を形成できるという観点から、先の式(2-1)で表されるジグリシジルエステルが最も好適である。
 このようなアニオンポリマー用の架橋剤は、アニオン性ポリマー100重量部当り、1乃至50重量部、特に10乃至40重量部の量で使用することが望ましい。
 本発明において、水分トラップ層Bの形成は、所定の吸湿性のポリマーや吸湿剤等を有機溶媒に溶解ないし分散させたコーティング組成物を、前述したガスバリア性フィルム基材Aの表面、特に無機バリア層a1の表面に塗布し、加熱して有機溶媒を除去することにより行うことができる。
 尚、本発明においては、以下に述べる保護樹脂層Cを設けることにより、水分トラップ層の含水量(230℃、JIS-7251に準拠)が0.15g/g以下、特に0.1g/g以下の範囲に保持されることが好適であり、これにより、水分トラップ層Bの性能を十分に発揮させ、優れた水分バリア性を確保することができる。
<保護樹脂層C>
 本発明においては、上記のようにして形成された水分トラップ層Bの上に、保護樹脂層Cが設けられる。
 既に述べたように、かかる保護樹脂層Cは、40℃、相対湿度90%での透湿度が4.0×10~5.0×10g/m/dayの範囲、好ましくは、4.0×10~3.0×10g/m/dayの範囲になければならない。即ち、この透湿度が上記範囲よりも大きいと、後述する乾燥処理後に、乾燥剤シートを引き剥がした後での水分吸収速度が速く、例えば、水分トラップ層Bの含水量を上記範囲に設定することが困難となる。また、透湿度が上記範囲よりも小さい場合、水分トラップ層Bからの水分の放出が大きく制限されてしまい、この結果、乾燥を効率よく行うことができないばかりか、場合によっては、含水量が上記範囲となるように水分トラップ層Bから水分を放出することができなくなってしまうこともある。
 上記のような透湿度を確保するためには、保護樹脂層Cの形成に使用される樹脂が有する水分バリア性の程度に応じて、所望の透湿度が得られるような厚みに設定される。
 例えば、保護樹脂層Cは、種々のプラスチック材料により形成することができ、特に水分トラップ層Bの表面へのコーティングにより容易に保護樹脂層Cを形成することができるという点で、通常、熱可塑性プラスチックにより形成される。また、保護樹脂層C自体は、水分バリア性或いは酸素バリア性を向上させるものではないため、生産性の観点からその厚みは例えば0.1~15μm、特に0.3~10μm程度の範囲にあることが望ましい。
 従って、上記のような厚みで前述した透湿度を確保できるという点で、保護樹脂層Cを形成するための樹脂は、適度な水分バリア性を示す樹脂が好適に使用され、例えば、(メタ)アクリル酸アルキル等の(メタ)アクリル系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、オレフィン系樹脂、これら樹脂が適宜共重合により変性されたものなどにより、保護層Cを形成することができる。
 本発明において、上記の保護樹脂層Cは、上記の樹脂を適当な揮発性溶剤に溶解させた塗布液を調製し、この塗布液を水分トラップ層Bの表面、即ち、ガスバリア性フィルム基材Aが設けられている側とは反対側の面にコーティングし、形成された塗布層を加熱して有機溶媒を揮散させることにより容易に形成することができる。
<乾燥処理>
 本発明において、上記のようにして水分トラップ層B上に保護層Cを形成した後は、水分トラップ層B中に含まれる水分を放出するために、乾燥処理が行われる。
 このような乾燥処理は、通常、得られた積層体1を、適宜、減圧下に加熱することにより行われるが、本発明においては、この乾燥処理が、保護層C上に乾燥剤シートを貼り付けた状態で行われる。即ち、前述した保護層Cは、適度な水分透過性を示すため、乾燥剤シートを保護層Cに貼り付けることにより、保護層Cを介して、水分トラップ層Bに含まれる水分を捕捉することができ、水分トラップ層B中の水分含量を効率よく、大幅に低減させることが可能となる。
 例えば、乾燥剤シートを貼り付けずに乾燥を行うと、乾燥処理後の保管時に水分トラップ層Bの吸湿を生じてしまい、実際の使用時に、水分トラップ層Bの性能を十分に発揮できなくなってしまうからである。また、減圧下の加熱乾燥のみでは、水分トラップ層Bから放出された水分の一部が、再び、水分トラップ層Bにトラップされてしまうため、水分トラップ層Bの含水量を前述した範囲内とすることが困難となってしまう。
 上記の乾燥剤シートとしては、シリカゲル等の乾燥剤が樹脂中に分散されている公知のものを使用することもできるが、より確実に、含水率を前述した範囲に維持するために、図2に示す構造の乾燥剤シート10を用いることが好適である。
 図2において、この乾燥剤シート10は、吸湿性樹脂層11と、吸湿性樹脂層11の一方の面に設けられた表面保護樹脂層13とを有しており、吸湿性樹脂層11の他方の表面(表面保護樹脂層13が設けられていない側の面)が吸湿性機能面15となっており、この面15が、前述した保護層Cの表面に、引き剥がし可能に貼り付けられる。
 係る乾燥剤シート10において、吸湿性樹脂層11は、乾燥剤が分散されている樹脂層であり、乾燥剤としては、それ自体公知の無機系或いは有機系の乾燥剤が使用される。
 無機系の乾燥剤としては、ゼオライト、アルミナ、活性炭、モンモリロナイト等の粘土鉱物、シリカゲル、酸化カルシウム、酸化バリウム、塩化カルシウム、硫酸マグネシウムなどを挙げることができる。
 有機系の乾燥剤としては、アニオン系ポリマー若しくはその部分中和物の架橋物を挙げることができる。このアニオン系ポリマーとしては、カルボン酸系単量体((メタ)アクリル酸や無水マレイン酸など)、スルホン酸系単量体(ハロゲン化ビニルスルホン酸、スチレンスルホン酸、ビニルスルホン酸など)、ホスホン酸系単量体(ビニルリン酸など)及びこれら単量体の塩類等に代表されるアニオン性単量体の少なくとも1種を、重合或いは他の単量体と共重合させて得られるものを挙げることができる。
 本発明においては、水分トラップ層Bから放出される水分を効果的に捕捉できるという観点から、ゼオライトやシリカゲル等の物理的吸着により水分を捕捉する乾燥剤よりも、水との反応による化学吸着性を示す乾燥剤、例えば、酸化カルシウムが好適に使用される。
 また、上記の乾燥剤は、樹脂中に均一に分散することができ、かつ比表面積が大きいという観点から、その粒径が小さいことが好ましく、例えば、レーザ回折散乱法で測定した体積換算での平均一次粒子径(D50)が20μm以下であることが好適であり、通常、マトリックスである樹脂100質量部当り5~80質量部の量で吸湿性樹脂層11中に分散されていることが好適である。
 さらに、上記吸湿性樹脂層11におけるマトリックスである樹脂としては、特に制限されず、公知の熱可塑性樹脂を使用することができるが、一般的には、乾燥剤シートの表面保護樹脂層13又は水分バリア性積層体の保護樹脂層Cに対する貼付性又はコストなどの観点から、オレフィン系樹脂、例えば低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダムあるいはブロック共重合体、あるいは環状オレフィン共重合体などが好適に使用される。
 本発明においては、上記のオレフィン系樹脂の中でも、特に吸湿性が低く、吸湿性樹脂層11からの水分の放出が有効に防止され、使用前における乾燥剤の失活を防止するという点で、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)及びこれらのブレンド物が好適であり、中でも、低密度ポリエチレン(LDPE)及び直鎖低密度ポリエチレン(LLDPE)が好ましい。
 また、表面保護樹脂層13は、雰囲気中からの吸湿性樹脂層11への水分の侵入を防止するための層であり、このような水分バリア性を確保するため、40℃、90%RHでの水分透過率が40g/m/day以下、特に20g/m/day以下であることが好適である。即ち、この水分透過率が高いと、乾燥処理を施す前の製造工程や取り回しの段階で、雰囲気中からの水分の侵入により、吸湿性樹脂層11中の乾燥剤の吸湿性が短時間で損なわれてしまう。
 表面保護樹脂層13を形成する樹脂としては、上記のような水分透過率を確保できるものであれば特に制限されないが、薄い厚みで上記水分透過率を満足させ得るという観点から、吸湿性樹脂層11の形成に使用されるオレフィン樹脂や、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリエチレンナフタレート(PEN)等の熱可塑性ポリエステルが好適であり、より好ましくはオレフィン系樹脂が使用され、吸湿性樹脂層11との接着性が良好であるという観点から、エチレン系樹脂或いはプロピレン系樹脂が最適である。
 上記のような樹脂を用いて表面保護樹脂層13を形成することにより、例えばその厚みが40μm以下、特に30μm以下で所定の水分透過率を満足させることができる。
 上記の説明から理解されるように、乾燥処理に用いる乾燥剤シート10では、表面保護樹脂層13によって、雰囲気中からの吸湿樹脂層11への水分の侵入が防止され、また、吸湿性樹脂層11の他方の面が吸湿性機能面15となって、この面15から侵入する水分が乾燥剤によって捕捉されることとなる。
 本発明では、このような乾燥剤シート10の吸湿性機能面15を前述した保護層Cの表面に貼り付けて、乾燥処理を行い、そのまま保管しておくことにより、水分トラップ層Cの含水量を所定の範囲に維持させることができる。
 尚、乾燥剤シート10の保護層Cへの貼り付けは、吸湿性機能面15を形成している樹脂のブロッキング性を利用し、吸湿性機能面15を直接保護層Cの表面に一時的に貼り付けることもできるが、一般的には、粘着剤を用いて貼り付けることが、保管、搬送時等における剥離等の不都合を確実に防止する上で好適である。
 このような粘着剤を用いて保護層Cに貼り付ける場合、吸湿性機能面15と保護層Cとの間には粘着剤層が形成されるが、この粘着剤層(図2では示されていない)は、吸湿性機能面15の吸湿性を阻害するものであってはならず、従って、この粘着剤層は、前述した表面保護樹脂層13よりも水分透過率が高く、例えば40℃、90%RHでの水分透過率が40g/m/day以上、特に60g/m/day以上であることが必要である。
 上記の粘着剤としては、(メタ)アクリル系粘着剤、ウレタン系粘着剤等の公知の粘着剤を使用することができ、これらの粘着剤により上記のような水分透過率が確保されるように一定厚み以下(例えば、30μm以下)の粘着剤層を形成すればよい。
 また、エチレン・酢酸ビニル共重合体(EVA)、軟質ポリオレフィン(LLDPE)、メタロセンポリオレフィン系エラストマー等も粘着剤として使用することもできる。
 また、上記の粘着剤は、この乾燥剤シート10を貼り付ける保護層Cの表面に対する粘着力が0.3N/25mm以下となるように調整されていることが好ましい。このように粘着力を調整しておくことにより、保護層Cの表面を損傷させることなく、速やかに乾燥剤シート10を引き剥がすことができる。
 なお、粘着力の調整は、乾燥剤シート10を貼り付ける保護層Cの材質に応じて、粘着剤を形成している高分子中に架橋構造を導入したり、或いは粘着剤中に滑剤等を配合することなどにより行うことができる。
 上述した乾燥剤シート10は、例えば、吸湿性樹脂層11形成用の乾燥剤含有樹脂組成物と表面保護樹脂層13形成用の樹脂とを用いて共押出により容易に成形することができ、粘着剤を用いる場合には、上記で形成された吸湿性樹脂層11の表面に粘着剤をロール塗布し、或いは溶剤含有の粘着剤塗布組成物を塗布し、適宜乾燥すればよい。また、粘着剤として使用する樹脂との3層共押出により成形することもできる。
<水分バリア性積層体1の使用形態>
 上記のように乾燥剤シート10を貼り付けての乾燥処理終了後は、通常、この水分バリア性積層体フィルム1を、乾燥剤シート10が貼り付けられたままの状態でロールに巻き取られて保管される。即ち、ロールに巻き取られた状態では、この水分バリア性積層体1は、乾燥剤シートに10にサンドイッチされている形態に保持されており、従って、このような保管状態で、水分トラップ層Bの吸湿が有効に防止され、水分トラップ層Bの含水量を前述した範囲に維持することができる。
 このような水分バリア性積層体1は、乾燥剤シート10を引き剥がした後、使用に供されることとなるが、このときに本発明の優れた効果が発現する。即ち、本発明の水分バリア性積層体1では、水分トラップ層Bの表面に保護樹脂層Cが設けられており、この保護樹脂層Cが適度な水分バリア性を示すため、経時による水分トラップ層Bの含水量の増大が抑制されており、例えば30秒間の暴露に際して、水分トラップ層Bの含水量が前述した範囲(0.15g/g以下、特に0.1g/g以下)に保持される。即ち、この時間内に、各種のデバイスの内部に水分トラップ層Bが保護樹脂層Cを介して対面するように配置することにより、水分トラップ層Bによる水分捕捉能を最大限に発揮させ、長期にわたって、優れた水分バリア性を発現することができるわけである。
 また、この水分バリア性積層体1に他の水分バリア性積層シートを積層することにより、その水分バリア性をより高めることができるが、このような積層作業の間における水分トラップ層Bの吸湿が、保護樹脂層Cにより有効に防止することができる。即ち、かかる積層作業は、通常、乾燥剤シート10を引き剥がした後、この保護樹脂層Cの表面に、アクリル系、エポキシ系或いはウレタン系等のドライラミネート接着剤をロールコートし、接着剤の塗布面に、他の水分バリア性積層体1のガスバリア性フィルム基材Aを接着する。かかる積層作業を繰り返し行うことにより、水分バリア性積層シート1の多層構造体を得ることができるが、保護樹脂層Cの存在により、このような積層作業中における水分トラップ層Bの吸湿が有効に防止され、水分トラップ層Bの含水量の増大が有効に回避される。即ち、極端に速いライン速度で積層作業を行わずとも、水分トラップ層Bの吸湿を回避することができ、これは、本発明の大きな利点である。
 また、この水分トラップ層Bは、上記の乾燥剤シート10による乾燥処理の他に、真空加熱乾燥やトラップ層Bを塗布形成する際のオーブン焼き付けによっても含水量を低減できるが、その後の含水量の増加も保護樹脂層Cにより有効に防止することができる。
 本発明の水分バリア性積層体1は、水分トラップ層Bによる水分バリア性を最大限に発揮させることができるため、それ単独で、或いは上述した多層構造体として、例えば公知の感圧粘着剤などを用いて各種のデバイスに貼り付けることにより、封止材として使用され、デバイス内部への水分の侵入を有効に回避し、デバイス内部を乾燥状態に維持することができ、これにより、水分による電荷のリークなどの不都合を有効に防止することができる。
 このようなデバイスとしては、特に制限されず、有機EL素子、太陽電池、タッチパネル、電子パネルなど、特に水分による電荷のリークを嫌う有機デバイスなどを例示することができる。
 また、上記のようなデバイスは、何れも高い透明性が要求され、デバイス内の回路基板には、透明導電膜が設けられるが、本発明の水分バリア性積層体1では、前述した乾燥処理を行い、乾燥剤シート10を引き剥がした後、保護樹脂層Cの表面に透明導電膜を設けることができ、このような透明導電膜を設けた水分バリア性積層体を用いて、各種デバイスの回路基板を形成することもできる。
 尚、上記の透明導電膜は、例えば、ITO(酸化錫ドープ酸化インジウム)やGaやAlなどをドープした酸化亜鉛などからなるものであり、保護樹脂層Cの表面に蒸着により設けることができる。即ち、このような透明導電膜を設ける工程においても、本発明では、その間の水分トラップ層Bの吸湿を有効に防止することができる。
 また、本発明の水分バリア性積層体を透明性が要求されるデバイスに装着して使用する場合、保護樹脂層Cには、屈折率を調整するための金属酸化物を配合しておき、各種デバイスの基板が有する屈折率(例えば透明導電膜の屈折率)と同程度の屈折率を確保することにより、この水分バリア性積層体1による光取り出し効率の低下を有効に回避することができる。
 このような屈折率調整用の金属酸化物としては、特に制限されないが、一般に、コスト等の観点から、シリカ、アルミナ、チタニアまたはジルコニアが使用される。このような金属酸化物は、通常、平均粒径(レーザ回折散乱法による体積換算の平均粒径D50)が5~100nm程度の微粒子の形で保護樹脂層Cに配合される。その配合量は、通常、樹脂100質量部当り100~400質量部程度である。
 本発明の水分バリア性積層体の優れた性能を、以下の実験例により説明する。
<乾燥剤シートの作製>
 表面保護樹脂層として、LDPE(住友化学株式会社製、スミカセン)を用い、表面保護樹脂層用の押出機に投入した。吸湿性樹脂層として、乾燥剤として酸化カルシウム含有LLDPEマスターバッチ(近江化学工業株式会社製、Bell―CML)と乾燥剤分散層として熱可塑性樹脂であるLDPE(住友化学株式会社製、スミカセン)を樹脂成分75重量部に対して吸湿機能成分(ここでは酸化カルシウム)が25重量部になるよう混合し、吸湿性樹脂層用の押出機に投入した。表面保護樹脂層及び吸湿性樹脂層の共押出により、LLDPE(表面保護層、15μm)/CaO含有LLDPE層(吸湿性樹脂層、30μm)の2層からなるフィルムを成形した。
<水分バリア性積層体の乾燥処理>
 後述する実施例及び比較例で作製した水分バリア性積層体及び上記乾燥剤シートをそれぞれ5cm×5cmの大きさにカットし、水分バリア性積層体の保護樹脂層Cと上記乾燥剤シートの吸湿性樹脂層が密着するよう1枚ずつ重ね合わせ、アルミ袋に封入、脱気し、70℃のオーブン内に7日間静置し、乾燥処理を施した。
<水分バリア性積層体の含水分評価1>
 後述する実施例及び比較例で作製した水分バリア性積層体に、前記乾燥処理を施した後、積層体の含水分をカールフィッシャー法により測定した(積層体検出水分量X)。
 また、リファレンスとして、水分トラップ層を有さない積層体を作製し、同様の乾燥処理を施した後、積層体の含水分をカールフィッシャー法により測定した(リファレンス検出水分量Y)。
 下記の式より、乾燥処理後の水分トラップ層の含水量(A)を算出した。
  水分トラップ層の含水量(A)[g/g]=(X-Y)/Z
   X:水分バリア性積層体の検出水分量
   Y:リファレンスの検出水分量
   Z:水分トラップ層の重量
 また、含水量(A)を下記の通り評価した。
  ◎:0.04[g/g]未満
  ○:0.04[g/g]以上0.1[g/g]未満
  ×:0.1[g/g]以上
 なお、乾燥処理前の水分トラップ層の含水量は0.25[g/g]であった。
<水分バリア積層体の含水分評価2>
 後述する実施例及び比較例で作製した水分バリア性積層体を、前記含水分評価1の方法で乾燥処理を施し、水分トラップ層の含水量を低減した水分バリア性積層体を作製した。
 別途、バリアフィルム積層体として、ケイ素酸化物層(無機バリア層)を有する市販バリアフィルム(凸版印刷株式会社製、GL-RD、基材:PET(12μm))のPET面同士を厚さ1.8μmのウレタン系接着剤(三井化学社製A-980/A-19)を用いてドライラミネートしたものを作製した。次いで、前記水分バリア性積層体から前記乾燥剤シートを23℃40%RHの環境にて剥離し30秒間暴露した後、ただちに前記バリアフィルム積層体を厚さ1.8μmのウレタン系接着剤(三井化学株式会社製、A-980/A-19)を介して、前記水分バリア性積層体の水分トラップ層が形成されている面と前記バリアフィルム積層体とをドライラミネートし、接着剤を硬化させることで多層水分バリア性積層体を得た。
 得られた積層体について、含水分をカールフィッシャー法により測定した(検出水分量α)。
 また、リファレンスとして、水分トラップ層を有さない多層水分バリア性積層体を作製し、同様に積層体の含水分をカールフィッシャー法により測定した(検出水分量β)。
 下記の式より、乾燥処理後の水分トラップ層の含水量(B)を算出した。
  水分トラップ層の含水量増加分(B)[g/g]
  =[(α-β)/C]-D
   α:多層水分バリア性積層体の検出水分量
   β:リファレンスの検出水分量
   C:水分トラップ層の重量
   D:評価1で算出された水分トラップ層の含水量(A)
 また、含水量(B)を下記の通り評価した。
  ◎:0.10[g/g]未満
  ○:0.10[g/g]以上0.15[g/g]未満
  ×:0.15[g/g]以上
<水蒸気透過度測定>
 水分バリア性多層構造体を、高感度水蒸気透過度測定装置(technolox Ltd.製「デルタパーム」)を用い、60℃90%RH環境下における水蒸気透過度を測定し、バリア性が初期値の10倍の値に到達するまでの時間を「トラップ層性能維持時間」であると定義し、下記の通り評価を行った。
  ○:1000時間以上
  ×:1000時間未満
<カチオン性ポリマーを用いた水分トラップ層コーティング液(B1)の調製>
 カチオン性ポリマーとしてポリアリルアミン(ニットーボーメディカル株式会社製、PAA-15C、水溶液品、固形分15%)を、固形分5重量%になるように水で希釈し、ポリマー溶液を得た。
 一方、架橋剤として、γ-グリシドキシプロピルトリメトキシシランを用い、5重量%になるように水に溶かして架橋剤溶液を調製した。
 次いで、ポリアリルアミン100重量部に対してγ-グリシドキシプロピルトリメトキシシランが20重量部になるように、ポリマー溶液と架橋剤溶液とを混合し、さらに、この混合溶液に、吸湿剤として、ポリアクリル酸Naの架橋物(東洋紡株式会社製、タフチックHU-820E、水分散品、固形分13%)を、ポリアリルアミンに対して420重量部になるように加え、更に固形分が5%になるよう水で調整した上で良く撹拌し、水分トラップ層用のコーティング液(B1)を調製した。
<アニオン性ポリマーを用いた水分トラップ層コーティング液(B2)の調製>
 アニオン性ポリマーとしてポリアクリル酸(日本純薬株式会社製、AC-10LP)を用い、水/アセトン混合溶媒(重量比で80/20)に、固形分が5重量%になるように溶解し、水酸化ナトリウムをポリアクリル酸の中和率が80%になるように加え、ポリマー溶液を得た。
 このポリマー溶液に、架橋剤として1,2―シクロヘキサンジカルボン酸ジグリシジルが、ポリアクリル酸部分中和物に対して20重量部になるように配合し、次いで密着剤として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランがポリアクリル酸部分中和物に対して3重量部になるように配合し、さらに、粒状吸湿剤(東洋紡株式会社製、タフチックHU-820E、水分散品、固形分13%)が、ポリアクリル酸部分中和物に対して431重量部になるように配合し、更に全体の固形分が5重量%になるよう水/アセトン混合溶媒(重量比で80/20)で調整した上で良く撹拌し、水分トラップ層用のコーティング液(B2)を調製した。
<実施例1>
 アクリル樹脂(荒川化学工業株式会社製、アラコートDA-105、固形分35%)を用意した。
 この主ポリマー液に、硬化剤としてポリイソシアネート(荒川化学工業株式会社製、アラコートCL-100A、固形分40%)を主ポリマー溶液の固形分100重量部に対して40重量部になるように配合し、2―ブタノンで希釈して固形分20%の保護樹脂層コーティング液(C)を調整した。
 ケイ素酸化物層(無機バリア層)を有する市販バリアフィルム(凸版印刷株式会社製、GL-RD、基材:PET(12μm))のPET面同士を厚さ1.8μmのウレタン系接着剤(三井化学株式会社製、A980/A19)を用いてドライラミネートしたバリアフィルム積層体を用意した。
 このバリアフィルム積層体の保護層(D)上に、上記カチオン性ポリマーを用いた水分トラップ層コーティング液(B1)をバーコーターにより塗工し、ピーク温度100℃、ピーク温度保持時間3分の条件で熱処理し、厚み4μmの水分トラップ層(B)を形成し、コーティングフィルムBを得た。
 上記保護樹脂層コーティング液Cを、前記で得られたコーティングフィルムBの水分トラップ層B上に、水分トラップ層形成後速やかに、バーコーターにより塗布した。塗布後の上記フィルムをボックス型の電気オーブンにより、ピーク温度120℃、ピーク温度保持時間10秒の条件で熱処理し、厚み1μmの保護樹脂層Cを形成し、水分バリア性積層体を得た。
<実施例2>
 保護樹脂層Cの厚みを0.5μmにしたこと以外は、実施例1と同様の方法で水分バリア積層体、並びに水分バリア性積層構造体を作製した。
<実施例3>
 保護樹脂層Cの厚みを3.0μmにしたこと以外は、実施例1と同様の方法で水分バリア積層体、並びに水分バリア性積層構造体を作製した。
<実施例4>
 保護樹脂層Cの厚みを15.0μmにしたこと以外は、実施例1と同様の方法で水分バリア積層体、並びに水分バリア性積層構造体を作製した。
<実施例5>
 アニオン性ポリマーを用いた水分トラップ層コーティング液(B2)を使用したこと以外は、実施例1と同様の方法で水分バリア積層体を作製した。
<実施例6>
 保護樹脂層の主ポリマーをウレタン樹脂(荒川化学工業株式会社製、ユリアーノ5319)にしたこと以外は、実施例5と同様の方法で水分バリア積層体を作製した。
<実施例7>
 保護樹脂層Cを、主ポリマーとしてポリエステル樹脂(東洋紡株式会社製、バイロンGK880)を固形分20%となるよう2-ブタノンを用いて溶解し、硬化剤としてポリイソシアネート(三井化学株式会社製「D-110N」、固形分75%)を主ポリマーの固形分に対し10重量部になるよう添加したものを用いること以外は、実施例1と同様の方法で水分バリア積層体を作製した。
<実施例8>
 実施例1において得られたコーティングフィルムBの水分トラップ層B上に、水分トラップ層形成後速やかに、厚さ1.8μmのウレタン系接着剤(三井化学株式会社製、A980/A19)を介して、厚さ12μmのPETフィルム(東レ株式会社製、ルミラー)をドライラミネートし、水分バリア性積層体を得た。
<比較例1>
 保護樹脂層Cを設けないこと以外は、実施例1と同様の方法で水分バリア積層体を作製した。
<比較例2>
 保護樹脂層Cの厚みを0.3μmにしたこと以外は、実施例1と同様の方法で水分バリア積層体、並びに水分バリア性積層構造体を作製した。
<比較例3>
 実施例1において得られたコーティングフィルムBの水分トラップ層B上に、水分トラップ層形成後速やかに、厚さ1.8μmのウレタン系接着剤(三井化学株式会社製、A980/A19)を介して、厚さ13μmの市販バリアフィルム(凸版印刷株式会社製、GLフィルム)をバリア層が内側になるようにドライラミネートし、水分バリア性積層体を得た。
 上記実施例及び比較例での評価結果を下記の表1に示す。
Figure JPOXMLDOC01-appb-T000002
  1:水分バリア性積層体
  A:ガスバリア性フィルム基材
  a1:無機バリア層
  a2:フィルム基材層
  B:水分トラップ層
  C:保護樹脂層
  9:有機層
 10:乾燥剤シート
 11:吸湿性樹脂層
 13:表面保護樹脂層
 15:吸湿性機能面

Claims (11)

  1.  ガスバリア層を有するガスバリア性フィルム基材Aと、該フィルム基材Aを下地として形成された水分トラップ層Bとを含み、該水分トラップ層Bの該フィルム基材Aとは反対側の表面には、40℃、90%RHでの透湿度が4.0×10~5.0×10g/m/dayの範囲にある保護樹脂層Cが積層されていることを特徴とする水分バリア性積層体。
  2.  前記水分トラップ層Bは、JIS-7251に準拠して230℃で測定した含水量が0.15g/g以下に保持されている請求項1に記載の水分バリア性積層体。
  3.  前記水分トラップ層Bが、吸湿性のポリマーを含有している請求項1に記載の水分バリア性積層体。
  4.  前記水分トラップ層Bが、イオン性ポリマーからなる吸湿性マトリックス中に、さらに該マトリックスよりも到達湿度が低湿度である吸湿剤が分散された構造を有している請求項1に記載の水分バリア性積層体。
  5.  前記水分トラップ層B中に含まれるイオン性ポリマーが、カチオン性ポリマーである請求項1に記載の水分バリア性積層体。
  6.  前記保護樹脂層Cが、アクリル樹脂、ウレタン樹脂またはポリエステル樹脂により形成されている請求項1に記載の水分バリア性積層体。
  7.  前記保護樹脂層Cが、0.1~15μmの厚みを有している請求項1に記載の水分バリア性積層体。
  8.  前記保護樹脂層Cには、屈折率調整剤としての金属酸化物粒子が配合されている請求項1に記載の水分バリア性積層体。
  9.  前金属酸化物が、シリカ、アルミナ、チタニアまたはジルコニアである請求項8に記載の水分バリア性積層体。
  10.  前記保護層(C)の上に透明導電膜が設けられている請求項8に記載の水分バリア性積層体。
  11.  請求項1に記載の水分バリア性積層体からなる電子デバイス用部材。
PCT/JP2019/014121 2018-03-29 2019-03-29 水分バリア性積層体 WO2019189805A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980035606.XA CN112203839B (zh) 2018-03-29 2019-03-29 阻水性层叠体
US17/042,680 US11565508B2 (en) 2018-03-29 2019-03-29 Moisture barrier laminate
KR1020207030922A KR102501001B1 (ko) 2018-03-29 2019-03-29 수분 배리어성 적층체
EP19774667.0A EP3778212B1 (en) 2018-03-29 2019-03-29 Moisture-barrier laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-065053 2018-03-29
JP2018065053A JP7110668B2 (ja) 2018-03-29 2018-03-29 水分バリア性積層体

Publications (1)

Publication Number Publication Date
WO2019189805A1 true WO2019189805A1 (ja) 2019-10-03

Family

ID=68058510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014121 WO2019189805A1 (ja) 2018-03-29 2019-03-29 水分バリア性積層体

Country Status (6)

Country Link
US (1) US11565508B2 (ja)
EP (1) EP3778212B1 (ja)
JP (1) JP7110668B2 (ja)
KR (1) KR102501001B1 (ja)
CN (1) CN112203839B (ja)
WO (1) WO2019189805A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135389B2 (ja) * 2018-03-30 2022-09-13 東洋製罐グループホールディングス株式会社 電子デバイス用バリアフィルムの包装体
JP2019177645A (ja) 2018-03-30 2019-10-17 東洋製罐グループホールディングス株式会社 電子デバイス用バリアフィルム
JP7468128B2 (ja) * 2020-05-12 2024-04-16 東洋製罐グループホールディングス株式会社 水分バリア性積層フィルム
WO2022049758A1 (ja) * 2020-09-07 2022-03-10 東洋製罐グループホールディングス株式会社 水分バリア性積層フィルム
JP2023030650A (ja) * 2021-08-23 2023-03-08 東洋製罐グループホールディングス株式会社 ガスバリア性多層フィルム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255579A (ja) 1999-03-10 2000-09-19 Toppan Printing Co Ltd プラスチック容器の製造方法及び容器
JP2011194653A (ja) * 2010-03-18 2011-10-06 Dainippon Printing Co Ltd 防湿性積層体
JP2012250470A (ja) * 2011-06-03 2012-12-20 Toppan Printing Co Ltd 透明ガスバリア積層体
WO2014083899A1 (ja) * 2012-11-30 2014-06-05 三菱樹脂株式会社 防湿フィルム及びそれを用いた有機電子デバイス
JP2015096320A (ja) 2013-10-10 2015-05-21 東洋製罐グループホールディングス株式会社 水分バリア性の良好なガスバリア性積層体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4219287A1 (de) * 1992-06-12 1993-12-16 Merck Patent Gmbh Anorganische Füllstoffe und organische Matrixmaterialien mit Brechungsindex-Anpassung
US10538841B2 (en) * 2014-08-07 2020-01-21 Toyo Seikan Group Holdings, Ltd. Water-barrier laminate
JP6657651B2 (ja) * 2015-08-10 2020-03-04 東洋製罐グループホールディングス株式会社 水分バリア性樹脂積層体
JP6776706B2 (ja) * 2015-08-18 2020-10-28 東洋製罐グループホールディングス株式会社 水分バリア性積層体
US20180163096A1 (en) 2016-12-13 2018-06-14 Intertape Polymer Corp. Dry functional coating tape

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000255579A (ja) 1999-03-10 2000-09-19 Toppan Printing Co Ltd プラスチック容器の製造方法及び容器
JP2011194653A (ja) * 2010-03-18 2011-10-06 Dainippon Printing Co Ltd 防湿性積層体
JP2012250470A (ja) * 2011-06-03 2012-12-20 Toppan Printing Co Ltd 透明ガスバリア積層体
WO2014083899A1 (ja) * 2012-11-30 2014-06-05 三菱樹脂株式会社 防湿フィルム及びそれを用いた有機電子デバイス
JP2015096320A (ja) 2013-10-10 2015-05-21 東洋製罐グループホールディングス株式会社 水分バリア性の良好なガスバリア性積層体

Also Published As

Publication number Publication date
EP3778212C0 (en) 2023-08-30
EP3778212A1 (en) 2021-02-17
JP2019171771A (ja) 2019-10-10
JP7110668B2 (ja) 2022-08-02
US11565508B2 (en) 2023-01-31
EP3778212A4 (en) 2021-12-15
US20210122147A1 (en) 2021-04-29
KR102501001B1 (ko) 2023-02-17
CN112203839B (zh) 2023-03-24
KR20200138313A (ko) 2020-12-09
CN112203839A (zh) 2021-01-08
EP3778212B1 (en) 2023-08-30

Similar Documents

Publication Publication Date Title
WO2019189805A1 (ja) 水分バリア性積層体
EP2955017B1 (en) Gas barrier laminate having excellent moisture barrier properties
KR101849028B1 (ko) 수분 배리어성이 양호한 가스 배리어성 적층체
JP6776706B2 (ja) 水分バリア性積層体
JP6657651B2 (ja) 水分バリア性樹脂積層体
JP6572896B2 (ja) 水分バリア性積層体
JP7497749B2 (ja) 電子デバイス用バリアフィルム
WO2019189931A1 (ja) 電子デバイス用バリアフィルムの包装体
CN113474168B (zh) 水分阻挡性层压体
JP2019034539A (ja) 水分バリア性多層構造体
WO2019035326A1 (ja) 水分バリア性多層構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19774667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207030922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019774667

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019774667

Country of ref document: EP

Effective date: 20201029