WO2019189466A1 - Resin material and multilayer printed wiring board - Google Patents

Resin material and multilayer printed wiring board Download PDF

Info

Publication number
WO2019189466A1
WO2019189466A1 PCT/JP2019/013365 JP2019013365W WO2019189466A1 WO 2019189466 A1 WO2019189466 A1 WO 2019189466A1 JP 2019013365 W JP2019013365 W JP 2019013365W WO 2019189466 A1 WO2019189466 A1 WO 2019189466A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin material
skeleton derived
material according
skeleton
Prior art date
Application number
PCT/JP2019/013365
Other languages
French (fr)
Japanese (ja)
Inventor
悠子 川原
達史 林
奨 馬場
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020207027404A priority Critical patent/KR20200138227A/en
Priority to JP2019518316A priority patent/JP6660513B1/en
Priority to CN201980018755.5A priority patent/CN111836843A/en
Publication of WO2019189466A1 publication Critical patent/WO2019189466A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4042Imines; Imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4238Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to a resin material containing an epoxy compound, an inorganic filler, and a curing agent. Moreover, this invention relates to the multilayer printed wiring board using the said resin material.
  • a resin material is used to form an insulating layer for insulating internal layers or to form an insulating layer located in a surface layer portion.
  • a wiring generally made of metal is laminated on the surface of the insulating layer.
  • the resin film in which the said resin material was turned into a film may be used.
  • the resin material and the resin film are used as insulating materials for multilayer printed wiring boards including build-up films.
  • Patent Document 1 discloses a resin composition containing a compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group. . Patent Document 1 describes that a cured product of this resin composition can be used as an insulating layer such as a multilayer printed wiring board.
  • a compound having a small polarity may be blended with the resin material (resin composition).
  • the adhesion between the insulating layer and the wiring (metal layer) may not be sufficiently high. For this reason, a metal layer may peel from an insulating layer.
  • roughness may become large and plating peel strength may not become high enough.
  • the electrical characteristics and physical properties of the insulating layer may change.
  • the reaction proceeds quickly, so that it is difficult to control the degree of curing before etching, anchors are not sufficiently formed, and as a result, plating peel strength is increased. May not be high enough.
  • the object of the present invention is to 1) reduce the dielectric loss tangent of the cured product, 2) increase the adhesion between the insulating layer and the metal layer, 3) increase the plating peel strength, and 4) increase the flame retardancy of the cured product, And 5) to provide a resin material capable of keeping the curing temperature low.
  • Another object of the present invention is to provide a multilayer printed wiring board using the resin material.
  • a curing agent comprising at least one component selected from the group consisting of a compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer amine.
  • a resin material having a weight ratio with respect to the total content of the curing agent and 0.05 to 0.75 is provided.
  • the N-alkylbismaleimide compound having a skeleton derived from dimer diamine has a structure represented by the following formula (X), or is derived from the dimer diamine.
  • R1 represents a tetravalent organic group.
  • the said epoxy compound is an epoxy compound which has an aromatic skeleton
  • the said component is a component which has an aromatic skeleton
  • the curing agent includes an active ester compound having two or more aromatic skeletons.
  • the said resin material contains a hardening accelerator.
  • the curing accelerator includes an anionic curing accelerator.
  • the content of the anionic curing accelerator is 50% by weight or more in 100% by weight of the curing accelerator.
  • the anionic curing accelerator is an imidazole compound.
  • the curing accelerator includes a radical curing accelerator and an imidazole compound, or includes a radical curing accelerator and a phosphorus compound.
  • the average particle diameter of the said inorganic filler is 1 micrometer or less.
  • the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine includes an N-alkylbismaleimide compound having a skeleton derived from dimeramine amine, and the molecular weight of the N-alkylbismaleimide compound having the skeleton derived from dimeramine amine is 15000 Is less than.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine includes an N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine, and the molecular weight of the N-alkylbenzoxazine compound having the skeleton derived from dimeramine amine is 15000. Is less than.
  • the said resin material is a resin film.
  • the resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • a circuit board a plurality of insulating layers disposed on a surface of the circuit board, and a plurality of metal layers disposed between the insulating layers, the plurality of insulating layers are provided.
  • a multilayer printed wiring board is provided in which at least one of the layers is a cured product of the resin material described above.
  • the resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from dimer amine or an N-alkyl benzoxazine compound having a skeleton derived from dimer amine, an epoxy compound, and an inorganic filler.
  • the resin material according to the present invention includes at least one component among a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine. Contains a curing agent.
  • the epoxy material having a content of the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine is used.
  • the weight ratio with respect to the total content of the compound and the curing agent is 0.05 or more and 0.75 or less.
  • the epoxy material having a content of the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is contained.
  • the weight ratio with respect to the total content of the compound and the curing agent is 0.05 or more and 0.75 or less. Since the resin material according to the present invention has the above-described configuration, 1) the dielectric loss tangent of the cured product is reduced, 2) the adhesion between the insulating layer and the metal layer is increased, and 3) the plating peel strength is increased. 4) The flame retardancy of the cured product can be increased, and 5) the effects of 1) -5) can be exhibited, such that the curing temperature can be kept low.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
  • the resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from dimer diamine or an N-alkyl benzoxazine compound having a skeleton derived from dimer diamine.
  • the resin material according to the present invention includes an epoxy compound.
  • the resin material according to the present invention includes an inorganic filler.
  • the resin material according to the present invention includes at least one component among a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine. Contains a curing agent.
  • a component of at least one of a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine” X may be described.
  • the resin material according to the present invention includes an N-alkyl bismaleimide compound having a skeleton derived from dimer amine, an N-alkyl benzoxazine compound having a skeleton derived from dimer amine, an epoxy compound, an inorganic filler, And a curing agent containing component X.
  • the resin material according to the present invention when the resin material contains an N-alkyl bismaleimide compound having a skeleton derived from the dimer amine, the inclusion of the N-alkyl bismaleimide compound having a skeleton derived from the dimer amine
  • the weight ratio of the amount to the total content of the epoxy compound and the curing agent is 0.05 or more and 0.75 or less.
  • the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine when the resin material contains an N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine, the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is contained.
  • the weight ratio of the amount to the total content of the epoxy compound and the curing agent is 0.05 or more and 0.75 or less.
  • the resin material according to the present invention has the above-described configuration, 1) the dielectric loss tangent of the cured product is reduced, 2) the adhesion between the insulating layer and the metal layer is increased, and 3) the plating peel strength is increased. 4) The flame retardancy of the cured product can be increased, and 5) the effects of 1) -5) can be exhibited, such that the curing temperature can be kept low. For example, 2) As the adhesion between the insulating layer and the metal layer, the peel strength between the insulating layer and the metal layer in the temperature range from room temperature to high temperature (for example, 260 ° C.) can be increased.
  • the peel strength between the roughened cured product (insulating layer) and the metal layer laminated by plating on the surface of the insulating layer can be increased.
  • the roughened cured product (insulating layer) fine concave portions are formed on the surface.
  • the resin portion existing in the vicinity of the opening of the recess causes an anchor effect to the metal layer.
  • the roughness of the roughened cured product (insulating layer) is too large, it is possible to suppress the resin contributing to the anchor effect from becoming too thin, The plating peel strength can be increased. Further, in the resin material according to the present invention, it is possible to prevent the anchor from being formed due to the roughness of the roughened cured product (insulating layer) being too small, so that the plating peel strength can be increased. it can.
  • the resin material according to the present invention has the above-described configuration, the embedding property with respect to the uneven surface can be improved.
  • the resin material according to the present invention may be a resin composition or a resin film.
  • the resin composition has fluidity.
  • the resin composition may be in the form of a paste.
  • the paste form includes liquid.
  • the resin material according to the present invention is preferably a resin film because it is excellent in handleability.
  • the flexibility of the resin film can be increased.
  • the resin film (resin material) according to the present invention the resin film is hardly cracked or cracked when the resin film is handled. That is, when the resin material according to the present invention is a resin film, in addition to the effects 1) -5) described above, 6) the flexibility of the resin film can be increased.
  • the resin material according to the present invention is preferably a thermosetting material.
  • the resin film is preferably a thermosetting resin film.
  • the resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from dimer diamine or an N-alkyl benzoxazine compound having a skeleton derived from dimer diamine.
  • the resin material according to the present invention may contain only the N-alkyl bismaleimide compound, may contain only the N-alkyl benzoxazine compound, the N-alkyl bismaleimide compound and the N-alkyl. Both of them may be contained together with a benzoxazine compound.
  • the resin material according to the present invention preferably contains an N-alkylbismaleimide compound having a skeleton derived from dimer diamine.
  • the N-alkylbismaleimide compound having a skeleton derived from dimer diamine has a maleimide group.
  • the etching performance can be enhanced by using an N-alkylbismaleimide compound having a skeleton derived from the dimer diamine.
  • the curing temperature can be kept low by using an N-alkylbismaleimide compound having a skeleton derived from the dimer diamine.
  • the N-alkylbismaleimide compound having a skeleton derived from the dimer diamine may be in an oligomer state.
  • the N-alkylbismaleimide compound having a skeleton derived from dimer diamine may have a molecular weight distribution.
  • the N-alkyl bismaleimide compound having a skeleton derived from the above dimer diamine only one kind may be used or two or more kinds may be used in combination.
  • the skeleton derived from dimer diamine exists as a partial skeleton.
  • the N-alkylbismaleimide compound having a skeleton derived from dimer diamine preferably has a structure in which an aliphatic skeleton is bonded to a nitrogen atom in the maleimide group.
  • the N-alkylbismaleimide compound having a skeleton derived from dimer diamine according to the present invention may be a citraconimide compound.
  • the citraconimide compound is a compound in which a methyl group is bonded to one of carbon atoms constituting a double bond between carbon atoms in a maleimide group. Since the citraconic imide compound is slightly less reactive than the maleimide compound, the storage stability can be improved.
  • the N-alkylbismaleimide compound having a skeleton derived from dimer diamine preferably has a skeleton derived from a reaction product of tetracarboxylic dianhydride and dimer diamine.
  • the reaction product of the tetracarboxylic dianhydride and the dimer diamine is preferably a compound in which both ends are amino groups.
  • the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine is obtained by, for example, obtaining a reaction product of tetracarboxylic dianhydride and dimeramine amine (preferably a compound having both amino groups at the ends), It can be obtained by reacting the reaction product with maleic anhydride.
  • tetracarboxylic dianhydride examples include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenylsulfonetetra.
  • dimer diamine examples include Versamine 551 (trade name, manufactured by BASF Japan, 3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl) cyclohexene), Versamine 552. (Trade name, manufactured by Cognics Japan, hydrogenated product of Versamine 551), PRIAMINE 1075, PRIAMINE 1074, and PRIAMINE 1071 (trade names, all manufactured by Croda Japan).
  • dimer diamine may have unsaturated hydrocarbon as a partial skeleton, and does not need to have it.
  • N-alkylbismaleimide compounds having a skeleton derived from dimer diamine examples include Designers Molecules Inc. Examples thereof include “BMI-1500”, “BMI-1700”, and “BMI-3000” manufactured by the company.
  • the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine preferably has a structure represented by the following formula (X).
  • R1 represents a tetravalent organic group.
  • R1 in the above formula (X) examples include a group having an aromatic ring and a group having a biphenyl ether skeleton.
  • the group having an aromatic ring examples include a group having a skeleton derived from pyromellitic acid anhydride.
  • the group having a biphenyl ether skeleton examples include a group having a skeleton derived from 4,4′-oxydiphthalic anhydride.
  • the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine may have one, two, or two or more structures represented by the above formula (X). It may be.
  • the weight ratio of the content of the N-alkylbismaleimide compound having a skeleton derived from the dimer amine to the total content of the epoxy compound and the curing agent is expressed as “weight ratio (having a skeleton derived from dimer amine). N-alkylbismaleimide compound content / total content of epoxy compound and curing agent).
  • the weight ratio (content of N-alkyl bismaleimide compound having a skeleton derived from dimer diamine / curing with epoxy compound and curing) Total content with the agent) is 0.05 or more and 0.75 or less.
  • the weight ratio (content of N-alkylbismaleimide compound having a skeleton derived from dimer diamine / total content of epoxy compound and curing agent) is preferably 0.15 or more, preferably 0.5 or less. is there.
  • the weight ratio is not less than the above lower limit and not more than the above upper limit, the above-described effects 1) -5) of the present invention and 1) -6) can be more effectively exhibited.
  • the content of the N-alkylbismaleimide compound having a skeleton derived from dimer diamine is preferably 5% by weight or more, more preferably 10% by weight in 100% by weight of the resin material excluding the inorganic filler and the solvent. % Or more, more preferably 15% by weight or more.
  • the content of the N-alkylbismaleimide compound having a skeleton derived from dimer diamine is preferably 65% by weight or less, more preferably 60% by weight in 100% by weight of the resin material excluding the inorganic filler and the solvent. % Or less, more preferably 55% by weight or less, particularly preferably 50% by weight or less.
  • the dielectric loss tangent is lowered, adhesion between the insulating layer and the metal layer, plating peel strength, etching performance, and resin.
  • the flexibility of the film can be further increased.
  • the flame retardancy is further increased, the linear expansion coefficient is further suppressed, and the plating peel strength is further increased. be able to.
  • the molecular weight of the N-alkylbismaleimide compound having a skeleton derived from dimerized amine is preferably 500 or more, more preferably 600 or more, preferably less than 15000, more preferably less than 11000, and still more preferably less than 8000.
  • the molecular weight is not less than the above lower limit and not more than the above upper limit, the adhesion between the insulating layer and the metal layer can be further increased, and the melt viscosity is lowered, and the resin material (resin film) is embedded in the circuit board. Can increase the sex.
  • the molecular weight of the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine is determined when the N-alkylbismaleimide compound is not a polymer and when the structural formula of the N-alkylbismaleimide compound can be specified. It means the molecular weight that can be calculated from the structural formula.
  • the molecular weight of the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine is calculated in terms of polystyrene measured by gel permeation chromatography (GPC) when the N-alkylbismaleimide compound is a polymer. The weight average molecular weight is shown.
  • the resin material according to the present invention preferably contains an N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is a compound in which the maleimide skeleton of the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine is substituted with a benzoxazine skeleton. preferable.
  • the dielectric loss tangent can be lowered, and the adhesion between the insulating layer and the metal layer and the plating peel strength can be increased.
  • the etching performance can be enhanced by using an N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine.
  • the curing temperature can be kept low.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine may be in an oligomer state.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine may have a molecular weight distribution.
  • the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine only one type may be used or two or more types may be used in combination.
  • the skeleton derived from dimer diamine exists as a partial skeleton.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine preferably has a structure in which an aliphatic skeleton is bonded to a nitrogen atom in a benzoxazine group.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is preferably an N-alkylbisbenzoxazine compound having a skeleton derived from dimeramine amine.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine preferably has a skeleton derived from a reaction product of tetracarboxylic dianhydride and dimer diamine.
  • the reaction product of the tetracarboxylic dianhydride and the dimer diamine is preferably a compound in which both ends are amino groups.
  • the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is obtained by, for example, obtaining a reaction product of tetracarboxylic dianhydride and dimeramine amine (preferably a compound having both amino groups at both ends). It can be obtained by reacting the reactant, phenol and paraformaldehyde.
  • the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine preferably has a structure represented by the following formula (X).
  • R1 represents a tetravalent organic group.
  • R1 in the above formula (X) examples include a group having an aromatic ring and a group having a biphenyl ether skeleton.
  • the group having an aromatic ring examples include a group having a skeleton derived from pyromellitic acid anhydride.
  • the group having a biphenyl ether skeleton examples include a group having a skeleton derived from 4,4′-oxydiphthalic anhydride.
  • the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine may have one, two, or two or more structures represented by the formula (X). It may be.
  • the weight ratio of the content of the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine to the total content of the epoxy compound and the curing agent is expressed as “weight ratio (having a skeleton derived from the dimer diamine”).
  • N-alkylbenzoxazine compound content / total content of epoxy compound and curing agent When the resin material contains an N-alkylbenzoxazine compound having a skeleton derived from dimer diamine, the weight ratio (content of N-alkyl benzoxazine compound having a skeleton derived from dimer diamine / curing with epoxy compound)
  • the total content with the agent) is 0.05 or more and 0.75 or less.
  • the weight ratio (content of N-alkylbenzoxazine compound having a skeleton derived from dimer diamine / total content of epoxy compound and curing agent) is preferably 0.15 or more, preferably 0.5 or less. is there.
  • the weight ratio is not less than the above lower limit and not more than the above upper limit, the above-described effects 1) -5) of the present invention and 1) -6) can be more effectively exhibited.
  • the content of the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine is preferably 5% by weight or more, more preferably 10% by weight in 100% by weight of the component excluding the inorganic filler and solvent in the resin material. % Or more, more preferably 15% by weight or more.
  • the content of the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine is preferably 65% by weight or less, more preferably 60% by weight in 100% by weight of the resin material excluding the inorganic filler and the solvent. % Or less, more preferably 55% by weight or less, particularly preferably 50% by weight or less.
  • the dielectric loss tangent is lowered, the adhesion between the insulating layer and the metal layer, the plating peel strength, the etching performance and the resin.
  • the flexibility of the film can be further increased.
  • the flame retardancy is further increased, the linear expansion coefficient is further suppressed, and the plating peel strength is further increased. be able to.
  • the molecular weight of the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is preferably 500 or more, more preferably 600 or more, preferably less than 15000, more preferably less than 11000, and still more preferably less than 8000.
  • the molecular weight is not less than the above lower limit and not more than the above upper limit, the adhesion between the insulating layer and the metal layer can be further increased, and the melt viscosity is lowered, and the resin material (resin film) is embedded in the circuit board. Can increase the sex.
  • the molecular weight of the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is such that when the N-alkylbenzoxazine compound is not a polymer and when the structural formula of the N-alkylbenzoxazine compound can be specified, It means the molecular weight that can be calculated from the structural formula.
  • the molecular weight of the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is calculated in terms of polystyrene measured by gel permeation chromatography (GPC) when the N-alkylbenzoxazine compound is a polymer. The weight average molecular weight is shown.
  • the resin material includes an epoxy compound.
  • a conventionally well-known epoxy compound can be used as said epoxy compound.
  • the epoxy compound refers to an organic compound having at least one epoxy group. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.
  • epoxy compounds examples include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds.
  • examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus in the skeleton.
  • the epoxy compound preferably contains an epoxy compound having an aromatic skeleton, more preferably contains an epoxy compound having a naphthalene skeleton or a phenyl skeleton, more preferably an epoxy compound having an aromatic skeleton, and a naphthalene skeleton. It is particularly preferable that the epoxy compound has In this case, the dielectric loss tangent can be further reduced, the flame retardancy can be increased, and the linear expansion coefficient can be reduced.
  • the epoxy compound includes an epoxy compound that is liquid at 25 ° C. and an epoxy compound that is solid at 25 ° C. It is preferable.
  • the viscosity of the epoxy compound that is liquid at 25 ° C. at 25 ° C. is preferably 1000 mPa ⁇ s or less, and more preferably 500 mPa ⁇ s or less.
  • VAR-100 manufactured by Rheologicala Instruments
  • the molecular weight of the epoxy compound is more preferably 1000 or less.
  • a resin material with high fluidity can be obtained when the insulating layer is formed even if the component in the resin material is 100% by weight excluding the solvent and the content of the inorganic filler is 50% by weight or more. For this reason, when an uncured resin material or a B-stage product is laminated on the circuit board, the inorganic filler can be uniformly present.
  • the molecular weight of the epoxy compound means a molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified. Moreover, when the said epoxy compound is a polymer, a weight average molecular weight is meant.
  • the content of the epoxy compound is preferably 15% by weight or more, more preferably 20% by weight in 100% by weight of the component excluding the solvent in the resin material. % Or more, preferably 50% by weight or less, more preferably 40% by weight or less.
  • the weight ratio of the content of the epoxy compound to the total content of the N-alkyl bismaleimide compound having a skeleton derived from the dimer diamine and the curing agent (content of the epoxy compound / the content of the N-alkyl bismaleimide)
  • the total content of the compound and the curing agent) is preferably 0.2 or more, more preferably 0.25 or more.
  • the total content of the compound and the curing agent is preferably 0.9 or less, more preferably 0.8 or less.
  • the weight ratio content of the epoxy compound / total content of the N-alkylbismaleimide compound and the curing agent
  • the dielectric loss tangent is lowered, and the insulating layer
  • the adhesion with the metal layer, the plating peel strength, the flame retardancy and the flexibility of the resin film can be further enhanced and the roughness can be reduced.
  • the weight ratio of the content of the epoxy compound to the total content of the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine and the curing agent is preferably 0.2 or more, more preferably 0.25 or more.
  • the weight ratio of the content of the epoxy compound to the total content of the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine and the curing agent (content of the epoxy compound / the content of the N-alkylbenzoxazine)
  • the total content of the compound and the curing agent is preferably 0.9 or less, more preferably 0.8 or less.
  • the weight ratio content of the epoxy compound / total content of the N-alkylbenzoxazine compound and the curing agent
  • the dielectric loss tangent is lowered, and the insulating layer
  • the adhesion with the metal layer, the plating peel strength, the flame retardancy and the flexibility of the resin film can be further enhanced and the roughness can be reduced.
  • the resin material includes an inorganic filler.
  • the dielectric loss tangent of the cured product can be further reduced.
  • the use of the inorganic filler further reduces the dimensional change due to heat of the cured product.
  • the said inorganic filler only 1 type may be used and 2 or more types may be used together.
  • examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.
  • the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica.
  • silica the thermal expansion coefficient of the cured product is further lowered, and the dielectric loss tangent of the cured product is further reduced.
  • the use of silica effectively reduces the surface roughness of the cured product and effectively increases the adhesive strength between the cured product and the metal layer.
  • the shape of silica is preferably spherical.
  • the inorganic filler is spherical silica from the viewpoint of promoting the curing of the resin, effectively increasing the glass transition temperature of the cured product, and effectively reducing the thermal linear expansion coefficient of the cured product. It is preferable.
  • the average particle size of the inorganic filler is preferably 50 nm or more, more preferably 100 nm or more, further preferably 500 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and even more preferably 2 ⁇ m or less.
  • the average particle size of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the roughness can be reduced, and the adhesion between the insulating layer and the metal layer and the plating peel strength can be further enhanced.
  • a median diameter (d50) value of 50% is employed as the average particle diameter of the inorganic filler.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the inorganic filler is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
  • the inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent.
  • the surface treatment of the inorganic filler By the surface treatment of the inorganic filler, the surface roughness of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Further, since the inorganic filler is surface-treated, it is possible to form finer wiring on the surface of the cured product, and to further improve the inter-wiring insulation reliability and interlayer insulation reliability to the cured product. Can be granted.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the content of the inorganic filler is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 65% by weight or more, particularly preferably 68% by weight. % Or more, preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less.
  • the content of the inorganic filler is not less than the above lower limit, the dielectric loss tangent is effectively lowered. Etching performance can be improved as content of the said inorganic filler is below the said upper limit.
  • the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. Can do. Furthermore, with this amount of inorganic filler, it is possible to improve the smear removability as well as lowering the coefficient of thermal expansion of the cured product.
  • the resin material comprises a curing agent containing at least one component of a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine. Including. That is, the resin material includes a curing agent containing component X.
  • the benzoxazine compound preferably does not have a skeleton derived from a diamine compound other than dimer diamine.
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • Component X includes a phenol compound (phenol curing agent), a cyanate ester compound (cyanate ester curing agent), an acid anhydride, an active ester compound, a carbodiimide compound (carbodiimide curing agent), and a benzo having no skeleton derived from dimer diamine. It is at least one component of the oxazine compound (benzoxazine curing agent). That is, the resin material includes a curing agent containing component X. As for the said component X, only 1 type may be used and 2 or more types may be used together.
  • the component X is preferably a component having an aromatic skeleton, and more preferably contains at least a phenol compound.
  • the epoxy compound is an epoxy compound having an aromatic skeleton, and the component X has an aromatic skeleton. Preferably it is a component.
  • phenol compound examples include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, dicyclopentadiene type phenol and the like.
  • phenol compounds examples include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 “and” LA3018-50P "manufactured by DIC).
  • cyanate ester compound examples include novolac-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers in which these are partially trimerized.
  • novolak-type cyanate ester resin a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned.
  • the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
  • cyanate ester compounds Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the company.
  • Examples of the acid anhydride include tetrahydrophthalic acid anhydride and alkylstyrene-maleic anhydride copolymer.
  • Examples of commercially available acid anhydrides include “Ricacid TDA-100” manufactured by Shin Nippon Chemical Co., Ltd.
  • the active ester compound refers to a compound containing at least one ester bond in the structure and having an aliphatic chain, an aliphatic ring or an aromatic ring bonded to both sides of the ester bond.
  • the active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or thiocarboxylic acid compound and a hydroxy compound or thiol compound.
  • Examples of the active ester compound include a compound represented by the following formula (1).
  • X1 represents a group containing an aliphatic chain, a group containing an aliphatic ring or a group containing an aromatic ring
  • X2 represents a group containing an aromatic ring.
  • the group containing an aromatic ring include a benzene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • a hydrocarbon group is mentioned as said substituent. The carbon number of the hydrocarbon group is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less.
  • a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, a benzene ring which may have a substituent and a substitution
  • the combination with the naphthalene ring which may have a group is mentioned.
  • examples of the combination of X1 and X2 include a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • the active ester compound is not particularly limited. From the viewpoint of further increasing the flame retardancy and reducing the linear expansion coefficient, the active ester is preferably an active ester compound having two or more aromatic skeletons. Therefore, the curing agent preferably contains an active ester compound having two or more aromatic skeletons. From the viewpoint of reducing the dielectric loss tangent of the cured product and increasing the thermal dimensional stability of the cured product, it is more preferable to have a naphthalene ring in the main chain skeleton of the active ester.
  • Examples of commercially available active ester compounds include “HPC-8000-65T”, “EXB9416-70BK”, “EXB8100-65T”, and “HPC-8150-60T” manufactured by DIC.
  • the carbodiimide compound has a structural unit represented by the following formula (2).
  • the right end and the left end are binding sites with other groups.
  • the said carbodiimide compound only 1 type may be used and 2 or more types may be used together.
  • X is an alkylene group, a group having a substituent bonded to an alkylene group, a cycloalkylene group, a group having a substituent bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group.
  • X may be the same and may differ.
  • At least one X is an alkylene group, a group having a substituent bonded to the alkylene group, a cycloalkylene group, or a group having a substituent bonded to a cycloalkylene group.
  • carbodiimide compounds include “Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07”, “Carbodilite V-09”, “Carbodilite” manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP ”,“ Carbodilite 10M-SP (modified) ”,“ STABAXOL P ”,“ STABAXOL P400 ”, and“ HIKAZIL 510 ”manufactured by Rhein Chemie.
  • benzoxazine compound having no skeleton derived from the dimeramine amine examples include Pd-type benzoxazine and Fa-type benzoxazine.
  • Examples of commercially available benzoxazine compounds having no skeleton derived from dimer diamine include “Pd type” manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • the content of the component X with respect to 100 parts by weight of the epoxy compound is preferably 50 parts by weight or more, more preferably 85 parts by weight or more, preferably 150 parts by weight or less, more preferably 120 parts by weight or less.
  • the content of the component X is not less than the above lower limit and not more than the above upper limit, the curability is further improved, and the dimensional change of the cured product due to heat and the remaining unreacted components can be further suppressed.
  • the total content of the epoxy compound and the component X is preferably 40% by weight or more, more preferably 60% by weight or more, preferably It is 90 weight% or less, More preferably, it is 85 weight% or less.
  • the total content of the epoxy compound and the component X is not less than the above lower limit and not more than the above upper limit, an even better cured product can be obtained, and the dimensional change due to heat of the cured product can be further suppressed.
  • the resin material may contain a curing agent different from the curing agent containing the component X.
  • a curing agent different from the curing agent containing the component X include an amine compound (amine curing agent), a thiol compound (thiol curing agent), a phosphine compound, dicyandiamide, and a maleimide compound (maleimide curing agent).
  • the resin material preferably contains a curing accelerator.
  • the curing rate is further increased.
  • the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups is reduced, and as a result, the crosslinking density is increased. If the curing of the resin material does not proceed sufficiently, the dielectric loss tangent increases and the linear expansion coefficient may increase.
  • the curing accelerator By using the curing accelerator, the effect of the resin material can be sufficiently advanced.
  • the said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organometallic compounds. And radical curing accelerators such as peroxides.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Methyly Midazolyl- (1 ′)]
  • amine compound examples include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, 4,4-dimethylaminopyridine, and the like.
  • Examples of the phosphorus compound include a triphenylphosphine compound.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • peroxide examples include dicumyl peroxide and perhexyl 25B.
  • the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.
  • the content of the anionic curing accelerator is preferably 50% by weight or more, more preferably 70% by weight or more, and still more preferably 80% in 100% by weight of the curing accelerator. % By weight or more, most preferably 100% by weight (total amount).
  • the curing accelerator preferably contains at least one of an anionic curing accelerator and a radical curing accelerator.
  • the anionic curing accelerator is preferably an imidazole compound.
  • the curing accelerator may contain the radical curing accelerator and the imidazole compound.
  • the radical curing accelerator is preferably a radical curing accelerator whose reaction temperature in the presence of the radical curing accelerator is higher than the curing temperature before etching and lower than the main curing temperature after etching. In the case of using a radical curing accelerator, the above effect is more effectively exhibited by using perhexyl 25B as the radical curing accelerator.
  • the said hardening accelerator contains a radical hardening accelerator and an imidazole compound, or contains a radical hardening accelerator and a phosphorus compound. In this case, curing of the resin material can be favorably progressed, and an even better cured product can be obtained.
  • the curing accelerator may contain a radical curing accelerator and at least one compound among dimethylaminopyridine, an imidazole compound, and a phosphorus compound.
  • the content of the curing accelerator is not particularly limited.
  • the content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5% by weight or less, in 100% by weight of the component excluding the inorganic filler and solvent in the resin material. More preferably, it is 3% by weight or less.
  • the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If content of the said hardening accelerator is a more preferable range, the storage stability of a resin material will become still higher and a much better hardened
  • the resin material preferably contains a thermoplastic resin.
  • the thermoplastic resin include polyvinyl acetal resin, polyimide resin, and phenoxy resin.
  • the said thermoplastic resin only 1 type may be used and 2 or more types may be used together.
  • the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring.
  • the phenoxy resin By using the phenoxy resin, deterioration of the embedding property of the resin film with respect to the holes or irregularities of the circuit board and non-uniformity of the inorganic filler are suppressed.
  • the melt viscosity can be adjusted by using the phenoxy resin, the dispersibility of the inorganic filler is improved, and the resin composition or the B-staged product is difficult to wet and spread in an unintended region during the curing process.
  • the phenoxy resin contained in the resin material is not particularly limited.
  • a conventionally known phenoxy resin can be used as the phenoxy resin.
  • As for the said phenoxy resin only 1 type may be used and 2 or more types may be used together.
  • phenoxy resins examples include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolac skeleton, a naphthalene skeleton, and an imide skeleton.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 “,” YX6954BH30 “,” YX8100BH30 “, and the like.
  • the thermoplastic resin is preferably a polyimide resin (polyimide compound) from the viewpoint of improving handling properties, plating peel strength at low roughness, and adhesion between the insulating layer and the metal layer.
  • the polyimide compound is preferably a polyimide compound obtained by a method of reacting tetracarboxylic dianhydride and dimer diamine.
  • the thermoplastic resin, the polyimide resin, and the phenoxy resin preferably have a weight average molecular weight of 5000 or more, more preferably 10,000 or more, and preferably 100,000 or less. Preferably it is 50000 or less.
  • the weight average molecular weight of the thermoplastic resin, the polyimide resin, and the phenoxy resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the thermoplastic resin in 100% by weight of the component excluding the inorganic filler and the solvent in the resin material Is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, more preferably 20% by weight or less.
  • the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the resin material in the holes or irregularities of the circuit board becomes good.
  • the content of the thermoplastic resin is not less than the above lower limit, the resin film can be formed more easily, and a better insulating layer can be obtained.
  • the thermal expansion coefficient of the cured product is further reduced.
  • the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • the resin material does not contain or contains a solvent.
  • the solvent By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved.
  • the said solvent may be used in order to obtain the slurry containing the said inorganic filler. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coating property of the resin composition.
  • the content of the solvent is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 10% by weight or less in 100% by weight of the B stage film. More preferably, it is 5% by weight or less.
  • the above resin materials are leveling agents, flame retardants, coupling agents, coloring agents, antioxidants, UV degradation inhibitors, antifoaming agents.
  • a thermosetting resin other than an agent, a thickener, a thixotropic agent, and an epoxy compound may be included.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • thermosetting resins examples include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, benzoxazine resins, benzoxazole resins, bismaleimide resins, and acrylate resins.
  • a resin film (B-staged product / B-stage film) is obtained by molding the resin composition described above into a film.
  • the resin material is preferably a resin film.
  • the resin film is preferably a B stage film.
  • the resin material is preferably a thermosetting material.
  • Examples of a method for forming a resin composition into a film to obtain a resin film include the following methods.
  • An extrusion molding method in which a resin composition is melt-kneaded and extruded using an extruder, and then molded into a film shape by a T die or a circular die.
  • a casting molding method in which a resin composition containing a solvent is cast to form a film.
  • Other known film forming methods The extrusion molding method or the casting molding method is preferable because it can cope with the reduction in thickness.
  • the film includes a sheet.
  • a resin film that is a B-stage film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 50 ° C. to 150 ° C. for 1 to 10 minutes so that curing by heat does not proceed excessively. it can.
  • the film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film.
  • the B-stage film is in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the resin film may not be a prepreg.
  • migration does not occur along the glass cloth or the like.
  • laminating or precuring the resin film the surface is not uneven due to the glass cloth.
  • the said resin film can be used with the form of a laminated film provided with metal foil or a base material, and the resin film laminated
  • the metal foil is preferably a copper foil.
  • Examples of the substrate of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin film.
  • the surface of the base material may be subjected to a release treatment as necessary.
  • the thickness of the resin film is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the thickness of the insulating layer formed with the said resin film is more than the thickness of the conductor layer (metal layer) which forms a circuit.
  • the thickness of the insulating layer is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the resin material is preferably used for forming a mold resin for embedding a semiconductor chip in a semiconductor device.
  • the resin material is suitably used for forming an insulating layer in a printed wiring board.
  • the printed wiring board can be obtained, for example, by heat-pressing the resin material.
  • a metal foil can be laminated on one side or both sides of the resin film.
  • the method for laminating the resin film and the metal foil is not particularly limited, and a known method can be used.
  • the resin film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while applying pressure while heating or without heating.
  • the resin material is suitably used for obtaining a copper clad laminate.
  • An example of the copper-clad laminate includes a copper-clad laminate including a copper foil and a resin film laminated on one surface of the copper foil.
  • the thickness of the copper foil of the copper clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably in the range of 1 ⁇ m to 50 ⁇ m.
  • the copper foil in order to increase the adhesive strength between the cured product of the resin material and the copper foil, the copper foil preferably has fine irregularities on the surface.
  • the method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a formation method by treatment using a known chemical solution.
  • the resin material is preferably used for obtaining a multilayer substrate.
  • a multilayer substrate including a circuit substrate and an insulating layer stacked on the circuit substrate can be given.
  • the insulating layer of the multilayer substrate is formed of the resin material.
  • the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film using a laminated film.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Part of the insulating layer is preferably embedded between the circuits.
  • the surface of the insulating layer opposite to the surface on which the circuit substrate is laminated is roughened.
  • the roughening treatment method a conventionally known roughening treatment method can be used, and it is not particularly limited.
  • the surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
  • the said multilayer substrate is further equipped with the copper plating layer laminated
  • the circuit board, the insulating layer laminated on the surface of the circuit board, and the surface of the insulating layer opposite to the surface on which the circuit board is laminated are laminated.
  • a multilayer substrate provided with copper foil is laminated.
  • the insulating layer is preferably formed by curing the resin film using a copper-clad laminate including a copper foil and a resin film laminated on one surface of the copper foil.
  • the copper foil is etched and is a copper circuit.
  • the multilayer substrate is a multilayer substrate including a circuit board and a plurality of insulating layers stacked on the surface of the circuit board. At least one of the plurality of insulating layers disposed on the circuit board is formed using the resin material. It is preferable that the multilayer substrate further includes a circuit laminated on at least one surface of the insulating layer formed using the resin film.
  • multilayer printed wiring boards are required to have a low dielectric loss tangent and to have high insulation reliability due to an insulating layer.
  • the resin material according to the present invention it is possible to effectively increase the insulation reliability by reducing the dielectric loss tangent and enhancing the adhesion between the insulating layer and the metal layer and the etching performance. Therefore, the resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • the multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
  • a plurality of insulating layers 13 to 16 are laminated on the upper surface 12 a of the circuit board 12.
  • the insulating layers 13 to 16 are cured product layers.
  • a metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12.
  • the metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side.
  • the metal layer 17 is a circuit.
  • Metal layers 17 are respectively arranged between the circuit board 12 and the insulating layer 13 and between the stacked insulating layers 13 to 16.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).
  • the insulating layers 13 to 16 are formed of a cured product of the resin material.
  • fine holes are formed on the surfaces of the insulating layers 13 to 16.
  • the metal layer 17 reaches the inside of the fine hole.
  • the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small.
  • good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).
  • the resin material is preferably used in order to obtain a cured product that is roughened or desmeared.
  • the cured product includes a precured product that can be further cured.
  • the cured product is preferably roughened.
  • the cured product Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment.
  • the cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment.
  • the cured product is not necessarily subjected to the swelling treatment.
  • the swelling treatment for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion of a compound mainly composed of ethylene glycol or the like is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is carried out by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 ° C. to 85 ° C. for 1 minute to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 ° C to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfuric acid compound is used.
  • These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the arithmetic average roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, and even more preferably less than 150 nm.
  • the adhesive strength between the cured product and the metal layer is increased, and further finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed and signal loss can be suppressed low.
  • the arithmetic average roughness Ra is measured in accordance with JIS B0601: 1994.
  • Through holes may be formed in a cured product obtained by precuring the resin material.
  • a via or a through hole is formed as a through hole.
  • the via can be formed by irradiation with a laser such as a CO 2 laser.
  • the diameter of the via is not particularly limited, but is about 60 ⁇ m to 80 ⁇ m. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
  • the surface of the cured product is preferably desmeared.
  • the desmear process may also serve as a roughening process.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the desmear treatment liquid used for the desmear treatment generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the surface roughness of the surface of the cured product subjected to the desmear treatment is sufficiently reduced.
  • N-alkylbismaleimide compounds having a skeleton derived from dimer diamine N-alkyl bismaleimide compound 1 (designer Moleculars Inc. “BMI-1500”, number average molecular weight 1500) N-alkyl bismaleimide compound 2 (designer Moleculars Inc. “BMI-1700”, number average molecular weight 1700) N-alkyl bismaleimide compound 3 (designer Moleculars Inc. “BMI-3000”, number average molecular weight 3000) N-alkylbismaleimide compound 4 (“BMI-3000J”, number average molecular weight 5100, manufactured by Designer Molecules Inc.) N-alkylbismaleimide compound 5 (“BMI-3000J” manufactured by Designer Molecules Inc. was dissolved in a toluene solution, and then isopropanol was added to recover the precipitated polymer component (in the table, BMI-3000J treatment). And weight average molecular weight 15000)
  • N-alkylbenzoxazine compounds having a skeleton derived from dimer diamine N-alkylbenzoxazine compound (synthesized according to Synthesis Example 1 below)
  • N-phenylmaleimide compound (“BMI-2300” manufactured by Daiwa Kasei Kogyo Co., Ltd.) N-phenylmaleimide compound (“BMI-4000” manufactured by Daiwa Kasei Kogyo Co., Ltd.)
  • Silica-containing slurry (silica 75 wt%: “SC4050-HOA” manufactured by Admatechs, average particle size 1.0 ⁇ m, aminosilane treatment, cyclohexanone 25 wt%)
  • Component X Cyanate ester compound-containing liquid (Lonza Japan “BA-3000S”, solid content 75% by weight) Liquid containing active ester compound 1 (“EXB-9416-70BK” manufactured by DIC, solid content: 70% by weight) Liquid containing active ester compound 2 (“HPC-8000L” manufactured by DIC, solid content 65% by weight) Liquid containing active ester compound 3 (“HPC-8150” manufactured by DIC, solid content: 62% by weight) Phenol compound-containing liquid (DIC's “LA-1356”, solid content 60% by weight) Carbodiimide compound-containing liquid (Nisshinbo Chemical "V-03", solid content 50 wt%)
  • DMAP Dimethylaminopyridine
  • DMAP Dimethylaminopyridine
  • 2-Phenyl-4-methylimidazole 2P4MZ
  • 2-Ethyl-4-methylimidazole 2E4MZ” manufactured by Shikoku Chemicals
  • Park Mill D manufactured by NOF Corporation
  • Polyimide compound (polyimide resin) (A polyimide compound-containing solution (nonvolatile content: 26.8% by weight) which is a reaction product of tetracarboxylic dianhydride and dimer diamine is synthesized according to Synthesis Example 2 below) Phenoxy resin (Mitsubishi Chemical "YX6954BH30")
  • the molecular weight of the polyimide compound synthesized in Synthesis Example 2 was determined as follows.
  • GPC gel permeation chromatography
  • Examples 1 to 15 and Comparative Examples 1 to 3 The components shown in the following Tables 1 to 3 were blended in the blending amounts shown in the following Tables 1 to 3, and stirred at room temperature until a uniform solution was obtained, to obtain a resin material.
  • the resin film (B-stage film) side of the laminated film is placed on the copper-clad laminate. And laminated to obtain a laminated structure.
  • the laminating conditions were such that the pressure was reduced to 30 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds.
  • Copper foil pasting process The shiny surface of the copper foil (thickness 35 ⁇ m, manufactured by Mitsui Kinzoku Co., Ltd.) was subjected to Cz treatment (“Cz8101” manufactured by MEC), and the copper foil surface was etched by about 1 ⁇ m. An etched copper foil was bonded to the laminated structure from which the PET film was peeled to obtain a substrate with a copper foil. The obtained substrate with copper foil was heat-treated at 190 ° C. for 90 minutes in a gear oven to obtain an evaluation sample.
  • a double-sided copper-clad laminate (thickness 0.2 mm, “MCL-E-679FGR” manufactured by Hitachi Chemical Co., Ltd.) was prepared. Using a “batch type vacuum laminator MVLP-500-IIA” manufactured by Meiki Seisakusho, the resin film (B stage film) side of the laminated film is laminated on the copper-clad laminate on both sides of this double-sided copper-clad laminate. Lamination was performed to obtain a laminated structure. The laminating conditions were such that the pressure was reduced to 30 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds.
  • Lamination process The obtained resin film having a thickness of 40 ⁇ m was further pasted twice on both surfaces of the laminated structure, and a laminated sample in which a resin film having a total thickness of 120 ⁇ m was laminated on one side of the double-sided copper-clad laminate was produced.
  • Curing process The obtained laminated sample was heat-treated at 190 ° C. for 90 minutes in a gear oven to obtain an evaluation sample.
  • the obtained evaluation sample was cut into a length of 135 mm and a width of 13 mm. Next, the cut out evaluation sample was fixed with a clamp, and a resin film was burned by holding a flame of a gas burner under the evaluation sample. The time until the flame burned on the resin film disappeared was measured.
  • the laminating conditions were such that the pressure was reduced to 30 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds. Then, it heated at 180 degreeC for 30 minute (s), and the resin film was semi-hardened. Thus, the laminated body by which the semi-cured material of the resin film was laminated
  • Ra is less than 50 nm ⁇ : Ra is 50 nm or more and less than 200 nm X: Ra is 200 nm or more
  • Electroless plating treatment (4) The surface of the roughened cured product obtained by the evaluation of the surface roughness was treated with a 60 ° C. alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
  • a 60 ° C. alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured
  • the cured product is placed in a chemical copper solution (“Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, and “Reducer Cu” manufactured by Atotech Japan Co.) was carried out until the plating thickness reached about 0.5 ⁇ m.
  • a chemical copper solution (“Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, and “Reducer Cu” manufactured by Atotech Japan Co.) was carried out until the plating thickness reached about 0.5 ⁇ m.
  • annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas.
  • all processes up to the electroless plating process were performed while setting the treatment liquid to 2 L on a beaker scale and swinging the cured product.
  • Electroplating treatment Next, electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 ⁇ m.
  • a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler kaparaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m.
  • the cured product was heated at 190 ° C. for 90 minutes to further cure the cured product.
  • stacked on the upper surface was obtained.
  • a strip-shaped cut having a width of 0.5 cm was made on the surface of the copper plating layer of the cured product obtained by laminating the obtained copper plating layer on the upper surface.
  • The number of occurrences of cracks or cracks is less than 3 times during 10 times.
  • The number of occurrences of cracks or cracks in 10 times is 3 times or more and less than 6 times.
  • X The number of times that cracks or cracks occurred in 10 times is 6 times or more
  • the resin film side of the obtained laminated film is overlaid on the evaluation substrate, and a “batch type vacuum laminator MVLP-500-IIA” manufactured by Meiki Seisakusho Co., Ltd. is used for 20 seconds at a laminating pressure of 0.4 MPa, and a pressing pressure of 0.8 MPa. For 20 seconds at a laminating and pressing temperature of 90 ° C. After cooling at room temperature, the PET film was peeled off. Thus, the evaluation sample by which the resin film was laminated
  • the void was observed in the hollow using the optical microscope.
  • the embedding property with respect to the uneven surface was determined according to the following criteria.
  • compositions and results are shown in Tables 1 to 3 below.
  • content of each component is described as a pure amount (part by weight of solid content).
  • Multilayer printed wiring board 12 ... Circuit board 12a ... Upper surface 13-16 ... Insulating layer 17 ... metal layer

Abstract

A resin material is provided which can 1) reduce the dielectric loss tangent of a cured product, 2) increase adhesion between an insulation layer and a metal layer, 3) increase the plated peel strength, 4) increase flame retardancy of the cured product and 5) keep the curing temperature low. This resin material contains an N-alkyl bismaleimide compound having a skeleton derived from dimer diamines or an N-alkyl benzoxazine compound having a skeleton derived from dimer diamines, an epoxy compound, an inorganic filler material, and a curing agent containing a specific component, wherein the weight ratio of the content of the N-alkyl bismaleimide compound having a skeleton derived from dimer diamines or the N-alkyl benzoxazine compound having a skeleton derived from dimer diamines to the total content of the epoxy compound and the curing agent is 0.05-0.75.

Description

樹脂材料及び多層プリント配線板Resin material and multilayer printed wiring board

 本発明は、エポキシ化合物と、無機充填材と、硬化剤とを含む樹脂材料に関する。また、本発明は、上記樹脂材料を用いた多層プリント配線板に関する。

The present invention relates to a resin material containing an epoxy compound, an inorganic filler, and a curing agent. Moreover, this invention relates to the multilayer printed wiring board using the said resin material.

 従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂材料が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂材料が用いられている。上記絶縁層の表面には、一般に金属である配線が積層される。また、上記絶縁層を形成するために、上記樹脂材料がフィルム化された樹脂フィルムが用いられることがある。上記樹脂材料及び上記樹脂フィルムは、ビルドアップフィルムを含む多層プリント配線板用の絶縁材料等として用いられている。

Conventionally, various resin materials have been used to obtain electronic components such as semiconductor devices, laminated boards, and printed wiring boards. For example, in a multilayer printed wiring board, a resin material is used to form an insulating layer for insulating internal layers or to form an insulating layer located in a surface layer portion. On the surface of the insulating layer, a wiring generally made of metal is laminated. Moreover, in order to form the said insulating layer, the resin film in which the said resin material was turned into a film may be used. The resin material and the resin film are used as insulating materials for multilayer printed wiring boards including build-up films.

 下記の特許文献1には、マレイミド基と、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基とを有する化合物を含有する樹脂組成物が開示されている。特許文献1には、この樹脂組成物の硬化物を、多層プリント配線板等の絶縁層として用いることができることが記載されている。

The following Patent Document 1 discloses a resin composition containing a compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group. . Patent Document 1 describes that a cured product of this resin composition can be used as an insulating layer such as a multilayer printed wiring board.

WO2016/114286A1WO2016 / 114286A1

 硬化物(絶縁層)の電気特性を高めるために、樹脂材料(樹脂組成物)に極性の小さい化合物を配合することがある。しかしながら、極性の小さい化合物を配合した樹脂材料を用いて絶縁層を形成した場合に、絶縁層と配線(金属層)との密着性が十分に高くならないことがある。このため、金属層が絶縁層から剥離することがある。また、従来の樹脂材料では、粗度が大きくなったり、メッキピール強度が十分に高くならなかったりすることがある。

In order to improve the electrical characteristics of the cured product (insulating layer), a compound having a small polarity may be blended with the resin material (resin composition). However, when an insulating layer is formed using a resin material containing a compound having a small polarity, the adhesion between the insulating layer and the wiring (metal layer) may not be sufficiently high. For this reason, a metal layer may peel from an insulating layer. Moreover, in the conventional resin material, roughness may become large and plating peel strength may not become high enough.

 また、特許文献1に記載のような脂肪族骨格を有するマレイミド化合物が配合された従来の樹脂材料では、難燃性が低下することがある。一方、芳香族骨格を有するマレイミド化合物が配合された従来の樹脂材料では、該マレイミド化合物のTgが高いため、硬化温度を低くする(例えば200℃以下)ことは困難である。また、硬化温度を低くした場合には、十分な分子運動が起こりにくいため、硬化不良が生じることがある。また、硬化温度を低くした場合には、多層プリント配線板の製造時において、初期に積層された樹脂材料が、後期に積層された樹脂材料よりも、より多くの回数かつより長い時間加熱されるため、絶縁層の電気特性や物性が変化することがある。また、ラジカル反応によって硬化が進行する従来の樹脂材料では、反応が速やかに進行するため、エッチング前の硬化度の制御が困難であり、アンカーが十分に形成されず、その結果、メッキピール強度が十分に高くならないことがある。

Moreover, in the conventional resin material which mix | blended the maleimide compound which has an aliphatic skeleton as described in patent document 1, a flame retardance may fall. On the other hand, in a conventional resin material in which a maleimide compound having an aromatic skeleton is blended, it is difficult to lower the curing temperature (for example, 200 ° C. or lower) because the Tg of the maleimide compound is high. Further, when the curing temperature is lowered, sufficient molecular motion is unlikely to occur, and thus curing failure may occur. In addition, when the curing temperature is lowered, the resin material laminated in the initial stage is heated more times and for a longer time than the resin material laminated in the latter stage when the multilayer printed wiring board is manufactured. Therefore, the electrical characteristics and physical properties of the insulating layer may change. In addition, in the conventional resin material in which curing proceeds by a radical reaction, the reaction proceeds quickly, so that it is difficult to control the degree of curing before etching, anchors are not sufficiently formed, and as a result, plating peel strength is increased. May not be high enough.

 このように、1)硬化物の誘電正接を低くし、2)絶縁層と金属層との密着性を高め、3)メッキピール強度を高め、4)硬化物の難燃性を高め、かつ、5)硬化温度を低く抑えるという、1)-5)の効果を全て発揮する樹脂材料を得ることは極めて困難であるという現状がある。

Thus, 1) the dielectric loss tangent of the cured product is lowered, 2) the adhesion between the insulating layer and the metal layer is increased, 3) the plating peel strength is increased, 4) the flame retardancy of the cured product is increased, and 5) There is a present situation that it is extremely difficult to obtain a resin material that exhibits all of the effects of 1) to 5), which suppresses the curing temperature.

 本発明の目的は、1)硬化物の誘電正接を低くし、2)絶縁層と金属層との密着性を高め、3)メッキピール強度を高め、4)硬化物の難燃性を高め、かつ、5)硬化温度を低く抑えることができる樹脂材料を提供することである。また、本発明は、上記樹脂材料を用いた多層プリント配線板を提供することも目的とする。

The object of the present invention is to 1) reduce the dielectric loss tangent of the cured product, 2) increase the adhesion between the insulating layer and the metal layer, 3) increase the plating peel strength, and 4) increase the flame retardancy of the cured product, And 5) to provide a resin material capable of keeping the curing temperature low. Another object of the present invention is to provide a multilayer printed wiring board using the resin material.

 本発明の広い局面によれば、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物又はダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物と、エポキシ化合物と、無機充填材と、フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含む硬化剤とを含み、前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含む場合に、前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量の、前記エポキシ化合物と前記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下であり、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む場合に、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量の、前記エポキシ化合物と前記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下である、樹脂材料が提供される。

According to a wide aspect of the present invention, an N-alkylbismaleimide compound having a skeleton derived from dimeramine or an N-alkylbenzoxazine compound having a skeleton derived from dimeramine, an epoxy compound, an inorganic filler, and phenol And a curing agent comprising at least one component selected from the group consisting of a compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer amine. Content of the N-alkylbismaleimide compound having a skeleton derived from dimeramine when the N-alkylbismaleimide compound having a skeleton derived from is included, the total content of the epoxy compound and the curing agent Weight ratio to 0.05 or more The epoxy compound having a content of the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine in the case where the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is included. A resin material having a weight ratio with respect to the total content of the curing agent and 0.05 to 0.75 is provided.

 本発明に係る樹脂材料のある特定の局面では、前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物が下記式(X)で表される構造を有するか、又は、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物が下記式(X)で表される構造を有する。

In a specific aspect of the resin material according to the present invention, the N-alkylbismaleimide compound having a skeleton derived from dimer diamine has a structure represented by the following formula (X), or is derived from the dimer diamine. An N-alkylbenzoxazine compound having a skeleton having a structure represented by the following formula (X):

Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002

 前記式(X)中、R1は、4価の有機基を表す。

In said formula (X), R1 represents a tetravalent organic group.

 本発明に係る樹脂材料のある特定の局面では、前記エポキシ化合物が芳香族骨格を有するエポキシ化合物であり、かつ、前記成分が芳香族骨格を有する成分である。

On the specific situation with the resin material which concerns on this invention, the said epoxy compound is an epoxy compound which has an aromatic skeleton, and the said component is a component which has an aromatic skeleton.

 本発明に係る樹脂材料のある特定の局面では、前記硬化剤が2個以上の芳香族骨格を有する活性エステル化合物を含む。

In a specific aspect of the resin material according to the present invention, the curing agent includes an active ester compound having two or more aromatic skeletons.

 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、硬化促進剤を含む。

On the specific situation with the resin material which concerns on this invention, the said resin material contains a hardening accelerator.

 本発明に係る樹脂材料のある特定の局面では、前記硬化促進剤がアニオン性硬化促進剤を含む。

In a specific aspect of the resin material according to the present invention, the curing accelerator includes an anionic curing accelerator.

 本発明に係る樹脂材料のある特定の局面では、前記硬化促進剤100重量%中、前記アニオン性硬化促進剤の含有量が50重量%以上である。

In a specific aspect of the resin material according to the present invention, the content of the anionic curing accelerator is 50% by weight or more in 100% by weight of the curing accelerator.

 本発明に係る樹脂材料のある特定の局面では、前記アニオン性硬化促進剤がイミダゾール化合物である。

In a specific aspect of the resin material according to the present invention, the anionic curing accelerator is an imidazole compound.

 本発明に係る樹脂材料のある特定の局面では、前記硬化促進剤が、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又は、ラジカル性硬化促進剤とリン化合物とを含む。

In a specific aspect of the resin material according to the present invention, the curing accelerator includes a radical curing accelerator and an imidazole compound, or includes a radical curing accelerator and a phosphorus compound.

 本発明に係る樹脂材料のある特定の局面では、前記無機充填材の平均粒径が1μm以下である。

On the specific situation with the resin material which concerns on this invention, the average particle diameter of the said inorganic filler is 1 micrometer or less.

 本発明に係る樹脂材料のある特定の局面では、前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含み、前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の分子量が15000未満である。

In a specific aspect of the resin material according to the present invention, the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine includes an N-alkylbismaleimide compound having a skeleton derived from dimeramine amine, and the molecular weight of the N-alkylbismaleimide compound having the skeleton derived from dimeramine amine is 15000 Is less than.

 本発明に係る樹脂材料のある特定の局面では、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含み、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の分子量が15000未満である。

In a particular aspect of the resin material according to the present invention, the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine includes an N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine, and the molecular weight of the N-alkylbenzoxazine compound having the skeleton derived from dimeramine amine is 15000. Is less than.

 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、樹脂フィルムである。

On the specific situation with the resin material which concerns on this invention, the said resin material is a resin film.

 本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。

The resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.

 本発明の広い局面によれば、回路基板と、前記回路基板の表面上に配置された複数の絶縁層と、複数の前記絶縁層間に配置された金属層とを備え、複数の前記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である、多層プリント配線板が提供される。

According to a wide aspect of the present invention, a circuit board, a plurality of insulating layers disposed on a surface of the circuit board, and a plurality of metal layers disposed between the insulating layers, the plurality of insulating layers are provided. A multilayer printed wiring board is provided in which at least one of the layers is a cured product of the resin material described above.

 本発明に係る樹脂材料は、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物又はダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物と、エポキシ化合物と、無機充填材とを含む。本発明に係る樹脂材料は、フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含む硬化剤を含む。本発明に係る樹脂材料では、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含む場合に、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量の、上記エポキシ化合物と上記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下である。本発明に係る樹脂材料では、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む場合に、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量の、上記エポキシ化合物と上記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下である。本発明に係る樹脂材料では、上記の構成が備えられているので、1)硬化物の誘電正接を低くし、2)絶縁層と金属層との密着性を高め、3)メッキピール強度を高め、4)硬化物の難燃性を高め、かつ、5)硬化温度を低く抑えることができるという、1)-5)の効果を全て発揮することができる。

The resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from dimer amine or an N-alkyl benzoxazine compound having a skeleton derived from dimer amine, an epoxy compound, and an inorganic filler. The resin material according to the present invention includes at least one component among a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine. Contains a curing agent. When the resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine, the epoxy material having a content of the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine is used. The weight ratio with respect to the total content of the compound and the curing agent is 0.05 or more and 0.75 or less. When the resin material according to the present invention includes an N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine, the epoxy material having a content of the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is contained. The weight ratio with respect to the total content of the compound and the curing agent is 0.05 or more and 0.75 or less. Since the resin material according to the present invention has the above-described configuration, 1) the dielectric loss tangent of the cured product is reduced, 2) the adhesion between the insulating layer and the metal layer is increased, and 3) the plating peel strength is increased. 4) The flame retardancy of the cured product can be increased, and 5) the effects of 1) -5) can be exhibited, such that the curing temperature can be kept low.

図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.

 以下、本発明を詳細に説明する。

Hereinafter, the present invention will be described in detail.

 本発明に係る樹脂材料は、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物又はダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む。

The resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from dimer diamine or an N-alkyl benzoxazine compound having a skeleton derived from dimer diamine.

 本発明に係る樹脂材料は、エポキシ化合物を含む。

The resin material according to the present invention includes an epoxy compound.

 本発明に係る樹脂材料は、無機充填材を含む。

The resin material according to the present invention includes an inorganic filler.

 本発明に係る樹脂材料は、フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含む硬化剤を含む。

The resin material according to the present invention includes at least one component among a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine. Contains a curing agent.

 本明細書において、「フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分」を「成分X」と記載することがある。

In the present specification, “a component of at least one of a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine” X ”may be described.

 したがって、本発明に係る樹脂材料は、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物又はダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物と、エポキシ化合物と、無機充填材と、成分Xを含む硬化剤とを含む。

Therefore, the resin material according to the present invention includes an N-alkyl bismaleimide compound having a skeleton derived from dimer amine, an N-alkyl benzoxazine compound having a skeleton derived from dimer amine, an epoxy compound, an inorganic filler, And a curing agent containing component X.

 本発明に係る樹脂材料では、該樹脂材料が、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含む場合に、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量の、上記エポキシ化合物と上記硬化剤との合計の含有量に対する重量比が、0.05以上、0.75以下である。

In the resin material according to the present invention, when the resin material contains an N-alkyl bismaleimide compound having a skeleton derived from the dimer amine, the inclusion of the N-alkyl bismaleimide compound having a skeleton derived from the dimer amine The weight ratio of the amount to the total content of the epoxy compound and the curing agent is 0.05 or more and 0.75 or less.

 本発明に係る樹脂材料では、該樹脂材料が、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む場合に、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量の、上記エポキシ化合物と上記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下である。

In the resin material according to the present invention, when the resin material contains an N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine, the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is contained. The weight ratio of the amount to the total content of the epoxy compound and the curing agent is 0.05 or more and 0.75 or less.

 本発明に係る樹脂材料では、上記の構成が備えられているので、1)硬化物の誘電正接を低くし、2)絶縁層と金属層との密着性を高め、3)メッキピール強度を高め、4)硬化物の難燃性を高め、かつ、5)硬化温度を低く抑えることができるという、1)-5)の効果を全て発揮することができる。例えば、2)絶縁層と金属層との密着性として、室温~高温(例えば260℃)の温度領域における絶縁層と金属層とのピール強度を高めることができる。また、3)メッキピール強度として、粗化処理された硬化物(絶縁層)と、該絶縁層の表面上にめっき処理することにより積層した金属層とのピール強度を高めることができる。上記粗化処理された硬化物(絶縁層)においては、表面に微細な凹部が形成される。凹部の開口付近に存在する樹脂部分は、金属層に対してアンカー効果を発現させる。本発明に係る樹脂材料では、上記粗化処理された硬化物(絶縁層)の粗度が大きくなりすぎることによってアンカー効果に寄与する樹脂が部分的に細くなりすぎることを抑えることができるので、メッキピール強度を高めることができる。また、本発明に係る樹脂材料では、上記粗化処理された硬化物(絶縁層)の粗度が小さくなりすぎることによってアンカーが形成されないことを防ぐことができるので、メッキピール強度を高めることができる。

Since the resin material according to the present invention has the above-described configuration, 1) the dielectric loss tangent of the cured product is reduced, 2) the adhesion between the insulating layer and the metal layer is increased, and 3) the plating peel strength is increased. 4) The flame retardancy of the cured product can be increased, and 5) the effects of 1) -5) can be exhibited, such that the curing temperature can be kept low. For example, 2) As the adhesion between the insulating layer and the metal layer, the peel strength between the insulating layer and the metal layer in the temperature range from room temperature to high temperature (for example, 260 ° C.) can be increased. 3) As the plating peel strength, the peel strength between the roughened cured product (insulating layer) and the metal layer laminated by plating on the surface of the insulating layer can be increased. In the roughened cured product (insulating layer), fine concave portions are formed on the surface. The resin portion existing in the vicinity of the opening of the recess causes an anchor effect to the metal layer. In the resin material according to the present invention, since the roughness of the roughened cured product (insulating layer) is too large, it is possible to suppress the resin contributing to the anchor effect from becoming too thin, The plating peel strength can be increased. Further, in the resin material according to the present invention, it is possible to prevent the anchor from being formed due to the roughness of the roughened cured product (insulating layer) being too small, so that the plating peel strength can be increased. it can.

 さらに、本発明に係る樹脂材料では、上記の構成が備えられているので、凹凸表面に対する埋め込み性を高めることができる。

Furthermore, since the resin material according to the present invention has the above-described configuration, the embedding property with respect to the uneven surface can be improved.

 本発明に係る樹脂材料は、樹脂組成物であってもよく、樹脂フィルムであってもよい。上記樹脂組成物は、流動性を有する。上記樹脂組成物は、ペースト状であってもよい。上記ペースト状には液状が含まれる。取扱性に優れることから、本発明に係る樹脂材料は、樹脂フィルムであることが好ましい。

The resin material according to the present invention may be a resin composition or a resin film. The resin composition has fluidity. The resin composition may be in the form of a paste. The paste form includes liquid. The resin material according to the present invention is preferably a resin film because it is excellent in handleability.

 本発明に係る樹脂材料が、樹脂フィルムである場合には、樹脂フィルムの柔軟性を高めることができる。本発明に係る樹脂フィルム(樹脂材料)では、樹脂フィルムの取扱い時において、樹脂フィルムにひびや割れが生じにくい。すなわち、本発明に係る樹脂材料が、樹脂フィルムである場合には、上述した1)-5)の効果に加えて、6)樹脂フィルムの柔軟性も高めることができる。

When the resin material according to the present invention is a resin film, the flexibility of the resin film can be increased. In the resin film (resin material) according to the present invention, the resin film is hardly cracked or cracked when the resin film is handled. That is, when the resin material according to the present invention is a resin film, in addition to the effects 1) -5) described above, 6) the flexibility of the resin film can be increased.

 本発明に係る樹脂材料は、熱硬化性材料であることが好ましい。上記樹脂材料が樹脂フィルムである場合には、該樹脂フィルムは、熱硬化性樹脂フィルムであることが好ましい。

The resin material according to the present invention is preferably a thermosetting material. When the resin material is a resin film, the resin film is preferably a thermosetting resin film.

 以下、本発明に係る樹脂材料に用いられる各成分の詳細、及び本発明に係る樹脂材料の用途などを説明する。

Hereinafter, the details of each component used for the resin material according to the present invention and the use of the resin material according to the present invention will be described.

 [ダイマージアミンに由来する骨格を有する化合物]

 本発明に係る樹脂材料は、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物又はダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む。本発明に係る樹脂材料は、該N-アルキルビスマレイミド化合物のみを含んでいてもよく、該N-アルキルベンゾオキサジン化合物のみを含んでいてもよく、該N-アルキルビスマレイミド化合物と該N-アルキルベンゾオキサジン化合物との双方を含んでいてもよい。

[Compound having a skeleton derived from dimer diamine]

The resin material according to the present invention includes an N-alkylbismaleimide compound having a skeleton derived from dimer diamine or an N-alkyl benzoxazine compound having a skeleton derived from dimer diamine. The resin material according to the present invention may contain only the N-alkyl bismaleimide compound, may contain only the N-alkyl benzoxazine compound, the N-alkyl bismaleimide compound and the N-alkyl. Both of them may be contained together with a benzoxazine compound.

 <ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物>

 本発明に係る樹脂材料は、ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含むことが好ましい。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、マレイミド基を有する。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を用いることによって、誘電正接を低くし、絶縁層と金属層との密着性及びメッキピール強度を高めることができる。また、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を用いることによって、エッチング性能を高めることができる。さらに、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を用いることによって、硬化温度を低く抑えることができる。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、オリゴマーの状態であってもよい。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、分子量分布を有していてもよい。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。

<N-alkyl bismaleimide compound having a skeleton derived from dimer diamine>

The resin material according to the present invention preferably contains an N-alkylbismaleimide compound having a skeleton derived from dimer diamine. The N-alkylbismaleimide compound having a skeleton derived from dimer diamine has a maleimide group. By using the N-alkylbismaleimide compound having a skeleton derived from the dimer amine, the dielectric loss tangent can be lowered, and the adhesion between the insulating layer and the metal layer and the plating peel strength can be increased. Moreover, the etching performance can be enhanced by using an N-alkylbismaleimide compound having a skeleton derived from the dimer diamine. Furthermore, the curing temperature can be kept low by using an N-alkylbismaleimide compound having a skeleton derived from the dimer diamine. The N-alkylbismaleimide compound having a skeleton derived from the dimer diamine may be in an oligomer state. The N-alkylbismaleimide compound having a skeleton derived from dimer diamine may have a molecular weight distribution. As for the N-alkyl bismaleimide compound having a skeleton derived from the above dimer diamine, only one kind may be used or two or more kinds may be used in combination.

 ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物において、ダイマージアミンに由来する骨格は、部分骨格として存在する。ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、マレイミド基における窒素原子に脂肪族骨格が結合した構造を有することが好ましい。

In the N-alkylbismaleimide compound having a skeleton derived from dimer diamine, the skeleton derived from dimer diamine exists as a partial skeleton. The N-alkylbismaleimide compound having a skeleton derived from dimer diamine preferably has a structure in which an aliphatic skeleton is bonded to a nitrogen atom in the maleimide group.

 本発明に係るダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、シトラコンイミド化合物であってもよい。上記シトラコンイミド化合物とは、マレイミド基における炭素原子間の二重結合を構成する炭素原子の一方にメチル基が結合した化合物である。上記シトラコンイミド化合物は、マレイミド化合物よりも反応性がわずかに低いので、保存安定性を高めることができる。

The N-alkylbismaleimide compound having a skeleton derived from dimer diamine according to the present invention may be a citraconimide compound. The citraconimide compound is a compound in which a methyl group is bonded to one of carbon atoms constituting a double bond between carbon atoms in a maleimide group. Since the citraconic imide compound is slightly less reactive than the maleimide compound, the storage stability can be improved.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、テトラカルボン酸二無水物とダイマージアミンとの反応物に由来する骨格を有することが好ましい。上記テトラカルボン酸二無水物と上記ダイマージアミンとの反応物は、両末端がアミノ基である化合物であることが好ましい。

The N-alkylbismaleimide compound having a skeleton derived from dimer diamine preferably has a skeleton derived from a reaction product of tetracarboxylic dianhydride and dimer diamine. The reaction product of the tetracarboxylic dianhydride and the dimer diamine is preferably a compound in which both ends are amino groups.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、例えば、テトラカルボン酸二無水物とダイマージアミンとの反応物(好ましくは両末端がアミノ基である化合物)を得た後、該反応物と無水マレイン酸とを反応させて得ることができる。

The N-alkylbismaleimide compound having a skeleton derived from dimeramine amine is obtained by, for example, obtaining a reaction product of tetracarboxylic dianhydride and dimeramine amine (preferably a compound having both amino groups at the ends), It can be obtained by reacting the reaction product with maleic anhydride.

 上記テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。

Examples of the tetracarboxylic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 3,3 ′, 4,4′-biphenylsulfonetetra. Carboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyl ether Tetracarboxylic dianhydride, 3,3 ′, 4,4′-dimethyldiphenylsilane tetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilane tetracarboxylic dianhydride, 1,2 , 3,4-furantetracarboxylic dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenyl Lufone dianhydride, 4,4′-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3 ′, 4,4′-perfluoroisopropylidenediphthalic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenyl) Phthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4′-diphenyl ether dianhydride, bis (triphenylphthalic acid) -4,4′-diphenylmethane dianhydride, and the like.

 上記ダイマージアミンの市販品としては、例えば、バーサミン551(商品名、BASFジャパン社製、3,4-ビス(1-アミノヘプチル)-6-ヘキシル-5-(1-オクテニル)シクロヘキセン)、バーサミン552(商品名、コグニクスジャパン社製、バーサミン551の水添物)、並びにPRIAMINE1075、PRIAMINE1074、及びPRIAMINE1071(商品名、いずれもクローダジャパン社製)等が挙げられる。なお、ダイマージアミンは、不飽和炭化水素を部分骨格として有していてもよく、有していなくてもよい。

Examples of the commercially available dimer diamine include Versamine 551 (trade name, manufactured by BASF Japan, 3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl) cyclohexene), Versamine 552. (Trade name, manufactured by Cognics Japan, hydrogenated product of Versamine 551), PRIAMINE 1075, PRIAMINE 1074, and PRIAMINE 1071 (trade names, all manufactured by Croda Japan). In addition, dimer diamine may have unsaturated hydrocarbon as a partial skeleton, and does not need to have it.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の市販品としては、Designer Molecules Inc.社製「BMI-1500」、「BMI-1700」、及び「BMI-3000」等が挙げられる。

Examples of commercially available N-alkylbismaleimide compounds having a skeleton derived from dimer diamine include Designers Molecules Inc. Examples thereof include “BMI-1500”, “BMI-1700”, and “BMI-3000” manufactured by the company.

 本発明の効果をより一層効果的に発揮させる観点からは、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、下記式(X)で表される構造を有することが好ましい

From the viewpoint of more effectively demonstrating the effects of the present invention, the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine preferably has a structure represented by the following formula (X).

Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003

 上記式(X)中、R1は、4価の有機基を表す。

In the above formula (X), R1 represents a tetravalent organic group.

 上記式(X)中のR1としては、芳香環を有する基、及びビフェニルエーテル骨格を有する基等が挙げられる。上記芳香環を有する基としては、ピロメリット酸無水物由来の骨格を有する基等が挙げられる。上記ビフェニルエーテル骨格を有する基としては、4,4’-オキシジフタル酸無水物由来の骨格を有する基等が挙げられる。

Examples of R1 in the above formula (X) include a group having an aromatic ring and a group having a biphenyl ether skeleton. Examples of the group having an aromatic ring include a group having a skeleton derived from pyromellitic acid anhydride. Examples of the group having a biphenyl ether skeleton include a group having a skeleton derived from 4,4′-oxydiphthalic anhydride.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物は、上記式(X)で表される構造を1個有していてもよく、2個有してもよく、2個以上有していてもよい。

The N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine may have one, two, or two or more structures represented by the above formula (X). It may be.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量の、上記エポキシ化合物と上記硬化剤との合計の含有量に対する重量比を、「重量比(ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)」と呼ぶ。上記樹脂材料が上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含む場合に、上記重量比(ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)が、0.05以上0.75以下である。上記重量比(ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)が、0.05未満又は0.75を超えると、上述した1)-5)の本発明の効果及び1)-6)の効果を全て発揮することは困難である。

The weight ratio of the content of the N-alkylbismaleimide compound having a skeleton derived from the dimer amine to the total content of the epoxy compound and the curing agent is expressed as “weight ratio (having a skeleton derived from dimer amine). N-alkylbismaleimide compound content / total content of epoxy compound and curing agent). When the resin material contains an N-alkylbismaleimide compound having a skeleton derived from dimer diamine, the weight ratio (content of N-alkyl bismaleimide compound having a skeleton derived from dimer diamine / curing with epoxy compound and curing) Total content with the agent) is 0.05 or more and 0.75 or less. When the weight ratio (content of N-alkylbismaleimide compound having a skeleton derived from dimer diamine / total content of epoxy compound and curing agent) is less than 0.05 or exceeds 0.75, it is described above. It is difficult to exhibit all the effects of 1) -5) of the present invention and 1) -6).

 上記重量比(ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)は、好ましくは0.15以上、好ましくは0.5以下である。上記重量比が上記下限以上及び上記上限以下であると、上述した1)-5)の本発明の効果及び1)-6)の効果をより一層効果的に発揮することができる。

The weight ratio (content of N-alkylbismaleimide compound having a skeleton derived from dimer diamine / total content of epoxy compound and curing agent) is preferably 0.15 or more, preferably 0.5 or less. is there. When the weight ratio is not less than the above lower limit and not more than the above upper limit, the above-described effects 1) -5) of the present invention and 1) -6) can be more effectively exhibited.

 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上である。上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量は、好ましくは65重量%以下、より好ましくは60重量%以下、更に好ましくは55重量%以下、特に好ましくは50重量%以下である。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量が上記下限以上であると、誘電正接を低くし、絶縁層と金属層との密着性、メッキピール強度、エッチング性能及び樹脂フィルムの柔軟性をより一層高めることができる。上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量が上記上限以下であると、難燃性をより一層高め、線膨張係数をより一層低く抑え、メッキピール強度をより一層高めることができる。

The content of the N-alkylbismaleimide compound having a skeleton derived from dimer diamine is preferably 5% by weight or more, more preferably 10% by weight in 100% by weight of the resin material excluding the inorganic filler and the solvent. % Or more, more preferably 15% by weight or more. The content of the N-alkylbismaleimide compound having a skeleton derived from dimer diamine is preferably 65% by weight or less, more preferably 60% by weight in 100% by weight of the resin material excluding the inorganic filler and the solvent. % Or less, more preferably 55% by weight or less, particularly preferably 50% by weight or less. When the content of the N-alkylbismaleimide compound having a skeleton derived from dimeramine is equal to or more than the above lower limit, the dielectric loss tangent is lowered, adhesion between the insulating layer and the metal layer, plating peel strength, etching performance, and resin. The flexibility of the film can be further increased. When the content of the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine is not more than the above upper limit, the flame retardancy is further increased, the linear expansion coefficient is further suppressed, and the plating peel strength is further increased. be able to.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の分子量は、好ましくは500以上、より好ましくは600以上、好ましくは15000未満、より好ましくは11000未満、更に好ましくは8000未満である。上記分子量が上記下限以上及び上記上限以下であると、絶縁層と金属層との密着性をより一層高めることができ、また、溶融粘度を下げ、回路基板への樹脂材料(樹脂フィルム)の埋め込み性を高めることができる。

The molecular weight of the N-alkylbismaleimide compound having a skeleton derived from dimerized amine is preferably 500 or more, more preferably 600 or more, preferably less than 15000, more preferably less than 11000, and still more preferably less than 8000. When the molecular weight is not less than the above lower limit and not more than the above upper limit, the adhesion between the insulating layer and the metal layer can be further increased, and the melt viscosity is lowered, and the resin material (resin film) is embedded in the circuit board. Can increase the sex.

 上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の分子量は、該N-アルキルビスマレイミド化合物が重合体ではない場合、及び該N-アルキルビスマレイミド化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の分子量は、該N-アルキルビスマレイミド化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。

The molecular weight of the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine is determined when the N-alkylbismaleimide compound is not a polymer and when the structural formula of the N-alkylbismaleimide compound can be specified. It means the molecular weight that can be calculated from the structural formula. In addition, the molecular weight of the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine is calculated in terms of polystyrene measured by gel permeation chromatography (GPC) when the N-alkylbismaleimide compound is a polymer. The weight average molecular weight is shown.

 <ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物>

 本発明に係る樹脂材料は、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含むことが好ましい。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、上述したダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物のマレイミド骨格が、ベンゾオキサジン骨格に置換された化合物であることが好ましい。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を用いることによって、誘電正接を低くし、絶縁層と金属層との密着性及びメッキピール強度を高めることができる。また、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を用いることによって、エッチング性能を高めることができる。また、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を用いることによって、硬化温度を低く抑えることができる。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、オリゴマーの状態であってもよい。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、分子量分布を有していてもよい。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。

<N-alkylbenzoxazine compound having a skeleton derived from dimer diamine>

The resin material according to the present invention preferably contains an N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine. The N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is a compound in which the maleimide skeleton of the N-alkylbismaleimide compound having a skeleton derived from dimeramine amine is substituted with a benzoxazine skeleton. preferable. By using the N-alkylbenzoxazine compound having a skeleton derived from dimeramine, the dielectric loss tangent can be lowered, and the adhesion between the insulating layer and the metal layer and the plating peel strength can be increased. In addition, the etching performance can be enhanced by using an N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine. Further, by using an N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine, the curing temperature can be kept low. The N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine may be in an oligomer state. The N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine may have a molecular weight distribution. As for the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine, only one type may be used or two or more types may be used in combination.

 ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物において、ダイマージアミンに由来する骨格は、部分骨格として存在する。ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、ベンゾオキサジン基における窒素原子に脂肪族骨格が結合した構造を有することが好ましい。

In the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine, the skeleton derived from dimer diamine exists as a partial skeleton. The N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine preferably has a structure in which an aliphatic skeleton is bonded to a nitrogen atom in a benzoxazine group.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、ダイマージアミンに由来する骨格を有するN-アルキルビスベンゾオキサジン化合物であることが好ましい。

The N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is preferably an N-alkylbisbenzoxazine compound having a skeleton derived from dimeramine amine.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、テトラカルボン酸二無水物とダイマージアミンとの反応物に由来する骨格を有することが好ましい。上記テトラカルボン酸二無水物と上記ダイマージアミンとの反応物は、両末端がアミノ基である化合物であることが好ましい。

The N-alkylbenzoxazine compound having a skeleton derived from dimer diamine preferably has a skeleton derived from a reaction product of tetracarboxylic dianhydride and dimer diamine. The reaction product of the tetracarboxylic dianhydride and the dimer diamine is preferably a compound in which both ends are amino groups.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、例えば、テトラカルボン酸二無水物とダイマージアミンとの反応物(好ましくは両末端がアミノ基である化合物)を得た後、該反応物とフェノールとパラホルムアルデヒドとを反応させて得ることができる。

The N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is obtained by, for example, obtaining a reaction product of tetracarboxylic dianhydride and dimeramine amine (preferably a compound having both amino groups at both ends). It can be obtained by reacting the reactant, phenol and paraformaldehyde.

 上記テトラカルボン酸二無水物としては、上述したテトラカルボン酸二無水物が挙げられる。

As said tetracarboxylic dianhydride, the tetracarboxylic dianhydride mentioned above is mentioned.

 上記ダイマージアミンの市販品としては、上述した市販品が挙げられる。

The commercial item mentioned above is mentioned as a commercial item of the said dimer diamine.

 本発明の効果をより一層効果的に発揮させる観点からは、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、下記式(X)で表される構造を有することが好ましい

From the viewpoint of exhibiting the effects of the present invention more effectively, the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine preferably has a structure represented by the following formula (X).

Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004

 上記式(X)中、R1は、4価の有機基を表す。

In the above formula (X), R1 represents a tetravalent organic group.

 上記式(X)中のR1としては、芳香環を有する基、及びビフェニルエーテル骨格を有する基等が挙げられる。上記芳香環を有する基としては、ピロメリット酸無水物由来の骨格を有する基等が挙げられる。上記ビフェニルエーテル骨格を有する基としては、4,4’-オキシジフタル酸無水物由来の骨格を有する基等が挙げられる。

Examples of R1 in the above formula (X) include a group having an aromatic ring and a group having a biphenyl ether skeleton. Examples of the group having an aromatic ring include a group having a skeleton derived from pyromellitic acid anhydride. Examples of the group having a biphenyl ether skeleton include a group having a skeleton derived from 4,4′-oxydiphthalic anhydride.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物は、上記式(X)で表される構造を1個有していてもよく、2個有してもよく、2個以上有していてもよい。

The N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine may have one, two, or two or more structures represented by the formula (X). It may be.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量の、上記エポキシ化合物と上記硬化剤との合計の含有量に対する重量比を、「重量比(ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)」と呼ぶ。上記樹脂材料が上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む場合に、上記重量比(ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)は、0.05以上0.75以下である。上記重量比(ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)が、0.05未満又は0.75を超えると、上述した1)-5)の本発明の効果及び1)-6)の効果を全て発揮することは困難である。

The weight ratio of the content of the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine to the total content of the epoxy compound and the curing agent is expressed as “weight ratio (having a skeleton derived from the dimer diamine”). N-alkylbenzoxazine compound content / total content of epoxy compound and curing agent). When the resin material contains an N-alkylbenzoxazine compound having a skeleton derived from dimer diamine, the weight ratio (content of N-alkyl benzoxazine compound having a skeleton derived from dimer diamine / curing with epoxy compound) The total content with the agent) is 0.05 or more and 0.75 or less. When the above weight ratio (content of N-alkylbenzoxazine compound having a skeleton derived from dimer diamine / total content of epoxy compound and curing agent) is less than 0.05 or exceeds 0.75, it is described above. It is difficult to exhibit all the effects of 1) -5) of the present invention and 1) -6).

 上記重量比(ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量/エポキシ化合物と硬化剤との合計の含有量)は、好ましくは0.15以上、好ましくは0.5以下である。上記重量比が上記下限以上及び上記上限以下であると、上述した1)-5)の本発明の効果及び1)-6)の効果をより一層効果的に発揮することができる。

The weight ratio (content of N-alkylbenzoxazine compound having a skeleton derived from dimer diamine / total content of epoxy compound and curing agent) is preferably 0.15 or more, preferably 0.5 or less. is there. When the weight ratio is not less than the above lower limit and not more than the above upper limit, the above-described effects 1) -5) of the present invention and 1) -6) can be more effectively exhibited.

 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは15重量%以上である。上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量は、好ましくは65重量%以下、より好ましくは60重量%以下、更に好ましくは55重量%以下、特に好ましくは50重量%以下である。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量が上記下限以上であると、誘電正接を低くし、絶縁層と金属層との密着性、メッキピール強度、エッチング性能及び樹脂フィルムの柔軟性をより一層高めることができる。上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量が上記上限以下であると、難燃性をより一層高め、線膨張係数をより一層低く抑え、メッキピール強度をより一層高めることができる。

The content of the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine is preferably 5% by weight or more, more preferably 10% by weight in 100% by weight of the component excluding the inorganic filler and solvent in the resin material. % Or more, more preferably 15% by weight or more. The content of the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine is preferably 65% by weight or less, more preferably 60% by weight in 100% by weight of the resin material excluding the inorganic filler and the solvent. % Or less, more preferably 55% by weight or less, particularly preferably 50% by weight or less. When the content of the N-alkylbenzoxazine compound having a skeleton derived from dimerized amine is not less than the above lower limit, the dielectric loss tangent is lowered, the adhesion between the insulating layer and the metal layer, the plating peel strength, the etching performance and the resin. The flexibility of the film can be further increased. When the content of the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is not more than the above upper limit, the flame retardancy is further increased, the linear expansion coefficient is further suppressed, and the plating peel strength is further increased. be able to.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の分子量は、好ましくは500以上、より好ましくは600以上、好ましくは15000未満、より好ましくは11000未満、更に好ましくは8000未満である。上記分子量が上記下限以上及び上記上限以下であると、絶縁層と金属層との密着性をより一層高めることができ、また、溶融粘度を下げ、回路基板への樹脂材料(樹脂フィルム)の埋め込み性を高めることができる。

The molecular weight of the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is preferably 500 or more, more preferably 600 or more, preferably less than 15000, more preferably less than 11000, and still more preferably less than 8000. When the molecular weight is not less than the above lower limit and not more than the above upper limit, the adhesion between the insulating layer and the metal layer can be further increased, and the melt viscosity is lowered, and the resin material (resin film) is embedded in the circuit board. Can increase the sex.

 上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の分子量は、該N-アルキルベンゾオキサジン化合物が重合体ではない場合、及び該N-アルキルベンゾオキサジン化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の分子量は、該N-アルキルベンゾオキサジン化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。

The molecular weight of the N-alkylbenzoxazine compound having a skeleton derived from the dimeramine amine is such that when the N-alkylbenzoxazine compound is not a polymer and when the structural formula of the N-alkylbenzoxazine compound can be specified, It means the molecular weight that can be calculated from the structural formula. In addition, the molecular weight of the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is calculated in terms of polystyrene measured by gel permeation chromatography (GPC) when the N-alkylbenzoxazine compound is a polymer. The weight average molecular weight is shown.

 [エポキシ化合物]

 上記樹脂材料は、エポキシ化合物を含む。上記エポキシ化合物として、従来公知のエポキシ化合物を使用可能である。上記エポキシ化合物は、少なくとも1個のエポキシ基を有する有機化合物をいう。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。

[Epoxy compound]

The resin material includes an epoxy compound. A conventionally well-known epoxy compound can be used as said epoxy compound. The epoxy compound refers to an organic compound having at least one epoxy group. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.

 上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。

Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds. Fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having adamantane skeleton, epoxy compound having tricyclodecane skeleton, naphthylene ether type Examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus in the skeleton.

 上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物を含むことが好ましく、ナフタレン骨格又はフェニル骨格を有するエポキシ化合物を含むことがより好ましく、芳香族骨格を有するエポキシ化合物であることが更に好ましく、ナフタレン骨格を有するエポキシ化合物であることが特に好ましい。この場合には、誘電正接をより一層低くし、かつ難燃性を高め、線膨張係数を小さくすることができる。

The epoxy compound preferably contains an epoxy compound having an aromatic skeleton, more preferably contains an epoxy compound having a naphthalene skeleton or a phenyl skeleton, more preferably an epoxy compound having an aromatic skeleton, and a naphthalene skeleton. It is particularly preferable that the epoxy compound has In this case, the dielectric loss tangent can be further reduced, the flame retardancy can be increased, and the linear expansion coefficient can be reduced.

 誘電正接をより一層低くし、かつ硬化物の線膨張係数(CTE)を良好にする観点からは、上記エポキシ化合物は、25℃で液状のエポキシ化合物と、25℃で固形のエポキシ化合物とを含むことが好ましい。

From the viewpoint of further reducing the dielectric loss tangent and improving the linear expansion coefficient (CTE) of the cured product, the epoxy compound includes an epoxy compound that is liquid at 25 ° C. and an epoxy compound that is solid at 25 ° C. It is preferable.

 上記25℃で液状のエポキシ化合物の25℃での粘度は、1000mPa・s以下であることが好ましく、500mPa・s以下であることがより好ましい。

The viscosity of the epoxy compound that is liquid at 25 ° C. at 25 ° C. is preferably 1000 mPa · s or less, and more preferably 500 mPa · s or less.

 上記エポキシ化合物の粘度を測定する際には、例えば動的粘弾性測定装置(レオロジカ・インスツルメンツ社製「VAR-100」)等が用いられる。

When measuring the viscosity of the epoxy compound, for example, a dynamic viscoelasticity measuring device (“VAR-100” manufactured by Rheologicala Instruments) is used.

 上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、樹脂材料中の溶剤を除く成分100重量%、無機充填材の含有量が50重量%以上であっても、絶縁層の形成時に流動性が高い樹脂材料が得られる。このため、樹脂材料の未硬化物又はBステージ化物を回路基板上にラミネートした場合に、無機充填材を均一に存在させることができる。

The molecular weight of the epoxy compound is more preferably 1000 or less. In this case, a resin material with high fluidity can be obtained when the insulating layer is formed even if the component in the resin material is 100% by weight excluding the solvent and the content of the inorganic filler is 50% by weight or more. For this reason, when an uncured resin material or a B-stage product is laminated on the circuit board, the inorganic filler can be uniformly present.

 上記エポキシ化合物の分子量は、上記エポキシ化合物が重合体ではない場合、及び上記エポキシ化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ化合物が重合体である場合は、重量平均分子量を意味する。

The molecular weight of the epoxy compound means a molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and when the structural formula of the epoxy compound can be specified. Moreover, when the said epoxy compound is a polymer, a weight average molecular weight is meant.

 硬化物と金属層との接着強度をより一層高める観点からは、樹脂材料中の溶剤を除く成分100重量%中、上記エポキシ化合物の含有量は、好ましくは15重量%以上、より好ましくは20重量%以上、好ましくは50重量%以下、より好ましくは40重量%以下である。

From the viewpoint of further increasing the adhesive strength between the cured product and the metal layer, the content of the epoxy compound is preferably 15% by weight or more, more preferably 20% by weight in 100% by weight of the component excluding the solvent in the resin material. % Or more, preferably 50% by weight or less, more preferably 40% by weight or less.

 上記エポキシ化合物の含有量の、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物と上記硬化剤との合計の含有量に対する重量比(上記エポキシ化合物の含有量/上記N-アルキルビスマレイミド化合物と上記硬化剤との合計の含有量)は、好ましくは0.2以上、より好ましくは0.25以上である。上記エポキシ化合物の含有量の、上記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物と上記硬化剤との合計の含有量に対する重量比(上記エポキシ化合物の含有量/上記N-アルキルビスマレイミド化合物と上記硬化剤との合計の含有量)は、好ましくは0.9以下、より好ましくは0.8以下である。上記重量比(上記エポキシ化合物の含有量/上記N-アルキルビスマレイミド化合物と上記硬化剤との合計の含有量)が上記下限以上及び上記上限以下であると、誘電正接を低くし、絶縁層と金属層との密着性、メッキピール強度、難燃性及び樹脂フィルムの柔軟性をより一層高め、粗度を小さくすることができる。

The weight ratio of the content of the epoxy compound to the total content of the N-alkyl bismaleimide compound having a skeleton derived from the dimer diamine and the curing agent (content of the epoxy compound / the content of the N-alkyl bismaleimide) The total content of the compound and the curing agent) is preferably 0.2 or more, more preferably 0.25 or more. The weight ratio of the content of the epoxy compound to the total content of the N-alkyl bismaleimide compound having a skeleton derived from the dimer diamine and the curing agent (content of the epoxy compound / the content of the N-alkyl bismaleimide) The total content of the compound and the curing agent is preferably 0.9 or less, more preferably 0.8 or less. When the weight ratio (content of the epoxy compound / total content of the N-alkylbismaleimide compound and the curing agent) is not less than the lower limit and not more than the upper limit, the dielectric loss tangent is lowered, and the insulating layer The adhesion with the metal layer, the plating peel strength, the flame retardancy and the flexibility of the resin film can be further enhanced and the roughness can be reduced.

 上記エポキシ化合物の含有量の、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物と上記硬化剤との合計の含有量に対する重量比(上記エポキシ化合物の含有量/上記N-アルキルベンゾオキサジン化合物と上記硬化剤との合計の含有量)は、好ましくは0.2以上、より好ましくは0.25以上である。上記エポキシ化合物の含有量の、上記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物と上記硬化剤との合計の含有量に対する重量比(上記エポキシ化合物の含有量/上記N-アルキルベンゾオキサジン化合物と上記硬化剤との合計の含有量)は、好ましくは0.9以下、より好ましくは0.8以下である。上記重量比(上記エポキシ化合物の含有量/上記N-アルキルベンゾオキサジン化合物と上記硬化剤との合計の含有量)が上記下限以上及び上記上限以下であると、誘電正接を低くし、絶縁層と金属層との密着性、メッキピール強度、難燃性及び樹脂フィルムの柔軟性をより一層高め、粗度を小さくすることができる。

The weight ratio of the content of the epoxy compound to the total content of the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine and the curing agent (content of the epoxy compound / the content of the N-alkylbenzoxazine) The total content of the compound and the curing agent) is preferably 0.2 or more, more preferably 0.25 or more. The weight ratio of the content of the epoxy compound to the total content of the N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine and the curing agent (content of the epoxy compound / the content of the N-alkylbenzoxazine) The total content of the compound and the curing agent is preferably 0.9 or less, more preferably 0.8 or less. When the weight ratio (content of the epoxy compound / total content of the N-alkylbenzoxazine compound and the curing agent) is not less than the lower limit and not more than the upper limit, the dielectric loss tangent is lowered, and the insulating layer The adhesion with the metal layer, the plating peel strength, the flame retardancy and the flexibility of the resin film can be further enhanced and the roughness can be reduced.

 [無機充填材]

 上記樹脂材料は、無機充填材を含む。上記無機充填材の使用により、硬化物の誘電正接をより一層低くすることができる。また、上記無機充填材の使用により、硬化物の熱による寸法変化がより一層小さくなる。上記無機充填材は、1種のみが用いられてもよく、2種以上が併用されてもよい。

[Inorganic filler]

The resin material includes an inorganic filler. By using the inorganic filler, the dielectric loss tangent of the cured product can be further reduced. In addition, the use of the inorganic filler further reduces the dimensional change due to heat of the cured product. As for the said inorganic filler, only 1 type may be used and 2 or more types may be used together.

 上記無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、及び窒化ホウ素等が挙げられる。

Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, and boron nitride.

 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、また、硬化物の誘電正接がより一層低くなる。また、シリカの使用により、硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は球状であることが好ましい。

The surface roughness of the cured product is reduced, the adhesive strength between the cured product and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and better insulation reliability is achieved by the cured product. From the viewpoint of imparting the above, the inorganic filler is preferably silica or alumina, more preferably silica, and still more preferably fused silica. By using silica, the thermal expansion coefficient of the cured product is further lowered, and the dielectric loss tangent of the cured product is further reduced. In addition, the use of silica effectively reduces the surface roughness of the cured product and effectively increases the adhesive strength between the cured product and the metal layer. The shape of silica is preferably spherical.

 硬化環境によらず、樹脂の硬化を進め、硬化物のガラス転移温度を効果的に高くし、硬化物の熱線膨張係数を効果的に小さくする観点からは、上記無機充填材は球状シリカであることが好ましい。

Regardless of the curing environment, the inorganic filler is spherical silica from the viewpoint of promoting the curing of the resin, effectively increasing the glass transition temperature of the cured product, and effectively reducing the thermal linear expansion coefficient of the cured product. It is preferable.

 上記無機充填材の平均粒径は、好ましくは50nm以上、より好ましくは100nm以上、更に好ましくは500nm以上、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは2μm以下である。上記無機充填材の平均粒径が上記下限以上及び上記上限以下であると、粗度を小さくし、絶縁層と金属層との密着性及びメッキピール強度をより一層高めることができる。

The average particle size of the inorganic filler is preferably 50 nm or more, more preferably 100 nm or more, further preferably 500 nm or more, preferably 5 μm or less, more preferably 3 μm or less, and even more preferably 2 μm or less. When the average particle size of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the roughness can be reduced, and the adhesion between the insulating layer and the metal layer and the plating peel strength can be further enhanced.

 上記無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。

A median diameter (d50) value of 50% is employed as the average particle diameter of the inorganic filler. The average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.

 上記無機充填材は、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。上記無機充填材が球状である場合には、上記無機充填材のアスペクト比は好ましくは2以下、より好ましくは1.5以下である。

The inorganic filler is preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. When the inorganic filler is spherical, the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.

 上記無機充填材は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。上記無機充填材が表面処理されていることにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。また、上記無機充填材が表面処理されていることにより、硬化物の表面により一層微細な配線を形成することができ、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。

The inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and still more preferably a surface-treated product with a silane coupling agent. By the surface treatment of the inorganic filler, the surface roughness of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Further, since the inorganic filler is surface-treated, it is possible to form finer wiring on the surface of the cured product, and to further improve the inter-wiring insulation reliability and interlayer insulation reliability to the cured product. Can be granted.

 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。

Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.

 樹脂材料中の溶剤を除く成分100重量%中、上記無機充填材の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは65重量%以上、特に好ましくは68重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは75重量%以下である。上記無機充填材の含有量が上記下限以上であると、誘電正接が効果的に低くなる。上記無機充填材の含有量が上記上限以下であると、エッチング性能を高めることができる。上記無機充填材の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができる。さらに、この無機充填材量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。

In 100% by weight of the component excluding the solvent in the resin material, the content of the inorganic filler is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 65% by weight or more, particularly preferably 68% by weight. % Or more, preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less. When the content of the inorganic filler is not less than the above lower limit, the dielectric loss tangent is effectively lowered. Etching performance can be improved as content of the said inorganic filler is below the said upper limit. When the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. Can do. Furthermore, with this amount of inorganic filler, it is possible to improve the smear removability as well as lowering the coefficient of thermal expansion of the cured product.

 [硬化剤]

 上記樹脂材料は、フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含む硬化剤を含む。すなわち、上記樹脂材料は成分Xを含む硬化剤を含む。上記ベンゾオキサジン化合物は、ダイマージアミン以外のジアミン化合物に由来する骨格を有さないことが好ましい。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。

[Curing agent]

The resin material comprises a curing agent containing at least one component of a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine. Including. That is, the resin material includes a curing agent containing component X. The benzoxazine compound preferably does not have a skeleton derived from a diamine compound other than dimer diamine. As for the said hardening | curing agent, only 1 type may be used and 2 or more types may be used together.

 成分X:

 成分Xは、フェノール化合物(フェノール硬化剤)、シアネートエステル化合物(シアネートエステル硬化剤)、酸無水物、活性エステル化合物、カルボジイミド化合物(カルボジイミド硬化剤)、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物(ベンゾオキサジン硬化剤)の内の少なくとも1種の成分である。すなわち、上記樹脂材料は成分Xを含む硬化剤を含む。上記成分Xは、1種のみが用いられてもよく、2種以上が併用されてもよい。

Component X:

Component X includes a phenol compound (phenol curing agent), a cyanate ester compound (cyanate ester curing agent), an acid anhydride, an active ester compound, a carbodiimide compound (carbodiimide curing agent), and a benzo having no skeleton derived from dimer diamine. It is at least one component of the oxazine compound (benzoxazine curing agent). That is, the resin material includes a curing agent containing component X. As for the said component X, only 1 type may be used and 2 or more types may be used together.

 難燃性をより一層高め、線膨張係数を小さくする観点からは、上記成分Xは、芳香族骨格を有する成分であることが好ましく、フェノール化合物を少なくとも含むことがより好ましい。また、難燃性を更により一層高め、線膨張係数をより一層小さくする観点からは、上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物であり、かつ、上記成分Xは、芳香族骨格を有する成分であることが好ましい。

From the viewpoint of further improving the flame retardancy and reducing the linear expansion coefficient, the component X is preferably a component having an aromatic skeleton, and more preferably contains at least a phenol compound. Further, from the viewpoint of further increasing the flame retardancy and further reducing the linear expansion coefficient, the epoxy compound is an epoxy compound having an aromatic skeleton, and the component X has an aromatic skeleton. Preferably it is a component.

 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。

Examples of the phenol compound include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, dicyclopentadiene type phenol and the like.

 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。

Examples of commercially available phenol compounds include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 "and" LA3018-50P "manufactured by DIC).

 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。

Examples of the cyanate ester compound include novolac-type cyanate ester resins, bisphenol-type cyanate ester resins, and prepolymers in which these are partially trimerized. As said novolak-type cyanate ester resin, a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned. Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.

 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、並びにビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。

Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S") manufactured by the company.

 上記酸無水物としては、テトラヒドロフタル酸無水物、及びアルキルスチレン-無水マレイン酸共重合体等が挙げられる。

Examples of the acid anhydride include tetrahydrophthalic acid anhydride and alkylstyrene-maleic anhydride copolymer.

 上記酸無水物の市販品としては、新日本理化社製「リカシッド TDA-100」等が挙げられる。

Examples of commercially available acid anhydrides include “Ricacid TDA-100” manufactured by Shin Nippon Chemical Co., Ltd.

 上記活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に脂肪族鎖、脂肪族環又は芳香族環が結合している化合物をいう。活性エステル化合物は、例えばカルボン酸化合物又はチオカルボン酸化合物と、ヒドロキシ化合物又はチオール化合物との縮合反応によって得られる。活性エステル化合物の例としては、下記式(1)で表される化合物が挙げられる。

The active ester compound refers to a compound containing at least one ester bond in the structure and having an aliphatic chain, an aliphatic ring or an aromatic ring bonded to both sides of the ester bond. The active ester compound is obtained, for example, by a condensation reaction between a carboxylic acid compound or thiocarboxylic acid compound and a hydroxy compound or thiol compound. Examples of the active ester compound include a compound represented by the following formula (1).

Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005

 上記式(1)中、X1は、脂肪族鎖を含む基、脂肪族環を含む基又は芳香族環を含む基を表し、X2は、芳香族環を含む基を表す。上記芳香族環を含む基の好ましい例としては、置換基を有していてもよいベンゼン環、及び置換基を有していてもよいナフタレン環等が挙げられる。上記置換基としては、炭化水素基が挙げられる。該炭化水素基の炭素数は、好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。

In the above formula (1), X1 represents a group containing an aliphatic chain, a group containing an aliphatic ring or a group containing an aromatic ring, and X2 represents a group containing an aromatic ring. Preferable examples of the group containing an aromatic ring include a benzene ring which may have a substituent and a naphthalene ring which may have a substituent. A hydrocarbon group is mentioned as said substituent. The carbon number of the hydrocarbon group is preferably 12 or less, more preferably 6 or less, and still more preferably 4 or less.

 X1及びX2の組み合わせとしては、置換基を有していてもよいベンゼン環と、置換基を有していてもよいベンゼン環との組み合わせ、置換基を有していてもよいベンゼン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。さらに、X1及びX2の組み合わせとしては、置換基を有していてもよいナフタレン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。

As a combination of X1 and X2, a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, a benzene ring which may have a substituent and a substitution The combination with the naphthalene ring which may have a group is mentioned. Furthermore, examples of the combination of X1 and X2 include a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.

 上記活性エステル化合物は特に限定されない。難燃性をより一層高め、線膨張係数を小さくする観点からは、上記活性エステルは、2個以上の芳香族骨格を有する活性エステル化合物であることが好ましい。したがって、上記硬化剤が、2個以上の芳香族骨格を有する活性エステル化合物を含むことが好ましい。硬化物の誘電正接を低くし、かつ硬化物の熱寸法安定性を高める観点から、活性エステルの主鎖骨格中にナフタレン環を有することがより好ましい。

The active ester compound is not particularly limited. From the viewpoint of further increasing the flame retardancy and reducing the linear expansion coefficient, the active ester is preferably an active ester compound having two or more aromatic skeletons. Therefore, the curing agent preferably contains an active ester compound having two or more aromatic skeletons. From the viewpoint of reducing the dielectric loss tangent of the cured product and increasing the thermal dimensional stability of the cured product, it is more preferable to have a naphthalene ring in the main chain skeleton of the active ester.

 上記活性エステル化合物の市販品としては、DIC社製「HPC-8000-65T」、「EXB9416-70BK」、「EXB8100-65T」及び「HPC-8150-60T」等が挙げられる。

Examples of commercially available active ester compounds include “HPC-8000-65T”, “EXB9416-70BK”, “EXB8100-65T”, and “HPC-8150-60T” manufactured by DIC.

 上記カルボジイミド化合物は、下記式(2)で表される構造単位を有する。下記式(2)において、右端部及び左端部は、他の基との結合部位である。上記カルボジイミド化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。

The carbodiimide compound has a structural unit represented by the following formula (2). In the following formula (2), the right end and the left end are binding sites with other groups. As for the said carbodiimide compound, only 1 type may be used and 2 or more types may be used together.

Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006

 上記式(2)中、Xは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、シクロアルキレン基に置換基が結合した基、アリーレン基、又はアリーレン基に置換基が結合した基を表し、pは1~5の整数を表す。Xが複数存在する場合、複数のXは同一であってもよく、異なっていてもよい。

In the above formula (2), X is an alkylene group, a group having a substituent bonded to an alkylene group, a cycloalkylene group, a group having a substituent bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group. Represents a group, and p represents an integer of 1 to 5. When two or more X exists, several X may be the same and may differ.

 好適な一つの形態において、少なくとも1つのXは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、又はシクロアルキレン基に置換基が結合した基である。

In one preferred embodiment, at least one X is an alkylene group, a group having a substituent bonded to the alkylene group, a cycloalkylene group, or a group having a substituent bonded to a cycloalkylene group.

 上記カルボジイミド化合物の市販品としては、日清紡ケミカル社製「カルボジライト V-02B」、「カルボジライト V-03」、「カルボジライト V-04K」、「カルボジライト V-07」、「カルボジライト V-09」、「カルボジライト 10M-SP」、及び「カルボジライト 10M-SP(改)」、並びに、ラインケミー社製「スタバクゾールP」、「スタバクゾールP400」、及び「ハイカジル510」等が挙げられる。

Commercially available carbodiimide compounds include “Carbodilite V-02B”, “Carbodilite V-03”, “Carbodilite V-04K”, “Carbodilite V-07”, “Carbodilite V-09”, “Carbodilite” manufactured by Nisshinbo Chemical Co., Ltd. 10M-SP ”,“ Carbodilite 10M-SP (modified) ”,“ STABAXOL P ”,“ STABAXOL P400 ”, and“ HIKAZIL 510 ”manufactured by Rhein Chemie.

 上記ダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物としては、P-d型ベンゾオキサジン、及びF-a型ベンゾオキサジン等が挙げられる。

Examples of the benzoxazine compound having no skeleton derived from the dimeramine amine include Pd-type benzoxazine and Fa-type benzoxazine.

 上記ダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の市販品としては、四国化成工業社製「P-d型」等が挙げられる。

Examples of commercially available benzoxazine compounds having no skeleton derived from dimer diamine include “Pd type” manufactured by Shikoku Kasei Kogyo Co., Ltd.

 上記エポキシ化合物100重量部に対する上記成分Xの含有量は、好ましくは50重量部以上、より好ましくは85重量部以上、好ましくは150重量部以下、より好ましくは120重量部以下である。上記成分Xの含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱による硬化物の寸法変化や、残存未反応成分の揮発をより一層抑制できる。

The content of the component X with respect to 100 parts by weight of the epoxy compound is preferably 50 parts by weight or more, more preferably 85 parts by weight or more, preferably 150 parts by weight or less, more preferably 120 parts by weight or less. When the content of the component X is not less than the above lower limit and not more than the above upper limit, the curability is further improved, and the dimensional change of the cured product due to heat and the remaining unreacted components can be further suppressed.

 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記エポキシ化合物と上記成分Xとの合計の含有量は、好ましくは40重量%以上、より好ましくは60重量%以上、好ましくは90重量%以下、より好ましくは85重量%以下である。上記エポキシ化合物と上記成分Xとの合計の含有量が上記下限以上及び上記上限以下であると、より一層良好な硬化物が得られ、硬化物の熱による寸法変化をより一層抑制できる。

In 100% by weight of the component excluding the inorganic filler and the solvent in the resin material, the total content of the epoxy compound and the component X is preferably 40% by weight or more, more preferably 60% by weight or more, preferably It is 90 weight% or less, More preferably, it is 85 weight% or less. When the total content of the epoxy compound and the component X is not less than the above lower limit and not more than the above upper limit, an even better cured product can be obtained, and the dimensional change due to heat of the cured product can be further suppressed.

 上記樹脂材料は、上記成分Xを含む上記硬化剤とは異なる硬化剤を含んでいてもよい。上記成分Xを含む上記硬化剤とは異なる硬化剤としては、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、ホスフィン化合物、ジシアンジアミド、及びマレイミド化合物(マレイミド硬化剤)等が挙げられる。

The resin material may contain a curing agent different from the curing agent containing the component X. Examples of the curing agent different from the curing agent containing the component X include an amine compound (amine curing agent), a thiol compound (thiol curing agent), a phosphine compound, dicyandiamide, and a maleimide compound (maleimide curing agent).

 [硬化促進剤]

 上記樹脂材料は、硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂材料を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。樹脂材料の硬化が十分に進行しない場合には、誘電正接が高くなり、また、線膨張係数が大きくなることがある。硬化促進剤の使用により、樹脂材料の効果を十分に進行させることができる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。

[Curing accelerator]

The resin material preferably contains a curing accelerator. By using the curing accelerator, the curing rate is further increased. By quickly curing the resin material, the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups is reduced, and as a result, the crosslinking density is increased. If the curing of the resin material does not proceed sufficiently, the dielectric loss tangent increases and the linear expansion coefficient may increase. By using the curing accelerator, the effect of the resin material can be sufficiently advanced. The said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.

 上記硬化促進剤としては、例えば、イミダゾール化合物等のアニオン性硬化促進剤、アミン化合物等のカチオン性硬化促進剤、リン化合物及び有機金属化合物等のアニオン性及びカチオン性硬化促進剤以外の硬化促進剤、並びに過酸化物等のラジカル性硬化促進剤等が挙げられる。

Examples of the curing accelerator include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organometallic compounds. And radical curing accelerators such as peroxides.

 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。

Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Methyly Midazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-Ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine Isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-dihydroxymethylimidazole, etc. Can be mentioned.

 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。

Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, 4,4-dimethylaminopyridine, and the like.

 上記リン化合物としては、トリフェニルホスフィン化合物等が挙げられる。

Examples of the phosphorus compound include a triphenylphosphine compound.

 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。

Examples of the organometallic compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).

 上記過酸化物としてはジクミルペルオキシド、及びパーヘキシル25B等が挙げられる。

Examples of the peroxide include dicumyl peroxide and perhexyl 25B.

 硬化温度をより一層低く抑える観点からは、上記硬化促進剤は、上記アニオン性硬化促進剤を含むことが好ましく、上記イミダゾール化合物を含むことがより好ましい。

From the viewpoint of keeping the curing temperature further lower, the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.

 硬化温度をより一層低く抑える観点からは、上記硬化促進剤100重量%中、上記アニオン性硬化促進剤の含有量は、好ましくは50重量%以上、より好ましくは70重量%以上、更に好ましくは80重量%以上、最も好ましくは100重量%(全量)である。

From the viewpoint of further reducing the curing temperature, the content of the anionic curing accelerator is preferably 50% by weight or more, more preferably 70% by weight or more, and still more preferably 80% in 100% by weight of the curing accelerator. % By weight or more, most preferably 100% by weight (total amount).

 上記硬化促進剤は、アニオン性硬化促進剤及びラジカル性硬化促進剤のうちの少なくとも一方を含むことが好ましい。アニオン性硬化促進剤は、イミダゾール化合物であることが好ましい。上記硬化促進剤は、上記ラジカル性硬化促進剤と上記イミダゾール化合物とを含んでいてもよい。上記ラジカル性硬化促進剤は、上記ラジカル性硬化促進剤の存在下での反応温度がエッチング前の硬化温度よりも高く、エッチング後の本硬化温度よりも低いラジカル性硬化促進剤が好ましい。ラジカル性硬化促進剤を用いる場合に、ラジカル性硬化促進剤として、パーヘキシル25Bを用いることで、上記の効果がより一層効果的に発揮される。

The curing accelerator preferably contains at least one of an anionic curing accelerator and a radical curing accelerator. The anionic curing accelerator is preferably an imidazole compound. The curing accelerator may contain the radical curing accelerator and the imidazole compound. The radical curing accelerator is preferably a radical curing accelerator whose reaction temperature in the presence of the radical curing accelerator is higher than the curing temperature before etching and lower than the main curing temperature after etching. In the case of using a radical curing accelerator, the above effect is more effectively exhibited by using perhexyl 25B as the radical curing accelerator.

 また、上記硬化促進剤が、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又は、ラジカル性硬化促進剤とリン化合物とを含むことが好ましい。この場合には、上記樹脂材料の硬化を良好に進行させることができ、より一層良好な硬化物を得ることができる。

Moreover, it is preferable that the said hardening accelerator contains a radical hardening accelerator and an imidazole compound, or contains a radical hardening accelerator and a phosphorus compound. In this case, curing of the resin material can be favorably progressed, and an even better cured product can be obtained.

 上記硬化促進剤は、ラジカル性硬化促進剤と、ジメチルアミノピリジン、イミダゾール化合物、及びリン化合物の内の少なくとも1種の化合物とを含んでいてもよい。

The curing accelerator may contain a radical curing accelerator and at least one compound among dimethylaminopyridine, an imidazole compound, and a phosphorus compound.

 上記硬化促進剤の含有量は特に限定されない。樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記硬化促進剤の含有量は好ましくは0.01重量%以上、より好ましくは0.05重量%以上、好ましくは5重量%以下、より好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、樹脂材料が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、樹脂材料の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。

The content of the curing accelerator is not particularly limited. The content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5% by weight or less, in 100% by weight of the component excluding the inorganic filler and solvent in the resin material. More preferably, it is 3% by weight or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If content of the said hardening accelerator is a more preferable range, the storage stability of a resin material will become still higher and a much better hardened | cured material will be obtained.

 [熱可塑性樹脂]

 上記樹脂材料は、熱可塑性樹脂を含むことが好ましい。上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、ポリイミド樹脂及びフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。

[Thermoplastic resin]

The resin material preferably contains a thermoplastic resin. Examples of the thermoplastic resin include polyvinyl acetal resin, polyimide resin, and phenoxy resin. As for the said thermoplastic resin, only 1 type may be used and 2 or more types may be used together.

 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂であることが好ましい。フェノキシ樹脂の使用により、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂組成物又はBステージ化物が濡れ拡がり難くなる。

Regardless of the curing environment, the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively reducing the dielectric loss tangent and effectively improving the adhesion of the metal wiring. By using the phenoxy resin, deterioration of the embedding property of the resin film with respect to the holes or irregularities of the circuit board and non-uniformity of the inorganic filler are suppressed. In addition, since the melt viscosity can be adjusted by using the phenoxy resin, the dispersibility of the inorganic filler is improved, and the resin composition or the B-staged product is difficult to wet and spread in an unintended region during the curing process.

 上記樹脂材料に含まれているフェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。

The phenoxy resin contained in the resin material is not particularly limited. A conventionally known phenoxy resin can be used as the phenoxy resin. As for the said phenoxy resin, only 1 type may be used and 2 or more types may be used together.

 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。

Examples of the phenoxy resin include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolac skeleton, a naphthalene skeleton, and an imide skeleton.

 上記フェノキシ樹脂の市販品としては、例えば、新日鐵住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。

Examples of commercially available phenoxy resins include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., and “1256B40”, “4250”, “4256H40” manufactured by Mitsubishi Chemical Corporation, “ 4275 "," YX6954BH30 "," YX8100BH30 ", and the like.

 ハンドリング性、低粗度でのメッキピール強度及び絶縁層と金属層との密着性を高める観点から、上記熱可塑性樹脂は、ポリイミド樹脂(ポリイミド化合物)であることが好ましい。

The thermoplastic resin is preferably a polyimide resin (polyimide compound) from the viewpoint of improving handling properties, plating peel strength at low roughness, and adhesion between the insulating layer and the metal layer.

 溶解性を良好にする観点からは、上記ポリイミド化合物は、テトラカルボン酸二無水物とダイマージアミンとを反応させる方法によって得られたポリイミド化合物であることが好ましい。

From the viewpoint of improving solubility, the polyimide compound is preferably a polyimide compound obtained by a method of reacting tetracarboxylic dianhydride and dimer diamine.

 上記テトラカルボン酸二無水物としては、上述したテトラカルボン酸二無水物が挙げられる。

As said tetracarboxylic dianhydride, the tetracarboxylic dianhydride mentioned above is mentioned.

 上記ダイマージアミンの市販品としては、上述した市販品が挙げられる。

The commercial item mentioned above is mentioned as a commercial item of the said dimer diamine.

 保存安定性により一層優れた樹脂材料を得る観点からは、上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上、好ましくは100000以下、より好ましくは50000以下である。

From the viewpoint of obtaining a more excellent resin material due to storage stability, the thermoplastic resin, the polyimide resin, and the phenoxy resin preferably have a weight average molecular weight of 5000 or more, more preferably 10,000 or more, and preferably 100,000 or less. Preferably it is 50000 or less.

 上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。

The weight average molecular weight of the thermoplastic resin, the polyimide resin, and the phenoxy resin indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

 上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の含有量は特に限定されない。樹脂材料中の上記無機充填材及び上記溶剤を除く成分100重量%中、上記熱可塑性樹脂の含有量(上記熱可塑性樹脂がポリイミド樹脂又はフェノキシ樹脂である場合にはポリイミド樹脂又はフェノキシ樹脂の含有量)は好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは30重量%以下、より好ましくは20重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂材料の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、樹脂フィルムの形成がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。

Content of the said thermoplastic resin, the said polyimide resin, and the said phenoxy resin is not specifically limited. The content of the thermoplastic resin in 100% by weight of the component excluding the inorganic filler and the solvent in the resin material (in the case where the thermoplastic resin is a polyimide resin or a phenoxy resin, the content of the polyimide resin or the phenoxy resin) ) Is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, more preferably 20% by weight or less. When the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the embedding property of the resin material in the holes or irregularities of the circuit board becomes good. When the content of the thermoplastic resin is not less than the above lower limit, the resin film can be formed more easily, and a better insulating layer can be obtained. When the content of the thermoplastic resin is not more than the above upper limit, the thermal expansion coefficient of the cured product is further reduced. When the content of the thermoplastic resin is not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.

 [溶剤]

 上記樹脂材料は、溶剤を含まないか又は含む。上記溶剤の使用により、樹脂材料の粘度を好適な範囲に制御でき、樹脂材料の塗工性を高めることができる。また、上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。

[solvent]

The resin material does not contain or contains a solvent. By using the solvent, the viscosity of the resin material can be controlled within a suitable range, and the coatability of the resin material can be improved. Moreover, the said solvent may be used in order to obtain the slurry containing the said inorganic filler. As for the said solvent, only 1 type may be used and 2 or more types may be used together.

 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。

Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.

 上記溶剤の多くは、上記樹脂組成物をフィルム状に成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂組成物中の上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。

Most of the solvent is preferably removed when the resin composition is formed into a film. Therefore, the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coating property of the resin composition.

 上記樹脂材料がBステージフィルムである場合には、上記Bステージフィルム100重量%中、上記溶剤の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上、好ましくは10重量%以下、より好ましくは5重量%以下である。

When the resin material is a B stage film, the content of the solvent is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 10% by weight or less in 100% by weight of the B stage film. More preferably, it is 5% by weight or less.

 [他の成分]

 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂材料は、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及びエポキシ化合物以外の他の熱硬化性樹脂等を含んでいてもよい。

[Other ingredients]

For the purpose of improving impact resistance, heat resistance, resin compatibility, workability, etc., the above resin materials are leveling agents, flame retardants, coupling agents, coloring agents, antioxidants, UV degradation inhibitors, antifoaming agents. A thermosetting resin other than an agent, a thickener, a thixotropic agent, and an epoxy compound may be included.

 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。

Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents. Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.

 上記他の熱硬化性樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。

Examples of the other thermosetting resins include polyphenylene ether resins, divinyl benzyl ether resins, polyarylate resins, diallyl phthalate resins, benzoxazine resins, benzoxazole resins, bismaleimide resins, and acrylate resins.

 (樹脂フィルム)

 上述した樹脂組成物をフィルム状に成形することにより樹脂フィルム(Bステージ化物/Bステージフィルム)が得られる。上記樹脂材料は、樹脂フィルムであることが好ましい。樹脂フィルムは、Bステージフィルムであることが好ましい。

(Resin film)

A resin film (B-staged product / B-stage film) is obtained by molding the resin composition described above into a film. The resin material is preferably a resin film. The resin film is preferably a B stage film.

 上記樹脂材料は、熱硬化性材料であることが好ましい。

The resin material is preferably a thermosetting material.

 樹脂組成物をフィルム状に成形して、樹脂フィルムを得る方法としては、以下の方法が挙げられる。押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。

Examples of a method for forming a resin composition into a film to obtain a resin film include the following methods. An extrusion molding method in which a resin composition is melt-kneaded and extruded using an extruder, and then molded into a film shape by a T die or a circular die. A casting molding method in which a resin composition containing a solvent is cast to form a film. Other known film forming methods. The extrusion molding method or the casting molding method is preferable because it can cope with the reduction in thickness. The film includes a sheet.

 樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50℃~150℃で1分間~10分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。

A resin film that is a B-stage film can be obtained by forming the resin composition into a film and drying it by heating, for example, at 50 ° C. to 150 ° C. for 1 to 10 minutes so that curing by heat does not proceed excessively. it can.

 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。

The film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film. The B-stage film is in a semi-cured state. The semi-cured product is not completely cured and curing can proceed further.

 上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロス等に沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。上記樹脂フィルムは、金属箔又は基材と、該金属箔又は基材の表面に積層された樹脂フィルムとを備える積層フィルムの形態で用いることができる。上記金属箔は銅箔であることが好ましい。

The resin film may not be a prepreg. When the resin film is not a prepreg, migration does not occur along the glass cloth or the like. Further, when laminating or precuring the resin film, the surface is not uneven due to the glass cloth. The said resin film can be used with the form of a laminated film provided with metal foil or a base material, and the resin film laminated | stacked on the surface of this metal foil or base material. The metal foil is preferably a copper foil.

 上記積層フィルムの上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルム等のオレフィン樹脂フィルム、並びにポリイミド樹脂フィルム等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。

Examples of the substrate of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin film. The surface of the base material may be subjected to a release treatment as necessary.

 樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。上記樹脂フィルムを回路の絶縁層として用いる場合、上記樹脂フィルムにより形成された絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁層の厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。

From the viewpoint of more uniformly controlling the degree of cure of the resin film, the thickness of the resin film is preferably 5 μm or more, and preferably 200 μm or less. When using the said resin film as an insulating layer of a circuit, it is preferable that the thickness of the insulating layer formed with the said resin film is more than the thickness of the conductor layer (metal layer) which forms a circuit. The thickness of the insulating layer is preferably 5 μm or more, and preferably 200 μm or less.

 (半導体装置、プリント配線板、銅張積層板及び多層プリント配線板)

 上記樹脂材料は、半導体装置において半導体チップを埋め込むモールド樹脂を形成するために好適に用いられる。

(Semiconductor devices, printed wiring boards, copper-clad laminates and multilayer printed wiring boards)

The resin material is preferably used for forming a mold resin for embedding a semiconductor chip in a semiconductor device.

 上記樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。

The resin material is suitably used for forming an insulating layer in a printed wiring board.

 上記プリント配線板は、例えば、上記樹脂材料を加熱加圧成形することにより得られる。

The printed wiring board can be obtained, for example, by heat-pressing the resin material.

 上記樹脂フィルムに対して、片面又は両面に金属箔を積層できる。上記樹脂フィルムと金属箔とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記樹脂フィルムを金属箔に積層可能である。

A metal foil can be laminated on one side or both sides of the resin film. The method for laminating the resin film and the metal foil is not particularly limited, and a known method can be used. For example, the resin film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while applying pressure while heating or without heating.

 上記樹脂材料は、銅張積層板を得るために好適に用いられる。上記銅張積層板の一例として、銅箔と、該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板が挙げられる。

The resin material is suitably used for obtaining a copper clad laminate. An example of the copper-clad laminate includes a copper-clad laminate including a copper foil and a resin film laminated on one surface of the copper foil.

 上記銅張積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1μm~50μmの範囲内であることが好ましい。また、上記樹脂材料の硬化物と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。

The thickness of the copper foil of the copper clad laminate is not particularly limited. The thickness of the copper foil is preferably in the range of 1 μm to 50 μm. Moreover, in order to increase the adhesive strength between the cured product of the resin material and the copper foil, the copper foil preferably has fine irregularities on the surface. The method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a formation method by treatment using a known chemical solution.

 上記樹脂材料は、多層基板を得るために好適に用いられる。

The resin material is preferably used for obtaining a multilayer substrate.

 上記多層基板の一例として、回路基板と、該回路基板上に積層された絶縁層とを備える多層基板が挙げられる。この多層基板の絶縁層が、上記樹脂材料により形成されている。また、多層基板の絶縁層が、積層フィルムを用いて、上記積層フィルムの上記樹脂フィルムにより形成されていてもよい。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。

As an example of the multilayer substrate, a multilayer substrate including a circuit substrate and an insulating layer stacked on the circuit substrate can be given. The insulating layer of the multilayer substrate is formed of the resin material. Moreover, the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film using a laminated film. The insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Part of the insulating layer is preferably embedded between the circuits.

 上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。

In the multilayer substrate, it is preferable that the surface of the insulating layer opposite to the surface on which the circuit substrate is laminated is roughened.

 粗化処理方法は、従来公知の粗化処理方法を用いることができ、特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。

As the roughening treatment method, a conventionally known roughening treatment method can be used, and it is not particularly limited. The surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.

 また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。

Moreover, it is preferable that the said multilayer substrate is further equipped with the copper plating layer laminated | stacked on the surface by which the roughening process of the said insulating layer was carried out.

 また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層が、銅箔と該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板を用いて、上記樹脂フィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。

As another example of the multilayer board, the circuit board, the insulating layer laminated on the surface of the circuit board, and the surface of the insulating layer opposite to the surface on which the circuit board is laminated are laminated. And a multilayer substrate provided with copper foil. The insulating layer is preferably formed by curing the resin film using a copper-clad laminate including a copper foil and a resin film laminated on one surface of the copper foil. Furthermore, it is preferable that the copper foil is etched and is a copper circuit.

 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数層の絶縁層の内の少なくとも1層が、上記樹脂材料を用いて形成される。上記多層基板は、上記樹脂フィルムを用いて形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。

Another example of the multilayer substrate is a multilayer substrate including a circuit board and a plurality of insulating layers stacked on the surface of the circuit board. At least one of the plurality of insulating layers disposed on the circuit board is formed using the resin material. It is preferable that the multilayer substrate further includes a circuit laminated on at least one surface of the insulating layer formed using the resin film.

 多層基板のうち多層プリント配線板においては、低い誘電正接が求められ、絶縁層による高い絶縁信頼性が求められる。本発明に係る樹脂材料では、誘電正接を低くし、かつ絶縁層と金属層との密着性及びエッチング性能を高めることによって絶縁信頼性を効果的に高めることができる。従って、本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。

Among multilayer substrates, multilayer printed wiring boards are required to have a low dielectric loss tangent and to have high insulation reliability due to an insulating layer. In the resin material according to the present invention, it is possible to effectively increase the insulation reliability by reducing the dielectric loss tangent and enhancing the adhesion between the insulating layer and the metal layer and the etching performance. Therefore, the resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.

 上記多層プリント配線板は、例えば、回路基板と、上記回路基板の表面上に配置された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える。上記絶縁層の内の少なくとも1層が、上記樹脂材料の硬化物である。

The multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.

 図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。

FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.

 図1に示す多層プリント配線板11では、回路基板12の上面12aに、複数層の絶縁層13~16が積層されている。絶縁層13~16は、硬化物層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。

In the multilayer printed wiring board 11 shown in FIG. 1, a plurality of insulating layers 13 to 16 are laminated on the upper surface 12 a of the circuit board 12. The insulating layers 13 to 16 are cured product layers. A metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12. Of the plurality of insulating layers 13 to 16, the metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side. Has been. The metal layer 17 is a circuit. Metal layers 17 are respectively arranged between the circuit board 12 and the insulating layer 13 and between the stacked insulating layers 13 to 16. The lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).

 多層プリント配線板11では、絶縁層13~16が、上記樹脂材料の硬化物により形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層プリント配線板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層プリント配線板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。

In the multilayer printed wiring board 11, the insulating layers 13 to 16 are formed of a cured product of the resin material. In this embodiment, since the surfaces of the insulating layers 13 to 16 are roughened, fine holes (not shown) are formed on the surfaces of the insulating layers 13 to 16. Further, the metal layer 17 reaches the inside of the fine hole. Moreover, in the multilayer printed wiring board 11, the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small. In the multilayer printed wiring board 11, good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).

 (粗化処理及び膨潤処理)

 上記樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。

(Roughening treatment and swelling treatment)

The resin material is preferably used in order to obtain a cured product that is roughened or desmeared. The cured product includes a precured product that can be further cured.

 上記樹脂材料を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。

In order to form fine irregularities on the surface of the cured product obtained by precuring the resin material, the cured product is preferably roughened. Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment. The cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment. However, the cured product is not necessarily subjected to the swelling treatment.

 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30℃~85℃で1分間~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50℃~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。

As a method for the swelling treatment, for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion of a compound mainly composed of ethylene glycol or the like is used. The swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like. The swelling liquid preferably contains sodium hydroxide. Specifically, for example, the swelling treatment is carried out by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 ° C. to 85 ° C. for 1 minute to 30 minutes. The swelling treatment temperature is preferably in the range of 50 ° C to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.

 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。

For the roughening treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfuric acid compound is used. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like. The roughening solution preferably contains sodium hydroxide.

 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。

Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate. Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.

 硬化物の表面の算術平均粗さRaは好ましくは10nm以上であり、好ましくは300nm未満、より好ましくは200nm未満、更に好ましくは150nm未満である。この場合には、硬化物と金属層との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。さらに、導体損失を抑えることができ、信号損失を低く抑えることができる。上記算術平均粗さRaは、JIS B0601:1994に準拠して測定される。

The arithmetic average roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, and even more preferably less than 150 nm. In this case, the adhesive strength between the cured product and the metal layer is increased, and further finer wiring is formed on the surface of the insulating layer. Furthermore, conductor loss can be suppressed and signal loss can be suppressed low. The arithmetic average roughness Ra is measured in accordance with JIS B0601: 1994.

 (デスミア処理)

 上記樹脂材料を予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60μm~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。

(Desmear treatment)

Through holes may be formed in a cured product obtained by precuring the resin material. In the multilayer substrate or the like, a via or a through hole is formed as a through hole. For example, the via can be formed by irradiation with a laser such as a CO 2 laser. The diameter of the via is not particularly limited, but is about 60 μm to 80 μm. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.

 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。

In order to remove the smear, the surface of the cured product is preferably desmeared. The desmear process may also serve as a roughening process.

 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物等の化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。

In the desmear treatment, for example, a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment. These chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added. The desmear treatment liquid used for the desmear treatment generally contains an alkali. The desmear treatment liquid preferably contains sodium hydroxide.

 上記樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。

By using the resin material, the surface roughness of the surface of the cured product subjected to the desmear treatment is sufficiently reduced.

 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。

Hereinafter, the present invention will be specifically described by giving examples and comparative examples. The present invention is not limited to the following examples.

 (ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物)

 N-アルキルビスマレイミド化合物1(Designer Molecules Inc.社製「BMI-1500」、数平均分子量1500)

 N-アルキルビスマレイミド化合物2(Designer Molecules Inc.社製「BMI-1700」、数平均分子量1700)

 N-アルキルビスマレイミド化合物3(Designer Molecules Inc.社製「BMI-3000」、数平均分子量3000)

 N-アルキルビスマレイミド化合物4(Designer Molecules Inc.社製「BMI-3000J」、数平均分子量5100)

 N-アルキルビスマレイミド化合物5(Designer Molecules Inc.社製「BMI-3000J」をトルエン溶液に溶解させた後、イソプロパノールを入れ、再沈殿した高分子成分を回収した化合物(表中、BMI-3000J処理品と記載)、重量平均分子量15000)

(N-alkylbismaleimide compounds having a skeleton derived from dimer diamine)

N-alkyl bismaleimide compound 1 (designer Moleculars Inc. “BMI-1500”, number average molecular weight 1500)

N-alkyl bismaleimide compound 2 (designer Moleculars Inc. “BMI-1700”, number average molecular weight 1700)

N-alkyl bismaleimide compound 3 (designer Moleculars Inc. “BMI-3000”, number average molecular weight 3000)

N-alkylbismaleimide compound 4 (“BMI-3000J”, number average molecular weight 5100, manufactured by Designer Molecules Inc.)

N-alkylbismaleimide compound 5 (“BMI-3000J” manufactured by Designer Molecules Inc. was dissolved in a toluene solution, and then isopropanol was added to recover the precipitated polymer component (in the table, BMI-3000J treatment). And weight average molecular weight 15000)

 (ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物)

 N-アルキルベンゾオキサジン化合物(以下の合成例1に従って合成)

(N-alkylbenzoxazine compounds having a skeleton derived from dimer diamine)

N-alkylbenzoxazine compound (synthesized according to Synthesis Example 1 below)

 (合成例1)

 撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、ピロメリット酸二無水物(東京化成工業社製、分子量218.12)65gとシクロヘキサノン500mLとを入れ、続いて、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)164gをシクロヘキサノンに溶解させた後、滴下して入れた。その後、ディーンスタークトラップとコンデンサーとをフラスコに取り付け、混合物を2時間還流して熱し、両末端にアミン構造を有するイミド化合物を得た。得られたイミド化合物とフェノール(東京化成工業社製、分子量94.11)38gとパラホルムアルデヒド(東京化成工業社製)12gとを混合して得られた混合物をさらに12時間還流して、ベンゾオキサジン化を行った。その後イソプロパノールで再沈殿することにより、N-アルキルベンゾオキサジン化合物(重量平均分子量7700)を得た。

(Synthesis Example 1)

In a reaction vessel equipped with a stirrer, a water separator, a thermometer and a nitrogen gas introduction tube, 65 g of pyromellitic dianhydride (Tokyo Chemical Industry Co., Ltd., molecular weight 218.12) and 500 mL of cyclohexanone were added, After 164 g of dimer diamine (“PRIAMINE 1075” manufactured by Croda Japan Co., Ltd.) was dissolved in cyclohexanone, it was added dropwise. Thereafter, a Dean-Stark trap and a condenser were attached to the flask, and the mixture was refluxed for 2 hours and heated to obtain an imide compound having an amine structure at both ends. A mixture obtained by mixing the obtained imide compound, 38 g of phenol (manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 94.11) and 12 g of paraformaldehyde (manufactured by Tokyo Chemical Industry Co., Ltd.) was further refluxed for 12 hours to obtain benzoxazine. Made. Thereafter, re-precipitation with isopropanol gave an N-alkylbenzoxazine compound (weight average molecular weight 7700).

 (その他)

 N-フェニルマレイミド化合物(大和化成工業社製「BMI-2300」)

 N-フェニルマレイミド化合物(大和化成工業社製「BMI-4000」)

(Other)

N-phenylmaleimide compound (“BMI-2300” manufactured by Daiwa Kasei Kogyo Co., Ltd.)

N-phenylmaleimide compound (“BMI-4000” manufactured by Daiwa Kasei Kogyo Co., Ltd.)

 (エポキシ化合物)

 ビフェニル型エポキシ化合物(日本化薬社製「NC-3000」)

 ナフタレン型エポキシ化合物(DIC社製「HP-4032D」)

 レゾルシノールジグリシジルエーテル(ナガセケムテックス社製「EX-201」)

 ジシクロペンタジエン型エポキシ化合物(アデカ社製「EP4088S」)

 ナフトールアラルキル型エポキシ化合物(新日鐵住金化学社製「ESN-475V」)

(Epoxy compound)

Biphenyl type epoxy compound (“NC-3000” manufactured by Nippon Kayaku Co., Ltd.)

Naphthalene type epoxy compound (“HP-4032D” manufactured by DIC)

Resorcinol diglycidyl ether (“EX-201” manufactured by Nagase ChemteX Corporation)

Dicyclopentadiene type epoxy compound ("EP4088S" manufactured by Adeka)

Naphthol aralkyl epoxy compound (“ESN-475V” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)

 (無機充填材)

 シリカ含有スラリー(シリカ75重量%:アドマテックス社製「SC4050-HOA」、平均粒径1.0μm、アミノシラン処理、シクロヘキサノン25重量%)

(Inorganic filler)

Silica-containing slurry (silica 75 wt%: “SC4050-HOA” manufactured by Admatechs, average particle size 1.0 μm, aminosilane treatment, cyclohexanone 25 wt%)

 (硬化剤)

 成分X:

 シアネートエステル化合物含有液(ロンザジャパン社製「BA-3000S」、固形分75重量%)

 活性エステル化合物1含有液(DIC社製「EXB-9416-70BK」、固形分70重量%)

 活性エステル化合物2含有液(DIC社製「HPC-8000L」、固形分65重量%)

 活性エステル化合物3含有液(DIC社製「HPC-8150」、固形分62重量%)

 フェノール化合物含有液(DIC社製「LA-1356」、固形分60重量%)

 カルボジイミド化合物含有液(日清紡ケミカル社製「V-03」、固形分50重量%)

(Curing agent)

Component X:

Cyanate ester compound-containing liquid (Lonza Japan "BA-3000S", solid content 75% by weight)

Liquid containing active ester compound 1 (“EXB-9416-70BK” manufactured by DIC, solid content: 70% by weight)

Liquid containing active ester compound 2 (“HPC-8000L” manufactured by DIC, solid content 65% by weight)

Liquid containing active ester compound 3 (“HPC-8150” manufactured by DIC, solid content: 62% by weight)

Phenol compound-containing liquid (DIC's “LA-1356”, solid content 60% by weight)

Carbodiimide compound-containing liquid (Nisshinbo Chemical "V-03", solid content 50 wt%)

 (硬化促進剤)

 ジメチルアミノピリジン(和光純薬工業社製「DMAP」

 2-フェニル-4-メチルイミダゾール(四国化成工業社製「2P4MZ」)

 2-エチル-4-メチルイミダゾール(四国化成工業社製「2E4MZ」)

 パークミルD(日油社製)

(Curing accelerator)

Dimethylaminopyridine ("DMAP" manufactured by Wako Pure Chemical Industries, Ltd.

2-Phenyl-4-methylimidazole (“2P4MZ” manufactured by Shikoku Chemicals)

2-Ethyl-4-methylimidazole (“2E4MZ” manufactured by Shikoku Chemicals)

Park Mill D (manufactured by NOF Corporation)

 (熱可塑性樹脂)

 ポリイミド化合物(ポリイミド樹脂)(テトラカルボン酸二無水物とダイマージアミンとの反応物であるポリイミド化合物含有溶液(不揮発分26.8重量%)を以下の合成例2に従って合成)

 フェノキシ樹脂(三菱化学社製「YX6954BH30」)

(Thermoplastic resin)

Polyimide compound (polyimide resin) (A polyimide compound-containing solution (nonvolatile content: 26.8% by weight) which is a reaction product of tetracarboxylic dianhydride and dimer diamine is synthesized according to Synthesis Example 2 below)

Phenoxy resin (Mitsubishi Chemical "YX6954BH30")

 (合成例2)

 撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、テトラカルボン酸二無水物(SABICジャパン合同会社製「BisDA-1000」)300.0gと、シクロヘキサノン665.5gとを入れ、反応容器中の溶液を60℃まで加熱した。次いで、反応容器中に、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)89.0gと、1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学社製)54.7gとを滴下した。次いで、反応容器中に、メチルシクロヘキサン121.0gと、エチレングリコールジメチルエーテル423.5gとを添加し、140℃で10時間かけてイミド化反応を行った。このようにして、ポリイミド化合物含有溶液(不揮発分26.8重量%)を得た。得られたポリイミド化合物の分子量(重量平均分子量)は20000であった。なお、酸成分/アミン成分のモル比は1.04であった。

(Synthesis Example 2)

In a reaction vessel equipped with a stirrer, a water separator, a thermometer and a nitrogen gas inlet tube, 300.0 g of tetracarboxylic dianhydride (“BisDA-1000” manufactured by SABIC Japan GK) and 665.5 g of cyclohexanone were added. And the solution in the reaction vessel was heated to 60 ° C. Subsequently, 89.0 g of dimer diamine (“PRIAMINE 1075” manufactured by Claude Japan Co., Ltd.) and 54.7 g of 1,3-bisaminomethylcyclohexane (manufactured by Mitsubishi Gas Chemical Company) were dropped into the reaction vessel. Next, 121.0 g of methylcyclohexane and 423.5 g of ethylene glycol dimethyl ether were added to the reaction vessel, and an imidization reaction was performed at 140 ° C. for 10 hours. In this way, a polyimide compound-containing solution (non-volatile content: 26.8% by weight) was obtained. The molecular weight (weight average molecular weight) of the obtained polyimide compound was 20000. The molar ratio of acid component / amine component was 1.04.

 合成例2で合成したポリイミド化合物の分子量は、以下のようにして求めた。

The molecular weight of the polyimide compound synthesized in Synthesis Example 2 was determined as follows.

 GPC(ゲルパーミエーションクロマトグラフィー)測定:

 島津製作所社製高速液体クロマトグラフシステムを使用し、テトラヒドロフラン(THF)を展開媒として、カラム温度40℃、流速1.0ml/分で測定を行った。検出器として「SPD-10A」を用い、カラムはShodex社製「KF-804L」(排除限界分子量400,000)を2本直列につないで使用した。標準ポリスチレンとして、東ソー社製「TSKスタンダードポリスチレン」を用い、重量平均分子量Mw=354,000、189,000、98,900、37,200、17,100、9,830、5,870、2,500、1,050、500の物質を使用して較正曲線を作成し、分子量の計算を行った。

GPC (gel permeation chromatography) measurement:

Using a high-performance liquid chromatograph system manufactured by Shimadzu Corporation, measurement was performed at a column temperature of 40 ° C. and a flow rate of 1.0 ml / min using tetrahydrofuran (THF) as a developing medium. “SPD-10A” was used as the detector, and two “KF-804L” (exclusion limit molecular weight 400,000) manufactured by Shodex were connected in series. “TSK standard polystyrene” manufactured by Tosoh Corporation is used as the standard polystyrene, and the weight average molecular weight Mw = 354,000, 189,000, 98,900, 37,200, 17,100, 9,830, 5,870, 2, Calibration curves were generated using 500, 1,050, 500 substances and molecular weight calculations were performed.

 (実施例1~15及び比較例1~3)

 下記の表1~3に示す成分を下記の表1~3に示す配合量で配合し、均一な溶液となるまで常温で攪拌し、樹脂材料を得た。

(Examples 1 to 15 and Comparative Examples 1 to 3)

The components shown in the following Tables 1 to 3 were blended in the blending amounts shown in the following Tables 1 to 3, and stirred at room temperature until a uniform solution was obtained, to obtain a resin material.

 樹脂フィルムの作製:

 アプリケーターを用いて、離型処理されたPETフィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂材料を塗工した後、100℃のギアオーブン内で2分30秒間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmである樹脂フィルム(Bステージフィルム)が積層されている積層フィルム(PETフィルムと樹脂フィルムとの積層フィルム)を得た。

Production of resin film:

Using an applicator, after applying the resin material obtained on the release-treated surface of the release-treated PET film (“XG284” manufactured by Toray Industries, Inc., thickness 25 μm), 2 minutes in a gear oven at 100 ° C. It was dried for 30 seconds to volatilize the solvent. In this way, a laminated film (laminated film of PET film and resin film) in which a resin film (B stage film) having a thickness of 40 μm was laminated on the PET film was obtained.

 (評価)

 (1)誘電正接

 得られた樹脂フィルムを幅2mm、長さ80mmの大きさに裁断して5枚を重ね合わせて、厚み200μmの積層体を得た。得られた積層体を190℃で90分間加熱して、硬化体を得た。得られた硬化体について、関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びキーサイトテクノロジー社製「ネットワークアナライザーN5224A PNA」を用いて、空洞共振法で常温(23℃)にて、周波数1.0GHzにて誘電正接を測定した。

(Evaluation)

(1) Dissipation factor

The obtained resin film was cut into a size of 2 mm in width and 80 mm in length, and five sheets were laminated to obtain a laminate having a thickness of 200 μm. The obtained laminate was heated at 190 ° C. for 90 minutes to obtain a cured body. About the obtained hardened | cured material, it uses a "cavity resonance perturbation method dielectric constant measuring device CP521" made by Kanto Electronics Application Development Co., Ltd. and "Network Analyzer N5224A PNA" made by Keysight Technology Co., Ltd. at room temperature (23 ° C) by the cavity resonance method. The dielectric loss tangent was measured at a frequency of 1.0 GHz.

 (2)絶縁層と金属層との密着性(ピール強度)

 ラミネート工程:

 両面銅張積層板(各面の銅箔の厚み18μm、基板の厚み0.7mm、基板サイズ100mm×100mm、日立化成社製「MCL-E679FG」)を用意した。この両面銅張積層板の銅箔面の両面をメック社製「Cz8101」に浸漬して、銅箔の表面を粗化処理した。粗化処理された銅張積層板の両面に、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、積層フィルムの樹脂フィルム(Bステージフィルム)側を銅張積層板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.4MPaでプレスする条件とした。

(2) Adhesion between the insulating layer and the metal layer (peel strength)

Lamination process:

A double-sided copper-clad laminate (copper foil thickness of 18 μm on each side, substrate thickness of 0.7 mm, substrate size of 100 mm × 100 mm, “MCL-E679FG” manufactured by Hitachi Chemical Co., Ltd.) was prepared. Both surfaces of the copper foil surface of this double-sided copper-clad laminate were immersed in “Cz8101” manufactured by MEC, and the surface of the copper foil was roughened. Using a “batch type vacuum laminator MVLP-500-IIA” manufactured by Meiki Seisakusho on both sides of the roughened copper-clad laminate, the resin film (B-stage film) side of the laminated film is placed on the copper-clad laminate. And laminated to obtain a laminated structure. The laminating conditions were such that the pressure was reduced to 30 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds.

 フィルム剥離工程:

 得られた積層構造体において、両面のPETフィルムを剥離した。

Film peeling process:

In the obtained laminated structure, the PET films on both sides were peeled off.

 銅箔貼り付け工程:

 銅箔(厚み35μm、三井金属社製)のシャイニー面をCz処理(メック社製「Cz8101」)して、銅箔表面を1μm程度エッチングした。PETフィルムを剥離した上記積層構造体に、エッチング処理した銅箔を貼り合せて、銅箔付き基板を得た。得られた銅箔付き基板をギアオーブン内で190℃で90分熱処理し、評価サンプルを得た。

Copper foil pasting process:

The shiny surface of the copper foil (thickness 35 μm, manufactured by Mitsui Kinzoku Co., Ltd.) was subjected to Cz treatment (“Cz8101” manufactured by MEC), and the copper foil surface was etched by about 1 μm. An etched copper foil was bonded to the laminated structure from which the PET film was peeled to obtain a substrate with a copper foil. The obtained substrate with copper foil was heat-treated at 190 ° C. for 90 minutes in a gear oven to obtain an evaluation sample.

 (2-1)室温環境下におけるピール強度の測定:

 評価サンプルの銅箔の表面に1cm幅の短冊状の切込みを入れた。90°剥離試験機(テスター産業社製「TE-3001」)に評価サンプルをセットし、つかみ具で切込みの入った銅箔の端部をつまみあげ、銅箔を20mm剥離して剥離強度(ピール強度)を測定した。

(2-1) Measurement of peel strength at room temperature:

A 1 cm wide strip-shaped cut was made on the surface of the copper foil of the evaluation sample. Set an evaluation sample on a 90 ° peel tester (TE-3001 made by Tester Sangyo Co., Ltd.), pick up the edge of the cut copper foil with a gripping tool, peel the copper foil 20mm, and peel strength (peel) Strength) was measured.

 [室温環境下におけるピール強度の判定基準]

 ○○:ピール強度が0.6kgf以上

 ○:ピール強度が0.4kgf以上0.6kgf未満

 ×:ピール強度が0.4kgf未満

[Criteria for peel strength at room temperature]

○○: Peel strength is 0.6kgf or more

○: Peel strength is 0.4 kgf or more and less than 0.6 kgf

X: Peel strength is less than 0.4 kgf

 (2-2)高温(260℃)環境下におけるピール強度の測定:

 評価サンプルの銅箔の表面に1cm幅の短冊状の切込みを入れた。90°剥離試験機(テスター産業社製「TE-3001」)の評価サンプルをセットする箇所に加熱ユニットを設置した後、評価サンプルをセットし、加熱ユニットを260℃に設定した。その後、つかみ具で切込みの入った銅箔の端部をつまみあげ、銅箔を20mm剥離して剥離強度(ピール強度)を測定した。

(2-2) Measurement of peel strength under high temperature (260 ° C) environment:

A 1 cm wide strip-shaped cut was made on the surface of the copper foil of the evaluation sample. After the heating unit was installed at the location where the evaluation sample of the 90 ° peel tester (“TE-3001” manufactured by Tester Sangyo Co., Ltd.) was set, the evaluation sample was set and the heating unit was set at 260 ° C. Then, the edge part of the copper foil incised was picked up with the holding tool, 20 mm of copper foil was peeled, and peeling strength (peel strength) was measured.

 [高温(260℃)環境下におけるピール強度の判定基準]

 ○○:ピール強度が0.1kgf以上

 ○:ピール強度が0.05kgf以上0.1kgf未満

 ×:ピール強度が0.05kgf未満

[Criteria for peel strength in high temperature (260 ° C) environment]

○○: Peel strength is 0.1kgf or more

○: Peel strength is 0.05 kgf or more and less than 0.1 kgf

X: Peel strength is less than 0.05 kgf

 (3)難燃性

 ラミネート工程:

 両面銅張積層板(厚み0.2mm、日立化成社製「MCL-E-679FGR」)を用意した。この両面銅張積層板の両面に、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、積層フィルムの樹脂フィルム(Bステージフィルム)側を銅張積層板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.4MPaでプレスする条件とした。

(3) Flame resistance

Lamination process:

A double-sided copper-clad laminate (thickness 0.2 mm, “MCL-E-679FGR” manufactured by Hitachi Chemical Co., Ltd.) was prepared. Using a “batch type vacuum laminator MVLP-500-IIA” manufactured by Meiki Seisakusho, the resin film (B stage film) side of the laminated film is laminated on the copper-clad laminate on both sides of this double-sided copper-clad laminate. Lamination was performed to obtain a laminated structure. The laminating conditions were such that the pressure was reduced to 30 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds.

 フィルム剥離工程:

 得られた積層構造体において、両面のPETフィルムを剥離した。

Film peeling process:

In the obtained laminated structure, the PET films on both sides were peeled off.

 積層工程:

 得られた厚み40μmの樹脂フィルムを、さらに上記積層構造体の両面に2回貼り付け、両面銅張積層板の片面あたり、厚み合計120μmの樹脂フィルムが積層された積層サンプルを作製した。

Lamination process:

The obtained resin film having a thickness of 40 μm was further pasted twice on both surfaces of the laminated structure, and a laminated sample in which a resin film having a total thickness of 120 μm was laminated on one side of the double-sided copper-clad laminate was produced.

 硬化工程:

 得られた積層サンプルをギアオーブン内で190℃で90分熱処理し、評価サンプルを得た。

Curing process:

The obtained laminated sample was heat-treated at 190 ° C. for 90 minutes in a gear oven to obtain an evaluation sample.

 難燃性の評価:

 得られた評価サンプルを縦135mm×横13mmに切り出した。次いで、切り出した評価サンプルをクランプで固定し、該評価サンプルの下部にガスバーナーの炎をかざして、樹脂フィルムを燃やした。樹脂フィルムに燃え移った炎が消えるまでの時間を測定した。

Flame retardant evaluation:

The obtained evaluation sample was cut into a length of 135 mm and a width of 13 mm. Next, the cut out evaluation sample was fixed with a clamp, and a resin film was burned by holding a flame of a gas burner under the evaluation sample. The time until the flame burned on the resin film disappeared was measured.

 [難燃性の判定基準]

 ○○:炎が消えるまでの時間が7秒未満

 ○:炎が消えるまでの時間が7秒以上10秒未満

 ×:炎が消えるまでの時間が10秒以上

[Flame retardancy criteria]

○○: Less than 7 seconds until the flame disappears

○: Time until flame disappears 7 seconds or more and less than 10 seconds

×: Time until the flame disappears is 10 seconds or more

 (4)表面粗さ(粗化処理後の表面粗度)

 ラミネート工程及び半硬化処理:

 両面銅張積層板(CCL基板)(日立化成社製「E679FG」)を用意した。この両面銅張積層板の銅箔面の両面をメック社製「Cz8101」に浸漬して、銅箔の表面を粗化処理した。粗化処理された銅張積層板の両面に、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、積層フィルムの樹脂フィルム(Bステージフィルム)側を銅張積層板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.4MPaでプレスする条件とした。その後、180℃で30分間加熱し、樹脂フィルムを半硬化させた。このようにして、CCL基板に樹脂フィルムの半硬化物が積層されている積層体を得た。

(4) Surface roughness (surface roughness after roughening treatment)

Lamination process and semi-curing treatment:

A double-sided copper-clad laminate (CCL substrate) (“E679FG” manufactured by Hitachi Chemical Co., Ltd.) was prepared. Both surfaces of the copper foil surface of this double-sided copper-clad laminate were immersed in “Cz8101” manufactured by MEC, and the surface of the copper foil was roughened. Using a “batch type vacuum laminator MVLP-500-IIA” manufactured by Meiki Seisakusho on both sides of the roughened copper-clad laminate, the resin film (B-stage film) side of the laminated film is placed on the copper-clad laminate. And laminated to obtain a laminated structure. The laminating conditions were such that the pressure was reduced to 30 hPa or less by reducing the pressure for 30 seconds, and then pressing was performed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds. Then, it heated at 180 degreeC for 30 minute (s), and the resin film was semi-hardened. Thus, the laminated body by which the semi-cured material of the resin film was laminated | stacked on the CCL board | substrate was obtained.

 粗化処理:

 (a)膨潤処理:

 80℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、得られた積層体を入れて、10分間揺動させた。その後、純水で洗浄した。

Roughening process:

(A) Swelling treatment:

The obtained laminate was put into a swelling liquid at 80 ° C. (“Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and rocked for 10 minutes. Thereafter, it was washed with pure water.

 (b)過マンガン酸塩処理(粗化処理及びデスミア処理):

 60℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体を入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)を用いて2分間処理した後、純水で洗浄を行い、評価サンプルを得た。

(B) Permanganate treatment (roughening treatment and desmear treatment):

The layered product after swelling treatment was placed in a roughened aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan Co., Ltd.) at 60 ° C. and rocked for 30 minutes. Next, after processing for 2 minutes using a 25 degreeC washing | cleaning liquid ("Reduction securigant P" by Atotech Japan), it wash | cleaned with the pure water and the evaluation sample was obtained.

 表面粗さの測定:

 評価サンプル(粗化処理された硬化物)の表面を、非接触3次元表面形状測定装置(Veeco社製「WYKO NT1100」)を用いて、94μm×123μmの測定領域で算術平均粗さRaを測定した。なお、上記算術平均粗さRaは、JIS B0601:1994に準拠して測定した。表面粗さを以下の基準で判定した。

Surface roughness measurement:

Using a non-contact three-dimensional surface shape measuring device (“WYKO NT1100” manufactured by Veeco), the arithmetic average roughness Ra is measured on the surface of the evaluation sample (the roughened cured product) in a measurement area of 94 μm × 123 μm. did. The arithmetic average roughness Ra was measured according to JIS B0601: 1994. The surface roughness was determined according to the following criteria.

 [表面粗さの判定基準]

 ○○:Raが50nm未満

 ○:Raが50nm以上200nm未満

 ×:Raが200nm以上

[Surface roughness criteria]

○○: Ra is less than 50 nm

○: Ra is 50 nm or more and less than 200 nm

X: Ra is 200 nm or more

 (5)メッキピール強度

 無電解めっき処理:

 (4)表面粗さの評価で得られた粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。

(5) Peeling peel strength

Electroless plating treatment:

(4) The surface of the roughened cured product obtained by the evaluation of the surface roughness was treated with a 60 ° C. alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.

 次に、上記硬化物を化学銅液(アトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、及び「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニール処理した。なお、無電解めっきの工程までの全ての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。

Next, the cured product is placed in a chemical copper solution (“Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, and “Reducer Cu” manufactured by Atotech Japan Co.) Was carried out until the plating thickness reached about 0.5 μm. After the electroless plating, annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. In addition, all processes up to the electroless plating process were performed while setting the treatment liquid to 2 L on a beaker scale and swinging the cured product.

 電解めっき処理:

 次に、無電解めっき処理された硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電解銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパラシド HL」、アトテックジャパン社製「補正剤カパラシド GS」)を用いて、0.6A/cmの電流を流しめっき厚さが25μm程度となるまで電解めっきを実施した。銅めっき処理後、硬化物を190℃で90分間加熱し、硬化物を更に硬化させた。このようにして、銅めっき層が上面に積層された硬化物を得た。

Electroplating treatment:

Next, electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 μm. As an electrolytic copper plating, a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler kaparaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m. After the copper plating treatment, the cured product was heated at 190 ° C. for 90 minutes to further cure the cured product. Thus, the hardened | cured material with which the copper plating layer was laminated | stacked on the upper surface was obtained.

 メッキピール強度の測定:

 得られた銅めっき層が上面に積層された硬化物の銅めっき層の表面に0.5cm幅の短冊状の切込みを入れた。90°剥離試験機(テスター産業社製「TE-3001」)に銅めっき層が上面に積層された硬化物をセットし、つかみ具で切込みの入った銅めっき層の端部をつまみあげ、銅めっき層を15mm剥離して剥離強度(メッキピール強度)を測定した。

Measurement of plating peel strength:

A strip-shaped cut having a width of 0.5 cm was made on the surface of the copper plating layer of the cured product obtained by laminating the obtained copper plating layer on the upper surface. Set a cured product with a copper plating layer laminated on the upper surface of a 90 ° peel tester ("TE-3001" manufactured by Tester Sangyo Co., Ltd.), pick up the end of the copper plating layer with the notch, The plating layer was peeled by 15 mm and the peel strength (plating peel strength) was measured.

 [メッキピール強度の判定基準]

 ○○:メッキピール強度が0.5kgf以上

 ○:メッキピール強度が0.3kgf以上0.5kgf未満

 ×:メッキピール強度が0.3kgf未満

[Criteria for plating peel strength]

○○: Peeling peel strength is 0.5kgf or more

○: Plating peel strength is 0.3 kgf or more and less than 0.5 kgf

X: Peeling peel strength is less than 0.3 kgf

 (6)硬化温度

 得られた樹脂フィルム(Bステージフィルム)の硬化に伴う発熱ピークを、示差走査熱量測定装置(TA・インスツルメント社製「Q2000」)を用いて評価した。専用アルミパンに樹脂フィルム8mgを取り、専用治具を用いて蓋をした。この専用アルミパンと空のアルミパン(リファレンス)とを加熱ユニット内に設置し、昇温速度3℃/分で-30℃から250℃まで窒素雰囲気下で加熱を行い、リバースヒートフロー及びノンリバースヒートフローの観測を行った。ノンリバースヒートフローにおいて観測される発熱ピークにより、硬化温度を確認した。

(6) Curing temperature

The exothermic peak accompanying hardening of the obtained resin film (B stage film) was evaluated using a differential scanning calorimeter (“Q2000” manufactured by TA Instruments). 8 mg of resin film was taken in a special aluminum pan and covered with a special jig. This dedicated aluminum pan and an empty aluminum pan (reference) are installed in the heating unit and heated in a nitrogen atmosphere from -30 ° C to 250 ° C at a rate of temperature increase of 3 ° C / min. Reverse heat flow and non-reverse The heat flow was observed. The curing temperature was confirmed by the exothermic peak observed in the non-reverse heat flow.

 [硬化温度の判定基準]

 ○:200℃以下に全ての発熱ピークを有する

 ×:200℃よりも高い温度に少なくとも一つの発熱ピークを有する(200℃よりも高い温度に発熱ピークを有し、かつ200℃以下にも発熱ピークを有するものを含む)

[Criteria for curing temperature]

○: All exothermic peaks at 200 ° C. or lower

X: At least one exothermic peak at a temperature higher than 200 ° C. (including those having an exothermic peak at a temperature higher than 200 ° C. and an exothermic peak at 200 ° C. or lower)

 (7)樹脂フィルムの柔軟性

 得られた樹脂フィルム(Bステージフィルム)を180度に10回折り曲げた。10回中、樹脂フィルムにひび又は割れが生じる回数を観察した。

(7) Resin film flexibility

The obtained resin film (B stage film) was bent 10 times at 180 degrees. During 10 times, the number of times the resin film was cracked or cracked was observed.

 [樹脂フィルムの柔軟性の判定基準]

 ○:10回中、ひび又は割れが生じる回数が3回未満である

 △:10回中、ひび又は割れが生じる回数が3回以上、6回未満である

 ×:10回中、ひび又は割れが生じる回数が6回以上である

[Judgment criteria for flexibility of resin film]

○: The number of occurrences of cracks or cracks is less than 3 times during 10 times.

Δ: The number of occurrences of cracks or cracks in 10 times is 3 times or more and less than 6 times.

X: The number of times that cracks or cracks occurred in 10 times is 6 times or more

 (8)凹凸表面に対する埋め込み性

 100mm角の銅張り積層板(厚さ400μmのガラスエポキシ基板と厚さ25μmの銅箔との積層体)の銅箔のみをエッチングして、直径100μm及び深さ25μmの窪み(開口部)を、基板の中心30mm角のエリアに対して直線上にかつ隣接する穴の中心の間隔が900μmになるように開けた。このようにして、計900穴の窪みを持つ評価基板を準備した。

(8) Embeddability to uneven surfaces

Only a copper foil of a 100 mm square copper-clad laminate (a laminate of a 400 μm thick glass epoxy substrate and a 25 μm thick copper foil) is etched to form a recess (opening) having a diameter of 100 μm and a depth of 25 μm. The substrate was opened in a straight line with respect to the 30 mm square area of the substrate so that the distance between the centers of adjacent holes was 900 μm. Thus, the evaluation board | substrate with a hollow of a total of 900 holes was prepared.

 得られた積層フィルムの樹脂フィルム側を評価基板上に重ねて、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用い、ラミネート圧0.4MPaで20秒、プレス圧力0.8MPaで20秒、ラミネート及びプレスの温度90℃で加熱加圧した。常温で冷却した後、PETフィルムを剥離した。このようにして、評価基板上に樹脂フィルムが積層された評価サンプルを得た。

The resin film side of the obtained laminated film is overlaid on the evaluation substrate, and a “batch type vacuum laminator MVLP-500-IIA” manufactured by Meiki Seisakusho Co., Ltd. is used for 20 seconds at a laminating pressure of 0.4 MPa, and a pressing pressure of 0.8 MPa. For 20 seconds at a laminating and pressing temperature of 90 ° C. After cooling at room temperature, the PET film was peeled off. Thus, the evaluation sample by which the resin film was laminated | stacked on the evaluation board | substrate was obtained.

 得られた評価サンプルについて光学顕微鏡を用いて、窪みの中でボイドを観察した。ボイドが観察された窪みの割合を評価することによって、凹凸表面に対する埋め込み性を下記の基準で判定した。

About the obtained evaluation sample, the void was observed in the hollow using the optical microscope. By evaluating the ratio of depressions where voids were observed, the embedding property with respect to the uneven surface was determined according to the following criteria.

 [凹凸表面に対する埋め込み性の判定基準]

 ○:ボイドが観察された窪みの割合0%

 △:ボイドが観察された窪みの割合0%を超え5%未満

 ×:ボイドが観察された窪みの割合5%以上

[Criteria for embedding on uneven surfaces]

○: Ratio of depression where void was observed 0%

Δ: Ratio of depressions where voids were observed exceeded 0% and less than 5%

X: The ratio of the hollow where a void was observed 5% or more

 組成及び結果を下記の表1~3に示す。なお、表1~3中、各成分の含有量は、純分量(固形分重量部)で記載した。

The compositions and results are shown in Tables 1 to 3 below. In Tables 1 to 3, the content of each component is described as a pure amount (part by weight of solid content).

Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009

 11…多層プリント配線板

 12…回路基板

 12a…上面

 13~16…絶縁層

 17…金属層

11 ... Multilayer printed wiring board

12 ... Circuit board

12a ... Upper surface

13-16 ... Insulating layer

17 ... metal layer

Claims (15)


  1.  ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物又はダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物と、

     エポキシ化合物と、

     無機充填材と、

     フェノール化合物、シアネートエステル化合物、酸無水物、活性エステル化合物、カルボジイミド化合物、及びダイマージアミンに由来する骨格を有さないベンゾオキサジン化合物の内の少なくとも1種の成分を含む硬化剤とを含み、

     前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含む場合に、前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の含有量の、前記エポキシ化合物と前記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下であり、

     前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含む場合に、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の含有量の、前記エポキシ化合物と前記硬化剤との合計の含有量に対する重量比が、0.05以上0.75以下である、樹脂材料。

    An N-alkylbismaleimide compound having a skeleton derived from dimeramine, or an N-alkylbenzoxazine compound having a skeleton derived from dimeramine;

    An epoxy compound,

    An inorganic filler;

    A curing agent comprising at least one component of a phenol compound, a cyanate ester compound, an acid anhydride, an active ester compound, a carbodiimide compound, and a benzoxazine compound having no skeleton derived from dimer diamine,

    When the N-alkylbismaleimide compound having a skeleton derived from the dimeramine amine is included, the total content of the epoxy compound and the curing agent in the content of the N-alkylbismaleimide compound having the skeleton derived from the dimeramine amine The weight ratio with respect to the content is 0.05 or more and 0.75 or less,

    When the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is included, the content of the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is the sum of the epoxy compound and the curing agent. The resin material whose weight ratio with respect to content is 0.05-0.75.

  2.  前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物が下記式(X)で表される構造を有するか、又は、前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物が下記式(X)で表される構造を有する、請求項1に記載の樹脂材料。

    Figure JPOXMLDOC01-appb-I000001

     前記式(X)中、R1は、4価の有機基を表す。

    The N-alkylbismaleimide compound having a skeleton derived from dimeramine amine has a structure represented by the following formula (X), or the N-alkylbenzoxazine compound having a skeleton derived from dimeramine amine is represented by the following formula: The resin material according to claim 1, which has a structure represented by (X).

    Figure JPOXMLDOC01-appb-I000001

    In said formula (X), R1 represents a tetravalent organic group.

  3.  前記エポキシ化合物が芳香族骨格を有するエポキシ化合物であり、かつ、前記成分が芳香族骨格を有する成分である、請求項1又は2に記載の樹脂材料。

    The resin material according to claim 1 or 2, wherein the epoxy compound is an epoxy compound having an aromatic skeleton, and the component is a component having an aromatic skeleton.

  4.  前記硬化剤が2個以上の芳香族骨格を有する活性エステル化合物を含む、請求項1~3のいずれか1項に記載の樹脂材料。

    The resin material according to any one of claims 1 to 3, wherein the curing agent comprises an active ester compound having two or more aromatic skeletons.

  5.  硬化促進剤を含む、請求項1~4のいずれか1項に記載の樹脂材料。

    The resin material according to any one of claims 1 to 4, comprising a curing accelerator.

  6.  前記硬化促進剤がアニオン性硬化促進剤を含む、請求項5に記載の樹脂材料。

    The resin material according to claim 5, wherein the curing accelerator includes an anionic curing accelerator.

  7.  前記硬化促進剤100重量%中、前記アニオン性硬化促進剤の含有量が50重量%以上である、請求項6に記載の樹脂材料。

    The resin material according to claim 6, wherein the content of the anionic curing accelerator is 50% by weight or more in 100% by weight of the curing accelerator.

  8.  前記アニオン性硬化促進剤がイミダゾール化合物である、請求項6又は7に記載の樹脂材料。

    The resin material according to claim 6 or 7, wherein the anionic curing accelerator is an imidazole compound.

  9.  前記硬化促進剤が、ラジカル性硬化促進剤とイミダゾール化合物とを含むか、又は、ラジカル性硬化促進剤とリン化合物とを含む、請求項5に記載の樹脂材料。

    The resin material according to claim 5, wherein the curing accelerator includes a radical curing accelerator and an imidazole compound, or includes a radical curing accelerator and a phosphorus compound.

  10.  前記無機充填材の平均粒径が1μm以下である、請求項1~9のいずれか1項に記載の樹脂材料。

    The resin material according to any one of claims 1 to 9, wherein an average particle diameter of the inorganic filler is 1 μm or less.

  11.  前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物を含み、

     前記ダイマージアミンに由来する骨格を有するN-アルキルビスマレイミド化合物の分子量が15000未満である、請求項1~10のいずれか1項に記載の樹脂材料。

    An N-alkyl bismaleimide compound having a skeleton derived from the dimer diamine,

    The resin material according to any one of claims 1 to 10, wherein the N-alkylbismaleimide compound having a skeleton derived from dimer diamine has a molecular weight of less than 15000.

  12.  前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物を含み、

     前記ダイマージアミンに由来する骨格を有するN-アルキルベンゾオキサジン化合物の分子量が15000未満である、請求項1~11のいずれか1項に記載の樹脂材料。

    An N-alkylbenzoxazine compound having a skeleton derived from the dimer diamine,

    The resin material according to any one of claims 1 to 11, wherein the N-alkylbenzoxazine compound having a skeleton derived from dimer diamine has a molecular weight of less than 15000.

  13.  樹脂フィルムである、請求項1~12のいずれか1項に記載の樹脂材料。

    The resin material according to any one of claims 1 to 12, which is a resin film.

  14.  多層プリント配線板において、絶縁層を形成するために用いられる、請求項1~13のいずれか1項に記載の樹脂材料。

    The resin material according to any one of claims 1 to 13, which is used for forming an insulating layer in a multilayer printed wiring board.

  15.  回路基板と、

     前記回路基板の表面上に配置された複数の絶縁層と、

     複数の前記絶縁層間に配置された金属層とを備え、

     複数の前記絶縁層の内の少なくとも1層が、請求項1~14のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。

    A circuit board;

    A plurality of insulating layers disposed on a surface of the circuit board;

    A metal layer disposed between the plurality of insulating layers,

    A multilayer printed wiring board, wherein at least one of the plurality of insulating layers is a cured product of the resin material according to any one of claims 1 to 14.
PCT/JP2019/013365 2018-03-28 2019-03-27 Resin material and multilayer printed wiring board WO2019189466A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207027404A KR20200138227A (en) 2018-03-28 2019-03-27 Resin material and multilayer printed wiring board
JP2019518316A JP6660513B1 (en) 2018-03-28 2019-03-27 Resin material and multilayer printed wiring board
CN201980018755.5A CN111836843A (en) 2018-03-28 2019-03-27 Resin material and multilayer printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-062912 2018-03-28
JP2018062912 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019189466A1 true WO2019189466A1 (en) 2019-10-03

Family

ID=68062124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013365 WO2019189466A1 (en) 2018-03-28 2019-03-27 Resin material and multilayer printed wiring board

Country Status (5)

Country Link
JP (1) JP6660513B1 (en)
KR (1) KR20200138227A (en)
CN (1) CN111836843A (en)
TW (1) TWI804597B (en)
WO (1) WO2019189466A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182932A (en) * 2018-04-03 2019-10-24 積水化学工業株式会社 Curable resin composition and laminate
JP2020084108A (en) * 2018-11-29 2020-06-04 信越化学工業株式会社 Epoxy resin composition, and adhesive film, prepreg, multilayer printed wiring board, and semiconductor device manufactured using the resin composition
JP2020094212A (en) * 2018-12-10 2020-06-18 積水化学工業株式会社 Resin material and multilayer printed wiring board
WO2020196070A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Resin sheet
JP2020196789A (en) * 2019-05-31 2020-12-10 昭和電工マテリアルズ株式会社 Adhesive composition, laminate and adhesive sheet
JP2021084968A (en) * 2019-11-28 2021-06-03 住友ベークライト株式会社 Resin membrane with substrate, printed wiring board and electronic device
KR102287525B1 (en) * 2020-03-19 2021-08-09 (주)호전에이블 Stretchable insulating resin composition with high heat resistance for flexible printed circuit board
JP2021123688A (en) * 2020-02-07 2021-08-30 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP2021123687A (en) * 2020-02-07 2021-08-30 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP2021123689A (en) * 2020-02-07 2021-08-30 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
US20210269641A1 (en) * 2021-03-15 2021-09-02 Chin Yee Chemical Industries Co.,Ltd. Thermosetting resin compositions, flame-retardant resin compositions, liquid packaging material and its use, and film and its use

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001289A (en) * 2012-06-18 2014-01-09 Nippon Steel & Sumikin Chemical Co Ltd Semiconductor sealing resin composition
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
JP2016196557A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
WO2017027482A1 (en) * 2015-08-08 2017-02-16 Designer Molecules, Inc. Anionic curable compositions
WO2018062404A1 (en) * 2016-09-29 2018-04-05 積水化学工業株式会社 Interlayer insulating material and multilayer printed wiring board
JP2019035051A (en) * 2017-08-21 2019-03-07 味の素株式会社 Resin composition
JP2019044180A (en) * 2017-09-04 2019-03-22 味の素株式会社 Resin composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540984B2 (en) * 2010-08-11 2014-07-02 味の素株式会社 Laminate production method
EP2671920A1 (en) * 2011-02-01 2013-12-11 DIC Corporation Thermosetting resin composition, cured product thereof, and interlayer adhesive film for printed wiring board
KR101920106B1 (en) * 2012-01-31 2018-11-19 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using same
JP6481610B2 (en) * 2013-06-03 2019-03-13 三菱瓦斯化学株式会社 Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
JP6756107B2 (en) * 2015-01-13 2020-09-16 日立化成株式会社 Resin film, resin film with support, prepreg, metal-clad laminate for high multilayer and high multilayer printed wiring board
EP3279261B1 (en) * 2015-03-31 2023-11-01 Namics Corporation Resin composition, electroconductive resin composition, adhesive, electroconductive adhesive, paste for forming electrodes, and semiconductor device
WO2016158829A1 (en) * 2015-03-31 2016-10-06 ナミックス株式会社 Resin composition, electroconductive resin composition, adhesive, electroconductive adhesive, paste for forming electrodes, and semiconductor device
KR20170023719A (en) * 2015-08-24 2017-03-06 신에쓰 가가꾸 고교 가부시끼가이샤 Heat-curable resin composition
KR102637946B1 (en) * 2015-09-30 2024-02-20 세키스이가가쿠 고교가부시키가이샤 Resin compositions and multilayer substrates
WO2017170643A1 (en) * 2016-03-31 2017-10-05 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, pre-preg, metal-clad laminate sheet, resin substrate, printed wiring substrate and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001289A (en) * 2012-06-18 2014-01-09 Nippon Steel & Sumikin Chemical Co Ltd Semiconductor sealing resin composition
WO2016114286A1 (en) * 2015-01-13 2016-07-21 日立化成株式会社 Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
JP2016196557A (en) * 2015-04-03 2016-11-24 住友ベークライト株式会社 Resin composition for printed wiring board, prepreg, resin substrate, metal clad laminated board, printed wiring board, and semiconductor device
WO2017027482A1 (en) * 2015-08-08 2017-02-16 Designer Molecules, Inc. Anionic curable compositions
WO2018062404A1 (en) * 2016-09-29 2018-04-05 積水化学工業株式会社 Interlayer insulating material and multilayer printed wiring board
JP2019035051A (en) * 2017-08-21 2019-03-07 味の素株式会社 Resin composition
JP2019044180A (en) * 2017-09-04 2019-03-22 味の素株式会社 Resin composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019182932A (en) * 2018-04-03 2019-10-24 積水化学工業株式会社 Curable resin composition and laminate
JP2020084108A (en) * 2018-11-29 2020-06-04 信越化学工業株式会社 Epoxy resin composition, and adhesive film, prepreg, multilayer printed wiring board, and semiconductor device manufactured using the resin composition
JP2020094212A (en) * 2018-12-10 2020-06-18 積水化学工業株式会社 Resin material and multilayer printed wiring board
WO2020196070A1 (en) * 2019-03-22 2020-10-01 リンテック株式会社 Resin sheet
JP2020196789A (en) * 2019-05-31 2020-12-10 昭和電工マテリアルズ株式会社 Adhesive composition, laminate and adhesive sheet
JP7434727B2 (en) 2019-05-31 2024-02-21 株式会社レゾナック Adhesive compositions, laminates and adhesive sheets
JP2021084968A (en) * 2019-11-28 2021-06-03 住友ベークライト株式会社 Resin membrane with substrate, printed wiring board and electronic device
JP2021123687A (en) * 2020-02-07 2021-08-30 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP2021123688A (en) * 2020-02-07 2021-08-30 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP2021123689A (en) * 2020-02-07 2021-08-30 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP7112439B2 (en) 2020-02-07 2022-08-03 積水化学工業株式会社 Cured body, B stage film and multilayer printed wiring board
JP7112440B2 (en) 2020-02-07 2022-08-03 積水化学工業株式会社 Cured body, B stage film and multilayer printed wiring board
JP7112438B2 (en) 2020-02-07 2022-08-03 積水化学工業株式会社 Cured body, B stage film and multilayer printed wiring board
JP2022159323A (en) * 2020-02-07 2022-10-17 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP2022159324A (en) * 2020-02-07 2022-10-17 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
JP2022163079A (en) * 2020-02-07 2022-10-25 積水化学工業株式会社 Cured body, b-stage film, and multilayer printed wiring board
KR102287525B1 (en) * 2020-03-19 2021-08-09 (주)호전에이블 Stretchable insulating resin composition with high heat resistance for flexible printed circuit board
US20210269641A1 (en) * 2021-03-15 2021-09-02 Chin Yee Chemical Industries Co.,Ltd. Thermosetting resin compositions, flame-retardant resin compositions, liquid packaging material and its use, and film and its use

Also Published As

Publication number Publication date
KR20200138227A (en) 2020-12-09
TW201945469A (en) 2019-12-01
JPWO2019189466A1 (en) 2020-04-30
CN111836843A (en) 2020-10-27
JP6660513B1 (en) 2020-03-11
TWI804597B (en) 2023-06-11

Similar Documents

Publication Publication Date Title
JP6660513B1 (en) Resin material and multilayer printed wiring board
JP6805338B2 (en) Resin material, laminated structure and multi-layer printed wiring board
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
JP2023156362A (en) Resin material, laminate film and multilayer printed wiring board
JP2019173009A (en) Cured body, resin material and multilayer printed board
WO2021182207A1 (en) Resin material and multilayer printed wiring board
WO2019240083A1 (en) Resin material and multilayer printed wiring board
JP2022161968A (en) Resin material and multilayer printed wiring board
JP2020094089A (en) Resin material and multilayer printed wiring board
JP7437215B2 (en) Resin materials and multilayer printed wiring boards
JP7112438B2 (en) Cured body, B stage film and multilayer printed wiring board
JP7027382B2 (en) Resin film and multi-layer printed wiring board
JP7254528B2 (en) Resin materials and multilayer printed wiring boards
JP7112439B2 (en) Cured body, B stage film and multilayer printed wiring board
JP7411544B2 (en) Resin materials and multilayer printed wiring boards
JP7112440B2 (en) Cured body, B stage film and multilayer printed wiring board
JP7305326B2 (en) Resin materials and multilayer printed wiring boards
WO2022234823A1 (en) Resin material and multilayer printed wiring board
JP7226954B2 (en) Resin materials and multilayer printed wiring boards
JP2022134490A (en) Resin material and multilayer printed wiring board
JP2022134491A (en) Resin material and multilayer printed wiring board
JP2021155602A (en) Resin material and multilayer printed wiring board
JP2020036010A (en) Method for manufacturing multilayer printed wiring board, resin film and multilayer printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019518316

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777429

Country of ref document: EP

Kind code of ref document: A1