WO2021182207A1 - Resin material and multilayer printed wiring board - Google Patents

Resin material and multilayer printed wiring board Download PDF

Info

Publication number
WO2021182207A1
WO2021182207A1 PCT/JP2021/008066 JP2021008066W WO2021182207A1 WO 2021182207 A1 WO2021182207 A1 WO 2021182207A1 JP 2021008066 W JP2021008066 W JP 2021008066W WO 2021182207 A1 WO2021182207 A1 WO 2021182207A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin material
skeleton
material according
diamine
Prior art date
Application number
PCT/JP2021/008066
Other languages
French (fr)
Japanese (ja)
Inventor
悠子 川原
達史 林
圭 釜我
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020227030880A priority Critical patent/KR20220152533A/en
Priority to CN202180020804.6A priority patent/CN115279808A/en
Priority to JP2022505956A priority patent/JPWO2021182207A1/ja
Publication of WO2021182207A1 publication Critical patent/WO2021182207A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a resin material containing a compound having a skeleton derived from an acid anhydride and a curing accelerator.
  • the present invention also relates to a multilayer printed wiring board using the above resin material.
  • a resin material is used to form an insulating layer for insulating the internal layers and to form an insulating layer located on a surface layer portion.
  • Wiring which is generally a metal, is laminated on the surface of the insulating layer.
  • a resin film obtained by forming the resin material into a film may be used. The resin material and the resin film are used as an insulating material for a multilayer printed wiring board including a build-up film.
  • Patent Document 1 discloses a resin composition containing a compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group. .. Patent Document 1 describes that a cured product of this resin composition can be used as an insulating layer for a multilayer printed wiring board or the like.
  • Patent Document 2 discloses a resin composition for an electronic material containing a bismaleimide compound, wherein the bismaleimide compound has two maleimide groups and one or more polyimide groups having a specific structure. .. In the bismaleimide compound, the two maleimide groups are independently bonded to both ends of the polyimide group via at least a first linking group in which 8 or more atoms are linearly linked. ..
  • the smear in the via may not be sufficiently removed by the desmear treatment when the insulating layer is formed. It is difficult to effectively remove smear with a resin material compounded and designed so that the dielectric loss tangent is sufficiently low.
  • An object of the present invention is to provide a resin material capable of effectively removing smear by desmear treatment, lowering the dielectric loss tangent of the cured product, and enhancing the thermal dimensional stability of the cured product. That is.
  • Another object of the present invention is to provide a multilayer printed wiring board using the above resin material.
  • the first compound having a first skeleton and a curing accelerator are included, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond. And a resin material having an imide bond is provided.
  • the first compound has a skeleton derived from an acid anhydride that is different from the acid anhydride having a non-conjugated carbon-carbon double bond, and the first compound.
  • the average ratio of the first skeleton is 10 mol% or more and 90 mol% or less in 100 mol% of the structural units derived from the acid anhydride of the compound.
  • the first compound has a skeleton derived from an amine compound having a cyclohexyl ring.
  • the first compound has a second skeleton derived from dimer diamine as a skeleton derived from the amine compound having a cyclohexyl ring.
  • the first compound has a skeleton derived from a diamine compound different from diamine diamine, and the structural unit 100 derived from the diamine compound contained in the first compound.
  • the average ratio of the second skeleton in mol% is 10 mol% or more and 90 mol% or less.
  • the first compound is derived from an amine compound having a cyclohexyl ring, which is different from diamine diamine, as a skeleton derived from the amine compound having a cyclohexyl ring. Has a skeleton of.
  • the amine compound having a cyclohexyl ring is norbornane diamine or tricyclodecane diamine.
  • the first compound has a maleimide skeleton.
  • the first compound is a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof.
  • the first compound is a bismaleimide compound represented by the following formula (X4) or a structural isomer thereof.
  • the first compound has a benzoxazine skeleton.
  • the first compound has a maleimide skeleton at both ends or a benzoxazine skeleton at both ends.
  • the molecular weight of the first compound is 1000 or more and 50,000 or less.
  • the acid anhydride having a non-conjugated carbon-carbon double bond is a bicyclo [2.2.2] octo-7-ene-2,3,5,6. -Tetracarboxylic acid dianhydride, or 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride.
  • the first compound has a skeleton derived from biphenylic dianhydride.
  • the resin material includes an inorganic filler.
  • the resin material comprises the first compound as a first thermosetting compound, and the resin material comprises a second thermosetting compound.
  • the second thermosetting compound contains an epoxy compound.
  • the resin material contains a curing agent, and the curing agent contains an active ester compound.
  • the resin material comprises an elastomer.
  • the resin material is a resin film.
  • the resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • a circuit board a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the plurality of insulating layers are provided, and the plurality of insulating layers are provided.
  • a multilayer printed wiring board is provided in which at least one of the layers is a cured product of the resin material described above.
  • the resin material according to the present invention contains a first compound having a first skeleton and a curing accelerator, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond. And has an imide bond. Since the resin material according to the present invention has the above-mentioned structure, smear can be effectively removed by desmear treatment, the dielectric loss tangent of the cured product can be lowered, and the thermal dimensions of the cured product can be lowered. Stability can be increased.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
  • the resin material according to the present invention contains a first compound having a first skeleton and a curing accelerator, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond. And has an imide bond.
  • the resin material according to the present invention has the above-mentioned structure, smear can be effectively removed by desmear treatment, the dielectric loss tangent of the cured product can be lowered, and the thermal dimensions of the cured product can be lowered. Stability can be increased.
  • desmear treatment when desmear treatment is performed under basic conditions using permanganate or the like, the non-conjugated carbon-carbon double bond of the first skeleton is cleaved and two hydroxyl groups (diols) are cleaved. ) Is formed, which is considered to increase hydrophilicity and improve solubility. Therefore, it is considered that smear can be effectively removed.
  • the imide bond and the skeleton derived from an acid anhydride having a non-conjugated carbon-carbon double bond are different. It is preferable to be in close proximity.
  • the molecular weight of the other skeleton is determined. It is preferably 500 or less, more preferably 200 or less, and even more preferably 100 or less.
  • the molecular weight of the other skeleton may be 14 or more, 20 or more, or 50 or more.
  • the surface roughness after etching does not become excessively large, the surface roughness can be improved, and the plating peel strength can be increased.
  • the resin material according to the present invention may be a resin composition or a resin film.
  • the resin composition has fluidity.
  • the resin composition may be in the form of a paste.
  • the paste form contains a liquid.
  • the resin material according to the present invention is preferably a resin film because it is excellent in handleability.
  • the resin material according to the present invention is preferably a thermosetting material.
  • the resin film is preferably a thermosetting resin film.
  • the first compound is a compound having a first skeleton, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond and has an imide bond.
  • the first compound may be a thermosetting compound (first thermosetting compound).
  • first thermosetting compound first thermosetting compound
  • As the first compound only one kind may be used, or two or more kinds may be used in combination.
  • the first skeleton is a skeleton derived from an acid anhydride having a non-conjugated carbon-carbon double bond and having an imide bond.
  • the above non-conjugated carbon-carbon double bond is intended as a double bond other than the double bond contained in the aromatic ring. Therefore, the acid anhydride having a non-conjugated carbon-carbon double bond does not correspond to an acid anhydride containing only a double bond of an aromatic ring.
  • the acid anhydride having a non-conjugated carbon-carbon double bond may have a non-conjugated carbon-carbon double bond and an aromatic skeleton.
  • the acid anhydride having the non-conjugated carbon-carbon double bond has a non-conjugated carbon-carbon double bond. It is preferably an acid dianhydride having. From the viewpoint of increasing the density of the imide skeleton in the molecule and removing smear more effectively by desmear treatment, the skeleton derived from the acid anhydride (acid dianhydride) having the above-mentioned non-conjugated carbon-carbon double bond The molecular weight is preferably small. The molecular weight of the skeleton derived from the acid anhydride (acid dianhydride) having the non-conjugated carbon-carbon double bond is preferably 800 or less, more preferably 600 or less.
  • the acid anhydride having a non-conjugated carbon-carbon double bond preferably has a cyclic skeleton.
  • the non-conjugated carbon-carbon double bond is preferably present in the cyclic skeleton of the acid anhydride.
  • 90 mol% or more of the 100 mol% of the imide bond contained in the first compound is preferably an imide bond in which the ring is closed, and 100 mol is preferable.
  • % Or less is preferably a ring-closed imide bond, and less than 100 mol% is more preferably a ring-closed imide bond.
  • 100 mol% of the 100 mol% of the imide bond contained in the first compound is a ring-closed imide bond.
  • the dielectric loss tangent of the cured product can be further lowered.
  • the ring-opened imide bond in the first compound may be contained in the amic acid structure.
  • Examples of the acid anhydride having a non-conjugated carbon-carbon double bond include bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride and 5-(. 2,5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride and the like can be mentioned.
  • the acid anhydride having a non-conjugated carbon-carbon double bond is bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride, or 5- (2).
  • 5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride is preferably contained.
  • the acid anhydride having the non-conjugated carbon-carbon double bond is bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride, or It may contain only one of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride and may contain both.
  • Examples of the first skeleton include skeletons represented by the following formulas (1A) and the following formula (1B).
  • the first compound may have a skeleton derived from an acid anhydride different from that of an acid anhydride having a non-conjugated carbon-carbon double bond.
  • the average proportion of the first skeleton in 100 mol% of the structural unit derived from the acid anhydride of the first compound is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol. % Or more, particularly preferably 45 mol% or more.
  • the average ratio of the first skeleton to 100 mol% of the structural unit derived from the acid anhydride of the first compound is preferably 80 mol% or less, more preferably 75 mol% or less, still more preferably 60 mol. % Or less.
  • the average proportion of the first skeleton in 100 mol% of the structural unit derived from the acid dianhydride contained in the first compound is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30. It is mol% or more, particularly preferably 45 mol% or more.
  • the average ratio of the first skeleton to 100 mol% of the structural unit derived from the acid dianhydride contained in the first compound is preferably 80 mol% or less, more preferably 75 mol% or less, still more preferably 60. It is less than mol%.
  • the average ratio of the second skeleton in 100 mol% of the unit and the average ratio of the third skeleton described later can be calculated from, for example, the peak area of 1 H-NMR.
  • the first compound preferably has a skeleton derived from an amine compound having a cyclohexyl ring.
  • the first compound may have a second skeleton derived from the following dimer diamine as a skeleton derived from the amine compound having a cyclohexyl ring, and is different from the following dimer diamine and has a cyclohexyl ring. It may have a third skeleton derived from the amine compound having, and may have the second skeleton and the third skeleton.
  • the first compound preferably has a second skeleton derived from dimerdiamine as a skeleton derived from the amine compound having a cyclohexyl ring.
  • the dielectric loss tangent of the cured product can be further lowered, and the flexibility and elongation of the resin material can be further increased.
  • the dielectric loss tangent at high frequency and the dielectric loss tangent at high temperature can be lowered.
  • the dielectric constant can be lowered, and improvement in insulating properties can be expected.
  • the second skeleton is preferably a skeleton derived from a reaction product of diamine diamine and acid dianhydride.
  • the skeleton derived from the reaction product of the diamine diamine and the acid dianhydride has the second skeleton.
  • dimer diamine examples include Versamine 551 (trade name, manufactured by BASF Japan Ltd., 3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl) cyclohexene), Versamine 552 (trade name). , Cognix Japan Co., Ltd., hydrogenated Versamine 551), and PRIAMINE 1075, PRIAMINE 1074 (trade name, all manufactured by Croda Japan Co., Ltd.) and the like.
  • Versamine 551 trade name, manufactured by BASF Japan Ltd., 3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl) cyclohexene
  • Versamine 552 trade name
  • Cognix Japan Co., Ltd. hydrogenated Versamine 551
  • PRIAMINE 1075, PRIAMINE 1074 trade name, all manufactured by Croda Japan Co., Ltd.
  • the acid dianhydrides that form the skeleton derived from the acid dianhydrides of the first compound are acid dianhydrides having a non-conjugated carbon-carbon double bond and acids having a non-conjugated carbon-carbon double bond. It may contain an acid dianhydride other than the dianhydride. Acid dianhydrides other than acid dianhydrides having a non-conjugated carbon-carbon double bond are acid dianhydrides having no unconjugated carbon-carbon double bond. Acid dianhydrides that do not have a non-conjugated carbon-carbon double bond may have an aromatic skeleton.
  • the second skeleton and the first skeleton may be connected. That is, the nitrogen atom constituting the amine structure of dimerdiamine in the second skeleton may be the nitrogen atom constituting the imide bond in the first skeleton.
  • the acid dianhydride preferably contains an acid dianhydride having a non-conjugated carbon-carbon double bond and an acid dianhydride other than the acid dianhydride having a non-conjugated carbon-carbon double bond. Due to the use of these two acid anhydrides, the first skeleton and the second skeleton do not have to be connected.
  • Examples of the acid dianhydride other than the acid dianhydride having the non-conjugated carbon-carbon double bond include tetracarboxylic dianhydride and the like.
  • tetracarboxylic acid dianhydride examples include pyromellitic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, and 3,3', 4,4'-biphenylsulfone tetra.
  • the acid dianhydride is an acid dianhydride having a non-conjugated carbon-carbon double bond and an aromatic dianhydride. It preferably contains both an acid dianhydride having a skeleton.
  • the first compound is a skeleton derived from an acid dianhydride having a non-conjugated carbon-carbon double bond. It is preferable to have both a skeleton derived from an acid dianhydride having an aromatic skeleton and a skeleton derived from an acid dianhydride.
  • Diamine diamine is a diamine compound.
  • the first compound may have a skeleton derived from a diamine compound different from diamine diamine.
  • the diamine compound different from the diamine diamine may be a diamine compound different from the diamine diamine and having a cyclohexyl ring, or a diamine compound other than the diamine compound different from the diamine diamine and having a cyclohexyl ring.
  • the average ratio of the second skeleton in 100 mol% of the structural units derived from the diamine compound contained in the first compound is preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol%. That is all.
  • the average ratio of the second skeleton to 100 mol% of the structural unit derived from the diamine compound contained in the first compound is preferably 90 mol% or less, more preferably 60 mol% or less, still more preferably 50 mol%. It is as follows. When the average ratio of the second skeleton is equal to or higher than the lower limit and lower than the upper limit, the dielectric loss tangent of the cured product can be further lowered and the thermal dimensional stability of the cured product can be further improved.
  • the first compound is different from diamine diamine and is derived from an amine compound having a cyclohexyl ring (hereinafter, may be referred to as amine compound A) as a skeleton derived from the amine compound having a cyclohexyl ring. It is preferable to have the skeleton of.
  • the amine compound A is an amine compound different from the diamine diamine and having a cyclohexyl ring. Therefore, it is preferable that the first compound has a third skeleton derived from the amine compound A as a skeleton derived from the amine compound having a cyclohexyl ring.
  • the third skeleton capable of enhancing thermal dimensional stability and improving the solubility of the first compound in the resin material is derived from a diamine compound having a cyclohexyl ring. It is preferably a skeleton.
  • the third skeleton is preferably a skeleton derived from a reaction product of amine compound A and acid dianhydride.
  • the skeleton derived from the reaction product of the amine compound A and the acid dianhydride has the third skeleton.
  • Examples of the amine compound A include tricyclodecanediamine, norbornanediamine, and 4,4'-methylenebis (2-methylcyclohexylamine).
  • the amine compound A may be an aromatic diamine compound.
  • the amine compound A may be an amine compound having a thermosetting functional group (phenol), such as 2,2-bis (3-amino-4-hydroxyphenyl) propane. From the viewpoint of exerting the effects of the present invention even more effectively, the amine compound A is preferably norbornane diamine or tricyclodecane diamine.
  • the acid dianhydride may be an acid dianhydride having a non-conjugated carbon-carbon double bond or an acid dianhydride having no non-conjugated carbon-carbon double bond.
  • the third skeleton and the first skeleton may be connected. That is, the nitrogen atom constituting the amine structure of the amine compound A in the third skeleton may be the nitrogen atom constituting the imide bond in the first skeleton.
  • the third skeleton and the second skeleton may be connected to each other. That is, the nitrogen atom constituting the amine structure of the amine compound having a cyclohexyl ring in the third skeleton may be the nitrogen atom constituting the amine structure of dimerdiamine in the second skeleton.
  • Examples of the acid dianhydride include the acid dianhydride described above.
  • the average proportion of the third skeleton in 100 mol% of the structural units derived from the diamine compound contained in the first compound is preferably 10 mol% or more, more preferably 40 mol% or more, still more preferably 50 mol%.
  • the above is preferably 85 mol% or less, and more preferably 80 mol% or less.
  • the first compound preferably has a maleimide skeleton, more preferably has a maleimide skeleton at the ends, and even more preferably has a maleimide skeleton at both ends.
  • the first compound is more preferably a maleimide compound, and even more preferably a bismaleimide compound.
  • the effect of the present invention can be exhibited even more effectively.
  • it is preferable that 90 mol% or more of the terminal skeleton of the bismaleimide compound having a maleimide skeleton at both ends is maleimided.
  • the terminal skeleton that is not maleimided may have an amic acid structure.
  • the first compound may be a polyimide compound having no maleimide skeleton at the terminal.
  • the first compound may be a polyimide compound having an acid anhydride structure at the end.
  • Examples of the first compound include bismaleimide compounds represented by the following formulas (X1), the following formulas (X2), the following formulas (X3) and the following formulas (X4), structural isomers thereof, and the like.
  • the bismaleimide compound represented by the following formula (X1) and the following formula (X3) has a skeleton represented by the above formula (1B) as the first skeleton.
  • the bismaleimide compound represented by the following formula (X2) and the following formula (X4) has a skeleton represented by the above formula (1A) as the first skeleton.
  • the bismaleimide compounds represented by the following formulas (X1) to (X4) have a skeleton derived from dimerdiamine as the second skeleton.
  • the bismaleimide compound represented by the following formula (X1) and the following formula (X2) has a skeleton derived from tricyclodecanediamine as the third skeleton.
  • the bismaleimide compound represented by the following formula (X3) and the following formula (X4) has a skeleton derived from norbornane diamine as the third skeleton.
  • the first compound only one kind may be used, or two or more kinds may be used in combination. From the viewpoint of exerting the effects of the present invention even more effectively, the first compound is represented by the following formula (X1), the following formula (X2), the following formula (X3) or the following formula (X4).
  • the first compound is a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof, or the following formula (X4). It is preferably a bismaleimide compound represented by or a structural isomer thereof.
  • the first compound may be a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof, or a bismaleimide compound represented by the following formula (X4) or a structural isomer thereof. May be good.
  • the structural isomer means an isomer having a different sequence of each structural unit and an isomer having a different number of each repeating structural unit.
  • the number of repeating structural units in the following formulas (X1) to (X4) is not particularly limited. Further, in the following formula (X1), a specific carbon atom in the skeleton derived from tricyclodecanediamine is bonded to the first skeleton, the second skeleton and the maleimide skeleton. In addition, the carbon atom to be bonded is not particularly limited.
  • the first compound may contain structural isomers of bismaleimide compounds represented by the following formulas (X1) to (X4). Further, the skeleton derived from tricyclodecanediamine or norbornanediamine (third skeleton) may also contain a skeleton of structural isomers. Diamine diamine may also contain structural isomers.
  • the first compound may include a compound in which each structural unit of the bismaleimide compound represented by the following formulas (X1) to (X4) is randomly arranged, and the following formulas (X1) to (X1) to (The bismaleimide compound represented by X4) may contain a compound having a different number of repeating structural units, and is not necessarily limited to the structure in the following sequence order.
  • the first compound preferably has a benzoxazine skeleton, more preferably has a benzoxazine skeleton at the terminal, and further preferably has a benzoxazine skeleton at both ends. In this case, the effect of the present invention can be exhibited even more effectively.
  • the first compound has a maleimide skeleton at both ends or a benzoxazine skeleton at both ends. From the viewpoint of exerting the effects of the present invention even more effectively, it is more preferable that the first compound has a maleimide skeleton at both ends.
  • the first compound has a skeleton derived from biphenylic dianhydride.
  • the molecular weight of the first compound is preferably 1000 or more, more preferably 3000 or more, still more preferably 4000 or more, particularly preferably 5000 or more, preferably 50,000 or less, more preferably 20000 or less, still more preferably 10000 or less. , Especially preferably 8500 or less.
  • the molecular weight of the first compound may be 6500 or less.
  • the thermal dimensional stability can be improved, and the embedding property of the resin film in the pattern substrate can be improved.
  • the resin material is a resin film containing an inorganic filler in an amount of 50% by weight or more, the uniformity of the surface of the resin film can be improved.
  • the molecular weight of the first compound means a molecular weight that can be calculated from the structural formula when the first compound is not a polymer and when the structural formula of the first compound can be specified.
  • the molecular weight of the first compound indicates the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) when the first compound is a polymer.
  • the content of the first compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 10% by weight or more, more preferably 25% by weight or more, still more preferably 35% by weight or more. It is preferably 90% by weight or less, more preferably 80% by weight or less, and further preferably 60% by weight or less.
  • the content of the first compound is at least the above lower limit, the effect of the present invention can be exhibited even more effectively.
  • the content of the first compound is at least the above lower limit, the surface roughness after etching can be improved, and the plating peel strength can be increased.
  • the dielectric loss tangent of the cured product can be further lowered, and the thermal dimensional stability of the cured product can be further improved.
  • the resin material preferably contains a second thermosetting compound.
  • the first compound is the first thermosetting compound and the second compound contains a second thermosetting compound.
  • the first thermosetting compound is the first compound.
  • the resin material preferably contains the first compound as the first thermosetting compound.
  • the second thermosetting compound include epoxy compounds, maleimide compounds, vinyl compounds and the like.
  • the resin material preferably contains an epoxy compound.
  • an epoxy compound a conventionally known epoxy compound can be used.
  • the epoxy compound is an organic compound having at least one epoxy group. Only one type of the epoxy compound may be used, or two or more types may be used in combination.
  • Examples of the epoxy compound include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, phenol novolac type epoxy compound, biphenyl type epoxy compound, biphenyl novolac type epoxy compound, biphenol type epoxy compound, and naphthalene type epoxy compound.
  • Examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus as a skeleton.
  • the epoxy compound may be a glycidyl ether compound.
  • the glycidyl ether compound is a compound having at least one glycidyl ether group.
  • the epoxy compound preferably contains an epoxy compound having an aromatic skeleton, and has a naphthalene skeleton or a naphthalene skeleton. It is preferable to contain an epoxy compound having a phenyl skeleton, and more preferably an epoxy compound having an aromatic skeleton. From the viewpoint of further lowering the dielectric loss tangent of the cured product, it is particularly preferable that the epoxy compound contains an epoxy compound having a naphthalene skeleton or a multi-branched aliphatic skeleton.
  • the epoxy compound preferably contains an epoxy compound having a butadiene skeleton. From the viewpoint of removing smear more effectively by desmear treatment, further lowering the dielectric adjacency of the cured product, further enhancing the thermal dimensional stability of the cured product, and compatibility with the first compound. From the viewpoint of enhancing, the epoxy compound preferably contains an epoxy compound having an imide bond or an amide bond.
  • the epoxy compound may be an epoxy compound having a fluorine atom.
  • the epoxy compounds are a liquid epoxy compound at 25 ° C. and a solid epoxy compound at 25 ° C. And are preferably included.
  • the viscosity of the epoxy compound liquid at 25 ° C. at 25 ° C. is preferably 1000 mPa ⁇ s or less, and more preferably 500 mPa ⁇ s or less.
  • the viscosity of the epoxy compound can be measured using, for example, a dynamic viscoelasticity measuring device (“VAR-100” manufactured by Leologica Instruments) or the like.
  • VAR-100 dynamic viscoelasticity measuring device
  • the molecular weight of the epoxy compound is more preferably 1000 or less. In this case, even if the content of the inorganic filler is 50% by weight or more in 100% by weight of the component excluding the solvent in the resin material, a resin material having high fluidity at the time of forming the insulating layer can be obtained. Therefore, when the uncured resin material or the B-staged product is laminated on the circuit board, the inorganic filler can be uniformly present.
  • the molecular weight of the epoxy compound means a molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and the structural formula of the epoxy compound can be specified.
  • the epoxy compound is a polymer, it means the weight average molecular weight.
  • the content of the epoxy compound is preferably 4% by weight or more, more preferably 7% by weight or more, based on 100% by weight of the components excluding the solvent in the resin material. It is preferably 20% by weight or less, and more preferably 15% by weight or less.
  • the content of the epoxy compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 15% by weight or more, more preferably 25% by weight or more, and preferably 60% by weight or less. More preferably, it is 50% by weight or less.
  • the content of the epoxy compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
  • Weight ratio of the content of the epoxy compound to the total content of the first compound and the curing agent described later (content of the epoxy compound / total content of the first compound and the curing agent described later) Is preferably 0.3 or more, more preferably 0.5 or more, preferably 1 or less, and more preferably 0.85 or less.
  • the weight ratio is at least the above lower limit and at least the above upper limit, the dielectric loss tangent can be further lowered and the thermal dimensional stability can be further improved.
  • the resin material preferably contains a maleimide compound. Only one type of the maleimide compound may be used, or two or more types may be used in combination.
  • the maleimide compound is different from the first compound.
  • the maleimide compound is a compound derived from an acid anhydride having a non-conjugated carbon-carbon double bond and excluding a compound having a first skeleton having an imide bond (first compound).
  • the maleimide compound may be a bismaleimide compound. Further, the maleimide compound may be an aliphatic maleimide compound or an aromatic maleimide compound.
  • maleimide compound examples include N-phenylmaleimide and N-alkylbismaleimide.
  • the maleimide compound may or may not have a skeleton derived from dimerdiamine.
  • the maleimide compound preferably has an aromatic ring.
  • the nitrogen atom in the maleimide skeleton and the aromatic ring are bonded.
  • the molecular weight of the maleimide compound is preferably 500 or more, more preferably 1000 or more, still more preferably 3000 or more, particularly preferably 4000 or more, most preferably 5000 or more, preferably less than 30,000, more preferably less than 20,000, and further. It is preferably less than 15,000, particularly preferably less than 8500.
  • the molecular weight of the maleimide compound is not less than the above lower limit and less than the above upper limit, the effect of the present invention is exhibited even more effectively.
  • the molecular weight of the maleimide compound means a molecular weight that can be calculated from the structural formula when the maleimide compound is not a polymer and when the structural formula of the maleimide compound can be specified.
  • the molecular weight of the maleimide compound indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) when the maleimide compound is a polymer.
  • Examples of commercially available products of the above-mentioned aliphatic maleimide compound include Designer Molecules Inc. Examples thereof include “BMI-3000” and “BMI-1700” manufactured by Japan.
  • Examples of commercially available products of the aromatic maleimide compound include “BMI-4000” and “BMI-5100” manufactured by Daiwa Kasei Kogyo Co., Ltd. and “MIR-3000” manufactured by Nippon Kayaku Co., Ltd.
  • the content of the maleimide compound in 100% by weight of the component excluding the solvent in the resin material is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably. It is 10% by weight or less.
  • the content of the maleimide compound is at least the above lower limit and at least the above upper limit, the dielectric loss tangent of the cured product can be further lowered, and the thermal dimensional stability of the cured product can be further improved.
  • the content of the maleimide compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 2.5% by weight or more, more preferably 5% by weight or more, still more preferably 7.5% by weight. % Or more, preferably 50% by weight or less, and more preferably 35% by weight or less.
  • the content of the maleimide compound is at least the above lower limit and at least the above upper limit, the dielectric loss tangent of the cured product can be further lowered, and the thermal dimensional stability of the cured product can be further improved.
  • the resin material preferably contains a vinyl compound.
  • the vinyl compound is an organic compound having at least one vinyl group.
  • Examples of the vinyl compound include styrene compounds, acrylate compounds, and divinyl compounds.
  • Examples of the styrene compound include a phenylene ether compound having a styrene-modified terminal. Only one kind of the styrene compound may be used, or two or more kinds may be used in combination.
  • the divinyl compound include a divinylbenzyl ether compound and the like.
  • the divinyl compound may be a divinyl compound having an aliphatic skeleton or a divinyl ether compound. Only one kind of the vinyl compound may be used, or two or more kinds thereof may be used in combination.
  • the vinyl compound may be a radical curable compound or a thermosetting compound.
  • thermosetting vinyl compounds include "OPE-2St-1200 (styrene compound)” manufactured by Mitsubishi Gas Chemical Company, Inc. and "Light Acrylate DCP-A” manufactured by Kyoeisha Chemical Co., Ltd.
  • the content of the vinyl compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 20% by weight or more. It is preferably 80% by weight or less, more preferably 70% by weight or less.
  • the content of the vinyl compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
  • the resin material preferably contains an inorganic filler.
  • an inorganic filler By using the above-mentioned inorganic filler, the dielectric loss tangent of the cured product can be further lowered. Further, by using the above-mentioned inorganic filler, the dimensional change due to heat of the cured product is further reduced. Only one kind of the above-mentioned inorganic filler may be used, or two or more kinds may be used in combination.
  • examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, boron nitride and diamond.
  • the inorganic filler is preferably silica or alumina, more preferably silica, and even more preferably fused silica.
  • the use of silica further reduces the coefficient of thermal expansion of the cured product and further reduces the dielectric loss tangent of the cured product. Further, by using silica, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the shape of silica is preferably spherical.
  • the inorganic filler is spherical silica from the viewpoint of advancing the curing of the resin regardless of the curing environment, effectively increasing the glass transition temperature of the cured product, and effectively reducing the coefficient of linear thermal expansion of the cured product. Is preferable.
  • the inorganic filler is preferably alumina.
  • the average particle size of the inorganic filler is preferably 50 nm or more, more preferably 100 nm or more, further preferably 500 nm or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, still more preferably 1 ⁇ m or less.
  • the average particle size of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the insulating layer and the metal layer can be combined. Adhesion can be further improved.
  • the average particle size of the inorganic filler As the average particle size of the inorganic filler, a value of median diameter (d50) of 50% is adopted.
  • the average particle size can be measured using a laser diffraction / scattering type particle size distribution measuring device.
  • the inorganic filler is preferably spherical, more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
  • the inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and even more preferably a surface-treated product with a silane coupling agent.
  • a surface-treated product with a coupling agent By surface-treating the inorganic filler, the surface roughness of the surface of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Further, since the inorganic filler is surface-treated, finer wiring can be formed on the surface of the cured product, and even better inter-wiring insulation reliability and interlayer insulation reliability can be obtained in the cured product. Can be granted.
  • Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, and the like.
  • Examples of the silane coupling agent include methacrylsilane, acrylicsilane, aminosilane, imidazolesilane, vinylsilane, and epoxysilane.
  • the content of the inorganic filler in 100% by weight of the component excluding the solvent in the resin material is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 65% by weight or more, and particularly preferably 68% by weight. % Or more, preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less.
  • the content of the inorganic filler is at least the above lower limit, the dielectric loss tangent is effectively lowered.
  • the content of the inorganic filler is not more than the above upper limit, the thermal dimensional stability can be improved and the warpage of the cured product can be effectively suppressed.
  • the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. Can be done. Further, the content of this inorganic filler makes it possible to reduce the coefficient of thermal expansion of the cured product and at the same time improve the smear removability.
  • the resin material preferably contains a curing agent.
  • the curing agent is not particularly limited. Conventionally known curing agents can be used as the curing agent. Only one kind of the above-mentioned curing agent may be used, or two or more kinds may be used in combination.
  • the curing agent examples include a phenol compound (phenol curing agent), an active ester compound, a cyanate ester compound (cyanate ester curing agent), a benzoxazine compound (benzoxazine curing agent), a carbodiimide compound (carbodiimide curing agent), and an amine compound (amine).
  • Hardener thiol compound (thiol hardener), phosphine compound, dicyandiamide, acid anhydride and the like.
  • the curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
  • the curing agent includes a phenol compound, an active ester compound, a cyanate ester compound, a benzoxazine compound, a carbodiimide compound and an acid anhydride. It is preferable to contain at least one component in the substance.
  • the curing agent is a component of at least one of a phenol compound, an active ester compound, a cyanate ester compound, a benzoxazine compound, and a carbodiimide compound. Is more preferable, and it is more preferable to contain an active ester compound.
  • the resin material contains an epoxy compound
  • the curing agent contains both a phenol compound and an active ester compound. Is preferable.
  • phenol compound examples include novolak-type phenol, biphenol-type phenol, naphthalene-type phenol, dicyclopentadiene-type phenol, aralkyl-type phenol, and dicyclopentadiene-type phenol.
  • phenol compounds include novolak-type phenol (“TD-2091” manufactured by DIC), biphenyl novolac-type phenol (“MEH-7851” manufactured by Meiwakasei Co., Ltd.), and aralkyl-type phenol compound (“MEH” manufactured by Meiwakasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (“LA-1356” and "LA-3018-50P” manufactured by DIC) and the like can be mentioned.
  • the active ester compound is a compound containing at least one ester bond in the structure and having an aliphatic chain, an aliphatic ring or an aromatic ring bonded to both sides of the ester bond.
  • the active ester compound is obtained, for example, by a condensation reaction of a carboxylic acid compound or a thiocarboxylic acid compound with a hydroxy compound or a thiol compound.
  • Examples of the active ester compound include a compound represented by the following formula (1).
  • X1 represents a group containing an aliphatic chain, a group containing an aliphatic ring or a group containing an aromatic ring
  • X2 represents a group containing an aromatic ring
  • Preferred examples of the group containing an aromatic ring include a benzene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • the substituent include a hydrocarbon group.
  • the hydrocarbon group has preferably 12 or less carbon atoms, more preferably 6 or less carbon atoms, and even more preferably 4 or less carbon atoms.
  • the combination of X1 and X2 includes a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, and a substituent.
  • examples thereof include a combination of a benzene ring which may be suitable and a naphthalene ring which may have a substituent.
  • examples of the combination of X1 and X2 include a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
  • the above active ester compound is not particularly limited. From the viewpoint of further enhancing thermal dimensional stability and flame retardancy, the active ester compound is preferably an active ester compound having two or more aromatic skeletons. From the viewpoint of lowering the dielectric loss tangent of the cured product and increasing the thermal dimensional stability of the cured product, it is more preferable to have a naphthalene ring in the main chain skeleton of the active ester compound. From the viewpoint of lowering the melt viscosity of the resin material, shortening the distance between the cross-linking points, and further reducing the coefficient of linear expansion of the cured product, the active ester compound may be an ester compound having low molecular activity. preferable.
  • Examples of commercially available products of the active ester compound include "HPC-8000-65T”, “EXB9416-70BK”, “EXB8100-65T”, “HPC-8150-62T” and “EXB-8" manufactured by DIC Corporation. ..
  • Examples of the cyanate ester compound include a novolak type cyanate ester resin, a bisphenol type cyanate ester resin, and a prepolymer in which these are partially triquantized.
  • Examples of the novolak type cyanate ester resin include phenol novolac type cyanate ester resin and alkylphenol type cyanate ester resin.
  • Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethyl bisphenol F type cyanate ester resin.
  • cyanate ester compounds include a phenol novolac type cyanate ester resin (“PT-30” and “PT-60” manufactured by Lonza Japan Co., Ltd.) and a prepolymer in which a bisphenol type cyanate ester resin is triquantized (Lonza Japan). Examples thereof include “BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the same company.
  • the content of the cyanate ester compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more. Yes, preferably 85% by weight or less, more preferably 75% by weight or less.
  • the content of the cyanate ester compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
  • benzoxazine compound examples include Pd-type benzoxazine and Fa-type benzoxazine.
  • Examples of commercially available products of the benzoxazine compound include “Pd type” manufactured by Shikoku Chemicals Corporation.
  • the content of the benzoxazine compound is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material. Yes, preferably 70% by weight or less, more preferably 60% by weight or less.
  • the content of the benzoxazine compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
  • the carbodiimide compound is a compound having a structural unit represented by the following formula (2).
  • the right end and the left end are binding sites for other groups. Only one kind of the above-mentioned carbodiimide compound may be used, or two or more kinds may be used in combination.
  • X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, a group in which a substituent is bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group. It represents a group, and p represents an integer from 1 to 5. When a plurality of X's exist, the plurality of X's may be the same or different.
  • At least one X is an alkylene group, a group in which a substituent is attached to an alkylene group, a cycloalkylene group, or a group in which a substituent is attached to a cycloalkylene group.
  • carbodiimide compounds Commercially available products of the above carbodiimide compounds include “carbodilite V-02B”, “carbodilite V-03”, “carbodilite V-04K”, “carbodilite V-07”, “carbodilite V-09”, and “carbodilite” manufactured by Nisshinbo Chemical Co., Ltd. Examples thereof include “10M-SP” and “carbodilite 10M-SP (revised)", and "Stavaxol P", “Stavaxol P400” and "Hikazil 510" manufactured by Rheinchemy.
  • acid anhydride examples include tetrahydrophthalic anhydride, alkylstyrene-maleic anhydride copolymer and the like.
  • Examples of commercially available products of the acid anhydride include “Recasid TDA-100” manufactured by Shin Nihon Rika Co., Ltd.
  • the content of the curing agent with respect to 100 parts by weight of the epoxy compound is preferably 70 parts by weight or more, more preferably 85 parts by weight or more, preferably 150 parts by weight or less, and more preferably 120 parts by weight or less.
  • the content of the curing agent is not less than the above lower limit and not more than the above upper limit, the curability is further improved, the thermal dimensional stability is further enhanced, and the volatilization of the residual unreacted component can be further suppressed.
  • the total content of the first compound, the epoxy compound, and the curing agent in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 50% by weight or more, more preferably 60. It is 9% by weight or more, preferably 98% by weight or less, and more preferably 95% by weight or less.
  • the curability is further improved and the thermal dimensional stability can be further improved.
  • the resin material contains a curing accelerator.
  • the curing rate becomes even faster.
  • the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinked density increases.
  • the curing accelerator is not particularly limited, and conventionally known curing accelerators can be used. Only one type of the curing accelerator may be used, or two or more types may be used in combination.
  • curing accelerator examples include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organic metal compounds. , And radical curing accelerators such as peroxides.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-.
  • 2-Methylimidazole 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2,4-diamino-6- [2' -Methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino- 6- [2'-ethyl-4'-methyl
  • amine compound examples include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, 4,4-dimethylaminopyridine and the like.
  • Examples of the phosphorus compound include triphenylphosphine compounds.
  • organic metal compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II) and trisacetylacetonate cobalt (III).
  • peroxide examples include dicumyl peroxide and perhexyl 25B.
  • the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.
  • a peroxide curing accelerator and an anionic curing accelerator may be used in combination.
  • a vinyl compound and an epoxy compound are used in combination, a better cured product may be obtained by using the above two types of curing accelerators.
  • the content of the anionic curing accelerator is preferably 20% by weight or more, more preferably 20% by weight or more, based on 100% by weight of the curing accelerator. Is 50% by weight or more, more preferably 70% by weight or more, and most preferably 100% by weight (total amount). Therefore, the curing accelerator is most preferably the anionic curing accelerator.
  • the curing accelerator preferably contains the radical curing accelerator, and is dicumyl peroxide or perhexin 25B. Is more preferable.
  • a radical curing accelerator having a 1-minute half-life temperature of 170 ° C. or higher and 200 ° C. or lower is more preferable. Examples of commercially available products of radical curing accelerators having a one-minute half-life temperature of 170 ° C. or higher and 200 ° C. or lower include "Perhexin 25B" manufactured by NOF CORPORATION.
  • the content of the curing accelerator is not particularly limited.
  • the content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5 in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material. By weight or less, more preferably 3% by weight or less.
  • the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If the content of the curing accelerator is in a more preferable range, the storage stability of the resin material becomes even higher, and a better cured product can be obtained.
  • the resin material preferably contains a thermoplastic resin.
  • the thermoplastic resin include polyvinyl acetal resin, polyimide resin, styrene butadiene resin, and phenoxy resin.
  • the thermoplastic resin may be an alicyclic thermoplastic resin. Only one type of the above-mentioned thermoplastic resin may be used, or two or more types may be used in combination.
  • the thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively lowering the dielectric loss tangent and effectively improving the adhesion of metal wiring regardless of the curing environment.
  • a phenoxy resin By using the phenoxy resin, deterioration of embedding property in holes or irregularities of the circuit board of the resin film and non-uniformity of the inorganic filler can be suppressed.
  • the melt viscosity can be adjusted, so that the dispersibility of the inorganic filler is improved, and the resin composition or the B-staged product is less likely to wet and spread in an unintended region during the curing process.
  • the phenoxy resin contained in the above resin material is not particularly limited.
  • As the phenoxy resin a conventionally known phenoxy resin can be used. Only one type of the phenoxy resin may be used, or two or more types may be used in combination.
  • phenoxy resins having skeletons such as bisphenol A type skeleton, bisphenol F type skeleton, bisphenol S type skeleton, biphenyl skeleton, novolak skeleton, naphthalene skeleton and imide skeleton.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Nippon Steel & Sumitomo Metal Corporation, and “1256B40", “4250”, “4256H40” and “4275” manufactured by Mitsubishi Chemical Corporation. , “YX6954BH30” and “YX8100BH30” and the like.
  • the thermoplastic resin is preferably a polyimide resin (polyimide compound) from the viewpoint of improving handleability, plating peel strength at low roughness, and adhesion between the insulating layer and the metal layer.
  • the polyimide compound is preferably a polyimide compound obtained by a method of reacting a tetracarboxylic dianhydride with a dimer diamine.
  • Examples of the tetracarboxylic dianhydride include the tetracarboxylic dianhydride described in the column of the first compound.
  • diamine diamine examples include the diamine diamine described in the column of the first compound.
  • the polyimide compound may have an acid anhydride structure, a maleimide structure, or a citraconimide structure at the terminal.
  • the polyimide compound and the epoxy compound can be reacted.
  • the thermal dimensional stability of the cured product can be improved.
  • the weight average molecular weights of the thermoplastic resin, the polyimide resin, and the phenoxy resin are preferably 5000 or more, more preferably 10,000 or more, and preferably 100,000 or less. , More preferably 50,000 or less.
  • the weight average molecular weight of the thermoplastic resin, the polyimide resin, and the phenoxy resin indicates the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the contents of the thermoplastic resin, the polyimide resin, and the phenoxy resin are not particularly limited.
  • the content of the thermoplastic resin in 100% by weight of the component excluding the inorganic filler and the solvent in the resin material (when the thermoplastic resin is a polyimide resin or a phenoxy resin, the content of the polyimide resin or the phenoxy resin). ) Is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, and more preferably 20% by weight or less.
  • the content of the thermoplastic resin is at least the above lower limit and at least the above upper limit, the embedding property of the resin material in the holes or irregularities of the circuit board is improved.
  • the content of the thermoplastic resin is at least the above lower limit, the formation of the resin film becomes easier and a better insulating layer can be obtained.
  • the content of the thermoplastic resin is not more than the above upper limit, the coefficient of thermal expansion of the cured product becomes even lower.
  • the content of the thermoplastic resin is not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • the resin material does not contain or contains an elastomer.
  • the elastomer may have a thermosetting functional group. Only one type of the above elastomer may be used, or two or more types may be used in combination.
  • Examples of the above-mentioned elastomer include an elastomer having a polybutadiene structure, an elastomer having a polysiloxane structure, an elastomer having a polyisoprene structure, an elastomer having a polyisobutylene structure, and an elastomer having a polyalkylene structure.
  • the elastomer may have a reactive substituent such as an epoxy group.
  • the resin material does not contain or contains a solvent.
  • the viscosity of the resin material can be controlled in a suitable range, and the coatability of the resin material can be improved.
  • the solvent may be used to obtain a slurry containing the inorganic filler. Only one type of the solvent may be used, or two or more types may be used in combination.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, and the like.
  • Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha as a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coatability of the resin composition and the like.
  • the content of the solvent in 100% by weight of the B stage film is preferably 1% by weight or more, more preferably 2% by weight or more, and preferably 10% by weight. % Or less, more preferably 5% by weight or less.
  • the above resin materials include organic fillers, leveling agents, flame retardants, coupling agents, colorants, antioxidants, and UV deterioration prevention. It may contain an agent, a defoaming agent, a thickener, a rocking denaturing agent and the like.
  • the organic filler examples include particulate matter made of benzoxazine resin, benzoxazole resin, fluororesin, acrylic resin, styrene resin and the like.
  • the fluororesin examples include polytetrafluoroethylene (PTFE) and the like.
  • PTFE polytetrafluoroethylene
  • the average particle size of the organic filler is preferably 1 ⁇ m or less. When the average particle size of the organic filler is not more than the above upper limit, the surface roughness after etching can be reduced, the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be improved. It can be further enhanced.
  • the average particle size of the organic filler may be 50 nm or more.
  • the average particle size of the organic filler As the average particle size of the organic filler, a value of median diameter (d50) of 50% is adopted.
  • the average particle size can be measured using a laser diffraction / scattering type particle size distribution measuring device.
  • Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, and the like.
  • Examples of the silane coupling agent include vinylsilane, aminosilane, imidazolesilane, and epoxysilane.
  • a resin film (B-staged product / B-stage film) can be obtained by molding the above-mentioned resin composition into a film.
  • the resin material is preferably a resin film.
  • the resin film is preferably a B stage film.
  • Examples of the method for obtaining a resin film by molding the resin composition into a film form include the following methods.
  • An extrusion molding method in which a resin composition is melt-kneaded using an extruder, extruded, and then molded into a film by a T-die, a circular die, or the like.
  • a casting molding method in which a resin composition containing a solvent is cast and molded into a film.
  • An extrusion molding method or a casting molding method is preferable because it can be made thinner.
  • the film includes a sheet.
  • a resin film as a B-stage film can be obtained by molding the resin composition into a film and heating and drying it at 50 ° C. to 150 ° C. for 1 minute to 10 minutes to the extent that curing by heat does not proceed too much. can.
  • the film-like resin composition that can be obtained by the drying step as described above is referred to as a B stage film.
  • the B stage film is in a semi-cured state.
  • the semi-cured product is not completely cured and can be further cured.
  • the resin film does not have to be a prepreg.
  • the resin film is not a prepreg, migration does not occur along the glass cloth or the like. Further, when the resin film is laminated or pre-cured, unevenness due to the glass cloth does not occur on the surface.
  • the resin film can be used in the form of a laminated film including a metal foil or a base film and a resin film laminated on the surface of the metal foil or the base film.
  • the metal foil is preferably a copper foil.
  • Examples of the base film of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin films.
  • the surface of the base film may be mold-released, if necessary.
  • the thickness of the resin film is preferably 5 ⁇ m or more, preferably 200 ⁇ m or less.
  • the thickness of the insulating layer formed by the resin film is preferably equal to or larger than the thickness of the conductor layer (metal layer) forming the circuit.
  • the thickness of the insulating layer is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the dielectric loss tangent (Df) of the obtained cured product at 23 ° C. and a frequency of 5.8 GHz is preferably 3.0. It is ⁇ 10 -3 or less, more preferably 2.8 ⁇ 10 -3 or less, further preferably 2.5 ⁇ 10 -3 or less, still more preferably 2.3 ⁇ 10 -3 or less.
  • the dielectric loss tangent (Df) of the cured product may be 3.1 ⁇ 10 -3 or more, or 3.3 ⁇ 10 -3 or more.
  • the dielectric loss tangent (Df) of the cured product is measured as follows.
  • the film-shaped resin material (resin film) is heated at 190 ° C. for 90 minutes to obtain a cured product of the resin material.
  • the obtained cured product is cut into a size of 2 mm in width and 80 mm in length, and 10 sheets are laminated.
  • the frequency is 5.8 GHz at room temperature (23 ° C) by the cavity resonance method. Measure the dielectric loss tangent.
  • the average coefficient of linear expansion (CTE) from 25 ° C. to 150 ° C. under a tensile load of 33 mN of the obtained cured product is preferably 33 ppm / ° C. or lower, more preferably 30 ppm / ° C. or lower, still more preferably 27 ppm. / ° C. or lower, even more preferably 26 ppm / ° C. or lower, particularly preferably 24 ppm / ° C. or lower, and most preferably 22 ppm / ° C. or lower.
  • the average coefficient of linear expansion (CTE) of the cured product may be 34 ppm / ° C. or higher, or 38 ppm / ° C. or higher.
  • the average coefficient of linear expansion (CTE) of the cured product is measured as follows.
  • the film-shaped resin material (resin film) is heated at 190 ° C. for 90 minutes to obtain a cured product of the resin material.
  • the obtained cured product is cut into a size of 3 mm ⁇ 25 mm.
  • a thermomechanical analyzer for example, "EXSTAR TMA / SS6100” manufactured by SII Nanotechnology Co., Ltd.
  • the cured product was cut from 25 ° C. under the conditions of a tensile load of 33 mN and a heating rate of 5 ° C./min.
  • the average coefficient of linear expansion (ppm / ° C.) up to 150 ° C. is calculated.
  • the resin material is suitably used for forming a mold resin for embedding a semiconductor chip in a semiconductor device.
  • the above resin material is suitably used as a substitute for liquid crystal polymer (LCP), millimeter wave antenna application, and rewiring layer application. Further, the resin material is suitably used not only for the above applications but also for all wiring forming applications.
  • LCP liquid crystal polymer
  • millimeter wave antenna application millimeter wave antenna application
  • rewiring layer application rewiring layer application
  • the above resin material is preferably used as an insulating material.
  • the resin material is suitably used for forming an insulating layer in a printed wiring board.
  • the printed wiring board can be obtained, for example, by heat-press molding the resin material.
  • a member to be laminated having a metal layer on one side or both sides can be laminated on the resin film.
  • a laminated structure comprising a member to be laminated having a metal layer on its surface and a resin film laminated on the surface of the metal layer, and the resin film being the above-mentioned resin material can be preferably obtained.
  • the method of laminating the resin film and the member to be laminated having the metal layer on the surface is not particularly limited, and a known method can be used. For example, using a device such as a parallel flat plate press or a roll laminator, the resin film can be laminated on a member to be laminated having a metal layer on the surface while pressurizing with or without heating.
  • the material of the metal layer is preferably copper.
  • the member to be laminated having the metal layer on the surface may be a metal foil such as a copper foil.
  • the above resin material is suitably used for obtaining a copper-clad laminate.
  • An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and a resin film laminated on one surface of the copper foil.
  • the thickness of the copper foil of the copper-clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably in the range of 1 ⁇ m to 50 ⁇ m.
  • the copper foil has fine irregularities on the surface.
  • the method of forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a method for forming the unevenness by a treatment using a known chemical solution.
  • the above resin material is preferably used to obtain a multilayer substrate.
  • the multilayer board is a multilayer board provided with a circuit board and an insulating layer laminated on the circuit board.
  • the insulating layer of this multilayer substrate is formed of the above resin material. Further, the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film by using the laminated film.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. It is preferable that a part of the insulating layer is embedded between the circuits.
  • the surface of the insulating layer opposite to the surface on which the circuit board is laminated is roughened.
  • the roughening treatment method can be a conventionally known roughening treatment method and is not particularly limited.
  • the surface of the insulating layer may be swelled before the roughening treatment.
  • the multilayer substrate further includes a copper plating layer laminated on the roughened surface of the insulating layer.
  • the circuit board, the insulating layer laminated on the surface of the circuit board, and the insulating layer are laminated on the surface opposite to the surface on which the circuit board is laminated.
  • Examples thereof include a multilayer substrate provided with a copper foil.
  • the insulating layer is formed by curing the resin film using a copper-clad laminate having a copper foil and a resin film laminated on one surface of the copper foil. Further, the copper foil is etched and preferably a copper circuit.
  • the multilayer board is a multilayer board including a circuit board and a plurality of insulating layers laminated on the surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed by using the resin material. It is preferable that the multilayer substrate further includes a circuit laminated on at least one surface of the insulating layer formed by using the resin film.
  • the resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
  • the multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.
  • FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
  • a plurality of insulating layers 13 to 16 are laminated on the upper surface 12a of the circuit board 12.
  • the insulating layers 13 to 16 are cured product layers.
  • a metal layer 17 is formed in a part of the upper surface 12a of the circuit board 12.
  • metal layers 17 are formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side. Has been done.
  • the metal layer 17 is a circuit.
  • a metal layer 17 is arranged between the circuit board 12 and the insulating layer 13 and between the layers of the laminated insulating layers 13 to 16, respectively.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of a via hole connection and a through hole connection (not shown).
  • the insulating layers 13 to 16 are formed of the cured product of the resin material.
  • the surfaces of the insulating layers 13 to 16 are roughened, fine holes (not shown) are formed on the surfaces of the insulating layers 13 to 16.
  • the metal layer 17 reaches the inside of the fine pores.
  • the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the portion where the metal layer 17 is not formed can be reduced.
  • good insulation reliability is imparted between the upper metal layer and the lower metal layer which are not connected by via hole connection and through hole connection (not shown).
  • the resin material is preferably used to obtain a cured product that is roughened or desmeared.
  • the cured product also includes a pre-cured product that can be further cured.
  • the cured product is roughened in order to form fine irregularities on the surface of the cured product obtained by pre-curing the resin material.
  • the cured product Prior to the roughening treatment, the cured product is preferably swelled. It is preferable that the cured product is swelled and further cured after the roughening treatment after the pre-curing and before the roughening treatment. However, the cured product does not necessarily have to be swelled.
  • the method for the swelling treatment for example, a method of treating the cured product with an aqueous solution of a compound containing ethylene glycol or the like as a main component or an organic solvent dispersion solution is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is carried out by treating the cured product at a treatment temperature of 30 ° C. to 85 ° C. for 1 minute to 30 minutes using a 40 wt% ethylene glycol aqueous solution or the like.
  • the temperature of the swelling treatment is preferably in the range of 50 ° C. to 85 ° C. If the temperature of the swelling treatment is too low, the swelling treatment takes a long time, and the adhesive strength between the cured product and the metal layer tends to be low.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound or a persulfate compound is used. These chemical oxidizing agents are used as an aqueous solution or an organic solvent dispersion solution after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening liquid preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, ammonium persulfate and the like.
  • the arithmetic mean roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, and further preferably less than 150 nm.
  • the adhesive strength between the cured product and the metal layer is increased, and the surface of the insulating layer forms finer wiring. Further, the conductor loss can be suppressed, and the signal loss can be suppressed low.
  • the arithmetic mean roughness Ra is measured according to JIS B0601: 1994.
  • Through holes may be formed in the cured product obtained by pre-curing the resin material.
  • Vias, through holes, and the like are formed as through holes in the multilayer substrate and the like.
  • vias can be formed by irradiation with a laser such as a CO 2 laser.
  • the diameter of the via is not particularly limited, but is about 60 ⁇ m to 80 ⁇ m. Due to the formation of the through holes, smear, which is a residue of the resin derived from the resin component contained in the cured product, is often formed at the bottom of the via.
  • the surface of the cured product is preferably desmear-treated.
  • the desmear treatment may also serve as the roughening treatment.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound or a persulfate compound is used in the same manner as in the roughening treatment.
  • These chemical oxidizing agents are used as an aqueous solution or an organic solvent dispersion solution after water or an organic solvent is added.
  • the desmear treatment liquid used for the desmear treatment generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the surface roughness of the surface of the desmear-treated cured product is sufficiently reduced.
  • the first compound may contain a compound in which each structural unit of the bismaleimide compound represented by the following formulas (X1) to (X4) is randomly arranged, and is represented by the following formulas (X1) to (X4).
  • the represented bismaleimide compound may contain a compound having a different number of repeating structural units, and is not necessarily limited to the structure in the following sequence order.
  • NMP N-methyl-2-pyrrolidone
  • Dimerdiamine Dimerdiamine
  • OXEA tricyclodecanediamine
  • the average ratio of the first skeleton was 61 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Moreover, the average ratio of the second skeleton was 39 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
  • ⁇ Synthesis example 2 > 115 g of toluene, 35 g of N-methyl-2-pyrrolidone (NMP), 16.3 g of dimerdiamine ("Priamine 1075" manufactured by Croda Japan), and 9.84 g of tricyclodecanediamine (manufactured by OXEA).
  • NMP N-methyl-2-pyrrolidone
  • Dimerdiamine Dimerdiamine
  • Oliamine 1075 manufactured by Croda Japan
  • tricyclodecanediamine manufactured by OXEA
  • the average ratio of the first skeleton was 60 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Further, the average ratio of the second skeleton was 40 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
  • NMP N-methyl-2-pyrrolidone
  • Dimerdiamine dimerdiamine
  • norbornane diamine manufactured by Mitsui Kagaku Fine Co., Ltd. "" Pro-NBDA
  • the average ratio of the first skeleton was 56 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Moreover, the average ratio of the second skeleton was 44 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
  • NMP N-methyl-2-pyrrolidone
  • Dimerdiamine dimerdiamine
  • norbornane diamine manufactured by Mitsui Kagaku Fine Co., Ltd. "" Pro-NBDA
  • the average ratio of the first skeleton was 58 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound.
  • the average ratio of the second skeleton was 42 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
  • thermosetting compound (Second thermosetting compound) ⁇ Epoxy compound> Biphenyl type epoxy compound ("NC-3000” manufactured by Nippon Kayaku Co., Ltd.) Naphthalene type epoxy compound ("ESN-475V” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) Resorcinol diglycidyl ether (“EX-201” manufactured by Nagase ChemteX Corporation) Multi-branched aliphatic epoxy compound (“FoldiE101” manufactured by Nissan Chemical Industries, Ltd.) Epoxy compound having an amino group (“630” manufactured by Mitsubishi Chemical Corporation) Epoxy compound with butadiene skeleton (“PB3600” manufactured by Daicel Corporation) Epoxy compound with amide bond (Nippon Kayaku Co., Ltd. "WHR-991S”) Epoxy compound with imide bond (synthesized according to Synthesis Example 5)
  • ⁇ Synthesis example 5 Toluene (200 g) and diamine diamine ("Priamine 1075" manufactured by Croda Japan) (68.6 g) were placed in a 500 mL three-necked flask and stirred. Next, 28.9 g of citraconic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 6.25 g of an insoluble acid catalyst (“amberlyst 36 dry” manufactured by DuPont) were placed in the above three-necked flask and stirred. A reflux tube with a Dean-Stark tube was attached, the temperature was adjusted to 130 ° C. in an oil bath, and the mixture was refluxed for 4 hours with stirring. Then, it was air-cooled and filtered, and then the acid catalyst was removed. Furthermore, the solvent and excess citraconic anhydride were removed by an evaporator and an air purge to obtain a citraconimide compound.
  • citraconic anhydride manufactured by Tokyo Chemical Industry Co., Ltd.
  • R 1 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms
  • R 2 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms
  • R 3 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms
  • R 4 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms.
  • the total number of carbon atoms of R 1 , R 2 , R 3 and R 4 is 30.
  • N-alkylbismaleimide compound 1 (“BMI-1700” manufactured by Designer Moleculars Inc.)
  • N-alkylbismaleimide compound 2 (“BMI-3000” manufactured by Designer Moleculars Inc.)
  • N-alkylbismaleimide compound 3 (“BMI-689” manufactured by Designer Moleculars Inc.)
  • N-Phenylmaleimide compound (“MIR-3000” manufactured by Nippon Kayaku Co., Ltd.)
  • ⁇ Vinyl compound > Styrene resin having a phenylene ether skeleton (radical curable compound, "OPE-2St-1200” manufactured by Mitsubishi Gas Chemical Company, Inc.) Dimethylol-tricyclodecanediacrylate (radical curable compound, "Light Acrylate DCP-A” manufactured by Kyoeisha Chemical Co., Ltd.)
  • Silica-containing slurry (silica 75% by weight: "SC4050-HOA” manufactured by Admatex, average particle size 1.0 ⁇ m, aminosilane treatment, cyclohexanone 25% by weight)
  • Active ester compound 1-containing liquid (“EXB-9416-70BK” manufactured by DIC Corporation, solid content 70% by weight)
  • Active ester compound 2 containing liquid (“HPC-8150-62T” manufactured by DIC Corporation, solid content 62% by weight)
  • Active ester compound 3 containing liquid ("HPC-8000L-65T” manufactured by DIC Corporation, solid content 65% by weight)
  • Active ester compound 4 ("EXB-8” manufactured by DIC Corporation, solid content 100% by weight)
  • Carbodiimide compound-containing liquid (“Carbodilite V-03” manufactured by Nisshinbo Chemical Co., Ltd., solid content 50% by weight)
  • Phenol compound-containing liquid (“LA-1356” manufactured by DIC Corporation, solid content 60% by weight)
  • thermoplastic resin Polyimide compound (polyimide resin, molecular weight 20000, synthesized according to Synthesis Example 6) Styrene butadiene resin ("Tough Tech H1043” manufactured by Asahi Kasei Corporation) Alicyclic thermoplastic resin (manufactured by JXTG, "Neoresin”)
  • PRIAMINE 1075 dimer diamine
  • 1,3-bisaminomethylcyclohexane manufactured by Mitsubishi Gas Chemical Company
  • the molecular weights of the first compound and the polyimide compound were determined as follows.
  • GPC Gel Permeation Chromatography Measurement: A high performance liquid chromatograph system manufactured by Shimadzu Corporation was used, and measurement was carried out using tetrahydrofuran (THF) as a developing medium at a column temperature of 40 ° C. and a flow velocity of 1.0 ml / min. "SPD-10A” was used as a detector, and two columns of "KF-804L” (exclusion limit molecular weight: 400,000) manufactured by Shodex were connected in series.
  • THF tetrahydrofuran
  • Examples 1 to 13 and Comparative Examples 1 to 3 The components shown in Tables 1 to 4 below were blended in the blending amounts (unit: parts by weight of solid content) shown in Tables 1 to 4 below, and stirred at room temperature until a uniform solution was obtained to obtain a resin material.
  • Preparation of resin film After applying the obtained resin material on the release-treated surface of the release-treated PET film (Toray Industries, Inc. "XG284", thickness 25 ⁇ m) using an applicator, 2 minutes in a gear oven at 100 ° C. It was dried for 30 seconds to volatilize the solvent. In this way, a laminated film (laminated film of PET film and resin film) in which a resin film (B stage film) having a thickness of 40 ⁇ m is laminated on the PET film was obtained.
  • XG284 thickness 25 ⁇ m
  • Dielectric Dissipation Factor (Df) and Relative Permittivity The obtained resin film was heated at 190 ° C. for 90 minutes to obtain a cured product. The obtained cured product was cut into a size of 2 mm in width and 80 mm in length, and 10 sheets were laminated. Using a network analyzer N5224A PNA, the dielectric loss tangent and relative permittivity were measured at room temperature (23 ° C.) and a frequency of 5.8 GHz by the cavity resonance method.
  • Dissipation factor is less than 2.5 ⁇ 10 -3 ⁇ : Dissipation factor is 2.5 ⁇ 10 -3 or more and less than 2.75 ⁇ 10 -3 ⁇ : Dissipation factor is 2.75 ⁇ 10 -3 or more
  • Via (through hole) formation Using a CO 2 laser (manufactured by Hitachi Via Mechanics) on the semi-cured resin film of the obtained laminate A, a via (penetration) having a diameter of 60 ⁇ m at the upper end and a diameter of 40 ⁇ m at the lower end (bottom). Hole) was formed. In this way, a laminated body B in which the semi-cured product of the resin film was laminated on the CCL substrate and vias (through holes) were formed in the semi-cured product of the resin film was obtained.
  • a CO 2 laser manufactured by Hitachi Via Mechanics
  • the bottom of the via of the evaluation sample was observed with a scanning electron microscope (SEM), and the maximum smear length from the wall surface of the bottom of the via was measured.
  • SEM scanning electron microscope
  • the laminating conditions were such that the pressure was reduced for 30 seconds to reduce the atmospheric pressure to 13 hPa or less, and then the pressure was pressed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds. Then, the resin film was semi-cured by heating at 180 ° C. for 30 minutes. In this way, a laminated body in which a semi-cured resin film was laminated on the CCL substrate was obtained.
  • the laminating conditions were such that the pressure was reduced for 30 seconds to reduce the atmospheric pressure to 13 hPa or less, then laminating at 100 ° C. and pressure 0.7 MPa for 30 seconds, and then pressing at a press pressure of 0.8 MPa and a press temperature of 100 ° C. for 60 seconds. .. Then, the resin film in the laminated structure was heated at 100 ° C. for 30 minutes with the PET film attached, and then further heated at 180 ° C. for 30 minutes to semi-cure the resin film. Then, the PET film was peeled off to obtain a laminate in which a semi-cured resin film was laminated on the CCL substrate.
  • Electroless plating The surface of the obtained roughened cured product was treated with an alkaline cleaner at 60 ° C. (“Cleaner Securigant 902” manufactured by Atotech Japan Co., Ltd.) for 5 minutes, and degreased and washed. After washing, the cured product was treated with a predip solution (“Predip Neogant B” manufactured by Atotech Japan) at 25 ° C. for 2 minutes. Then, the cured product was treated with an activator solution at 40 ° C. (“Activator Neogant 834” manufactured by Atotech Japan Co., Ltd.) for 5 minutes, and a palladium catalyst was attached. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
  • an alkaline cleaner 60 ° C.
  • Predip Neogant B manufactured by Atotech Japan
  • activator Neogant 834 manufactured by Atotech Japan Co., Ltd.
  • the cured product was placed in a chemical copper solution (Atotech Japan's "Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, and “Reducer Cu”) and electroless plated.
  • a chemical copper solution Atotech Japan's "Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, and "Reducer Cu
  • annealing treatment was performed at a temperature of 120 ° C. for 30 minutes in order to remove residual hydrogen gas. All the steps up to the electroless plating step were carried out with a beaker scale containing 2 L of the treatment liquid and shaking the cured product.
  • Electroplating Next, the cured product subjected to the electroless plating treatment was subjected to electrolytic plating until the plating thickness became 25 ⁇ m.
  • Copper sulfate solution for electrolytic copper plating (“Copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “Sulfate” manufactured by Wako Pure Chemical Industries, Ltd., "Basic leveler capallaside HL” manufactured by Atotech Japan, “Basic leveler capallaside HL” manufactured by Atotech Japan.
  • Capalacid GS electrolytic plating was carried out by passing a current of 0.6 A / cm 2 until the plating thickness became about 25 ⁇ m.
  • the cured product was heated at 200 ° C. for 60 minutes to further cure the cured product. In this way, a cured product in which the copper plating layer was laminated on the upper surface was obtained.
  • plating peel strength A total of 6 strip-shaped cuts having a width of 10 mm were made on the surface of the cured copper-plated layer on which the obtained copper-plated layer was laminated at 5 mm intervals. Set the cured product with the copper plating layer laminated on the upper surface in a 90 ° peeling tester (“TE-3001” manufactured by Tester Sangyo Co., Ltd.), pick up the end of the notched copper plating layer with a grip, and copper. The plating layer was peeled off by 20 mm and the peeling strength (plating peel strength) was measured. The peeling strength (plating peel strength) was measured for each of the six notches, and the average value of the plating peel strength was obtained. The plating peel strength was judged according to the following criteria.
  • Multi-layer printed wiring board 12 ... Circuit board 12a ... Top surface 13-16 ... Insulation layer 17 ... Metal layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is a resin material that can effectively remove smears using de-smear treatment, reduce the dielectric loss tangent of a cured product, and increase the thermal dimensional stability of a cured product. The resin material according to the present invention comprises a first compound having a first skeleton and a curing accelerator, wherein the first skeleton is derived from an acid anhydride having a non-conjugate carbon-carbon double bond and has an imide bond.

Description

樹脂材料及び多層プリント配線板Resin material and multi-layer printed wiring board
 本発明は、酸無水物に由来する骨格を有する化合物と硬化促進剤とを含む樹脂材料に関する。また、本発明は、上記樹脂材料を用いた多層プリント配線板に関する。 The present invention relates to a resin material containing a compound having a skeleton derived from an acid anhydride and a curing accelerator. The present invention also relates to a multilayer printed wiring board using the above resin material.
 従来、半導体装置、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂材料が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂材料が用いられている。上記絶縁層の表面には、一般に金属である配線が積層される。また、上記絶縁層を形成するために、上記樹脂材料がフィルム化された樹脂フィルムが用いられることがある。上記樹脂材料及び上記樹脂フィルムは、ビルドアップフィルムを含む多層プリント配線板用の絶縁材料等として用いられている。 Conventionally, various resin materials have been used to obtain electronic components such as semiconductor devices, laminated boards and printed wiring boards. For example, in a multilayer printed wiring board, a resin material is used to form an insulating layer for insulating the internal layers and to form an insulating layer located on a surface layer portion. Wiring, which is generally a metal, is laminated on the surface of the insulating layer. Further, in order to form the insulating layer, a resin film obtained by forming the resin material into a film may be used. The resin material and the resin film are used as an insulating material for a multilayer printed wiring board including a build-up film.
 下記の特許文献1には、マレイミド基と、少なくとも2つのイミド結合を有する2価の基及び飽和又は不飽和の2価の炭化水素基とを有する化合物を含有する樹脂組成物が開示されている。特許文献1には、この樹脂組成物の硬化物を、多層プリント配線板等の絶縁層として用いることができることが記載されている。 Patent Document 1 below discloses a resin composition containing a compound having a maleimide group, a divalent group having at least two imide bonds, and a saturated or unsaturated divalent hydrocarbon group. .. Patent Document 1 describes that a cured product of this resin composition can be used as an insulating layer for a multilayer printed wiring board or the like.
 下記の特許文献2には、ビスマレイミド化合物を含み、該ビスマレイミド化合物が、マレイミド基2個と、特定の構造を有するポリイミド基1個以上とを有する電子材料用樹脂組成物が開示されている。上記ビスマレイミド化合物において、2個の上記マレイミド基は、各々独立して、8以上の原子が直鎖状に連結した第1の連結基を少なくとも介して、上記ポリイミド基の両端に結合している。 Patent Document 2 below discloses a resin composition for an electronic material containing a bismaleimide compound, wherein the bismaleimide compound has two maleimide groups and one or more polyimide groups having a specific structure. .. In the bismaleimide compound, the two maleimide groups are independently bonded to both ends of the polyimide group via at least a first linking group in which 8 or more atoms are linearly linked. ..
WO2016/114286A1WO2016 / 114286A1 特開2018-90728号公報Japanese Unexamined Patent Publication No. 2018-90728
 特許文献1,2に記載のような従来の樹脂材料では、絶縁層の形成時にデスミア処理によって、ビア内のスミアが十分に除去されないことがある。誘電正接が十分に低くなるように配合設計された樹脂材料では、スミアを効果的に除去することは困難である。 In the conventional resin materials as described in Patent Documents 1 and 2, the smear in the via may not be sufficiently removed by the desmear treatment when the insulating layer is formed. It is difficult to effectively remove smear with a resin material compounded and designed so that the dielectric loss tangent is sufficiently low.
 また、従来の樹脂材料では、スミアをある程度効果的に除去し、かつ硬化物の誘電正接をある程度低くすることができたとしても、これらに加えて硬化物の熱寸法安定性を高めることは困難である。 Further, even if the conventional resin material can effectively remove smear to some extent and reduce the dielectric loss tangent of the cured product to some extent, it is difficult to improve the thermal dimensional stability of the cured product in addition to these. Is.
 本発明の目的は、デスミア処理によってスミアを効果的に除去することができ、硬化物の誘電正接を低くすることができ、かつ硬化物の熱寸法安定性を高めることができる樹脂材料を提供することである。また、本発明は、上記樹脂材料を用いた多層プリント配線板を提供することも目的とする。 An object of the present invention is to provide a resin material capable of effectively removing smear by desmear treatment, lowering the dielectric loss tangent of the cured product, and enhancing the thermal dimensional stability of the cured product. That is. Another object of the present invention is to provide a multilayer printed wiring board using the above resin material.
 本発明の広い局面によれば、第1の骨格を有する第1の化合物と、硬化促進剤とを含み、前記第1の骨格は、非共役炭素-炭素二重結合を有する酸無水物に由来し、かつイミド結合を有する、樹脂材料が提供される。 According to a broad aspect of the present invention, the first compound having a first skeleton and a curing accelerator are included, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond. And a resin material having an imide bond is provided.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、非共役炭素-炭素二重結合を有する酸無水物とは異なる酸無水物に由来する骨格を有し、前記第1の化合物が有する酸無水物に由来する構造単位100モル%中、前記第1の骨格の平均割合が、10モル%以上90モル%以下である。 In certain aspects of the resin material according to the present invention, the first compound has a skeleton derived from an acid anhydride that is different from the acid anhydride having a non-conjugated carbon-carbon double bond, and the first compound. The average ratio of the first skeleton is 10 mol% or more and 90 mol% or less in 100 mol% of the structural units derived from the acid anhydride of the compound.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、シクロヘキシル環を有するアミン化合物に由来する骨格を有する。 In a specific aspect of the resin material according to the present invention, the first compound has a skeleton derived from an amine compound having a cyclohexyl ring.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、前記シクロヘキシル環を有するアミン化合物に由来する骨格として、ダイマージアミンに由来する第2の骨格を有する。 In a specific aspect of the resin material according to the present invention, the first compound has a second skeleton derived from dimer diamine as a skeleton derived from the amine compound having a cyclohexyl ring.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、ダイマージアミンとは異なるジアミン化合物に由来する骨格を有し、前記第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、前記第2の骨格の平均割合が、10モル%以上90モル%以下である。 In a specific aspect of the resin material according to the present invention, the first compound has a skeleton derived from a diamine compound different from diamine diamine, and the structural unit 100 derived from the diamine compound contained in the first compound. The average ratio of the second skeleton in mol% is 10 mol% or more and 90 mol% or less.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、前記シクロヘキシル環を有するアミン化合物に由来する骨格として、ダイマージアミンとは異なりかつシクロヘキシル環を有するアミン化合物に由来する第3の骨格を有する。 In a specific aspect of the resin material according to the present invention, the first compound is derived from an amine compound having a cyclohexyl ring, which is different from diamine diamine, as a skeleton derived from the amine compound having a cyclohexyl ring. Has a skeleton of.
 本発明に係る樹脂材料のある特定の局面では、前記シクロヘキシル環を有するアミン化合物が、ノルボルナンジアミン又はトリシクロデカンジアミンである。 In a specific aspect of the resin material according to the present invention, the amine compound having a cyclohexyl ring is norbornane diamine or tricyclodecane diamine.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、マレイミド骨格を有する。 In certain aspects of the resin material according to the present invention, the first compound has a maleimide skeleton.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、下記式(X3)で表されるビスマレイミド化合物又はその構造異性体である。
Figure JPOXMLDOC01-appb-C000003
In a specific aspect of the resin material according to the present invention, the first compound is a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof.
Figure JPOXMLDOC01-appb-C000003
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、下記式(X4)で表されるビスマレイミド化合物又はその構造異性体である。
Figure JPOXMLDOC01-appb-C000004
In a specific aspect of the resin material according to the present invention, the first compound is a bismaleimide compound represented by the following formula (X4) or a structural isomer thereof.
Figure JPOXMLDOC01-appb-C000004
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、ベンゾオキサジン骨格を有する。 In certain aspects of the resin material according to the present invention, the first compound has a benzoxazine skeleton.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、両末端にマレイミド骨格を有するか、又は、両末端にベンゾオキサジン骨格を有する。 In certain aspects of the resin material according to the present invention, the first compound has a maleimide skeleton at both ends or a benzoxazine skeleton at both ends.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物の分子量が、1000以上50000以下である。 In a specific aspect of the resin material according to the present invention, the molecular weight of the first compound is 1000 or more and 50,000 or less.
 本発明に係る樹脂材料のある特定の局面では、前記非共役炭素-炭素二重結合を有する酸無水物が、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、又は5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物を含む。 In certain aspects of the resin material according to the present invention, the acid anhydride having a non-conjugated carbon-carbon double bond is a bicyclo [2.2.2] octo-7-ene-2,3,5,6. -Tetracarboxylic acid dianhydride, or 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride.
 本発明に係る樹脂材料のある特定の局面では、前記第1の化合物が、ビフェニル酸二無水物に由来する骨格を有する。 In certain aspects of the resin material according to the present invention, the first compound has a skeleton derived from biphenylic dianhydride.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、無機充填材を含む。 In certain aspects of the resin material according to the present invention, the resin material includes an inorganic filler.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、第1の熱硬化性化合物として、前記第1の化合物を含み、前記樹脂材料は、第2の熱硬化性化合物を含み、前記第2の熱硬化性化合物が、エポキシ化合物を含む。 In certain aspects of the resin material according to the present invention, the resin material comprises the first compound as a first thermosetting compound, and the resin material comprises a second thermosetting compound. The second thermosetting compound contains an epoxy compound.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、硬化剤を含み、前記硬化剤が、活性エステル化合物を含む。 In a specific aspect of the resin material according to the present invention, the resin material contains a curing agent, and the curing agent contains an active ester compound.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、エラストマーを含む。 In certain aspects of the resin material according to the present invention, the resin material comprises an elastomer.
 本発明に係る樹脂材料のある特定の局面では、前記樹脂材料は、樹脂フィルムである。 In a specific aspect of the resin material according to the present invention, the resin material is a resin film.
 本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 The resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
 本発明の広い局面によれば、回路基板と、前記回路基板の表面上に配置された複数の絶縁層と、複数の前記絶縁層間に配置された金属層とを備え、複数の前記絶縁層の内の少なくとも1層が、上述した樹脂材料の硬化物である、多層プリント配線板が提供される。 According to a broad aspect of the present invention, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the plurality of insulating layers are provided, and the plurality of insulating layers are provided. A multilayer printed wiring board is provided in which at least one of the layers is a cured product of the resin material described above.
 本発明に係る樹脂材料は、第1の骨格を有する第1の化合物と、硬化促進剤とを含み、上記第1の骨格は、非共役炭素-炭素二重結合を有する酸無水物に由来し、かつイミド結合を有する。本発明に係る樹脂材料では、上記の構成が備えられているので、デスミア処理によってスミアを効果的に除去することができ、硬化物の誘電正接を低くすることができ、かつ硬化物の熱寸法安定性を高めることができる。 The resin material according to the present invention contains a first compound having a first skeleton and a curing accelerator, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond. And has an imide bond. Since the resin material according to the present invention has the above-mentioned structure, smear can be effectively removed by desmear treatment, the dielectric loss tangent of the cured product can be lowered, and the thermal dimensions of the cured product can be lowered. Stability can be increased.
図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明に係る樹脂材料は、第1の骨格を有する第1の化合物と、硬化促進剤とを含み、上記第1の骨格は、非共役炭素-炭素二重結合を有する酸無水物に由来し、かつイミド結合を有する。 The resin material according to the present invention contains a first compound having a first skeleton and a curing accelerator, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond. And has an imide bond.
 本発明に係る樹脂材料では、上記の構成が備えられているので、デスミア処理によってスミアを効果的に除去することができ、硬化物の誘電正接を低くすることができ、かつ硬化物の熱寸法安定性を高めることができる。本発明に係る樹脂材料では、過マンガン酸塩等を用いて塩基性条件でデスミア処理した際に、第1の骨格の非共役炭素-炭素二重結合が開裂して、2個の水酸基(ジオール)が形成されるため、親水性が増大し、溶解性が向上すると考えられる。このため、スミアを効果的に除去することができると考えられる。また、親水性をさらに増大させ、溶解性をさらに向上させる観点からは、上記第1の骨格において、イミド結合と、非共役炭素-炭素二重結合を有する酸無水物に由来する骨格とは、近接することが好ましい。上記第1の骨格において、イミド結合と、非共役炭素-炭素二重結合を有する酸無水物に由来する骨格との間に、他の骨格が存在する場合に、該他の骨格の分子量は、好ましくは500以下、より好ましくは200以下、さらに好ましくは100以下である。該他の骨格の分子量は、14以上であってもよく、20以上であってもよく、50以上であってもよい。 Since the resin material according to the present invention has the above-mentioned structure, smear can be effectively removed by desmear treatment, the dielectric loss tangent of the cured product can be lowered, and the thermal dimensions of the cured product can be lowered. Stability can be increased. In the resin material according to the present invention, when desmear treatment is performed under basic conditions using permanganate or the like, the non-conjugated carbon-carbon double bond of the first skeleton is cleaved and two hydroxyl groups (diols) are cleaved. ) Is formed, which is considered to increase hydrophilicity and improve solubility. Therefore, it is considered that smear can be effectively removed. From the viewpoint of further increasing hydrophilicity and further improving solubility, in the first skeleton, the imide bond and the skeleton derived from an acid anhydride having a non-conjugated carbon-carbon double bond are different. It is preferable to be in close proximity. In the first skeleton, when another skeleton is present between the imide bond and the skeleton derived from an acid anhydride having a non-conjugated carbon-carbon double bond, the molecular weight of the other skeleton is determined. It is preferably 500 or less, more preferably 200 or less, and even more preferably 100 or less. The molecular weight of the other skeleton may be 14 or more, 20 or more, or 50 or more.
 また、本発明に係る樹脂材料では、エッチング後の表面粗度が過度に大きくなることなく、表面粗度を良好にすることができ、メッキピール強度を高めることができる。 Further, in the resin material according to the present invention, the surface roughness after etching does not become excessively large, the surface roughness can be improved, and the plating peel strength can be increased.
 本発明に係る樹脂材料は、樹脂組成物であってもよく、樹脂フィルムであってもよい。上記樹脂組成物は、流動性を有する。上記樹脂組成物は、ペースト状であってもよい。上記ペースト状には液状が含まれる。取扱性に優れることから、本発明に係る樹脂材料は、樹脂フィルムであることが好ましい。 The resin material according to the present invention may be a resin composition or a resin film. The resin composition has fluidity. The resin composition may be in the form of a paste. The paste form contains a liquid. The resin material according to the present invention is preferably a resin film because it is excellent in handleability.
 本発明に係る樹脂材料は、熱硬化性材料であることが好ましい。上記樹脂材料が樹脂フィルムである場合には、該樹脂フィルムは、熱硬化性樹脂フィルムであることが好ましい。 The resin material according to the present invention is preferably a thermosetting material. When the resin material is a resin film, the resin film is preferably a thermosetting resin film.
 以下、本発明に係る樹脂材料に用いられる各成分の詳細、及び本発明に係る樹脂材料の用途などを説明する。 Hereinafter, the details of each component used in the resin material according to the present invention, the use of the resin material according to the present invention, and the like will be described.
 [第1の化合物]
 上記第1の化合物は、第1の骨格を有する化合物であり、上記第1の骨格は、非共役炭素-炭素二重結合を有する酸無水物に由来し、かつイミド結合を有する。上記第1の化合物は、熱硬化性化合物(第1の熱硬化性化合物)であってもよい。上記第1の化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[First compound]
The first compound is a compound having a first skeleton, and the first skeleton is derived from an acid anhydride having a non-conjugated carbon-carbon double bond and has an imide bond. The first compound may be a thermosetting compound (first thermosetting compound). As the first compound, only one kind may be used, or two or more kinds may be used in combination.
 <第1の骨格>
 上記第1の骨格は、非共役炭素-炭素二重結合を有する酸無水物に由来する骨格であり、かつイミド結合を有する骨格である。
<First skeleton>
The first skeleton is a skeleton derived from an acid anhydride having a non-conjugated carbon-carbon double bond and having an imide bond.
 上記非共役炭素-炭素二重結合は、芳香環に含まれる二重結合以外の二重結合を意図している。よって、非共役炭素-炭素二重結合を有する酸無水物に、芳香環の二重結合のみを含む酸二無水物は該当しない。上記非共役炭素-炭素二重結合を有する酸無水物は、非共役炭素-炭素二重結合を有し、かつ芳香族骨格を有していてもよい。 The above non-conjugated carbon-carbon double bond is intended as a double bond other than the double bond contained in the aromatic ring. Therefore, the acid anhydride having a non-conjugated carbon-carbon double bond does not correspond to an acid anhydride containing only a double bond of an aromatic ring. The acid anhydride having a non-conjugated carbon-carbon double bond may have a non-conjugated carbon-carbon double bond and an aromatic skeleton.
 分子内のイミド骨格の密度を高め、デスミア処理によってスミアをより一層効果的に除去する観点から、上記非共役炭素-炭素二重結合を有する酸無水物は、非共役炭素-炭素二重結合を有する酸二無水物であることが好ましい。分子内のイミド骨格の密度を高め、デスミア処理によってスミアをより一層効果的に除去する観点から、上記非共役炭素-炭素二重結合を有する酸無水物(酸二無水物)に由来する骨格の分子量は、小さいことが好ましい。上記非共役炭素-炭素二重結合を有する酸無水物(酸二無水物)に由来する骨格の分子量は、好ましくは800以下、より好ましくは600以下である。 From the viewpoint of increasing the density of the imide skeleton in the molecule and removing smear more effectively by desmear treatment, the acid anhydride having the non-conjugated carbon-carbon double bond has a non-conjugated carbon-carbon double bond. It is preferably an acid dianhydride having. From the viewpoint of increasing the density of the imide skeleton in the molecule and removing smear more effectively by desmear treatment, the skeleton derived from the acid anhydride (acid dianhydride) having the above-mentioned non-conjugated carbon-carbon double bond The molecular weight is preferably small. The molecular weight of the skeleton derived from the acid anhydride (acid dianhydride) having the non-conjugated carbon-carbon double bond is preferably 800 or less, more preferably 600 or less.
 上記非共役炭素-炭素二重結合を有する酸無水物は、環状骨格を有することが好ましい。上記第1の骨格において、上記非共役炭素-炭素二重結合は、酸無水物が有する環状骨格に存在することが好ましい。上記第1の骨格において、イミド結合は、2個存在することが好ましい。 The acid anhydride having a non-conjugated carbon-carbon double bond preferably has a cyclic skeleton. In the first skeleton, the non-conjugated carbon-carbon double bond is preferably present in the cyclic skeleton of the acid anhydride. In the first skeleton, it is preferable that two imide bonds are present.
 本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物に含まれるイミド結合100モル%中、90モル%以上が閉環しているイミド結合であることが好ましく、100モル%以下が閉環しているイミド結合であることが好ましく、100モル%未満が閉環しているイミド結合であることがより好ましい。本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物に含まれるイミド結合100モル%中、100モル%が閉環しているイミド結合であることも好ましい。上記第1の化合物に含まれるイミド結合100モル%中、90モル%以上100モル%未満が閉環しているイミド結合であると、デスミア処理によってスミアをより一層効果的に除去することができる。また、上記第1の化合物に含まれるイミド結合100モル%中、100モル%(全量)が閉環しているイミド結合であると、硬化物の誘電正接をより一層低くすることができる。なお、上記第1の化合物内において、開環しているイミド結合は、アミック酸構造に含まれていてもよい。 From the viewpoint of more effectively exerting the effect of the present invention, 90 mol% or more of the 100 mol% of the imide bond contained in the first compound is preferably an imide bond in which the ring is closed, and 100 mol is preferable. % Or less is preferably a ring-closed imide bond, and less than 100 mol% is more preferably a ring-closed imide bond. From the viewpoint of more effectively exerting the effect of the present invention, it is also preferable that 100 mol% of the 100 mol% of the imide bond contained in the first compound is a ring-closed imide bond. When 90 mol% or more and less than 100 mol% of the imide bond contained in the first compound is a ring-closed imide bond, smear can be removed more effectively by desmear treatment. Further, when 100 mol% (total amount) of the 100 mol% of the imide bond contained in the first compound is a ring-closed imide bond, the dielectric loss tangent of the cured product can be further lowered. The ring-opened imide bond in the first compound may be contained in the amic acid structure.
 上記非共役炭素-炭素二重結合を有する酸無水物としては、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、及び5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物等が挙げられる。上記非共役炭素-炭素二重結合を有する酸無水物は、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、又は5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物を含むことが好ましい。この場合に、上記非共役炭素-炭素二重結合を有する酸無水物は、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、又は5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物とのうちの一方のみを含んでいてもよく、双方を含んでいてもよい。 Examples of the acid anhydride having a non-conjugated carbon-carbon double bond include bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride and 5-(. 2,5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride and the like can be mentioned. The acid anhydride having a non-conjugated carbon-carbon double bond is bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride, or 5- (2). , 5-Dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride is preferably contained. In this case, the acid anhydride having the non-conjugated carbon-carbon double bond is bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride, or It may contain only one of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride and may contain both.
 上記第1の骨格としては、例えば、下記式(1A)及び下記式(1B)等で表される骨格が挙げられる。 Examples of the first skeleton include skeletons represented by the following formulas (1A) and the following formula (1B).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記第1の化合物は、非共役炭素-炭素二重結合を有する酸無水物とは異なる酸無水物に由来する骨格を有していてもよい。上記第1の化合物が有する酸無水物に由来する構造単位100モル%中、上記第1の骨格の平均割合は、好ましくは10モル%以上、より好ましくは20モル%以上、更に好ましくは30モル%以上、特に好ましくは45モル%以上である。上記第1の化合物が有する酸無水物に由来する構造単位100モル%中、上記第1の骨格の平均割合は、好ましくは80モル%以下、より好ましくは75モル%以下、更に好ましくは60モル%以下である。上記第1の化合物が有する酸二無水物に由来する構造単位100モル%中、上記第1の骨格の平均割合は、好ましくは10モル%以上、より好ましくは20モル%以上、更に好ましくは30モル%以上、特に好ましくは45モル%以上である。上記第1の化合物が有する酸二無水物に由来する構造単位100モル%中、上記第1の骨格の平均割合は、好ましくは80モル%以下、より好ましくは75モル%以下、更に好ましくは60モル%以下である。上記第1の骨格の平均割合が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。 The first compound may have a skeleton derived from an acid anhydride different from that of an acid anhydride having a non-conjugated carbon-carbon double bond. The average proportion of the first skeleton in 100 mol% of the structural unit derived from the acid anhydride of the first compound is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30 mol. % Or more, particularly preferably 45 mol% or more. The average ratio of the first skeleton to 100 mol% of the structural unit derived from the acid anhydride of the first compound is preferably 80 mol% or less, more preferably 75 mol% or less, still more preferably 60 mol. % Or less. The average proportion of the first skeleton in 100 mol% of the structural unit derived from the acid dianhydride contained in the first compound is preferably 10 mol% or more, more preferably 20 mol% or more, still more preferably 30. It is mol% or more, particularly preferably 45 mol% or more. The average ratio of the first skeleton to 100 mol% of the structural unit derived from the acid dianhydride contained in the first compound is preferably 80 mol% or less, more preferably 75 mol% or less, still more preferably 60. It is less than mol%. When the average ratio of the first skeleton is equal to or higher than the lower limit and lower than the upper limit, the effect of the present invention can be exhibited even more effectively.
 上記第1の化合物が有する酸無水物(又は酸二無水物)に由来する構造単位100モル%中の第1の骨格の平均割合、後述の上記第1の化合物が有するジアミン化合物に由来する構造単位100モル%中の第2の骨格の平均割合及び後述の第3の骨格の平均割合は、例えばH-NMRのピーク面積から算出することができる。 The average ratio of the first skeleton in 100 mol% of the structural unit derived from the acid anhydride (or acid dianhydride) of the first compound, and the structure derived from the diamine compound of the first compound described later. The average ratio of the second skeleton in 100 mol% of the unit and the average ratio of the third skeleton described later can be calculated from, for example, the peak area of 1 H-NMR.
 <シクロヘキシル環を有するアミン化合物に由来する骨格>
 本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物は、シクロヘキシル環を有するアミン化合物に由来する骨格を有することが好ましい。上記第1の化合物は、上記シクロヘキシル環を有するアミン化合物に由来する骨格として、以下のダイマージアミンに由来する第2の骨格を有していてもよく、以下のダイマージアミンとは異なりかつシクロヘキシル環を有するアミン化合物に由来する第3の骨格を有していてもよく、上記第2の骨格と上記第3の骨格とを有していてもよい。
<Skeleton derived from an amine compound having a cyclohexyl ring>
From the viewpoint of exerting the effects of the present invention even more effectively, the first compound preferably has a skeleton derived from an amine compound having a cyclohexyl ring. The first compound may have a second skeleton derived from the following dimer diamine as a skeleton derived from the amine compound having a cyclohexyl ring, and is different from the following dimer diamine and has a cyclohexyl ring. It may have a third skeleton derived from the amine compound having, and may have the second skeleton and the third skeleton.
 (第2の骨格)
 上記第1の化合物は、上記シクロヘキシル環を有するアミン化合物に由来する骨格として、ダイマージアミンに由来する第2の骨格を有することが好ましい。この場合には、硬化物の誘電正接をより一層低くすることができ、また、樹脂材料の柔軟性及び伸びをより一層高めることができる。さらに、高周波での誘電正接及び高温での誘電正接を低くすることができる。また誘電率も低くすることができ、絶縁性の向上も期待できる。
(Second skeleton)
The first compound preferably has a second skeleton derived from dimerdiamine as a skeleton derived from the amine compound having a cyclohexyl ring. In this case, the dielectric loss tangent of the cured product can be further lowered, and the flexibility and elongation of the resin material can be further increased. Further, the dielectric loss tangent at high frequency and the dielectric loss tangent at high temperature can be lowered. In addition, the dielectric constant can be lowered, and improvement in insulating properties can be expected.
 上記第2の骨格は、ダイマージアミンと酸二無水物との反応物に由来する骨格であることが好ましい。上記ダイマージアミンと酸二無水物との反応物に由来する骨格は、上記第2の骨格を有する。 The second skeleton is preferably a skeleton derived from a reaction product of diamine diamine and acid dianhydride. The skeleton derived from the reaction product of the diamine diamine and the acid dianhydride has the second skeleton.
 上記ダイマージアミンとしては、例えば、バーサミン551(商品名、BASFジャパン社製、3,4-ビス(1-アミノヘプチル)-6-ヘキシル-5-(1-オクテニル)シクロヘキセン)、バーサミン552(商品名、コグニクスジャパン社製、バーサミン551の水添物)、並びにPRIAMINE1075、及びPRIAMINE1074(商品名、いずれもクローダジャパン社製)等が挙げられる。 Examples of the dimer diamine include Versamine 551 (trade name, manufactured by BASF Japan Ltd., 3,4-bis (1-aminoheptyl) -6-hexyl-5- (1-octenyl) cyclohexene), Versamine 552 (trade name). , Cognix Japan Co., Ltd., hydrogenated Versamine 551), and PRIAMINE 1075, PRIAMINE 1074 (trade name, all manufactured by Croda Japan Co., Ltd.) and the like.
 上記第1の化合物が有する酸二無水物に由来する骨格となる酸二無水物は、非共役炭素-炭素二重結合を有する酸二無水物と、非共役炭素-炭素二重結合を有する酸二無水物以外の酸二無水物とを含んでいてもよい。非共役炭素-炭素二重結合を有する酸二無水物以外の酸二無水物は、非共役炭素-炭素二重結合を有さない酸二無水物である。非共役炭素-炭素二重結合を有さない酸二無水物は、芳香族骨格を有していてもよい。 The acid dianhydrides that form the skeleton derived from the acid dianhydrides of the first compound are acid dianhydrides having a non-conjugated carbon-carbon double bond and acids having a non-conjugated carbon-carbon double bond. It may contain an acid dianhydride other than the dianhydride. Acid dianhydrides other than acid dianhydrides having a non-conjugated carbon-carbon double bond are acid dianhydrides having no unconjugated carbon-carbon double bond. Acid dianhydrides that do not have a non-conjugated carbon-carbon double bond may have an aromatic skeleton.
 上記酸二無水物が、非共役炭素-炭素二重結合を有する酸二無水物を含む場合に、上記第2の骨格と上記第1の骨格とは連なっていてもよい。すなわち、上記第2の骨格におけるダイマージアミンのアミン構造を構成する窒素原子が、上記第1の骨格におけるイミド結合を構成する窒素原子であってもよい。 When the acid dianhydride contains an acid dianhydride having a non-conjugated carbon-carbon double bond, the second skeleton and the first skeleton may be connected. That is, the nitrogen atom constituting the amine structure of dimerdiamine in the second skeleton may be the nitrogen atom constituting the imide bond in the first skeleton.
 上記酸二無水物は、非共役炭素-炭素二重結合を有する酸二無水物と、非共役炭素-炭素二重結合を有する酸二無水物以外の酸二無水物とを含むことが好ましい。この2つの酸無水物の使用によって、第1の骨格と第2の骨格とは連なっていなくてもよい。 The acid dianhydride preferably contains an acid dianhydride having a non-conjugated carbon-carbon double bond and an acid dianhydride other than the acid dianhydride having a non-conjugated carbon-carbon double bond. Due to the use of these two acid anhydrides, the first skeleton and the second skeleton do not have to be connected.
 上記非共役炭素-炭素二重結合を有する酸二無水物以外の酸二無水物としては、テトラカルボン酸二無水物等が挙げられる。 Examples of the acid dianhydride other than the acid dianhydride having the non-conjugated carbon-carbon double bond include tetracarboxylic dianhydride and the like.
 上記テトラカルボン酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジメチルジフェニルシランテトラカルボン酸二無水物、3,3’,4,4’-テトラフェニルシランテトラカルボン酸二無水物、1,2,3,4-フランテトラカルボン酸二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルフィド二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルスルホン二無水物、4,4’-ビス(3,4-ジカルボキシフェノキシ)ジフェニルプロパン二無水物、3,3’,4,4’-パーフルオロイソプロピリデンジフタル酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、ビス(フタル酸)フェニルホスフィンオキサイド二無水物、p-フェニレン-ビス(トリフェニルフタル酸)二無水物、m-フェニレン-ビス(トリフェニルフタル酸)二無水物、ビス(トリフェニルフタル酸)-4,4’-ジフェニルエーテル二無水物、及びビス(トリフェニルフタル酸)-4,4’-ジフェニルメタン二無水物等が挙げられる。 Examples of the tetracarboxylic acid dianhydride include pyromellitic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride, and 3,3', 4,4'-biphenylsulfone tetra. Caroic acid dianhydride, 1,4,5,8-naphthalenetetracarboxylic acid dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 3,3', 4,4'-biphenyl ether Tetracarboxylic acid dianhydride, 3,3', 4,4'-dimethyldiphenylsilanetetracarboxylic acid dianhydride, 3,3', 4,4'-tetraphenylsilanetetracarboxylic acid dianhydride, 1,2 , 3,4-Frantetracarboxylic acid dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylsulfide dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenyl Symphonic dianhydride, 4,4'-bis (3,4-dicarboxyphenoxy) diphenylpropane dianhydride, 3,3', 4,4'-perfluoroisopropyridene diphthalic acid dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic acid dianhydride, bis (phthalic acid) phenylphosphine oxide dianhydride, p-phenylene-bis (triphenylphthalic acid) dianhydride, m-phenylene-bis (triphenyl) Examples thereof include phthalic acid) dianhydride, bis (triphenylphthalic acid) -4,4'-diphenyl ether dianhydride, and bis (triphenylphthalic acid) -4,4'-diphenylmethane dianhydride.
 溶解性を高め、スミアをより一層効果的に除去する観点、及び耐熱性を高める観点からは、上記酸二無水物は、非共役炭素-炭素二重結合を有する酸二無水物と、芳香族骨格を有する酸二無水物との双方を含むことが好ましい。溶解性を高め、スミアをより一層効果的に除去する観点、及び耐熱性を高める観点からは、上記第1の化合物は、非共役炭素-炭素二重結合を有する酸二無水物に由来する骨格と、芳香族骨格を有する酸二無水物に由来する骨格との双方を有することが好ましい。 From the viewpoint of increasing solubility, removing smear more effectively, and enhancing heat resistance, the acid dianhydride is an acid dianhydride having a non-conjugated carbon-carbon double bond and an aromatic dianhydride. It preferably contains both an acid dianhydride having a skeleton. From the viewpoint of increasing solubility, removing smear more effectively, and enhancing heat resistance, the first compound is a skeleton derived from an acid dianhydride having a non-conjugated carbon-carbon double bond. It is preferable to have both a skeleton derived from an acid dianhydride having an aromatic skeleton and a skeleton derived from an acid dianhydride.
 ダイマージアミンは、ジアミン化合物である。上記第1の化合物は、ダイマージアミンとは異なるジアミン化合物に由来する骨格を有していてもよい。上記ダイマージアミンとは異なるジアミン化合物は、ダイマージアミンとは異なりかつシクロヘキシル環を有するジアミン化合物であってもよく、ダイマージアミンとは異なりかつシクロヘキシル環を有するジアミン化合物以外のジアミン化合物であってもよい。上記第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、上記第2の骨格の平均割合は、好ましくは10モル%以上、より好ましくは15モル%以上、更に好ましくは20モル%以上である。上記第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、上記第2の骨格の平均割合は、好ましくは90モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下である。上記第2の骨格の平均割合が上記下限以上及び上記上限以下であると、硬化物の誘電正接をより一層低くし、かつ硬化物の熱寸法安定性をより一層高めることができる。 Diamine diamine is a diamine compound. The first compound may have a skeleton derived from a diamine compound different from diamine diamine. The diamine compound different from the diamine diamine may be a diamine compound different from the diamine diamine and having a cyclohexyl ring, or a diamine compound other than the diamine compound different from the diamine diamine and having a cyclohexyl ring. The average ratio of the second skeleton in 100 mol% of the structural units derived from the diamine compound contained in the first compound is preferably 10 mol% or more, more preferably 15 mol% or more, still more preferably 20 mol%. That is all. The average ratio of the second skeleton to 100 mol% of the structural unit derived from the diamine compound contained in the first compound is preferably 90 mol% or less, more preferably 60 mol% or less, still more preferably 50 mol%. It is as follows. When the average ratio of the second skeleton is equal to or higher than the lower limit and lower than the upper limit, the dielectric loss tangent of the cured product can be further lowered and the thermal dimensional stability of the cured product can be further improved.
 (第3の骨格)
 上記第1の化合物は、上記シクロヘキシル環を有するアミン化合物に由来する骨格として、ダイマージアミンとは異なりかつシクロヘキシル環を有するアミン化合物(以下、アミン化合物Aと記載することがある)に由来する第3の骨格を有することが好ましい。アミン化合物Aは、ダイマージアミンとは異なりかつシクロヘキシル環を有するアミン化合物である。したがって、上記第1の化合物は、上記シクロヘキシル環を有するアミン化合物に由来する骨格として、アミン化合物Aに由来する第3の骨格を有することが好ましい。この場合には、熱寸法安定性を高めることができまた、樹脂材料中での第1の化合物の溶解性を向上することができる上記第3の骨格は、シクロヘキシル環を有するジアミン化合物に由来する骨格であることが好ましい。
(Third skeleton)
The first compound is different from diamine diamine and is derived from an amine compound having a cyclohexyl ring (hereinafter, may be referred to as amine compound A) as a skeleton derived from the amine compound having a cyclohexyl ring. It is preferable to have the skeleton of. The amine compound A is an amine compound different from the diamine diamine and having a cyclohexyl ring. Therefore, it is preferable that the first compound has a third skeleton derived from the amine compound A as a skeleton derived from the amine compound having a cyclohexyl ring. In this case, the third skeleton capable of enhancing thermal dimensional stability and improving the solubility of the first compound in the resin material is derived from a diamine compound having a cyclohexyl ring. It is preferably a skeleton.
 上記第3の骨格は、アミン化合物Aと酸二無水物との反応物に由来する骨格であることが好ましい。上記アミン化合物Aと酸二無水物との反応物に由来する骨格は、上記第3の骨格を有する。 The third skeleton is preferably a skeleton derived from a reaction product of amine compound A and acid dianhydride. The skeleton derived from the reaction product of the amine compound A and the acid dianhydride has the third skeleton.
 上記アミン化合物Aとしては、トリシクロデカンジアミン、ノルボルナンジアミン、及び4,4’-メチレンビス(2-メチルシクロヘキシルアミン)等が挙げられる。上記アミン化合物Aは、芳香族ジアミン化合物であってもよい。また、上記アミン化合物Aは、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパンのように、熱硬化性官能基(フェノール)を有するアミン化合物であってもよい。本発明の効果をより一層効果的に発揮する観点から、上記アミン化合物Aは、ノルボルナンジアミン又はトリシクロデカンジアミンであることが好ましい。 Examples of the amine compound A include tricyclodecanediamine, norbornanediamine, and 4,4'-methylenebis (2-methylcyclohexylamine). The amine compound A may be an aromatic diamine compound. Further, the amine compound A may be an amine compound having a thermosetting functional group (phenol), such as 2,2-bis (3-amino-4-hydroxyphenyl) propane. From the viewpoint of exerting the effects of the present invention even more effectively, the amine compound A is preferably norbornane diamine or tricyclodecane diamine.
 上記酸二無水物は、非共役炭素-炭素二重結合を有する酸二無水物であってもよく、非共役炭素-炭素二重結合を有さない酸二無水物であってもよい。 The acid dianhydride may be an acid dianhydride having a non-conjugated carbon-carbon double bond or an acid dianhydride having no non-conjugated carbon-carbon double bond.
 上記酸二無水物が、非共役炭素-炭素二重結合を有する酸二無水物である場合に、上記第3の骨格と上記第1の骨格とは連なっていてもよい。すなわち、上記第3の骨格におけるアミン化合物Aのアミン構造を構成する窒素原子が、第1の骨格におけるイミド結合を構成する窒素原子であってもよい。 When the acid dianhydride is an acid dianhydride having a non-conjugated carbon-carbon double bond, the third skeleton and the first skeleton may be connected. That is, the nitrogen atom constituting the amine structure of the amine compound A in the third skeleton may be the nitrogen atom constituting the imide bond in the first skeleton.
 また、上記第3の骨格と上記第2の骨格とは連なっていてもよい。すなわち、上記第3の骨格におけるシクロヘキシル環を有するアミン化合物のアミン構造を構成する窒素原子が、上記第2の骨格におけるダイマージアミンのアミン構造を構成する窒素原子であってもよい。 Further, the third skeleton and the second skeleton may be connected to each other. That is, the nitrogen atom constituting the amine structure of the amine compound having a cyclohexyl ring in the third skeleton may be the nitrogen atom constituting the amine structure of dimerdiamine in the second skeleton.
 上記酸二無水物としては、上述した酸二無水物等が挙げられる。 Examples of the acid dianhydride include the acid dianhydride described above.
 上記第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、上記第3の骨格の平均割合は、好ましくは10モル%以上、より好ましくは40モル%以上、更に好ましくは50モル%以上であり、好ましくは85モル%以下、より好ましくは80モル%以下である。上記第3の骨格の平均割合が上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。 The average proportion of the third skeleton in 100 mol% of the structural units derived from the diamine compound contained in the first compound is preferably 10 mol% or more, more preferably 40 mol% or more, still more preferably 50 mol%. The above is preferably 85 mol% or less, and more preferably 80 mol% or less. When the average ratio of the third skeleton is equal to or higher than the lower limit and lower than the upper limit, the effect of the present invention can be exhibited even more effectively.
 上記アミン骨格の分子量が小さいほど、分子内のイミド骨格の密度が高くなるため、デスミア処理によってスミアをより一層効果的に除去することができる。 The smaller the molecular weight of the amine skeleton, the higher the density of the imide skeleton in the molecule, so smear can be removed more effectively by desmear treatment.
 <その他の骨格>
 上記第1の化合物は、マレイミド骨格を有することが好ましく、末端にマレイミド骨格を有することがより好ましく、両末端にマレイミド骨格を有することが更に好ましい。上記第1の化合物は、マレイミド化合物であることがより好ましく、ビスマレイミド化合物であることが更に好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。本発明の効果をより一層効果的に発揮する観点からは、上記両末端にマレイミド骨格を有するビスマレイミド化合物における末端の骨格100モル%中、90モル%以上がマレイミド化されていることが好ましい。マレイミド化されていない末端の骨格は、アミック酸構造になっている場合もある。ただし、上記第1の化合物は、末端にマレイミド骨格を有さないポリイミド化合物であってもよい。上記第1の化合物は、酸無水物構造を末端に有するポリイミド化合物であってもよい。
<Other skeletons>
The first compound preferably has a maleimide skeleton, more preferably has a maleimide skeleton at the ends, and even more preferably has a maleimide skeleton at both ends. The first compound is more preferably a maleimide compound, and even more preferably a bismaleimide compound. In this case, the effect of the present invention can be exhibited even more effectively. From the viewpoint of more effectively exerting the effect of the present invention, it is preferable that 90 mol% or more of the terminal skeleton of the bismaleimide compound having a maleimide skeleton at both ends is maleimided. The terminal skeleton that is not maleimided may have an amic acid structure. However, the first compound may be a polyimide compound having no maleimide skeleton at the terminal. The first compound may be a polyimide compound having an acid anhydride structure at the end.
 上記第1の化合物としては、下記式(X1)、下記式(X2)、下記式(X3)及び下記式(X4)で表されるビスマレイミド化合物、並びにそれらの構造異性体等が挙げられる。下記式(X1)及び下記式(X3)で表されるビスマレイミド化合物は、上記第1の骨格として、上記式(1B)で表される骨格を有する。下記式(X2)及び下記式(X4)で表されるビスマレイミド化合物は、上記第1の骨格として、上記式(1A)で表される骨格を有する。下記式(X1)~(X4)で表されるビスマレイミド化合物は、上記第2の骨格として、ダイマージアミンに由来する骨格を有する。下記式(X1)及び下記式(X2)で表されるビスマレイミド化合物は、上記第3の骨格として、トリシクロデカンジアミンに由来する骨格を有する。下記式(X3)及び下記式(X4)で表されるビスマレイミド化合物は、上記第3の骨格として、ノルボルナンジアミンに由来する骨格を有する。上記第1の化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物は、下記式(X1)、下記式(X2)、下記式(X3)又は下記式(X4)で表されるビスマレイミド化合物、又は、下記式(X1)、下記式(X2)、下記式(X3)又は下記式(X4)で表されるビスマレイミド化合物の構造異性体であることが好ましい。本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物は、下記式(X3)で表されるビスマレイミド化合物又はその構造異性体であるか、又は下記式(X4)で表されるビスマレイミド化合物又はその構造異性体であることが好ましい。上記第1の化合物は、下記式(X3)で表されるビスマレイミド化合物又はその構造異性体であってもよく、下記式(X4)で表されるビスマレイミド化合物又はその構造異性体であってもよい。なお、構造異性体とは、各構造単位の配列の異なる異性体、及び各繰り返し構造単位数の異なる異性体を意味する。 Examples of the first compound include bismaleimide compounds represented by the following formulas (X1), the following formulas (X2), the following formulas (X3) and the following formulas (X4), structural isomers thereof, and the like. The bismaleimide compound represented by the following formula (X1) and the following formula (X3) has a skeleton represented by the above formula (1B) as the first skeleton. The bismaleimide compound represented by the following formula (X2) and the following formula (X4) has a skeleton represented by the above formula (1A) as the first skeleton. The bismaleimide compounds represented by the following formulas (X1) to (X4) have a skeleton derived from dimerdiamine as the second skeleton. The bismaleimide compound represented by the following formula (X1) and the following formula (X2) has a skeleton derived from tricyclodecanediamine as the third skeleton. The bismaleimide compound represented by the following formula (X3) and the following formula (X4) has a skeleton derived from norbornane diamine as the third skeleton. As the first compound, only one kind may be used, or two or more kinds may be used in combination. From the viewpoint of exerting the effects of the present invention even more effectively, the first compound is represented by the following formula (X1), the following formula (X2), the following formula (X3) or the following formula (X4). It is preferably a bismaleimide compound or a structural isomer of a bismaleimide compound represented by the following formula (X1), the following formula (X2), the following formula (X3) or the following formula (X4). From the viewpoint of exerting the effects of the present invention even more effectively, the first compound is a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof, or the following formula (X4). It is preferably a bismaleimide compound represented by or a structural isomer thereof. The first compound may be a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof, or a bismaleimide compound represented by the following formula (X4) or a structural isomer thereof. May be good. The structural isomer means an isomer having a different sequence of each structural unit and an isomer having a different number of each repeating structural unit.
 なお、下記式(X1)~(X4)中の各繰り返し構造単位数は、特に限定されない。また、下記式(X1)では、トリシクロデカンジアミンに由来する骨格における特定の炭素原子が、第1の骨格、第2の骨格及びマレイミド骨格と結合しているが、下記式(X2)のように、結合する炭素原子は特に限定されない。上記第1の化合物は、下記式(X1)~(X4)で表されるビスマレイミド化合物の構造異性体を含んでいてもよい。また、トリシクロデカンジアミン又はノルボルナンジアミンに由来する骨格(第3の骨格)も、構造異性体の骨格を含んでいてもよい。また、ダイマージアミンも構造異性体を含んでいてもよい。したがって、上記第1の化合物は、下記式(X1)~(X4)で表されるビスマレイミド化合物の各構造単位がランダムに配置された化合物を含んでいてもよく、下記式(X1)~(X4)で表されるビスマレイミド化合物の各繰り返し構造単位数が異なる化合物を含んでいてもよく、必ずしも下記の配列順の構造に限定されない。 The number of repeating structural units in the following formulas (X1) to (X4) is not particularly limited. Further, in the following formula (X1), a specific carbon atom in the skeleton derived from tricyclodecanediamine is bonded to the first skeleton, the second skeleton and the maleimide skeleton. In addition, the carbon atom to be bonded is not particularly limited. The first compound may contain structural isomers of bismaleimide compounds represented by the following formulas (X1) to (X4). Further, the skeleton derived from tricyclodecanediamine or norbornanediamine (third skeleton) may also contain a skeleton of structural isomers. Diamine diamine may also contain structural isomers. Therefore, the first compound may include a compound in which each structural unit of the bismaleimide compound represented by the following formulas (X1) to (X4) is randomly arranged, and the following formulas (X1) to (X1) to ( The bismaleimide compound represented by X4) may contain a compound having a different number of repeating structural units, and is not necessarily limited to the structure in the following sequence order.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記第1の化合物は、ベンゾオキサジン骨格を有することが好ましく、末端にベンゾオキサジン骨格を有することがより好ましく、両末端にベンゾオキサジン骨格を有することが更に好ましい。この場合には、本発明の効果をより一層効果的に発揮することができる。 The first compound preferably has a benzoxazine skeleton, more preferably has a benzoxazine skeleton at the terminal, and further preferably has a benzoxazine skeleton at both ends. In this case, the effect of the present invention can be exhibited even more effectively.
 本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物は、両末端にマレイミド骨格を有するか、又は、両末端にベンゾオキサジン骨格を有することが好ましい。本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物は、両末端にマレイミド骨格を有することがより好ましい。 From the viewpoint of exerting the effects of the present invention even more effectively, it is preferable that the first compound has a maleimide skeleton at both ends or a benzoxazine skeleton at both ends. From the viewpoint of exerting the effects of the present invention even more effectively, it is more preferable that the first compound has a maleimide skeleton at both ends.
 本発明の効果をより一層効果的に発揮する観点からは、上記第1の化合物は、ビフェニル酸二無水物に由来する骨格を有することが好ましい。 From the viewpoint of exerting the effects of the present invention even more effectively, it is preferable that the first compound has a skeleton derived from biphenylic dianhydride.
 上記第1の化合物の分子量は、好ましくは1000以上、より好ましくは3000以上、更に好ましくは4000以上、特に好ましくは5000以上であり、好ましくは50000以下、より好ましくは20000以下、更に好ましくは10000以下、特に好ましくは8500以下である。上記第1の化合物の分子量は、6500以下であってもよい。上記第1の化合物の分子量が上記下限以上及び上記上限以下であると、熱寸法安定性を高めることができ、また、樹脂フィルムのパターン基板への埋め込み性を向上させることができる。さらに、樹脂材料が無機充填材を50重量%以上で含む樹脂フィルムである場合に、該樹脂フィルムの表面の均一性を高めることができる。 The molecular weight of the first compound is preferably 1000 or more, more preferably 3000 or more, still more preferably 4000 or more, particularly preferably 5000 or more, preferably 50,000 or less, more preferably 20000 or less, still more preferably 10000 or less. , Especially preferably 8500 or less. The molecular weight of the first compound may be 6500 or less. When the molecular weight of the first compound is not less than the above lower limit and not more than the above upper limit, the thermal dimensional stability can be improved, and the embedding property of the resin film in the pattern substrate can be improved. Further, when the resin material is a resin film containing an inorganic filler in an amount of 50% by weight or more, the uniformity of the surface of the resin film can be improved.
 上記第1の化合物の分子量は、上記第1の化合物が重合体ではない場合、及び上記第1の化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記第1の化合物の分子量は、上記第1の化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The molecular weight of the first compound means a molecular weight that can be calculated from the structural formula when the first compound is not a polymer and when the structural formula of the first compound can be specified. The molecular weight of the first compound indicates the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC) when the first compound is a polymer.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記第1の化合物の含有量は、好ましくは10重量%以上、より好ましくは25重量%以上、更に好ましくは35重量%以上であり、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは60重量%以下である。上記第1の化合物の含有量が上記下限以上であると、本発明の効果をより一層効果的に発揮することができる。また、上記第1の化合物の含有量が上記下限以上であると、エッチング後の表面粗度を良好にすることができ、メッキピール強度を高めることができる。また、上記第1の化合物の含有量が上記下限以上であると、硬化物の誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高めることができる。 The content of the first compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 10% by weight or more, more preferably 25% by weight or more, still more preferably 35% by weight or more. It is preferably 90% by weight or less, more preferably 80% by weight or less, and further preferably 60% by weight or less. When the content of the first compound is at least the above lower limit, the effect of the present invention can be exhibited even more effectively. Further, when the content of the first compound is at least the above lower limit, the surface roughness after etching can be improved, and the plating peel strength can be increased. Further, when the content of the first compound is at least the above lower limit, the dielectric loss tangent of the cured product can be further lowered, and the thermal dimensional stability of the cured product can be further improved.
 [第2の熱硬化性化合物(第2の化合物)]
 上記樹脂材料は、第2の熱硬化性化合物を含むことが好ましい。上記樹脂材料では、上記第1の化合物が第1の熱硬化性化合物であり、第2の化合物として、第2の熱硬化性化合物を含むことが好ましい。上記第1の熱硬化性化合物は、上記第1の化合物である。上記樹脂材料は、上記第1の熱硬化性化合物として、上記第1の化合物を含むことが好ましい。上記第2の熱硬化性化合物としては、エポキシ化合物、マレイミド化合物及びビニル化合物等が挙げられる。
[Second thermosetting compound (second compound)]
The resin material preferably contains a second thermosetting compound. In the resin material, it is preferable that the first compound is the first thermosetting compound and the second compound contains a second thermosetting compound. The first thermosetting compound is the first compound. The resin material preferably contains the first compound as the first thermosetting compound. Examples of the second thermosetting compound include epoxy compounds, maleimide compounds, vinyl compounds and the like.
 <エポキシ化合物>
 上記樹脂材料は、エポキシ化合物を含むことが好ましい。上記エポキシ化合物として、従来公知のエポキシ化合物を使用可能である。上記エポキシ化合物は、少なくとも1個のエポキシ基を有する有機化合物である。上記エポキシ化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Epoxy compound>
The resin material preferably contains an epoxy compound. As the epoxy compound, a conventionally known epoxy compound can be used. The epoxy compound is an organic compound having at least one epoxy group. Only one type of the epoxy compound may be used, or two or more types may be used in combination.
 上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。 Examples of the epoxy compound include bisphenol A type epoxy compound, bisphenol F type epoxy compound, bisphenol S type epoxy compound, phenol novolac type epoxy compound, biphenyl type epoxy compound, biphenyl novolac type epoxy compound, biphenol type epoxy compound, and naphthalene type epoxy compound. , Fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound with adamantan skeleton, epoxy compound with tricyclodecane skeleton, naphthylene ether type Examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus as a skeleton.
 上記エポキシ化合物は、グリシジルエーテル化合物であってもよい。上記グリシジルエーテル化合物とは、グリシジルエーテル基を少なくとも1個有する化合物である。 The epoxy compound may be a glycidyl ether compound. The glycidyl ether compound is a compound having at least one glycidyl ether group.
 硬化物の誘電正接をより一層低くし、かつ硬化物の熱寸法安定性及び難燃性を高める観点からは、上記エポキシ化合物は、芳香族骨格を有するエポキシ化合物を含むことが好ましく、ナフタレン骨格又はフェニル骨格を有するエポキシ化合物を含むことが好ましく、芳香族骨格を有するエポキシ化合物であることがより好ましい。硬化物の誘電正接を一層低くする観点からは、上記エポキシ化合物は、ナフタレン骨格又は多分岐脂肪族骨格を有するエポキシ化合物を含むことが特に好ましい。 From the viewpoint of further lowering the dielectric adjacency of the cured product and enhancing the thermal dimensional stability and flame retardancy of the cured product, the epoxy compound preferably contains an epoxy compound having an aromatic skeleton, and has a naphthalene skeleton or a naphthalene skeleton. It is preferable to contain an epoxy compound having a phenyl skeleton, and more preferably an epoxy compound having an aromatic skeleton. From the viewpoint of further lowering the dielectric loss tangent of the cured product, it is particularly preferable that the epoxy compound contains an epoxy compound having a naphthalene skeleton or a multi-branched aliphatic skeleton.
 デスミア処理によってスミアをより一層効果的に除去する観点から、上記エポキシ化合物は、ブタジエン骨格を有するエポキシ化合物を含むことが好ましい。デスミア処理によってスミアをより一層効果的に除去し、硬化物の誘電正接をより一層低くし、かつ硬化物の熱寸法安定性をより一層高める観点、及び、上記第1の化合物との相溶性を高める観点からは、上記エポキシ化合物は、イミド結合又はアミド結合を有するエポキシ化合物を含むことが好ましい。上記エポキシ化合物は、フッ素原子を有するエポキシ化合物であってもよい。 From the viewpoint of removing smear more effectively by desmear treatment, the epoxy compound preferably contains an epoxy compound having a butadiene skeleton. From the viewpoint of removing smear more effectively by desmear treatment, further lowering the dielectric adjacency of the cured product, further enhancing the thermal dimensional stability of the cured product, and compatibility with the first compound. From the viewpoint of enhancing, the epoxy compound preferably contains an epoxy compound having an imide bond or an amide bond. The epoxy compound may be an epoxy compound having a fluorine atom.
 硬化物の誘電正接をより一層低くし、かつ硬化物の線膨張係数(CTE)を良好にする観点からは、上記エポキシ化合物は、25℃で液状のエポキシ化合物と、25℃で固形のエポキシ化合物とを含むことが好ましい。 From the viewpoint of further lowering the dielectric loss tangent of the cured product and improving the coefficient of linear expansion (CTE) of the cured product, the epoxy compounds are a liquid epoxy compound at 25 ° C. and a solid epoxy compound at 25 ° C. And are preferably included.
 上記25℃で液状のエポキシ化合物の25℃での粘度は、1000mPa・s以下であることが好ましく、500mPa・s以下であることがより好ましい。 The viscosity of the epoxy compound liquid at 25 ° C. at 25 ° C. is preferably 1000 mPa · s or less, and more preferably 500 mPa · s or less.
 上記エポキシ化合物の粘度は、例えば動的粘弾性測定装置(レオロジカ・インスツルメンツ社製「VAR-100」)等を用いて測定することができる。 The viscosity of the epoxy compound can be measured using, for example, a dynamic viscoelasticity measuring device (“VAR-100” manufactured by Leologica Instruments) or the like.
 上記エポキシ化合物の分子量は1000以下であることがより好ましい。この場合には、樹脂材料中の溶剤を除く成分100重量%中、無機充填材の含有量が50重量%以上であっても、絶縁層の形成時に流動性が高い樹脂材料が得られる。このため、樹脂材料の未硬化物又はBステージ化物を回路基板上にラミネートした場合に、無機充填材を均一に存在させることができる。 The molecular weight of the epoxy compound is more preferably 1000 or less. In this case, even if the content of the inorganic filler is 50% by weight or more in 100% by weight of the component excluding the solvent in the resin material, a resin material having high fluidity at the time of forming the insulating layer can be obtained. Therefore, when the uncured resin material or the B-staged product is laminated on the circuit board, the inorganic filler can be uniformly present.
 上記エポキシ化合物の分子量は、上記エポキシ化合物が重合体ではない場合、及び上記エポキシ化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記エポキシ化合物が重合体である場合は、重量平均分子量を意味する。 The molecular weight of the epoxy compound means a molecular weight that can be calculated from the structural formula when the epoxy compound is not a polymer and the structural formula of the epoxy compound can be specified. When the epoxy compound is a polymer, it means the weight average molecular weight.
 硬化物の熱寸法安定性をより一層高める観点からは、樹脂材料中の溶剤を除く成分100重量%中、上記エポキシ化合物の含有量は、好ましくは4重量%以上、より好ましくは7重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下である。 From the viewpoint of further enhancing the thermal dimensional stability of the cured product, the content of the epoxy compound is preferably 4% by weight or more, more preferably 7% by weight or more, based on 100% by weight of the components excluding the solvent in the resin material. It is preferably 20% by weight or less, and more preferably 15% by weight or less.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記エポキシ化合物の含有量は、好ましくは15重量%以上、より好ましくは25重量%以上であり、好ましくは60重量%以下、より好ましくは50重量%以下である。上記エポキシ化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の熱寸法安定性をより一層高めることができる。 The content of the epoxy compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 15% by weight or more, more preferably 25% by weight or more, and preferably 60% by weight or less. More preferably, it is 50% by weight or less. When the content of the epoxy compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
 上記エポキシ化合物の含有量の、上記第1の化合物と後述する硬化剤との合計の含有量に対する重量比(エポキシ化合物の含有量/第1の化合物と後述する硬化剤との合計の含有量)は、好ましくは0.3以上、より好ましくは0.5以上であり、好ましくは1以下、より好ましくは0.85以下である。上記重量比が上記下限以上及び上記上限以下であると、誘電正接をより一層低くし、熱寸法安定性をより一層高めることができる。 Weight ratio of the content of the epoxy compound to the total content of the first compound and the curing agent described later (content of the epoxy compound / total content of the first compound and the curing agent described later) Is preferably 0.3 or more, more preferably 0.5 or more, preferably 1 or less, and more preferably 0.85 or less. When the weight ratio is at least the above lower limit and at least the above upper limit, the dielectric loss tangent can be further lowered and the thermal dimensional stability can be further improved.
 <マレイミド化合物>
 上記樹脂材料は、マレイミド化合物を含むことが好ましい。上記マレイミド化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。なお、上記マレイミド化合物は、上記第1の化合物とは異なる。上記マレイミド化合物は、非共役炭素-炭素二重結合を有する酸無水物に由来し、かつイミド結合を有する第1の骨格を有する化合物(第1の化合物)を除く化合物である。
<Maleimide compound>
The resin material preferably contains a maleimide compound. Only one type of the maleimide compound may be used, or two or more types may be used in combination. The maleimide compound is different from the first compound. The maleimide compound is a compound derived from an acid anhydride having a non-conjugated carbon-carbon double bond and excluding a compound having a first skeleton having an imide bond (first compound).
 上記マレイミド化合物は、ビスマレイミド化合物であってもよい。また、上記マレイミド化合物は、脂肪族マレイミド化合物であってもよく、芳香族マレイミド化合物であってもよい。 The maleimide compound may be a bismaleimide compound. Further, the maleimide compound may be an aliphatic maleimide compound or an aromatic maleimide compound.
 上記マレイミド化合物としては、N-フェニルマレイミド及びN-アルキルビスマレイミド等が挙げられる。 Examples of the maleimide compound include N-phenylmaleimide and N-alkylbismaleimide.
 上記マレイミド化合物は、ダイマージアミンに由来する骨格を有していてもよく、有していなくてもよい。 The maleimide compound may or may not have a skeleton derived from dimerdiamine.
 上記マレイミド化合物は、芳香族環を有することが好ましい。 The maleimide compound preferably has an aromatic ring.
 上記マレイミド化合物では、マレイミド骨格における窒素原子と、芳香族環とが結合していることが好ましい。 In the above maleimide compound, it is preferable that the nitrogen atom in the maleimide skeleton and the aromatic ring are bonded.
 上記マレイミド化合物の分子量は、好ましくは500以上、より好ましくは1000以上、更に好ましくは3000以上、特に好ましくは4000以上、最も好ましくは5000以上であり、好ましくは30000未満、より好ましくは20000未満、更に好ましくは15000未満、特に好ましくは8500未満である。上記マレイミド化合物の分子量が、上記下限以上及び上記上限未満であると、本発明の効果がより一層効果的に発揮される。 The molecular weight of the maleimide compound is preferably 500 or more, more preferably 1000 or more, still more preferably 3000 or more, particularly preferably 4000 or more, most preferably 5000 or more, preferably less than 30,000, more preferably less than 20,000, and further. It is preferably less than 15,000, particularly preferably less than 8500. When the molecular weight of the maleimide compound is not less than the above lower limit and less than the above upper limit, the effect of the present invention is exhibited even more effectively.
 上記マレイミド化合物の分子量は、上記マレイミド化合物が重合体ではない場合、及び上記マレイミド化合物の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記マレイミド化合物の分子量は、上記マレイミド化合物が重合体である場合は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The molecular weight of the maleimide compound means a molecular weight that can be calculated from the structural formula when the maleimide compound is not a polymer and when the structural formula of the maleimide compound can be specified. The molecular weight of the maleimide compound indicates the weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC) when the maleimide compound is a polymer.
 上記脂肪族マレイミド化合物の市販品としては、例えば、Designer Molecules Inc.製「BMI-3000」及び「BMI-1700」等が挙げられる。 Examples of commercially available products of the above-mentioned aliphatic maleimide compound include Designer Molecules Inc. Examples thereof include "BMI-3000" and "BMI-1700" manufactured by Japan.
 上記芳香族マレイミド化合物の市販品としては、例えば、大和化成工業社製「BMI-4000」及び「BMI-5100」、並びに日本化薬社製「MIR-3000」が挙げられる。 Examples of commercially available products of the aromatic maleimide compound include "BMI-4000" and "BMI-5100" manufactured by Daiwa Kasei Kogyo Co., Ltd. and "MIR-3000" manufactured by Nippon Kayaku Co., Ltd.
 樹脂材料中の溶剤を除く成分100重量%中、上記マレイミド化合物の含有量は、好ましくは0.5重量%以上、より好ましくは1重量%以上であり、好ましくは15重量%以下、より好ましくは10重量%以下である。上記マレイミド化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高くすることができる。 The content of the maleimide compound in 100% by weight of the component excluding the solvent in the resin material is preferably 0.5% by weight or more, more preferably 1% by weight or more, preferably 15% by weight or less, more preferably. It is 10% by weight or less. When the content of the maleimide compound is at least the above lower limit and at least the above upper limit, the dielectric loss tangent of the cured product can be further lowered, and the thermal dimensional stability of the cured product can be further improved.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記マレイミド化合物の含有量は、好ましくは2.5重量%以上、より好ましくは5重量%以上、更に好ましくは7.5重量%以上であり、好ましくは50重量%以下、より好ましくは35重量%以下である。上記マレイミド化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の誘電正接をより一層低くすることができ、また、硬化物の熱寸法安定性をより一層高くすることができる。 The content of the maleimide compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 2.5% by weight or more, more preferably 5% by weight or more, still more preferably 7.5% by weight. % Or more, preferably 50% by weight or less, and more preferably 35% by weight or less. When the content of the maleimide compound is at least the above lower limit and at least the above upper limit, the dielectric loss tangent of the cured product can be further lowered, and the thermal dimensional stability of the cured product can be further improved.
 <ビニル化合物>
 上記樹脂材料は、ビニル化合物を含むことが好ましい。上記ビニル化合物は、少なくとも1個のビニル基を有する有機化合物である。上記ビニル化合物としては、スチレン化合物、アクリレート化合物、及びジビニル化合物等が挙げられる。上記スチレン化合物としては、末端がスチレン変性されたフェニレンエーテル化合物等が挙げられる。上記スチレン化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。上記ジビニル化合物としては、ジビニルベンジルエーテル化合物等が挙げられる。上記ジビニル化合物は、脂肪族骨格を有するジビニル化合物であってもよく、ジビニルエーテル化合物であってもよい。上記ビニル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
<Vinyl compound>
The resin material preferably contains a vinyl compound. The vinyl compound is an organic compound having at least one vinyl group. Examples of the vinyl compound include styrene compounds, acrylate compounds, and divinyl compounds. Examples of the styrene compound include a phenylene ether compound having a styrene-modified terminal. Only one kind of the styrene compound may be used, or two or more kinds may be used in combination. Examples of the divinyl compound include a divinylbenzyl ether compound and the like. The divinyl compound may be a divinyl compound having an aliphatic skeleton or a divinyl ether compound. Only one kind of the vinyl compound may be used, or two or more kinds thereof may be used in combination.
 ビニル化合物はラジカル硬化性化合物であってもよく、熱硬化性化合物であってもよい。熱硬化性化合物のビニル化合物の市販品としては、三菱ガス化学社製「OPE-2St-1200(スチレン化合物)」、共栄社化学社製「ライトアクリレートDCP-A」等が挙げられる。 The vinyl compound may be a radical curable compound or a thermosetting compound. Examples of commercially available thermosetting vinyl compounds include "OPE-2St-1200 (styrene compound)" manufactured by Mitsubishi Gas Chemical Company, Inc. and "Light Acrylate DCP-A" manufactured by Kyoeisha Chemical Co., Ltd.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ビニル化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは20重量%以上であり、好ましくは80重量%以下、より好ましくは70重量%以下である。上記ビニル化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の熱寸法安定性をより一層高めることができる。 The content of the vinyl compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 20% by weight or more. It is preferably 80% by weight or less, more preferably 70% by weight or less. When the content of the vinyl compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
 [無機充填材]
 上記樹脂材料は、無機充填材を含むことが好ましい。上記無機充填材の使用により、硬化物の誘電正接をより一層低くすることができる。また、上記無機充填材の使用により、硬化物の熱による寸法変化がより一層小さくなる。上記無機充填材は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Inorganic filler]
The resin material preferably contains an inorganic filler. By using the above-mentioned inorganic filler, the dielectric loss tangent of the cured product can be further lowered. Further, by using the above-mentioned inorganic filler, the dimensional change due to heat of the cured product is further reduced. Only one kind of the above-mentioned inorganic filler may be used, or two or more kinds may be used in combination.
 上記無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム、窒化ホウ素及びダイヤモンド等が挙げられる。 Examples of the inorganic filler include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, aluminum nitride, boron nitride and diamond.
 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物により良好な絶縁信頼性を付与する観点からは、上記無機充填材は、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、また、硬化物の誘電正接がより一層低くなる。また、シリカの使用により、硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は球状であることが好ましい。 The surface roughness of the surface of the cured product is reduced, the adhesive strength between the cured product and the metal layer is further increased, finer wiring is formed on the surface of the cured product, and the cured product has better insulation reliability. From the viewpoint of imparting, the inorganic filler is preferably silica or alumina, more preferably silica, and even more preferably fused silica. The use of silica further reduces the coefficient of thermal expansion of the cured product and further reduces the dielectric loss tangent of the cured product. Further, by using silica, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. The shape of silica is preferably spherical.
 硬化環境によらず、樹脂の硬化を進め、硬化物のガラス転移温度を効果的に高くし、硬化物の熱線膨張係数を効果的に小さくする観点からは、上記無機充填材は球状シリカであることが好ましい。 The inorganic filler is spherical silica from the viewpoint of advancing the curing of the resin regardless of the curing environment, effectively increasing the glass transition temperature of the cured product, and effectively reducing the coefficient of linear thermal expansion of the cured product. Is preferable.
 熱伝導率を高め、かつ絶縁性を高める観点からは、上記無機充填材はアルミナであることが好ましい。 From the viewpoint of increasing the thermal conductivity and the insulating property, the inorganic filler is preferably alumina.
 上記無機充填材の平均粒径は、好ましくは50nm以上、より好ましくは100nm以上、更に好ましくは500nm以上であり、好ましくは5μm以下、より好ましくは3μm以下、更に好ましくは1μm以下である。上記無機充填材の平均粒径が上記下限以上及び上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性をより一層高めることができる。 The average particle size of the inorganic filler is preferably 50 nm or more, more preferably 100 nm or more, further preferably 500 nm or more, preferably 5 μm or less, more preferably 3 μm or less, still more preferably 1 μm or less. When the average particle size of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness after etching can be reduced and the plating peel strength can be increased, and the insulating layer and the metal layer can be combined. Adhesion can be further improved.
 上記無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 As the average particle size of the inorganic filler, a value of median diameter (d50) of 50% is adopted. The average particle size can be measured using a laser diffraction / scattering type particle size distribution measuring device.
 上記無機充填材は、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に硬化物と金属層との接着強度が効果的に高くなる。上記無機充填材が球状である場合には、上記無機充填材のアスペクト比は好ましくは2以下、より好ましくは1.5以下である。 The inorganic filler is preferably spherical, more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased. When the inorganic filler is spherical, the aspect ratio of the inorganic filler is preferably 2 or less, more preferably 1.5 or less.
 上記無機充填材は、表面処理されていることが好ましく、カップリング剤による表面処理物であることがより好ましく、シランカップリング剤による表面処理物であることが更に好ましい。上記無機充填材が表面処理されていることにより、粗化硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。また、上記無機充填材が表面処理されていることにより、硬化物の表面により一層微細な配線を形成することができ、かつより一層良好な配線間絶縁信頼性及び層間絶縁信頼性を硬化物に付与することができる。 The inorganic filler is preferably surface-treated, more preferably a surface-treated product with a coupling agent, and even more preferably a surface-treated product with a silane coupling agent. By surface-treating the inorganic filler, the surface roughness of the surface of the roughened cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased. Further, since the inorganic filler is surface-treated, finer wiring can be formed on the surface of the cured product, and even better inter-wiring insulation reliability and interlayer insulation reliability can be obtained in the cured product. Can be granted.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン、及びエポキシシラン等が挙げられる。 Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, and the like. Examples of the silane coupling agent include methacrylsilane, acrylicsilane, aminosilane, imidazolesilane, vinylsilane, and epoxysilane.
 樹脂材料中の溶剤を除く成分100重量%中、上記無機充填材の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは65重量%以上、特に好ましくは68重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは75重量%以下である。上記無機充填材の含有量が上記下限以上であると、誘電正接が効果的に低くなる。上記無機充填材の含有量が上記上限以下であると、熱寸法安定性を高め、硬化物の反りを効果的に抑えることができる。上記無機充填材の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さをより一層小さくすることができ、かつ硬化物の表面により一層微細な配線を形成することができる。さらに、この無機充填材の含有量であれば、硬化物の熱膨張率を低くすることと同時に、スミア除去性を良好にすることも可能である。 The content of the inorganic filler in 100% by weight of the component excluding the solvent in the resin material is preferably 50% by weight or more, more preferably 60% by weight or more, still more preferably 65% by weight or more, and particularly preferably 68% by weight. % Or more, preferably 90% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, and particularly preferably 75% by weight or less. When the content of the inorganic filler is at least the above lower limit, the dielectric loss tangent is effectively lowered. When the content of the inorganic filler is not more than the above upper limit, the thermal dimensional stability can be improved and the warpage of the cured product can be effectively suppressed. When the content of the inorganic filler is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product can be further reduced, and finer wiring can be formed on the surface of the cured product. Can be done. Further, the content of this inorganic filler makes it possible to reduce the coefficient of thermal expansion of the cured product and at the same time improve the smear removability.
 [硬化剤]
 上記樹脂材料は、硬化剤を含むことが好ましい。上記硬化剤は特に限定されない。上記硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing agent]
The resin material preferably contains a curing agent. The curing agent is not particularly limited. Conventionally known curing agents can be used as the curing agent. Only one kind of the above-mentioned curing agent may be used, or two or more kinds may be used in combination.
 上記硬化剤としては、フェノール化合物(フェノール硬化剤)、活性エステル化合物、シアネートエステル化合物(シアネートエステル硬化剤)、ベンゾオキサジン化合物(ベンゾオキサジン硬化剤)、カルボジイミド化合物(カルボジイミド硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、ホスフィン化合物、ジシアンジアミド、及び酸無水物等が挙げられる。上記硬化剤は、上記エポキシ化合物のエポキシ基と反応可能な官能基を有することが好ましい。 Examples of the curing agent include a phenol compound (phenol curing agent), an active ester compound, a cyanate ester compound (cyanate ester curing agent), a benzoxazine compound (benzoxazine curing agent), a carbodiimide compound (carbodiimide curing agent), and an amine compound (amine). Hardener), thiol compound (thiol hardener), phosphine compound, dicyandiamide, acid anhydride and the like. The curing agent preferably has a functional group capable of reacting with the epoxy group of the epoxy compound.
 硬化物の誘電正接を一層低くする観点及び硬化物の熱寸法安定性をより一層高める観点から、上記硬化剤は、フェノール化合物、活性エステル化合物、シアネートエステル化合物、ベンゾオキサジン化合物、カルボジイミド化合物及び酸無水物の内の少なくとも1種の成分を含むことが好ましい。誘電正接を一層低くする観点及び熱寸法安定性をより一層高める観点から、上記硬化剤は、フェノール化合物、活性エステル化合物、シアネートエステル化合物、ベンゾオキサジン化合物、及びカルボジイミド化合物の内の少なくとも1種の成分を含むことがより好ましく、活性エステル化合物を含むことが更に好ましい。 From the viewpoint of further lowering the dielectric adjacency of the cured product and further enhancing the thermal dimensional stability of the cured product, the curing agent includes a phenol compound, an active ester compound, a cyanate ester compound, a benzoxazine compound, a carbodiimide compound and an acid anhydride. It is preferable to contain at least one component in the substance. From the viewpoint of further lowering the dielectric adjacency and further enhancing the thermal dimensional stability, the curing agent is a component of at least one of a phenol compound, an active ester compound, a cyanate ester compound, a benzoxazine compound, and a carbodiimide compound. Is more preferable, and it is more preferable to contain an active ester compound.
 熱寸法安定性をより一層高め、誘電正接を一層低くし、メッキピール強度を高める観点から、上記樹脂材料は、エポキシ化合物を含み、上記硬化剤として、フェノール化合物と活性エステル化合物との双方を含むことが好ましい。 From the viewpoint of further improving thermal dimensional stability, further lowering the dielectric loss tangent, and increasing the plating peel strength, the resin material contains an epoxy compound, and the curing agent contains both a phenol compound and an active ester compound. Is preferable.
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。 Examples of the phenol compound include novolak-type phenol, biphenol-type phenol, naphthalene-type phenol, dicyclopentadiene-type phenol, aralkyl-type phenol, and dicyclopentadiene-type phenol.
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA-1356」及び「LA-3018-50P」)等が挙げられる。 Commercially available products of the above phenol compounds include novolak-type phenol (“TD-2091” manufactured by DIC), biphenyl novolac-type phenol (“MEH-7851” manufactured by Meiwakasei Co., Ltd.), and aralkyl-type phenol compound (“MEH” manufactured by Meiwakasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton ("LA-1356" and "LA-3018-50P" manufactured by DIC) and the like can be mentioned.
 上記活性エステル化合物とは、構造体中にエステル結合を少なくとも1つ含み、かつ、エステル結合の両側に脂肪族鎖、脂肪族環又は芳香族環が結合している化合物をいう。活性エステル化合物は、例えばカルボン酸化合物又はチオカルボン酸化合物と、ヒドロキシ化合物又はチオール化合物との縮合反応によって得られる。活性エステル化合物の例としては、下記式(1)で表される化合物が挙げられる。 The active ester compound is a compound containing at least one ester bond in the structure and having an aliphatic chain, an aliphatic ring or an aromatic ring bonded to both sides of the ester bond. The active ester compound is obtained, for example, by a condensation reaction of a carboxylic acid compound or a thiocarboxylic acid compound with a hydroxy compound or a thiol compound. Examples of the active ester compound include a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(1)中、X1は、脂肪族鎖を含む基、脂肪族環を含む基又は芳香族環を含む基を表し、X2は、芳香族環を含む基を表す。上記芳香族環を含む基の好ましい例としては、置換基を有していてもよいベンゼン環、及び置換基を有していてもよいナフタレン環等が挙げられる。上記置換基としては、炭化水素基が挙げられる。該炭化水素基の炭素数は、好ましくは12以下、より好ましくは6以下、更に好ましくは4以下である。 In the above formula (1), X1 represents a group containing an aliphatic chain, a group containing an aliphatic ring or a group containing an aromatic ring, and X2 represents a group containing an aromatic ring. Preferred examples of the group containing an aromatic ring include a benzene ring which may have a substituent and a naphthalene ring which may have a substituent. Examples of the substituent include a hydrocarbon group. The hydrocarbon group has preferably 12 or less carbon atoms, more preferably 6 or less carbon atoms, and even more preferably 4 or less carbon atoms.
 上記式(1)中、X1及びX2の組み合わせとしては、置換基を有していてもよいベンゼン環と、置換基を有していてもよいベンゼン環との組み合わせ、置換基を有していてもよいベンゼン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。さらに、上記式(1)中、X1及びX2の組み合わせとしては、置換基を有していてもよいナフタレン環と、置換基を有していてもよいナフタレン環との組み合わせが挙げられる。 In the above formula (1), the combination of X1 and X2 includes a combination of a benzene ring which may have a substituent and a benzene ring which may have a substituent, and a substituent. Examples thereof include a combination of a benzene ring which may be suitable and a naphthalene ring which may have a substituent. Further, in the above formula (1), examples of the combination of X1 and X2 include a combination of a naphthalene ring which may have a substituent and a naphthalene ring which may have a substituent.
 上記活性エステル化合物は特に限定されない。熱寸法安定性及び難燃性をより一層高める観点からは、上記活性エステル化合物は、2個以上の芳香族骨格を有する活性エステル化合物であることが好ましい。硬化物の誘電正接を低くし、かつ硬化物の熱寸法安定性を高める観点から、活性エステル化合物の主鎖骨格中にナフタレン環を有することがより好ましい。樹脂材料の溶融粘度を低くし、架橋点間距離を短くし、さらに硬化物の線膨張係数をより一層小さくする観点からは、上記活性エステル化合物は、低分子活性を有するエステル化合物であることが好ましい。 The above active ester compound is not particularly limited. From the viewpoint of further enhancing thermal dimensional stability and flame retardancy, the active ester compound is preferably an active ester compound having two or more aromatic skeletons. From the viewpoint of lowering the dielectric loss tangent of the cured product and increasing the thermal dimensional stability of the cured product, it is more preferable to have a naphthalene ring in the main chain skeleton of the active ester compound. From the viewpoint of lowering the melt viscosity of the resin material, shortening the distance between the cross-linking points, and further reducing the coefficient of linear expansion of the cured product, the active ester compound may be an ester compound having low molecular activity. preferable.
 上記活性エステル化合物の市販品としては、DIC社製「HPC-8000-65T」、「EXB9416-70BK」、「EXB8100-65T」、「HPC-8150-62T」及び「EXB-8」等が挙げられる。 Examples of commercially available products of the active ester compound include "HPC-8000-65T", "EXB9416-70BK", "EXB8100-65T", "HPC-8150-62T" and "EXB-8" manufactured by DIC Corporation. ..
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。 Examples of the cyanate ester compound include a novolak type cyanate ester resin, a bisphenol type cyanate ester resin, and a prepolymer in which these are partially triquantized. Examples of the novolak type cyanate ester resin include phenol novolac type cyanate ester resin and alkylphenol type cyanate ester resin. Examples of the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethyl bisphenol F type cyanate ester resin.
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、並びにビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。 Commercially available products of the above cyanate ester compounds include a phenol novolac type cyanate ester resin (“PT-30” and “PT-60” manufactured by Lonza Japan Co., Ltd.) and a prepolymer in which a bisphenol type cyanate ester resin is triquantized (Lonza Japan). Examples thereof include "BA-230S", "BA-3000S", "BTP-1000S" and "BTP-6020S") manufactured by the same company.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記シアネートエステル化合物の含有量は、好ましくは10重量%以上、より好ましくは15重量%以上、更に好ましくは20重量%以上であり、好ましくは85重量%以下、より好ましくは75重量%以下である。上記シアネートエステル化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の熱寸法安定性をより一層高めることができる。 The content of the cyanate ester compound in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 10% by weight or more, more preferably 15% by weight or more, still more preferably 20% by weight or more. Yes, preferably 85% by weight or less, more preferably 75% by weight or less. When the content of the cyanate ester compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
 上記ベンゾオキサジン化合物としては、P-d型ベンゾオキサジン、及びF-a型ベンゾオキサジン等が挙げられる。 Examples of the benzoxazine compound include Pd-type benzoxazine and Fa-type benzoxazine.
 上記ベンゾオキサジン化合物の市販品としては、四国化成工業社製「P-d型」等が挙げられる。 Examples of commercially available products of the benzoxazine compound include "Pd type" manufactured by Shikoku Chemicals Corporation.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記ベンゾオキサジン化合物の含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上であり、好ましくは70重量%以下、より好ましくは60重量%以下である。上記ベンゾオキサジン化合物の含有量が上記下限以上及び上記上限以下であると、硬化物の熱寸法安定性をより一層高めることができる。 The content of the benzoxazine compound is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material. Yes, preferably 70% by weight or less, more preferably 60% by weight or less. When the content of the benzoxazine compound is at least the above lower limit and at least the above upper limit, the thermal dimensional stability of the cured product can be further enhanced.
 上記カルボジイミド化合物は、下記式(2)で表される構造単位を有する化合物である。下記式(2)において、右端部及び左端部は、他の基との結合部位である。上記カルボジイミド化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。 The carbodiimide compound is a compound having a structural unit represented by the following formula (2). In the following formula (2), the right end and the left end are binding sites for other groups. Only one kind of the above-mentioned carbodiimide compound may be used, or two or more kinds may be used in combination.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記式(2)中、Xは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、シクロアルキレン基に置換基が結合した基、アリーレン基、又はアリーレン基に置換基が結合した基を表し、pは1~5の整数を表す。Xが複数存在する場合、複数のXは同一であってもよく、異なっていてもよい。 In the above formula (2), X is an alkylene group, a group in which a substituent is bonded to an alkylene group, a cycloalkylene group, a group in which a substituent is bonded to a cycloalkylene group, an arylene group, or a substituent bonded to an arylene group. It represents a group, and p represents an integer from 1 to 5. When a plurality of X's exist, the plurality of X's may be the same or different.
 好適な一つの形態において、少なくとも1つのXは、アルキレン基、アルキレン基に置換基が結合した基、シクロアルキレン基、又はシクロアルキレン基に置換基が結合した基である。 In one preferred form, at least one X is an alkylene group, a group in which a substituent is attached to an alkylene group, a cycloalkylene group, or a group in which a substituent is attached to a cycloalkylene group.
 上記カルボジイミド化合物の市販品としては、日清紡ケミカル社製「カルボジライト V-02B」、「カルボジライト V-03」、「カルボジライト V-04K」、「カルボジライト V-07」、「カルボジライト V-09」、「カルボジライト 10M-SP」、及び「カルボジライト 10M-SP(改)」、並びに、ラインケミー社製「スタバクゾールP」、「スタバクゾールP400」、及び「ハイカジル510」等が挙げられる。 Commercially available products of the above carbodiimide compounds include "carbodilite V-02B", "carbodilite V-03", "carbodilite V-04K", "carbodilite V-07", "carbodilite V-09", and "carbodilite" manufactured by Nisshinbo Chemical Co., Ltd. Examples thereof include "10M-SP" and "carbodilite 10M-SP (revised)", and "Stavaxol P", "Stavaxol P400" and "Hikazil 510" manufactured by Rheinchemy.
 上記酸無水物としては、テトラヒドロフタル酸無水物、及びアルキルスチレン-無水マレイン酸共重合体等が挙げられる。 Examples of the acid anhydride include tetrahydrophthalic anhydride, alkylstyrene-maleic anhydride copolymer and the like.
 上記酸無水物の市販品としては、新日本理化社製「リカシッド TDA-100」等が挙げられる。 Examples of commercially available products of the acid anhydride include "Recasid TDA-100" manufactured by Shin Nihon Rika Co., Ltd.
 上記エポキシ化合物100重量部に対する上記硬化剤の含有量は、好ましくは70重量部以上、より好ましくは85重量部以上であり、好ましくは150重量部以下、より好ましくは120重量部以下である。上記硬化剤の含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱寸法安定性をより一層高め、残存未反応成分の揮発をより一層抑制できる。 The content of the curing agent with respect to 100 parts by weight of the epoxy compound is preferably 70 parts by weight or more, more preferably 85 parts by weight or more, preferably 150 parts by weight or less, and more preferably 120 parts by weight or less. When the content of the curing agent is not less than the above lower limit and not more than the above upper limit, the curability is further improved, the thermal dimensional stability is further enhanced, and the volatilization of the residual unreacted component can be further suppressed.
 上記樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記第1の化合物と上記エポキシ化合物と上記硬化剤との合計の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上であり、好ましくは98重量%以下、より好ましくは95重量%以下である。上記合計の含有量が上記下限以上及び上記上限以下であると、硬化性により一層優れ、熱寸法安定性をより一層高めることができる。 The total content of the first compound, the epoxy compound, and the curing agent in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material is preferably 50% by weight or more, more preferably 60. It is 9% by weight or more, preferably 98% by weight or less, and more preferably 95% by weight or less. When the total content is not less than the above lower limit and not more than the above upper limit, the curability is further improved and the thermal dimensional stability can be further improved.
 [硬化促進剤]
 上記樹脂材料は、硬化促進剤を含む。上記硬化促進剤の使用により、硬化速度がより一層速くなる。樹脂材料を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Curing accelerator]
The resin material contains a curing accelerator. By using the above-mentioned curing accelerator, the curing rate becomes even faster. By rapidly curing the resin material, the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinked density increases. The curing accelerator is not particularly limited, and conventionally known curing accelerators can be used. Only one type of the curing accelerator may be used, or two or more types may be used in combination.
 上記硬化促進剤としては、例えば、イミダゾール化合物等のアニオン性硬化促進剤、アミン化合物等のカチオン性硬化促進剤、リン化合物及び有機金属化合物等のアニオン性及びカチオン性硬化促進剤以外の硬化促進剤、並びに過酸化物等のラジカル性硬化促進剤等が挙げられる。 Examples of the curing accelerator include anionic curing accelerators such as imidazole compounds, cationic curing accelerators such as amine compounds, and curing accelerators other than anionic and cationic curing accelerators such as phosphorus compounds and organic metal compounds. , And radical curing accelerators such as peroxides.
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。 Examples of the imidazole compound include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-. 2-Methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimerite, 1-cyanoethyl-2-phenylimidazolium trimerite, 2,4-diamino-6- [2' -Methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino- 6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s -Triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-methylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-dihydroxymethylimidazole And so on.
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。 Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine, 4,4-dimethylaminopyridine and the like.
 上記リン化合物としては、トリフェニルホスフィン化合物等が挙げられる。 Examples of the phosphorus compound include triphenylphosphine compounds.
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。 Examples of the organic metal compound include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II) and trisacetylacetonate cobalt (III).
 上記過酸化物としてはジクミルペルオキシド、及びパーヘキシル25B等が挙げられる。 Examples of the peroxide include dicumyl peroxide and perhexyl 25B.
 硬化温度をより一層低く抑え、硬化物の反りを効果的に抑える観点からは、上記硬化促進剤は、上記アニオン性硬化促進剤を含むことが好ましく、上記イミダゾール化合物を含むことがより好ましい。 From the viewpoint of further suppressing the curing temperature and effectively suppressing the warp of the cured product, the curing accelerator preferably contains the anionic curing accelerator, and more preferably contains the imidazole compound.
 過酸化物である硬化促進剤とアニオン性硬化促進剤とを併用していてもよい。特にビニル化合物とエポキシ化合物とが併用される場合に、上記の2種の硬化促進剤を用いることにより、より一層良好な硬化物が得られる場合がある。 A peroxide curing accelerator and an anionic curing accelerator may be used in combination. In particular, when a vinyl compound and an epoxy compound are used in combination, a better cured product may be obtained by using the above two types of curing accelerators.
 硬化温度をより一層低く抑え、硬化物の反りを効果的に抑える観点からは、上記硬化促進剤100重量%中、上記アニオン性硬化促進剤の含有量は、好ましくは20重量%以上、より好ましくは50重量%以上、更に好ましくは70重量%以上、最も好ましくは100重量%(全量)である。したがって、上記硬化促進剤は、上記アニオン性硬化促進剤であることが最も好ましい。 From the viewpoint of further suppressing the curing temperature and effectively suppressing the warp of the cured product, the content of the anionic curing accelerator is preferably 20% by weight or more, more preferably 20% by weight or more, based on 100% by weight of the curing accelerator. Is 50% by weight or more, more preferably 70% by weight or more, and most preferably 100% by weight (total amount). Therefore, the curing accelerator is most preferably the anionic curing accelerator.
 上記熱硬化性化合物として上記ビニル化合物を用いる場合、ラジカル硬化が進行するため、上記硬化促進剤は、上記ラジカル性硬化促進剤を含むことが好ましく、ジクミルペルオキシド、又はパーへキシン25Bであることが更に好ましい。樹脂材料をプレキュア後に効率的に硬化させる場合には、1分間半減期温度が170℃以上200℃以下であるラジカル性硬化促進剤がより好ましい。1分間半減期温度が170℃以上200℃以下であるラジカル性硬化促進剤の市販品としては、日油社製「パーへキシン25B」等が挙げられる。 When the vinyl compound is used as the thermosetting compound, radical curing proceeds. Therefore, the curing accelerator preferably contains the radical curing accelerator, and is dicumyl peroxide or perhexin 25B. Is more preferable. When the resin material is efficiently cured after precure, a radical curing accelerator having a 1-minute half-life temperature of 170 ° C. or higher and 200 ° C. or lower is more preferable. Examples of commercially available products of radical curing accelerators having a one-minute half-life temperature of 170 ° C. or higher and 200 ° C. or lower include "Perhexin 25B" manufactured by NOF CORPORATION.
 上記硬化促進剤の含有量は特に限定されない。樹脂材料中の無機充填材及び溶剤を除く成分100重量%中、上記硬化促進剤の含有量は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上であり、好ましくは5重量%以下、より好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、樹脂材料が効率的に硬化する。上記硬化促進剤の含有量がより好ましい範囲であれば、樹脂材料の保存安定性がより一層高くなり、かつより一層良好な硬化物が得られる。 The content of the curing accelerator is not particularly limited. The content of the curing accelerator is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and preferably 5 in 100% by weight of the components excluding the inorganic filler and the solvent in the resin material. By weight or less, more preferably 3% by weight or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the resin material is efficiently cured. If the content of the curing accelerator is in a more preferable range, the storage stability of the resin material becomes even higher, and a better cured product can be obtained.
 [熱可塑性樹脂]
 上記樹脂材料は、熱可塑性樹脂を含むことが好ましい。上記熱可塑性樹脂としては、ポリビニルアセタール樹脂、ポリイミド樹脂、スチレンブタジエン樹脂及びフェノキシ樹脂等が挙げられる。上記熱可塑性樹脂は、脂環式熱可塑性樹脂であってもよい。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Thermoplastic resin]
The resin material preferably contains a thermoplastic resin. Examples of the thermoplastic resin include polyvinyl acetal resin, polyimide resin, styrene butadiene resin, and phenoxy resin. The thermoplastic resin may be an alicyclic thermoplastic resin. Only one type of the above-mentioned thermoplastic resin may be used, or two or more types may be used in combination.
 硬化環境によらず、誘電正接を効果的に低くし、かつ、金属配線の密着性を効果的に高める観点からは、上記熱可塑性樹脂は、フェノキシ樹脂であることが好ましい。フェノキシ樹脂の使用により、樹脂フィルムの回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。また、フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に樹脂組成物又はBステージ化物が濡れ拡がり難くなる。 The thermoplastic resin is preferably a phenoxy resin from the viewpoint of effectively lowering the dielectric loss tangent and effectively improving the adhesion of metal wiring regardless of the curing environment. By using the phenoxy resin, deterioration of embedding property in holes or irregularities of the circuit board of the resin film and non-uniformity of the inorganic filler can be suppressed. Further, by using the phenoxy resin, the melt viscosity can be adjusted, so that the dispersibility of the inorganic filler is improved, and the resin composition or the B-staged product is less likely to wet and spread in an unintended region during the curing process.
 上記樹脂材料に含まれているフェノキシ樹脂は特に限定されない。上記フェノキシ樹脂として、従来公知のフェノキシ樹脂を使用可能である。上記フェノキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The phenoxy resin contained in the above resin material is not particularly limited. As the phenoxy resin, a conventionally known phenoxy resin can be used. Only one type of the phenoxy resin may be used, or two or more types may be used in combination.
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include phenoxy resins having skeletons such as bisphenol A type skeleton, bisphenol F type skeleton, bisphenol S type skeleton, biphenyl skeleton, novolak skeleton, naphthalene skeleton and imide skeleton.
 上記フェノキシ樹脂の市販品としては、例えば、新日鉄住金化学社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。 Examples of commercially available phenoxy resins include "YP50", "YP55" and "YP70" manufactured by Nippon Steel & Sumitomo Metal Corporation, and "1256B40", "4250", "4256H40" and "4275" manufactured by Mitsubishi Chemical Corporation. , "YX6954BH30" and "YX8100BH30" and the like.
 ハンドリング性、低粗度でのメッキピール強度及び絶縁層と金属層との密着性を高める観点から、上記熱可塑性樹脂は、ポリイミド樹脂(ポリイミド化合物)であることが好ましい。 The thermoplastic resin is preferably a polyimide resin (polyimide compound) from the viewpoint of improving handleability, plating peel strength at low roughness, and adhesion between the insulating layer and the metal layer.
 溶解性を良好にする観点からは、上記ポリイミド化合物は、テトラカルボン酸二無水物とダイマージアミンとを反応させる方法によって得られたポリイミド化合物であることが好ましい。 From the viewpoint of improving the solubility, the polyimide compound is preferably a polyimide compound obtained by a method of reacting a tetracarboxylic dianhydride with a dimer diamine.
 上記テトラカルボン酸二無水物としては、上記第1の化合物の欄に記載したテトラカルボン酸二無水物等が挙げられる。 Examples of the tetracarboxylic dianhydride include the tetracarboxylic dianhydride described in the column of the first compound.
 上記ダイマージアミンとしては、上記第1の化合物の欄に記載したダイマージアミン等が挙げられる。 Examples of the diamine diamine include the diamine diamine described in the column of the first compound.
 なお、上記ポリイミド化合物は末端に、酸無水物構造、マレイミド構造、シトラコンイミド構造を有していてもよい。この場合には、上記ポリイミド化合物とエポキシ化合物とを反応させることができる。上記ポリイミド化合物とエポキシ化合物とを反応させることにより、硬化物の熱寸法安定性を高めることができる。 The polyimide compound may have an acid anhydride structure, a maleimide structure, or a citraconimide structure at the terminal. In this case, the polyimide compound and the epoxy compound can be reacted. By reacting the polyimide compound with the epoxy compound, the thermal dimensional stability of the cured product can be improved.
 保存安定性により一層優れた樹脂材料を得る観点からは、上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の重量平均分子量は、好ましくは5000以上、より好ましくは10000以上であり、好ましくは100000以下、より好ましくは50000以下である。 From the viewpoint of obtaining a resin material having more excellent storage stability, the weight average molecular weights of the thermoplastic resin, the polyimide resin, and the phenoxy resin are preferably 5000 or more, more preferably 10,000 or more, and preferably 100,000 or less. , More preferably 50,000 or less.
 上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The weight average molecular weight of the thermoplastic resin, the polyimide resin, and the phenoxy resin indicates the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 上記熱可塑性樹脂、上記ポリイミド樹脂及び上記フェノキシ樹脂の含有量は特に限定されない。樹脂材料中の上記無機充填材及び上記溶剤を除く成分100重量%中、上記熱可塑性樹脂の含有量(熱可塑性樹脂がポリイミド樹脂又はフェノキシ樹脂である場合には、ポリイミド樹脂又はフェノキシ樹脂の含有量)は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは30重量%以下、より好ましくは20重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、樹脂材料の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、樹脂フィルムの形成がより一層容易になり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の熱膨張率がより一層低くなる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。 The contents of the thermoplastic resin, the polyimide resin, and the phenoxy resin are not particularly limited. The content of the thermoplastic resin in 100% by weight of the component excluding the inorganic filler and the solvent in the resin material (when the thermoplastic resin is a polyimide resin or a phenoxy resin, the content of the polyimide resin or the phenoxy resin). ) Is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 30% by weight or less, and more preferably 20% by weight or less. When the content of the thermoplastic resin is at least the above lower limit and at least the above upper limit, the embedding property of the resin material in the holes or irregularities of the circuit board is improved. When the content of the thermoplastic resin is at least the above lower limit, the formation of the resin film becomes easier and a better insulating layer can be obtained. When the content of the thermoplastic resin is not more than the above upper limit, the coefficient of thermal expansion of the cured product becomes even lower. When the content of the thermoplastic resin is not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
 [エラストマー]
 上記樹脂材料は、エラストマーを含まないか又は含む。上記エラストマーの使用により、Bステージフィルムの柔軟性及び硬化物の柔軟性を高めることができる。上記エラストマーは、熱硬化性官能基を有していてもよい。上記エラストマーは、1種のみが用いられてもよく、2種以上が併用されてもよい。
[Elastomer]
The resin material does not contain or contains an elastomer. By using the above elastomer, the flexibility of the B stage film and the flexibility of the cured product can be increased. The elastomer may have a thermosetting functional group. Only one type of the above elastomer may be used, or two or more types may be used in combination.
 上記エラストマーとしては、ポリブタジエン構造を有するエラストマー、ポリシロキサン構造を有するエラストマー、ポリイソプレン構造を有するエラストマー、ポリイソブチレン構造を有するエラストマー、及びポリアルキレン構造を有するエラストマー等が挙げられる。上記エラストマーは、エポキシ基等の反応性の置換基を有していてもよい。 Examples of the above-mentioned elastomer include an elastomer having a polybutadiene structure, an elastomer having a polysiloxane structure, an elastomer having a polyisoprene structure, an elastomer having a polyisobutylene structure, and an elastomer having a polyalkylene structure. The elastomer may have a reactive substituent such as an epoxy group.
 [溶剤]
 上記樹脂材料は、溶剤を含まないか又は含む。上記溶剤の使用により、樹脂材料の粘度を好適な範囲に制御でき、樹脂材料の塗工性を高めることができる。また、上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
[solvent]
The resin material does not contain or contains a solvent. By using the above solvent, the viscosity of the resin material can be controlled in a suitable range, and the coatability of the resin material can be improved. Further, the solvent may be used to obtain a slurry containing the inorganic filler. Only one type of the solvent may be used, or two or more types may be used in combination.
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。 Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, and the like. Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha as a mixture.
 上記溶剤の多くは、上記樹脂組成物をフィルム状に成形するときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記樹脂組成物中の上記溶剤の含有量は特に限定されない。上記樹脂組成物の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。 Most of the above solvents are preferably removed when the above resin composition is molded into a film. Therefore, the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The content of the solvent in the resin composition is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coatability of the resin composition and the like.
 上記樹脂材料がBステージフィルムである場合には、上記Bステージフィルム100重量%中、上記溶剤の含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは10重量%以下、より好ましくは5重量%以下である。 When the resin material is a B stage film, the content of the solvent in 100% by weight of the B stage film is preferably 1% by weight or more, more preferably 2% by weight or more, and preferably 10% by weight. % Or less, more preferably 5% by weight or less.
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記樹脂材料は、有機充填材、レベリング剤、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、及び揺変性付与剤等を含んでいてもよい。
[Other ingredients]
For the purpose of improving impact resistance, heat resistance, resin compatibility, workability, etc., the above resin materials include organic fillers, leveling agents, flame retardants, coupling agents, colorants, antioxidants, and UV deterioration prevention. It may contain an agent, a defoaming agent, a thickener, a rocking denaturing agent and the like.
 上記有機充填材としては、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、フッ素樹脂、アクリル樹脂及びスチレン樹脂等からなる粒子状物が挙げられる。上記フッ素樹脂としては、ポリテトラフルオロエチレン(PTFE)等が挙げられる。上記有機充填材としてフッ素樹脂粒子を用いることにより、硬化物の比誘電率をより一層低くすることができる。上記有機充填材の平均粒径は1μm以下であることが好ましい。上記有機充填材の平均粒径が上記上限以下であると、エッチング後の表面粗度を小さくし、かつメッキピール強度を高くすることができ、また、絶縁層と金属層との密着性をより一層高めることができる。上記有機充填材の平均粒径は、50nm以上であってもよい。 Examples of the organic filler include particulate matter made of benzoxazine resin, benzoxazole resin, fluororesin, acrylic resin, styrene resin and the like. Examples of the fluororesin include polytetrafluoroethylene (PTFE) and the like. By using fluororesin particles as the organic filler, the relative permittivity of the cured product can be further reduced. The average particle size of the organic filler is preferably 1 μm or less. When the average particle size of the organic filler is not more than the above upper limit, the surface roughness after etching can be reduced, the plating peel strength can be increased, and the adhesion between the insulating layer and the metal layer can be improved. It can be further enhanced. The average particle size of the organic filler may be 50 nm or more.
 上記有機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。 As the average particle size of the organic filler, a value of median diameter (d50) of 50% is adopted. The average particle size can be measured using a laser diffraction / scattering type particle size distribution measuring device.
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。 Examples of the coupling agent include a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, and the like. Examples of the silane coupling agent include vinylsilane, aminosilane, imidazolesilane, and epoxysilane.
 (樹脂フィルム)
 上述した樹脂組成物をフィルム状に成形することにより樹脂フィルム(Bステージ化物/Bステージフィルム)が得られる。上記樹脂材料は、樹脂フィルムであることが好ましい。樹脂フィルムは、Bステージフィルムであることが好ましい。
(Resin film)
A resin film (B-staged product / B-stage film) can be obtained by molding the above-mentioned resin composition into a film. The resin material is preferably a resin film. The resin film is preferably a B stage film.
 樹脂組成物をフィルム状に成形して、樹脂フィルムを得る方法としては、以下の方法が挙げられる。押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法。溶剤を含む樹脂組成物をキャスティングしてフィルム状に成形するキャスティング成形法。従来公知のその他のフィルム成形法。薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。 Examples of the method for obtaining a resin film by molding the resin composition into a film form include the following methods. An extrusion molding method in which a resin composition is melt-kneaded using an extruder, extruded, and then molded into a film by a T-die, a circular die, or the like. A casting molding method in which a resin composition containing a solvent is cast and molded into a film. Other conventionally known film forming methods. An extrusion molding method or a casting molding method is preferable because it can be made thinner. The film includes a sheet.
 樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば50℃~150℃で1分間~10分間加熱乾燥させることにより、Bステージフィルムである樹脂フィルムを得ることができる。 A resin film as a B-stage film can be obtained by molding the resin composition into a film and heating and drying it at 50 ° C. to 150 ° C. for 1 minute to 10 minutes to the extent that curing by heat does not proceed too much. can.
 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。 The film-like resin composition that can be obtained by the drying step as described above is referred to as a B stage film. The B stage film is in a semi-cured state. The semi-cured product is not completely cured and can be further cured.
 上記樹脂フィルムは、プリプレグでなくてもよい。上記樹脂フィルムがプリプレグではない場合には、ガラスクロス等に沿ってマイグレーションが生じなくなる。また、樹脂フィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。 The resin film does not have to be a prepreg. When the resin film is not a prepreg, migration does not occur along the glass cloth or the like. Further, when the resin film is laminated or pre-cured, unevenness due to the glass cloth does not occur on the surface.
 上記樹脂フィルムは、金属箔又は基材フィルムと、該金属箔又は該基材フィルムの表面に積層された樹脂フィルムとを備える積層フィルムの形態で用いることができる。上記金属箔は銅箔であることが好ましい。 The resin film can be used in the form of a laminated film including a metal foil or a base film and a resin film laminated on the surface of the metal foil or the base film. The metal foil is preferably a copper foil.
 上記積層フィルムの上記基材フィルムとしては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルム等のポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルム等のオレフィン樹脂フィルム、並びにポリイミド樹脂フィルム等が挙げられる。上記基材フィルムの表面は、必要に応じて、離型処理されていてもよい。 Examples of the base film of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, and polyimide resin films. The surface of the base film may be mold-released, if necessary.
 樹脂フィルムの硬化度をより一層均一に制御する観点からは、上記樹脂フィルムの厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。上記樹脂フィルムを回路の絶縁層として用いる場合、上記樹脂フィルムにより形成された絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁層の厚さは、好ましくは5μm以上であり、好ましくは200μm以下である。 From the viewpoint of controlling the degree of curing of the resin film more uniformly, the thickness of the resin film is preferably 5 μm or more, preferably 200 μm or less. When the resin film is used as the insulating layer of the circuit, the thickness of the insulating layer formed by the resin film is preferably equal to or larger than the thickness of the conductor layer (metal layer) forming the circuit. The thickness of the insulating layer is preferably 5 μm or more, and preferably 200 μm or less.
 (樹脂材料の他の詳細)
 上記樹脂材料を190℃で90分間加熱し、樹脂材料の硬化物を得たときに、得られた硬化物の23℃及び周波数5.8GHzでの誘電正接(Df)は、好ましくは3.0×10-3以下、より好ましくは2.8×10-3以下、更に好ましくは2.5×10-3以下、更に好ましくは2.3×10-3以下である。上記硬化物の誘電正接(Df)は、3.1×10-3以上であってもよく、3.3×10-3以上であってもよい。
(Other details of resin material)
When the resin material is heated at 190 ° C. for 90 minutes to obtain a cured product of the resin material, the dielectric loss tangent (Df) of the obtained cured product at 23 ° C. and a frequency of 5.8 GHz is preferably 3.0. It is × 10 -3 or less, more preferably 2.8 × 10 -3 or less, further preferably 2.5 × 10 -3 or less, still more preferably 2.3 × 10 -3 or less. The dielectric loss tangent (Df) of the cured product may be 3.1 × 10 -3 or more, or 3.3 × 10 -3 or more.
 上記硬化物の誘電正接(Df)は、より具体的には、以下のようにして測定される。 More specifically, the dielectric loss tangent (Df) of the cured product is measured as follows.
 フィルム状の樹脂材料(樹脂フィルム)を190℃で90分間加熱して、樹脂材料の硬化物を得る。得られた硬化物を幅2mm、長さ80mmの大きさに裁断して10枚を重ね合わせる。関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びキーサイトテクノロジー社製「ネットワークアナライザーN5224A PNA」を用いて、空洞共振法で常温(23℃)にて、周波数5.8GHzにて誘電正接を測定する。 The film-shaped resin material (resin film) is heated at 190 ° C. for 90 minutes to obtain a cured product of the resin material. The obtained cured product is cut into a size of 2 mm in width and 80 mm in length, and 10 sheets are laminated. Using the "Cavity Resonance Permittivity Measuring Device CP521" manufactured by Kanto Electronics Application Development Co., Ltd. and the "Network Analyzer N5224A PNA" manufactured by Keysight Technology Co., Ltd., the frequency is 5.8 GHz at room temperature (23 ° C) by the cavity resonance method. Measure the dielectric loss tangent.
 上記樹脂材料を190℃で90分間加熱し、樹脂材料の硬化物を得る。この場合に、得られた硬化物の引っ張り荷重33mNでの25℃~150℃までの平均線膨張係数(CTE)は、好ましくは33ppm/℃以下、より好ましくは30ppm/℃以下、更に好ましくは27ppm/℃以下、更に一層好ましくは26ppm/℃以下、特に好ましくは24ppm/℃以下、最も好ましくは22ppm/℃以下である。上記硬化物の平均線膨張係数(CTE)は、34ppm/℃以上であってもよく、38ppm/℃以上であってもよい。 The above resin material is heated at 190 ° C. for 90 minutes to obtain a cured product of the resin material. In this case, the average coefficient of linear expansion (CTE) from 25 ° C. to 150 ° C. under a tensile load of 33 mN of the obtained cured product is preferably 33 ppm / ° C. or lower, more preferably 30 ppm / ° C. or lower, still more preferably 27 ppm. / ° C. or lower, even more preferably 26 ppm / ° C. or lower, particularly preferably 24 ppm / ° C. or lower, and most preferably 22 ppm / ° C. or lower. The average coefficient of linear expansion (CTE) of the cured product may be 34 ppm / ° C. or higher, or 38 ppm / ° C. or higher.
 上記硬化物の平均線膨張係数(CTE)は、より具体的には、以下のようにして測定される。 More specifically, the average coefficient of linear expansion (CTE) of the cured product is measured as follows.
 フィルム状の樹脂材料(樹脂フィルム)を190℃で90分間加熱して、樹脂材料の硬化物を得る。得られた硬化物を3mm×25mm大きさに裁断する。熱機械的分析装置(例えば、エスアイアイ・ナノテクノロジー社製「EXSTAR TMA/SS6100」)を用いて、引っ張り荷重33mN及び昇温速度5℃/分の条件で、裁断された硬化物の25℃~150℃までの平均線膨張係数(ppm/℃)を算出する。 The film-shaped resin material (resin film) is heated at 190 ° C. for 90 minutes to obtain a cured product of the resin material. The obtained cured product is cut into a size of 3 mm × 25 mm. Using a thermomechanical analyzer (for example, "EXSTAR TMA / SS6100" manufactured by SII Nanotechnology Co., Ltd.), the cured product was cut from 25 ° C. under the conditions of a tensile load of 33 mN and a heating rate of 5 ° C./min. The average coefficient of linear expansion (ppm / ° C.) up to 150 ° C. is calculated.
 (半導体装置、プリント配線板、銅張積層板及び多層プリント配線板)
 上記樹脂材料は、半導体装置において半導体チップを埋め込むモールド樹脂を形成するために好適に用いられる。
(Semiconductor devices, printed wiring boards, copper-clad laminates and multilayer printed wiring boards)
The resin material is suitably used for forming a mold resin for embedding a semiconductor chip in a semiconductor device.
 上記樹脂材料は、液晶ポリマー(LCP)の代替用途、ミリ波アンテナ用途、再配線層用途に好適に用いられる。また、上記樹脂材料は、上記用途に限らず、配線形成用途全般として、好適に用いられる。 The above resin material is suitably used as a substitute for liquid crystal polymer (LCP), millimeter wave antenna application, and rewiring layer application. Further, the resin material is suitably used not only for the above applications but also for all wiring forming applications.
 上記樹脂材料は、絶縁材料として好適に用いられる。上記樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。 The above resin material is preferably used as an insulating material. The resin material is suitably used for forming an insulating layer in a printed wiring board.
 上記プリント配線板は、例えば、上記樹脂材料を加熱加圧成形することにより得られる。 The printed wiring board can be obtained, for example, by heat-press molding the resin material.
 上記樹脂フィルムに対して、片面又は両面に金属層を表面に有する積層対象部材を積層できる。金属層を表面に有する積層対象部材と、上記金属層の表面上に積層された樹脂フィルムとを備え、上記樹脂フィルムが、上述した樹脂材料である、積層構造体を好適に得ることができる。上記樹脂フィルムと上記金属層を表面に有する積層対象部材とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記樹脂フィルムを、金属層を表面に有する積層対象部材に積層可能である。 A member to be laminated having a metal layer on one side or both sides can be laminated on the resin film. A laminated structure comprising a member to be laminated having a metal layer on its surface and a resin film laminated on the surface of the metal layer, and the resin film being the above-mentioned resin material can be preferably obtained. The method of laminating the resin film and the member to be laminated having the metal layer on the surface is not particularly limited, and a known method can be used. For example, using a device such as a parallel flat plate press or a roll laminator, the resin film can be laminated on a member to be laminated having a metal layer on the surface while pressurizing with or without heating.
 上記金属層の材料は銅であることが好ましい。 The material of the metal layer is preferably copper.
 上記金属層を表面に有する積層対象部材は、銅箔等の金属箔であってもよい。 The member to be laminated having the metal layer on the surface may be a metal foil such as a copper foil.
 上記樹脂材料は、銅張積層板を得るために好適に用いられる。上記銅張積層板の一例として、銅箔と、該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板が挙げられる。 The above resin material is suitably used for obtaining a copper-clad laminate. An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and a resin film laminated on one surface of the copper foil.
 上記銅張積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1μm~50μmの範囲内であることが好ましい。また、上記樹脂材料の硬化物と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。 The thickness of the copper foil of the copper-clad laminate is not particularly limited. The thickness of the copper foil is preferably in the range of 1 μm to 50 μm. Further, in order to increase the adhesive strength between the cured product of the resin material and the copper foil, it is preferable that the copper foil has fine irregularities on the surface. The method of forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a method for forming the unevenness by a treatment using a known chemical solution.
 上記樹脂材料は、多層基板を得るために好適に用いられる。 The above resin material is preferably used to obtain a multilayer substrate.
 上記多層基板の一例として、回路基板と、該回路基板上に積層された絶縁層とを備える多層基板が挙げられる。この多層基板の絶縁層が、上記樹脂材料により形成されている。また、多層基板の絶縁層が、積層フィルムを用いて、上記積層フィルムの上記樹脂フィルムにより形成されていてもよい。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。 An example of the multilayer board is a multilayer board provided with a circuit board and an insulating layer laminated on the circuit board. The insulating layer of this multilayer substrate is formed of the above resin material. Further, the insulating layer of the multilayer substrate may be formed of the resin film of the laminated film by using the laminated film. The insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. It is preferable that a part of the insulating layer is embedded between the circuits.
 上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。 In the multilayer board, it is preferable that the surface of the insulating layer opposite to the surface on which the circuit board is laminated is roughened.
 粗化処理方法は、従来公知の粗化処理方法を用いることができ、特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。 The roughening treatment method can be a conventionally known roughening treatment method and is not particularly limited. The surface of the insulating layer may be swelled before the roughening treatment.
 また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。 Further, it is preferable that the multilayer substrate further includes a copper plating layer laminated on the roughened surface of the insulating layer.
 また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層が、銅箔と該銅箔の一方の表面に積層された樹脂フィルムとを備える銅張積層板を用いて、上記樹脂フィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。 Further, as another example of the multilayer board, the circuit board, the insulating layer laminated on the surface of the circuit board, and the insulating layer are laminated on the surface opposite to the surface on which the circuit board is laminated. Examples thereof include a multilayer substrate provided with a copper foil. It is preferable that the insulating layer is formed by curing the resin film using a copper-clad laminate having a copper foil and a resin film laminated on one surface of the copper foil. Further, the copper foil is etched and preferably a copper circuit.
 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数層の絶縁層の内の少なくとも1層が、上記樹脂材料を用いて形成される。上記多層基板は、上記樹脂フィルムを用いて形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。 Another example of the multilayer board is a multilayer board including a circuit board and a plurality of insulating layers laminated on the surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed by using the resin material. It is preferable that the multilayer substrate further includes a circuit laminated on at least one surface of the insulating layer formed by using the resin film.
 本発明に係る樹脂材料は、多層プリント配線板において、絶縁層を形成するために好適に用いられる。 The resin material according to the present invention is suitably used for forming an insulating layer in a multilayer printed wiring board.
 上記多層プリント配線板は、例えば、回路基板と、上記回路基板の表面上に配置された複数の絶縁層と、複数の上記絶縁層間に配置された金属層とを備える。上記絶縁層の内の少なくとも1層が、上記樹脂材料の硬化物である。 The multilayer printed wiring board includes, for example, a circuit board, a plurality of insulating layers arranged on the surface of the circuit board, and a metal layer arranged between the plurality of insulating layers. At least one of the insulating layers is a cured product of the resin material.
 図1は、本発明の一実施形態に係る樹脂材料を用いた多層プリント配線板を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a multilayer printed wiring board using a resin material according to an embodiment of the present invention.
 図1に示す多層プリント配線板11では、回路基板12の上面12aに、複数層の絶縁層13~16が積層されている。絶縁層13~16は、硬化物層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。 In the multilayer printed wiring board 11 shown in FIG. 1, a plurality of insulating layers 13 to 16 are laminated on the upper surface 12a of the circuit board 12. The insulating layers 13 to 16 are cured product layers. A metal layer 17 is formed in a part of the upper surface 12a of the circuit board 12. Of the plurality of insulating layers 13 to 16, metal layers 17 are formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side. Has been done. The metal layer 17 is a circuit. A metal layer 17 is arranged between the circuit board 12 and the insulating layer 13 and between the layers of the laminated insulating layers 13 to 16, respectively. The lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of a via hole connection and a through hole connection (not shown).
 多層プリント配線板11では、絶縁層13~16が、上記樹脂材料の硬化物により形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層プリント配線板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層プリント配線板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。 In the multilayer printed wiring board 11, the insulating layers 13 to 16 are formed of the cured product of the resin material. In the present embodiment, since the surfaces of the insulating layers 13 to 16 are roughened, fine holes (not shown) are formed on the surfaces of the insulating layers 13 to 16. Further, the metal layer 17 reaches the inside of the fine pores. Further, in the multilayer printed wiring board 11, the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the portion where the metal layer 17 is not formed can be reduced. Further, in the multilayer printed wiring board 11, good insulation reliability is imparted between the upper metal layer and the lower metal layer which are not connected by via hole connection and through hole connection (not shown).
 (粗化処理及び膨潤処理)
 上記樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
(Roughening treatment and swelling treatment)
The resin material is preferably used to obtain a cured product that is roughened or desmeared. The cured product also includes a pre-cured product that can be further cured.
 上記樹脂材料を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。 It is preferable that the cured product is roughened in order to form fine irregularities on the surface of the cured product obtained by pre-curing the resin material. Prior to the roughening treatment, the cured product is preferably swelled. It is preferable that the cured product is swelled and further cured after the roughening treatment after the pre-curing and before the roughening treatment. However, the cured product does not necessarily have to be swelled.
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般的にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30℃~85℃で1分間~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50℃~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。 As the method for the swelling treatment, for example, a method of treating the cured product with an aqueous solution of a compound containing ethylene glycol or the like as a main component or an organic solvent dispersion solution is used. The swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like. The swelling liquid preferably contains sodium hydroxide. Specifically, for example, the swelling treatment is carried out by treating the cured product at a treatment temperature of 30 ° C. to 85 ° C. for 1 minute to 30 minutes using a 40 wt% ethylene glycol aqueous solution or the like. The temperature of the swelling treatment is preferably in the range of 50 ° C. to 85 ° C. If the temperature of the swelling treatment is too low, the swelling treatment takes a long time, and the adhesive strength between the cured product and the metal layer tends to be low.
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。 For the roughening treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound or a persulfate compound is used. These chemical oxidizing agents are used as an aqueous solution or an organic solvent dispersion solution after water or an organic solvent is added. The roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like. The roughening liquid preferably contains sodium hydroxide.
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。 Examples of the manganese compound include potassium permanganate and sodium permanganate. Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate. Examples of the persulfate compound include sodium persulfate, potassium persulfate, ammonium persulfate and the like.
 硬化物の表面の算術平均粗さRaは、好ましくは10nm以上であり、好ましくは300nm未満、より好ましくは200nm未満、更に好ましくは150nm未満である。この場合には、硬化物と金属層との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。さらに、導体損失を抑えることができ、信号損失を低く抑えることができる。上記算術平均粗さRaは、JIS B0601:1994に準拠して測定される。 The arithmetic mean roughness Ra of the surface of the cured product is preferably 10 nm or more, preferably less than 300 nm, more preferably less than 200 nm, and further preferably less than 150 nm. In this case, the adhesive strength between the cured product and the metal layer is increased, and the surface of the insulating layer forms finer wiring. Further, the conductor loss can be suppressed, and the signal loss can be suppressed low. The arithmetic mean roughness Ra is measured according to JIS B0601: 1994.
 (デスミア処理)
 上記樹脂材料を予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60μm~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
(Desmia processing)
Through holes may be formed in the cured product obtained by pre-curing the resin material. Vias, through holes, and the like are formed as through holes in the multilayer substrate and the like. For example, vias can be formed by irradiation with a laser such as a CO 2 laser. The diameter of the via is not particularly limited, but is about 60 μm to 80 μm. Due to the formation of the through holes, smear, which is a residue of the resin derived from the resin component contained in the cured product, is often formed at the bottom of the via.
 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。 In order to remove the smear, the surface of the cured product is preferably desmear-treated. The desmear treatment may also serve as the roughening treatment.
 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物等の化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。 In the desmear treatment, for example, a chemical oxidizing agent such as a manganese compound, a chromium compound or a persulfate compound is used in the same manner as in the roughening treatment. These chemical oxidizing agents are used as an aqueous solution or an organic solvent dispersion solution after water or an organic solvent is added. The desmear treatment liquid used for the desmear treatment generally contains an alkali. The desmear treatment liquid preferably contains sodium hydroxide.
 上記樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。 By using the above resin material, the surface roughness of the surface of the desmear-treated cured product is sufficiently reduced.
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
 以下の材料を用意した。 The following materials were prepared.
 (第1の化合物)
 下記式(X1)で表されるビスマレイミド化合物又はその構造異性体(分子量4400、合成例1に従って合成)
 下記式(X2)で表されるビスマレイミド化合物又はその構造異性体(分子量4200、合成例2に従って合成)
 下記式(X3)で表されるビスマレイミド化合物又はその構造異性体(分子量4300、合成例3に従って合成)
 下記式(X4)で表されるビスマレイミド化合物又はその構造異性体(分子量4100、合成例4に従って合成)
(First compound)
Bismaleimide compound represented by the following formula (X1) or its structural isomer (molecular weight 4400, synthesized according to Synthesis Example 1)
Bismaleimide compound represented by the following formula (X2) or its structural isomer (molecular weight 4200, synthesized according to Synthesis Example 2)
Bismaleimide compound represented by the following formula (X3) or its structural isomer (molecular weight 4300, synthesized according to Synthesis Example 3)
Bismaleimide compound represented by the following formula (X4) or its structural isomer (molecular weight 4100, synthesized according to Synthesis Example 4)
 なお、下記式(X1)~(X4)では、骨格のみ示しており、実際には、各骨格が繰り返されて、上記の分子量を有するビスマレイミド化合物が合成されている。第1の化合物は、下記式(X1)~(X4)で表されるビスマレイミド化合物の各構造単位がランダムに配置された化合物を含んでいてもよく、下記式(X1)~(X4)で表されるビスマレイミド化合物の各繰り返し構造単位数が異なる化合物を含んでいてもよく、必ずしも下記の配列順の構造に限定されない。 In the following formulas (X1) to (X4), only the skeleton is shown, and in reality, each skeleton is repeated to synthesize a bismaleimide compound having the above molecular weight. The first compound may contain a compound in which each structural unit of the bismaleimide compound represented by the following formulas (X1) to (X4) is randomly arranged, and is represented by the following formulas (X1) to (X4). The represented bismaleimide compound may contain a compound having a different number of repeating structural units, and is not necessarily limited to the structure in the following sequence order.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 <合成例1>
 115gのトルエンと、35gのN-メチル-2-ピロリドン(NMP)と、8.7gのダイマージアミン(クローダジャパン社製「Priamine 1075」)と、12.6gのトリシクロデカンジアミン(OXEA社製)とを500mL三口フラスコに入れ、攪拌した。次いで、上記の三口フラスコに、3.0gのメタンスルホン酸(東京化成工業社製)を入れ、スリーワンモーター付き攪拌棒を用いて攪拌した。また、7.78gの4,4’-ビフタル酸無水物(東京化成工業社製)と、6.99gの5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物(東京化成工業社製)との混合液を得た。得られた混合液を、上記の三口フラスコに入れて攪拌した。次いで、三口フラスコの1つの口にディーンスターク管付き還流管をとりつけ、温度をオイルバスの130℃にし、攪拌しながら、4時間還流した。次いで、6.22gの無水マレイン酸(東京化成工業社製)を三口フラスコに入れて、4時間還流した。還流後、3度有機層を水とエタノールの混合溶媒で洗浄し、エバポレーターで有機層と水とを留去した後、マレイミド化合物がトルエンに溶解した有機層を得た。メタノール2L中にゆっくり滴下し、再沈殿を実施し固形分を得た。固形分を吸引ろ過により集め、真空オーブンで乾燥させ、生成物を得た(収率80%)。得られた第1の化合物では、第1の化合物が有する酸二無水物に由来する構造単位100モル%中、第1の骨格の平均割合が61モル%であった。また、第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、第2の骨格の平均割合が39モル%であった。
<Synthesis example 1>
115 g of toluene, 35 g of N-methyl-2-pyrrolidone (NMP), 8.7 g of dimerdiamine ("Priamine 1075" manufactured by Croda Japan), and 12.6 g of tricyclodecanediamine (manufactured by OXEA). Was placed in a 500 mL three-necked flask and stirred. Next, 3.0 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in the above-mentioned three-necked flask, and the mixture was stirred using a stirring rod equipped with a three-one motor. In addition, 7.78 g of 4,4'-biphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 6.99 g of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1 , 2-Dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was obtained as a mixed solution. The obtained mixed solution was placed in the above-mentioned three-necked flask and stirred. Next, a reflux tube with a Dean-Stark tube was attached to one mouth of the three-necked flask, the temperature was adjusted to 130 ° C. in an oil bath, and the mixture was refluxed for 4 hours with stirring. Next, 6.22 g of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a three-necked flask and refluxed for 4 hours. After refluxing, the organic layer was washed 3 times with a mixed solvent of water and ethanol, and the organic layer and water were distilled off with an evaporator to obtain an organic layer in which the maleimide compound was dissolved in toluene. It was slowly added dropwise to 2 L of methanol and reprecipitation was carried out to obtain a solid content. The solids were collected by suction filtration and dried in a vacuum oven to give the product (80% yield). In the obtained first compound, the average ratio of the first skeleton was 61 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Moreover, the average ratio of the second skeleton was 39 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
 <合成例2>
 115gのトルエンと、35gのN-メチル-2-ピロリドン(NMP)と、16.3gのダイマージアミン(クローダジャパン社製「Priamine 1075」)と、9.84gのトリシクロデカンジアミン(OXEA社製)とを500mL三口フラスコに入れ、攪拌した。次いで、上記の三口フラスコに、3.0gのメタンスルホン酸(東京化成工業社製)を入れ、スリーワンモーター付き攪拌棒を用いて攪拌した。また、7.78gの4,4’-ビフタル酸無水物(東京化成工業社製)と、6.56gのビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(東京化成工業社製)との混合液を得た。得られた混合液を、上記の三口フラスコに入れて攪拌した。次いで、三口フラスコの1つの口にディーンスターク管付き還流管をとりつけ、温度をオイルバスの130℃にし、攪拌しながら、4時間還流した。次いで、6.22gの無水マレイン酸(東京化成工業社製)を三口フラスコに入れて、4時間還流した。還流後、3度有機層を水とエタノールの混合溶媒で洗浄し、エバポレーターで有機層と水とを留去した後、マレイミド化合物がトルエンに溶解した有機層を得た。メタノール2L中にゆっくり滴下し、再沈殿を実施し固形分を得た。固形分を吸引ろ過により集め、真空オーブンで乾燥させ、生成物を得た(収率82%)。得られた第1の化合物では、第1の化合物が有する酸二無水物に由来する構造単位100モル%中、第1の骨格の平均割合が60モル%であった。また、第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、第2の骨格の平均割合が40モル%であった。
<Synthesis example 2>
115 g of toluene, 35 g of N-methyl-2-pyrrolidone (NMP), 16.3 g of dimerdiamine ("Priamine 1075" manufactured by Croda Japan), and 9.84 g of tricyclodecanediamine (manufactured by OXEA). Was placed in a 500 mL three-necked flask and stirred. Next, 3.0 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in the above-mentioned three-necked flask, and the mixture was stirred using a stirring rod equipped with a three-one motor. In addition, 7.78 g of 4,4'-biphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 6.56 g of bicyclo [2.2.2] Oct-7-en-2,3,5,6- A mixed solution with tetracarboxylic dianhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was obtained. The obtained mixed solution was placed in the above-mentioned three-necked flask and stirred. Next, a reflux tube with a Dean-Stark tube was attached to one mouth of the three-necked flask, the temperature was adjusted to 130 ° C. in an oil bath, and the mixture was refluxed for 4 hours with stirring. Next, 6.22 g of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a three-necked flask and refluxed for 4 hours. After refluxing, the organic layer was washed 3 times with a mixed solvent of water and ethanol, and the organic layer and water were distilled off with an evaporator to obtain an organic layer in which the maleimide compound was dissolved in toluene. It was slowly added dropwise to 2 L of methanol, and reprecipitation was carried out to obtain a solid content. The solids were collected by suction filtration and dried in a vacuum oven to give the product (82% yield). In the obtained first compound, the average ratio of the first skeleton was 60 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Further, the average ratio of the second skeleton was 40 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
 <合成例3>
 115gのトルエンと、35gのN-メチル-2-ピロリドン(NMP)と、8.7gのダイマージアミン(クローダジャパン社製「Priamine 1075」)と、10.00gのノルボルナンジアミン(三井化学ファイン社製「Pro-NBDA」)とを500mL三口フラスコに入れ、攪拌した。次いで、上記の三口フラスコに、3.0gのメタンスルホン酸(東京化成工業社製)を入れ、スリーワンモーター付き攪拌棒を用いて攪拌した。また、8.94gの4,4’-ビフタル酸無水物(東京化成工業社製)と、8.03gの5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物(東京化成工業社製)との混合液を得た。得られた混合液を、上記の三口フラスコに入れて攪拌した。次いで、三口フラスコの1つの口にディーンスターク管付き還流管をとりつけ、温度をオイルバスの130℃にし、攪拌しながら、4時間還流した。次いで、4.75gの無水マレイン酸(東京化成工業社製)を三口フラスコに入れて、4時間還流した。還流後、3度有機層を水とエタノールの混合溶媒で洗浄し、エバポレーターで有機層と水とを留去した後、マレイミド化合物がトルエンに溶解した有機層を得た。メタノール2L中にゆっくり滴下し、再沈殿を実施し固形分を得た。固形分を吸引ろ過により集め、真空オーブンで乾燥させ、生成物を得た(収率80%)。得られた第1の化合物では、第1の化合物が有する酸二無水物に由来する構造単位100モル%中、第1の骨格の平均割合が56モル%であった。また、第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、第2の骨格の平均割合が44モル%であった。
<Synthesis example 3>
115 g of toluene, 35 g of N-methyl-2-pyrrolidone (NMP), 8.7 g of dimerdiamine ("Priamine 1075" manufactured by Croda Japan), and 10.00 g of norbornane diamine (manufactured by Mitsui Kagaku Fine Co., Ltd. "" Pro-NBDA ”) was placed in a 500 mL three-necked flask and stirred. Next, 3.0 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in the above-mentioned three-necked flask, and the mixture was stirred using a stirring rod equipped with a three-one motor. In addition, 8.94 g of 4,4'-biphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 8.03 g of 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1. , 2-Dicarboxylic acid anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was obtained as a mixed solution. The obtained mixed solution was placed in the above-mentioned three-necked flask and stirred. Next, a reflux tube with a Dean-Stark tube was attached to one mouth of the three-necked flask, the temperature was adjusted to 130 ° C. in an oil bath, and the mixture was refluxed for 4 hours with stirring. Next, 4.75 g of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a three-necked flask and refluxed for 4 hours. After refluxing, the organic layer was washed 3 times with a mixed solvent of water and ethanol, and the organic layer and water were distilled off with an evaporator to obtain an organic layer in which the maleimide compound was dissolved in toluene. It was slowly added dropwise to 2 L of methanol and reprecipitation was carried out to obtain a solid content. The solids were collected by suction filtration and dried in a vacuum oven to give the product (80% yield). In the obtained first compound, the average ratio of the first skeleton was 56 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Moreover, the average ratio of the second skeleton was 44 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
 <合成例4>
 115gのトルエンと、35gのN-メチル-2-ピロリドン(NMP)と、16.3gのダイマージアミン(クローダジャパン社製「Priamine 1075」)と、7.81gのノルボルナンジアミン(三井化学ファイン社製「Pro-NBDA」)とを500mL三口フラスコに入れ、攪拌した。次いで、上記の三口フラスコに、3.0gのメタンスルホン酸(東京化成工業社製)を入れ、スリーワンモーター付き攪拌棒を用いて攪拌した。また、8.94gの4,4’-ビフタル酸無水物(東京化成工業社製)と、7.54gのビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物(東京化成工業社製)との混合液を得た。得られた混合液を、上記の三口フラスコに入れて攪拌した。次いで、三口フラスコの1つの口にディーンスターク管付き還流管をとりつけ、温度をオイルバスの130℃にし、攪拌しながら、4時間還流した。次いで、4.76gの無水マレイン酸(東京化成工業社製)を三口フラスコに入れて、4時間還流した。還流後、3度有機層を水洗し、マレイミド化合物の溶解した有機層を得た。有機層から水還流後、3度有機層を水とエタノールの混合溶媒で洗浄し、エバポレーターで有機層と水とを留去した後、マレイミド化合物がトルエンに溶解した有機層を得た。メタノール2L中にゆっくり滴下し、再沈殿を実施し固形分を得た。固形分を吸引ろ過により集め、真空オーブンで乾燥させ、生成物を得た(収率81%)。得られた第1の化合物では、第1の化合物が有する酸二無水物に由来する構造単位100モル%中、第1の骨格の平均割合が58モル%であった。また、第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、第2の骨格の平均割合が42モル%であった。
<Synthesis example 4>
115 g of toluene, 35 g of N-methyl-2-pyrrolidone (NMP), 16.3 g of dimerdiamine ("Priamine 1075" manufactured by Croda Japan), and 7.81 g of norbornane diamine (manufactured by Mitsui Kagaku Fine Co., Ltd. "" Pro-NBDA ”) was placed in a 500 mL three-necked flask and stirred. Next, 3.0 g of methanesulfonic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in the above-mentioned three-necked flask, and the mixture was stirred using a stirring rod equipped with a three-one motor. In addition, 8.94 g of 4,4'-biphthalic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 7.54 g of bicyclo [2.2.2] Oct-7-en-2,3,5,6- A mixed solution with tetracarboxylic dianhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was obtained. The obtained mixed solution was placed in the above-mentioned three-necked flask and stirred. Next, a reflux tube with a Dean-Stark tube was attached to one mouth of the three-necked flask, the temperature was adjusted to 130 ° C. in an oil bath, and the mixture was refluxed for 4 hours with stirring. Next, 4.76 g of maleic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) was placed in a three-necked flask and refluxed for 4 hours. After refluxing, the organic layer was washed 3 times with water to obtain an organic layer in which the maleimide compound was dissolved. After refluxing water from the organic layer, the organic layer was washed 3 times with a mixed solvent of water and ethanol, and the organic layer and water were distilled off with an evaporator to obtain an organic layer in which the maleimide compound was dissolved in toluene. It was slowly added dropwise to 2 L of methanol and reprecipitation was carried out to obtain a solid content. The solids were collected by suction filtration and dried in a vacuum oven to give the product (81% yield). In the obtained first compound, the average ratio of the first skeleton was 58 mol% in 100 mol% of the structural units derived from the acid dianhydride contained in the first compound. Moreover, the average ratio of the second skeleton was 42 mol% in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
 (第2の熱硬化性化合物)
 <エポキシ化合物>
 ビフェニル型エポキシ化合物(日本化薬社製「NC-3000」)
 ナフタレン型エポキシ化合物(新日鉄住金化学社製「ESN-475V」)
 レゾルシノールジグリシジルエーテル(ナガセケムテックス社製「EX-201」)
 多分岐脂肪族エポキシ化合物(日産化学社製「FoldiE101」)
 アミノ基を有するエポキシ化合物(三菱化学社製「630」)
 ブタジエン骨格を有するエポキシ化合物(ダイセル社製「PB3600」)
 アミド結合を有するエポキシ化合物(日本化薬社製「WHR-991S」)
 イミド結合を有するエポキシ化合物(合成例5に従って合成)
(Second thermosetting compound)
<Epoxy compound>
Biphenyl type epoxy compound ("NC-3000" manufactured by Nippon Kayaku Co., Ltd.)
Naphthalene type epoxy compound ("ESN-475V" manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
Resorcinol diglycidyl ether (“EX-201” manufactured by Nagase ChemteX Corporation)
Multi-branched aliphatic epoxy compound ("FoldiE101" manufactured by Nissan Chemical Industries, Ltd.)
Epoxy compound having an amino group ("630" manufactured by Mitsubishi Chemical Corporation)
Epoxy compound with butadiene skeleton ("PB3600" manufactured by Daicel Corporation)
Epoxy compound with amide bond (Nippon Kayaku Co., Ltd. "WHR-991S")
Epoxy compound with imide bond (synthesized according to Synthesis Example 5)
 <合成例5>
 500mL三口フラスコに、トルエン200g、ダイマージアミン(クローダジャパン社製「Priamine 1075」)68.6gを入れ、攪拌した。次いで、上記の三口フラスコに、無水シトラコン酸(東京化成工業工業社製)28.9gと、不溶性の酸触媒(DuPont社製「amberlyst 36ドライ」)6.25gとを入れて、攪拌した。ディーンスターク管付き還流管を取り付け、温度をオイルバスの130℃にし、攪拌しながら、4時間還流した。その後、空冷し、ろ過した後、酸触媒を除去した。さらに、エバポレーターとエアーパージによって、溶媒及び過剰な無水シトラコン酸を除去して、シトラコンイミド化合物を得た。
<Synthesis example 5>
Toluene (200 g) and diamine diamine ("Priamine 1075" manufactured by Croda Japan) (68.6 g) were placed in a 500 mL three-necked flask and stirred. Next, 28.9 g of citraconic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) and 6.25 g of an insoluble acid catalyst (“amberlyst 36 dry” manufactured by DuPont) were placed in the above three-necked flask and stirred. A reflux tube with a Dean-Stark tube was attached, the temperature was adjusted to 130 ° C. in an oil bath, and the mixture was refluxed for 4 hours with stirring. Then, it was air-cooled and filtered, and then the acid catalyst was removed. Furthermore, the solvent and excess citraconic anhydride were removed by an evaporator and an air purge to obtain a citraconimide compound.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(11)中、Rは、炭素数6以上10以下の直鎖状の炭化水素基を表し、Rは、炭素数6以上10以下の直鎖状の炭化水素基を表し、Rは、炭素数6以上10以下の直鎖状の炭化水素基を表し、Rは、炭素数6以上10以下の直鎖状の炭化水素基を表す。上記式(11)中、RとRとRとRとの炭素数の合計は30である。 In the formula (11), R 1 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms, R 2 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms, and R 3 Represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms , and R 4 represents a linear hydrocarbon group having 6 or more and 10 or less carbon atoms. In the above formula (11), the total number of carbon atoms of R 1 , R 2 , R 3 and R 4 is 30.
 <マレイミド化合物>
 N-アルキルビスマレイミド化合物1(Designer Molecules Inc.製「BMI-1700」)
 N-アルキルビスマレイミド化合物2(Designer Molecules Inc.製「BMI-3000」)
 N-アルキルビスマレイミド化合物3(Designer Molecules Inc.製「BMI-689」)
 N-フェニルマレイミド化合物(日本化薬社製「MIR-3000」)
<Maleimide compound>
N-alkylbismaleimide compound 1 (“BMI-1700” manufactured by Designer Moleculars Inc.)
N-alkylbismaleimide compound 2 (“BMI-3000” manufactured by Designer Moleculars Inc.)
N-alkylbismaleimide compound 3 (“BMI-689” manufactured by Designer Moleculars Inc.)
N-Phenylmaleimide compound ("MIR-3000" manufactured by Nippon Kayaku Co., Ltd.)
 <ビニル化合物>
 フェニレンエーテル骨格を有するスチレン樹脂(ラジカル硬化性化合物、三菱ガス化学社製「OPE-2St-1200」)
 ジメチロール-トリシクロデカンジアクリレート(ラジカル硬化性化合物、共栄社化学社製「ライトアクリレートDCP-A」)
<Vinyl compound>
Styrene resin having a phenylene ether skeleton (radical curable compound, "OPE-2St-1200" manufactured by Mitsubishi Gas Chemical Company, Inc.)
Dimethylol-tricyclodecanediacrylate (radical curable compound, "Light Acrylate DCP-A" manufactured by Kyoeisha Chemical Co., Ltd.)
 (無機充填材)
 シリカ含有スラリー(シリカ75重量%:アドマテックス社製「SC4050-HOA」、平均粒径1.0μm、アミノシラン処理、シクロヘキサノン25重量%)
(Inorganic filler)
Silica-containing slurry (silica 75% by weight: "SC4050-HOA" manufactured by Admatex, average particle size 1.0 μm, aminosilane treatment, cyclohexanone 25% by weight)
 (硬化剤)
 活性エステル化合物1含有液(DIC社製「EXB-9416-70BK」、固形分70重量%)
 活性エステル化合物2含有液(DIC社製「HPC-8150-62T」、固形分62重量%)
 活性エステル化合物3含有液(DIC社製「HPC-8000L-65T」、固形分65重量%)
 活性エステル化合物4(DIC社製「EXB-8」、固形分100重量%)
 カルボジイミド化合物含有液(日清紡ケミカル社製社製「カルボジライト V-03」、固形分50重量%)
 フェノール化合物含有液(DIC社製「LA-1356」、固形分60重量%)
(Hardener)
Active ester compound 1-containing liquid ("EXB-9416-70BK" manufactured by DIC Corporation, solid content 70% by weight)
Active ester compound 2 containing liquid ("HPC-8150-62T" manufactured by DIC Corporation, solid content 62% by weight)
Active ester compound 3 containing liquid ("HPC-8000L-65T" manufactured by DIC Corporation, solid content 65% by weight)
Active ester compound 4 ("EXB-8" manufactured by DIC Corporation, solid content 100% by weight)
Carbodiimide compound-containing liquid ("Carbodilite V-03" manufactured by Nisshinbo Chemical Co., Ltd., solid content 50% by weight)
Phenol compound-containing liquid ("LA-1356" manufactured by DIC Corporation, solid content 60% by weight)
 (硬化促進剤)
 ジメチルアミノピリジン(和光純薬工業社製「DMAP」、カチオン性硬化促進剤)
 2-フェニル-4-メチルイミダゾール(四国化成工業社製「2P4MZ」、アニオン性硬化促進剤)
 ジクミルペルオキシド
(Curing accelerator)
Dimethylaminopyridine ("DMAP" manufactured by Wako Pure Chemical Industries, Ltd., cationic curing accelerator)
2-Phenyl-4-methylimidazole ("2P4MZ" manufactured by Shikoku Chemicals Corporation, anionic curing accelerator)
Dicumyl peroxide
 (熱可塑性樹脂)
 ポリイミド化合物(ポリイミド樹脂、分子量20000、合成例6に従って合成)
 スチレンブタジエン樹脂(旭化成社製「タフテックH1043」)
 脂環式熱可塑性樹脂(JXTG社製、「ネオレジン」)
(Thermoplastic resin)
Polyimide compound (polyimide resin, molecular weight 20000, synthesized according to Synthesis Example 6)
Styrene butadiene resin ("Tough Tech H1043" manufactured by Asahi Kasei Corporation)
Alicyclic thermoplastic resin (manufactured by JXTG, "Neoresin")
 <合成例6>
 撹拌機、分水器、温度計及び窒素ガス導入管を備えた反応容器に、テトラカルボン酸二無水物(SABICジャパン合同会社製「BisDA-1000」)300.0gと、シクロヘキサノン665.5gとを入れ、反応容器中の溶液を60℃まで加熱した。次いで、反応容器中に、ダイマージアミン(クローダジャパン社製「PRIAMINE1075」)89.0gと、1,3-ビスアミノメチルシクロヘキサン(三菱ガス化学社製)54.7gとを滴下した。次いで、反応容器中に、メチルシクロヘキサン121.0gと、エチレングリコールジメチルエーテル423.5gとを添加し、140℃で10時間かけてイミド化反応を行った。このようにして、ポリイミド化合物含有溶液(不揮発分26.8重量%)を得た。得られたポリイミド化合物の分子量(重量平均分子量)は20000であった。なお、酸成分/アミン成分のモル比は1.04であった。
<Synthesis example 6>
300.0 g of tetracarboxylic dianhydride (“BisDA-1000” manufactured by SABIC Japan LLC) and 665.5 g of cyclohexanone were placed in a reaction vessel equipped with a stirrer, a water divider, a thermometer and a nitrogen gas introduction tube. And the solution in the reaction vessel was heated to 60 ° C. Next, 89.0 g of dimer diamine (“PRIAMINE 1075” manufactured by Croda Japan) and 54.7 g of 1,3-bisaminomethylcyclohexane (manufactured by Mitsubishi Gas Chemical Company) were added dropwise to the reaction vessel. Next, 121.0 g of methylcyclohexane and 423.5 g of ethylene glycol dimethyl ether were added to the reaction vessel, and an imidization reaction was carried out at 140 ° C. for 10 hours. In this way, a polyimide compound-containing solution (nonvolatile content 26.8% by weight) was obtained. The molecular weight (weight average molecular weight) of the obtained polyimide compound was 20000. The molar ratio of the acid component / amine component was 1.04.
 (分子量の測定)
 第1の化合物及びポリイミド化合物の分子量は、以下のようにして求めた。
(Measurement of molecular weight)
The molecular weights of the first compound and the polyimide compound were determined as follows.
 GPC(ゲルパーミエーションクロマトグラフィー)測定:
 島津製作所社製高速液体クロマトグラフシステムを使用し、テトラヒドロフラン(THF)を展開媒として、カラム温度40℃、流速1.0ml/分で測定を行った。検出器として「SPD-10A」を用い、カラムはShodex社製「KF-804L」(排除限界分子量400,000)を2本直列につないで使用した。標準ポリスチレンとして、東ソー社製「TSKスタンダードポリスチレン」を用い、重量平均分子量Mw=354,000、189,000、98,900、37,200、17,100、9,830、5,870、2,500、1,050、500の物質を使用して較正曲線を作成し、分子量の計算を行った。
GPC (Gel Permeation Chromatography) Measurement:
A high performance liquid chromatograph system manufactured by Shimadzu Corporation was used, and measurement was carried out using tetrahydrofuran (THF) as a developing medium at a column temperature of 40 ° C. and a flow velocity of 1.0 ml / min. "SPD-10A" was used as a detector, and two columns of "KF-804L" (exclusion limit molecular weight: 400,000) manufactured by Shodex were connected in series. "TSK standard polystyrene" manufactured by Tosoh Corporation is used as the standard polystyrene, and the weight average molecular weight Mw = 354,000, 189,000, 98,900, 37,200, 17,100, 9,830, 5,870, 2, Calibration curves were made using 500, 1,050, and 500 materials and the molecular weight was calculated.
 (実施例1~13及び比較例1~3)
 下記の表1~4に示す成分を下記の表1~4に示す配合量(単位は固形分重量部)で配合し、均一な溶液となるまで常温で攪拌し、樹脂材料を得た。
(Examples 1 to 13 and Comparative Examples 1 to 3)
The components shown in Tables 1 to 4 below were blended in the blending amounts (unit: parts by weight of solid content) shown in Tables 1 to 4 below, and stirred at room temperature until a uniform solution was obtained to obtain a resin material.
 樹脂フィルムの作製:
 アプリケーターを用いて、離型処理されたPETフィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂材料を塗工した後、100℃のギヤオーブン内で2分30秒間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmである樹脂フィルム(Bステージフィルム)が積層されている積層フィルム(PETフィルムと樹脂フィルムとの積層フィルム)を得た。
Preparation of resin film:
After applying the obtained resin material on the release-treated surface of the release-treated PET film (Toray Industries, Inc. "XG284", thickness 25 μm) using an applicator, 2 minutes in a gear oven at 100 ° C. It was dried for 30 seconds to volatilize the solvent. In this way, a laminated film (laminated film of PET film and resin film) in which a resin film (B stage film) having a thickness of 40 μm is laminated on the PET film was obtained.
 (評価)
 (1)熱寸法安定性(平均線膨張係数(CTE))
 得られた厚さ40μmの樹脂フィルム(Bステージフィルム)を190℃で90分間加熱して得られた硬化物を3mm×25mmの大きさに裁断した。熱機械的分析装置(エスアイアイ・ナノテクノロジー社製「EXSTAR TMA/SS6100」)を用いて、引っ張り荷重33mN及び昇温速度5℃/分の条件で、裁断された硬化物の25℃~150℃までの平均線膨張係数(ppm/℃)を算出した。
(evaluation)
(1) Thermal dimensional stability (coefficient of linear expansion (CTE))
The obtained resin film (B stage film) having a thickness of 40 μm was heated at 190 ° C. for 90 minutes, and the obtained cured product was cut into a size of 3 mm × 25 mm. Using a thermomechanical analyzer (“EXSTAR TMA / SS6100” manufactured by SII Nanotechnology Co., Ltd.), the cured product was cut at 25 ° C to 150 ° C under the conditions of a tensile load of 33 mN and a heating rate of 5 ° C / min. The coefficient of linear expansion (ppm / ° C) up to was calculated.
 [平均線膨張係数の判定基準]
 ○○:平均線膨張係数が26ppm/℃以下
 ○:平均線膨張係数が26ppm/℃を超え30ppm/℃以下
 ×:平均線膨張係数が30ppm/℃を超える
[Criteria for determining the coefficient of linear expansion]
○ ○: Average coefficient of linear expansion is 26 ppm / ° C or less ○: Average coefficient of linear expansion exceeds 26 ppm / ° C and is 30 ppm / ° C or less ×: Average coefficient of linear expansion exceeds 30 ppm / ° C
 (2)誘電正接(Df)及び比誘電率
 得られた樹脂フィルムを190℃で90分間加熱して、硬化物を得た。得られた硬化物を幅2mm、長さ80mmの大きさに裁断して10枚を重ね合わせて、関東電子応用開発社製「空洞共振摂動法誘電率測定装置CP521」及びキーサイトテクノロジー社製「ネットワークアナライザーN5224A PNA」を用いて、空洞共振法で常温(23℃)にて、周波数5.8GHzにて誘電正接及び比誘電率を測定した。
(2) Dielectric Dissipation Factor (Df) and Relative Permittivity The obtained resin film was heated at 190 ° C. for 90 minutes to obtain a cured product. The obtained cured product was cut into a size of 2 mm in width and 80 mm in length, and 10 sheets were laminated. Using a network analyzer N5224A PNA, the dielectric loss tangent and relative permittivity were measured at room temperature (23 ° C.) and a frequency of 5.8 GHz by the cavity resonance method.
 [誘電正接の判定基準]
 ○○:誘電正接が2.5×10-3未満
 ○:誘電正接が2.5×10-3以上2.75×10-3未満
 ×:誘電正接が2.75×10-3以上
[Criteria for determining dielectric loss tangent]
○ ○: Dissipation factor is less than 2.5 × 10 -3 ○: Dissipation factor is 2.5 × 10 -3 or more and less than 2.75 × 10 -3 ×: Dissipation factor is 2.75 × 10 -3 or more
 (3)デスミア性(ビア底の残渣の除去性)
 ラミネート・半硬化処理:
 得られた樹脂フィルムを、CCL基板(日立化成工業社製「E679FG」)に真空ラミネートし、180℃で30分間加熱し、半硬化させた。このようにして、CCL基板に樹脂フィルムの半硬化物が積層されている積層体Aを得た。
(3) Desmia (removability of residue on the bottom of via)
Laminating / semi-hardening:
The obtained resin film was vacuum-laminated on a CCL substrate (“E679FG” manufactured by Hitachi Kasei Kogyo Co., Ltd.) and heated at 180 ° C. for 30 minutes to be semi-cured. In this way, a laminated body A in which a semi-cured product of a resin film was laminated on a CCL substrate was obtained.
 ビア(貫通孔)形成:
 得られた積層体Aの樹脂フィルムの半硬化物に、COレーザー(日立ビアメカニクス社製)を用いて、上端での直径が60μm、下端(底部)での直径が40μmであるビア(貫通孔)を形成した。このようにして、CCL基板に樹脂フィルムの半硬化物が積層されており、かつ樹脂フィルムの半硬化物にビア(貫通孔)が形成されている積層体Bを得た。
Via (through hole) formation:
Using a CO 2 laser (manufactured by Hitachi Via Mechanics) on the semi-cured resin film of the obtained laminate A, a via (penetration) having a diameter of 60 μm at the upper end and a diameter of 40 μm at the lower end (bottom). Hole) was formed. In this way, a laminated body B in which the semi-cured product of the resin film was laminated on the CCL substrate and vias (through holes) were formed in the semi-cured product of the resin film was obtained.
 ビアの底部の残渣の除去処理:
 (a)膨潤処理
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、得られた積層体Bを入れて、10分間揺動させた。その後、純水で洗浄した。
Removal of residue on the bottom of the via:
(A) Swelling treatment The obtained laminate B was placed in a swelling liquid at 60 ° C. (“Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and shaken for 10 minutes. Then, it was washed with pure water.
 (b)過マンガン酸塩処理(粗化処理及びデスミア処理)
 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体Bを入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)を用いて2分間処理した後、純水で洗浄を行い、評価サンプルを得た。
(B) Permanganate treatment (roughening treatment and desmear treatment)
The swelling-treated laminate B was placed in a crude aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan) at 80 ° C. and shaken for 30 minutes. Next, the mixture was treated with a cleaning solution at 25 ° C. (“Reduction Securigant P” manufactured by Atotech Japan) for 2 minutes, and then washed with pure water to obtain an evaluation sample.
 評価サンプルのビアの底部を走査電子顕微鏡(SEM)にて観察し、ビア底の壁面からの最大スミア長を測定した。ビア底の残渣の除去性を以下の基準で判定した。 The bottom of the via of the evaluation sample was observed with a scanning electron microscope (SEM), and the maximum smear length from the wall surface of the bottom of the via was measured. The removability of the residue on the bottom of the via was judged according to the following criteria.
 [デスミア性(ビア底の残渣の除去性)の判定基準]
 ○○:最大スミア長が1μm未満
 ○:最大スミア長が1μm以上3μm未満
 ×:最大スミア長が3μm以上
[Criteria for determining desmear property (removability of residue on the bottom of via)]
○ ○: Maximum smear length is less than 1 μm ○: Maximum smear length is 1 μm or more and less than 3 μm ×: Maximum smear length is 3 μm or more
 (4)エッチング後の表面粗度(表面粗さ)及び表面粗度の均一性
 ラミネート工程及び半硬化処理:
 両面銅張積層板(CCL基板)(日立化成社製「E679FG」)を用意した。この両面銅張積層板の銅箔面の両面をメック社製「Cz8101」に浸漬して、銅箔の表面を粗化処理した。粗化処理された銅張積層板の両面に、名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、積層フィルムの樹脂フィルム(Bステージフィルム)側を銅張積層板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.4MPaでプレスする条件とした。その後、180℃で30分間加熱し、樹脂フィルムを半硬化させた。このようにして、CCL基板に樹脂フィルムの半硬化物が積層されている積層体を得た。
(4) Surface Roughness (Surface Roughness) After Etching and Uniformity of Surface Roughness Laminating process and semi-hardening treatment:
A double-sided copper-clad laminate (CCL substrate) (“E679FG” manufactured by Hitachi Kasei Co., Ltd.) was prepared. Both sides of the copper foil surface of this double-sided copper-clad laminate were immersed in "Cz8101" manufactured by MEC to roughen the surface of the copper foil. Using "Batch type vacuum laminator MVLP-500-IIA" manufactured by Meiki Co., Ltd. on both sides of the roughened copper-clad laminate, the resin film (B stage film) side of the laminate is placed on the copper-clad laminate. It was laminated on top of each other to obtain a laminated structure. The laminating conditions were such that the pressure was reduced for 30 seconds to reduce the atmospheric pressure to 13 hPa or less, and then the pressure was pressed at 100 ° C. and a pressure of 0.4 MPa for 30 seconds. Then, the resin film was semi-cured by heating at 180 ° C. for 30 minutes. In this way, a laminated body in which a semi-cured resin film was laminated on the CCL substrate was obtained.
 粗化処理:
 (a)膨潤処理:
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、得られた積層体を入れて、10分間揺動させた。その後、純水で洗浄した。
Roughening process:
(A) Swelling treatment:
The obtained laminate was placed in a swelling solution at 60 ° C. (“Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and shaken for 10 minutes. Then, it was washed with pure water.
 (b)過マンガン酸塩処理(粗化処理及びデスミア処理):
 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体を入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)を用いて2分間処理した後、純水で洗浄を行い、評価サンプルを得た。
(B) Permanganate treatment (roughening treatment and desmear treatment):
The swelling-treated laminate was placed in a crude aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan) at 80 ° C. and shaken for 30 minutes. Next, the mixture was treated with a cleaning solution at 25 ° C. (“Reduction Securigant P” manufactured by Atotech Japan) for 2 minutes, and then washed with pure water to obtain an evaluation sample.
 表面粗さの測定:
 評価サンプル(粗化処理された硬化物)の表面において、94μm×123μmの領域を任意に10箇所選択した。この10箇所の各領域について、非接触3次元表面形状測定装置(Veeco社製「WYKO NT1100」)を用いて、算術平均粗さRaを測定した。測定された10箇所の算術平均粗さRaの平均値から下記の表面粗度を評価し、測定された10箇所の算術平均粗さRaの最大値と最小値との差の絶対値から下記の表面粗さの均一性を評価した。なお、上記算術平均粗さRaは、JIS B0601:1994に準拠して測定した。
Measurement of surface roughness:
On the surface of the evaluation sample (roughened cured product), 10 regions of 94 μm × 123 μm were arbitrarily selected. Arithmetic mean roughness Ra was measured for each of these 10 regions using a non-contact three-dimensional surface shape measuring device (“WYKO NT1100” manufactured by Veeco). The following surface roughness is evaluated from the average value of the measured arithmetic average roughness Ra at 10 points, and the following is obtained from the absolute value of the difference between the maximum value and the minimum value of the measured arithmetic average roughness Ra at 10 points. The uniformity of surface roughness was evaluated. The arithmetic mean roughness Ra was measured in accordance with JIS B0601: 1994.
 [エッチング後の表面粗度の判定基準]
 ○○:算術平均粗さRaの平均値が70nm未満
 ○:算術平均粗さRaの平均値が70nm以上150nm未満
 ×:算術平均粗さRaの平均値が150nm以上
[Criteria for determining surface roughness after etching]
○○: The average value of the arithmetic mean roughness Ra is less than 70 nm ○: The average value of the arithmetic mean roughness Ra is 70 nm or more and less than 150 nm ×: The average value of the arithmetic mean roughness Ra is 150 nm or more
 [エッチング後の表面粗度の均一性の判定基準]
 ○○:算術平均粗さRaの最大値と最小値との差の絶対値が5nm未満
 ○:算術平均粗さRaの最大値と最小値との差の絶対値が5nm以上10nm未満
 △:算術平均粗さRaの最大値と最小値との差の絶対値が10nm以上20nm未満
 ×:算術平均粗さRaの最大値と最小値との差の絶対値が20nm以上
[Criteria for determining the uniformity of surface roughness after etching]
○○: Absolute value of the difference between the maximum value and the minimum value of the arithmetic average roughness Ra is less than 5 nm ○: Absolute value of the difference between the maximum value and the minimum value of the arithmetic average roughness Ra is 5 nm or more and less than 10 nm △: Arithmetic The absolute value of the difference between the maximum and minimum values of the average roughness Ra is 10 nm or more and less than 20 nm ×: The absolute value of the difference between the maximum and minimum values of the arithmetic average roughness Ra is 20 nm or more.
 (5)メッキピール強度
 ラミネート工程及び半硬化処理:
 100mm角の両面銅張積層板(CCL基板)(日立化成社製「E679FG」)を用意した。この両面銅張積層板の銅箔面の両面をメック社製「Cz8101」に浸漬して、銅箔の表面を粗化処理した。名機製作所社製「バッチ式真空ラミネーターMVLP-500-IIA」を用いて、粗化処理された銅張積層板の両面に、積層フィルムの樹脂フィルム(Bステージフィルム)側を銅張積層板上に重ねてラミネートして、積層構造体を得た。ラミネートの条件は、30秒減圧して気圧を13hPa以下とし、その後30秒間、100℃及び圧力0.7MPaでラミネートし、更にプレス圧力0.8MPa及びプレス温度100℃で60秒間プレスする条件とした。その後、PETフィルムを付けたまま、積層構造体における樹脂フィルムを100℃で30分間加熱した後、180℃で30分間さらに加熱し、樹脂フィルムを半硬化させた。その後、PETフィルムを剥離することで、CCL基板に樹脂フィルムの半硬化物が積層されている積層体を得た。
(5) Plating peel strength Laminating process and semi-hardening process:
A 100 mm square double-sided copper-clad laminate (CCL substrate) (“E679FG” manufactured by Hitachi Kasei Co., Ltd.) was prepared. Both sides of the copper foil surface of this double-sided copper-clad laminate were immersed in "Cz8101" manufactured by MEC to roughen the surface of the copper foil. Using "Batch type vacuum laminator MVLP-500-IIA" manufactured by Meiki Co., Ltd., the resin film (B stage film) side of the laminated film is placed on the copper-clad laminate on both sides of the roughened copper-clad laminate. It was laminated on top of each other to obtain a laminated structure. The laminating conditions were such that the pressure was reduced for 30 seconds to reduce the atmospheric pressure to 13 hPa or less, then laminating at 100 ° C. and pressure 0.7 MPa for 30 seconds, and then pressing at a press pressure of 0.8 MPa and a press temperature of 100 ° C. for 60 seconds. .. Then, the resin film in the laminated structure was heated at 100 ° C. for 30 minutes with the PET film attached, and then further heated at 180 ° C. for 30 minutes to semi-cure the resin film. Then, the PET film was peeled off to obtain a laminate in which a semi-cured resin film was laminated on the CCL substrate.
 粗化処理:
 (a)膨潤処理:
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」)に、得られた積層体を入れて、10分間揺動させた。その後、純水で洗浄した。
Roughening process:
(A) Swelling treatment:
The obtained laminate was placed in a swelling solution at 60 ° C. (“Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and shaken for 10 minutes. Then, it was washed with pure water.
 (b)過マンガン酸塩処理(粗化処理及びデスミア処理):
 80℃の過マンガン酸カリウム(アトテックジャパン社製「コンセントレートコンパクトCP」)粗化水溶液に、膨潤処理後の積層体を入れて、30分間揺動させた。次に、25℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」)を用いて2分間処理した後、純水で洗浄を行い、粗化処理した。
(B) Permanganate treatment (roughening treatment and desmear treatment):
The swelling-treated laminate was placed in a crude aqueous solution of potassium permanganate (“Concentrate Compact CP” manufactured by Atotech Japan) at 80 ° C. and shaken for 30 minutes. Next, after treating for 2 minutes with a cleaning solution at 25 ° C. (“Reduction Securigant P” manufactured by Atotech Japan), cleaning with pure water was performed to roughen the mixture.
 無電解めっき処理:
 得られた粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。
Electroless plating:
The surface of the obtained roughened cured product was treated with an alkaline cleaner at 60 ° C. (“Cleaner Securigant 902” manufactured by Atotech Japan Co., Ltd.) for 5 minutes, and degreased and washed. After washing, the cured product was treated with a predip solution (“Predip Neogant B” manufactured by Atotech Japan) at 25 ° C. for 2 minutes. Then, the cured product was treated with an activator solution at 40 ° C. (“Activator Neogant 834” manufactured by Atotech Japan Co., Ltd.) for 5 minutes, and a palladium catalyst was attached. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
 次に、上記硬化物を化学銅液(アトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、及び「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニール処理した。なお、無電解めっきの工程までの全ての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。 Next, the cured product was placed in a chemical copper solution (Atotech Japan's "Basic Print Gantt MSK-DK", "Copper Print Gantt MSK", "Stabilizer Print Gantt MSK", and "Reducer Cu") and electroless plated. Was carried out until the plating thickness became about 0.5 μm. After electroless plating, annealing treatment was performed at a temperature of 120 ° C. for 30 minutes in order to remove residual hydrogen gas. All the steps up to the electroless plating step were carried out with a beaker scale containing 2 L of the treatment liquid and shaking the cured product.
 電解めっき処理:
 次に、無電解めっき処理された硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電解銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパラシド HL」、アトテックジャパン社製「補正剤カパラシド GS」)を用いて、0.6A/cmの電流を流しめっき厚さが25μm程度となるまで電解めっきを実施した。銅めっき処理後、硬化物を200℃で60分間加熱し、硬化物を更に硬化させた。このようにして、銅めっき層が上面に積層された硬化物を得た。
Electroplating:
Next, the cured product subjected to the electroless plating treatment was subjected to electrolytic plating until the plating thickness became 25 μm. Copper sulfate solution for electrolytic copper plating ("Copper sulfate pentahydrate" manufactured by Wako Pure Chemical Industries, Ltd., "Sulfate" manufactured by Wako Pure Chemical Industries, Ltd., "Basic leveler capallaside HL" manufactured by Atotech Japan, "Basic leveler capallaside HL" manufactured by Atotech Japan. Using the corrective agent Capalacid GS ”), electrolytic plating was carried out by passing a current of 0.6 A / cm 2 until the plating thickness became about 25 μm. After the copper plating treatment, the cured product was heated at 200 ° C. for 60 minutes to further cure the cured product. In this way, a cured product in which the copper plating layer was laminated on the upper surface was obtained.
 メッキピール強度の測定:
 得られた銅めっき層が上面に積層された硬化物の銅めっき層の表面に10mm幅の短冊状の切込みを、5mm間隔で合計6箇所入れた。90°剥離試験機(テスター産業社製「TE-3001」)に銅めっき層が上面に積層された硬化物をセットし、つかみ具で切込みの入った銅めっき層の端部をつまみあげ、銅めっき層を20mm剥離して剥離強度(メッキピール強度)を測定した。6箇所の切り込み箇所に対してそれぞれ剥離強度(メッキピール強度)を測定し、メッキピール強度の平均値を求めた。メッキピール強度を下記の基準で判定した。
Measurement of plating peel strength:
A total of 6 strip-shaped cuts having a width of 10 mm were made on the surface of the cured copper-plated layer on which the obtained copper-plated layer was laminated at 5 mm intervals. Set the cured product with the copper plating layer laminated on the upper surface in a 90 ° peeling tester (“TE-3001” manufactured by Tester Sangyo Co., Ltd.), pick up the end of the notched copper plating layer with a grip, and copper. The plating layer was peeled off by 20 mm and the peeling strength (plating peel strength) was measured. The peeling strength (plating peel strength) was measured for each of the six notches, and the average value of the plating peel strength was obtained. The plating peel strength was judged according to the following criteria.
 [メッキピール強度の判定基準]
 ○○:メッキピール強度の平均値が0.50kgf/cm以上
 ○:メッキピール強度の平均値が0.45kgf/cm以上0.50kgf/cm未満
 △:メッキピール強度の平均値が0.35kgf/cm以上0.45kgf/cm未満
 ×:メッキピール強度の平均値が0.35kgf/cm未満
[Criteria for plating peel strength]
○ ○: Average value of plating peel strength is 0.50 kgf / cm or more ○: Average value of plating peel strength is 0.45 kgf / cm or more and less than 0.50 kgf / cm Δ: Average value of plating peel strength is 0.35 kgf / Cm or more and less than 0.45 kgf / cm ×: The average value of plating peel strength is less than 0.35 kgf / cm
 組成及び結果を下記の表1~4に示す。 The composition and results are shown in Tables 1 to 4 below.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 11…多層プリント配線板
 12…回路基板
 12a…上面
 13~16…絶縁層
 17…金属層
11 ... Multi-layer printed wiring board 12 ... Circuit board 12a ... Top surface 13-16 ... Insulation layer 17 ... Metal layer

Claims (22)

  1.  第1の骨格を有する第1の化合物と、
     硬化促進剤とを含み、
     前記第1の骨格は、非共役炭素-炭素二重結合を有する酸無水物に由来し、かつイミド結合を有する、樹脂材料。
    The first compound having the first skeleton and
    Including hardening accelerator
    The first skeleton is a resin material derived from an acid anhydride having a non-conjugated carbon-carbon double bond and having an imide bond.
  2.  前記第1の化合物が、非共役炭素-炭素二重結合を有する酸無水物とは異なる酸無水物に由来する骨格を有し、
     前記第1の化合物が有する酸無水物に由来する構造単位100モル%中、前記第1の骨格の平均割合が、10モル%以上90モル%以下である、請求項1に記載の樹脂材料。
    The first compound has a skeleton derived from an acid anhydride different from that of an acid anhydride having a non-conjugated carbon-carbon double bond.
    The resin material according to claim 1, wherein the average ratio of the first skeleton is 10 mol% or more and 90 mol% or less in 100 mol% of the structural units derived from the acid anhydride of the first compound.
  3.  前記第1の化合物が、シクロヘキシル環を有するアミン化合物に由来する骨格を有する、請求項1又は2に記載の樹脂材料。 The resin material according to claim 1 or 2, wherein the first compound has a skeleton derived from an amine compound having a cyclohexyl ring.
  4.  前記第1の化合物が、前記シクロヘキシル環を有するアミン化合物に由来する骨格として、ダイマージアミンに由来する第2の骨格を有する、請求項3に記載の樹脂材料。 The resin material according to claim 3, wherein the first compound has a second skeleton derived from diamine diamine as a skeleton derived from the amine compound having a cyclohexyl ring.
  5.  前記第1の化合物が、ダイマージアミンとは異なるジアミン化合物に由来する骨格を有し、
     前記第1の化合物が有するジアミン化合物に由来する構造単位100モル%中、前記第2の骨格の平均割合が、10モル%以上90モル%以下である、請求項4に記載の樹脂材料。
    The first compound has a skeleton derived from a diamine compound different from diamine diamine.
    The resin material according to claim 4, wherein the average ratio of the second skeleton is 10 mol% or more and 90 mol% or less in 100 mol% of the structural units derived from the diamine compound contained in the first compound.
  6.  前記第1の化合物が、前記シクロヘキシル環を有するアミン化合物に由来する骨格として、ダイマージアミンとは異なりかつシクロヘキシル環を有するアミン化合物に由来する第3の骨格を有する、請求項3~5のいずれか1項に記載の樹脂材料。 Any of claims 3 to 5, wherein the first compound has a third skeleton derived from an amine compound having a cyclohexyl ring, which is different from diamine diamine, as a skeleton derived from the amine compound having a cyclohexyl ring. The resin material according to item 1.
  7.  前記ダイマージアミンとは異なりかつシクロヘキシル環を有するアミン化合物が、ノルボルナンジアミン又はトリシクロデカンジアミンである、請求項6に記載の樹脂材料。 The resin material according to claim 6, wherein the amine compound different from the diamine diamine and having a cyclohexyl ring is norbornane diamine or tricyclodecane diamine.
  8.  前記第1の化合物が、マレイミド骨格を有する、請求項1~7のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 7, wherein the first compound has a maleimide skeleton.
  9.  前記第1の化合物が、下記式(X3)で表されるビスマレイミド化合物又はその構造異性体である、請求項1~8のいずれか1項に記載の樹脂材料。
    Figure JPOXMLDOC01-appb-C000001
    The resin material according to any one of claims 1 to 8, wherein the first compound is a bismaleimide compound represented by the following formula (X3) or a structural isomer thereof.
    Figure JPOXMLDOC01-appb-C000001
  10.  前記第1の化合物が、下記式(X4)で表されるビスマレイミド化合物又はその構造異性体である、請求項1~8のいずれか1項に記載の樹脂材料。
    Figure JPOXMLDOC01-appb-C000002
    The resin material according to any one of claims 1 to 8, wherein the first compound is a bismaleimide compound represented by the following formula (X4) or a structural isomer thereof.
    Figure JPOXMLDOC01-appb-C000002
  11.  前記第1の化合物が、ベンゾオキサジン骨格を有する、請求項1~8のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 8, wherein the first compound has a benzoxazine skeleton.
  12.  前記第1の化合物が、両末端にマレイミド骨格を有するか、又は、両末端にベンゾオキサジン骨格を有する、請求項1~8のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 8, wherein the first compound has a maleimide skeleton at both ends or a benzoxazine skeleton at both ends.
  13.  前記第1の化合物の分子量が、1000以上50000以下である、請求項1~12のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 12, wherein the first compound has a molecular weight of 1000 or more and 50,000 or less.
  14.  前記非共役炭素-炭素二重結合を有する酸無水物が、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、又は5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物を含む、請求項1~13のいずれか1項に記載の樹脂材料。 The acid anhydride having a non-conjugated carbon-carbon double bond is bicyclo [2.2.2] octo-7-ene-2,3,5,6-tetracarboxylic acid dianhydride, or 5- (2). , 5-Dioxotetrahydrofuryl) The resin material according to any one of claims 1 to 13, which comprises -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride.
  15.  前記第1の化合物が、ビフェニル酸二無水物に由来する骨格を有する、請求項1~14のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 14, wherein the first compound has a skeleton derived from biphenylic dianhydride.
  16.  無機充填材を含む、請求項1~15のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 15, which contains an inorganic filler.
  17.  第1の熱硬化性化合物として、前記第1の化合物を含み、
     第2の熱硬化性化合物を含み、
     前記第2の熱硬化性化合物が、エポキシ化合物を含む、請求項1~16のいずれか1項に記載の樹脂材料。
    The first thermosetting compound includes the first compound.
    Contains a second thermosetting compound
    The resin material according to any one of claims 1 to 16, wherein the second thermosetting compound contains an epoxy compound.
  18.  硬化剤を含み、
     前記硬化剤が、活性エステル化合物を含む、請求項1~17のいずれか1項に記載の樹脂材料。
    Contains hardener,
    The resin material according to any one of claims 1 to 17, wherein the curing agent contains an active ester compound.
  19.  エラストマーを含む、請求項1~18のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 18, which contains an elastomer.
  20.  樹脂フィルムである、請求項1~19のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 19, which is a resin film.
  21.  多層プリント配線板において、絶縁層を形成するために用いられる、請求項1~20のいずれか1項に記載の樹脂材料。 The resin material according to any one of claims 1 to 20, which is used for forming an insulating layer in a multilayer printed wiring board.
  22.  回路基板と、
     前記回路基板の表面上に配置された複数の絶縁層と、
     複数の前記絶縁層間に配置された金属層とを備え、
     複数の前記絶縁層の内の少なくとも1層が、請求項1~21のいずれか1項に記載の樹脂材料の硬化物である、多層プリント配線板。
    Circuit board and
    A plurality of insulating layers arranged on the surface of the circuit board,
    With a plurality of metal layers arranged between the insulating layers,
    A multilayer printed wiring board in which at least one of the plurality of insulating layers is a cured product of the resin material according to any one of claims 1 to 21.
PCT/JP2021/008066 2020-03-13 2021-03-03 Resin material and multilayer printed wiring board WO2021182207A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227030880A KR20220152533A (en) 2020-03-13 2021-03-03 Resin materials and multi-layer printed wiring boards
CN202180020804.6A CN115279808A (en) 2020-03-13 2021-03-03 Resin material and multilayer printed wiring board
JP2022505956A JPWO2021182207A1 (en) 2020-03-13 2021-03-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044609 2020-03-13
JP2020044609 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182207A1 true WO2021182207A1 (en) 2021-09-16

Family

ID=77671628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008066 WO2021182207A1 (en) 2020-03-13 2021-03-03 Resin material and multilayer printed wiring board

Country Status (5)

Country Link
JP (1) JPWO2021182207A1 (en)
KR (1) KR20220152533A (en)
CN (1) CN115279808A (en)
TW (1) TW202140623A (en)
WO (1) WO2021182207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090363A1 (en) * 2021-11-18 2023-05-25 株式会社レゾナック Resin composition, cured object, sheet, layered product, and printed wiring board
WO2023210038A1 (en) * 2022-04-25 2023-11-02 日本化薬株式会社 Bismaleimide compound, resin composition including same, cured object therefrom, and semiconductor element
JP7460816B1 (en) 2022-11-11 2024-04-02 南亞塑膠工業股▲分▼有限公司 Resin composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312321A (en) * 1987-06-15 1988-12-20 Matsushita Electric Works Ltd Curable polymer composition
WO2001010964A1 (en) * 1999-08-06 2001-02-15 Pi R & D Co., Ltd. Composition for polyimide electrodeposition and method of forming patterned polyimide film with the same
JP2005330356A (en) * 2004-05-19 2005-12-02 Sumitomo Bakelite Co Ltd Resin composition and semiconductor apparatus made by using resin composition
JP2009155640A (en) * 2007-12-07 2009-07-16 Asahi Kasei E-Materials Corp Adhesive polyimide with high heat resistance for solder
WO2016171101A1 (en) * 2015-04-20 2016-10-27 宇部興産株式会社 Polyimide, curable resin composition, and cured article
WO2020203834A1 (en) * 2019-04-02 2020-10-08 日本化薬株式会社 Bismaleimide compound, photosensitive resin composition using same, cured product from said photosensitive resin composition, and semiconductor element
WO2021020563A1 (en) * 2019-08-01 2021-02-04 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP2021025051A (en) * 2019-08-01 2021-02-22 積水化学工業株式会社 Resin material and multilayer printed wiring board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286346B2 (en) 2015-01-13 2022-03-29 Showa Denko Materials Co., Ltd. Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
JP7442255B2 (en) 2016-12-06 2024-03-04 三菱瓦斯化学株式会社 Resin composition for electronic materials

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63312321A (en) * 1987-06-15 1988-12-20 Matsushita Electric Works Ltd Curable polymer composition
WO2001010964A1 (en) * 1999-08-06 2001-02-15 Pi R & D Co., Ltd. Composition for polyimide electrodeposition and method of forming patterned polyimide film with the same
JP2005330356A (en) * 2004-05-19 2005-12-02 Sumitomo Bakelite Co Ltd Resin composition and semiconductor apparatus made by using resin composition
JP2009155640A (en) * 2007-12-07 2009-07-16 Asahi Kasei E-Materials Corp Adhesive polyimide with high heat resistance for solder
WO2016171101A1 (en) * 2015-04-20 2016-10-27 宇部興産株式会社 Polyimide, curable resin composition, and cured article
WO2020203834A1 (en) * 2019-04-02 2020-10-08 日本化薬株式会社 Bismaleimide compound, photosensitive resin composition using same, cured product from said photosensitive resin composition, and semiconductor element
WO2021020563A1 (en) * 2019-08-01 2021-02-04 積水化学工業株式会社 Resin material and multilayer printed wiring board
JP2021025051A (en) * 2019-08-01 2021-02-22 積水化学工業株式会社 Resin material and multilayer printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090363A1 (en) * 2021-11-18 2023-05-25 株式会社レゾナック Resin composition, cured object, sheet, layered product, and printed wiring board
WO2023210038A1 (en) * 2022-04-25 2023-11-02 日本化薬株式会社 Bismaleimide compound, resin composition including same, cured object therefrom, and semiconductor element
JP7460816B1 (en) 2022-11-11 2024-04-02 南亞塑膠工業股▲分▼有限公司 Resin composition

Also Published As

Publication number Publication date
JPWO2021182207A1 (en) 2021-09-16
TW202140623A (en) 2021-11-01
CN115279808A (en) 2022-11-01
KR20220152533A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6805338B2 (en) Resin material, laminated structure and multi-layer printed wiring board
JP6660513B1 (en) Resin material and multilayer printed wiring board
JP7323314B2 (en) Resin materials, laminated films and multilayer printed wiring boards
JP7332479B2 (en) Resin material, laminated structure and multilayer printed wiring board
JP7474064B2 (en) Resin materials and multilayer printed wiring boards
WO2021182207A1 (en) Resin material and multilayer printed wiring board
WO2021020563A1 (en) Resin material and multilayer printed wiring board
JP2021025053A (en) Resin material and multilayer printed wiring board
JP2022063605A (en) Laminate, multilayer printed wiring board, laminate manufacturing method, and laminate preparation kit
JP2021042295A (en) Resin material and multilayer printed board
JP2021025051A (en) Resin material and multilayer printed wiring board
JP2022001615A (en) Resin material and multilayer print circuit board
JP7339731B2 (en) Resin materials and multilayer printed wiring boards
JP2020094212A (en) Resin material and multilayer printed wiring board
JP7437215B2 (en) Resin materials and multilayer printed wiring boards
JP7478008B2 (en) Resin materials and multilayer printed wiring boards
JP2020094089A (en) Resin material and multilayer printed wiring board
WO2022234823A1 (en) Resin material and multilayer printed wiring board
JP7027382B2 (en) Resin film and multi-layer printed wiring board
JP7226954B2 (en) Resin materials and multilayer printed wiring boards
JP7254528B2 (en) Resin materials and multilayer printed wiring boards
WO2020196829A1 (en) Resin material and multilayer printed wiring board
JP2022052450A (en) Resin material and multilayer printed wiring board
JP2020132880A (en) Resin material and multilayer printed wiring board
JP2022134490A (en) Resin material and multilayer printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21766849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21766849

Country of ref document: EP

Kind code of ref document: A1