WO2019188185A1 - 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 - Google Patents

樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 Download PDF

Info

Publication number
WO2019188185A1
WO2019188185A1 PCT/JP2019/009667 JP2019009667W WO2019188185A1 WO 2019188185 A1 WO2019188185 A1 WO 2019188185A1 JP 2019009667 W JP2019009667 W JP 2019009667W WO 2019188185 A1 WO2019188185 A1 WO 2019188185A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
resin
group
cured product
composition according
Prior art date
Application number
PCT/JP2019/009667
Other languages
English (en)
French (fr)
Inventor
大明 梅原
李歩子 渡邉
博晴 井上
誼群 王
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980020243.2A priority Critical patent/CN111886264B/zh
Priority to US16/977,384 priority patent/US20210054197A1/en
Priority to JP2020509815A priority patent/JP7281650B2/ja
Publication of WO2019188185A1 publication Critical patent/WO2019188185A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/404Imides, e.g. cyclic imides substituted imides comprising oxygen other than the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • C08L71/126Polyphenylene oxides modified by chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/028Paper layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0276Polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08J2371/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08J2371/12Polyphenylene oxides

Definitions

  • the present invention relates to a resin composition, and a prepreg, a film with resin, a metal foil with resin, a metal-clad laminate, and a wiring board using the resin composition.
  • Substrate materials used to construct printed wiring board base materials used in various electronic devices are required to have a low dielectric constant and dielectric loss tangent in order to increase signal transmission speed and reduce loss during signal transmission. It is done.
  • maleimide compounds are excellent in dielectric properties such as low dielectric constant and low dielectric loss tangent (hereinafter also referred to as low dielectric properties).
  • dielectric properties such as low dielectric constant and low dielectric loss tangent (hereinafter also referred to as low dielectric properties).
  • Patent Document 1 by using a resin composition containing a maleimide compound having a saturated or unsaturated divalent hydrocarbon group and an aromatic maleimide compound, high-frequency characteristics (low dielectric constant) in the cured product are used. It is reported that a resin composition having a low thermal expansion characteristic and adhesiveness can be provided.
  • the molding material such as a substrate material
  • it not only excels in low dielectric properties and low thermal expansion properties, but also has a high glass transition in order to make it less susceptible to changes in the external environment. It is required to have a temperature (Tg) and to have heat resistance and adhesion. Further, it is required to suppress moisture absorption of the wiring board to the base material by reducing the water absorption of the cured material of the molding material so that the wiring board can be used even in an environment with high humidity.
  • the base material for constituting the base material of the wiring board is required to obtain a cured product having low water absorption, excellent heat resistance and adhesion, and low dielectric properties.
  • the resin composition described in Patent Document 1 can obtain low dielectric properties and heat resistance, adhesion, low thermal expansion properties, and low water absorption to a certain extent.
  • further improvements in performance such as high Tg, heat resistance, adhesion, low coefficient of thermal expansion, and low water absorption are required at a higher level.
  • the present invention has been made in view of such circumstances, and has a resin composition having high heat resistance, high Tg, low thermal expansion coefficient, adhesion, and low water absorption in addition to low dielectric properties in the cured product.
  • the purpose is to provide.
  • it aims at providing the prepreg using the said resin composition, the film with resin, metal foil with resin, a metal-clad laminated board, and a wiring board.
  • the resin composition according to one embodiment of the present invention includes (A) a thermosetting compound having a styrene structure or a (meth) acrylate structure, and (B) a maleimide compound represented by the following formulas (1) to (3). And at least one.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a prepreg according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of a metal-clad laminate according to an embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a wiring board according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view illustrating a configuration of a resin-coated metal foil according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view showing a configuration of a resin film according to an embodiment of the present invention.
  • a resin composition according to an embodiment of the present invention includes (A) a thermosetting compound having a styrene structure or a (meth) acrylate structure, and (B) a maleimide compound represented by the following formulas (1) to (3). And at least one.
  • the prepreg which has the outstanding performance, the film with resin, the metal foil with resin, the metal-clad laminated board, and a wiring board can be provided.
  • thermosetting compound (A) having a styrene structure or (meth) acrylate structure used in this embodiment has a styrene structure or (meth) acrylate structure, it is a radical reaction type thermosetting compound. is there.
  • the component (A) since the component (A) has a styrene structure or a (meth) acrylate structure as described above, the reactivity with the (B) maleimide compound described later is improved, and the component (A) and the component (B) Interfacial adhesion with components can be improved, and a resin composition having excellent heat resistance and reliability can be provided.
  • the weight average molecular weight (Mw) of the thermosetting compound used in the present embodiment is not particularly limited. Specifically, it is preferably 1000 to 5000, more preferably 1000 to 4000. In addition, here, the weight average molecular weight should just be measured by the general molecular weight measuring method, and the value measured using gel permeation chromatography (GPC) etc. are mentioned specifically ,.
  • thermosetting compound If the weight average molecular weight of the thermosetting compound is within such a range, it is considered that a resin composition having excellent adhesion and excellent moldability and resin toughness can be obtained.
  • the resin composition of the present embodiment may include a thermosetting resin other than the thermosetting compound having a styrene structure or a (meth) acrylate structure as described above.
  • thermosetting resins examples include epoxy resins, phenol resins, amine resins, unsaturated polyester resins, and thermosetting polyimide resins.
  • thermosetting compound in this embodiment is not particularly limited as long as it has a styrene structure or a (meth) acrylate structure.
  • the styrene structure or the (meth) acrylate structure is substituted at the molecular end.
  • examples include polyphenylene ether (PPE) compounds having groups; styrene, divinylbenzene, and derivatives thereof, other styrene compounds, divinylbenzene compounds; and (meth) acrylate compounds such as tricyclodecane dimethanol dimethacrylate.
  • the resin composition of the present embodiment has a polyphenylene ether skeleton in the molecule as the component (A) from the viewpoint that a higher Tg and adhesion can be obtained while maintaining a low dielectric constant and dielectric loss tangent.
  • the thermosetting compound which has this is included.
  • it preferably contains a polyphenylene ether compound terminal-modified with a styrene structure or a (meth) acrylate structure.
  • modified polyphenylene ether compound examples include modified polyphenylene ether compounds represented by the following formulas (4) to (6).
  • R 1 to R 8 , R 9 to R 16 and R 17 to R 20 are each independent. That is, R 1 to R 8 , R 9 to R 16 and R 17 to R 20 may be the same group or different groups.
  • R 1 to R 8 , R 9 to R 16 and R 17 to R 20 each represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. .
  • a hydrogen atom and an alkyl group are preferable.
  • R 1 to R 8 , R 9 to R 16 and R 17 to R 20 include the following.
  • the alkyl group is not particularly limited.
  • an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
  • alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group.
  • an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group.
  • an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • an acryloyl group, a methacryloyl group, a crotonoyl group, etc. are mentioned, for example.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group.
  • an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • a propioyl group etc. are mentioned, for example.
  • A is a structure represented by the following formula (7)
  • B is a structure represented by the following formula (8):
  • n and n which are repeating units each represent an integer of 1 to 50.
  • R 21 to R 24 and R 25 to R 28 are independent of each other. That is, R 21 to R 24 and R 25 to R 28 may be the same group or different groups. In the present embodiment, R 21 to R 24 and R 25 to R 28 are a hydrogen atom or an alkyl group.
  • s represents an integer of 1 to 100.
  • Y may be a linear, branched or cyclic hydrocarbon having 20 or less carbon atoms. More specifically, for example, the structure is represented by the following formula (9):
  • R 29 and R 30 each independently represent a hydrogen atom or an alkyl group.
  • the alkyl group include a methyl group.
  • a methylene group, a methylmethylene group, a dimethylmethylene group etc. are mentioned, for example.
  • X 1 to X 3 each independently represent a styrene structure or (meth) acrylate structure as represented by the following formula (10) or (11).
  • X 1 and X 2 may be the same or different.
  • R 31 represents a hydrogen atom or an alkyl group.
  • the alkyl group is not particularly limited, and for example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • examples of the substituents X 1 to X 3 in the present embodiment include a vinylbenzyl group (ethenylbenzyl group) such as p-ethenylbenzyl group and m-ethenylbenzyl group, vinylphenyl, and the like.
  • ethenylbenzyl group such as p-ethenylbenzyl group and m-ethenylbenzyl group, vinylphenyl, and the like.
  • Groups, acrylate groups, and methacrylate groups ethenylbenzyl group
  • modified polyphenylene ether compounds represented by the above formulas (4) to (6) can be used alone or in combination of two or more.
  • the weight average molecular weight (Mw) of the modified polyphenylene ether compound used as the thermosetting compound is not particularly limited, but is preferably 1000 to 5000, for example, and more preferably 1000 to 4000.
  • the weight average molecular weight should just be measured by the general molecular weight measuring method, and the value measured using gel permeation chromatography (GPC) etc. are mentioned specifically ,.
  • the modified polyphenylene ether compound has repeating units (s, m, n) in the molecule, the weight average molecular weight of the modified polyphenylene ether compound is within such a range. It is preferable that it is a numerical value.
  • the polyphenylene ether skeleton has excellent low dielectric properties and not only is excellent in heat resistance of the cured product, but also is excellent in moldability. It becomes. This is considered to be due to the following. Compared to ordinary polyphenylene ether, if the weight average molecular weight is within the above-mentioned range, it has a relatively low molecular weight, and thus the heat resistance of the cured product tends to be lowered.
  • the modified polyphenylene ether compound according to the present embodiment has a styrene structure or a (meth) acrylate structure at the terminal, it is considered that a product having high reactivity and sufficiently high heat resistance of the cured product can be obtained. It is done.
  • the weight average molecular weight of the modified polyphenylene ether compound is within such a range, it has a higher molecular weight than styrene or divinylbenzene, but has a relatively low molecular weight than a general polyphenylene ether. It is considered that the moldability is also excellent. Therefore, it is considered that such a modified polyphenylene ether compound is excellent not only in the heat resistance of the cured product but also excellent in moldability.
  • the average number (the number of terminal functional groups) of the X 1 to X 3 substituents at the molecular end per molecule of the modified polyphenylene ether is particularly It is not limited. Specifically, the number is preferably 1 to 5, and more preferably 1 to 3. When the number of terminal functional groups is too small, it is difficult to obtain a cured product having sufficient heat resistance. Moreover, when there are too many terminal functional groups, reactivity will become high too much, for example, the preservability of a resin composition may fall, or malfunctions, such as the fluidity
  • the number of terminal functional groups of the modified polyphenylene ether compound includes a numerical value representing an average value of the substituents per molecule of all the modified polyphenylene ether compounds present in 1 mol of the modified polyphenylene ether compound.
  • the number of terminal functional groups can be measured, for example, by measuring the number of hydroxyl groups remaining in the obtained modified polyphenylene ether compound and calculating the amount of decrease from the number of hydroxyl groups of the polyphenylene ether before modification. The decrease from the number of hydroxyl groups in the polyphenylene ether before modification is the number of terminal functional groups.
  • the method for measuring the number of hydroxyl groups remaining in the modified polyphenylene ether compound is to add a quaternary ammonium salt (tetraethylammonium hydroxide) associated with hydroxyl groups to the solution of the modified polyphenylene ether compound and measure the UV absorbance of the mixed solution. It can be obtained by doing.
  • a quaternary ammonium salt tetraethylammonium hydroxide
  • the intrinsic viscosity of the modified polyphenylene ether compound used in the present embodiment is not particularly limited. Specifically, it may be 0.03 to 0.12 dl / g, but is preferably 0.04 to 0.11 dl / g, and more preferably 0.06 to 0.095 dl / g. . If the intrinsic viscosity is too low, the molecular weight tends to be low, and low dielectric properties such as low dielectric constant and low dielectric loss tangent tend to be difficult to obtain. On the other hand, if the intrinsic viscosity is too high, the viscosity is high, sufficient fluidity cannot be obtained, and the moldability of the cured product tends to decrease. Therefore, if the intrinsic viscosity of the modified polyphenylene ether compound is within the above range, excellent heat resistance and moldability of the cured product can be realized.
  • the intrinsic viscosity here is an intrinsic viscosity measured in methylene chloride at 25 ° C. More specifically, for example, a 0.18 g / 45 ml methylene chloride solution (liquid temperature 25 ° C.) is used as a viscometer. It is the value measured by. Examples of the viscometer include AVS500 Visco System manufactured by Schott.
  • the method for synthesizing the modified polyphenylene ether compound preferably used in the present embodiment is not particularly limited as long as the modified polyphenylene ether compound terminal-modified with the substituents X 1 to X 3 as described above can be synthesized.
  • Specific examples include a method of reacting a compound in which substituents X 1 to X 3 and a halogen atom are bonded to polyphenylene ether.
  • the raw material polyphenylene ether is not particularly limited as long as it can finally synthesize a predetermined modified polyphenylene ether.
  • polyphenylene ether such as polyphenylene ether or poly (2,6-dimethyl-1,4-phenylene oxide) composed of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol is used.
  • Bifunctional phenol is a phenol compound having two phenolic hydroxyl groups in the molecule, and examples thereof include tetramethylbisphenol A.
  • Trifunctional phenol is a phenol compound having three phenolic hydroxyl groups in the molecule.
  • the method for synthesizing the modified polyphenylene ether compound for example, in the case of the modified polyphenylene ether compound represented by the above formula (5), specifically, the polyphenylene ether as described above and the substituents X 1 and X 2 are used. And a compound in which a halogen atom is bonded (compound having substituents X 1 and X 2 ) are dissolved in a solvent and stirred. By doing so, the polyphenylene ether and the compound having the substituents X 1 and X 2 react to obtain the modified polyphenylene ether represented by the above formula (5) of the present embodiment.
  • this reaction it is preferably carried out in the presence of an alkali metal hydroxide.
  • an alkali metal hydroxide functions as a dehydrohalogenating agent, specifically, a dehydrochlorinating agent. That is, the alkali metal hydroxide removes the hydrogen halide from the polyphenylene ether phenol group and the compound having the substituent X, thereby replacing the hydrogen atom of the phenol group of the polyphenylene ether. It is believed that the groups X 1 and X 2 are bonded to the oxygen atom of the phenol group.
  • the alkali metal hydroxide is not particularly limited as long as it can function as a dehalogenating agent, and examples thereof include sodium hydroxide. Moreover, alkali metal hydroxide is normally used in the state of aqueous solution, and specifically, it is used as sodium hydroxide aqueous solution.
  • reaction conditions such as reaction time and reaction temperature vary depending on the compounds having substituents X 1 and X 2 , and are not particularly limited as long as the above reaction can proceed appropriately.
  • the reaction temperature is preferably room temperature to 100 ° C., more preferably 30 to 100 ° C.
  • the reaction time is preferably 0.5 to 20 hours, more preferably 0.5 to 10 hours.
  • a polyphenylene ether can be dissolved with a compound having a substituent X 1 and X 2, and polyphenylene ether, it does not inhibit the reaction of a compound having a substituent X 1 and X 2 If it is a thing, it will not specifically limit. Specifically, toluene etc. are mentioned.
  • the above reaction is preferably performed in the state where not only the alkali metal hydroxide but also the phase transfer catalyst is present. That is, the above reaction is preferably performed in the presence of an alkali metal hydroxide and a phase transfer catalyst. By doing so, it is considered that the above reaction proceeds more suitably. This is considered to be due to the following.
  • the phase transfer catalyst has a function of incorporating an alkali metal hydroxide and is soluble in both a polar solvent phase such as water and a nonpolar solvent phase such as an organic solvent. This is considered to be due to the fact that it is a catalyst that can move.
  • the aqueous solution of sodium hydroxide is used for the reaction. Even if it is added dropwise to the solvent, it is considered that the solvent and the aqueous sodium hydroxide solution are separated, and the sodium hydroxide is difficult to transfer to the solvent. In this case, it is considered that the aqueous sodium hydroxide solution added as the alkali metal hydroxide hardly contributes to the promotion of the reaction.
  • phase transfer catalyst is not particularly limited, and examples thereof include quaternary ammonium salts such as tetra-n-butylammonium bromide.
  • the resin composition according to the present embodiment preferably contains the modified polyphenylene ether obtained as described above as the modified polyphenylene ether.
  • the maleimide compound used in the present embodiment is not particularly limited as long as it is at least one of maleimide compounds represented by the following formulas (1) to (3). Since these maleimide compounds have a maleimide group at the terminal, they react efficiently with the component (A), so that the interface adhesion between the components (A) and (B) of this embodiment is improved, and high heat resistance and reliability are achieved. Is obtained. Further, these maleimide compounds can obtain excellent low dielectric properties as a cured product due to the presence of a hydrophobic long-chain aliphatic hydrocarbon group.
  • p which is a repeating unit is 1 to 10. If p is in the range of 1 to 10, the flowability of the resin is high, and the moldability is excellent.
  • q which is a repeating unit is 1 to 10. If q is in the range of 1 to 10, the flowability of the resin is high, and the moldability is excellent.
  • the maleimide compound used in this embodiment preferably has a weight average molecular weight (Mw) of 500 to 4000.
  • Mw weight average molecular weight
  • the weight average molecular weight of the maleimide compound is 500 or more, it is considered that lower dielectric properties can be obtained, and when it is 4000 or less, the melt viscosity of the resin becomes lower. It is considered that excellent moldability can be obtained.
  • the weight average molecular weight should just be measured by the general molecular weight measuring method, and the value measured using gel permeation chromatography (GPC) etc. are mentioned specifically ,.
  • the content ratio of the component (A) and the component (B) is preferably 10:90 to 90:10 by mass ratio.
  • the content ratio of the component (A) is less than this, the Tg of the cured product is lowered and the coefficient of thermal expansion may be increased.
  • the content ratio of the component (B) is less than this, the water absorption rate may be slightly increased due to an increase in the crosslinking density of the resin composition.
  • the resin composition according to the present embodiment is not particularly limited as long as it includes the (A) thermosetting compound and the (B) maleimide compound, but may further include other components. .
  • the resin composition according to the present embodiment may further contain a filler.
  • a filler what is added in order to improve the heat resistance and flame retardance of the hardened
  • heat resistance, a flame retardance, etc. can further be improved by containing a filler.
  • the filler include silica such as spherical silica, metal oxides such as alumina, titanium oxide, and mica, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, talc, aluminum borate, and sulfuric acid. Examples include barium and calcium carbonate.
  • silica, mica, and talc are preferable as the filler, and spherical silica is more preferable.
  • a filler may be used individually by 1 type and may be used in combination of 2 or more type.
  • This silane coupling agent may be added by an integral blend method, not by a surface treatment on the filler in advance.
  • the content thereof is preferably 10 to 200 parts by mass with respect to 100 parts by mass in total of the organic components (the component (A) and the component (B)). It is preferable that the amount be ⁇ 150 parts by mass.
  • the resin composition of this embodiment may contain a flame retardant
  • the flame retardant include halogen-based flame retardants such as brominated flame retardants and phosphorus-based flame retardants.
  • halogen-based flame retardants include, for example, brominated flame retardants such as pentabromodiphenyl ether, octabromodiphenyl ether, decabromodiphenyl ether, tetrabromobisphenol A, hexabromocyclododecane, and chlorinated flame retardants such as chlorinated paraffin. Etc.
  • the phosphorus-based flame retardant include, for example, phosphate esters such as condensed phosphate esters and cyclic phosphate esters, phosphazene compounds such as cyclic phosphazene compounds, and phosphinic acid metal salts such as aluminum dialkylphosphinates.
  • phosphinate flame retardants include phosphinate flame retardants, melamine phosphates such as melamine phosphate and melamine polyphosphate, and phosphine oxide compounds having a diphenylphosphine oxide group.
  • each illustrated flame retardant may be used independently and may be used in combination of 2 or more type.
  • the resin composition according to the present embodiment may contain various additives.
  • additives include antifoaming agents such as silicone-based antifoaming agents and acrylic acid ester-based antifoaming agents, thermal stabilizers, antistatic agents, ultraviolet absorbers, dyes and pigments, lubricants, wetting and dispersing agents, etc. Agents and the like.
  • the resin composition according to the present embodiment may further contain a reaction initiator.
  • the curing reaction can proceed with only the component (A) and the component (B), but depending on the process conditions, it may be difficult to increase the temperature until the curing proceeds. Also good.
  • the reaction initiator is not particularly limited as long as it can accelerate the curing reaction between the thermosetting compound and the maleimide compound.
  • An oxidizing agent such as ronitrile can be used.
  • a carboxylic acid metal salt etc. can be used together as needed. By doing so, the curing reaction can be further accelerated.
  • ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene is preferably used. Since ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has a relatively high reaction start temperature, it suppresses the acceleration of the curing reaction when it is not necessary to cure such as during prepreg drying. And a decrease in storage stability of the resin composition can be suppressed. Further, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene has low volatility, and therefore does not volatilize during drying or storage of prepregs and films, and has good stability.
  • a reaction initiator may be used independently or may be used in combination of 2 or more type.
  • a reaction initiator is preferably used so that the added amount with respect to 100 parts by mass in total of the component (A) and the component (B) is 0.1 to 2 parts by mass.
  • FIG. 1 is a schematic cross-sectional view showing an example of a prepreg 1 according to an embodiment of the present invention.
  • symbol in each drawing shows the following: 1 prepreg, 2 resin composition or semi-cured material of resin composition, 3 fibrous base material, 11 metal tension laminate, 12 insulating layer, 13 metal foil, 14 wiring , 21 Wiring board, 31 Metal foil with resin, 32, 42 Resin layer, 41 Film with resin, 43 Support film.
  • the prepreg 1 includes the resin composition or a semi-cured product 2 of the resin composition, and a fibrous base material 3.
  • the thing in which the fibrous base material 3 exists in the said resin composition or its semi-cured material 2 is mentioned. That is, the prepreg 1 includes the resin composition or a semi-cured product thereof and a fibrous base material 3 present in the resin composition or the semi-cured product 2 thereof.
  • the “semi-cured product” is a state in which the resin composition is cured halfway to such an extent that it can be further cured. That is, the semi-cured product is a product obtained by semi-curing the resin composition (B-staged). For example, when heated, when the resin composition is heated, the viscosity gradually decreases, and thereafter, curing starts and the viscosity gradually increases. In such a case, the semi-curing includes a state before the viscosity is completely cured after the viscosity starts to increase.
  • the resin composition or semi-cured product of the resin composition may be dried or heat-dried.
  • the prepreg obtained using the resin composition according to the present embodiment may include a semi-cured product of the resin composition as described above, or the resin composition that is not cured. It may be provided with itself. That is, it may be a prepreg comprising a semi-cured product of the resin composition (the resin composition of the B stage) and a fibrous base material, or the resin composition before curing (the resin composition of the A stage) And a prepreg provided with a fibrous base material. Specifically, for example, those in which a fibrous base material is present in the resin composition can be mentioned.
  • the resin composition according to the present embodiment is often prepared as a varnish and used as a resin varnish when producing the prepreg, a metal foil with resin such as RCC described later, or a metal-clad laminate. .
  • a resin varnish is prepared as follows, for example.
  • each component that can be dissolved in an organic solvent such as (A) a thermosetting compound, (B) a maleimide compound, a reaction initiator, etc. is put into the organic solvent and dissolved. At this time, heating may be performed as necessary. Thereafter, a component that does not dissolve in the organic solvent, such as an inorganic filler, is added and dispersed using a ball mill, a bead mill, a planetary mixer, a roll mill, or the like until a predetermined dispersion state is obtained, thereby forming a varnish-like resin. A composition is prepared.
  • the organic solvent used here is not particularly limited as long as it dissolves (A) a thermosetting compound, (B) a maleimide compound, and the like and does not inhibit the curing reaction.
  • Specific examples include toluene, methyl ethyl ketone, cyclohexanone and propylene glycol monomethyl ether acetate. These may be used alone or in combination of two or more.
  • the resin varnish of the present embodiment has an advantage that it is excellent in film flexibility, film-forming property, and impregnation into a fibrous base material, and is easy to handle.
  • the fibrous base material 3 is impregnated with the resin composition 2 prepared in the obtained resin varnish shape, and then dried. The method of doing is mentioned.
  • the fibrous base material used when producing the prepreg for example, glass cloth, aramid cloth, polyester cloth, LCP (liquid crystal polymer) nonwoven fabric, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, pulp paper, And linter paper.
  • a glass cloth is used, a laminate having excellent mechanical strength can be obtained, and a flat glass processed glass cloth is particularly preferable.
  • glass cloth used by this embodiment For example, low dielectric constant glass cloths, such as E glass, S glass, NE glass, and L glass, etc. are mentioned.
  • the flattening processing can be performed, for example, by continuously pressing a glass cloth with a press roll at an appropriate pressure and compressing the yarn flatly.
  • the thickness of the fibrous base material for example, a thickness of 0.01 to 0.3 mm can be generally used.
  • the impregnation of the resin base varnish (resin composition 2) into the fibrous base material 3 is performed by dipping or coating. This impregnation can be repeated a plurality of times as necessary. At this time, it is also possible to repeat the impregnation using a plurality of resin varnishes having different compositions and concentrations, and finally adjust to a desired composition (content ratio) and resin amount.
  • the fibrous base material 3 impregnated with the resin varnish (resin composition 2) is heated under desired heating conditions, for example, 80 ° C. or higher and 180 ° C. or lower for 1 minute or longer and 10 minutes or shorter. By heating, it is reduced or removed by volatilizing the solvent from the varnish, and the prepreg 1 before curing (A stage) or semi-cured state (B stage) is obtained.
  • desired heating conditions for example, 80 ° C. or higher and 180 ° C. or lower for 1 minute or longer and 10 minutes or shorter.
  • the metal foil 31 with resin of this embodiment is configured by laminating the resin layer 32 including the resin composition described above or a semi-cured product of the resin composition and the metal foil 13.
  • a method for producing such a resin-attached metal foil 31 include a method in which a resin varnish-like resin composition as described above is applied to the surface of a metal foil 13 such as a copper foil and then dried.
  • the coating method include a bar coater, a comma coater, a die coater, a roll coater, and a gravure coater.
  • the film 41 with resin of this embodiment has the resin layer 42 and the film support base material 43 containing the resin composition or semi-cured product of the resin composition described above laminated. It has a configuration.
  • Examples of a method for producing such a resin-coated film 41 include a method in which the resin varnish-like resin composition as described above is applied to the surface of the film support base 43 and then cured or semi-cured by drying or the like. It is done.
  • Examples of the film support substrate include polyimide films, PET (polyethylene terephthalate) films, polyester films, polyparabanic acid films, polyether ether ketone films, polyphenylene sulfide films, aramid films, polycarbonate films, polyarylate films, and the like. Etc.
  • a metal foil used in a metal-clad laminate or a wiring board can be used without limitation, and examples thereof include a copper foil and an aluminum foil.
  • the thickness of the metal foil 13 and the film support base 43 can be appropriately set according to a desired purpose.
  • the metal foil 13 having a thickness of about 0.2 to 70 ⁇ m can be used.
  • a copper foil with a carrier including a release layer and a carrier may be used to improve handling properties.
  • Application of the resin varnish to the metal foil 13 or the film support base 43 is performed by coating or the like, but it can be repeated a plurality of times as necessary. At this time, it is also possible to repeat the coating using a plurality of resin varnishes having different compositions and concentrations, and finally adjust to a desired composition (content ratio) and resin amount.
  • the resin layer containing the resin composition before curing by heating at a desired heating condition for example, 80 to 170 ° C. for 1 to 10 minutes.
  • a desired heating condition for example, 80 to 170 ° C. for 1 to 10 minutes.
  • the resin varnish is applied (in the case of a prepreg, the resin varnish is impregnated)
  • the organic solvent is volatilized from the varnish by heating, and the organic solvent can be reduced or removed. In this way, the resin-coated metal foil 31 and the resin film 41 having the resin layer (A stage) or the semi-cured resin layer (B stage) are obtained.
  • the metal foil with resin 31 and the resin film 41 may be provided with a cover film or the like as necessary.
  • the cover film is not particularly limited as long as it can be peeled without impairing the form of the resin composition.
  • polyolefin films, polyester films, TPX films, and mold release agents for these films are examples.
  • a film formed by providing a layer, and a paper obtained by laminating these films on a paper substrate can be used.
  • the metal-clad laminate 11 of the present embodiment includes an insulating layer 12 including a cured product of the above-described resin composition or a cured product of the above-described prepreg, and a metal foil 13. To do.
  • the metal foil 13 used in the metal-clad laminate 11 the same metal foil 13 as described above can be used.
  • the metal-clad laminate 13 of the present embodiment can also be created using the above-described resin-attached metal foil 31 and the resin film 41.
  • the prepreg 1, the resin-attached metal foil 31 and the resin film 41 are used as one sheet or By stacking a plurality of sheets and stacking a metal foil 13 such as a copper foil on both the upper and lower surfaces or one surface thereof, and heating and pressing to laminate and integrate, a double-sided metal foil-lined or single-sided metal foil-lined laminate can be obtained. It can be produced.
  • the heating and pressing conditions can be appropriately set depending on the thickness of the laminate to be produced, the type of the resin composition, and the like. For example, the temperature is 170 to 220 ° C., the pressure is 1.5 to 5.0 MPa, and the time is 60. It can be up to 150 minutes.
  • the metal-clad laminate 11 may be produced by forming a film-like resin composition on the metal foil 13 and heating and pressing it without using the prepreg 1 or the like.
  • the wiring board 21 of this embodiment has the insulating layer 12 and the wiring 14 containing the hardened
  • the surface of the laminate is formed by forming a circuit (wiring) by etching the metal foil 13 on the surface of the metal-clad laminate 13 obtained above.
  • a wiring board 21 provided with a conductor pattern (wiring 14) as a circuit can be obtained.
  • a method of forming a circuit in addition to the above-described method, for example, a circuit formation by a semi-additive process (SAP: Semi Additive Process) or a modified semi-additive process (MSAP) can be cited.
  • SAP Semi Additive Process
  • MSAP modified semi-additive process
  • the prepreg, resin-coated film, and resin-coated metal foil obtained using the resin composition of the present embodiment have high heat resistance, high Tg, adhesion, and low water absorption in addition to low dielectric properties in the cured product. Therefore, it is very useful for industrial use. Moreover, it has a low coefficient of thermal expansion. It is also excellent in moldability.
  • the metal-clad laminate and the wiring board obtained by curing them have high heat resistance, high Tg, high adhesion, low water absorption, and high conduction reliability.
  • the resin composition according to one embodiment of the present invention includes (A) a thermosetting compound having a styrene structure or a (meth) acrylate structure, and (B) a maleimide compound represented by the following formula (1).
  • a resin composition having high heat resistance, high Tg, low thermal expansion coefficient, adhesion and low water absorption is provided. it can.
  • thermosetting compound (A) includes a compound having a polyphenylene ether skeleton in the molecule.
  • thermosetting compound preferably contains a compound having at least one structure represented by the following formulas (4) to (6).
  • R 1 to R 8 , R 9 to R 16 and R 17 to R 20 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, An alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group;
  • a and B are structures represented by the following formulas (7) and (8), respectively:
  • n and n each represent an integer of 1 to 50.
  • R 21 to R 24 and R 25 to R 28 each independently represent a hydrogen atom or an alkyl group.
  • s represents an integer of 1 to 100.
  • Y is a structure represented by the following formula (9):
  • R 29 and R 30 each independently represent a hydrogen atom or an alkyl group.
  • X 1 to X 3 each independently represent a substituent having a carbon-carbon unsaturated double bond represented by the following formula (10) or (11), and X 1 and X 2 may be the same May be different.
  • R 31 represents a hydrogen atom or an alkyl group.
  • the weight average molecular weight (Mw) of the (A) thermosetting compound is preferably 1000 to 5000.
  • the (B) maleimide compound preferably has a weight average molecular weight (Mw) of 500 to 4000.
  • a prepreg according to still another aspect of the present invention is characterized by having the above-described resin composition or a semi-cured product of the resin composition and a fibrous base material.
  • a film with a resin according to still another aspect of the present invention is characterized by having a resin layer containing the above-described resin composition or a semi-cured product of the resin composition and a support film.
  • a metal foil with a resin according to still another aspect of the present invention is characterized by having a resin layer containing the above resin composition or a semi-cured product of the resin composition and a metal foil.
  • a metal-clad laminate according to still another embodiment of the present invention is characterized by having an insulating layer containing a cured product of the above-described resin composition or a cured product of the above-described prepreg, and a metal foil.
  • a wiring board includes an insulating layer containing a cured product of the above resin composition or a cured product of the above prepreg, and a wiring.
  • a prepreg having a low dielectric property, high Tg, high heat resistance, high adhesion, low water absorption, a low thermal expansion coefficient, and a high conduction reliability can be obtained.
  • a film with resin, a metal foil with resin, a metal-clad laminate, a wiring board and the like can be obtained.
  • thermosetting compound> thermosetting compound>
  • OPE-2St 1200 terminal vinylbenzyl-modified PPE (Mw: about 1600, manufactured by Mitsubishi Gas Chemical Company, Inc.)
  • OPE-2St 2200 terminal vinylbenzyl-modified PPE (Mw: about 3600, manufactured by Mitsubishi Gas Chemical Company, Inc.)
  • Modified PPE-1 Bifunctional vinylbenzyl modified PPE (Mw: 1900)
  • a modified polyphenylene ether (modified PPE-1) was synthesized. The average number of phenolic hydroxyl groups at the molecular terminals per molecule of polyphenylene ether is shown as the number of terminal hydroxyl groups.
  • modified polyphenylene ether 1 modified polyphenylene ether 1 (modified PPE-1). Specifically, first, polyphenylene ether (SA90 manufactured by SABIC Innovative Plastics Co., Ltd., intrinsic viscosity (IV) 0) 0.083 dl / g, terminal hydroxyl group number 1.9, weight molecular weight Mw 1700) 200 g, a mixture of p-chloromethylstyrene and m-chloromethylstyrene having a mass ratio of 50:50 (chloromethyl manufactured by Tokyo Chemical Industry Co., Ltd.) 30 g of styrene: CMS), 1.227 g of tetra-n-butylammonium bromide as a phase transfer catalyst, and 400 g of toluene were charged and stirred.
  • SA90 polyphenylene ether
  • IV intrinsic viscosity
  • the mixture was stirred until polyphenylene ether, chloromethylstyrene, and tetra-n-butylammonium bromide were dissolved in toluene. At that time, it was gradually heated and finally heated until the liquid temperature reached 75 ° C. And the sodium hydroxide aqueous solution (sodium hydroxide 20g / water 20g) was dripped at the solution over 20 minutes as an alkali metal hydroxide. Thereafter, the mixture was further stirred at 75 ° C. for 4 hours. Next, after neutralizing the contents of the flask with 10% by mass hydrochloric acid, a large amount of methanol was added. By doing so, a precipitate was produced in the liquid in the flask.
  • sodium hydroxide aqueous solution sodium hydroxide 20g / water 20g
  • the product contained in the reaction solution in the flask was reprecipitated. Then, the precipitate was taken out by filtration, washed three times with a mixed solution having a mass ratio of methanol and water of 80:20, and then dried at 80 ° C. under reduced pressure for 3 hours.
  • the obtained solid was analyzed by 1 H-NMR (400 MHz, CDCl 3, TMS). As a result of NMR measurement, a peak derived from ethenylbenzyl was confirmed at 5 to 7 ppm. This confirmed that the obtained solid was ethenylbenzylated polyphenylene ether at the molecular end.
  • Mw weight average molecular weight
  • the number of terminal functionalities of the modified polyphenylene ether was measured as follows.
  • TEAH tetraethylammonium hydroxide
  • Residual OH amount ( ⁇ mol / g) [(25 ⁇ Abs) / ( ⁇ ⁇ OPL ⁇ X)] ⁇ 106
  • represents an extinction coefficient and is 4700 L / mol ⁇ cm.
  • OPL is the cell optical path length, which is 1 cm.
  • the calculated residual OH amount (number of terminal hydroxyl groups) of the modified polyphenylene ether was almost zero, indicating that the hydroxyl groups of the polyphenylene ether before modification were almost modified. From this, it was found that the decrease from the number of terminal hydroxyl groups of polyphenylene ether before modification was the number of terminal hydroxyl groups of polyphenylene ether before modification. That is, it was found that the number of terminal hydroxyl groups of the polyphenylene ether before modification was the number of terminal functional groups of the modified polyphenylene ether. That is, the terminal functional number was 1.8. This is referred to as “modified PPE-1”.
  • Modified PPE-2 1 functional vinylbenzyl modified PPE (Mw: 2800) 36 parts by mass of polyphenylene ether resin (manufactured by GE Plastics, Inc .: trade name “Noryl PX9701”, number average molecular weight 14000), 1.44 parts by mass of bisphenol A as a phenol species, benzoyl peroxide (Nippon Yushi) as an initiator Co., Ltd .: 1.90 parts by mass of the trade name “Nyper BW”), 90 parts by mass of toluene as a solvent is added thereto, and the mixture is mixed at 80 ° C. for 1 hour, and dispersed and dissolved to react.
  • the modified polyphenylene ether compound as the target product was produced by ethenylbenzylation of the phenol group present at the molecular end of the polyphenylene ether compound obtained as described above.
  • Mw weight average molecular weight
  • Styrene monomer Styrene (Molecular weight: 104, manufactured by NS Styrene Monomer Co., Ltd.)
  • VB-810 Divinylbenzene (Mw: 130, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
  • SA90 Unmodified PPE (Mw: 1700, manufactured by SABIC Innovative Plastics)
  • PPO640 Unmodified PPE (Mw: 18000, manufactured by SABIC Innovative Plastics)
  • BMI-2300 polyphenylmethane bismaleimide (aromatic maleimide compound, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
  • BMI-1700 maleimide compound represented by the formula (2) (Mw: 1700, manufactured by Designer Molecules Inc.)
  • BMI-1500 maleimide compound represented by the formula (1) (Mw: 1500, manufactured by Designer Molecules Inc.)
  • BMI-689 maleimide compound represented by formula (3) (Mw: 689, manufactured by Designer Molecules Inc.)
  • BMI-TMH 1,6-bismaleimide- (2,2,4-trimethyl) hexane (Molecular weight: 318, manufactured by Daiwa Kasei Kogyo Co., Ltd.)
  • Prepreg Preparation of prepreg-I After impregnating the glass varnish (# 2116 type, E glass, manufactured by Asahi Kasei Co., Ltd.) with the resin varnish of each Example and Comparative Example, it is heated and dried at 100 to 170 ° C. for about 3 to 6 minutes. As a result, a prepreg was obtained. In that case, it adjusted so that content (resin content) of the resin composition with respect to the weight of a prepreg might be about 46 mass%.
  • Preparation of Prepreg-II After impregnating the resin varnish of each Example and Comparative Example with glass cloth (# 1067 type, E glass, manufactured by Asahi Kasei Corporation), it is dried by heating at 100 to 170 ° C. for about 3 to 6 minutes. As a result, a prepreg was obtained. In that case, it adjusted so that content (resin content) of the resin composition with respect to the weight of a prepreg might be about 73 mass%.
  • One of the above prepregs-I is provided with a 12 ⁇ m-thick copper foil (GT-MP manufactured by Furukawa Electric Co., Ltd.) on both sides to form a pressure-receiving body, under vacuum conditions at a temperature of 220 ° C. and a pressure of 30 kgf / cm.
  • a copper clad laminate-I having a thickness of about 0.1 mm in which a copper foil was bonded to both surfaces was obtained by heating and pressing for 90 minutes under the conditions of 2 .
  • the above eight prepregs were stacked, and a copper clad laminate-II having a thickness of about 0.8 mm was obtained in the same manner.
  • Tg Glass transition temperature
  • the test piece was obtained by removing the copper foil of the above-mentioned copper foil laminate-II, and the coefficient of thermal expansion in the Z-axis direction at a temperature lower than the glass transition temperature of the resin cured product was measured using the TMA method (Thermo- (Mechanical analysis).
  • TMA Thermal expansion
  • a TMA apparatus (“TMA6000” manufactured by SII Nano Technology Co., Ltd.) was used, and measurement was performed in the range of 30 to 300 ° C. The unit of measurement is ppm / ° C.
  • the peel strength of the copper foil from the insulating layer was measured in accordance with JIS C 6481. A pattern with a width of 10 mm and a length of 100 mm is formed, peeled off at a rate of 50 mm / min with a tensile tester, the peel strength at that time (peel strength) is measured, and the peel strength obtained is determined as the copper foil adhesion strength. It was. The unit of measurement is kN / m.
  • Df Dissipation factor
  • the laminate obtained by removing the copper foil from the copper-clad laminate-III was used as an evaluation substrate, and the water absorption was evaluated according to JIS-C6481 (1996).
  • the water absorption condition is E-24 / 50 + D-24 / 23 (that is, 50 ° C. for 24 hours in constant temperature air + 23 ° C. for 24 hours treatment in constant temperature water).
  • the water absorption was calculated based on the following formula.
  • thermosetting compound when a modified polyphenylene ether compound is used as the (A) thermosetting compound, higher Tg, adhesion, and the like can be obtained.
  • Comparative Example 1-3 using unmodified PPE or an aromatic maleimide compound instead of a thermosetting compound containing a styrene structure or a (meth) acrylate structure does not provide sufficient low dielectric properties and adhesion.
  • thermosetting compound containing a styrene structure or a (meth) acrylate structure does not provide sufficient low dielectric properties and adhesion.
  • high Tg, heat resistance and low coefficient of thermal expansion are not compatible.
  • Comparative Example 4 using a maleimide compound having an aliphatic skeleton other than the specific maleimide compound which is the component (B) of the present invention the low dielectric properties required in the present invention could not be obtained.
  • Comparative Example 5 that does not contain the component (B) of the present invention, sufficient low dielectric loss tangent and low water absorption cannot be obtained, and in Comparative Example 6 that does not contain the component (A), sufficient Tg is obtained. Was not obtained, and the thermal expansion coefficient was increased.
  • the present invention has wide industrial applicability in the technical field related to electronic materials and various devices using the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本発明の一局面は、(A)スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物と、(B)式(1)~(3)で示されるマレイミド化合物のうち少なくとも1つを含む樹脂組成物に関する。

Description

樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
 本発明は、樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板に関する。
 近年、各種電子機器は、情報処理量の増大に伴い、搭載される半導体デバイスの高集積化、配線の高密度化、及び多層化等の実装技術が急速に進展している。各種電子機器において用いられるプリント配線板の基材を構成するための基板材料には、信号の伝送速度を高め、信号伝送時の損失を低減させるために、誘電率及び誘電正接が低いことが求められる。
 最近では、マレイミド化合物が低誘電率や低誘電正接等の誘電特性(以下、低誘電特性ともいう)に優れていることがわかってきた。例えば、特許文献1等では、飽和または不飽和の2価の炭化水素基を有するマレイミド化合物と、芳香族マレイミド化合物を含有する樹脂組成物を用いることによって、その硬化物における高周波特性(低比誘電率、低誘電正接)を備え、かつ、低熱膨張特性や接着性を備える樹脂組成物を提供できると報告されている。
 一方、基板材料等の成形材料として利用する際には、低誘電特性や低熱膨張特性等に優れるだけでなく、外部環境の変化等の影響を受けにくくするために、その硬化物が高いガラス転移温度(Tg)を有することや、耐熱性や密着性を有することが求められる。また、湿度が高い環境下でも配線板を用いることができるように、成形材料の硬化物の吸水性を低くすることによって、配線板の基材への吸湿が抑制されることが求められる。
 以上より、配線板の基材を構成するための基材材料には、吸水性が低く、耐熱性および密着性に優れ、低誘電特性を有する硬化物が得られることが求められる。
 しかしながら、上記特許文献1記載の樹脂組成物では、低誘電特性とある程度までの耐熱性、密着性、低熱膨張特性、低吸水率を得ることはできると考えられるが、昨今、基板材料に対しては、低誘電特性に加えて高Tgや耐熱性、密着性、低熱膨張率、及び低吸水率等の性能におけるさらなる改善がより高い水準で求められている。
 本発明は、かかる事情に鑑みてなされたものであって、その硬化物における低誘電特性に加えて、高い耐熱性、高Tg、低熱膨張率、密着性、低い吸水率を兼ね備えた樹脂組成物を提供することを目的とする。また、前記樹脂組成物を用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線基板を提供することを目的とする。
特開2016-204639号公報
 本発明の一態様に係る樹脂組成物は、(A)スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物と、(B)下記式(1)~(3)で示されるマレイミド化合物のうち少なくとも一つとを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000012
(式中、pは1~10の整数を表す)
Figure JPOXMLDOC01-appb-C000013
(式中、qは1~10の整数を表す)
Figure JPOXMLDOC01-appb-C000014
図1は、本発明の一実施形態に係るプリプレグの構成を示す概略断面図である。 図2は、本発明の一実施形態に係る金属張積層板の構成を示す概略断面図である。 図3は、本発明の一実施形態に係る配線基板の構成を示す概略断面図である。 図4は、本発明の一実施形態に係る樹脂付き金属箔の構成を示す概略断面図である。 図5は、本発明の一実施形態に係る樹脂フィルムの構成を示す概略断面図である。
 本発明の実施形態に係る樹脂組成物は、(A)スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物と、(B)下記式(1)~(3)で示されるマレイミド化合物のうち少なくとも一つとを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000015
(式中、pは1~10の整数を表す)
Figure JPOXMLDOC01-appb-C000016
(式中、qは1~10の整数を表す)
Figure JPOXMLDOC01-appb-C000017
 このような構成により、硬化物にしたときの低誘電率や低誘電正接などの誘電特性に加えて、高い耐熱性、高いガラス転移温度(Tg)、低熱膨張率、密着性、並びに低吸水率を兼ね備えた樹脂組成物を提供できる。さらに本発明によれば、前記樹脂組成物を用いることにより、優れた性能を有するプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線基板を提供できる。
 以下、本実施形態に係る樹脂組成物の各成分について、具体的に説明する。
 ((A)熱硬化性化合物)
 本実施形態で使用する(A)スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物は、スチレン構造または(メタ)アクリレート構造を有しているために、ラジカル反応型の熱硬化性化合物である。本実施形態では(A)成分がこのようにスチレン構造または(メタ)アクリレート構造を有しているため、後述の(B)マレイミド化合物との反応性が良好となり、(A)成分と(B)成分との界面密着が向上し、耐熱性および信頼性に優れる樹脂組成物を提供できる。
 本実施形態において用いられる熱硬化性化合物の重量平均分子量(Mw)は、特に限定されない。具体的には、1000~5000であることが好ましく1000~4000であることがより好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 熱硬化性合物の重量平均分子量がこのような範囲内であると、成型性に優れ、かつ樹脂の靭性が向上するため密着性に優れる樹脂組成物が得られると考えられる。
 なお、本実施形態の樹脂組成物には、上述したような、スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物以外の熱硬化性樹脂を含めてもよい。例えば、エポキシ樹脂、フェノール樹脂、アミン樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミド樹脂等が使用可能なその他の熱硬化性樹脂として挙げられる。
 本実施形態における熱硬化性化合物は、スチレン構造または(メタ)アクリレート構造を有している限り特に限定はされないが、具体的には、例えば、スチレン構造または(メタ)アクリレート構造を分子末端の置換基として有するポリフェニレンエーテル(PPE)化合物;スチレン、ジビニルベンゼン、及びそれらの誘導体、その他のスチレン化合物、ジビニルベンゼン化合物;並びに、トリシクロデカンジメタノールジメタクリレートなどの(メタ)アクリレート化合物等が挙げられる。
 特に、本実施形態の樹脂組成物は、低い誘電率や誘電正接を維持しつつ、かつより高いTgや密着性を得ることができるという観点から、(A)成分として、分子内にポリフェニレンエーテル骨格を有する熱硬化性化合物を含んでいることが好ましい。特に、スチレン構造または(メタ)アクリレート構造で末端変性されたポリフェニレンエーテル化合物を含んでいることが好ましい。
 前記変性ポリフェニレンエーテル化合物としては、例えば、下記式(4)~(6)で示される変性ポリフェニレンエーテル化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 上記式(4)~(6)中において、R~R、R~R16並びにR17~R20は、それぞれ独立している。すなわち、R~R、R~R16並びにR17~R20は、それぞれ同一の基であっても、異なる基であってもよい。また、R~R、R~R16並びにR17~R20は、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。
 R~R、R~R16並びにR17~R20について、上記で挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 また、アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。
 また、アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。
 また、アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。
 また、アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。
 また、アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。
 また、上記式(4)および(5)中、上述の通り、Aは下記式(7)で、Bは下記式(8)でそれぞれ示される構造である:
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(7)および(8)において、繰り返し単位であるmおよびnはそれぞれ1~50の整数を示す。
 R21~R24並びにR25~R28は、それぞれ独立している。すなわち、R21~R24並びにR25~R28は、それぞれ同一の基であっても、異なる基であってもよい。また、本実施形態において、R21~R24並びにR25~R28は水素原子又はアルキル基である。
 また、上記式(6)中、sは1~100の整数を示す。
 さらに、上記式(5)において、Yとしては、炭素数20以下の直鎖状、分岐状もしくは環状の炭化水素が挙げられる。より具体的には、例えば、下記式(9)で表される構造である:
Figure JPOXMLDOC01-appb-C000023
 式(9)中、R29及びR30は、それぞれ独立して、水素原子またはアルキル基を示す。前記アルキル基としては、例えば、メチル基等が挙げられる。また、式(7)で表される基としては、例えば、メチレン基、メチルメチレン基、及びジメチルメチレン基等が挙げられる。
 上記式(4)~(6)中において、X~Xはそれぞれ独立して下記式(10)または(11)で示されるようなスチレン構造または(メタ)アクリレート構造示す。XおよびXは同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 式(11)中、R31は水素原子またはアルキル基を示す。前記アルキル基は、特に限定されず、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。
 本実施形態における前記置換基X~Xとしては、より具体的には、例えば、p-エテニルベンジル基やm-エテニルベンジル基等のビニルベンジル基(エテニルベンジル基)、ビニルフェニル基、アクリレート基、及びメタクリレート基等が挙げられる。
 このような上記式(4)~(6)で示される変性ポリフェニレンエーテル化合物を用いることにより、低誘電率や低誘電正接などの低誘電特性と優れた耐熱性等を維持しつつ、高Tg及び密着性をより向上させることができると考えられる。
 なお、上記式(4)~(6)で示される変性ポリフェニレンエーテル化合物はそれぞれ単独で使用することもできるし、2種以上を組み合わせて用いることもできる。
 本実施形態において、熱硬化性化合物として用いる変性ポリフェニレンエーテル化合物の重量平均分子量(Mw)は特に限定されないが、例えば、1000~5000であることが好ましく、1000~4000であることがより好ましい。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。また、変性ポリフェニレンエーテル化合物が、繰り返し単位(s、m、n)を分子中に有している場合、これらの繰り返し単位は、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内になるような数値であることが好ましい。
 変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、ポリフェニレンエーテル骨格の有する優れた低誘電特性を有し、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものとなる。このことは、以下のことによると考えられる。通常のポリフェニレンエーテルと比べると、重量平均分子量が上述したような範囲内であれば、比較的低分子量のものであるので、硬化物の耐熱性が低下する傾向がある。この点、本実施形態に係る変性ポリフェニレンエーテル化合物は、末端にスチレン構造または(メタ)アクリレート構造を有するので、高い反応性を有し、硬化物の耐熱性が充分に高いものが得られると考えられる。また、変性ポリフェニレンエーテル化合物の重量平均分子量がこのような範囲内であると、スチレンやジビニルベンゼンと比較すると高分子量であるが、一般的なポリフェニレンエーテルよりは比較的低分子量のものであるので、成形性にも優れると考えられる。よって、このような変性ポリフェニレンエーテル化合物は、硬化物の耐熱性により優れるだけではなく、成形性にも優れたものが得られると考えられる。
 また、本実施形態において熱硬化性化合物として用いる変性ポリフェニレンエーテル化合物における、変性ポリフェニレンエーテル1分子当たりの、分子末端に有する、前記X~X置換基の平均個数(末端官能基数)は、特に限定されない。具体的には、1~5個であることが好ましく、1~3個であることがより好ましい。この末端官能基数が少なすぎると、硬化物の耐熱性としては充分なものが得られにくい傾向がある。また、末端官能基数が多すぎると、反応性が高くなりすぎ、例えば、樹脂組成物の保存性が低下したり、樹脂組成物の流動性が低下してしまう等の不具合が発生するおそれがある。すなわち、このような変性ポリフェニレンエーテルを用いると、流動性不足等により、例えば、多層成形時にボイドが発生する等の成形不良が発生し、信頼性の高いプリント配線板が得られにくいという成形性の問題が生じるおそれがあった。
 なお、変性ポリフェニレンエーテル化合物の末端官能基数は、変性ポリフェニレンエーテル化合物1モル中に存在する全ての変性ポリフェニレンエーテル化合物の1分子あたりの、前記置換基の平均値を表した数値等が挙げられる。この末端官能基数は、例えば、得られた変性ポリフェニレンエーテル化合物に残存する水酸基数を測定して、変性前のポリフェニレンエーテルの水酸基数からの減少分を算出することによって、測定することができる。この変性前のポリフェニレンエーテルの水酸基数からの減少分が、末端官能基数である。そして、変性ポリフェニレンエーテル化合物に残存する水酸基数の測定方法は、変性ポリフェニレンエーテル化合物の溶液に、水酸基と会合する4級アンモニウム塩(テトラエチルアンモニウムヒドロキシド)を添加し、その混合溶液のUV吸光度を測定することによって、求めることができる。
 また、本実施形態において用いられる変性ポリフェニレンエーテル化合物の固有粘度は、特に限定されない。具体的には、0.03~0.12dl/gであればよいが、0.04~0.11dl/gであることが好ましく、0.06~0.095dl/gであることがより好ましい。この固有粘度が低すぎると、分子量が低い傾向があり、低誘電率や低誘電正接等の低誘電性が得られにくい傾向がある。また、固有粘度が高すぎると、粘度が高く、充分な流動性が得られず、硬化物の成形性が低下する傾向がある。よって、変性ポリフェニレンエーテル化合物の固有粘度が上記範囲内であれば、優れた、硬化物の耐熱性及び成形性を実現できる。
 なお、ここでの固有粘度は、25℃の塩化メチレン中で測定した固有粘度であり、より具体的には、例えば、0.18g/45mlの塩化メチレン溶液(液温25℃)を、粘度計で測定した値等である。この粘度計としては、例えば、Schott社製のAVS500 Visco System等が挙げられる。
 また、本実施形態において好ましく用いられる変性ポリフェニレンエーテル化合物の合成方法は、上述したような置換基X~Xにより末端変性された変性ポリフェニレンエーテル化合物を合成できれば、特に限定されない。具体的には、ポリフェニレンエーテルに、置換基X~Xとハロゲン原子とが結合された化合物を反応させる方法等が挙げられる。
 原料であるポリフェニレンエーテルは、最終的に、所定の変性ポリフェニレンエーテルを合成することができるものであれば、特に限定されない。具体的には、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテルやポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルを主成分とするもの等が挙げられる。また、2官能フェノールとは、フェノール性水酸基を分子中に2個有するフェノール化合物であり、例えば、テトラメチルビスフェノールA等が挙げられる。また、3官能フェノールとは、フェノール性水酸基を分子中に3個有するフェノール化合物である。
 変性ポリフェニレンエーテル化合物の合成方法の一例として、例えば、上記式(5)で示されるような変性ポリフェニレンエーテル化合物の場合、具体的には、上記のようなポリフェニレンエーテルと、置換基XおよびXとハロゲン原子とが結合された化合物(置換基XおよびXを有する化合物)とを溶媒に溶解させ、攪拌する。そうすることによって、ポリフェニレンエーテルと、置換基XおよびXを有する化合物とが反応し、本実施形態の上記式(5)で示される変性ポリフェニレンエーテルが得られる。
 また、この反応の際、アルカリ金属水酸化物の存在下で行うことが好ましい。そうすることによって、この反応が好適に進行すると考えられる。このことは、アルカリ金属水酸化物が、脱ハロゲン化水素剤、具体的には、脱塩酸剤として機能するためと考えられる。すなわち、アルカリ金属水酸化物が、ポリフェニレンエーテルのフェノール基と置換基Xを有する化合物とから、ハロゲン化水素を脱離させ、そうすることによって、ポリフェニレンエーテルのフェノール基の水素原子の代わりに、置換基XおよびXが、フェノール基の酸素原子に結合すると考えられる。
 また、アルカリ金属水酸化物は、脱ハロゲン化剤として働きうるものであれば、特に限定されないが、例えば、水酸化ナトリウム等が挙げられる。また、アルカリ金属水酸化物は、通常、水溶液の状態で用いられ、具体的には、水酸化ナトリウム水溶液として用いられる。
 また、反応時間や反応温度等の反応条件は、置換基XおよびXを有する化合物等によっても異なり、上記のような反応が好適に進行する条件であれば、特に限定されない。具体的には、反応温度は、室温~100℃であることが好ましく、30~100℃であることがより好ましい。また、反応時間は、0.5~20時間であることが好ましく、0.5~10時間であることがより好ましい。
 また、反応時に用いる溶媒は、ポリフェニレンエーテルと、置換基XおよびXを有する化合物とを溶解させることができ、ポリフェニレンエーテルと、置換基XおよびXを有する化合物との反応を阻害しないものであれば、特に限定されない。具体的には、トルエン等が挙げられる。
 また、上記の反応は、アルカリ金属水酸化物だけではなく、相間移動触媒も存在した状態で反応させることが好ましい。すなわち、上記の反応は、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させることが好ましい。そうすることによって、上記反応がより好適に進行すると考えられる。このことは、以下のことによると考えられる。相間移動触媒は、アルカリ金属水酸化物を取り込む機能を有し、水のような極性溶剤の相と、有機溶剤のような非極性溶剤の相との両方の相に可溶で、これらの相間を移動することができる触媒であることによると考えられる。具体的には、アルカリ金属水酸化物として、水酸化ナトリウム水溶液を用い、溶媒として、水に相溶しない、トルエン等の有機溶剤を用いた場合、水酸化ナトリウム水溶液を、反応に供されている溶媒に滴下しても、溶媒と水酸化ナトリウム水溶液とが分離し、水酸化ナトリウムが、溶媒に移行しにくいと考えられる。そうなると、アルカリ金属水酸化物として添加した水酸化ナトリウム水溶液が、反応促進に寄与しにくくなると考えられる。これに対して、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、アルカリ金属水酸化物が相間移動触媒に取り込まれた状態で、溶媒に移行し、水酸化ナトリウム水溶液が、反応促進に寄与しやすくなると考えられる。このため、アルカリ金属水酸化物及び相間移動触媒の存在下で反応させると、上記反応がより好適に進行すると考えられる。
 また、相間移動触媒は、特に限定されないが、例えば、テトラ-n-ブチルアンモニウムブロマイド等の第4級アンモニウム塩等が挙げられる。
 本実施形態に係る樹脂組成物には、変性ポリフェニレンエーテルとして、上記のようにして得られた変性ポリフェニレンエーテルを含むことが好ましい。
 ((B)マレイミド化合物)
 次に、本実施形態において用いられる(B)成分、すなわち、マレイミド化合物について説明する。本実施形態で用いられるマレイミド化合物は、下記式(1)~(3)で示されるマレイミド化合物のうち少なくとも一つであれば、特に限定されない。これらのマレイミド化合物はマレイミド基を末端に有するため、(A)成分と効率よく反応するので、本実施形態の(A)成分と(B)成分との界面密着が向上し高い耐熱性、信頼性が得られる。また、これらのマレイミド化合物は疎水的な長鎖脂肪族炭化水素基の存在により硬化物として優れた低誘電特性を得られる。
Figure JPOXMLDOC01-appb-C000026
 式(1)中、繰り返し単位であるpは1~10である。pが1~10の範囲であれば、樹脂の流動性が高いため成型性に優れる。
 式(2)中、繰り返し単位であるqは1~10である。qが1~10の範囲であれば樹脂の流動性が高いため成型性に優れる。
Figure JPOXMLDOC01-appb-C000028
 また、本実施形態において用いられるマレイミド化合物は、重量平均分子量(Mw)が500~4000であることが好ましい。マレイミド化合物の重量平均分子量がマレイミド化合物の重量平均分子量が500以上であることによって、より低い誘電特性が得られると考えられ、また、4000以下であることによって、より樹脂の溶融粘度が低くなりより優れた成型性を得ることができると考えられる。なお、ここで、重量平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した値等が挙げられる。
 (含有比)
 本実施形態の樹脂組成物において、前記(A)成分と前記(B)成分の含有比は、質量比で10:90~90:10であることが好ましい。前記(A)成分の含有比がこれより少なくなると、硬化物のTgが低くなり、熱膨張率も大きくなる可能性がある。一方、前記(B)成分の含有比がこれより少なくなると、樹脂組成物の架橋密度が高くなることにより吸水率がやや高くなってしまうおそれがある。
 (その他の成分)
 また、本実施形態に係る樹脂組成物は、前記(A)熱硬化性化合物と前記(B)マレイミド化合物とを含むものであれば特に限定はされないが、他の成分をさらに含んでいてもよい。
 例えば、本実施形態に係る樹脂組成物は、さらに充填材を含有してもよい。充填材としては、樹脂組成物の硬化物の、耐熱性や難燃性を高めるために添加するもの等が挙げられ、特に限定されない。また、充填材を含有させることによって、耐熱性や難燃性等をさらに高めることができる。充填材としては、具体的には、球状シリカ等のシリカ、アルミナ、酸化チタン、及びマイカ等の金属酸化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、タルク、ホウ酸アルミニウム、硫酸バリウム、及び炭酸カルシウム等が挙げられる。また、充填材としては、この中でも、シリカ、マイカ、及びタルクが好ましく、球状シリカがより好ましい。また、充填材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、充填材としては、そのまま用いてもよいが、エポキシシランタイプ、ビニルシランタイプ、メタクリルシランタイプ、又はアミノシランタイプのシランカップリング剤で表面処理したものを用いてもよい。このシランカップリング剤としては、充填材に予め表面処理する方法でなく、インテグラルブレンド法で添加して用いてもよい。
 また、充填材を含有する場合、その含有量は、有機成分(前記(A)成分および前記(B)成分)の合計100質量部に対して、10~200質量部であることが好ましく、30~150質量部であることが好ましい。
 さらに本実施形態の樹脂組成物には難燃剤が含まれていてもよく、難燃剤としては、例えば、臭素系難燃剤等のハロゲン系難燃剤やリン系難燃剤等が挙げられる。ハロゲン系難燃剤の具体例としては、例えば、ペンタブロモジフェニルエーテル、オクタブロモジフェニルエーテル、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、ヘキサブロモシクロドデカン等の臭素系難燃剤や、塩素化パラフィン等の塩素系難燃剤等が挙げられる。また、リン系難燃剤の具体例としては、例えば、縮合リン酸エステル、環状リン酸エステル等のリン酸エステル、環状ホスファゼン化合物等のホスファゼン化合物、ジアルキルホスフィン酸アルミニウム塩等のホスフィン酸金属塩等のホスフィン酸塩系難燃剤、リン酸メラミン、及びポリリン酸メラミン等のメラミン系難燃剤、ジフェニルホスフィンオキサイド基を有するホスフィンオキサイド化合物等が挙げられる。難燃剤としては、例示した各難燃剤を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 さらに、本実施形態に係る樹脂組成物には、上記以外にも各種添加剤を含有してもよい。添加剤としては、例えば、シリコーン系消泡剤及びアクリル酸エステル系消泡剤等の消泡剤、熱安定剤、帯電防止剤、紫外線吸収剤、染料や顔料、滑剤、湿潤分散剤等の分散剤等が挙げられる。
 また、本実施形態に係る樹脂組成物は、さらに反応開始剤を含有していてもよい。前記(A)成分と前記(B)成分のみでも、硬化反応は進行し得るが、プロセス条件によっては硬化が進行するまで高温にすることが困難な場合があるので、反応開始剤を添加してもよい。反応開始剤は、熱硬化性化合物とマレイミド化合物との硬化反応を促進することができるものであれば、特に限定されない。具体的には、例えば、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン,過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等の酸化剤が挙げられる。また、必要に応じて、カルボン酸金属塩等を併用することができる。そうすることによって、硬化反応を一層促進させるができる。これらの中でも、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンが好ましく用いられる。α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、反応開始温度が比較的に高いため、プリプレグ乾燥時等の硬化する必要がない時点での硬化反応の促進を抑制することができ、樹脂組成物の保存性の低下を抑制することができる。さらに、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンは、揮発性が低いため、プリプレグやフィルム等の乾燥時や保存時に揮発せず、安定性が良好である。また、反応開始剤は、単独で用いても、2種以上を組み合わせて用いてもよい。含有量としては、好ましくは、前記(A)成分と前記(B)成分の合計100質量部に対する添加量が0.1~2質量部となるように反応開始剤を用いる。
 (プリプレグ、樹脂付きフィルム、金属張積層板、配線板、及び樹脂付き金属箔)
 次に、本実施形態の樹脂組成物を用いたプリプレグ、金属張積層板、配線板、及び樹脂付き金属箔について説明する。
 図1は、本発明の実施形態に係るプリプレグ1の一例を示す概略断面図である。なお、各図面における符号は、以下を示す:1 プリプレグ、2 樹脂組成物又は樹脂組成物の半硬化物、3 繊維質基材、11 金属張積層板、12 絶縁層、13 金属箔、14 配線、21 配線基板、31 樹脂付き金属箔、32、42 樹脂層、41 樹脂付きフィルム、43 支持フィルム。
 本実施形態に係るプリプレグ1は、図1に示すように、前記樹脂組成物又は前記樹脂組成物の半硬化物2と、繊維質基材3とを備える。このプリプレグ1としては、前記樹脂組成物又はその半硬化物2の中に繊維質基材3が存在するものが挙げられる。すなわち、このプリプレグ1は、前記樹脂組成物又はその半硬化物と、前記樹脂組成物又はその半硬化物2の中に存在する繊維質基材3とを備える。
 なお、本実施形態において、「半硬化物」とは、樹脂組成物を、さらに硬化しうる程度に途中まで硬化された状態のものである。すなわち、半硬化物は、樹脂組成物を半硬化した状態の(Bステージ化された)ものである。例えば、樹脂組成物は、加熱すると、最初、粘度が徐々に低下し、その後、硬化が開始し、粘度が徐々に上昇する。このような場合、半硬化としては、粘度が上昇し始めてから、完全に硬化する前の間の状態等が挙げられる。以下に説明する本実施形態のプリプレグ、樹脂付金属箔、樹脂付フィルムについては、樹脂組成物または樹脂組成物の半硬化物は、乾燥または加熱乾燥したものであってもよい。
 本実施形態に係る樹脂組成物を用いて得られるプリプレグとしては、上記のような、前記樹脂組成物の半硬化物を備えるものであってもよいし、また、硬化させていない前記樹脂組成物そのものを備えるものであってもよい。すなわち、前記樹脂組成物の半硬化物(Bステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよいし、硬化前の前記樹脂組成物(Aステージの前記樹脂組成物)と、繊維質基材とを備えるプリプレグであってもよい。具体的には、例えば、前記樹脂組成物の中に繊維質基材が存在するもの等が挙げられる。
 本実施形態に係る樹脂組成物は、前記プリプレグや、後述のRCC等の樹脂付金属箔や金属張積層板等を製造する際には、ワニス状に調製し、樹脂ワニスとして用いられることが多い。このような樹脂ワニスは、例えば、以下のようにして調製される。
 まず、(A)熱硬化性化合物、(B)マレイミド化合物、反応開始剤等の有機溶媒に溶解できる各成分を、有機溶媒に投入して溶解させる。この際、必要に応じて加熱してもよい。その後、有機溶媒に溶解しない成分、例えば、無機充填材等を添加して、ボールミル、ビーズミル、プラネタリーミキサー、ロールミル等を用いて、所定の分散状態になるまで分散させることにより、ワニス状の樹脂組成物が調製される。ここで用いられる有機溶媒としては、(A)熱硬化性化合物、(B)マレイミド化合物等を溶解させ、硬化反応を阻害しないものであれば、特に限定されない。具体的には、例えば、トルエン、メチルエチルケトン、シクロヘキサノン及びプロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらは単独で使用しても、2種以上を併用してもよい。
 本実施形態の樹脂ワニスは、フィルム可撓性や製膜性、及び繊維質基材への含浸性に優れ、取り扱い易いという利点がある。
 得られた樹脂ワニスを用いて本実施形態のプリプレグ1を製造する方法としては、例えば、得られた樹脂ワニス状に調製された樹脂組成物2を繊維質基材3に含浸させた後、乾燥する方法が挙げられる。
 プリプレグを製造する際に用いられる繊維質基材としては、具体的には、例えば、ガラスクロス、アラミドクロス、ポリエステルクロス、LCP(液晶ポリマー)不織布、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙、及びリンター紙等が挙げられる。なお、ガラスクロスを用いると、機械強度が優れた積層板が得られ、特に偏平処理加工したガラスクロスが好ましい。本実施形態で使用するガラスクロスとしては特に限定はされないが、例えば、Eガラス、Sガラス、NEガラスやLガラスなどの低誘電率ガラスクロス等が挙げられる。偏平処理加工としては、具体的には、例えば、ガラスクロスを適宜の圧力でプレスロールにて連続的に加圧してヤーンを偏平に圧縮することにより行うことができる。なお、繊維質基材の厚みとしては、例えば、0.01~0.3mmのものを一般的に使用できる。
 樹脂ワニス(樹脂組成物2)の繊維質基材3への含浸は、浸漬及び塗布等によって行われる。この含浸は、必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて含浸を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。
 樹脂ワニス(樹脂組成物2)が含浸された繊維質基材3を、所望の加熱条件、例えば、80℃以上、180℃以下で1分間以上、10分間以下で加熱される。加熱によって、ワニスから溶媒を揮発させることによって減少させ又は除去し、硬化前(Aステージ)又は半硬化状態(Bステージ)のプリプレグ1が得られる。
 また、図4に示すように、本実施形態の樹脂付金属箔31は、上述した樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層32と金属箔13とが積層されている構成を有する。そのような樹脂付金属箔31を製造する方法としては、例えば、上述したような樹脂ワニス状の樹脂組成物を銅箔などの金属箔13の表面に塗布した後、乾燥する方法が挙げられる。前記塗布方法としては、バーコーター、コンマコーターやダイコーター、ロールコーター、グラビアコータ等が挙げられる。
 また、図5に示すように、本実施形態の樹脂付きフィルム41は、上述した樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層42とフィルム支持基材43とが積層されている構成を有する。そのような樹脂付きフィルム41を製造する方法としては、例えば、上述したような樹脂ワニス状の樹脂組成物をフィルム支持基材43表面に塗布した後、乾燥などによって硬化または半硬化させる方法が挙げられる。前記フィルム支持基材としては、ポリイミドフィルム、PET(ポリエチレンテレフタレート)フィルム、ポリエステルフィルム、ポリパラバン酸フィルム、ポリエーテルエーテルケトンフィルム、ポリフェニレンスルフィドフィルム、アラミドフィルム、ポリカーボネートフィルム、ポリアリレートフィルム等の電気絶縁性フィルム等が挙げられる。
 前記金属箔13としては、金属張積層板や配線基板等で使用される金属箔を限定なく用いることができ、例えば、銅箔及びアルミニウム箔等が挙げられる。
 上記金属箔13やフィルム支持基材43の厚み等は、所望の目的に応じて、適宜設定することができる。例えば、金属箔13としては、0.2~70μm程度のものを使用できる。金属箔の厚さが例えば10μm以下となる場合などは、ハンドリング性向上のために剥離層及びキャリアを備えたキャリア付銅箔であってもよい。樹脂ワニスの金属箔13やフィルム支持基材43への適用は、塗布等によって行われるが、それは必要に応じて複数回繰り返すことも可能である。また、この際、組成や濃度の異なる複数の樹脂ワニスを用いて塗布を繰り返し、最終的に希望とする組成(含有比)及び樹脂量に調整することも可能である。
 樹脂ワニス状の樹脂組成物を塗布した後、半硬化状態にする場合は、所望の加熱条件、例えば、80~170℃で1~10分間加熱して、硬化前の樹脂組成物を含む樹脂層(Aステージ)又は半硬化状態の樹脂層(Bステージ)が得られる。樹脂ワニスを塗布した(プリプレグの場合は、樹脂ワニスを含浸させた)後、加熱によって、ワニスから有機溶媒を揮発させ、有機溶媒を減少又は除去させことができる。こうして樹脂層(Aステージ)又は半硬化状態の樹脂層(Bステージ)を有する樹脂付金属箔31や樹脂フィルム41が得られる。
 樹脂付金属箔31や樹脂フィルム41は、必要に応じて、カバーフィルム等を備えてもよい。カバーフィルムを備えることにより異物の混入等を防ぐことができる。カバーフィルムとしては樹脂組成物の形態を損なうことなく剥離することができるものであれば特に限定されるものではないが、例えば、ポリオレフィンフィルム、ポリエステルフィルム、TPXフィルム、またこれらのフィルムに離型剤層を設けて形成されたフィルム、さらにはこれらのフィルムを紙基材上にラミネートした紙等を用いることができる。
 図2に示すように、本実施形態の金属張積層板11は、上述の樹脂組成物の硬化物または上述のプリプレグの硬化物を含む絶縁層12と、金属箔13とを有することを特徴とする。なお、金属張積層板11で使用する金属箔13としては、上述した金属箔13と同様ものを使用することができる。
 また、本実施形態の金属張積層板13は、上述の樹脂付金属箔31や樹脂フィルム41を用いて作成することもできる。
 上記のようにして得られたプリプレグ1、樹脂付金属箔31や樹脂フィルム41を用いて金属張積層板を作製する方法としては、プリプレグ1、樹脂付金属箔31や樹脂フィルム41を一枚または複数枚重ね、さらにその上下の両面又は片面に銅箔等の金属箔13を重ね、これを加熱加圧成形して積層一体化することによって、両面金属箔張り又は片面金属箔張りの積層体を作製することができるものである。加熱加圧条件は、製造する積層板の厚みや樹脂組成物の種類等により適宜設定することができるが、例えば、温度を170~220℃、圧力を1.5~5.0MPa、時間を60~150分間とすることができる。
 また、金属張積層板11は、プリプレグ1等を用いずに、フィルム状の樹脂組成物を金属箔13の上に形成し、加熱加圧することにより作製されてもよい。
 そして、図3に示すように、本実施形態の配線基板21は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層12と、配線14とを有する。
 そのような配線基板21の製造方法としては、例えば、上記で得られた金属張積層体13の表面の金属箔13をエッチング加工等して回路(配線)形成をすることによって、積層体の表面に回路として導体パターン(配線14)を設けた配線基板21を得ることができる。回路形成する方法としては、上記記載の方法以外に、例えば、セミアディティブ法(SAP:Semi Additive Process)やモディファイドセミアディティブ法(MSAP:Modified Semi Additive Process)による回路形成等が挙げられる。
 本実施形態の樹脂組成物を用いて得られるプリプレグ、樹脂付きフィルム、樹脂付き金属箔は、その硬化物における低誘電特性に加えて、高い耐熱性、高Tg及び密着性や低吸水率を兼ね備えているため、産業利用上、非常に有用である。また、低い熱膨張率を有している。また成形性にも優れている。また、それらを硬化させた金属張積層板及び配線基板は、高耐熱性、高Tg、高密着性、低吸水性及び高い導通信頼性を備える。
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。
 本発明の一態様に係る樹脂組成物は、(A)スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物と、(B)下記式(1)で示されるマレイミド化合物とを含むことを特徴とする。
Figure JPOXMLDOC01-appb-C000029
(式中、pは1~10の整数を表す)
Figure JPOXMLDOC01-appb-C000030
(式中、pは1~10の整数を表す)
Figure JPOXMLDOC01-appb-C000031
 このような構成により、その硬化物における低誘電率や低誘電正接などの誘電特性に加えて、高い耐熱性、高Tg、低熱膨張率、密着性及び低吸水率を兼ね備えた樹脂組成物を提供できる。
 前記樹脂組成物において、前記(A)熱硬化性化合物が、分子内にポリフェニレンエーテル骨格を有する化合物を含むことが好ましい。それにより、その硬化物におけるその硬化物において優れた低誘電特性に加えて、より高いTg、高密着性を得ることができると考えられる。
 また、前記(A)熱硬化性化合物が、下記式(4)~(6)で示される構造を少なくとも1つ有する化合物を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
(式(4)~(6)中、R~R、R~R16並びにR17~R20は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
 また、式(4)および(5)中、AおよびBはそれぞれ下記式(7)及び(8)で示される構造である:
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 (式(7)および(8)中、mおよびnはそれぞれ1~50の整数を示す。R21~R24並びにR25~R28は、それぞれ独立して、水素原子又はアルキル基を示す。)
 式(6)中、sは1~100の整数を示す。
 さらに、式(5)中、Yは下記式(9)で示される構造である:
Figure JPOXMLDOC01-appb-C000037
 (式(9)中、R29及びR30は、それぞれ独立して、水素原子またはアルキル基を示す。)
 また、X~Xはそれぞれ独立して下記式(10)または(11)で示される炭素-炭素不飽和二重結合を有する置換基を示し、XおよびXは同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 (式(11)中、R31は水素原子またはアルキル基を示す。))
 そのような構成により、上述したような効果をより確実に得ることができると考えられる。
 さらに、前記樹脂組成物において、前記(A)熱硬化性化合物の重量平均分子量(Mw)が1000~5000であることが好ましい。それにより、靱性と密着性に優れ、成形性がより良好な樹脂組成物を得ることができると考えられる。
 また、前記樹脂組成物において、前記(B)マレイミド化合物の重量平均分子量(Mw)が500~4000であることが好ましい。それにより、成型性に優れ、その硬化物において低誘電特性により優れた樹脂組成物を得ることができると考えられる。
 さらに、前記樹脂組成物において、前記(A)成分と前記(B)成分の含有比が質量比で、(A):(B)=10:90~90:10であることが好ましい。それにより、十分な高Tgと低吸水率をより確実に得ることができると考えられる。
 本発明のさらなる他の一態様に係るプリプレグは、上述の樹脂組成物又は前記樹脂組成物の半硬化物と繊維質基材とを有することを特徴とする。
 本発明のさらなる他の一態様に係る樹脂付きフィルムは、上述の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と支持フィルムとを有することを特徴とする。
 本発明のさらなる他の一態様に係る樹脂付き金属箔は、上述の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と金属箔とを有することを特徴とする。
 本発明のさらなる他の一態様に係る金属張積層板は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層と、金属箔とを有することを特徴とする。
 また、本発明のさらなる他の一態様に係る配線基板は、上述の樹脂組成物の硬化物又は上述のプリプレグの硬化物を含む絶縁層と、配線とを有することを特徴とする。
 上述のような構成によれば、低誘電特性と高Tgと高耐熱性、高密着性、低吸水性を有し、熱膨張率が低く、高い導通信頼性を有する基板を得ることができるプリプレグ、樹脂付きフィルム、樹脂付金属箔、金属張積層板、配線基板等を得ることができる。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 まず、本実施例において、樹脂組成物を調製する際に用いる成分について説明する。
 <A成分:熱硬化性化合物>
 ・OPE-2St 1200:末端ビニルベンジル変性PPE(Mw:約1600、三菱瓦斯化学株式会社製)
 ・OPE-2St 2200:末端ビニルベンジル変性PPE(Mw:約3600、三菱瓦斯化学株式会社製)
 ・変性PPE-1:2官能ビニルベンジル変性PPE(Mw:1900)
 まず、変性ポリフェニレンエーテル(変性PPE-1)を合成した。なお、ポリフェニレンエーテル1分子当たりの、分子末端のフェノール性水酸基の平均個数を、末端水酸基数と示す。
 ポリフェニレンエーテルと、クロロメチルスチレンとを反応させて変性ポリフェニレンエーテル1(変性PPE―1)を得た。具体的には、まず、温度調節器、攪拌装置、冷却設備、及び滴下ロートを備えた1リットルの3つ口フラスコに、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA90、固有粘度(IV)0.083dl/g、末端水酸基数1.9個、重量分子量Mw1700)200g、p-クロロメチルスチレンとm-クロロメチルスチレンとの質量比が50:50の混合物(東京化成工業株式会社製のクロロメチルスチレン:CMS)30g、相間移動触媒として、テトラ-n-ブチルアンモニウムブロマイド1.227g、及びトルエン400gを仕込み、攪拌した。そして、ポリフェニレンエーテル、クロロメチルスチレン、及びテトラ-n-ブチルアンモニウムブロマイドが、トルエンに溶解するまで攪拌した。その際、徐々に加熱し、最終的に液温が75℃になるまで加熱した。そして、その溶液に、アルカリ金属水酸化物として、水酸化ナトリウム水溶液(水酸化ナトリウム20g/水20g)を20分間かけて、滴下した。その後、さらに、75℃で4時間攪拌した。次に、10質量%の塩酸でフラスコの内容物を中和した後、多量のメタノールを投入した。そうすることによって、フラスコ内の液体に沈殿物を生じさせた。すなわち、フラスコ内の反応液に含まれる生成物を再沈させた。そして、この沈殿物をろ過によって取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄した後、減圧下、80℃で3時間乾燥させた。
 得られた固体を、H-NMR(400MHz、CDCl3、TMS)で分析した。NMRを測定した結果、5~7ppmにエテニルベンジルに由来するピークが確認された。これにより、得られた固体が、分子末端において、エテニルベンジル化されたポリフェニレンエーテルであることが確認できた。
 また、変性ポリフェニレンエーテルの分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した結果、Mwは、1900であった。
 また、変性ポリフェニレンエーテルの末端官能数を、以下のようにして測定した。
 まず、変性ポリフェニレンエーテルを正確に秤量した。その際の重量を、X(mg)とする。そして、この秤量した変性ポリフェニレンエーテルを、25mLの塩化メチレンに溶解させ、その溶液に、10質量%のテトラエチルアンモニウムヒドロキシド(TEAH)のエタノール溶液(TEAH:エタノール(体積比)=15:85)を100μL添加した後、UV分光光度計(株式会社島津製作所製のUV-1600)を用いて、318nmの吸光度(Abs)を測定した。そして、その測定結果から、下記式を用いて、変性ポリフェニレンエーテルの末端水酸基数を算出した。
 残存OH量(μmol/g)=[(25×Abs)/(ε×OPL×X)]×106
 ここで、εは、吸光係数を示し、4700L/mol・cmである。また、OPLは、セル光路長であり、1cmである。
 そして、その算出された変性ポリフェニレンエーテルの残存OH量(末端水酸基数)は、ほぼゼロであることから、変性前のポリフェニレンエーテルの水酸基が、ほぼ変性されていることがわかった。このことから、変性前のポリフェニレンエーテルの末端水酸基数からの減少分は、変性前のポリフェニレンエーテルの末端水酸基数であることがわかった。すなわち、変性前のポリフェニレンエーテルの末端水酸基数が、変性ポリフェニレンエーテルの末端官能基数であることがわかった。つまり、末端官能数が、1.8個であった。これを「変性PPE-1」とする。
 ・SA-9000:2官能メタクリレート変性PPE(Mw:1700、SABIC社製)
 ・変性PPE-2:1官能ビニルベンジル変性PPE(Mw:2800)
 ポリフェニレンエーテル樹脂(日本ジーイープラスチックス株式会社製:商品名「ノリルPX9701」、数平均分子量14000)を36質量部、フェノール種としてビスフェノールAを1.44質量部、開始剤として過酸化ベンゾイル(日本油脂株式会社製:商品名「ナイパーBW」)を1.90質量部それぞれ配合し、これに溶剤であるトルエンを90質量部加えて80℃にて1時間混合し、分散・溶解させて反応させることによって、ポリフェニレンエーテル樹脂の分子量を低減する処理を行った。そして多量のメタノールで再沈殿させ、不純物を除去して、減圧下80℃/3時間で乾燥して溶剤を完全に除去した。この処理後に得られたポリフェニレンエーテル化合物の数平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)にて測定したところ、約2400であった。
 次に、上記のようにして得たポリフェニレンエーテル化合物の分子末端に存在するフェノール基をエテニルベンジル化することによって、目的物である変性ポリフェニレンエーテル化合物を製造した。
 具体的には、温度調節器、撹拌装置、冷却設備及び滴下ロートを備えた1リットルの3つ口フラスコに、上記ポリフェニレンエーテル化合物を200g、クロロメチルスチレン14.51g、テトラ-n-ブチルアンモニウムブロマイド0.818g、トルエン400gを仕込み、撹拌溶解し、液温を75℃にし、水酸化ナトリウム水溶液(水酸化ナトリウム11g/水11g)を20分間で滴下し、さらに75℃で4時間撹拌を続けた。次に、10%塩酸水溶液でフラスコ内容物を中和した後、多量のメタノールを追加し、エテニルベンジル化した変性ポリフェニレンエーテル化合物を再沈殿後、ろ過した。ろ過物をメタノール80と水20の比率の混合液で3回洗浄した後、減圧下80℃/3時間処理することで、溶剤や水分を除去したエテニルベンジル化した変性ポリフェニレンエーテル化合物を取り出した。これを「変性PPE-2」とする。
 また、変性PPE-2の分子量分布を、GPCを用いて、測定した。そして、その得られた分子量分布から、重量平均分子量(Mw)を算出した結果、Mwは、2800であった。
 また、変性PPE-2の末端官能数を、変性PPE-1と同様の方法にて測定し求めると、約1個であった。
 ・「スチレンモノマー」:スチレン、(分子量:104、NSスチレンモノマー株式会社製)
 ・「DVB-810」:ジビニルベンゼン、(Mw:130、新日鐵住金化学株式会社製)
 ・SA90:無変性PPE、(Mw:1700、SABICイノベーティブプラスチックス社製)
 ・PPO640:無変性PPE、(Mw:18000、SABICイノベーティブプラスチックス社製)
 ・BMI-2300: ポリフェニルメタンビスマレイミド、(芳香族マレイミド化合
物、大和化成工業株式会社製)
 <B成分:マレイミド化合物>
 ・BMI-1700:式(2)で示されるマレイミド化合物、(Mw:1700、Designer Molercules Inc.製)
 ・BMI-1500:式(1)で示されるマレイミド化合物、(Mw:1500、Designer Molercules Inc.製)
 ・BMI-689:式(3)で示されるマレイミド化合物、(Mw:689、Designer Molercules Inc.製)
 ・BMI-TMH:1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、(分子量:318、大和化成工業株式会社製)
 <その他の成分>
 (反応開始剤)
・パーブチルP:1,3-ビス(ブチルパーオキシイソプロピル)ベンゼン(日本油脂株式会社製)
 (無機充填材)
・SC2500-SXJ:フェニルアミノシラン表面処理球状シリカ(株式会社アドマテックス製)
 <実施例1~15、比較例1~9>
 [調製方法]
 (樹脂ワニス)
 まず、各成分を表1および2に記載の配合割合で、固形分濃度が60質量%となるように、トルエンに添加し、混合させた。その混合物を、60分間攪拌することによって、ワニス状の樹脂組成物(ワニス)が得られた。比較例3および4だけは、溶媒としてMEK(メチルエチルケトン)/トルエン比が約50:50のものを使用した。
 (プリプレグ)
 ・プリプレグ-Iの作製
 各実施例および比較例の樹脂ワニスをガラスクロス(旭化成株式会社製、♯2116タイプ、Eガラス)に含浸させた後、100~170℃で約3~6分間加熱乾燥することによりプリプレグを得た。その際、プリプレグの重量に対する樹脂組成物の含有量(レジンコンテント)が約46質量%となるように調整した。
 ・プリプレグ-IIの作製
 各実施例および比較例の樹脂ワニスをガラスクロス(旭化成株式会社製、♯1067タイプ、Eガラス)に含浸させた後、100~170℃で約3~6分間加熱乾燥することによりプリプレグを得た。その際、プリプレグの重量に対する樹脂組成物の含有量(レジンコンテント)が約73質量%となるように調整した。
 (銅張積層板)
 上記プリプレグ-Iの1枚を、その両側に厚さ12μmの銅箔(古河電気工業株式会社製GT-MP)を配置して被圧体とし、真空条件下、温度220℃、圧力30kgf/cmの条件で90分加熱・加圧して両面に銅箔が接着された、厚み約0.1mmの銅張積層板-Iを得た。また、上記プリプレグ8枚を重ね、同様の方法で厚み約0.8mmの銅張積層板-IIを得た。
 また、上記プリプレグ-IIを12枚重ね、同様の方法にて厚み約0.8mmの銅張積層板-IIIを得た。
 <評価試験1>
 (オーブン耐熱性)
 JIS C 6481(1996)の規格に準じて耐熱性を評価した。所定の大きさに切り出した上記銅張積層板-Iを290℃に設定した恒温槽に1時間放置した後、取り出した。そして熱処理された試験片を目視で観察し、290℃でフクレが発生しなかったときを○、290℃フクレが発生したときを×として評価した。
 (ガラス転移温度(Tg))
 上記銅張積層板-Iの外層銅箔を全面エッチングし、得られたサンプルについて、セイコーインスツルメンツ株式会社製の粘弾性スペクトロメータ「DMS100」を用いて、Tgを測定した。このとき、引張モジュールで周波数を10Hzとして動的粘弾性測定(DMA)を行い、昇温速度5℃/分の条件で室温から300℃まで昇温した際のtanδが極大を示す温度をTgとした。
 (熱膨張係数(CTE-Z))
 上記の銅箔積層板-IIの銅箔を除去したものを試験片とし、樹脂硬化物のガラス転移温度未満の温度における、Z軸方向の熱膨張係数を、JIS C 6481に従ってTMA法(Thermo-mechanical analysis)により測定した。測定には、TMA装置(エスアイアイ・ナノテクノロジー株式会社製「TMA6000」)を用い、30~300℃の範囲で測定した。測定単位はppm/℃である。
 (銅箔接着力)
 銅箔張積層板-Iにおいて、絶縁層からの銅箔の引き剥がし強さをJIS C 6481に準拠して測定した。幅10mm、長さ100mmのパターンを形成し、引っ張り試験機により50mm/分の速度で引き剥がし、その時の引き剥がし強さ(ピール強度)を測定し、得られたピール強度を、銅箔密着強度とした。測定単位はkN/mである。
 (誘電特性:誘電正接(Df))
 上記銅張積層板-IIIから銅箔を除去した積層板を評価基板として用い、誘電正接(Df)を空洞共振器摂動法で測定した。具体的には、ネットワーク・アナライザ(アジレント・テクノロジー株式会社製のN5230A)を用い、10GHzにおける評価基板の誘電正接を測定した。
 (吸水率)
 上記銅張積層板-IIIから銅箔を除去した積層板を評価基板として用い、JIS-C6481(1996年)に従って吸水率を評価した。吸水条件はE-24/50+D-24/23(つまり、恒温空気中において50℃、24時間+恒温水中において23℃、24時間処理)である。吸水率は以下の式に基づいて算出した。
 吸水率(%)=((吸水後の質量-吸水前の質量)/吸水前の質量)×100
 以上の結果を表1~表2に示す。
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
 (考察)
 表1~2に示す結果から明らかなように、本発明により、その硬化物において、低誘電特性(Df:0.0040以下)に加えて、高い耐熱性、高Tg(100℃以上)及び優れた密着性(ピール0.40kN/m以上)を兼ね備えた樹脂組成物を提供できることが示された。さらにいずれの実施例においても、熱膨張率(CTE)は70℃/ppm以下と低めであった。
 特に、(A)熱硬化性化合物として、変性ポリフェニレンエーテル化合物を使用した場合、より高いTgや密着性等が得られることも示された。
 さらに、表2の結果により、前記(A)成分と前記(B)成分の含有比が、10:90~90:10のとき、より密着性に優れ、より確実に低い吸水率が得られることが示された。
 それに対し、スチレン構造または(メタ)アクリレート構造を含む熱硬化性化合物の代わりに無変性PPEや芳香族マレイミド化合物を使用した比較例1-3では、十分な低誘電特性や密着性が得られず、さらに高Tg、耐熱性及び低熱膨張率が両立できない結果のものもあった。また、本発明の(B)成分である特定のマレイミド化合物以外の脂肪族骨格を有するマレイミド化合物を用いた比較例4でも、本発明で求める低誘電特性を得ることができなかった。
 さらに、本発明の(B)成分を含んでいない比較例5では、十分な低誘電正接と低吸水率を得ることができず、(A)成分を含んでいない比較例6では、十分なTgが得られず熱膨張率も高くなってしまった。
 この出願は、2018年3月28日に出願された日本国特許出願特願2018-63238を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体例や図面等を参照しながら実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、電子材料やそれを用いた各種デバイスに関する技術分野において、広範な産業上の利用可能性を有する。

Claims (11)

  1.  (A)スチレン構造または(メタ)アクリレート構造を有する熱硬化性化合物と、(B)下記式(1)~(3)で示されるマレイミド化合物のうち少なくとも一つとを含む、樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、pは1~10の整数を表す)
    Figure JPOXMLDOC01-appb-C000002
    (式中、qは1~10の整数を表す)
    Figure JPOXMLDOC01-appb-C000003
  2.  前記(A)熱硬化性化合物が、分子内にポリフェニレンエーテル骨格を有する化合物を含む、請求項1に記載の樹脂組成物。
  3.  前記(A)熱硬化性化合物が、下記式(4)~(6)で示される構造を少なくとも1つ含む、請求項1または2に記載の樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (式(4)~(6)中、R~R、R~R16並びにR17~R20は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。)
     また、式(4)および(5)中、AおよびBはそれぞれ下記式(7)及び(8)で示される構造である:
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
     (式(7)および(8)中、mおよびnはそれぞれ1~50の整数を示す。R21~R24並びにR25~R28は、それぞれ独立して、水素原子又はアルキル基を示す。)
     式(6)中、sは1~100の整数を示す。
     さらに、式(5)中、Yは下記式(9)で示される構造である:
    Figure JPOXMLDOC01-appb-C000009
     (式(9)中、R29及びR30は、それぞれ独立して、水素原子またはアルキル基を示す。)
     また、X~Xはそれぞれ独立して下記式(10)または(11)で示される炭素-炭素不飽和二重結合を有する置換基を示し、XおよびXは同一であっても異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    (式(11)中、R31は水素原子またはアルキル基を示す。)
  4.  前記(A)熱硬化性化合物の重量平均分子量(Mw)が1000~5000である、請求項1~3のいずれかに記載の樹脂組成物。
  5.  前記(B)マレイミド化合物の重量平均分子量(Mw)が500~4000である、請求項1~4のいずれかに記載の樹脂組成物。
  6.  前記(A)成分と前記(B)成分の含有比が質量比で、(A):(B)=10:90~90:10である、請求項1~5のいずれかに記載の樹脂組成物。
  7.  請求項1~6のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物と繊維質基材とを有するプリプレグ。
  8.  請求項1~6のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、支持フィルムとを有する樹脂付きフィルム。
  9.  請求項1~6のいずれかに記載の樹脂組成物又は前記樹脂組成物の半硬化物を含む樹脂層と、金属箔とを有する、樹脂付き金属箔。
  10.  請求項1~6のいずれかに記載の樹脂組成物の硬化物又は前記請求項7に記載のプリプレグの硬化物を含む絶縁層と、金属箔とを有する、金属張積層板。
  11.  請求項1~6のいずれかに記載の樹脂組成物の硬化物又は前記請求項7に記載のプリプレグの硬化物を含む絶縁層と、配線とを有する、配線基板。
PCT/JP2019/009667 2018-03-28 2019-03-11 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板 WO2019188185A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980020243.2A CN111886264B (zh) 2018-03-28 2019-03-11 树脂组合物、和使用其的预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板及布线板
US16/977,384 US20210054197A1 (en) 2018-03-28 2019-03-11 Resin composition, and prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board each obtained using said resin composition
JP2020509815A JP7281650B2 (ja) 2018-03-28 2019-03-11 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063238 2018-03-28
JP2018063238 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019188185A1 true WO2019188185A1 (ja) 2019-10-03

Family

ID=68058989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009667 WO2019188185A1 (ja) 2018-03-28 2019-03-11 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板

Country Status (4)

Country Link
US (1) US20210054197A1 (ja)
JP (1) JP7281650B2 (ja)
CN (1) CN111886264B (ja)
WO (1) WO2019188185A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298231A (zh) * 2020-03-26 2022-11-04 积水化学工业株式会社 树脂粒子、导电性粒子、导电材料和连接结构体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197336A (ja) * 2011-03-18 2012-10-18 Panasonic Corp イミド樹脂組成物およびその製造方法、プリプレグ、金属張積層板並びにプリント配線板
JP2014132066A (ja) * 2012-12-03 2014-07-17 Jnc Corp 硬化性組成物およびその用途
US20140349090A1 (en) * 2013-05-21 2014-11-27 Elite Material Co., Ltd. Low dielectric halogen-free resin composition and circuit board using the same
JP2015032639A (ja) * 2013-07-31 2015-02-16 日立化成株式会社 先塗布型熱硬化性アンダーフィル組成物、電子部品装置及び電子部品装置の製造方法
JP2015193725A (ja) * 2014-03-31 2015-11-05 株式会社タムラ製作所 異方性導電性接着剤およびそれを用いたプリント配線基板
JP2016131244A (ja) * 2015-01-13 2016-07-21 日立化成株式会社 樹脂フィルム、支持体付き樹脂フィルム、プリプレグ、金属張積層板及び多層印刷配線板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012197336A (ja) * 2011-03-18 2012-10-18 Panasonic Corp イミド樹脂組成物およびその製造方法、プリプレグ、金属張積層板並びにプリント配線板
JP2014132066A (ja) * 2012-12-03 2014-07-17 Jnc Corp 硬化性組成物およびその用途
US20140349090A1 (en) * 2013-05-21 2014-11-27 Elite Material Co., Ltd. Low dielectric halogen-free resin composition and circuit board using the same
JP2015032639A (ja) * 2013-07-31 2015-02-16 日立化成株式会社 先塗布型熱硬化性アンダーフィル組成物、電子部品装置及び電子部品装置の製造方法
JP2015193725A (ja) * 2014-03-31 2015-11-05 株式会社タムラ製作所 異方性導電性接着剤およびそれを用いたプリント配線基板
JP2016131244A (ja) * 2015-01-13 2016-07-21 日立化成株式会社 樹脂フィルム、支持体付き樹脂フィルム、プリプレグ、金属張積層板及び多層印刷配線板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298231A (zh) * 2020-03-26 2022-11-04 积水化学工业株式会社 树脂粒子、导电性粒子、导电材料和连接结构体

Also Published As

Publication number Publication date
JPWO2019188185A1 (ja) 2021-04-08
US20210054197A1 (en) 2021-02-25
CN111886264A (zh) 2020-11-03
JP7281650B2 (ja) 2023-05-26
CN111886264B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
JP6906171B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
JP7316572B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
JP6455728B2 (ja) ポリフェニレンエーテル樹脂組成物、プリプレグ、金属張積層板及びプリント配線板
WO2018159080A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7217441B2 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2016009611A1 (ja) 金属張積層板とその製造方法、樹脂付き金属箔、及びプリント配線板
WO2019188187A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2018074278A1 (ja) 樹脂組成物、樹脂組成物の製造方法、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
JP7203386B2 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2017122249A1 (ja) 金属張積層板および樹脂付金属箔
JP6635415B2 (ja) 硬化性組成物、プリプレグ、組成物付き金属箔、金属張積層板、及び配線板
WO2020262089A1 (ja) 樹脂組成物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板、及び配線板
WO2017002319A1 (ja) 硬化性組成物、プリプレグ、組成物付き金属箔、金属張積層板、及び配線板
WO2020203320A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2019044154A1 (ja) ポリフェニレンエーテル樹脂組成物、並びに、それを用いたプリプレグ、金属張積層板及び配線基板
KR20220038379A (ko) 수지 조성물, 프리프레그, 수지 부가 필름, 수지 부가 금속박, 금속 클래드 적층판, 및 배선판
WO2019188185A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2021060046A1 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板
WO2018061736A1 (ja) 金属張積層板、プリント配線板および樹脂付金属箔

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020509815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19776840

Country of ref document: EP

Kind code of ref document: A1