WO2019187693A1 - 積層体及びその製造方法 - Google Patents

積層体及びその製造方法 Download PDF

Info

Publication number
WO2019187693A1
WO2019187693A1 PCT/JP2019/004547 JP2019004547W WO2019187693A1 WO 2019187693 A1 WO2019187693 A1 WO 2019187693A1 JP 2019004547 W JP2019004547 W JP 2019004547W WO 2019187693 A1 WO2019187693 A1 WO 2019187693A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon oxide
oxide layer
layer
density
film
Prior art date
Application number
PCT/JP2019/004547
Other languages
English (en)
French (fr)
Inventor
充 岩田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19776182.8A priority Critical patent/EP3778216A4/en
Priority to JP2020510368A priority patent/JP6945724B2/ja
Publication of WO2019187693A1 publication Critical patent/WO2019187693A1/ja
Priority to US17/037,167 priority patent/US20210025053A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a laminate and a method for producing the same.
  • a scratch-resistant laminate having a hard coat layer is known.
  • a plastic substrate, an organosiloxane resin thermosetting film provided on the surface of the plastic substrate, and a film surface opposite to the plastic substrate side of the organosiloxane resin thermosetting film are disclosed.
  • a laminate comprising a plasma CVD (chemical vapor deposition) film provided is described.
  • the plasma CVD film is formed by exciting a vapor of an organosilicon compound and oxygen gas using an apparatus for plasma polymerization under reduced pressure.
  • the plasma CVD film is formed by continuously increasing the supply rate of the vapor of the organosilicon compound and the oxygen gas continuously with the passage of the film formation time.
  • Patent Document 2 describes a laminate including a plastic substrate, a resin film formed of a photo-curing resin, and a silicon oxide film.
  • the silicon oxide film has a structure in which two or more unit silicon oxide films are laminated.
  • the unit silicon oxide film is composed of a high-density layer that is a silicon oxide layer having a relatively high density and a low-density layer that is a low silicon oxide layer, and the high-density layer is disposed on the resin film side.
  • the density of the low density layer gradually decreases as the distance from the high density layer increases in the thickness direction.
  • a silicon oxide film is formed on the film surface on the side opposite to the plastic substrate side of the resin film while conveying the plastic substrate on which the resin film is formed.
  • the high-density layer which is a silicon oxide layer
  • the high-density layer is formed by cooling in an atmosphere containing water vapor after leaving the discharge plasma region. A part of the exposed surface side is generated as a low-density layer, and thus each unit silicon oxide film is formed.
  • Patent Document 1 Since the laminate of Patent Document 1 is manufactured by so-called low pressure plasma treatment (vacuum plasma treatment), which is plasma polymerization under reduced pressure, it is inferior in production efficiency, and therefore, mass production is difficult.
  • the atmospheric pressure plasma treatment used in Patent Document 2 is superior in production efficiency compared to the reduced pressure plasma treatment.
  • the laminate of Patent Document 2 it takes time to generate a low-density layer after forming a high-density layer by low-pressure plasma treatment, and furthermore, since a plurality of unit silicon oxide films are stacked, a low-density layer generation step The production efficiency is still poor.
  • an object of the present invention is to provide a laminate having scratch resistance and excellent production efficiency, and a method for producing the same.
  • the laminate of the present invention includes a plastic substrate, a resin film, a first silicon oxide layer, and a second silicon oxide layer.
  • the resin film is provided on a plastic substrate and is formed of a cured resin.
  • the first silicon oxide layer is provided on the film surface opposite to the plastic substrate side of the resin film.
  • the second silicon oxide layer is provided on the first silicon oxide layer.
  • the second silicon oxide layer has a higher density and a smaller thickness than the first silicon oxide layer.
  • the first silicon oxide layer preferably has a density in the range of 1.7 g / cm 3 or more and 2.3 g / cm 3 or less and a thickness of at least 300 nm.
  • a silicon oxide film in which at least two silicon oxide layers including a first silicon oxide layer and a second silicon oxide layer overlap each other in the thickness direction.
  • the silicon oxide layer forming the film surface opposite to the resin film side of the silicon oxide film has a density in the range of 2.6 g / cm 3 or more and 2.8 g / cm 3 or less, and even if the thickness is large, the thickness is 500 nm. Preferably there is.
  • the first boundary layer is made of silicon oxide.
  • the first boundary layer has a thickness smaller than that of the first silicon oxide layer and the second silicon oxide layer.
  • the first boundary layer has a density greater than that of the first silicon oxide layer and is in a range of 95% to 105% of the density of the second silicon oxide layer.
  • the density of the first boundary layer gradually increases from the first silicon oxide layer side toward the second silicon oxide layer side.
  • the silicon oxide film preferably includes a third silicon oxide layer and a second boundary layer.
  • the third silicon oxide layer is provided on the second silicon oxide layer.
  • the third silicon oxide layer has a higher density and a smaller thickness than the second silicon oxide layer.
  • the second boundary layer is provided between the second silicon oxide layer and the third silicon oxide layer.
  • the second boundary layer is made of silicon oxide.
  • the second boundary layer has a thickness smaller than those of the second silicon oxide layer and the third silicon oxide layer, a density larger than that of the second silicon oxide layer, and 95% or more and 105% of the density of the third silicon oxide layer.
  • the thickness of the second boundary layer is preferably smaller than that of the first boundary layer.
  • the method for producing a laminate of the present invention includes a resin film forming step, a first silicon oxide layer forming step, and a second silicon oxide layer forming step, and a plastic substrate having a resin film formed of a cured resin A silicon oxide layer is formed while conveying.
  • a resin film is formed by applying a coating liquid containing a curable compound on a plastic substrate and curing the formed coating film.
  • the second silicon oxide layer forming step the second silicon oxide layer is formed on the first silicon oxide layer by the second layer forming apparatus disposed downstream of the first layer forming apparatus in the conveying direction of the plastic substrate.
  • the organosilicon compound is supplied to the second layer forming apparatus at a smaller flow rate than the first layer forming apparatus.
  • the first layer forming apparatus and the second layer forming apparatus have a power source for applying an AC voltage, and the frequency of the AC voltage is at most 1 MHz.
  • the first silicon oxide layer and the second oxide have a thickness on the first silicon oxide layer. It is preferable to produce a boundary layer that is smaller than the silicon layer, the density is greater than the density of the first silicon oxide layer, and is in the range of 95% to 105% of the density of the second silicon oxide layer.
  • the laminate 10 has a multilayer structure in which a plastic substrate 11, an underlayer 12, a resin film 13, and a silicon oxide film 14 are overlapped in this order in the thickness direction.
  • the laminated body 10 can be used as, for example, a hard coat member (scratch resistant member) that is assembled to an automobile window, a spectacle lens, or the like.
  • a hard coat member spin resistant member
  • the laminate 10 is assembled to another member with the silicon oxide film 14 facing the outside and the plastic substrate 11 facing the inside.
  • the plastic substrate 11 is a support that supports a resin film 13 and a silicon oxide film 14 having a small thickness as described later.
  • the plastic substrate 11 is also a support for a coating film when the resin film 13 is formed by coating.
  • the material of the plastic substrate 11 is not particularly limited as long as it is a plastic (plastic material), and a thermoplastic resin (polymer) or the like can be used.
  • the thermoplastic resin include various plastics (resin, resin, etc.) such as polycarbonate (hereinafter referred to as PC), polyester (for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN)), and polymethyl methacrylate resin (PMMA). Polymer) can be used.
  • PC is often used as a substitute for glass because it has excellent transparency and is lighter in weight, impact resistance and workability than glass. Therefore, also in this example, PC is used for the plastic substrate 11 in order to obtain a laminated body for optical use that can be used instead of glass.
  • the thickness T11 of the plastic substrate 11 is not particularly limited as long as the function as a support is not impaired, and is, for example, in the range of 100 ⁇ m to 50 mm. In this example, it is 300 ⁇ m.
  • the resin film 13 is for buffering when an external force such as an impact is applied to the laminate 10, that is, to soften the applied force by dispersing or the like.
  • the resin film 13 may be provided directly (in close contact) on the plastic base material 11 or may be provided on the plastic base material 11 via the base layer 12 as in this example.
  • the resin film 13 is formed of a curable resin, and may contain additives such as a UV (ultraviolet, ultraviolet) absorber and an antistatic agent in addition to the curable resin.
  • the curable resin may be either a light curable resin or a thermosetting resin, and is a photo curable resin in this example.
  • the photo-curing resin is a resin (polymer) produced by irradiating light to a photo-curable compound that is cured by light irradiation.
  • a thermosetting resin is a resin (polymer) produced by heating a thermosetting compound that is cured by heating.
  • the resin film 13 is formed of a cured resin, it is buffered when an external force such as an impact is applied to the laminated body 10 as compared with the case where it is formed of a plastic resin.
  • the scratch resistance of the surface (hereinafter referred to as the first surface) 10a on the silicon film 14 side is ensured.
  • the photocurable resin is not particularly limited, and for example, an acrylic resin, an organosiloxane resin, or the like is used. In this example, an acrylic resin is used.
  • the thermosetting resin is not particularly limited, and for example, an organosiloxane resin, a melanin resin, a urethane resin, an alkyd resin, or the like is used.
  • the thickness T13 of the resin film 13 is preferably 1 ⁇ m or more, and this makes the above-described buffer function more reliable when an impact or the like is applied to the laminate 10.
  • the thickness T13 is more preferably in the range of 1 ⁇ m to 20 ⁇ m, and still more preferably in the range of 3 ⁇ m to 8 ⁇ m. In this example, the thickness T13 is 5 ⁇ m.
  • the base layer 12 between the plastic substrate 11 and the resin film 13 is for further increasing the adhesion between the plastic substrate 11 and the resin film 13.
  • the base layer 12 can be omitted.
  • the material of the base layer 12 is not particularly limited as long as it is in close contact with both the plastic substrate 11 and the resin film 13.
  • urethane resin, acrylic resin, epoxy resin, polyester resin, melanin resin, amino Resins can be used.
  • an acrylic resin is used.
  • the photocurable compound for forming the resin film 13 a compound (ultraviolet curable compound) that is cured by irradiation with ultraviolet rays is used. Is included. Thereby, the amount of ultraviolet rays incident on the plastic substrate 11 is reduced. By reducing the amount of ultraviolet light incident on the plastic substrate 11, the ultraviolet degradation of the plastic substrate 11 is suppressed. In addition, the ultraviolet ray deterioration of the plastic base material 11 under the use environment of the laminated body 10 is also suppressed by containing the ultraviolet absorber in the base layer 12. As described above, the base layer 12 may have another function different from the improvement in the adhesion between the plastic substrate 11 and the resin film 13, and the improvement in the adhesion between the plastic substrate 11 and the resin film 13 is not necessary. It can be provided even in cases.
  • the silicon oxide film 14 is formed in a film shape with silicon oxide, and is for improving scratch resistance.
  • the silicon oxide film 14 is provided on the film surface 13 a opposite to the plastic substrate 11 side of the resin film 13. As described above, since the resin film 13 improves the scratch resistance by buffering the force applied from the outside, the silicon oxide film 14 and the resin film 13 cooperate to provide the scratch resistance. That is, the resin film 13 and the silicon oxide film 14 constitute a hard coat portion (scratch resistant portion) 17 of the laminate 10.
  • the silicon oxide film 14 includes at least two silicon oxide layers overlapping in the thickness direction.
  • the first silicon oxide layer 21A and the second silicon oxide layer are sequentially formed from the resin film 13 side.
  • Four layers of a layer 21B, a third silicon oxide layer 21C, and a fourth silicon oxide layer 21D are provided.
  • the silicon oxide layer 21 when the first silicon oxide layer 21A to the fourth silicon oxide layer 21D are not distinguished, they are referred to as the silicon oxide layer 21.
  • the number of layers of the silicon oxide layer 21 is not limited to four in this example, and may be two, three, or five or more.
  • the silicon oxide film 14 further includes a first boundary layer 25A, a second boundary layer 25B, and a third boundary layer 25C that are sequentially arranged from the resin film 13 side.
  • first boundary layer 25A to the third boundary layer 25C are not distinguished, they are described as the boundary layer 25.
  • the first boundary layer 25A is provided between the first silicon oxide layer 21A and the second silicon oxide layer 21B
  • the second boundary layer 25B is provided between the second silicon oxide layer 21B and the third silicon oxide layer 21C
  • the boundary layer 25C is provided between the third silicon oxide layer 21C and the fourth silicon oxide layer 21D.
  • the laminate may include the boundary layer 25 between each of the plurality of silicon oxide layers 21.
  • the boundary layer 25 is for improving the adhesion between the silicon oxide layers 21, and at least one of the first boundary layer 25A to the third boundary layer 25C can be omitted. Therefore, each of the second silicon oxide layer 21B to the fourth silicon oxide layer 21D is directly disposed on the first silicon oxide layer 21A to the third silicon oxide layer 21C when the boundary layer 25 is not provided. Is provided on the first silicon oxide layer 21A to the third silicon oxide layer 21C via the boundary layer 25.
  • the first silicon oxide layer 21A to the fourth silicon oxide layer 21D are each formed at a constant density in the thickness direction. Density is the mass per unit volume. In this example, the density is measured by an X-ray reflectometry using an X-ray diffractometer ATX-E for thin film structure evaluation manufactured by Rigaku Corporation.
  • the second silicon oxide layer 21B has a higher density and a smaller thickness than the first silicon oxide layer 21A provided on the film surface 13a of the resin film 13.
  • the thickness T21B of the second silicon oxide layer 21B is made larger, for example, the same as the thickness T21A of the first silicon oxide layer 21A. It may be.
  • the thickness T21B is made thinner than the thickness T21A, and the second silicon oxide layer 21B has a density higher than that of the first silicon oxide layer 21A, thereby improving the scratch resistance, and will be described later.
  • scratch resistance and production efficiency are compatible by setting the thickness and density as described above.
  • the third silicon oxide layer 21C has a higher density than the second silicon oxide layer 21B and a thickness T21C smaller than the thickness T21B.
  • the fourth silicon oxide layer 21D has a higher density than the third silicon oxide layer 21C and a thickness T21D smaller than the thickness T21C. In this way, by forming the silicon oxide layer 21 with a higher density and a smaller thickness as the distance from the resin film 13 increases, the laminate 10 has improved scratch resistance and excellent production efficiency.
  • the first silicon oxide layer 21A preferably has a density in the range of 1.7 g / cm 3 to 2.3 g / cm 3 and a thickness T21A of at least 300 nm.
  • the thickness T21A is 300 nm or more, the scratch resistance is reliably improved while maintaining the production efficiency as compared with the case where the thickness T21A is less than 300 nm. Further, since the density is 1.7 g / cm 3 or more, even if the thickness T21A is as thin as 300 nm, for example, scratch resistance can be reliably obtained.
  • the density of the first silicon oxide layer 21A is more preferably within a range of 1.7 g / cm 3 or more and 2.3 g / cm 3 or less, and within a range of 1.9 g / cm 3 or more and 2.1 g / cm 3 or less. More preferably.
  • the thickness T21A is more preferably in the range of 300 nm to 2000 nm, and still more preferably in the range of 400 nm to 800 nm.
  • the silicon oxide layer 21 (the fourth silicon oxide layer 21D in this example) constituting the film surface (hereinafter referred to as the first film surface) 14a opposite to the resin film 13 side of the silicon oxide film 14 has a density of 2.6 g. / Cm 3 or more and 2.8 g / cm 3 or less, and even if the thickness is large, it is preferably 500 nm.
  • the thickness T24D of the fourth silicon oxide layer 21D By suppressing the thickness T24D of the fourth silicon oxide layer 21D to 500 nm or less as described above, it is possible to efficiently form a layer by using plasma generation under atmospheric pressure as will be described later, thereby improving the production efficiency. Is expensive.
  • the scratch resistance can be surely obtained even when the thickness T21D is as thin as 500 nm, for example, compared to the case where the density is less than 2.6 g / cm 3 .
  • the density is 2.8 g / cm 3 or less
  • the silicon oxide layer 21 (in this example, the first silicon oxide layer 21A and the second silicon oxide layer 21B in this example) is compared with a case where the density is higher than 2.8 g / cm 3.
  • the third silicon oxide layer 21 ⁇ / b> C) are more maintained, and peeling from the other silicon oxide layers 21 is more reliably prevented.
  • the film surface of the silicon oxide film 14 on the resin film 13 side (hereinafter referred to as the second film surface) is denoted by reference numeral 14b.
  • the thickness of the silicon oxide layer 21 forming the first film surface 14a is more preferably in the range of 200 nm to 500 nm.
  • Each of the first boundary layer 25A to the third boundary layer 25C is made of silicon oxide.
  • the first boundary layer 25A between the first silicon oxide layer 21A and the second silicon oxide layer 21B has a thickness T25A smaller than the thickness T21A and the thickness T21B, and a density larger than the density of the first silicon oxide layer 21A. And it is preferable to be in the range of 95% or more and 105% or less of the density of the second silicon oxide layer 21B. Thereby, the adhesive force of 21 A of 1st silicon oxide layers and the 2nd silicon oxide layer 21B improves more.
  • the second boundary layer 25B between the second silicon oxide layer 21B and the third silicon oxide layer 21C has a thickness T25B smaller than the thickness T21B and the thickness T21C, and a density higher than that of the second silicon oxide layer 21B. It is large and preferably in the range of 95% to 105% of the density of the third silicon oxide layer 21C.
  • the thickness T25C is smaller than the thickness T21C and the thickness T21D, the density is larger than the density of the third silicon oxide layer 21C, and 95% or more and 105% or less of the density of the fourth silicon oxide layer 21D. It is preferable to be within the range.
  • the boundary layer 25 located between the two silicon oxide layers 21 has a thickness smaller than each thickness of the silicon oxide layer 21 located on both sides of the boundary layer 25 and has a density on the resin film 13 side. It is preferably larger than one silicon oxide layer 21 and in the range of 95% or more and 105% or less of the density of the other silicon oxide layer 21 on the side opposite to the resin film 13 side. This is because the adhesion between one silicon oxide layer 21 and the other silicon oxide layer 21 is further improved.
  • the thickness T25B is preferably smaller than the thickness T25B.
  • the thickness T25C is preferably smaller than the thickness T25B.
  • the first boundary layer 25A having the largest thickness among the boundary layers 25 has a thickness T25A that is smaller than the thickness of the silicon oxide layer 21 (the fourth silicon oxide layer 21D in this example) having the smallest thickness among the silicon oxide layers 21. It is preferable to form a small layer. In this way, the very thin boundary layer 25 can be efficiently formed by surface treatment using plasma, which will be described later.
  • the density of the first boundary layer 25A may be constant from the first silicon oxide layer 21A side to the second silicon oxide layer 21B side, or may increase gradually. In this example, as shown in FIG. 3, it gradually increases gradually from the first silicon oxide layer 21A side to the second silicon oxide layer 21B side, whereby the first silicon oxide layer 21A and the second oxide layer are increased. The adhesion with the silicon layer 21B is further improved.
  • the density of the second boundary layer 25B may be constant from the second silicon oxide layer 21B side to the third silicon oxide layer 21C side or may gradually increase, as shown in FIG. In addition, it is preferable that the number gradually increases continuously.
  • the density of the third boundary layer 25C may be constant from the third silicon oxide layer 21C side to the fourth silicon oxide layer 21D side, or may gradually increase, but continuously increase gradually. Is preferable. This is because the adhesion between the second silicon oxide layer 21B and the third silicon oxide layer 21C and the adhesion between the third silicon oxide layer 21C and the fourth silicon oxide layer 21D are further improved.
  • the laminated body 10 has the above-described configuration of the silicon oxide film 14, and thus the fourth silicon oxide layer 21D that forms the first surface 10a that is the outermost surface among the first silicon oxide layer 21A to the fourth silicon oxide layer 21D. Has the smallest thickness and the largest density. Thereby, the laminated body 10 exhibits excellent scratch resistance while suppressing the thickness of the silicon oxide film 14.
  • the boundary (interface) between the silicon oxide layer 21 and the boundary layer 25 may not be visible.
  • the boundary is often not visible.
  • the density is obtained in the thickness direction, and density profile data (graph or the like) in the thickness direction as shown in FIG. 3 is created, and the density is constant in the thickness direction.
  • a certain region may be regarded as the silicon oxide layer 21, and a region where the density is changed may be regarded as the boundary layer 25. That is, the boundary between layers is a conceptual boundary based on the density profile in this way when it cannot be visually recognized.
  • the laminate 10 is manufactured, for example, by the following manufacturing method.
  • the laminate manufacturing method includes a base layer forming step, a resin film forming step, and a silicon oxide film forming step in this order.
  • the foundation layer forming step the foundation layer 12 (see FIG. 1) is formed on the plastic substrate 11.
  • the base layer forming step is omitted.
  • a resin film 13 is formed on the base layer 12.
  • the resin film forming step forms the resin film 13 on the plastic substrate 11 via the base layer 12, and when the base layer 12 is not provided, A resin film 13 is formed directly on the plastic substrate 11.
  • a silicon oxide film 14 is formed on the film surface 13a (see FIG. 1) of the resin film 13.
  • the coating unit 30 shown in FIG. 4 is an example for the base layer forming step and the resin film forming step.
  • a base layer 12 and a resin film 13 are sequentially formed on a long plastic substrate 11.
  • the base layer 12 and the resin film 13 may be sequentially formed on the sheet-like plastic substrate 11.
  • the coating unit 30 includes a delivery device 31, a winding device 32, a first coating die 35, a drying unit 36, a second coating die 37, and a light source 38.
  • the delivery device 31 is for delivering the plastic substrate 11 in the longitudinal direction.
  • a base material roll 41 in which the plastic base material 11 is wound around the winding core 40 a is set in the delivery device 31.
  • the delivery device 31 sends out the plastic substrate 11 from the substrate roll 41 by rotating the winding core 40 a of the set substrate roll 41.
  • the winding device 32 is for winding the plastic substrate 11 on which the base layer 12 and the resin film 13 are formed in a roll shape.
  • a winding core 40b is set in the winding device 32, and the guided plastic substrate 11 is wound around the winding core 40b by rotating the winding core 40b.
  • the plastic substrate 11 is conveyed in the longitudinal direction by the delivery device 31 and the winding device 32.
  • a plurality of rollers 44 that support the plastic substrate 11 are arranged in the conveyance path. At least one of these rollers 44 may be a driving roller that rotates in the circumferential direction, and the plastic substrate 11 may be conveyed by the driving roller.
  • a first coating die 35, a drying unit 36, a second coating die 37, and a light source 38 are arranged in order from the upstream side of the plastic substrate 11 in the transport direction Dc.
  • the first coating die 35 continuously feeds a coating liquid (hereinafter referred to as a base layer coating liquid) 45 for forming the base layer 12 from an outlet 35a toward the transport path.
  • the coating layer 12A is formed by continuously applying the base layer coating solution 45 on the plastic substrate 11 being conveyed.
  • the underlayer coating solution 45 is a solution in which the underlayer material forming the underlayer 12 is dissolved in a solvent.
  • the underlayer material is not particularly limited, and for example, the above-described urethane resin, acrylic resin, epoxy resin, polyester resin, melanin resin, amino resin and the like constituting the underlayer 12 are used, and in this example, the acrylic resin.
  • As the solvent for example, toluene, xylene, butanol or the like is used alone or in combination. In this example, a mixture of toluene and butanol is used.
  • the concentration of the underlayer material in the underlayer coating liquid 45 is not particularly limited, and is, for example, in the range of 30% to 70%, and is 45% in this example.
  • the concentration (unit:%) of the underlayer material in the underlayer coating solution 45 is determined by ⁇ M1 / (M1 + M2) ⁇ ⁇ 100, where M1 is the mass of the underlayer material and M2 is the solvent mass. Yes.
  • the drying unit 36 is for forming the base layer 12 by drying the coating film 12A.
  • the drying unit 36 includes a chamber (not shown) to which a dried gas (for example, air) is supplied. The temperature of the supplied gas is adjusted, and the coating film 12 ⁇ / b> A on the plastic substrate 11 is dried by passing through the chamber to become the underlayer 12.
  • a dried gas for example, air
  • the second coating die 37 continuously feeds a coating liquid (hereinafter referred to as a resin film coating liquid) 46 for forming the resin film 13 from an outlet 37a toward the conveyance path.
  • the coating film 13A is formed by continuously dispensing the resin film coating solution 46 on the underlying layer 12 formed on the plastic substrate 11 being conveyed.
  • the resin film coating liquid 46 is a liquid containing a curable compound.
  • a liquid in which the curable compound is dissolved in a solvent is used as the resin film coating liquid 46.
  • a solvent may not be used.
  • the curable compound is a photocurable compound when the resin film 13 is formed of a photocurable resin, and is a thermosetting compound when the resin film 13 is formed of a thermosetting resin.
  • the photocurable compound is not particularly limited, and for example, monomers and oligomers of acrylic resin and organosiloxane resin are used. In this example, it is an acrylic resin monomer.
  • a solvent for the photocurable compound for example, toluene, xylene, butanol or the like is used.
  • a thermosetting compound is not specifically limited, For example, each monomer of organosiloxane resin, melanin resin, urethane resin, alkyd resin, etc. are used.
  • the concentration of the curable compound is not particularly limited.
  • the light source 38 is for forming the resin film 13 by curing the curable compound of the coating film 13A. Since the acrylic resin monomer used in this example is a compound that is cured by ultraviolet rays, a light source 38 that emits ultraviolet rays is used. The coating 13A passes through the light source 38 and is irradiated with ultraviolet rays, whereby the photocurable compound is cured and the resin film 13 is formed (resin film forming step). When the resin film coating solution 46 contains a solvent, a drying unit (not shown) similar to the drying unit 36 is arranged on the upstream side and / or downstream side of the light source 38, and the solvent is removed by this drying unit. The coating film 13A may be evaporated.
  • the plastic substrate 11 on which the resin film 13 is formed is guided to the winding device 32 and wound around the winding core 40b in a roll shape.
  • the formed roll is referred to as an intermediate roll.
  • the intermediate body 47 which is a laminate of the plastic substrate 11, the base layer 12, and the resin film 13, wound around the intermediate roll, is cut into a sheet by a cutting device (not shown), and is used as a silicon oxide film forming facility. Supplied.
  • the winding device 32 may be replaced with a cutting device, and the intermediate body 47 may be cut into a sheet shape without passing through the intermediate body roll.
  • the formation order of the silicon oxide film 14 will be described with reference to FIG. First, as shown in FIG. 5A, the first silicon oxide layer 21A is formed on the film surface 13a of the resin film 13, and then, as shown in FIG. 5B, the first silicon oxide layer 21A. A partial region opposite to the resin film 13 in the thickness direction is formed as the first boundary layer 25A.
  • the first boundary layer 25A is a layer generated from the first silicon oxide layer 21A, and the portion that has not become the first boundary layer 25A becomes the first silicon oxide layer 21A of the stacked body 10.
  • a second silicon oxide layer 21B is formed on the surface of the first boundary layer 25A, and then, as shown in FIG. A partial region opposite to the resin film 13 in the thickness direction of the layer 21B is formed as the second boundary layer 25B.
  • the second boundary layer 25B is also a layer generated from the second silicon oxide layer 21B in the same manner as the first boundary layer 25A, and the portion that does not become the second boundary layer 25B is the second boundary layer 25B.
  • the silicon dioxide layer 21B is formed.
  • the third silicon oxide layer 21 ⁇ / b> C and the third boundary layer 25 ⁇ / b> C are similarly formed sequentially (see FIG. 5E and FIG. 5F).
  • the 4th silicon oxide layer 21D is formed in the surface of the formed 3rd boundary layer 25C, and the laminated body 10 is obtained (refer (G) of FIG. 5).
  • the silicon oxide film forming unit 50 shown in FIG. 6 is an example of equipment for forming the silicon oxide film 14, whereby the laminate 10 is obtained.
  • the silicon oxide film forming unit 50 includes a transport unit 51 that transports the placed sheet-like intermediate 47, a first layer forming device 53A to a fourth layer forming device 53D, and a first surface treatment device 54A to 54A.
  • a third surface treatment apparatus 54 ⁇ / b> C, a supply unit 57, and a carry-out unit 58 are provided.
  • the first layer forming device 53A to the fourth layer forming device 53D are configured in the same manner.
  • the first layer forming device 53A to the fourth layer forming device 53D are not distinguished from each other, Will be referred to as a layer forming device 53.
  • the first surface treatment device 54A to the third surface treatment device 54C are configured in the same manner, and in the following description, when the first surface treatment device 54A to the third surface treatment device 54C are not distinguished, the surface treatment is performed.
  • the device 54 is described. Since the intermediate body 47 includes the plastic base material 11, transporting the intermediate body 47 is the same as transporting the plastic base material 11, and the transport direction and transport path of the intermediate body 47. Is the same as the transport direction Dc and the transport path of the plastic substrate 11. Therefore, in the following description, these are collectively referred to as a conveyance direction Dc and a conveyance path.
  • the first layer forming device 53A, the second layer forming device 53B, the third layer forming device 53C, and the fourth layer forming device 53D are provided in this order from the upstream side in the transport direction Dc. .
  • the first surface treatment device 54A, the second surface treatment device 54B, and the third surface treatment device 54C are provided between the first layer formation device 53A and the second layer formation device 53B, and the second layer. It is provided between the forming device 53B and the third layer forming device 53C, and between the third layer forming device 53C and the fourth layer forming device 54D.
  • the transport unit 51 is for transporting the intermediate body 47, and includes a transport belt 51a formed in an annular shape, and a first roller 51b and a second roller 51c that move the transport belt 51a in the longitudinal direction.
  • the conveyor belt 51a is stretched around each peripheral surface of the first roller 51b and the second roller 51c.
  • the first roller 51b and the second roller 51c have a drive unit (not shown) such as a motor, and rotate in the circumferential direction under the control of the drive unit. As a result, the transport belt 51a moves and the placed intermediate body 47 is transported.
  • the supply unit 57 supplies the sheet-like intermediate body 47 to the conveyor belt 51a.
  • the supply unit 57 places, for example, the intermediate bodies 47 one by one on the belt surface of the conveyance belt 51a in the vicinity of the first roller 51b.
  • the loaded intermediate body 47 is moved to the second roller by the moving conveyance belt 51a. It is conveyed toward 50c.
  • the intermediate body 47 is placed on the transport belt 51a with the plastic base material 11 facing down and the resin film 13 facing up. Thereby, the intermediate body 47 is provided with the first layer forming device 53A, the first surface processing device 54A, the second layer forming device 53B, the second surface processing device 54B, and the third layer forming device provided in the conveyance path.
  • each process is performed by passing the first layer forming device 53A to the fourth layer forming device 53D and the first surface processing device 54A to the third surface processing device 54C arranged in the conveyance path. Production efficiency is good.
  • the distance between the devices of the layer forming device 53D is not particularly limited. These distances are preferably as short as possible from the viewpoint of production efficiency. In this example, it is 50 cm, for example.
  • the intermediate body 47 to be supplied next is placed in a state where the front end is in contact with the rear end in the transport direction Dc of the intermediate body 47 placed first, thereby improving the production efficiency of the laminated body 10. It is even higher.
  • the intermediate body 47 may be placed in a state of being separated from each other in the transport direction Dc.
  • a plurality of intermediate bodies 47 may be placed in a state where a plurality of intermediate bodies 47 are also arranged in the depth direction of the paper surface in FIG.
  • the unloading unit 58 unloads the obtained laminated body 10 from the conveyance belt 51a to the transfer destination, for example, a storage container in the vicinity of the second roller 51c.
  • a layer forming apparatus 53 is a so-called atmospheric pressure plasma processing apparatus that generates plasma under atmospheric pressure.
  • the layer forming device 53 generates plasma by ionizing the supplied gaseous organosilicon compound (hereinafter referred to as organosilicon compound gas) under atmospheric pressure, thereby forming the silicon oxide layer 21. Since the layer forming apparatus 53 is an apparatus that generates plasma under atmospheric pressure, unlike the so-called reduced pressure (vacuum) plasma processing apparatus that generates plasma under reduced pressure, time for lowering pressure is not required. As a result, the silicon oxide layer 21 is efficiently formed.
  • a plurality of silicon oxide layers 21 are efficiently formed sequentially by arranging a plurality of plastic base materials 11 along the transport path of the plastic base material 11, transporting the plastic base material 11, and passing through the respective layer forming devices 53. . Therefore, the laminate 10 is efficiently manufactured.
  • the layer forming apparatus 53 includes a plasma generating unit 61, an AC power source (hereinafter simply referred to as “power source”) 62, a plasma gas supply unit 63, and a material gas supply unit 64.
  • the plasma gas supply unit 63 is connected to the plasma generation unit 61 and supplies a gas that generates plasma (hereinafter referred to as plasma gas) to the plasma generation unit 61.
  • plasma gas for example, nitrogen (N 2 ), rare gas (helium (He), argon (Ar)) or the like is preferable, and nitrogen is used in this example.
  • a valve 63 a is provided in a pipe connecting the plasma gas supply unit 63 and the plasma generation unit 61. By adjusting the opening of the valve 63a, the flow rate (volume per unit time) of the plasma gas supplied to the plasma generator 61 is adjusted.
  • the material gas supply unit 64 is connected to the plasma generation unit 61 and supplies an organosilicon compound gas, which is a material of the silicon oxide layer 21, to the plasma generation unit 61.
  • organosilicon compound for example, TEOS (Tetraethyl orthosilicate), TMOS (Tetramethyl orthosilicate), HMDSO (hexamethyldisiloxane), and the like are preferable. In this example, TEOS is used.
  • a valve that connects the material gas supply unit 64 and the plasma generation unit 61 is provided with a valve 64a. By adjusting the opening degree of the valve 64a, the flow rate (volume per unit time) of the plasma gas supplied to the plasma generator 61 is adjusted.
  • a gas different from these may be supplied to the plasma generator 61 as an auxiliary gas for assisting the generation of plasma from the organosilicon compound gas, for example.
  • auxiliary gas for example, He, Ar and the like are preferable.
  • the plasma generation unit 61 includes a first electrode 67, a second electrode 68, and a chamber 69 that houses the first electrode 67 and the second electrode 68.
  • the plasma generator 61 generates plasma when an AC voltage is applied between the first electrode 67 and the second electrode 68 under atmospheric pressure.
  • the first electrode 67 and the second electrode 68 are formed such that opposing surfaces 67a and 68a that face each other in the vertical direction are formed flat, and the opposing surface 67a and the opposing surface 68a are substantially parallel to each other.
  • the lower electrode is the first electrode 67 and the upper electrode is the second electrode 68.
  • the plasma generator 61 forms a discharge space DS for generating plasma between the first electrode 67 and the second electrode 68.
  • a plasma gas supply unit 63 and a material gas supply unit 64 are connected to the chamber 69, and the supplied plasma gas and organic silicon compound gas or other gas are introduced into the discharge space DS.
  • the plasma generator 61 generates plasma by ionizing the gas introduced into the discharge space DS.
  • the gas introduction ports 69a and 69b connected to the plasma gas supply unit 63 and the material gas supply unit 64 of the chamber 69 are depicted as being formed on the top plate, but the gas introduction ports 69a and 69b are illustrated.
  • the formation position is not limited to this, and may be, for example, a side wall.
  • the first electrode 67 and the second electrode 68 are preferably provided with a dielectric (not shown) formed in a film shape on each of the opposing surface 67a and the opposing surface 68a, and is also provided in this example.
  • These dielectrics form an electric field (so-called reverse electric field) polarized in the opposite direction to the electric field polarization caused by the plasma generated in the discharge space.
  • the dielectric suppresses so-called abnormal discharge such as generation of local discharge current when plasma is generated.
  • Openings 69c and 69d through which the conveyor belt 51a passes are formed in the side wall of the chamber 69.
  • the conveyor belt 51a introduced from one opening 69c is moved in contact with the facing surface 67a of the first electrode 67. In this way, the transport belt 51a is directed to the other opening 69d while being in sliding contact with the first electrode 67.
  • the plasma generator 61 While passing through the first electrode 67, the plasma generator 61 generates plasma in the discharge space DS, thereby forming the silicon oxide layer 21 on the surface exposed to the discharge space DS side of the intermediate 47 using the plasma.
  • the plasma generator 61 may be provided with a roller 72 that supports the conveyor belt 51a from below.
  • the conveyor belt 51a of this example is made of a dielectric material, and this conveyor belt 51a also contributes to the suppression of abnormal discharge.
  • the conveyance belt 51a is formed of a material that is a dielectric, it is not necessary to provide a dielectric on the facing surface 67a of the first electrode 67 with which the conveyance belt 51a contacts.
  • the power source 62 generates an AC voltage having a specific frequency and a specific amplitude and supplies the AC voltage to the plasma generator 61.
  • the power source 62 includes a power source body that generates a predetermined voltage, a transformer unit (not shown) that boosts or lowers the voltage generated by the power source body to a specific voltage, and / or a matching coil (not shown) for matching impedance. Not included).
  • the power source 62 generates an AC voltage having a sinusoidal waveform, for example.
  • the amplitude V1 of the AC voltage is, for example, about 2000 volts ([V]).
  • the frequency of the AC voltage generated by the power supply 62 is preferably 1 MHz at the maximum.
  • the frequency of the AC voltage is a so-called low frequency of 1 MHz or less
  • the plasma generator 61 is not only a gas composed of molecules that move easily such as a rare gas, but is also less likely to move than a rare gas such as nitrogen, oxygen, Plasma is generated more reliably by ionizing molecular gas such as TEOS.
  • the frequency of the AC voltage is more preferably in the range of 1 kHz to 1 MHz, further preferably in the range of 20 KHz to 500 KHz, and particularly preferably in the range of 200 KHz to 400 KHz.
  • the input power (input power) at the plasma generation unit 61 of the layer forming apparatus 53 is preferably in the range of 1500 W to 2000 W.
  • the input powers in the first layer forming apparatus 53A to the fourth layer forming apparatus 53D are preferably close to each other, and more preferably equal. Thereby, since the variable range of the input power is limited, the apparatus cost can be suppressed and the condition setting becomes easier.
  • the LC circuit 75 is a so-called LC parallel circuit in which an inductor 76 having an inductance “L” and a capacitor (capacitor) 77 having a capacitance (capacitance) “C” are connected in parallel.
  • the power source 62 and the plasma generator 61 are connected in parallel.
  • a frequency-dependent impedance circuit or element may be used instead of the LC circuit 75.
  • the first surface treatment device 54A to the third surface treatment device 54C are devices for modifying the exposed surface of the silicon oxide layer 21 by generating plasma. Since the first surface treatment apparatus 54A to the third surface treatment apparatus 54C have the same configuration as the layer formation apparatus 53 except that they are smaller than the layer formation apparatus 53 in this example, description thereof will be omitted.
  • the surface treatment device 54 may be the same size as the layer forming device 53 or larger than the layer forming device 53.
  • the input power (input power) at the plasma generation unit 61 of the surface treatment apparatus 54 is preferably in the range of 1000 W to 1500 W, and is preferably lower than the input power in the surface treatment apparatus 53. Thereby, the surface treatment is performed without damaging the silicon oxide layer formed in the previous step, and a boundary layer is generated in the silicon oxide layer.
  • the plasma gas is supplied from the plasma gas supply unit 63 to the chamber 69 of the first layer forming apparatus 53A, and the organosilicon compound gas is supplied from the material gas supply unit 64 at a set flow rate.
  • the flow rate of the plasma gas is preferably in the range of 10 L / min (liter / min) to 30 L / min.
  • the flow rate of the organosilicon compound is preferably in the range of 3 g / min to 30 g / min.
  • the above-mentioned auxiliary gas may be supplied to the chamber 69.
  • Ar is also used as the auxiliary gas and supplied to the chamber 69.
  • An AC voltage is applied between the first electrode 67 and the second electrode 68 by the power source 62, whereby plasma is generated from the plasma gas and the organosilicon compound gas, and a discharge space DS is formed.
  • the intermediate body 47 placed on the transport belt 51 a with the plastic base material 11 facing downward is transported in a state of being in contact with the facing surface 67 a of the first electrode 67.
  • the film surface 13a of the resin film 13 exposed to the discharge space DS is covered with silicon oxide generated by replacing the structural portion containing carbon of the organosilicon compound gas with hydrogen, and the film surface 13a is covered with the first surface.
  • a silicon oxide layer 21A is formed (first silicon oxide layer forming step).
  • the plastic substrate 11 on which the first silicon oxide layer 21A is formed is guided to the first surface treatment apparatus 54A.
  • Plasma gas is supplied from the plasma gas supply unit 63 to the first surface treatment apparatus 54A.
  • the supply flow rate is preferably the same as the plasma gas flow rate in the first layer forming apparatus 53A, and this is the case in this example. Thereby, even if the 1st layer forming apparatus 53A and the 1st surface treatment apparatus 54A are apparatuses of the same specification, each processing can be performed.
  • the valve 64a is closed and the flow rate of the organosilicon compound gas from the material gas supply unit 64 is set to 0 (zero), which is also the case in this example. . That is, the organosilicon compound gas is not supplied. Thereby, the dehydration condensation reaction of silicon oxide occurs in a region from the surface of the first silicon oxide layer 21A to a very small depth, and this region becomes the first boundary layer 25A. In this manner, the first boundary layer 25A is generated on the exposed surface side of the first silicon oxide layer 21A (first boundary layer generation step).
  • the flow rate of the organosilicon compound gas is not limited to 0 (zero), and the dehydration condensation reaction occurs in the first silicon oxide layer 21A even at a flow rate greater than 0 g / min and less than or equal to 0.9 g / min. That's fine.
  • the flow rate of the organosilicon compound gas is preferably 0 g / min or more and 0.9 g / min or less.
  • the aforementioned auxiliary gas may or may not be supplied to the chamber 69. In this example, auxiliary gas is supplied, and Ar is used as the auxiliary gas.
  • the modification action of the first silicon oxide layer 21A by plasma tends to become weaker as the distance from the exposed surface of the first silicon oxide layer 21A in the thickness direction increases. Therefore, the density of the exposed surface of the first silicon oxide layer 21A is the largest, and the density gradually decreases as the distance from the surface increases in the thickness direction. As a result, the first boundary layer 25A is obtained.
  • the same conditions and actions can be obtained in the second surface treatment apparatus 54B and the third surface treatment apparatus 54C.
  • the plastic substrate 11 on which the first silicon oxide layer 21A and the first boundary layer 25A are formed is guided to the second layer forming apparatus 53B.
  • a plasma gas is supplied from the plasma gas supply unit 63 and an organosilicon compound gas is supplied from the material gas supply unit 64 to the second layer forming apparatus 53B.
  • the plasma gas flow rate for the second layer forming apparatus 53B is equal to the plasma gas flow rate for the first layer forming apparatus 53A. Therefore, even if the 1st layer forming apparatus 53A and the 2nd layer forming apparatus 53B are apparatuses of the same specification, each process can be performed.
  • the flow rate of the organosilicon compound gas is smaller than the flow rate of the supply to the first layer forming apparatus 53A.
  • the second silicon oxide layer 21B having a thickness smaller than that of the first silicon oxide layer 21A is formed (second silicon oxide layer forming step).
  • the flow rate of the organosilicon compound gas which is one of the film forming conditions, is set to the first layer forming apparatus 53A and the second silicon oxide layer 21B. It is only necessary to change the layer forming device 53B. For this reason, instability of discharge can be suppressed, heat damage to the plastic substrate 11 and the like can be prevented, and silicon oxide can be prevented rather than continuously changing the film forming conditions with one atmospheric pressure plasma processing apparatus.
  • the property of the layer 21 is stabilized. Since destabilization of discharge is suppressed, the occurrence of abnormal discharge is also suppressed, and the formed silicon oxide layer 21 is not damaged.
  • the silicon oxide layer 21 can be sequentially laminated only by sequentially passing the first layer forming device 53A and the second layer forming device 53B arranged in the conveyance path, the thickness is sufficient to improve the scratch resistance. A silicon oxide film 14 is formed. Furthermore, since the second silicon oxide layer 21B is formed on the surface of the first boundary layer 25A generated by dehydration condensation, sufficient adhesion of the second silicon oxide layer 21B can be obtained.
  • the plastic substrate 11 on which the second silicon oxide layer 21B is formed is guided to the second surface treatment apparatus 54B.
  • the second boundary layer generation step is performed in the same manner as the first boundary layer generation step in the first surface treatment device 54A, and the second boundary layer 25B is generated in the second silicon oxide layer 21B. To do.
  • the plastic substrate 11 on which the second boundary layer 25B is formed is guided to the third layer forming apparatus 53C.
  • the third layer forming device 53C is supplied with a plasma gas and an organosilicon compound gas.
  • the plasma gas flow rate for the third layer forming apparatus 53C is preferably equal to the plasma gas flow rate for the second layer forming apparatus 53B.
  • the flow rate of the organosilicon compound gas is smaller than the flow rate of supply to the second layer forming apparatus 53B.
  • the third silicon oxide layer 21C having a thickness smaller than that of the second silicon oxide layer 21B is formed (third silicon oxide layer forming step).
  • the plastic substrate 11 on which the third silicon oxide layer 21C is formed is guided to the third surface treatment apparatus 54C.
  • the third boundary layer generation process is performed similarly to the first boundary layer generation process in the first surface treatment apparatus 54A, and the third boundary layer 25C is generated in the third silicon oxide layer 21C. To do.
  • the plastic substrate 11 on which the third boundary layer 25C is formed is guided to the fourth layer forming device 53D, and similarly, plasma gas and organosilicon compound gas are supplied.
  • the flow rate of the plasma gas for the fourth layer forming device 53D is preferably equal to the flow rate of the plasma gas for the third layer forming device 53C, but the flow rate of the organosilicon compound gas is supplied to the third layer forming device 53C. Is smaller than the flow rate.
  • the fourth silicon oxide layer 21D having a thickness smaller than that of the third silicon oxide layer 21C is formed (fourth silicon oxide layer forming step), and the stacked body 10 is obtained.
  • the above manufacturing method since the laminate 10 including the first boundary layer 25A to the third boundary layer 25C is manufactured, the above manufacturing method includes the first boundary layer generation step to the third boundary layer generation step. However, when the boundary layer 25 is not provided, the above boundary layer generation step is omitted. Further, when the silicon oxide layer is formed a plurality of times under the same conditions without forming the boundary layer 25, the boundaries are not visible and the densities are the same, so they are formed integrally. . When integrally formed as such, it is regarded as one silicon oxide layer.
  • the first silicon oxide layer is formed by the forming device 53A and the second layer forming device 53B
  • the second silicon oxide layer is formed by the third layer forming device 53C
  • the third silicon oxide is formed by the fourth layer forming device 53D.
  • Each layer is formed.
  • Example 1 to [Example 6]
  • the laminate 10 was manufactured using the coating unit 30 and the silicon oxide film forming unit 50, and Examples 1 to 6 were obtained.
  • the conditions for forming each layer in the silicon oxide film forming unit 50 are shown in Table 1.
  • Table 1 Enter “-” in the “Input power” column.
  • Table 2 shows the obtained laminate 10.
  • the silicon oxide layer is integrated. Since it is formed, the silicon oxide layer is regarded as one.
  • the first layer formation apparatus 53A to the third layer formation apparatus 53C can be used as one.
  • the silicon oxide layer is formed as the first silicon oxide layer.
  • Pencil hardness It evaluated according to the pencil hardness test prescribed
  • Example 4 The adhesion was evaluated based on the following evaluation criteria, with the evaluation result of Example 4 where there was a grid in which a peeled area was observed as a reference level.
  • Table 2 “Criteria” is described in Example 4. A: There was no peeled-off mesh at all and it was very good compared with Example 4. B: Although there was a grid in which a peeled area was observed, it was clearly better than Example 4. C: The same level as in Example 4. D: It was worse than Example 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

耐傷性に優れ、生産効率がよい積層体及びその製造方法を提供する。 積層体は、プラスチック基材(11)と、樹脂膜(13)と、第1酸化ケイ素層(21A)と、第2酸化ケイ素層(21B)とを備える。樹脂膜(13)は、プラスチック基材(11)上に設けられている。樹脂膜(13)は硬化樹脂で形成されている。第1酸化ケイ素層(21A)は、樹脂膜(13)のプラスチック基材(11)側とは反対側の膜面(13a)に設けられる。第2酸化ケイ素層(21B)は、第1酸化ケイ素層(21A)上に設けられる。第2酸化ケイ素層(21B)は、第1酸化ケイ素層(21A)よりも密度が大きく、かつ、厚みが小さい。

Description

積層体及びその製造方法
 本発明は、積層体及びその製造方法に関する。
 ハードコート層が形成された耐傷性の積層体が知られている。例えば特許文献1には、プラスチック基材と、プラスチック基材の表面に設けられたオルガノシロキサン系樹脂熱硬化膜と、オルガノシロキサン系樹脂熱硬化膜のプラスチック基材側とは反対側の膜面に設けられたプラズマCVD(chemical vapor deposition)膜とを備える積層体が記載されている。プラズマCVD膜は、減圧下でプラズマ重合させる装置を用い、有機ケイ素化合物の蒸気と酸素ガスとの励起により形成される。プラズマCVD膜は、有機ケイ素化合物の蒸気と酸素ガスとの供給速度を、成膜時間の経過に伴って連続的に漸増させることにより形成している。
 また、特許文献2には、プラスチック基材と、光硬化樹脂で形成されている樹脂膜と、酸化ケイ素膜とを備える積層体が記載されている。酸化ケイ素膜は、単位酸化ケイ素膜が2つ以上積層された構造をもつ。単位酸化ケイ素膜は、密度が相対的に高い酸化ケイ素層である高密度層と低い酸化ケイ素層である低密度層とで構成されており、高密度層が樹脂膜側に配されている。低密度層は、厚み方向において高密度層から離れるに従い密度が連続的に漸減している。特許文献2では、樹脂膜が表面に形成されたプラスチック基材を搬送しながら、樹脂膜のプラスチック基材側とは反対側に膜面に、酸化ケイ素膜を形成している。気体の有機ケイ素化合物が供給される大気圧プラズマ処理装置により酸化ケイ素層である高密度層を形成した後に、放電プラズマ域を出てから、水蒸気を含む雰囲気下で冷却することにより、高密度層の露呈した表面側の一部が低密度層として生成され、このようにして単位酸化ケイ素膜のそれぞれが形成される。
特開2011-016257号公報 特開2014-065281号公報
 特許文献1の積層体は、減圧下でのプラズマ重合であるいわゆる減圧プラズマ処理(真空プラズマ処理)により製造されるから、生産効率に劣り、そのため大量生産が難しい。これに対し、特許文献2で用いている大気圧プラズマ処理は、減圧プラズマ処理に比べて生産効率に優れる。しかしながら特許文献2の積層体は、減圧プラズマ処理で高密度層を形成した後に行う低密度層を生成する工程に時間を要し、さらに、単位酸化ケイ素膜を複数重ねるから低密度層の生成工程を複数回行う必要があるので、生産効率が依然として悪い。
 そこで本発明は、耐傷性をもち、生産効率に優れた積層体及びその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の積層体は、プラスチック基材と、樹脂膜と、第1酸化ケイ素層と、第2酸化ケイ素層とを備える。樹脂膜は、プラスチック基材上に設けられ、硬化樹脂で形成されている。第1酸化ケイ素層は、樹脂膜のプラスチック基材側とは反対側の膜面に設けられている。第2酸化ケイ素層は、第1酸化ケイ素層上に設けられている。第2酸化ケイ素層は、第1酸化ケイ素層よりも密度が大きく、かつ、厚みが小さい。
 第1酸化ケイ素層は、密度が1.7g/cm3以上2.3g/cm3以下の範囲内であり、厚みが少なくとも300nmであることが好ましい。
 第1酸化ケイ素層と第2酸化ケイ素層とを含む少なくとも2層の酸化ケイ素層が厚み方向に重なった酸化ケイ素膜を備えることが好ましい。酸化ケイ素膜の樹脂膜側とは反対側の膜面を成す酸化ケイ素層は、密度が2.6g/cm3以上2.8g/cm3以下の範囲内であり、厚みが大きくても500nmであることが好ましい。
 第1酸化ケイ素層と第2酸化ケイ素層との間に第1境界層を備えることが好ましい。第1境界層は、酸化ケイ素で形成されている。第1境界層は、厚みが第1酸化ケイ素層及び第2酸化ケイ素層よりも小さい。第1境界層は、密度が第1酸化ケイ素層の密度より大きく、かつ、第2酸化ケイ素層の密度の95%以上105%以下の範囲内である。
 第1境界層は、第1酸化ケイ素層側から第2酸化ケイ素層側に向かって密度が漸増していることが好ましい。
 酸化ケイ素膜は、第3酸化ケイ素層と、第2境界層とを備えることが好ましい。第3酸化ケイ素層は、第2酸化ケイ素層上に設けられている。第3酸化ケイ素層は、第2酸化ケイ素層よりも密度が大きく、かつ、厚みが小さい。第2境界層は、第2酸化ケイ素層と第3酸化ケイ素層との間に設けられている。第2境界層は、酸化ケイ素で形成されている。第2境界層は、厚みが第2酸化ケイ素層及び第3酸化ケイ素層よりも小さく、密度が第2酸化ケイ素層の密度より大きく、かつ、第3酸化ケイ素層の密度の95%以上105%以下の範囲内である。
 第2境界層は、第1境界層よりも厚みが小さいことが好ましい。
 本発明の積層体の製造方法は、樹脂膜形成工程と、第1酸化ケイ素層形成工程と、第2酸化ケイ素層形成工程とを有し、硬化樹脂で形成された樹脂膜を有するプラスチック基材を搬送しながら、酸化ケイ素層を形成する。樹脂膜形成工程は、硬化性化合物を含有する塗布液を、プラスチック基材上に塗布し、形成した塗膜を硬化することにより樹脂膜を形成する。第1酸化ケイ素層形成工程は、気体の有機ケイ素化合物が供給され、大気圧下でプラズマを発生させることにより酸化ケイ素層を形成する第1の層形成装置に、樹脂膜が形成されたプラスチック基材を搬送し、樹脂膜の膜面に第1酸化ケイ素層を形成する第1酸化ケイ素層形成工程と。第2酸化ケイ素層形成工程は、プラスチック基材の搬送方向における第1の層形成装置よりも下流に配された第2の層形成装置により、第1酸化ケイ素層上に第2酸化ケイ素層を形成する。有機ケイ素化合物を、第1の層形成装置よりも小さな流量で第2の層形成装置へ供給する。
 第1の層形成装置と第2の層形成装置とは交流電圧を印加する電源を有し、交流電圧の周波数は大きくても1MHzであることが好ましい。
 第1の層形成装置と第2の層形成装置との間に配され、プラズマを発生することにより酸化ケイ素層の表面を改質する表面処理装置に、第1酸化ケイ素層が形成されたプラスチック基材を案内し、表面処理装置に対する有機ケイ素化合物の供給流量を0g/min以上0.9g/min以下にすることにより、第1酸化ケイ素層に、厚みが第1酸化ケイ素層及び第2酸化ケイ素層よりも小さく、密度が第1酸化ケイ素層の密度より大きくかつ第2酸化ケイ素層の密度の95%以上105%以下の範囲内である境界層を生成することが好ましい。
 本発明によれば、耐傷性をもち、生産効率に優れた積層体が得られる。
積層体の層構成の説明図である。 酸化ケイ素膜の層構成の説明図である。 酸化ケイ素膜の密度のグラフである。 樹脂膜形成装置の概略図である。 酸化ケイ素膜の形成方法の説明図である。 酸化ケイ素膜形成ユニットの概略図である。 層形成装置の一部断面概略図である。
 図1に示す積層体10は、本発明の一実施形態である。積層体10は、プラスチック基材11と、下地層12と、樹脂膜13と、酸化ケイ素膜14とが、厚み方向でこの順に重なった複層構造を有する。積層体10は、例えば自動車の窓、眼鏡のレンズなどに組み付けられるハードコート部材(耐傷性部材)として用いることができる。ハードコート部材として用いる場合には、酸化ケイ素膜14を外部側に向け、プラスチック基材11を内部側に向けた状態で、積層体10は他の部材に組み付けられる。
 プラスチック基材11は、後述のように厚みが小さい樹脂膜13及び酸化ケイ素膜14を支持する支持体である。また、プラスチック基材11は、樹脂膜13を塗布により形成する場合の塗膜の支持体でもある。プラスチック基材11の素材は、プラスチック(可塑性素材)であれば特に限定されず、熱可塑性樹脂(ポリマー)などを用いることができる。熱可塑性樹脂としては、例えば、ポリカーボネート(以下、PCと称する)、ポリエステル(例えば、ポリエチレンテレフタレート(PET),ポリエチレンナフタレート(PEN)),ポリメタクリル酸メチル樹脂(PMMA)などの各種プラスチック(樹脂、ポリマー)を用いることができる。PCは、透明性に優れ、ガラスに比べて、軽量かつ耐衝撃性と加工性とに優れていることから、ガラスの代替品として使われることが多い。そのため、本例でも、ガラスの代わりに用いることができる例えば光学用途の積層体とするために、プラスチック基材11にPCを用いている。
 プラスチック基材11の厚みT11は、支持体としての機能を損なわない限り特に限定されず、例えば100μm以上50mm以下の範囲内である。本例では300μmとしている。
 樹脂膜13は、積層体10に衝撃などの外力が加わった場合に緩衝させる、すなわち加わった力を分散等することで和らげるためのものである。樹脂膜13は、プラスチック基材11上に直接(密着した状態に)設けられていてもよいし、本例のようにプラスチック基材11上に下地層12を介して設けられていてもよい。
 樹脂膜13は、硬化樹脂で形成されており、硬化樹脂の他に、例えば、UV(ultraviolet,紫外線)吸収剤及び帯電防止剤などの添加剤を含有していてもよい。硬化樹脂は、光硬化樹脂と熱硬化樹脂とのいずれでもよく、本例では光硬化樹脂としている。光硬化樹脂は、光の照射により硬化する光硬化性化合物に、光を照射して生成する樹脂(ポリマー)である。熱硬化樹脂は、加熱することにより硬化する熱硬化性化合物を、加熱して生成する樹脂(ポリマー)である。樹脂膜13は、硬化樹脂で形成されているから、可塑性樹脂で形成されている場合と比べて、積層体10に衝撃などの外力が加わった場合に緩衝させ、その結果、積層体10の酸化ケイ素膜14側の表面(以下、第1表面と称する)10aの耐傷性を確実にする。
 光硬化樹脂は、特に限定されず、例えば、アクリル樹脂、オルガノシロキサン樹脂などが用いられる。本例ではアクリル樹脂としている。熱硬化樹脂は、特に限定されず、例えば、オルガノシロキサン樹脂、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂などが用いられる。
 樹脂膜13の厚みT13は、1μm以上であることが好ましく、これにより、積層体10に衝撃などが加わった場合の前述の緩衝機能がより確実になる。厚みT13は、より好ましくは1μm以上20μm以下の範囲内であり、さらに好ましくは3μm以上8μm以下の範囲内である。本例では厚みT13を5μmとしている。
 プラスチック基材11と樹脂膜13との間の下地層12は、プラスチック基材11と樹脂膜13の密着力をより高めるためのものである。プラスチック基材11と樹脂膜13との密着力が十分である場合には、下地層12は省略することができる。下地層12の素材は、プラスチック基材11と樹脂膜13との両方に対して密着するものであれば特に限定されず、例えば、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、メラニン樹脂、アミノ樹脂などを用いることができる。本例ではアクリル樹脂を用いている。
 また、この例では、樹脂膜13を形成するための上記光硬化性化合物として、紫外線の照射により硬化する化合物(紫外線硬化性化合物)を用いており、そのため、下地層12には、紫外線吸収剤を含有させてある。これにより、プラスチック基材11へ入射する紫外線量を低減させている。プラスチック基材11へ入射する紫外線量を低減させることにより、プラスチック基材11の紫外線劣化が抑制される。なお、紫外線吸収剤を下地層12に含有させていることにより、積層体10の使用環境下におけるプラスチック基材11の紫外線劣化も抑制される。このように下地層12は、プラスチック基材11と樹脂膜13との密着力の向上と異なる他の機能を担わせてもよく、プラスチック基材11と樹脂膜13との密着力向上が不要な場合でも設けることができる。
 酸化ケイ素膜14は、酸化ケイ素で膜状に形成されており、耐傷性を向上させるためのものである。酸化ケイ素膜14は、樹脂膜13のプラスチック基材11側とは反対側の膜面13aに設けられる。前述のように樹脂膜13は外から加わった力を緩衝させることにより耐傷性を向上させるから、酸化ケイ素膜14と樹脂膜13とは協働して耐傷性を担う。すなわち、樹脂膜13と酸化ケイ素膜14とが、積層体10のハードコート部(耐傷性部)17を構成している。
 酸化ケイ素膜14は、厚み方向に重なった少なくとも2層の酸化ケイ素層を備え、本例では、図2に示すように、樹脂膜13側から順に、第1酸化ケイ素層21Aと第2酸化ケイ素層21Bと第3酸化ケイ素層21Cと第4酸化ケイ素層21Dとの4層を備えている。なお、以降の説明において、第1酸化ケイ素層21A~第4酸化ケイ素層21Dを区別しない場合には酸化ケイ素層21と記載する。酸化ケイ素層21の層数は本例の4層に限られず、2層、3層、あるいは5層以上であってもよい。
 酸化ケイ素膜14は、さらに、樹脂膜13側から順に配された第1境界層25Aと第2境界層25Bと第3境界層25Cとを備える。以降の説明において第1境界層25A~第3境界層25Cを区別しない場合には境界層25と記載する。第1境界層25Aは第1酸化ケイ素層21Aと第2酸化ケイ素層21Bとの間に、第2境界層25Bは第2酸化ケイ素層21Bと第3酸化ケイ素層21Cとの間に、第3境界層25Cは第3酸化ケイ素層21Cと第4酸化ケイ素層21Dとの間に、設けられている。このように、積層体は、複数の酸化ケイ素層21の各間に、境界層25を備えていてもよい。
 境界層25は、酸化ケイ素層21同士の密着力を向上させるためのものであり、第1境界層25A~第3境界層25Cの少なくともひとつを省略することができる。したがって、第2酸化ケイ素層21B~第4酸化ケイ素層21Dのそれぞれは、境界層25を設けない場合には第1酸化ケイ素層21A~第3酸化ケイ素層21C上に直接配され、境界層25を設ける場合にはその境界層25を介して第1酸化ケイ素層21A~第3酸化ケイ素層21C上に配される。
 第1酸化ケイ素層21A~第4酸化ケイ素層21Dは、それぞれ、厚み方向において一定の密度に形成されている。密度は、単位体積あたりの質量である。密度は、本例では(株)リガク製の薄膜構造評価用X線回折装置ATX-Eを用い、X線反射率法(X-ray Reflectometry)で測定している。
 第2酸化ケイ素層21Bは、樹脂膜13の膜面13aに設けられた第1酸化ケイ素層21Aよりも、密度が大きく、かつ、厚みが小さい。耐傷性を向上する観点のみの場合には、酸化ケイ素層21の厚みが大きいほどよいので、第2酸化ケイ素層21Bの厚みT21Bをより大きくし、例えば第1酸化ケイ素層21Aの厚みT21Aと同じにしてもよい。しかし本例では、厚みT21Bを厚みT21Aよりも薄くし、かつ、第2酸化ケイ素層21Bを第1酸化ケイ素層21Aよりも大きな密度としており、これにより、耐傷性が向上し、かつ、後述のように大気圧下でのプラズマ発生を用いて効率的に層形成をすることができ、積層体10の生産効率が向上する。このように、厚みと密度とを上記の通りにすることにより、耐傷性と生産効率とが両立する。
 第3酸化ケイ素層21Cは、同様に、第2酸化ケイ素層21Bよりも密度が大きく、かつ、厚みT21Cが厚みT21Bよりも小さい。第4酸化ケイ素層21Dも同様に、第3酸化ケイ素層21Cよりも密度が大きく、かつ、厚みT21Dが厚みT21Cよりも小さい。このように、酸化ケイ素層21を、樹脂膜13から離れるに従い、密度を大きく、かつ、厚みを小さく形成することにより、耐傷性が向上し、かつ生産効率に優れた積層体10になる。
 第1酸化ケイ素層21Aは、密度が1.7g/cm3以上2.3g/cm3以下の範囲内であり、厚みT21Aが少なくとも300nmであることが好ましい。厚みT21Aが300nm以上であることにより、300nm未満である場合に比べて、生産効率を維持した状態で、耐傷性が確実に向上する。また、密度が1.7g/cm3以上であることにより、厚みT21Aが例えば300nmというように薄くても、確実に耐傷性が得られる。密度が2.3g/cm3以下であることにより、2.3g/cm3より大きい場合に比べて、樹脂膜13との密着力がより維持され、樹脂膜13からの剥離がより抑制される。第1酸化ケイ素層21Aの密度は1.7g/cm3以上2.3g/cm3以下の範囲内であることがより好ましく、1.9g/cm3以上2.1g/cm3以下の範囲内であることがさらに好ましい。厚みT21Aは、300nm以上2000nm以下の範囲内であることがより好ましく、400nm以上800nm以下の範囲内であることがさらに好ましい。
 酸化ケイ素膜14の樹脂膜13側と反対側の膜面(以下、第1膜面と称する)14aを成す酸化ケイ素層21(この例では第4酸化ケイ素層21D)は、密度が2.6g/cm3以上2.8g/cm3以下の範囲内であり、厚みが大きくても500nmであることが好ましい。第4酸化ケイ素層21Dの厚みT24Dをこのように500nm以下に抑えることにより、後述のように大気圧下でのプラズマ発生を用いて効率的に層形成をすることができ、生産効率の向上効果が高い。また、密度が2.6g/cm3以上であることにより、2.6g/cm3未満である場合に比べて、厚みT21Dが例えば500nmというように薄くても、確実に耐傷性が得られる。密度が2.8g/cm3以下であることにより、2.8g/cm3より大きい場合に比べて、他の酸化ケイ素層21(この例では第1酸化ケイ素層21Aと第2酸化ケイ素層21Bと第3酸化ケイ素層21C)との密着力がより維持され、他の酸化ケイ素層21からの剥離がより確実に防止される。なお、図2においては、酸化ケイ素膜14の樹脂膜13側の膜面(以下、第2膜面と称する)には符号14bを付してある。
 第1膜面14aを成す酸化ケイ素層21の厚みは、200nm以上500nm以下の範囲内であることがより好ましい。
 第1境界層25A~第3境界層25Cのそれぞれは、酸化ケイ素で形成されている。第1酸化ケイ素層21Aと第2酸化ケイ素層21Bとの間の第1境界層25Aは、厚みT25Aが厚みT21A及び厚みT21Bよりも小さく、密度が第1酸化ケイ素層21Aの密度よりも大きく、かつ第2酸化ケイ素層21Bの密度の95%以上105%以下の範囲内であることが好ましい。これにより、第1酸化ケイ素層21Aと第2酸化ケイ素層21Bとの密着力がより向上する。
 第2酸化ケイ素層21Bと第3酸化ケイ素層21Cとの間の第2境界層25Bも同様に、厚みT25Bが厚みT21B及び厚みT21Cよりも小さく、密度が第2酸化ケイ素層21Bの密度よりも大きく、第3酸化ケイ素層21Cの密度の95%以上105%以下の範囲内であることが好ましい。第3境界層25Cも同様に、厚みT25Cが厚みT21C及び厚みT21Dよりも小さく、密度が第3酸化ケイ素層21Cの密度よりも大きく、第4酸化ケイ素層21Dの密度の95%以上105%以下の範囲内であることが好ましい。
 このように、2層の酸化ケイ素層21の間に位置する境界層25は、厚みがその境界層25の両側に位置する酸化ケイ素層21の各厚みよりも小さく、密度が樹脂膜13側の一方の酸化ケイ素層21よりも大きく、かつ、樹脂膜13側とは反対側の他方の酸化ケイ素層21の密度の95%以上105%以下の範囲内であることが好ましい。これにより、一方の酸化ケイ素層21と他方の酸化ケイ素層21との密着力がより向上するからである。
 厚みT25Bは、厚みT25Bよりも小さいことが好ましい。同様に、厚みT25Cは厚みT25Bよりも小さいことが好ましい。このように、境界層25を、樹脂膜13から離れるに従い厚みを小さく形成することにより、厚みを一定に形成する場合に比べて、後述のプラズマを用いた表面処理での形成効率が上がる。その結果、生産効率に優れた積層体10が得られる。また、境界層25を、樹脂膜13から離れるに従い密度を大きくすることにより、樹脂膜13から離れるに従い厚みを小さくしても、耐傷性が確実に向上する。
 また、境界層25のうち最も厚みが大きい第1境界層25Aは、厚みT25Aが、酸化ケイ素層21のうち最も厚みが小さい酸化ケイ素層21(この例では第4酸化ケイ素層21D)の厚みよりも小さく形成することが好ましい。このように非常に薄い境界層25は、後述のプラズマを用いた表面処理で効率よく形成できる。
 第1境界層25Aの密度は、第1酸化ケイ素層21A側から第2酸化ケイ素層21B側へ向かって一定でもよいし、段階的に漸増していてもよい。本例では、図3に示すように、第1酸化ケイ素層21A側から第2酸化ケイ素層21B側へ向かって連続的に漸増しており、これにより、第1酸化ケイ素層21Aと第2酸化ケイ素層21Bとの密着力がさらに向上している。
 第2境界層25Bの密度も同様に、第2酸化ケイ素層21B側から第3酸化ケイ素層21C側へ向かって一定でもよいし、段階的に漸増していてもよいが、図3に示すように、連続的に漸増している方が好ましい。第3境界層25Cの密度も同様に、第3酸化ケイ素層21C側から第4酸化ケイ素層21D側へ向かって一定でもよいし、段階的に漸増していてもよいが、連続的に漸増している方が好ましい。第2酸化ケイ素層21Bと第3酸化ケイ素層21Cとの密着力、及び第3酸化ケイ素層21Cと第4酸化ケイ素層21Dとの密着力が、さらに向上するからである。
 積層体10は、酸化ケイ素膜14を上記の構成とすることで、第1酸化ケイ素層21A~第4酸化ケイ素層21Dのうち、最表面である第1表面10aを成す第4酸化ケイ素層21Dは、厚みが最も小さく、かつ、密度が最も大きい。これにより、酸化ケイ素膜14の厚みを抑えながらも、積層体10は優れた耐傷性を示す。
 酸化ケイ素層21と境界層25との境界(界面)は、視認できない場合がある。特に、第1酸化ケイ素層21Aと第1境界層25Aとの境界、第2酸化ケイ素層21Bと第2境界層25Bとの境界、及び、第3酸化ケイ素層21Cと第3境界層25Cとの境界は視認できない場合が多い。このように、層同士の境界が視認できない場合には、厚み方向において密度を求め、図3に示すような厚み方向での密度プロファイルデータ(グラフなど)を作成し、厚み方向において密度が一定である領域を酸化ケイ素層21としてみなし、密度が変化している領域を境界層25としてみなすとよい。すなわち、層同士の境界は、視認できない場合にはこのように密度プロファイルに基づいた概念上の境界とする。
 積層体10は例えば以下の製造方法により製造する。積層体製造方法は、下地層形成工程と、樹脂膜形成工程と、酸化ケイ素膜形成工程とをこの順序で有する。下地層形成工程は、プラスチック基材11に下地層12(図1参照)を形成する。下地層12を設けない場合には、下地層形成工程は省略する。樹脂膜形成工程は、下地層12に樹脂膜13(図1参照)を形成する。本例のように下地層12を設ける場合には、樹脂膜形成工程は、プラスチック基材11上に、下地層12を介して樹脂膜13を形成し、下地層12を設けない場合には、プラスチック基材11上に直接樹脂膜13を形成する。酸化ケイ素膜形成工程は、樹脂膜13の膜面13a(図1参照)に、酸化ケイ素膜14(図1参照)を形成する。以下、各工程について説明する。
 図4に示す塗布ユニット30は、下地層形成工程と樹脂膜形成工程とのための一例である。この例では、長尺のプラスチック基材11に下地層12と樹脂膜13とを順次形成している。ただし、シート状のプラスチック基材11に対して、下地層12と樹脂膜13とを順次形成してもよい。
 塗布ユニット30は、送出装置31と、巻取装置32と、第1塗布ダイ35と、乾燥部36と、第2塗布ダイ37と、光源38とを備える。送出装置31は、プラスチック基材11を長手方向に送り出すためのものである。送出装置31には、プラスチック基材11が巻き芯40aに巻かれた基材ロール41がセットされる。送出装置31は、セットされた基材ロール41の巻き芯40aを回転することにより、基材ロール41からプラスチック基材11を送り出す。
 巻取装置32は、下地層12と樹脂膜13とが形成されたプラスチック基材11をロール状に巻き取るためのものである。巻取装置32には、巻き芯40bがセットされ、この巻き芯40bを回転することにより、案内されてくるプラスチック基材11を巻き芯40bに巻き取る。
 送出装置31と巻取装置32とによって、プラスチック基材11は長手方向に搬送される。また、本例では搬送路に、プラスチック基材11を支持するローラ44を複数配している。これらのローラ44のうち少なくともひとつを、周方向に回転する駆動ローラとし、駆動ローラによってプラスチック基材11を搬送させてもよい。
 プラスチック基材11の搬送方向Dcの上流側から順に、第1塗布ダイ35と、乾燥部36と、第2塗布ダイ37と、光源38とが配されている。第1塗布ダイ35は、下地層12を形成するための塗布液(以下、下地層塗布液と称する)45を、搬送路に向けた流出口35aから連続的に出す。搬送されているプラスチック基材11の上に下地層塗布液45が連続的に出されることにより、塗膜12Aが形成する。
 下地層塗布液45は、下地層12を形成する下地層材が溶媒に溶けている溶液である。下地層材は、特に限定されず、下地層12を構成する例えば前述のウレタン樹脂、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、メラニン樹脂、アミノ樹脂などが用いられ、本例ではアクリル樹脂である。溶媒としては、例えば、トルエン、キシレン、ブタノールなどが単独で使用あるいは併用され、本例ではトルエンとブタノールとの混合物を用いている。下地層塗布液45における下地層材の濃度は、特に限定されず、例えば30%以上70%以下の範囲とされ、本例では45%としている。なお、下地層塗布液45における下地層材の濃度(単位は%)は、下地層材の質量をM1、溶媒の質量をM2とするときに、{M1/(M1+M2)}×100で求めている。
 乾燥部36は、塗膜12Aを乾燥することにより下地層12を形成するためのものである。乾燥部36は、乾燥した気体(例えば空気)が供給されるチャンバ(図示無し)を備える。供給される気体は温度が調整されており、プラスチック基材11上の塗膜12Aは、チャンバを通過することにより乾燥し、下地層12となる。
 第2塗布ダイ37は、樹脂膜13を形成するための塗布液(以下、樹脂膜塗布液と称する)46を、搬送路に向けた流出口37aから連続的に出す。搬送されているプラスチック基材11に形成されてある下地層12に、樹脂膜塗布液46が連続的に出されることにより、塗膜13Aが形成する。
 樹脂膜塗布液46は、硬化性化合物を含有している液体である。硬化性化合物が固体である場合には、硬化性化合物が溶媒に溶けている液を樹脂膜塗布液46として用いる。硬化性化合物が液体である場合には、溶媒を使わない場合もある。
 硬化性化合物は、樹脂膜13を光硬化樹脂で形成する場合には光硬化性化合物であり、樹脂膜13を熱硬化樹脂で形成する場合には熱硬化性化合物である。
 光硬化性化合物は、特に限定されず、例えば、アクリル樹脂、オルガノシロキサン樹脂の各モノマー及び各オリゴマーなどが用いられる。本例ではアクリル樹脂のモノマーとしている。光硬化性化合物の溶媒としては、例えば、トルエン、キシレン、ブタノールなどが用いられる。熱硬化性化合物は、特に限定されず、例えば、オルガノシロキサン樹脂、メラニン系樹脂、ウレタン系樹脂、アルキド系樹脂の各モノマー及び各などが用いられる。樹脂膜塗布液46が溶媒を含んでいる場合には、硬化性化合物の濃度は、特に限定されない。
 光源38は、塗膜13Aの硬化性化合物を硬化することにより樹脂膜13を形成するためのものである。本例で用いたアクリル樹脂のモノマーは、紫外線で硬化する化合物であるから、紫外線を射出する光源38を用いている。塗膜13Aは、この光源38を通過することにより、紫外線が照射され、これにより光硬化性化合物が硬化し、樹脂膜13が形成される(樹脂膜形成工程)。なお、樹脂膜塗布液46が溶媒を含んでいる場合には、乾燥部36と同様の乾燥部(図示無し)を光源38の上流側及び/または下流側に配し、この乾燥部により溶媒を塗膜13Aから蒸発させてもよい。
 樹脂膜13が形成されたプラスチック基材11は、巻取装置32へ案内され、巻き芯40bにロール状に巻かれる。形成されたロールを、以下、中間体ロールと称する。中間体ロールに巻かれた、プラスチック基材11と下地層12と樹脂膜13との積層体である中間体47は、切断装置(図示無し)によりシート状にカットされ、酸化ケイ素膜形成設備に供給される。なお、巻取装置32を切断装置に置き換えて、中間体47を、中間体ロールを経ずに、シート状にカットしてもよい。
 酸化ケイ素膜14の形成順序について、図5を参照しながら説明する。まず、図5の(A)に示すように、樹脂膜13の膜面13aに第1酸化ケイ素層21Aを形成し、その後、図5の(B)に示すように、第1酸化ケイ素層21Aの厚み方向において樹脂膜13とは反対側の一部領域を第1境界層25Aとして形成する。このように、第1境界層25Aは、第1酸化ケイ素層21Aから生成した層であり、第1境界層25Aにならなかった部分が、積層体10の第1酸化ケイ素層21Aとなる。
 次に、図5の(C)に示すように、第1境界層25Aの表面に、第2酸化ケイ素層21Bを形成し、その後、図5の(D)に示すように、第2酸化ケイ素層21Bの厚み方向において樹脂膜13とは反対側の一部領域を第2境界層25Bとして形成する。このように、第2境界層25Bも、第1境界層25Aと同様に、第2酸化ケイ素層21Bから生成した層であり、第2境界層25Bにならなかった部分が、積層体10の第2酸化ケイ素層21Bとなる。同様に、第3酸化ケイ素層21C及び第3境界層25Cも同様に、順次形成される(図5の(E)及び図5の(F)参照)。そして、形成された第3境界層25Cの表面に第4酸化ケイ素層21Dが形成され、積層体10は得られる(図5の(G)参照)。
 図6に示す酸化ケイ素膜形成ユニット50は、酸化ケイ素膜14を形成する設備の一例であり、これにより積層体10が得られる。酸化ケイ素膜形成ユニット50は、載置されたシート状の中間体47を搬送する搬送部51と、第1の層形成装置53A~第4の層形成装置53Dと、第1表面処理装置54A~第3表面処理装置54Cと、供給部57と、搬出部58とを備える。
 第1の層形成装置53A~第4の層形成装置53Dは、同様に構成されており、以降の説明において、第1の層形成装置53A~第4の層形成装置53Dを区別しない場合には、層形成装置53と記載する。また、第1表面処理装置54A~第3表面処理装置54Cは、同様に構成されており、以降の説明において第1表面処理装置54A~第3表面処理装置54Cを区別しない場合には、表面処理装置54と記載する。中間体47はプラスチック基材11を備えているから、中間体47を搬送していることはプラスチック基材11を搬送していることと同じであり、また、中間体47の搬送方向及び搬送路はプラスチック基材11の搬送方向Dc及び搬送路と同じである。そこで、以降の説明においてはこれらをまとめて単に搬送方向Dc及び搬送路と称する。
 第1の層形成装置53Aと、第2の層形成装置53Bと、第3の層形成装置53Cと、第4の層形成装置53Dとは、搬送方向Dcにおける上流側からこの順に設けられている。また、第1表面処理装置54Aと、第2表面処理装置54Bと、第3表面処理装置54Cとは、第1の層形成装置53Aと第2の層形成装置53Bとの間、第2の層形成装置53Bと第3の層形成装置53Cとの間、及び、第3の層形成装置53Cと第4の層形成装置54Dとの間に、設けられている。
 搬送部51は、中間体47を搬送するためのものであり、環状に形成された搬送ベルト51aと、搬送ベルト51aを長手方向に移動させる第1ローラ51b及び第2ローラ51cとを備える。搬送ベルト51aは、第1ローラ51bと第2ローラ51cとの各周面に掛け渡されている。第1ローラ51bと第2ローラ51cとは、モータ等の駆動部(図示無し)を有しており、この駆動部の制御の下で周方向に回転する。これにより、搬送ベルト51aは移動し、載置された中間体47が搬送される。
 供給部57は、シート状にされた中間体47を搬送ベルト51aへ供給する。供給部57は、第1ローラ51bの近傍における搬送ベルト51aのベルト面に中間体47を例えば1個ずつ載置し、載置された中間体47は、移動する搬送ベルト51aによって、第2ローラ50cへ向かって搬送される。中間体47は、プラスチック基材11を下向き、樹脂膜13を上向きにした姿勢で、搬送ベルト51aに載置される。これにより、中間体47は、搬送路に設けられた第1の層形成装置53A、第1表面処理装置54A、第2の層形成装置53B、第2表面処理装置54B、第3の層形成装置53C、第3表面処理装置54C、第4の層形成装置53Dの順でこれらを通過することにより、所定の処理が順次行われ、積層体10が製造される。このように、搬送路に配した第1の層形成装置53A~第4の層形成装置53Dと第1表面処理装置54A~第3表面処理装置54Cとを通過させることにより各処理を行うから、生産効率がよい。
 第1の層形成装置53A、第1表面処理装置54A、第2の層形成装置53B、第2表面処理装置54B、第3の層形成装置53C、第3表面処理装置54C、及び、第4の層形成装置53Dの各装置間の距離は、特に限定されない。生産の効率化の観点では、これらの距離はできるだけ短いことが好ましい。本例では例えば50cmとしている。
 本例では、先に載置した中間体47の搬送方向Dcにおける後端に、次に供給する中間体47を先端が接する状態に載置しており、これにより、積層体10の生産効率をさらに高めている。しかし、中間体47は、搬送方向Dcにおいて互いに離れた状態で載置してもよい。なお、中間体47を、図6における紙面奥行方向にも複数並べた状態で載置してもよい。搬出部58は、得られた積層体10を、第2ローラ51cの近傍で、搬送ベルト51aから移載先の例えば保管用容器などへ搬出する。
 図7において、層形成装置53は、大気圧下においてプラズマを発生するいわゆる大気圧プラズマ処理装置である。層形成装置53は、供給された気体の有機ケイ素化合物(以下、有機ケイ素化合物ガスと称する)を、大気圧下で電離することによりプラズマを発生し、酸化ケイ素層21を形成する。層形成装置53は、大気圧下でプラズマを発生する装置であるから、減圧下でプラズマを発生するいわゆる減圧(真空)プラズマ処理装置とは異なり、圧力を下げる時間が不要である。その結果、酸化ケイ素層21が効率よく形成される。また、プラスチック基材11の搬送路に沿って複数配し、プラスチック基材11を搬送させ、それぞれの層形成装置53を通過させることにより、複数の酸化ケイ素層21が効率的に順次形成される。したがって、効率よく積層体10は製造される。
 層形成装置53は、プラズマ発生部61と、交流電源(以下、単に「電源」と称する)62と、プラズマガス供給部63と、材料ガス供給部64とを備える。プラズマガス供給部63は、プラズマ発生部61に接続し、プラズマを発生するガス(以下、プラズマガスと称する)をプラズマ発生部61へ供給する。プラズマガスとしては、例えば、窒素(N2)、希ガス(ヘリウム(He)、アルゴン(Ar))などが好ましく、本例では窒素を用いている。
 プラズマガス供給部63とプラズマ発生部61とを接続する配管には、バルブ63aが設けられている。バルブ63aの開度を調整することにより、プラズマ発生部61へ供給するプラズマガスの流量(単位時間あたりの体積)が調整される。
 材料ガス供給部64は、プラズマ発生部61に接続し、酸化ケイ素層21の材料である有機ケイ素化合物ガスをプラズマ発生部61へ供給する。有機ケイ素化合物としては、例えば、TEOS(Tetraethyl orthosilicate,オルトケイ酸テトラエチル)、TMOS(Tetramethyl orthosilicate,オルトケイ酸テトラメチル)、HMDSO(hexamethyldisiloxane,ヘキサメチルジシロキサン)などが好ましく、本例ではTEOSを用いている。材料ガス供給部64とプラズマ発生部61とを接続する配管には、バルブ64aが設けられている。バルブ64aの開度を調整することにより、プラズマ発生部61へ供給するプラズマガスの流量(単位時間あたりの体積)が調整される。なお、プラズマガスと有機ケイ素化合物ガスとの他に、これらと異なるガスを、例えば有機ケイ素化合物ガスからのプラズマの生成を補助する補助ガスとして、プラズマ発生部61に供給してもよい。補助ガスとしては、例えば、He、Arなどが好ましい。
 プラズマ発生部61は、第1電極67と、第2電極68と、第1電極67及び第2電極68を収容するチャンバ69とを有する。プラズマ発生部61は、大気圧下で第1電極67と第2電極68との間に交流電圧を印加した場合にプラズマを発生する。第1電極67と第2電極68とは、上下方向で互いに対向する対向面67a,68aが平坦に形成されており、対向面67aと対向面68aとが概ね平行となる状態に配されている。この例では、下側の電極を第1電極67とし、上側の電極を第2電極68としている。プラズマ発生部61は、第1電極67と第2電極68との間に、プラズマを発生する放電空間DSを形成する。
 チャンバ69には、プラズマガス供給部63と材料ガス供給部64とが接続しており、供給されてきたプラズマガスと有機ケイ素化合物ガスなどのガスが、放電空間DSに導入される。プラズマ発生部61は、放電空間DSに導入したガスを電離することにより、プラズマを発生する。なお、図7においては、チャンバ69のプラズマガス供給部63及び材料ガス供給部64が接続するガス導入口69a,69bを天板に形成された状態として描いているが、ガス導入口69a,69bの形成位置はこれに限定されず、例えば側壁でもよい。
 第1電極67と第2電極68とは、対向面67aと対向面68aとのそれぞれには膜状に形成された誘電体(図示無し)を備えることが好ましく、本例でも備えている。これら誘電体は、放電空間に発生するプラズマに起因した電場の偏極とは逆向きに偏極した電場(いわゆる逆電場)を形成する。これにより、誘電体は、プラズマの発生時に局所的な放電電流の発生等のいわゆる異常放電を抑制する。
 チャンバ69の側壁には、搬送ベルト51aが通過する開口69c,69dが形成されている。一方の開口69cから導入された搬送ベルト51aは、第1電極67の対向面67aに接した状態で移動させる。このように、搬送ベルト51aは、第1電極67に摺接しながら、他方の開口69dに向かう。第1電極67を通過する間に、プラズマ発生部61は、放電空間DSにプラズマを発生することにより、プラズマを用いて中間体47の放電空間DS側に露呈した表面に酸化ケイ素層21を形成する。なお、図7に示すように、プラズマ発生部61には、搬送ベルト51aを下方から支持するローラ72を設けてもよい。本例の搬送ベルト51aは誘電体である素材で形成しており、この搬送ベルト51aも異常放電の抑制に寄与している。このように搬送ベルト51aを誘電体である素材で形成している場合には、搬送ベルト51aが接する第1電極67の対向面67aには誘電体を設けなくてもよい。
 電源62は、特定の周波数及び特定の振幅を有する交流電圧を発生し、プラズマ発生部61に供給する。電源62は、所定電圧を発生する電源本体のほか、電源本体が発生する電圧を特定の電圧に昇圧または降圧する変圧部(図示しない)、及び/または、インピーダンスを整合するためのマッチングコイル(図示しない)等を含む。電源62は、例えば正弦波形の交流電圧を発生する。交流電圧の振幅V1は、例えば、約2000ボルト([V])である。また、電源62が発生する交流電圧の周波数は、大きくても1MHzであることが好ましい。交流電圧の周波数が1MHz以下のいわゆる低周波であることにより、プラズマ発生部61においては、希ガス等の動きやすい分子からなるガスだけでなく、希ガス等よりも動きにくい、例えば窒素、酸素、TEOS等の分子性ガスを電離し、より確実にプラズマを発生する。交流電圧の周波数は、1kHz以上1MHz以下の範囲内であることがより好ましく、20KHz以上500KHz以下の範囲内であることがさらに好ましく、200KHz以上400KHz以下の範囲内であることが特に好ましい。
 層形成装置53のプラズマ発生部61での投入パワー(入力電力)は、1500W以上2000W以下の範囲内であることが好ましい。第1の層形成装置53A~第4の層形成装置53Dにおける投入パワーは互いに近いことが好ましく、等しいことがさらに好ましい。これにより、投入パワーの可変領域が限定されるから、装置コストが抑えられ、かつ条件設定がより簡易になる。
 電源62とプラズマ発生部61との間に、放電安定化回路として、インダクタとキャパシタとを有するLC回路75を接続することが好ましく、本例でもそのようにしている。本実施形態においては、LC回路75は、インダクタンスが「L」のインダクタ76と、キャパシタンス(静電容量)が「C」のキャパシタ(コンデンサ)77とを並列に接続した、いわゆるLC並列回路であり、電源62とプラズマ発生部61との間に並列に接続する。ただし、LC回路75の代わりに、周波数依存性のあるインピーダンス回路もしくは素子を用いてもよい。
 また、第1表面処理装置54A~第3表面処理装置54Cは、プラズマを発生することにより酸化ケイ素層21の露呈した表面を改質する装置である。第1表面処理装置54A~第3表面処理装置54Cは、本例では層形成装置53よりも小型であること以外は層形成装置53と同様の構成であるので、これらについては説明を略す。なお、表面処理装置54は、層形成装置53と同サイズまたは層形成装置53よりも大型でもよい。
 表面処理装置54のプラズマ発生部61での投入パワー(入力電力)は、1000W以上1500W以下の範囲内であることが好ましく、表面処理装置53における投入パワーよりも低いことが好ましい。これにより、前工程で形成された酸化ケイ素層にダメージを与えることなく表面処理が行われ、その酸化ケイ素層に境界層を生成させる。
 酸化ケイ素膜形成ユニット50の上記構成の作用を説明する。第1の層形成装置53Aのチャンバ69には、プラズマガス供給部63によりプラズマガスが、また、材料ガス供給部64により有機ケイ素化合物ガスが、それぞれ設定された流量で供給される。プラズマガスの流量は、10L/min(リットル/分)以上30L/min以下の範囲内であることが好ましい。有機ケイ素化合物の流量は、3g/min以上30g/min以下の範囲内であることが好ましい。チャンバ69には前述の補助ガスも供給される場合があり、本例でもArを補助ガスとして用い、チャンバ69に供給している。
 第1電極67と第2電極68との間には、電源62により交流電圧が印加され、これにより、プラズマガスと有機ケイ素化合物ガスとからプラズマが生成し、放電空間DSが形成される。プラスチック基材11を下向きした姿勢で搬送ベルト51aに載置されている中間体47は、第1電極67の対向面67aに接した状態で搬送される。これにより、放電空間DSに露呈した樹脂膜13の膜面13aを、有機ケイ素化合物ガスの炭素を含む構造部分が水素に置換されることにより生成した酸化ケイ素が被覆し、膜面13aに第1酸化ケイ素層21Aが形成される(第1酸化ケイ素層形成工程)。
 第1酸化ケイ素層21Aが形成されたプラスチック基材11は、第1表面処理装置54Aに案内される。第1表面処理装置54Aには、プラズマガス供給部63によりプラズマガスが供給される。この供給の流量は、第1の層形成装置53Aにおけるプラズマガスの流量と同じであることが好ましく、本例でもそのようにしている。これにより、第1の層形成装置53Aと第1表面処理装置54Aとを同じ仕様の装置にしても、各処理を施すことができる。
 第1表面処理装置54においても同様の条件で、大気圧下でプラズマを発生させる。ただし、第1表面処理装置54Aにおいては、バルブ64aを閉状態にし、材料ガス供給部64からの有機ケイ素化合物ガスの流量を0(ゼロ)にすることが好ましく、本例でもそのようにしている。すなわち、有機ケイ素化合物ガスを非供給としている。これにより、第1酸化ケイ素層21Aの表面からごくわずかな深さまでの領域で、酸化ケイ素の脱水縮合反応が起こり、この領域が第1境界層25Aとなる。このように、第1酸化ケイ素層21Aの露呈した表面側に、第1境界層25Aが生成する(第1境界層生成工程)。なお、有機ケイ素化合物ガスの流量は、0(ゼロ)に限定されず、0g/minより大きく0.9g/min以下の流量でも、第1酸化ケイ素層21A内での脱水縮合反応が起こるから、それでもよい。このように、有機ケイ素化合物ガスの流量は0g/min以上0.9g/min以下とすることが好ましい。チャンバ69には前述の補助ガスを供給してもよいし、しなくてもよい。本例では補助ガスを供給しており、補助ガスとしてはArを用いている。
 第1表面処理装置54Aにおいては、第1酸化ケイ素層21Aの露呈した表面から厚み方向に離れるに従い、プラズマによる第1酸化ケイ素層21Aの改質作用が弱くなる傾向がある。そのため、密度は、第1酸化ケイ素層21Aの露呈した表面が最も大きくなり、この表面から厚み方向に離れるに従い密度が連続的に漸減する。その結果、第1境界層25Aが得られる。
 第2表面処理装置54B及び第3表面処理装置54Cにおいても同様の条件及び作用が得られる。
 第1酸化ケイ素層21A及び第1境界層25Aを形成されたプラスチック基材11は、第2の層形成装置53Bへ案内される。第2の層形成装置53Bには、プラズマガス供給部63によりプラズマガスが、材料ガス供給部64により有機ケイ素化合物ガスが、それぞれ供給される。
 第2の層形成装置53Bに対するプラズマガスの流量は、第1の層形成装置53Aに対するプラズマガスの流量と等しいことが好ましい。これにより、第1の層形成装置53Aと第2の層形成装置53Bとを同じ仕様の装置にしても、各処理を施すことができる。
 有機ケイ素化合物ガスの流量は、第1の層形成装置53Aに対する供給の流量よりも小さい。これにより、第1酸化ケイ素層21Aよりも厚みが小さな第2酸化ケイ素層21Bが形成される(第2酸化ケイ素層形成工程)。
 この手法によると、第1酸化ケイ素層21Aと第2酸化ケイ素層21Bとをそれぞれ形成するにあたり、成膜条件のひとつである有機ケイ素化合物ガスの流量を、第1の層形成装置53Aと第2の層形成装置53Bとで変えるだけですむ。このため、ひとつの例えば大気圧プラズマ処理装置で成膜条件を連続的に変えるよりも、放電の不安定化が抑えられ、プラスチック基材11等に対する熱のダメージが防がれ、かつ、酸化ケイ素層21の性状が安定する。放電の不安定化が抑えられるから、異常放電の発生も抑制され、形成した酸化ケイ素層21にダメージが与えられることもない。また、搬送路に並べた第1の層形成装置53Aと第2の層形成装置53Bとを順次通過させるだけで、酸化ケイ素層21を順次積層できるから、耐傷性を向上するに十分な厚みの酸化ケイ素膜14が形成される。さらに、脱水縮合により生成した第1境界層25Aの表面に第2酸化ケイ素層21Bを形成するから、第2酸化ケイ素層21Bの十分な密着力が得られる。
 第2酸化ケイ素層21Bが形成されたプラスチック基材11は、第2表面処理装置54Bへ案内される。第2表面処理装置54Bでは、第1表面処理装置54Aでの第1境界層生成工程と同様に、第2境界層生成工程が実施され、第2酸化ケイ素層21Bに第2境界層25Bが生成する。
 第2境界層25Bが形成されたプラスチック基材11は、第3の層形成装置53Cに案内される。第3の層形成装置53Cには、第1の層形成装置53A及び第2の層形成装置53Bと同様に、プラズマガスと有機ケイ素化合物ガスとが供給される。第3の層形成装置53Cに対するプラズマガスの流量は、第2の層形成装置53Bに対するプラズマガスの流量と等しいことが好ましい。有機ケイ素化合物ガスの流量は、第2の層形成装置53Bに対する供給の流量よりも小さい。これにより、第2酸化ケイ素層21Bよりも厚みが小さな第3酸化ケイ素層21Cが形成される(第3酸化ケイ素層形成工程)。
 第3酸化ケイ素層21Cが形成されたプラスチック基材11は、第3表面処理装置54Cへ案内される。第3表面処理装置54Cでは、第1表面処理装置54Aでの第1境界層生成工程と同様に、第3境界層生成工程が実施され、第3酸化ケイ素層21Cに第3境界層25Cが生成する。
 第3境界層25Cが形成されたプラスチック基材11は、第4の層形成装置53Dに案内され、同様に、プラズマガスと有機ケイ素化合物ガスとが供給される。第4の層形成装置53Dに対するプラズマガスの流量は、第3の層形成装置53Cに対するプラズマガスの流量と等しいことが好ましいが、有機ケイ素化合物ガスの流量は、第3の層形成装置53Cに対する供給の流量よりも小さい。これにより、第3酸化ケイ素層21Cよりも厚みが小さな第4酸化ケイ素層21Dが形成され(第4酸化ケイ素層形成工程)、積層体10が得られる。
 本例では第1境界層25A~第3境界層25Cを備える積層体10を製造するから、上記の製造方法は第1境界層生成工程~第3境界層生成工程を有している。しかし、境界層25を設けない場合には、上記の境界層生成工程は省略する。また、境界層25を形成することなく酸化ケイ素層を同じ条件で複数回形成した場合には、それらの境界は視認できず、かつ、密度も互いに同じになるから、それらは一体に形成される。そのように一体に形成された場合には、ひとつの酸化ケイ素層とみなす。例えば、第1表面処理装置54Aの投入パワーを0(ゼロ)とし、第1の層形成装置53Aと第2の層形成装置53Bとの条件を同じにした場合には、これらの第1の層形成装置53A及び第2の層形成装置53Bによって第1の酸化ケイ素層が形成され、第3の層形成装置53Cで第2の酸化ケイ素層、第4の層形成装置53Dで第3の酸化ケイ素層がそれぞれ形成される。
 [実施例1]~[実施例6]
 塗布ユニット30と酸化ケイ素膜形成ユニット50とを用いて、積層体10を製造し、実施例1~6とした。酸化ケイ素膜形成ユニット50における各層の形成条件は表1に示す。第1の層形成装置53A~第4の層形成装置53Dと、第1の表面処理装置54A~第3の表面処理装置54Cとにおいて、その装置による処理を実施しなかった場合には、表1の「投入パワー」欄に「-」と記載する。
 得られた積層体10を表2に示す。なお、第1の層形成装置53A~第4の層形成装置53Dのうち、互いの間の表面処理装置54での処理を実施しなかった2つの層形成装置53では、酸化ケイ素層が一体に形成されるから、その酸化ケイ素層をひとつのものとしてみなしている。例えば、実施例4は、第1表面処理装置54Aと第2表面処理装置54Bの投入パワーを0(ゼロ)としているから、第1の層形成装置53A~第3の層形成装置53Cによりひとつの酸化ケイ素層が第1酸化ケイ素層として形成されたことになる。各実施例について、生産効率と、得られた積層体10の耐傷性とを評価した。耐傷性は鉛筆硬度で評価した。評価方法及び基準は以下の通りである。評価結果は表2に示す。
 1.生産効率
 搬送速度により評価した。AとBとは合格、Cは不合格である。なお、Cの「搬送速度が工程によって異なる」は、工程毎に搬送ベルト51aの移動速度を変える必要があるから処理工程が煩雑になり、また、複数の積層体を順次製造する場合には先行の中間体47との距離が第1の層形成装置53Aの下流端から第4の層形成装置53Dの上流端までの距離以上となる状態に、後行となる中間体47を搬送ベルト51aに載置しなければならない。そのため、不合格とした。
  A:搬送速度が0.10m/min以上で一定である。
  B:搬送速度が0.08m/min以上0.10m/min未満の範囲で一定である。
  C:搬送速度が一定であるが0.08m/min未満である、または、搬送速度が工程によって異なる。
 2.鉛筆硬度
 日本工業規格JIS K5600-5-4に規定する鉛筆硬度試験に準じて評価した。鉛筆硬度が4H以上である場合を合格、3H以下である場合を不合格とした。
 さらに、密着力の評価も行った。密着力は、剥離した領域が認められる桝目があった実施例4の評価結果を基準レベルとして、以下の評価基準に基づき評価した。表2においては実施例4に「基準」と記載する。
    A;剥離した桝目が全くなく、実施例4と比べて極めて良かった。
    B;剥離した領域が認められる桝目は有ったものの、実施例4よりも明らかに良かった。
    C;実施例4と同程度であった。
    D;実施例4よりも悪かった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [比較例1]~[比較例3]
 表1に示す条件で積層体を製造し、比較例1~3とした。各比較例についても実施例と同様の方法及び基準で、生産効率、及び、耐傷性としての鉛筆硬度を評価した。密着力の評価は行わなかったので、表2の「密着力」欄には「-」と記載する。
 10  積層体
 10a 第1表面
 11  プラスチック基材
 12  下地層
 12A 塗膜
 13  樹脂膜
 13a 膜面
 13A 塗膜
 14  酸化ケイ素膜
 14a 第1膜面
 14b 第2膜面
 17  ハードコート部
 21  酸化ケイ素層
 21A~24D 第1酸化ケイ素層~第4酸化ケイ素層
 25A~25C 第1境界層~第3境界層
 30  塗布ユニット
 31  送出装置
 32  巻取装置
 35  第1塗布ダイ
 35a 流出口
 36  乾燥部
 37  第2塗布ダイ
 38  光源
 40a,40b  巻き芯
 41  基材ロール
 44  ローラ
 45  下地層塗布液
 46  中間体ロール
 47  中間体
 50  酸化ケイ素膜形成ユニット
 51  搬送部
 51a 搬送ベルト
 51b,51c 第1ローラ,第2ローラ
 53  層形成装置
 53A~53D 第1の層形成装置~第4の層形成装置
 54A~54C 第1表面処理装置~第3表面処理装置
 57  供給部
 58  搬出部
 61  プラズマ発生部
 62  電源
 63  プラズマガス供給部
 63a バルブ
 64  材料ガス供給部
 64a バルブ
 67,68 第1電極,第2電極
 67a,68a 対向面
 69  チャンバ
 69a,69b ガス導入口
 69c,69d 開口
 72  ローラ
 75  LC回路
 76  インダクタ
 77  キャパシタ
 Dc 搬送方向
 DS 放電空間
 T11~T14,T21A~T21D,T25A~T25C 厚み

Claims (10)

  1.  プラスチック基材と、
     前記プラスチック基材上に設けられ、硬化樹脂で形成されている樹脂膜と、
     前記樹脂膜の前記プラスチック基材側とは反対側の膜面に設けられた第1酸化ケイ素層と、
     前記第1酸化ケイ素層上に設けられ、前記第1酸化ケイ素層よりも密度が大きく、かつ、厚みが小さい第2酸化ケイ素層と、
     を備える積層体。
  2.  前記第1酸化ケイ素層は、密度が1.7g/cm3以上2.3g/cm3以下の範囲内であり、厚みが少なくとも300nmである請求項1に記載の積層体。
  3.  前記第1酸化ケイ素層と前記第2酸化ケイ素層とを含む少なくとも2層の酸化ケイ素層が厚み方向に重なった酸化ケイ素膜を備え、
     前記酸化ケイ素膜の前記樹脂膜側とは反対側の膜面を成す前記酸化ケイ素層は、密度が2.6g/cm3以上2.8g/cm3以下の範囲内であり、厚みが大きくても500nmである請求項1または2に記載の積層体。
  4.  前記第1酸化ケイ素層と前記第2酸化ケイ素層との間に第1境界層を備え、
     前記第1境界層は、酸化ケイ素で形成されており、厚みが前記第1酸化ケイ素層及び前記第2酸化ケイ素層よりも小さく、密度が前記第1酸化ケイ素層の密度より大きくかつ前記第2酸化ケイ素層の密度の95%以上105%以下の範囲内である請求項1ないし3のいずれか1項に記載の積層体。
  5.  前記第1境界層は、前記第1酸化ケイ素層側から前記第2酸化ケイ素層側に向かって密度が漸増している請求項4に記載の積層体。
  6.  前記酸化ケイ素膜は、
     前記第2酸化ケイ素層上に設けられ、前記第2酸化ケイ素層よりも密度が大きく、かつ、厚みが小さい第3酸化ケイ素層と、
     前記第2酸化ケイ素層と前記第3酸化ケイ素層との間に設けられ、酸化ケイ素で形成されており、厚みが前記第2酸化ケイ素層及び前記第3酸化ケイ素層よりも小さく、密度が前記第2酸化ケイ素層の密度より大きくかつ前記第3酸化ケイ素層の密度の95%以上105%以下の範囲内である第2境界層と
     を備える請求項5に記載の積層体。
  7.  前記第2境界層は、前記第1境界層よりも厚みが小さい請求項6に記載の積層体。
  8.  硬化樹脂で形成された樹脂膜を有するプラスチック基材を搬送しながら、酸化ケイ素層を形成する積層体の製造方法において、
     硬化性化合物を含有する塗布液を、前記プラスチック基材上に塗布し、形成した塗膜を硬化することにより前記樹脂膜を形成する樹脂膜形成工程と、
     気体の有機ケイ素化合物が供給され、大気圧下でプラズマを発生させることにより前記酸化ケイ素層を形成する第1の層形成装置に、前記樹脂膜が形成された前記プラスチック基材を搬送し、前記樹脂膜の膜面に第1酸化ケイ素層を形成する第1酸化ケイ素層形成工程と、
     前記プラスチック基材の搬送方向における前記第1の層形成装置よりも下流に配された第2の層形成装置により、前記第1酸化ケイ素層上に第2酸化ケイ素層を形成する第2酸化ケイ素層形成工程と、
     を有し、
     前記有機ケイ素化合物を、前記第1の層形成装置よりも小さな流量で前記第2の層形成装置へ供給する積層体の製造方法。
  9.  前記第1の層形成装置と前記第2の層形成装置とは交流電圧を印加する電源を有し、前記交流電圧の周波数は大きくても1MHzである請求項8に記載の積層体の製造方法。
  10.  前記第1の層形成装置と前記第2の層形成装置との間に配され、プラズマを発生することにより前記酸化ケイ素層の表面を改質する表面処理装置に、前記第1酸化ケイ素層が形成された前記プラスチック基材を案内し、前記表面処理装置に対する前記有機ケイ素化合物の供給流量を0g/min以上0.9g/min以下にすることにより、前記第1酸化ケイ素層に、厚みが前記第1酸化ケイ素層及び前記第2酸化ケイ素層よりも小さく、密度が前記第1酸化ケイ素層の密度より大きくかつ前記第2酸化ケイ素層の密度の95%以上105%以下の範囲内である境界層を生成する請求項8または9に記載の積層体の製造方法。
PCT/JP2019/004547 2018-03-30 2019-02-08 積層体及びその製造方法 WO2019187693A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19776182.8A EP3778216A4 (en) 2018-03-30 2019-02-08 LAMINATE AND METHOD FOR MANUFACTURING THEREOF
JP2020510368A JP6945724B2 (ja) 2018-03-30 2019-02-08 積層体及びその製造方法
US17/037,167 US20210025053A1 (en) 2018-03-30 2020-09-29 Laminate and laminate manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-067064 2018-03-30
JP2018067064 2018-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/037,167 Continuation US20210025053A1 (en) 2018-03-30 2020-09-29 Laminate and laminate manufacturing method

Publications (1)

Publication Number Publication Date
WO2019187693A1 true WO2019187693A1 (ja) 2019-10-03

Family

ID=68058742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004547 WO2019187693A1 (ja) 2018-03-30 2019-02-08 積層体及びその製造方法

Country Status (4)

Country Link
US (1) US20210025053A1 (ja)
EP (1) EP3778216A4 (ja)
JP (1) JP6945724B2 (ja)
WO (1) WO2019187693A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017668A (ja) * 2005-07-07 2007-01-25 Konica Minolta Holdings Inc 光学フィルム
JP2007175891A (ja) * 2005-12-27 2007-07-12 Omron Corp 基板樹脂積層構造体及び光導波路モジュール
JP2009095989A (ja) * 2007-10-12 2009-05-07 Fujifilm Corp ガスバリアフィルムおよび環境感受性デバイス
JP2011016257A (ja) 2009-07-07 2011-01-27 Tsukishima Kikai Co Ltd プラスチック積層体及びその製造方法
JP2014065281A (ja) 2012-09-27 2014-04-17 Keio Gijuku 積層体とその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088431A (ja) * 2003-09-18 2005-04-07 Dainippon Printing Co Ltd バリア性フィルム
JP2009274251A (ja) * 2008-05-13 2009-11-26 Toppan Printing Co Ltd 透明バリアフィルムおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017668A (ja) * 2005-07-07 2007-01-25 Konica Minolta Holdings Inc 光学フィルム
JP2007175891A (ja) * 2005-12-27 2007-07-12 Omron Corp 基板樹脂積層構造体及び光導波路モジュール
JP2009095989A (ja) * 2007-10-12 2009-05-07 Fujifilm Corp ガスバリアフィルムおよび環境感受性デバイス
JP2011016257A (ja) 2009-07-07 2011-01-27 Tsukishima Kikai Co Ltd プラスチック積層体及びその製造方法
JP2014065281A (ja) 2012-09-27 2014-04-17 Keio Gijuku 積層体とその製造方法

Also Published As

Publication number Publication date
JP6945724B2 (ja) 2021-10-06
EP3778216A4 (en) 2021-05-26
US20210025053A1 (en) 2021-01-28
EP3778216A1 (en) 2021-02-17
JPWO2019187693A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2007026545A1 (ja) プラズマ放電処理装置及びガスバリア性フィルムの製造方法
JP5267712B2 (ja) 透明ガスバリア性フィルムの製造方法および有機エレクトロルミネッセンス素子
JP5136114B2 (ja) ガスバリア膜の作製方法及び作製装置
JP5626308B2 (ja) ガスバリア積層体の製造方法及びガスバリア積層体
JP5320848B2 (ja) ハードコート層付積層体
JP2005289041A (ja) 湾曲を防止したガスバリアフィルム
EP2243859A1 (en) Thin film forming method and thin film stack
JP5616657B2 (ja) 表面処理方法
JPWO2006075490A1 (ja) 透明ガスバリアフィルム
WO2015037534A1 (ja) 機能性フィルムの製造装置及び製造方法
WO2019187693A1 (ja) 積層体及びその製造方法
JP2007017668A (ja) 光学フィルム
JP2006219721A (ja) 機能性フィルムの製造方法と機能性フィルムと表示素子と表示装置
WO2016132901A1 (ja) ガスバリアーフィルム及びその製造方法
WO2016093312A1 (ja) 成膜装置及び成膜方法
JP5719106B2 (ja) 透明ガスバリア性フィルム及び透明ガスバリア性フィルムの製造方法
KR101763177B1 (ko) 진공증착된 가스베리어 필름 제조방법
WO2021106636A1 (ja) 積層フィルムの製造方法
KR20190084279A (ko) 가스 배리어성 필름 및 그것을 포함하는 디바이스
WO2016152488A1 (ja) ガスバリアーフィルム
WO2016185938A1 (ja) フィルム積層体、その製造方法及び成膜装置
JP2008031242A (ja) ガスバリア材の製造方法
JP2021085045A (ja) ガスバリア性フィルムの製造方法
WO2017086034A1 (ja) ガスバリアー性フィルム、照明装置及び表示装置
JP2015009379A (ja) ガスバリアーフィルム及びガスバリアーフィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020510368

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019776182

Country of ref document: EP