WO2019171734A1 - 基板処理装置及び基板処理方法 - Google Patents

基板処理装置及び基板処理方法 Download PDF

Info

Publication number
WO2019171734A1
WO2019171734A1 PCT/JP2018/048469 JP2018048469W WO2019171734A1 WO 2019171734 A1 WO2019171734 A1 WO 2019171734A1 JP 2018048469 W JP2018048469 W JP 2018048469W WO 2019171734 A1 WO2019171734 A1 WO 2019171734A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
processing liquid
time
dispensing process
substrate
Prior art date
Application number
PCT/JP2018/048469
Other languages
English (en)
French (fr)
Inventor
喬 太田
昌之 林
次郎 奥田
章宏 中島
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020207028010A priority Critical patent/KR102356420B1/ko
Priority to US16/979,194 priority patent/US11569104B2/en
Priority to CN201880090875.1A priority patent/CN111886677A/zh
Publication of WO2019171734A1 publication Critical patent/WO2019171734A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • H01L21/6708Apparatus for fluid treatment for etching for wet etching using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing method for processing a substrate with a processing liquid.
  • the substrate processing apparatus described in Patent Document 1 is a single wafer type that processes substrates one by one. Then, the substrate processing apparatus mixes a phosphoric acid aqueous solution at room temperature and a high-temperature sulfuric acid aqueous solution having a temperature higher than the boiling point of the phosphoric acid aqueous solution in a supply pipe, and a mixed solution of phosphoric acid, sulfuric acid, and water. Generate.
  • the phosphoric acid aqueous solution mixed with the sulfuric acid aqueous solution is heated by the heat of the sulfuric acid aqueous solution. Furthermore, heat of dilution is generated by mixing the phosphoric acid aqueous solution and the sulfuric acid aqueous solution.
  • the phosphoric acid aqueous solution mixed with the sulfuric acid aqueous solution is heated not only by the heat of the sulfuric acid aqueous solution but also by the heat of dilution. Therefore, the phosphoric acid aqueous solution contained in the mixed solution is heated to near the boiling point, and a mixed solution containing the phosphoric acid aqueous solution near the boiling point (hereinafter referred to as “treatment solution”) is discharged onto the substrate.
  • treatment solution a mixed solution containing the phosphoric acid aqueous solution near the boiling point
  • processing start temperature the temperature of the processing liquid at the start of processing
  • the difference between the temperature of the environment surrounding the substrate accommodated in the substrate processing apparatus (hereinafter referred to as “environment temperature”) and the temperature of the processing solution is large.
  • the difference in temperature at the start of processing between the substrates becomes larger than when a processing solution that is not high in temperature is used.
  • a processing liquid is adjusted to a predetermined temperature in a processing liquid tank that stores the processing liquid and a circulation pipe that circulates the processing liquid in a preparation stage for supplying the processing liquid to the substrate. Measures are being taken.
  • the temperature at the start of processing fluctuates slightly among the plurality of substrates due to the fact that the temperature of the supply piping branched from the circulation piping and supplying the processing liquid to the nozzles may differ between the plurality of substrates.
  • the processing results with the processing liquid vary among a plurality of substrates despite the temperature adjustment of the processing liquid tank and the circulation piping. There was a problem that occurred.
  • the inventor of the present application paid attention to the temperature of the processing liquid in the pre-dispensing process, and examined in detail the cause of the variation in the processing results between the plurality of substrates.
  • FIG. 13 is a diagram showing a temperature transition of the processing liquid in a general substrate processing apparatus.
  • the horizontal axis indicates time, and the vertical axis indicates the temperature of the processing liquid.
  • Time t0 indicates the discharge start time of the processing liquid in the pre-dispensing process.
  • Time t1 indicates the discharge stop time of the processing liquid in the pre-dispensing process. That is, time t1 indicates the end time of the pre-dispensing process.
  • Time t2 indicates the start time of substrate processing using the processing liquid.
  • the temperature Tc indicates the environmental temperature.
  • Curve Ca1 shows the temperature transition of the processing solution in the pre-dispensing process and the substrate process for the first substrate.
  • a curve Ca2 indicates a temperature transition of the processing liquid in the pre-dispensing process and the substrate process for the second substrate.
  • a curve Ca3 shows the temperature transition of the processing liquid in the pre-dispensing process and the substrate process for the third substrate.
  • the pre-dispensing process is executed. Then, the substrate processing with the processing liquid is performed in the period SP after time t2.
  • the temperature of the treatment liquid at the end time t1 of the pre-dispensing treatment is the temperature Ta1.
  • the temperature of the treatment liquid at the end time t1 of the pre-dispensing process is the temperature Ta2.
  • the temperature of the processing liquid at the end time t1 of the pre-dispensing process is the temperature Ta3.
  • the temperature Ta1 is lower than the temperature Ta2 and the temperature Ta3, and the temperature Ta2 is lower than the temperature Ta3. This is because the temperature of the supply pipe branched from the circulation pipe is lowest when the processing liquid is supplied for the first substrate and then gradually increases. In particular, when the waiting time of the substrate processing apparatus is relatively long, the temperature of the supply pipe is lower in the pre-dispensing process for the first substrate than in the pre-dispensing process for the second and subsequent substrates. The influence of the difference in the temperature of the supply pipe during the pre-dispensing process among the plurality of substrates is particularly remarkable when a high-temperature processing liquid is used.
  • the temperature of the processing liquid at the start time t2 of the substrate processing is also different among the three substrates. As a result, there may be some variation in processing results between the three substrates.
  • the inventor of the present application when the temperature of the processing liquid at the end time of the pre-dispensing process is different between the plurality of substrates, the processing result is slightly different between the plurality of substrates. I found out that there might be variations.
  • the inventors of the present application conducted intensive research on the substrate processing apparatus and the substrate processing method from the viewpoint of pre-dispensing processing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of improving the uniformity of a processing result using a processing liquid between a plurality of substrates.
  • the substrate processing apparatus processes a substrate with a processing liquid.
  • the substrate processing apparatus includes a substrate holding unit, a nozzle, a supply adjusting unit, a liquid receiving unit, a temperature detecting unit, and a control unit.
  • the substrate holding unit rotates while holding the substrate.
  • the nozzle discharges the processing liquid onto the held substrate.
  • the supply adjusting unit adjusts the supply amount of the processing liquid to the nozzle.
  • the liquid receiving part is located outside the substrate holding part and receives the processing liquid discharged by the nozzle.
  • the temperature detection unit detects the temperature of the processing liquid before the temperature of the processing liquid during the pre-dispensing process reaches the target temperature.
  • the control unit controls the supply adjusting unit according to the pre-dispensing process condition to execute the pre-dispensing process.
  • the pre-dispensing process indicates a process of discharging the processing liquid toward the liquid receiving unit before discharging the processing liquid onto the substrate.
  • the control unit sets a discharge stop time of the processing liquid in the pre-dispensing process based on a target temperature prediction time.
  • the target temperature prediction time indicates the prediction time until the temperature of the processing liquid reaches the target temperature from the detected temperature.
  • the detected temperature indicates the temperature of the processing liquid detected by the temperature detector before reaching the target temperature.
  • the target temperature prediction time is determined based on a temperature profile.
  • the temperature profile indicates a record of a time transition of the temperature of the processing liquid when the pre-dispensing process is executed in the past according to the pre-dispensing process condition.
  • control unit determines the target temperature prediction time according to the detected temperature of the processing liquid based on the temperature profile.
  • the temperature detection unit detects that the temperature of the processing liquid has reached a predetermined temperature during the pre-dispensing process.
  • the predetermined temperature is preferably lower than the target temperature.
  • the control unit stops the discharge of the processing liquid in the pre-dispensing process. It is preferable to control the supply adjusting unit.
  • the temperature detection unit detects the temperature of the processing liquid at a predetermined detection time during execution of the pre-dispensing process.
  • the predetermined detection time preferably indicates a time before the temperature of the processing solution reaches the target temperature.
  • the control unit controls the supply adjusting unit so as to stop the discharge of the processing liquid in the pre-dispensing process.
  • control unit performs the pre-dispensing process by controlling the supply adjusting unit according to a pre-dispensing process condition selected from a plurality of the pre-dispensing process conditions. It is preferable that the pre-dispensing process condition when recording the time transition of the temperature in the temperature profile is the same as the selected pre-dispensing process condition.
  • the temperature profile is obtained when the pre-dispensing process is performed in the past according to the pre-dispensing process condition when the state of the substrate processing apparatus is a state indicated by status information. It is preferable to show a record of the temperature over time.
  • the status information includes information indicating an elapsed time from the completion of the latest substrate processing and information indicating how many substrates are held by the substrate holding unit when processing the substrates one by one. It is preferable that information of at least one of them is included.
  • the processing liquid preferably contains phosphoric acid or a sulfuric acid / hydrogen peroxide mixture.
  • the substrate processing apparatus of the present invention preferably further includes a plurality of chambers. It is preferable that each of the chambers includes the substrate holding unit, the nozzle, the supply adjusting unit, the liquid receiving unit, and the temperature detecting unit. Each of the plurality of chambers preferably accommodates the substrate holding unit, the nozzle, the supply adjusting unit, the liquid receiving unit, and the temperature detecting unit. It is preferable that the control unit sets a discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time for each chamber.
  • the substrate processing method is executed by a substrate processing apparatus that processes a substrate with a processing liquid.
  • the substrate processing method includes a pre-dispensing step of performing pre-dispensing processing according to pre-dispensing processing conditions.
  • the pre-dispensing process indicates a process of discharging the processing liquid toward the liquid receiving part before discharging the processing liquid onto the substrate.
  • the pre-dispensing step includes detecting the temperature of the processing liquid before the temperature of the processing liquid during the pre-dispensing process reaches the target temperature, and the pre-dispensing process based on the target temperature prediction time.
  • the target temperature prediction time indicates the prediction time until the temperature of the processing liquid reaches the target temperature from the detected temperature.
  • the detected temperature indicates the temperature of the processing liquid detected before reaching the target temperature by the detecting step.
  • the target temperature prediction time is determined based on a temperature profile.
  • the temperature profile indicates a record of a time transition of the temperature of the processing liquid when the pre-dispensing process is executed in the past according to the pre-dispensing process condition.
  • the target temperature prediction time corresponding to the detected temperature of the processing liquid is determined based on the temperature profile.
  • the pre-dispensing process stops the discharge of the processing liquid in the pre-dispensing process when the target temperature prediction time has elapsed from the time when it is detected that the temperature of the processing liquid has reached the predetermined temperature. It is preferable to further include a termination step.
  • the detection step detects the temperature of the processing liquid at a predetermined detection time during execution of the pre-dispensing process.
  • the predetermined detection time preferably indicates a time before the temperature of the processing solution reaches the target temperature.
  • the pre-dispensing step further includes a pre-dispensing end step of stopping the discharge of the processing liquid in the pre-dispensing process when the target temperature prediction time has elapsed from the predetermined detection time.
  • the pre-dispensing process is performed according to pre-dispensing process conditions selected from a plurality of the pre-dispensing process conditions. It is preferable that the pre-dispensing process condition when recording the time transition of the temperature in the temperature profile is the same as the selected pre-dispensing process condition.
  • the temperature profile is obtained when the pre-dispensing process is performed in the past according to the pre-dispensing process condition when the state of the substrate processing apparatus is a state indicated by status information. It is preferable to show a record of the temperature over time.
  • the state information includes information indicating an elapsed time from the completion of the latest substrate processing and information indicating how many substrates are held by the substrate holding unit when processing the substrates one by one. It is preferable to include at least one of the information.
  • the processing solution preferably contains phosphoric acid or a sulfuric acid / hydrogen peroxide mixed solution.
  • the pre-dispensing step is performed for each of a plurality of chambers that respectively accommodate a plurality of the substrates.
  • the uniformity of the processing result by the processing liquid can be improved between a plurality of substrates.
  • FIG. 2 is a plan view showing the inside of a processing unit of the substrate processing apparatus according to Embodiment 1.
  • FIG. It is a figure which shows the temperature profile of the substrate processing apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the temperature transition of the process liquid in the substrate processing apparatus which concerns on Embodiment 1.
  • FIG. 3 is a flowchart illustrating a substrate processing method executed by the substrate processing apparatus according to the first embodiment. It is a figure which shows the temperature transition of the process liquid in the substrate processing apparatus which concerns on Embodiment 2 of this invention. It is a figure which shows the temperature profile of the substrate processing apparatus which concerns on Embodiment 2.
  • FIG. 3 is a flowchart illustrating a substrate processing method executed by the substrate processing apparatus according to the first embodiment. It is a figure which shows the temperature transition of the process liquid in the substrate processing apparatus which concerns on Embodiment 2 of this invention. It is a figure which shows the temperature profile of the substrate processing apparatus which concerns on Embodiment 2.
  • FIG. 6 is a flowchart illustrating a substrate processing method executed by the substrate processing apparatus according to the second embodiment. It is a conceptual diagram which shows the pre-dispensing process conditions and temperature profile which were memorize
  • the X axis, the Y axis, and the Z axis are orthogonal to each other, the X axis and the Y axis are parallel to the horizontal direction, and the Z axis is parallel to the vertical direction.
  • FIG. 1 is a diagram showing a substrate processing apparatus 100.
  • the substrate processing apparatus 100 processes the substrate W with a processing liquid.
  • the substrate processing apparatus 100 is a single wafer type that processes the substrates W one by one.
  • the substrate W has a substantially disk shape.
  • the processing of the substrate W by the processing liquid may be referred to as “substrate processing”.
  • the substrate processing apparatus 100 includes a processing unit 1, a supply adjusting unit 2, and a control device 3.
  • the processing unit 1 discharges the processing liquid onto the substrate W to process the substrate W.
  • the processing unit 1 includes a chamber 10, a spin chuck 11, a nozzle 12, a supply pipe 13, a nozzle moving unit 14, a liquid receiving unit 15, a cup 16, and a temperature detection unit 17. Including.
  • the chamber 10 has a substantially box shape.
  • the chamber 10 accommodates the substrate W, the spin chuck 11, the nozzle 12, a part of the supply pipe 13, the nozzle moving unit 14, the liquid receiving unit 15, the cup 16, and the temperature detection unit 17.
  • the spin chuck 11 rotates while holding the substrate W.
  • the spin chuck 11 corresponds to an example of a “substrate holder”. Specifically, the spin chuck 11 rotates the substrate W around the rotation axis A ⁇ b> 1 while holding the substrate W horizontally in the chamber 10.
  • the spin chuck 11 includes a plurality of chuck members 110, a spin base 111, and a spin motor 112.
  • the plurality of chuck members 110 hold the substrate W in a horizontal posture.
  • the spin base 111 has a substantially disc shape and supports the plurality of chuck members 110 in a horizontal posture.
  • the spin motor 112 rotates the spin base 111 to rotate the substrate W held by the plurality of chuck members 110 around the rotation axis A1.
  • the nozzle 12 discharges the processing liquid toward the substrate W.
  • the treatment liquid is a chemical liquid.
  • the processing liquid contains phosphoric acid.
  • the processing liquid includes a sulfuric acid / hydrogen peroxide mixture (SPM).
  • SPM sulfuric acid / hydrogen peroxide mixture
  • a treatment liquid containing phosphoric acid or SPM is an example of a treatment liquid used at a high temperature.
  • the supply pipe 13 is connected to the nozzle 12.
  • the supply pipe 13 supplies the processing liquid to the nozzle 12.
  • the temperature of the processing liquid supplied to the supply pipe 13 is a specified temperature higher than room temperature (hereinafter referred to as “specified temperature TM”) in a circulation pipe (not shown) arranged upstream of the supply pipe 13.
  • the above specific temperature is maintained.
  • the specified temperature TM indicates a temperature at which a specified processing rate (for example, a specified etching rate or a specified object removal rate) can be realized for the substrate W.
  • the specified temperature TM indicates a temperature at which a specified processing result (for example, a specified etching amount or a specified object removal amount) can be achieved with respect to the substrate W within a specified time.
  • the specified temperature TM is, for example, 175 ° C. in the treatment liquid containing phosphoric acid.
  • the specified temperature TM is, for example, 200 ° C. in the processing liquid containing SPM.
  • the supply adjusting unit 2 adjusts the supply amount of the processing liquid to the nozzle 12.
  • the supply adjusting unit 2 is disposed in the supply pipe 13 outside the chamber 10.
  • the supply adjusting unit 2 may be disposed in the supply pipe 13 inside the chamber 10.
  • the supply adjusting unit 2 sets the supply amount of the processing liquid to the nozzle 12 to zero and stops the supply of the processing liquid to the nozzle 12.
  • the supply adjusting unit 2 supplies the processing liquid to the nozzle 12 by increasing the supply amount of the processing liquid to the nozzle 12 from zero.
  • the supply adjusting unit 2 adjusts the flow rate of the processing liquid supplied to the nozzle 12.
  • the supply adjustment unit 2 includes a valve 20, a flow meter 21, and a flow rate adjustment valve 22.
  • the supply start and stop of the supply of the processing liquid to the nozzle 12 are switched by the valve 20.
  • the valve 20 is an open / close valve and can be switched between an open state and a closed state.
  • the open state is a state in which the processing liquid flowing in the supply pipe 13 is passed toward the nozzle 12.
  • the closed state is a state in which the supply of the processing liquid from the supply pipe 13 to the nozzle 12 is stopped.
  • the flow meter 21 detects the flow rate of the processing liquid supplied to the nozzle 12.
  • the flow rate adjustment valve 22 adjusts the flow rate of the processing liquid supplied to the nozzle 12.
  • the valve 20 When the valve 20 is opened, the processing liquid is supplied from the supply pipe 13 to the nozzle 12 at a flow rate corresponding to the opening degree of the flow rate adjustment valve 22. As a result, the processing liquid is discharged from the nozzle 12.
  • the opening degree indicates the degree to which the flow rate adjustment valve 22 is open.
  • the cup 16 has a substantially cylindrical shape.
  • the cup 16 receives the processing liquid discharged from the substrate W.
  • the temperature detector 17 detects the temperature of the processing liquid in the chamber 10. Then, the temperature detection unit 17 outputs information indicating the temperature of the processing liquid to the control device 3. In the first embodiment, the temperature detection unit 17 detects the temperature of the processing liquid in the supply pipe 13. Specifically, a temperature measuring unit (not shown) of the temperature detection unit 17 comes into contact with the processing liquid in the supply pipe 13 and detects the temperature of the processing liquid. The temperature detector 17 may detect the temperature of the processing liquid in the supply pipe 13 in the vicinity of the nozzle 12, or detect the temperature of the processing liquid in the supply pipe 13 at a position relatively away from the nozzle 12. Also good.
  • the temperature detection unit 17 includes a temperature sensor.
  • the temperature sensor includes, for example, a thermocouple and a measuring instrument. Specifically, a thermocouple is inserted into the supply pipe 13. And a thermocouple detects the temperature of the process liquid in the supply piping 13, and outputs the voltage signal corresponding to temperature to a measuring device.
  • the measuring instrument converts the voltage signal into a temperature and outputs information indicating the temperature to the control device 3.
  • the measuring instrument may be disposed in the chamber 10 or may be disposed outside the chamber 10.
  • the temperature measuring contact of the thermocouple may be arranged in the vicinity of the nozzle 12 in the supply pipe 13 or may be arranged at a position relatively distant from the nozzle 12. The temperature measuring contact corresponds to the temperature measuring unit of the temperature detecting unit 17.
  • the temperature detection part 17 may detect the temperature of a process liquid indirectly by detecting the temperature of the outer surface of the supply piping 13.
  • the temperature detection unit 17 may detect the temperature of the processing liquid inside the nozzle 12 or may detect the temperature of the processing liquid indirectly by detecting the temperature of the outer surface of the nozzle 12. Good.
  • the temperature detection unit 17 may detect the temperature of the processing liquid on the substrate W after the processing liquid is discharged onto the substrate W.
  • the temperature detection unit 17 includes a radiation thermometer or an infrared thermography. The radiation thermometer measures the temperature of the processing liquid discharged onto the substrate W by measuring the intensity of infrared light or visible light emitted from the processing liquid discharged onto the substrate W. Then, the radiation thermometer outputs information indicating the temperature of the processing liquid to the control device 3.
  • Infrared thermography includes an infrared camera. In the infrared thermography, infrared rays emitted from the processing liquid discharged onto the substrate W are detected by an infrared camera. Further, the infrared thermography analyzes an image representing the detected infrared ray and calculates the temperature of the processing liquid discharged onto the substrate W. The infrared thermography outputs information indicating the temperature of the processing liquid to the control device 3.
  • FIG. 2 is a plan view showing the inside of the processing unit 1.
  • the nozzle moving unit 14 rotates around the rotation axis A2 to move the nozzle 12 horizontally.
  • the nozzle moving unit 14 moves the nozzle 12 horizontally between the processing position PS1 of the nozzle 12 and the standby position PS2.
  • the processing position PS1 indicates a position above the substrate W.
  • the nozzle 12 positioned at the processing position PS1 is indicated by a two-dot chain line.
  • the standby position PS ⁇ b> 2 indicates a position outside the spin chuck 11 and the cup 16.
  • the nozzle moving unit 14 can also move the nozzle 12 vertically.
  • the liquid receiver 15 is located outside the spin chuck 11 and the cup 16. Specifically, the liquid receiver 15 is located below the standby position PS2 of the nozzle 12. The liquid receiver 15 receives the processing liquid discharged by the nozzle 12 in the pre-dispensing process.
  • the pre-dispensing process indicates a process of discharging the processing liquid toward the liquid receiving unit 15 before discharging the processing liquid onto the substrate W. Specifically, when the substrate processing apparatus 100 performs the pre-dispensing process, the nozzle moving unit 14 lowers the nozzle 12 from the standby position PS ⁇ b> 2 and moves the nozzle 12 to the liquid receiving unit 15. Then, the nozzle 12 discharges the processing liquid toward the liquid receiving portion 15.
  • the control device 3 includes a control unit 30 and a storage unit 31.
  • the control unit 30 includes a processor such as a CPU (Central Processing Unit).
  • the storage unit 31 includes a storage device and stores data and a computer program.
  • the storage unit 31 includes a main storage device such as a semiconductor memory and an auxiliary storage device such as a semiconductor memory and / or a hard disk drive.
  • the storage unit 31 may include a removable medium.
  • the processor of the control unit 30 executes the computer program stored in the storage device of the storage unit 31 to control the processing unit 1 and the supply adjustment unit 2.
  • the control unit 30 controls the supply adjusting unit 2 and the nozzle moving unit 14 according to the pre-dispensing process conditions, and executes the pre-dispensing process.
  • the pre-dispensing process condition indicates a condition related to the processing liquid when executing the pre-dispense.
  • the pre-dispensing process condition includes, for example, the flow rate of the processing liquid discharged from the nozzle 12 and / or the type of the processing liquid.
  • the temperature detection unit 17 detects the temperature of the processing liquid before the temperature of the processing liquid during the pre-dispensing process reaches a target temperature (hereinafter may be referred to as “target temperature Tt”).
  • the target temperature Tt is set to a value not less than the specified temperature TM and not more than the saturation temperature of the treatment liquid.
  • the control unit 30 sets the discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time.
  • the target temperature predicted time indicates the predicted time until the temperature of the processing liquid reaches the target temperature Tt from the detected temperature (hereinafter sometimes referred to as “detected temperature Td”).
  • the detected temperature Td indicates the temperature of the processing liquid detected by the temperature detector 17 before reaching the target temperature Tt.
  • the target temperature prediction time is determined based on a temperature profile (hereinafter sometimes referred to as “temperature profile PF”).
  • the temperature profile PF shows a record of the time transition of the temperature of the processing liquid when the pre-dispensing process is executed in the past according to the pre-dispensing process conditions.
  • the pre-dispensing process condition for recording the time transition of the temperature in the temperature profile PF is the same as the pre-dispensing process condition for the pre-dispensing process being executed.
  • the storage unit 31 stores a temperature profile PF.
  • the control unit 30 sets the discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time. Accordingly, in the pre-dispensing process, the processing liquid is discharged until the temperature of the processing liquid reaches the target temperature Tt. As a result, when the substrates W are processed one by one by the processing unit 1, it is possible to suppress the temperature of the processing liquid at the end time of the pre-dispensing process from being different among the plurality of substrates W.
  • processing start temperature the temperature of the processing liquid at the start of the processing of the substrate W.
  • control unit 30 sets the target temperature prediction time to the processing liquid discharge stop time in the pre-dispensing process.
  • the treatment liquid discharge stop time indicates the time from the detection time of the detected temperature Td to the treatment liquid discharge stop time in the pre-dispensing process.
  • the treatment liquid discharge stop time in the pre-dispensing process indicates the end time of the pre-dispensing process.
  • FIG. 3 is a diagram showing the temperature profile PF.
  • the horizontal axis indicates time, and the vertical axis indicates the temperature of the processing liquid.
  • the temperature of the processing liquid is detected by the temperature detector 17.
  • the temperature profile PF is a record of the temperature transition of the processing liquid in the past pre-dispensing process.
  • time t0 shows the discharge start time of the process liquid by a pre-dispensing process. That is, time t0 indicates the start time of the pre-dispensing process.
  • the time t1 indicates the time when the temperature of the processing liquid by the pre-dispensing process reaches the target temperature Tt.
  • the discharge of the processing liquid in the pre-dispensing process is stopped at the time when the temperature of the processing liquid in the pre-dispensing process reaches the target temperature Tt. Therefore, the time t1 is the processing liquid discharge stop time and indicates the end time of the pre-dispensing process. That is, the pre-dispensing process is executed in the period PD from time t0 to time t1.
  • the time tx indicates the time at which the temperature of the processing liquid reaches the temperature Tx lower than the target temperature Tt in the pre-dispensing process.
  • the time tR until the temperature of the treatment liquid reaches the target temperature Tt from the temperature Tx (hereinafter sometimes referred to as “target temperature arrival time tR”) can be specified from the temperature profile PF.
  • the target temperature arrival time tR indicates the time from the time tx to the time t1 in the temperature profile PF.
  • the control unit 30 determines the target temperature arrival time tR specified from the temperature profile PF that is a record of the past pre-dispensing process as the target temperature prediction time in the pre-dispensing process being executed. That is, when the detected temperature Td of the processing liquid in the pre-dispensing process being executed substantially matches the temperature Tx in the temperature profile PF, the temperature of the processing liquid in the pre-dispensing process being executed is determined from the detection time of the detected temperature Td. It can be predicted that the target temperature Tt will be reached from the detected temperature Td when the target temperature arrival time tR has elapsed in the profile PF.
  • the control unit 30 determines the target temperature prediction time according to the detected temperature Td of the processing liquid based on the temperature profile PF. Therefore, the target temperature prediction time can be determined with high accuracy.
  • the temperature profile PF is recorded from the time t1 of the pre-dispensing process to the start time t2 of the processing of the substrate W by the processing liquid in addition to the recording of the time transition of the temperature of the processing liquid when the pre-dispensing process has been executed in the past. And a record of the time transition of the temperature of the processing liquid and a record of the time transition of the temperature of the processing liquid when the substrate W is processed with the processing liquid in the past.
  • Time t2 indicates the start time of the processing of the substrate W by the processing liquid. That is, the substrate W is processed with the processing liquid in the period SP after the time t2.
  • FIG. 4 is a diagram showing the temperature transition of the processing liquid in the processing unit 1. As shown in FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the temperature of the treatment liquid.
  • FIG. 4 shows the temperature transition of the processing liquid when processing three substrates W one by one. That is, the curve C1 shows the temperature transition of the processing liquid in the pre-dispensing process and the substrate process for the first substrate W. A curve C2 represents a temperature transition of the processing liquid in the pre-dispensing process and the substrate process for the second substrate W. A curve C3 indicates a temperature transition of the processing liquid in the pre-dispensing process and the substrate process for the third substrate W. Time t0 indicates the discharge start time of the processing liquid in the pre-dispensing process.
  • the temperature of the processing liquid with respect to the first substrate W is the lowest, and the temperature of the processing liquid with respect to the second substrate W is the next lowest.
  • the temperature of the processing liquid with respect to the substrate W is the highest. This is because the temperature of the supply pipe 13 branched from the circulation pipe (not shown) is lowest when the processing liquid is supplied for the first substrate W, and then gradually increases. In particular, when the standby time of the processing unit 1 is relatively long, the temperature of the supply pipe 13 is higher in the pre-dispensing process for the first substrate W than in the pre-dispensing process for the second and subsequent substrates W. Low.
  • control unit 30 performs the pre-dispensing process for each substrate W so that the temperature of the processing liquid at the end time of the pre-dispensing process is uniform among the three substrates W based on the detection result of the temperature detecting unit 17.
  • the discharge time of the processing liquid in is controlled.
  • the temperature detection unit 17 detects, for each substrate W, that the temperature of the processing liquid has reached the predetermined temperature Ty during execution of the pre-dispensing process.
  • the predetermined temperature Ty is lower than the target temperature Tt.
  • the temperature of the processing liquid reaches the predetermined temperature Ty at time ta.
  • the temperature of the processing liquid reaches the predetermined temperature Ty at time tb.
  • the temperature of the processing liquid reaches the predetermined temperature Ty at time tc.
  • the control unit 30 refers to the temperature profile PF shown in FIG. 3 and specifies the target temperature arrival time tR based on the temperature Tx that matches the predetermined temperature Ty. Then, the control unit 30 determines the target temperature arrival time tR as the target temperature predicted time tP. That is, the control unit 30 determines the target temperature predicted time tP according to the predetermined temperature Ty that is the detected temperature Td based on the temperature profile PF.
  • the control unit 30 adjusts the supply so as to stop the discharge of the processing liquid in the pre-dispensing process.
  • the unit 2 (specifically, the valve 20) is controlled. Specifically, on the first substrate W, as indicated by the curve C1, the nozzle 12 stops the discharge of the processing liquid at time tA when the target temperature predicted time tP has elapsed from time ta. On the second substrate W, as indicated by the curve C2, the nozzle 12 stops the discharge of the processing liquid at time tB when the target temperature prediction time tP has elapsed from time tb. In the third substrate W, as shown by the curve C3, the nozzle 12 stops the discharge of the processing liquid at time tC when the target temperature prediction time tP has elapsed from time tc.
  • the temperature of the processing liquid from the end time tA to the end time tC of the pre-dispensing process for the three substrates W is substantially the same as the target temperature Tt. That is, it can be suppressed that the temperature of the processing liquid from the end time tA to the end time tC of the pre-dispensing process is different among the three substrates W. Therefore, it is possible to suppress the temperature at the start of processing of the substrate W from being different among the three substrates W. Specifically, as shown by the curves C1 to C3, the temperature at the start of processing of the first substrate W at the processing start time tp and the processing start time of the second substrate W at the processing start time tq. The temperature and the temperature at the start of processing at the processing start time tr of the third substrate W are the temperature Ts and are substantially the same. As a result, the uniformity of the processing result by the processing liquid can be improved between the three substrates W.
  • the time from the end time tA of the pre-dispensing process for the first substrate W to the processing start time tp, and the end time tB of the pre-dispensing process for the second substrate W are started.
  • the time from the end time tC of the pre-dispensing process for the third substrate W to the process start time tr is substantially the same.
  • substrate W by a process liquid is performed in period SP1 after process start time tp.
  • the processing of the second substrate W by the processing liquid is executed in a period SP2 after the processing start time tq.
  • the processing of the third substrate W by the processing liquid is executed in a period SP3 after the processing start time tr.
  • the length of the period SP1, the length of the period SP2, and the length of the period SP3 are substantially the same. Accordingly, the three substrates W are processed with the processing liquid having substantially the same processing start temperature Ts in the periods SP1 to SP3 having substantially the same length. As a result, the uniformity of the processing result by the processing liquid can be further improved between the three substrates W.
  • the period for executing the pre-dispensing process is longer.
  • the period PD1 for performing the pre-dispensing process for the first substrate W is longer than the period PD2 for performing the pre-dispensing process for the second substrate W.
  • the period PD2 for executing the pre-dispensing process for the second substrate W is longer than the period PD3 for executing the pre-dispensing process for the third substrate W.
  • the temperature of the processing liquid at the end time tA to the end time tC of the pre-dispensing process differs among the three substrates W.
  • the uniformity of the processing result by the processing liquid can be further improved between the three substrates W.
  • the uniformity of the processing result by the processing liquid can be improved between the plurality of substrates W.
  • the pre-dispensing process according to the first embodiment is particularly effective when a high-temperature processing liquid (for example, a processing liquid containing phosphoric acid or a processing liquid containing SPM) is used.
  • a high-temperature processing liquid for example, a processing liquid containing phosphoric acid or a processing liquid containing SPM
  • the difference between the environmental temperature and the temperature of the processing liquid is large. Therefore, there is a difference in the temperature of the processing liquid among the plurality of substrates W at the end time of the pre-dispensing process. It is because it becomes larger than the case where the processing liquid which is not high temperature is used.
  • the temperature of the processing liquid at the end time of the pre-dispensing process can be suppressed from being different between the plurality of substrates W.
  • the uniformity of the processing result by the processing liquid can be improved.
  • the fluctuation of the environmental temperature of the substrate will be described by taking a general substrate processing apparatus as an example.
  • a general substrate processing apparatus there may be some variation in processing results between a plurality of substrates due to fluctuations in environmental temperature.
  • a change in the environmental temperature of the substrate being processed may slightly affect the temperature of the processing liquid.
  • the difference between the environmental temperature and the temperature of the processing liquid is large, so the influence of fluctuations in the environmental temperature is greater than when using a non-high-temperature processing liquid.
  • fluctuations in the environmental temperature have any effect on the temperature of the processing solution, there may be some variation in processing results between a plurality of substrates.
  • the processing liquid discharge stop time in the pre-dispensing process based on the target temperature prediction time
  • the processing liquid at the end time of the pre-dispensing process is set. It is possible to suppress the temperature from being different among the plurality of substrates W. Accordingly, it is possible to improve the uniformity of the processing result by the processing liquid among the plurality of substrates W.
  • the discharge of the processing liquid in the pre-dispensing process is controlled based on the detected temperature Td lower than the target temperature Tt. Therefore, the first embodiment has the following advantages compared to the case where the discharge of the processing liquid in the pre-dispensing process is controlled based on the detected target temperature Tt.
  • the discharge of the processing liquid can be reliably controlled.
  • the discharge of the processing liquid may be stopped after the target temperature Tt is exceeded.
  • the processing liquid discharge is controlled based on the detected temperature Td lower than the target temperature Tt. Therefore, a temperature zone suitable for the performance of the temperature detection unit 17 is selected and the temperature of the processing liquid is set. It can be detected. In particular, when using a high temperature processing liquid, the detection accuracy by the temperature detection unit 17 may not be sufficient in a high temperature range, but in the first embodiment, the processing liquid is in a temperature range suitable for the performance of the temperature detection unit 17. Can detect temperature.
  • FIG. 5 is a flowchart showing the substrate processing method.
  • the substrate processing method includes a step S1 and a step S2.
  • the substrate processing method is executed by the substrate processing apparatus 100 that processes the substrate W with the processing liquid.
  • step S ⁇ b> 1 the substrate processing apparatus 100 performs pre-dispensing processing according to pre-dispensing processing conditions.
  • Step S1 corresponds to an example of a “pre-dispensing step”.
  • step S2 the substrate processing apparatus 100 processes the substrate W with the processing liquid.
  • step S2 corresponds to an example of a “substrate processing step”.
  • the substrate processing apparatus 100 performs the process S1 and the process S2 for each substrate W one by one.
  • step S1 includes steps S11 to S16.
  • step S11 the control unit 30 recognizes the state of the substrate processing apparatus 100 indicated by the state information of the substrate processing apparatus 100 (hereinafter referred to as “state information ST”).
  • state information ST of the substrate processing apparatus 100 includes information indicating the elapsed time since the last processing of the substrate W and the number of substrates W held by the spin chuck 11 when processing the substrates W one by one. And at least one of the information indicating whether or not it has been performed.
  • step S12 the control unit 30 sets the pre-dispensing processing conditions in the substrate processing apparatus 100. Specifically, the control unit 30 sets a pre-dispensing process condition selected from a plurality of different pre-dispensing process conditions in the substrate processing apparatus 100. After step S12, the process proceeds to step S13.
  • step S13 the control unit 30 controls the supply adjusting unit 2 in accordance with the pre-dispensing processing conditions so that the nozzle 12 starts to discharge the processing liquid toward the liquid receiving unit 15. As a result, the nozzle 12 starts to discharge the processing liquid toward the liquid receiving portion 15.
  • step S14 the process proceeds to step S14.
  • step S14 the temperature detection unit 17 detects the temperature of the processing liquid before the temperature of the processing liquid that is executing the pre-dispensing process reaches the target temperature Tt. Specifically, in step S14, it is detected that the temperature of the processing liquid has reached the predetermined temperature Ty during the pre-dispensing process. The predetermined temperature Ty is lower than the target temperature Tt. Step S14 corresponds to an example of a “detection step”.
  • step S14 includes step S141, step S142, and step S143.
  • step S141 the temperature detection unit 17 detects the temperature of the processing liquid before the temperature of the processing liquid that is executing the pre-dispensing process reaches the target temperature Tt, and controls the information indicating the temperature of the processing liquid. Output to 30. Therefore, the control unit 30 monitors the temperature of the processing liquid before the temperature of the processing liquid reaches the target temperature Tt. After step S141, the process proceeds to step S142.
  • step S142 the control unit 30 determines whether or not the temperature of the processing liquid has reached a predetermined temperature Ty.
  • step S142 If it is determined that the temperature of the processing liquid has not reached the predetermined temperature Ty (No in step S142), the processing returns to step S141.
  • step S142 if it is determined that the temperature of the processing liquid has reached the predetermined temperature Ty (Yes in step S142), the process proceeds to step S143. Even after it is determined that the temperature of the processing liquid has reached the predetermined temperature Ty, the temperature detection unit 17 detects the temperature of the processing liquid, and the control unit 30 monitors the temperature of the processing liquid.
  • step S143 the control unit 30 controls the storage unit 31 so as to store the time when the temperature of the processing liquid reaches the predetermined temperature Ty (for example, time ta). As a result, the storage unit 31 stores the time when the temperature of the processing liquid reaches the predetermined temperature Ty. After step S143, the process proceeds to step S15.
  • the predetermined temperature Ty for example, time ta
  • step S15 the control unit 30 sets the discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time tP. Specifically, the control unit 30 determines a target temperature prediction time tP corresponding to the predetermined temperature Ty based on the temperature profile PF. Then, the control unit 30 sets the target temperature predicted time tP as the treatment liquid discharge stop time. The predetermined temperature Ty coincides with the detected temperature Td. The detected temperature Td indicates the temperature of the processing liquid detected before reaching the target temperature Tt in step S14. Step S15 corresponds to an example of a “setting step”. After step S15, the process proceeds to step S16.
  • step S16 when the target temperature prediction time tP has elapsed (for example, time tA) from the time (for example, time ta) at which it is detected that the predetermined temperature Ty has been reached, the control unit 30 determines the processing liquid in the pre-dispensing process.
  • the supply adjusting unit 2 is controlled so as to stop the discharge.
  • the nozzle 12 stops the discharge of the processing liquid.
  • Step S16 corresponds to an example of a “pre-dispensing end step”. After step S16, the process proceeds to step S2.
  • step S2 is completed, the pre-dispensing process and the process using the processing liquid for one substrate W are completed.
  • Embodiment 2 A substrate processing apparatus 100 according to Embodiment 2 of the present invention will be described with reference to FIG. 1 and FIGS.
  • the second embodiment is different from the second embodiment in that the target temperature prediction time is determined according to the temperature of the processing liquid detected at the predetermined detection time (hereinafter sometimes referred to as “predetermined detection time ty”). Different from 1.
  • predetermined detection time ty the predetermined detection time
  • FIG. 6 is a diagram showing a temperature transition of the processing liquid in the processing unit 1.
  • the curves C1 to C3 shown in FIG. 6 are the same as the curves C1 to C3 shown in FIG. 4, respectively, and description thereof will be omitted as appropriate.
  • the temperature detection unit 17 detects the temperature of the processing liquid for each substrate W at a predetermined detection time ty during execution of the pre-dispensing process.
  • the temperature of the processing liquid detected at the predetermined detection time ty is the detection temperature Td.
  • the predetermined detection time ty indicates a time before the temperature of the processing liquid reaches the target temperature Tt, and is predetermined.
  • the temperature of the processing liquid at the predetermined detection time ty is the temperature Ty1.
  • the temperature of the processing liquid at the predetermined detection time ty is the temperature Ty2.
  • the temperature of the processing liquid at the predetermined detection time ty is the temperature Ty3.
  • the control unit 30 refers to the temperature profile PF and determines a target temperature prediction time tP1 to a target temperature prediction time tP3 for each of the temperature Ty1 to the temperature Ty3 of the processing liquid at the predetermined detection time ty. That is, the control unit 30 determines the target temperature prediction time tP1 to the target temperature prediction time tP3 according to the temperature Ty1 to the temperature Ty3 of the processing liquid at the predetermined detection time ty based on the temperature profile PF.
  • FIG. 7 is a diagram showing the temperature profile PF.
  • the temperature profile PF shown in FIG. 7 is the same as the temperature profile PF shown in FIG.
  • the control unit 30 refers to the temperature profile PF and sets the temperature Tx1 that matches the temperature Ty1 of the processing liquid at the predetermined detection time ty. Based on this, the time tR1 is specified. The time tR1 indicates the time until the temperature of the processing liquid reaches the target temperature Tt from the temperature Tx1. Accordingly, when the temperature Ty1 of the processing liquid in the pre-dispensing process being executed substantially matches the temperature Tx1 in the temperature profile PF, the temperature of the processing liquid in the pre-dispensing process being executed is the temperature profile PF from the predetermined detection time ty.
  • the control unit 30 determines the time tR1 specified from the temperature profile PF for the temperature Ty1 of the processing liquid at the predetermined detection time ty as the target temperature prediction time tP1 in the pre-dispensing process being executed.
  • the control unit 30 refers to the temperature profile PF and specifies the time tR2 based on the temperature Tx2 that matches the temperature Ty2 of the processing liquid at the predetermined detection time ty. .
  • the time tR2 indicates the time until the temperature of the processing liquid reaches the target temperature Tt from the temperature Tx2. Then, the control unit 30 determines the time tR2 as the target temperature prediction time tP2 with respect to the temperature Ty2 of the processing liquid.
  • the control unit 30 refers to the temperature profile PF and specifies the time tR3 based on the temperature Tx3 that matches the temperature Ty3 of the processing liquid at the predetermined detection time ty. .
  • the time tR3 indicates the time until the temperature of the processing liquid reaches the target temperature Tt from the temperature Tx3. Then, the control unit 30 determines the time tR3 as the target temperature prediction time tP3 with respect to the temperature Ty3 of the processing liquid.
  • the control unit 30 determines the target temperature prediction time tP1 to the target temperature prediction time tP3 based on the temperature profile PF. Then, as shown in FIG. 6, when the target temperature predicted time tP1 to the target temperature predicted time tP3 have elapsed from the predetermined detection time ty for each of the first to third substrates W, the control unit 30 Then, the supply adjusting unit 2 (specifically, the valve 20) is controlled so as to stop the discharge of the processing liquid in the pre-dispensing process.
  • the nozzle 12 stops the discharge of the processing liquid at time tA when the target temperature prediction time tP1 has elapsed from the predetermined detection time ty.
  • the nozzle 12 stops the discharge of the processing liquid at time tB when the target temperature prediction time tP2 has elapsed from the predetermined detection time ty.
  • the nozzle 12 stops the discharge of the processing liquid at time tC when the target temperature predicted time tP3 has elapsed from the predetermined detection time ty.
  • the temperature of the processing liquid from the end time tA to the end time tC of the pre-dispensing process for the three substrates W is substantially the same as the target temperature Tt. That is, it can be suppressed that the temperature of the processing liquid from the end time tA to the end time tC of the pre-dispensing process is different among the three substrates W. Therefore, it is possible to suppress the temperature at the start of processing of the substrate W from being different among the three substrates W.
  • the processing start temperature of the first to third substrates W is the temperature Ts, which is substantially the same.
  • the uniformity of the processing result by the processing liquid can be improved between the three substrates W. That is, the uniformity of the processing result by the processing liquid can be improved between the plurality of substrates W.
  • the second embodiment has the same effects as the first embodiment.
  • FIG. 8 is a flowchart showing the substrate processing method.
  • the substrate processing method includes a step S51 and a step S52.
  • the substrate processing method is executed by the substrate processing apparatus 100 that processes the substrate W with the processing liquid.
  • step S51 the substrate processing apparatus 100 performs pre-dispensing processing according to pre-dispensing processing conditions.
  • Step S51 corresponds to an example of a “pre-dispensing step”.
  • step S52 the substrate processing apparatus 100 processes the substrate W with the processing liquid.
  • step S52 corresponds to an example of a “substrate processing step”.
  • the substrate processing apparatus 100 performs step S51 and step S52 for each substrate W, one for each substrate W.
  • step S51 includes steps S511 to S516.
  • step S511 the control unit 30 recognizes the state of the substrate processing apparatus 100 indicated by the state information ST of the substrate processing apparatus 100. After step S511, the process proceeds to step S512.
  • step S512 the control unit 30 sets pre-dispensing processing conditions in the substrate processing apparatus 100. After step S512, the process proceeds to step S513.
  • step S513 the control unit 30 controls the supply adjusting unit 2 according to the pre-dispensing process conditions so that the nozzle 12 starts to discharge the processing liquid toward the liquid receiving unit 15. As a result, the nozzle 12 starts to discharge the processing liquid toward the liquid receiving portion 15.
  • step S513 the process proceeds to step S514.
  • steps S511 to S513 are the same as steps S11 to S13 shown in FIG. 5, respectively.
  • step S514 the temperature detection unit 17 detects the temperature of the processing liquid before the temperature of the processing liquid that is executing the pre-dispensing process reaches the target temperature Tt. Specifically, in step S514, the temperature of the processing liquid is detected at a predetermined detection time ty during execution of the pre-dispensing process. The predetermined detection time ty indicates a time before the temperature of the processing liquid reaches the target temperature Tt. Step S514 corresponds to an example of a “detection step”.
  • step S514 includes step S5141, step S5142, and step S5143.
  • step S5141 the temperature detection unit 17 detects the temperature of the processing liquid before the temperature of the processing liquid that is executing the pre-dispensing process reaches the target temperature Tt, and controls the information indicating the temperature of the processing liquid. Output to 30. Therefore, the control unit 30 monitors the temperature of the processing liquid before the temperature of the processing liquid reaches the target temperature Tt. After step S5141, the process proceeds to step S5142.
  • step S5142 the control unit 30 determines whether or not the time has reached a predetermined detection time ty.
  • step S5142 If it is determined that the time has not reached the predetermined detection time ty (No in step S5142), the process returns to step S5141.
  • step S5142 if it is determined that the time has reached the predetermined detection time ty (Yes in step S5142), the process proceeds to step S5143. Even after it is determined that the time has reached the predetermined detection time ty, the temperature detection unit 17 detects the temperature of the processing liquid, and the control unit 30 monitors the temperature of the processing liquid.
  • step S5143 the control unit 30 controls the storage unit 31 so as to store the temperature (for example, temperature Ty1) of the processing liquid detected at the predetermined detection time ty. As a result, the storage unit 31 stores the temperature of the processing liquid at the predetermined detection time ty. After step S5143, the process proceeds to step S515.
  • the control unit 30 controls the storage unit 31 so as to store the temperature (for example, temperature Ty1) of the processing liquid detected at the predetermined detection time ty.
  • the storage unit 31 stores the temperature of the processing liquid at the predetermined detection time ty.
  • step S515 the control unit 30 sets the discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time tP. Specifically, the control unit 30 determines a target temperature prediction time (for example, target temperature prediction time tP1) corresponding to the temperature of the processing liquid (for example, temperature Ty1) detected at the predetermined detection time ty based on the temperature profile PF. To do. And the control part 30 sets target temperature estimated time to the discharge stop time of a process liquid.
  • the temperature of the processing liquid detected at the predetermined detection time ty is a detection temperature Td.
  • the detected temperature Td indicates the temperature of the processing liquid detected before reaching the target temperature Tt in step S514.
  • Step S515 corresponds to an example of a “setting step”. After step S515, the process proceeds to step S516.
  • step S516 when the target temperature prediction time has elapsed from the predetermined detection time ty (for example, time tA), the supply adjusting unit 2 is controlled to stop the discharge of the processing liquid in the pre-dispensing process. As a result, the nozzle 12 stops the discharge of the processing liquid. Then, the pre-dispensing process ends.
  • Step S516 corresponds to an example of a “pre-dispensing end step”. After step S516, the process proceeds to step S52. When step S52 is completed, the pre-dispensing process and the process using the processing liquid for one substrate W are completed.
  • Embodiment 3 With reference to FIG.1 and FIG.9, the substrate processing apparatus 100 which concerns on Embodiment 3 of this invention is demonstrated.
  • the third embodiment is different from the first embodiment in that the third embodiment has a plurality of temperature profiles PF respectively corresponding to a plurality of pre-dispense processing conditions.
  • the points of the third embodiment different from the first embodiment will be mainly described.
  • FIG. 9 is a conceptual diagram showing the pre-dispensing processing condition PC and the temperature profile PF stored in the storage unit 31 of the substrate processing apparatus 100 according to the third embodiment.
  • the storage unit 31 stores a plurality of different pre-dispensing processing conditions PC.
  • the storage unit 31 stores a plurality of different temperature profiles PF in association with the plurality of pre-dispense processing conditions PC.
  • the control unit 30 selects one pre-dispense processing condition PC (hereinafter referred to as “pre-dispense processing condition PCA”) from a plurality of pre-dispense processing conditions PC. And the control part 30 controls the supply adjustment
  • pre-dispense processing condition PCA pre-dispense processing condition PC
  • control part 30 specifies the temperature profile (henceforth "temperature profile PFA") linked
  • the pre-dispensing process condition for recording the time transition of the temperature in the temperature profile PFA is the same as the pre-dispensing process condition PCA associated with the temperature profile PFA. That is, the pre-dispensing process condition for recording the time transition of the temperature in the temperature profile PFA is the same as the selected pre-dispensing process condition PCA.
  • the target temperature prediction time can be determined on the basis of the temperature profile PFA further adapted to the pre-dispensing process being executed. As a result, the target temperature prediction time can be determined with higher accuracy. Then, the control unit 30 sets the discharge end time of the processing liquid in the pre-dispensing process based on the target temperature prediction time with higher accuracy. Accordingly, it is possible to further suppress the temperature of the processing liquid at the end time of the pre-dispensing process from being different among the plurality of substrates W. As a result, the uniformity of the processing result by the processing liquid can be further improved between the plurality of substrates W. In addition, the third embodiment has the same effects as the first embodiment.
  • pre-dispensing processing condition PC1 For example, attention is paid to a certain pre-dispensing processing condition PC (hereinafter referred to as “pre-dispensing processing condition PC1”) and another pre-dispensing processing condition PC (hereinafter referred to as “pre-dispensing processing condition PC2”).
  • the pre-dispense treatment condition PC1 indicates a flow rate of P (liter / minute)
  • the pre-dispense treatment condition PC2 indicates a flow rate of Q (liter / minute).
  • the flow rate P and the flow rate Q are different. Therefore, the temperature profile PF corresponding to the flow rate P and the temperature profile PF corresponding to the flow rate Q are different.
  • the flow rate P is set to be higher than the accuracy of the target temperature prediction time based on the temperature profile PF corresponding to the flow rate Q.
  • the accuracy of the target temperature prediction time based on the corresponding temperature profile PF is high.
  • the fourth embodiment differs from the first embodiment in that the fourth embodiment has a plurality of temperature profiles PF corresponding to a plurality of state information STs.
  • the points of the fourth embodiment different from the first embodiment will be mainly described.
  • FIG. 10 is a conceptual diagram showing state information ST and temperature profile PF of the substrate processing apparatus 100 stored in the storage unit 31 of the substrate processing apparatus 100 according to the fourth embodiment.
  • the storage unit 31 stores a plurality of different state information ST. Further, the storage unit 31 stores a plurality of different temperature profiles PF in association with the plurality of state information ST, respectively.
  • the state information ST of the substrate processing apparatus 100 includes information indicating the elapsed time since the last processing of the substrate W and the number of substrates W held by the spin chuck 11 when processing the substrates W one by one. And at least one of the information indicating whether or not it has been performed.
  • some state information ST indicates that the elapsed time from the completion of the latest processing of the substrate W is 3 hours, and another state information ST indicates the elapsed time from the completion of the latest processing of the substrate W. Indicates 10 minutes. For example, one state information ST indicates that the first substrate W is held on the spin chuck 11, and another state information ST indicates that the third substrate W is held on the spin chuck 11. .
  • control unit 30 specifies state information ST indicating the current state of the substrate processing apparatus 100 (hereinafter, referred to as “state information STA”) from the plurality of state information STs. To do.
  • the control part 30 specifies the temperature profile PF (henceforth "temperature profile PFA") linked
  • the temperature profile PFA indicates a record of the time transition of the temperature of the processing liquid when the pre-dispensing process has been executed in the past according to the pre-dispensing process conditions when the state of the substrate processing apparatus 100 is the state indicated by the status information STA.
  • the target temperature prediction time can be determined based on the temperature profile PFA that is more suitable for the state of the substrate processing apparatus 100 that is executing the pre-dispensing process.
  • the target temperature prediction time can be determined with higher accuracy.
  • the control unit 30 sets the discharge end time of the processing liquid in the pre-dispensing process based on the target temperature prediction time with higher accuracy. Accordingly, it is possible to further suppress the temperature of the processing liquid at the end time of the pre-dispensing process from being different among the plurality of substrates W. As a result, the uniformity of the processing result by the processing liquid can be further improved between the plurality of substrates W.
  • the fourth embodiment has the same effects as the first embodiment.
  • state information ST1 For example, attention is paid to a certain state information ST (hereinafter referred to as “state information ST1”) and another state information ST (hereinafter referred to as “state information ST2”).
  • state information ST2 indicates that the elapsed time from the completion of the latest processing of the substrate W is 3 hours
  • the status information ST2 indicates that the elapsed time from the completion of the latest processing of the substrate W is 10 minutes. It shows that. Therefore, the temperature profile PF corresponding to the state information ST1 is different from the temperature profile PF corresponding to the state information ST2.
  • the state information ST1 indicates the state of the substrate processing apparatus 100 that is executing the pre-dispensing process
  • the state information is more accurate than the target temperature prediction time based on the temperature profile PF corresponding to the state information ST2.
  • the accuracy of the target temperature prediction time based on the temperature profile PF corresponding to ST1 is high.
  • Embodiment 5 A substrate processing apparatus 100A according to Embodiment 5 of the present invention will be described with reference to FIGS.
  • the fifth embodiment is different from the first embodiment in that the fifth embodiment includes a plurality of processing units 1.
  • the points of the fifth embodiment different from the first embodiment will be mainly described.
  • FIG. 11 is a plan view showing the substrate processing apparatus 100A.
  • the substrate processing apparatus 100A includes a plurality of load ports LP, an indexer robot IR, a center robot CR, a plurality of processing units 1, a plurality of fluid boxes 4, and a processing liquid cabinet 5.
  • a control device 3. The control device 3 controls the load port LP, the indexer robot IR, the center robot CR, and the processing unit 1.
  • the control device 3 includes a control unit 30 and a storage unit 31.
  • Each load port LP stores a plurality of substrates W stacked.
  • the indexer robot IR transports the substrate W between the load port LP and the center robot CR.
  • the center robot CR transports the substrate W between the indexer robot IR and the processing unit 1.
  • Each of the processing units 1 discharges the processing liquid onto the substrate W to process the substrate W.
  • Each of the fluid boxes 4 contains a fluid device.
  • the processing liquid cabinet 5 stores the processing liquid.
  • the plurality of processing units 1 form a plurality of towers TW (four towers TW in the fifth embodiment) arranged so as to surround the center robot CR in plan view.
  • Each tower TW includes a plurality of processing units 1 (three processing units 1 in the fifth embodiment) stacked one above the other.
  • Each of the plurality of fluid boxes 4 corresponds to a plurality of towers TW.
  • the processing liquid in the processing liquid cabinet 5 is supplied to all the processing units 1 included in the tower TW corresponding to the fluid box 4 via any fluid box 4.
  • the control unit 30 operates in the same manner as the control unit 30 according to the first embodiment described with reference to FIGS. That is, the control unit 30 sets the discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time. Therefore, according to the fifth embodiment, similarly to the first embodiment, the uniformity of the processing result by the processing liquid can be improved between the plurality of substrates W processed one by one in the one chamber 10.
  • the substrate processing apparatus 100 ⁇ / b> A includes the spin chuck 11, the nozzle 12, the supply adjusting unit 2, the liquid receiving unit 15, and the temperature detecting unit 17 for each chamber 10.
  • Each of the chambers 10 accommodates a spin chuck 11, a nozzle 12, a supply adjustment unit 2, a liquid receiving unit 15, and a temperature detection unit 17.
  • the control unit 30 sets the discharge stop time of the processing liquid in the pre-dispensing process based on the target temperature prediction time for each chamber 10. Therefore, the temperature of the processing liquid at the end time of the pre-dispensing process across the plurality of chambers 10 can be suppressed from being different among the plurality of substrates W.
  • the uniformity of the processing result by the processing liquid can be improved among the plurality of substrates W processed in the plurality of chambers 10.
  • the uniformity of the processing result using the processing liquid can be improved for the plurality of substrates W between the plurality of chambers 10 in one tower TW.
  • the uniformity of the processing result by the processing liquid can be improved for the plurality of substrates W between the plurality of towers TW.
  • the substrate processing apparatus 100A executes the substrate processing method shown in FIG. That is, the process S1 and the process S2 are performed for each of the plurality of chambers 10 that respectively accommodate the plurality of substrates W.
  • FIG. 12 is a diagram showing the piping of the substrate processing apparatus 100A.
  • the substrate processing apparatus 100 ⁇ / b> A includes a supply pipe 13 and a supply adjustment unit 2 for each processing unit 1 in each tower TW.
  • the supply adjusting unit 2 is accommodated in the fluid box 4 corresponding to the tower TW.
  • a part of each supply pipe 13 is accommodated in the chamber 10, and another part of each supply pipe 13 is accommodated in the fluid box 4.
  • the substrate processing apparatus 100A includes a processing liquid tank 50, a circulation pipe 51, a pump 55, a filter 56, and a temperature controller 57.
  • the processing liquid tank 50, the pump 55, the filter 56, and the temperature controller 57 are accommodated in the processing liquid cabinet 5.
  • a part of the circulation pipe 51 is accommodated in the processing liquid cabinet 5, and another part of the circulation pipe 51 is accommodated in the fluid box 4.
  • the circulation pipe 51 includes an upstream pipe 52 extending downstream from the processing liquid tank 50, a plurality of individual pipes 53 branched from the upstream pipe 52, and a downstream pipe 54 extending downstream from each individual pipe 53 to the processing liquid tank 50. .
  • the upstream end of the upstream pipe 52 is connected to the processing liquid tank 50.
  • the downstream end of the downstream pipe 54 is connected to the processing liquid tank 50.
  • the upstream end of the upstream pipe 52 corresponds to the upstream end of the circulation pipe 51, and the downstream end of the downstream pipe 54 corresponds to the downstream end of the circulation pipe 51.
  • Each individual pipe 53 extends from the downstream end of the upstream pipe 52 to the upstream end of the downstream pipe 54.
  • a plurality of individual pipes 53 correspond to a plurality of towers TW, respectively.
  • Three supply pipes 13 corresponding to the three processing units 1 included in one tower TW are connected to one individual pipe 53.
  • the pump 55 sends the processing liquid in the processing liquid tank 50 to the circulation pipe 51.
  • the filter 56 removes foreign matters from the processing liquid flowing through the circulation pipe 51.
  • the temperature controller 57 adjusts the temperature of the processing liquid in the processing liquid tank 50.
  • the temperature controller 57 is, for example, a heater that heats the processing liquid.
  • the pump 55, the filter 56, and the temperature controller 57 are disposed in the upstream pipe 52.
  • the processing liquid in the processing liquid tank 50 is sent to the upstream pipe 52 by the pump 55 and flows from the upstream pipe 52 to the plurality of individual pipes 53.
  • the processing liquid in the individual pipe 53 flows into the downstream pipe 54 and returns from the downstream pipe 54 to the processing liquid tank 50.
  • the processing liquid in the processing liquid tank 50 is heated by the temperature controller 57 so as to reach a specific temperature equal to or higher than the specified temperature TM and is sent to the upstream pipe 52. Therefore, the temperature of the processing liquid circulating through the circulation pipe 51 is maintained at a specific temperature that is equal to or higher than the specified temperature TM. Then, the processing liquid maintained at a specific temperature in the circulation pipe 51 is supplied to the supply pipe 13.
  • the target temperature prediction time is determined with reference to the temperature profile PF.
  • the temperature profile PF may be expressed by a table or a function, for example.
  • the derivation form of the target temperature prediction time is not particularly limited.
  • the storage unit 31 may store the predetermined temperature Ty and the target temperature predicted time tP derived in advance from the temperature profile PF in association with each other (FIG. 4). Then, the control unit 30 acquires the target temperature predicted time tP from the storage unit 31. In this case, the control unit 30 can acquire the target temperature prediction time tP even before the detection temperature Td is detected.
  • the storage unit 31 may store a table in which the temperature Tt1 to the temperature Tt3 and the target temperature predicted time tP1 to the target temperature predicted time tP3 at the predetermined detection time ty are associated with each other ( FIG. 6). And the control part 30 acquires target temperature estimated time from a table. For example, the relationship between the temperature Tt1 to the temperature Tt3 and the target temperature prediction time tP1 to the target temperature prediction time tP3 at the predetermined detection time ty can be expressed by a function. Then, the control unit 30 derives the target temperature prediction time from the function.
  • the storage unit 31 according to the second embodiment may store a plurality of pre-dispense processing conditions PC and a plurality of temperature profiles PF according to the third embodiment (FIG. 9). Further, the storage unit 31 according to the second embodiment may store a plurality of state information ST and a plurality of temperature profiles PF according to the fourth embodiment (FIG. 10). Furthermore, the control unit 30 of the substrate processing apparatus 100A according to the fifth embodiment may operate in the same manner as the control unit 30 according to the second embodiment. Further, the storage unit 31 of the substrate processing apparatus 100A may store the same information as the storage unit 31 according to the third or fourth embodiment.
  • the temperature detection unit 17 can detect the temperature of the processing liquid at an arbitrary time. . And the control part 30 can determine target temperature prediction time based on the temperature profile PF sequentially from the detection time and detection temperature of a process liquid.
  • the present invention relates to a substrate processing apparatus and a substrate processing method, and has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

基板処理装置(100)は温度検出部(17)及び制御部(30)を備える。温度検出部(17)は、プリディスペンス処理を実行中の処理液の温度が目標温度(Tt)に到達する前に、処理液の温度を検出する。制御部(30)は、目標温度予測時間(tP)に基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。目標温度予測時間(tP)は、処理液の温度が検出温度(Td)から目標温度(Tt)に到達するまでの予測時間を示す。検出温度(Td)は、温度検出部(17)によって目標温度(Tt)に到達する前に検出された処理液の温度を示す。目標温度予測時間(tP)は、温度プロファイル(PF)に基づいて定められる。温度プロファイル(PF)は、プリディスペンス処理条件に従って過去にプリディスペンス処理を実行したときの処理液の温度の時間推移の記録を示す。

Description

基板処理装置及び基板処理方法
 本発明は、基板を処理液によって処理する基板処理装置及び基板処理方法に関する。
 特許文献1に記載されている基板処理装置は、基板を1枚ずつ処理する枚葉型である。そして、基板処理装置は、室温のリン酸水溶液と、リン酸水溶液の沸点よりも高い温度を有する高温の硫酸水溶液とを供給配管内で混合して、リン酸と硫酸と水との混合液を生成する。硫酸水溶液と混合されたリン酸水溶液は、硫酸水溶液の熱によって加熱される。さらに、リン酸水溶液と硫酸水溶液とが混合されることにより、希釈熱が発生する。そして、硫酸水溶液と混合されたリン酸水溶液は、硫酸水溶液の熱だけでなく、希釈熱によっても加熱される。従って、混合液に含まれるリン酸水溶液が沸点付近まで加熱され、沸点付近のリン酸水溶液を含む混合液(以下、「処理液」と記載する。)が基板に吐出される。その結果、シリコン窒化膜が形成された基板をエッチング処理する場合に、高い選択比と、高いエッチングレートとを得ることができる。エッチング処理が所定時間にわたって行われると、バルブが閉じられて、ノズルからの処理液の吐出が停止する。
特開2012-74601号公報
 しかしながら、特許文献1に記載された基板処理装置では、処理開始時の処理液の温度(以下、「処理開始時温度」と記載する。)が複数の基板間で相違する場合、複数の基板間で処理結果に若干のバラツキが生じる可能性がある。近年、特に、処理結果の若干のバラツキでさえも抑制することを要求される場合がある。換言すれば、複数の基板間で、処理結果の均一性の更なる向上が要求される場合がある。
 特に、高温の処理液を使用する場合は、基板処理装置に収容された基板の周囲環境の温度(以下、「環境温度」と記載する。)と処理液の温度との差が大きいため、複数の基板間での処理開始時温度の相違は、高温でない処理液を使用する場合よりも大きくなる。
 例えば、一般的に、基板処理装置では、処理液を貯蔵する処理液タンク、および、処理液を基板に供給する準備段階において処理液を循環させる循環配管において、処理液を所定の温度に調整する措置が行われている。しかしながら、例えば循環配管から分岐して処理液をノズルに供給する供給配管の温度が複数の基板間で相違し得ることに起因して、処理開始時温度は複数の基板間で微妙に変動する。その結果、従来装置、特に高温の処理液による処理を行う従来装置においては、処理液タンクおよび循環配管の温度調整を行ったりするにも関わらず、複数の基板間で処理液による処理結果にバラツキが生じるという問題が生じていた。
 そこで、本願の発明者は、プリディスペンス処理における処理液の温度に着目して、複数の基板間で処理結果にバラツキが生じる原因を詳細に検討した。
 図13を参照して、一般的なプリディスペンス処理における処理液の温度について説明する。図13は、一般的な基板処理装置における処理液の温度推移を示す図である。図13に示すように、横軸は時間を示し、縦軸は処理液の温度を示す。時刻t0は、プリディスペンス処理における処理液の吐出開始時刻を示す。時刻t1は、プリディスペンス処理における処理液の吐出停止時刻を示す。つまり、時刻t1は、プリディスペンス処理の終了時刻を示す。時刻t2は、処理液による基板処理の開始時刻を示す。温度Tcは環境温度を示す。
 曲線Ca1は、1枚目の基板に対するプリディスペンス処理及び基板処理における処理液の温度推移を示す。曲線Ca2は、2枚目の基板に対するプリディスペンス処理及び基板処理における処理液の温度推移を示す。曲線Ca3は、3枚目の基板に対するプリディスペンス処理及び基板処理における処理液の温度推移を示す。
 時刻t0から時刻t1までの期間PDにおいて、プリディスペンス処理が実行される。そして、時刻t2以降の期間SPにおいて、処理液による基板処理が実行される。
 ここで、1枚目の基板に対しては、曲線Ca1に示すように、プリディスペンス処理の終了時刻t1での処理液の温度は、温度Ta1である。2枚目の基板に対しては、曲線Ca2に示すように、プリディスペンス処理の終了時刻t1での処理液の温度は、温度Ta2である。3枚目の基板に対しては、曲線Ca3に示すように、プリディスペンス処理の終了時刻t1での処理液の温度は、温度Ta3である。
 温度Ta1は温度Ta2及び温度Ta3より低く、温度Ta2は温度Ta3よりも低い。なぜなら、循環配管から分岐する供給配管の温度が、1枚目の基板のために処理液を供給する場合に最も低く、その後、徐々に上昇するためである。特に、基板処理装置の待機時間が比較的長い場合、1枚目の基板に対するプリディスペンス処理時では、2枚目以降の基板に対するプリディスペンス処理時と比較して、供給配管の温度は低い。そして、プリディスペンス処理時の供給配管の温度が複数の基板間で相違することの影響は、高温の処理液を使用する場合に特に顕著である。
 プリディスペンス処理の終了時刻t1での処理液の温度Ta1~温度Ta3が3枚の基板間で相違すると、基板処理の開始時刻t2での処理液の温度も、3枚の基板間で相違する。その結果、3枚の基板間で処理結果に若干のバラツキが生じる可能性がある。
 以上、図13を参照して説明したように、本願の発明者は、プリディスペンス処理の終了時刻での処理液の温度が複数の基板間で相違すると、複数の基板間で処理結果に若干のバラツキが生じる可能性があることを突き止めた。
 そこで、本願の発明者は、プリディスペンス処理の観点から、基板処理装置及び基板処理方法について鋭意研究を行った。
 本発明は上記課題に鑑みてなされたものであり、その目的は、複数の基板間で、処理液による処理結果の均一性を向上できる基板処理装置及び基板処理方法を提供することにある。
 本発明の一局面によれば、基板処理装置は、基板を処理液によって処理する。基板処理装置は、基板保持部と、ノズルと、供給調節部と、液受け部と、温度検出部と、制御部とを備える。基板保持部は、前記基板を保持して回転する。ノズルは、前記保持された基板に前記処理液を吐出する。供給調節部は、前記ノズルへの前記処理液の供給量を調節する。液受け部は、前記基板保持部よりも外側に位置し、前記ノズルによって吐出される前記処理液を受ける。温度検出部は、プリディスペンス処理を実行中の前記処理液の温度が目標温度に到達する前に、前記処理液の温度を検出する。制御部は、プリディスペンス処理条件に従って前記供給調節部を制御して、前記プリディスペンス処理を実行する。前記プリディスペンス処理は、前記基板に前記処理液を吐出する前に、前記液受け部に向けて前記処理液を吐出する処理を示す。前記制御部は、目標温度予測時間に基づいて、前記プリディスペンス処理における前記処理液の吐出停止時間を設定する。前記目標温度予測時間は、前記処理液の温度が検出温度から前記目標温度に到達するまでの予測時間を示す。前記検出温度は、前記温度検出部によって前記目標温度に到達する前に検出された前記処理液の温度を示す。前記目標温度予測時間は、温度プロファイルに基づいて定められる。前記温度プロファイルは、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示す。
 本発明の基板処理装置において、前記制御部は、前記温度プロファイルに基づいて、前記処理液の前記検出温度に応じた前記目標温度予測時間を決定することが好ましい。
 本発明の基板処理装置において、前記温度検出部は、前記プリディスペンス処理を実行中に前記処理液の温度が所定温度に到達したことを検出することが好ましい。前記所定温度は、前記目標温度より低いことが好ましい。前記処理液の温度が前記所定温度に到達したことが検出された時刻から前記目標温度予測時間が経過した時に、前記制御部は、前記プリディスペンス処理における前記処理液の吐出を停止するように前記供給調節部を制御することが好ましい。
 本発明の基板処理装置において、前記温度検出部は、前記プリディスペンス処理を実行中の所定検出時刻で前記処理液の温度を検出することが好ましい。前記所定検出時刻は、前記処理液の温度が前記目標温度に到達する前の時刻を示すことが好ましい。前記所定検出時刻から前記目標温度予測時間が経過した時に、前記制御部は、前記プリディスペンス処理における前記処理液の吐出を停止するように前記供給調節部を制御することが好ましい。
 本発明の基板処理装置において、前記制御部は、複数の前記プリディスペンス処理条件から選択されたプリディスペンス処理条件に従って前記供給調節部を制御して、前記プリディスペンス処理を実行することが好ましい。前記温度プロファイルにおける温度の時間推移を記録する際の前記プリディスペンス処理条件は、前記選択されたプリディスペンス処理条件と同じであることが好ましい。
 本発明の基板処理装置において、前記温度プロファイルは、前記基板処理装置の状態が状態情報によって示される状態のときに、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示すことが好ましい。前記状態情報は、直近での基板の処理完了時からの経過時間を示す情報と、1枚ずつ基板を処理するときに何枚目の基板が前記基板保持部に保持されたかを示す情報とのうちの少なくとも一方の情報を含むことが好ましい。
 本発明の基板処理装置において、前記処理液は、燐酸、又は、硫酸過酸化水素水混合液を含むことが好ましい。
 本発明の基板処理装置は、複数のチャンバーをさらに備えることが好ましい。前記チャンバーごとに、前記基板保持部と前記ノズルと前記供給調節部と前記液受け部と前記温度検出部とが備えられることが好ましい。前記複数のチャンバーの各々は、前記基板保持部と前記ノズルと前記供給調節部と前記液受け部と前記温度検出部とを収容することが好ましい。前記制御部は、前記チャンバーごとに、前記目標温度予測時間に基づいて、前記プリディスペンス処理における前記処理液の吐出停止時間を設定することが好ましい。
 本発明の他の局面によれば、基板処理方法は、基板を処理液によって処理する基板処理装置によって実行される。基板処理方法は、プリディスペンス処理条件に従って、プリディスペンス処理を実行するプリディスペンス工程を含む。前記プリディスペンス処理は、前記基板に前記処理液を吐出する前に、液受け部に向けて前記処理液を吐出する処理を示す。前記プリディスペンス工程は、前記プリディスペンス処理を実行中の前記処理液の温度が目標温度に到達する前に、前記処理液の温度を検出する検出工程と、目標温度予測時間に基づいて、前記プリディスペンス処理における前記処理液の吐出停止時間を設定する設定工程とを含む。前記目標温度予測時間は、前記処理液の温度が検出温度から前記目標温度に到達するまでの予測時間を示す。前記検出温度は、前記検出工程によって前記目標温度に到達する前に検出された前記処理液の温度を示す。前記目標温度予測時間は、温度プロファイルに基づいて定められる。前記温度プロファイルは、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示す。
 本発明の基板処理方法において、前記設定工程では、前記温度プロファイルに基づいて、前記処理液の前記検出温度に応じた前記目標温度予測時間を決定することが好ましい。
 本発明の基板処理方法において、前記検出工程では、前記プリディスペンス処理を実行中に前記処理液の温度が所定温度に到達したことを検出することが好ましい。前記所定温度は、前記目標温度より低いことが好ましい。前記プリディスペンス工程は、前記処理液の温度が前記所定温度に到達したことが検出された時刻から前記目標温度予測時間が経過した時に、前記プリディスペンス処理における前記処理液の吐出を停止するプリディスペンス終了工程をさらに含むことが好ましい。
 本発明の基板処理方法において、前記検出工程では、前記プリディスペンス処理を実行中の所定検出時刻で前記処理液の温度を検出することが好ましい。前記所定検出時刻は、前記処理液の温度が前記目標温度に到達する前の時刻を示すことが好ましい。前記プリディスペンス工程は、前記所定検出時刻から前記目標温度予測時間が経過した時に、前記プリディスペンス処理における前記処理液の吐出を停止するプリディスペンス終了工程をさらに含むことが好ましい。
 本発明の基板処理方法において、前記プリディスペンス工程では、複数の前記プリディスペンス処理条件から選択したプリディスペンス処理条件に従って、前記プリディスペンス処理を実行することが好ましい。前記温度プロファイルにおける温度の時間推移を記録する際の前記プリディスペンス処理条件は、前記選択されたプリディスペンス処理条件と同じであることが好ましい。
 本発明の基板処理方法において、前記温度プロファイルは、前記基板処理装置の状態が状態情報によって示される状態のときに、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示すことが好ましい。前記状態情報は、直近での基板の処理完了時からの経過時間を示す情報と、1枚ずつ基板を処理するときに何枚目の基板が基板保持部に保持されたかを示す情報とのうちの少なくとも一方の情報を含むことが好ましい。
 本発明の基板処理方法において、前記処理液は、燐酸、又は、硫酸過酸化水素水混合液を含むことが好ましい。
 本発明の基板処理方法において、前記プリディスペンス工程は、複数の前記基板をそれぞれ収容する複数のチャンバーごとに実行されることが好ましい。
 本発明によれば、複数の基板間で、処理液による処理結果の均一性を向上できる。
本発明の実施形態1に係る基板処理装置を示す図である。 実施形態1に係る基板処理装置の処理ユニットの内部を示す平面図である。 実施形態1に係る基板処理装置の温度プロファイルを示す図である。 実施形態1に係る基板処理装置における処理液の温度推移を示す図である。 実施形態1に係る基板処理装置が実行する基板処理方法を示すフローチャートである。 本発明の実施形態2に係る基板処理装置における処理液の温度推移を示す図である。 実施形態2に係る基板処理装置の温度プロファイルを示す図である。 実施形態2に係る基板処理装置が実行する基板処理方法を示すフローチャートである。 本発明の実施形態3に係る基板処理装置の記憶部に記憶されたプリディスペンス処理条件及び温度プロファイルを示す概念図である。 本発明の実施形態4に係る基板処理装置の記憶部に記憶された基板処理装置の状態情報及び温度プロファイルを示す概念図である。 本発明の実施形態5に係る基板処理装置を示す平面図である。 実施形態5に係る基板処理装置の配管を示す図である。 一般的な基板処理装置における処理液の温度推移を示す図である。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。また、本発明の実施形態において、X軸、Y軸、及びZ軸は互いに直交し、X軸及びY軸は水平方向に平行であり、Z軸は鉛直方向に平行である。
 (実施形態1)
 図1~図5を参照して、本発明の実施形態1に係る基板処理装置100について説明する。まず、図1を参照して基板処理装置100を説明する。図1は、基板処理装置100を示す図である。図1に示すように、基板処理装置100は、基板Wを処理液によって処理する。具体的には、基板処理装置100は、基板Wを1枚ずつ処理する枚葉型である。基板Wは略円板状である。以下、処理液による基板Wの処理を「基板処理」と記載する場合がある。
 基板処理装置100は、処理ユニット1と、供給調節部2と、制御装置3とを備える。
 処理ユニット1は、基板Wに処理液を吐出して、基板Wを処理する。具体的には、処理ユニット1は、チャンバー10と、スピンチャック11と、ノズル12と、供給配管13と、ノズル移動ユニット14と、液受け部15と、カップ16と、温度検出部17とを含む。
 チャンバー10は略箱形状を有する。チャンバー10は、基板W、スピンチャック11、ノズル12、供給配管13の一部、ノズル移動ユニット14、液受け部15、カップ16、及び温度検出部17を収容する。スピンチャック11は、基板Wを保持して回転する。スピンチャック11は「基板保持部」の一例に相当する。具体的には、スピンチャック11は、チャンバー10内で基板Wを水平に保持しながら、回転軸線A1の回りに基板Wを回転させる。スピンチャック11は、複数のチャック部材110と、スピンベース111と、スピンモーター112とを含む。複数のチャック部材110は基板Wを水平な姿勢で保持する。スピンベース111は、略円板状であり、水平な姿勢で複数のチャック部材110を支持する。スピンモーター112は、スピンベース111を回転させることによって、複数のチャック部材110に保持された基板Wを回転軸線A1の回りに回転させる。
 ノズル12は、基板Wに向けて処理液を吐出する。処理液は薬液である。例えば、基板処理装置100が、シリコン窒化膜が形成された基板に対してエッチング処理を実行する場合は、処理液は燐酸を含む。例えば、基板処理装置100が、レジストの除去処理を実行する場合は、処理液は硫酸過酸化水素水混合液(sulfuric acid/hydrogen peroxide mixture:SPM)を含む。燐酸又はSPMを含む処理液は、高温で使用される処理液の一例である。
 供給配管13はノズル12に接続される。供給配管13はノズル12に処理液を供給する。供給配管13に供給される処理液の温度は、供給配管13よりも上流に配置される循環配管(不図示)において、室温よりも高い規定温度(以下、「規定温度TM」と記載する。)以上の特定温度に維持されている。規定温度TMは、基板Wに対して規定の処理レート(例えば、規定のエッチングレート又は規定の対象物除去レート)を実現できる温度を示す。換言すれば、規定温度TMは、基板Wに対して、規定時間内に規定の処理結果(例えば、規定のエッチング量又は規定の対象物除去量)を達成できる温度を示す。規定温度TMは、燐酸を含む処理液では、例えば、175℃である。規定温度TMは、SPMを含む処理液では、例えば、200℃である。
 供給調節部2は、ノズル12への処理液の供給量を調節する。供給調節部2は、チャンバー10の外部において供給配管13に配置される。なお、供給調節部2は、チャンバー10の内部において供給配管13に配置されてもよい。
 具体的には、供給調節部2は、ノズル12への処理液の供給量をゼロにして、ノズル12への処理液の供給を停止する。供給調節部2は、ノズル12への処理液の供給量をゼロより多くして、ノズル12へ処理液を供給する。供給調節部2は、ノズル12へ供給する処理液の流量を調節する。
 更に具体的には、供給調節部2は、バルブ20と、流量計21と、流量調整バルブ22とを含む。ノズル12に対する処理液の供給開始及び供給停止は、バルブ20によって切り替えられる。具体的には、バルブ20は、開閉バルブであり、開状態と閉状態とに切り替え可能である。開状態とは、ノズル12に向かって供給配管13内を流れる処理液を通過させる状態のことである。閉状態とは、供給配管13からノズル12への処理液の供給を停止する状態のことである。
 流量計21は、ノズル12に供給される処理液の流量を検出する。流量調整バルブ22は、ノズル12に供給される処理液の流量を調整する。バルブ20が開状態になると、処理液が、流量調整バルブ22の開度に対応する流量で供給配管13からノズル12に供給される。その結果、ノズル12から処理液が吐出される。開度は、流量調整バルブ22が開いている程度を示す。
 カップ16は略筒形状を有する。カップ16は、基板Wから排出された処理液を受け止める。
 温度検出部17は、チャンバー10内の処理液の温度を検出する。そして、温度検出部17は、処理液の温度を示す情報を制御装置3に出力する。実施形態1では、温度検出部17は、供給配管13内の処理液の温度を検出する。具体的には、温度検出部17の測温部(不図示)が供給配管13内の処理液に接触して、処理液の温度を検出する。温度検出部17は、ノズル12の近傍で供給配管13内の処理液の温度を検出してもよいし、ノズル12から比較的離れた位置で供給配管13内の処理液の温度を検出してもよい。
 例えば、温度検出部17は温度センサーを含む。温度センサーは、例えば、熱電対及び計測器を含む。具体的には、熱電対が供給配管13に挿入される。そして、熱電対が、供給配管13内の処理液の温度を検出して、温度に対応する電圧信号を計測器に出力する。計測器は、電圧信号を温度に変換して、温度を示す情報を制御装置3に出力する。計測器は、チャンバー10内に配置されていてもよいし、チャンバー10外に配置されていてもよい。熱電対の測温接点は、供給配管13内において、ノズル12の近傍に配置されてもよいし、ノズル12から比較的離れた位置に配置されてもよい。測温接点は温度検出部17の測温部に相当する。なお、温度検出部17は、供給配管13の外面の温度を検出することによって、処理液の温度を間接的に検出してもよい。また、例えば、温度検出部17は、ノズル12の内部で処理液の温度を検出してもよいし、ノズル12の外面の温度を検出することによって処理液の温度を間接的に検出してもよい。
 温度検出部17がチャンバー10内で処理液の温度を検出する限りにおいては、供給配管13以外の位置及びノズル12以外の位置で処理液の温度を検出してもよい。例えば、温度検出部17は、処理液が基板Wに吐出された後に基板W上の処理液の温度を検出してもよい。基板W上の処理液の温度を検出する場合、例えば、温度検出部17は、放射温度計又は赤外線サーモグラフィーを含む。放射温度計は、基板Wに吐出された処理液から放射される赤外線又は可視光線の強度を測定して、基板Wに吐出された処理液の温度を測定する。そして、放射温度計は、処理液の温度を示す情報を制御装置3に出力する。赤外線サーモグラフィーは赤外線カメラを含む。赤外線サーモグラフィーは、基板Wに吐出された処理液から放射される赤外線を赤外線カメラによって検出する。さらに、赤外線サーモグラフィーは、検出された赤外線を表す画像を解析して、基板Wに吐出された処理液の温度を算出する。そして、赤外線サーモグラフィーは、処理液の温度を示す情報を制御装置3に出力する。
 次に、図1及び図2を参照して、ノズル移動ユニット14、液受け部15、及びプリディスペンス処理について説明する。図2は、処理ユニット1の内部を示す平面図である。図1及び図2に示すように、ノズル移動ユニット14は、回動軸線A2の回りに回動して、ノズル12を水平に移動させる。具体的には、ノズル移動ユニット14は、ノズル12の処理位置PS1と待機位置PS2との間で、ノズル12を水平に移動させる。処理位置PS1は、基板Wの上方の位置を示す。図2では、処理位置PS1に位置するノズル12が二点鎖線で示される。待機位置PS2は、スピンチャック11及びカップ16よりも外側の位置を示す。また、ノズル移動ユニット14は、ノズル12を鉛直に移動させることもできる。
 液受け部15は、スピンチャック11及びカップ16よりも外側に位置する。具体的には、液受け部15は、ノズル12の待機位置PS2の下方に位置する。液受け部15は、プリディスペンス処理において、ノズル12によって吐出される処理液を受ける。
 プリディスペンス処理は、基板Wに処理液を吐出する前に、液受け部15に向けて処理液を吐出する処理を示す。具体的には、基板処理装置100がプリディスペンス処理を実行するときに、ノズル移動ユニット14は、ノズル12を待機位置PS2から下降させて、ノズル12を液受け部15まで移動させる。そして、ノズル12は、液受け部15に向けて処理液を吐出する。
 引き続き図1を参照して、制御装置3及びプリディスペンス処理について詳細に説明する。図1に示すように、制御装置3は、制御部30と、記憶部31とを含む。制御部30は、CPU(Central Processing Unit)のようなプロセッサーを含む。記憶部31は、記憶装置を含み、データ及びコンピュータープログラムを記憶する。具体的には、記憶部31は、半導体メモリーのような主記憶装置と、半導体メモリー及び/又はハードディスクドライブのような補助記憶装置とを含む。記憶部31は、リムーバブルメディアを含んでいてもよい。制御部30のプロセッサーは、記憶部31の記憶装置が記憶しているコンピュータープログラムを実行して、処理ユニット1及び供給調節部2を制御する。
 制御部30は、プリディスペンス処理条件に従って供給調節部2及びノズル移動ユニット14を制御して、プリディスペンス処理を実行する。プリディスペンス処理条件は、プリディスペンスを実行するときの処理液に関する条件を示す。プリディスペンス処理条件は、例えば、ノズル12から吐出する処理液の流量、及び/又は、処理液の種類を含む。
 温度検出部17は、プリディスペンス処理を実行中の処理液の温度が目標温度(以下、「目標温度Tt」と記載する場合がる。)に到達する前に、処理液の温度を検出する。目標温度Ttは、規定温度TM以上処理液の飽和温度以下の値に設定される。
 制御部30は、目標温度予測時間に基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。目標温度予測時間は、処理液の温度が検出温度(以下、「検出温度Td」と記載する場合がある。)から目標温度Ttに到達するまでの予測時間を示す。検出温度Tdは、温度検出部17によって目標温度Ttに到達する前に検出された処理液の温度を示す。また、目標温度予測時間は、温度プロファイル(以下、「温度プロファイルPF」と記載する場合がある。)に基づいて定められる。温度プロファイルPFは、プリディスペンス処理条件に従って過去にプリディスペンス処理を実行したときの処理液の温度の時間推移の記録を示す。温度プロファイルPFにおける温度の時間推移を記録する際のプリディスペンス処理条件は、実行中のプリディスペンス処理に対するプリディスペンス処理条件と同じである。記憶部31は温度プロファイルPFを記憶している。
 以上、図1を参照して説明したように、実施形態1によれば、制御部30は、目標温度予測時間に基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。従って、プリディスペンス処理において、処理液の温度が目標温度Ttに到達するまで、処理液が吐出される。その結果、処理ユニット1によって基板Wを1枚ずつ処理する場合において、プリディスペンス処理の終了時刻での処理液の温度が、複数の基板W間で相違することを抑制できる。
 プリディスペンス処理の終了時刻での処理液の温度が複数の基板W間で相違することを抑制できると、基板Wの処理開始時の処理液の温度(以下、「処理開始時温度」と記載する場合がある。)が、複数の基板W間で相違することを抑制できる。その結果、複数の基板W間で、処理液による処理結果の均一性を向上できる。換言すれば、複数の基板W間で、処理液による処理結果のバラツキを抑制できる。
 具体的には、制御部30は、目標温度予測時間を、プリディスペンス処理における処理液の吐出停止時間に設定する。処理液の吐出停止時間は、検出温度Tdの検出時刻からプリディスペンス処理における処理液の吐出停止時刻までの時間を示す。プリディスペンス処理における処理液の吐出停止時刻は、プリディスペンス処理の終了時刻を示す。
 次に、図3を参照して、温度プロファイルPFについて詳細に説明する。図3は、温度プロファイルPFを示す図である。図3に示すように、横軸は時間を示し、縦軸は処理液の温度を示す。処理液の温度は温度検出部17によって検出されている。温度プロファイルPFは、過去のプリディスペンス処理における処理液の温度推移の記録である。そして、時刻t0は、プリディスペンス処理による処理液の吐出開始時刻を示す。つまり、時刻t0は、プリディスペンス処理の開始時刻を示す。時刻t1は、プリディスペンス処理による処理液の温度が目標温度Ttに到達した時刻を示す。実施形態1では、プリディスペンス処理による処理液の温度が目標温度Ttに到達した時刻に、プリディスペンス処理における処理液の吐出を停止する。従って、時刻t1は、処理液の吐出停止時刻であり、プリディスペンス処理の終了時刻を示す。つまり、時刻t0から時刻t1までの期間PDにおいてプリディスペンス処理が実行される。
 時刻txは、プリディスペンス処理において、処理液の温度が目標温度Ttよりも低い温度Txに到達した時刻を示す。そして、処理液の温度が温度Txから目標温度Ttに到達するまでの時間tR(以下、「目標温度到達時間tR」と記載する場合がある。)は、温度プロファイルPFから特定できる。目標温度到達時間tRは、温度プロファイルPFにおける時刻txから時刻t1までの時間を示す。
 実施形態1では、制御部30は、過去のプリディスペンス処理の記録である温度プロファイルPFから特定される目標温度到達時間tRを、実行中のプリディスペンス処理における目標温度予測時間に決定する。つまり、実行中のプリディスペンス処理における処理液の検出温度Tdが温度プロファイルPFにおける温度Txと略一致する場合は、実行中のプリディスペンス処理における処理液の温度は、検出温度Tdの検出時刻から温度プロファイルPFにおける目標温度到達時間tRの経過時に、検出温度Tdから目標温度Ttに到達すると予測できる。
 以上、図3を参照して説明したように、実施形態1によれば、制御部30は、温度プロファイルPFに基づいて、処理液の検出温度Tdに応じた目標温度予測時間を決定する。従って、目標温度予測時間を精度良く決定できる。
 なお、温度プロファイルPFは、過去にプリディスペンス処理を実行したときの処理液の温度の時間推移の記録に加えて、プリディスペンス処理の終了時刻t1から処理液による基板Wの処理の開始時刻t2までの処理液の温度の時間推移の記録と、過去に処理液によって基板Wを処理したときの処理液の温度の時間推移の記録とを含んでいてもよい。
 すなわち、プリディスペンス処理が終了すると、時刻t1から時刻t2までに、ノズル12が待機位置PS2から処理位置PS1まで移動する。従って、温度プロファイルPFにおいて、時刻t1から時刻t2までに処理液の温度が下降している。そして、時刻t2で、ノズル12は、基板Wに向けて処理液の吐出を開始する。従って、温度プロファイルPFにおいて、時刻t2以降、処理液の温度が上昇し、その後、飽和している。時刻t2は、処理液による基板Wの処理の開始時刻を示す。つまり、時刻t2以降の期間SPにおいて、処理液によって基板Wが処理される。
 次に、図1、図3、及び図4を参照して、実行中のプリディスペンス処理における処理液の吐出の制御について詳細に説明する。図4は、処理ユニット1における処理液の温度推移を示す図である。図4に示すように、横軸は時間を示し、縦軸は処理液の温度を示す。
 図4では、3枚の基板Wを一枚ずつ処理する際の処理液の温度推移が示される。すなわち、曲線C1は、1枚目の基板Wに対するプリディスペンス処理及び基板処理における処理液の温度推移を示す。曲線C2は、2枚目の基板Wに対するプリディスペンス処理及び基板処理における処理液の温度推移を示す。曲線C3は、3枚目の基板Wに対するプリディスペンス処理及び基板処理における処理液の温度推移を示す。時刻t0は、プリディスペンス処理における処理液の吐出開始時刻を示す。
 曲線C1~曲線C3によって示されるように、時刻t0では、1枚目の基板Wに対する処理液の温度が最も低く、2枚目の基板Wに対する処理液の温度が次に低く、3枚目の基板Wに対する処理液の温度が最も高い。なぜなら、循環配管(不図示)から分岐する供給配管13の温度が、1枚目の基板Wのために処理液を供給する場合に最も低く、その後、徐々に上昇するためである。特に、処理ユニット1の待機時間が比較的長い場合、1枚目の基板Wに対するプリディスペンス処理時では、2枚目以降の基板Wに対するプリディスペンス処理時と比較して、供給配管13の温度は低い。
 そこで、制御部30は、温度検出部17の検出結果に基づいて、プリディスペンス処理の終了時刻での処理液の温度が3枚の基板W間で揃うように、基板Wごとに、プリディスペンス処理における処理液の吐出時間を制御する。
 具体的には、温度検出部17は、基板Wごとに、プリディスペンス処理を実行中に処理液の温度が所定温度Tyに到達したことを検出する。所定温度Tyは目標温度Ttより低い。1枚目の基板Wでは、曲線C1に示すように、時刻taで処理液の温度が所定温度Tyに到達している。2枚目の基板Wでは、曲線C2に示すように、時刻tbで処理液の温度が所定温度Tyに到達している。3枚目の基板Wでは、曲線C3に示すように、時刻tcで処理液の温度が所定温度Tyに到達している。
 制御部30は、図3に示す温度プロファイルPFを参照して、所定温度Tyと一致する温度Txに基づいて目標温度到達時間tRを特定する。そして、制御部30は、目標温度到達時間tRを目標温度予測時間tPに決定する。つまり、制御部30は、温度プロファイルPFに基づいて、検出温度Tdである所定温度Tyに応じた目標温度予測時間tPを決定する。
 そして、処理液の温度が所定温度Tyに到達したことが検出された時刻から目標温度予測時間tPが経過した時に、制御部30は、プリディスペンス処理における処理液の吐出を停止するように供給調節部2(具体的にはバルブ20)を制御する。具体的には、1枚目の基板Wでは、曲線C1に示すように、ノズル12は、時刻taから目標温度予測時間tPが経過した時刻tAで処理液の吐出を停止する。2枚目の基板Wでは、曲線C2に示すように、ノズル12は、時刻tbから目標温度予測時間tPが経過した時刻tBで処理液の吐出を停止する。3枚目の基板Wでは、曲線C3に示すように、ノズル12は、時刻tcから目標温度予測時間tPが経過した時刻tCで処理液の吐出を停止する。
 従って、実施形態1によれば、3枚の基板Wに対するプリディスペンス処理の終了時刻tA~終了時刻tCでの処理液の温度が、目標温度Ttと略同一である。つまり、プリディスペンス処理の終了時刻tA~終了時刻tCでの処理液の温度が、3枚の基板W間で相違することを抑制できる。従って、基板Wの処理開始時温度が、3枚の基板W間で相違することを抑制できる。具体的には、曲線C1~曲線C3に示すように、1枚目の基板Wの処理開始時刻tpでの処理開始時温度と、2枚目の基板Wの処理開始時刻tqでの処理開始時温度と、3枚目の基板Wの処理開始時刻trでの処理開始時温度とは、温度Tsであり、略同一である。その結果、3枚の基板W間で、処理液による処理結果の均一性を向上できる。
 また、実施形態1では、1枚目の基板Wに対するプリディスペンス処理の終了時刻tAから処理開始時刻tpまでの時間と、2枚目の基板Wに対するプリディスペンス処理の終了時刻tBから処理開始時刻tqまでの時間と、3枚目の基板Wに対するプリディスペンス処理の終了時刻tCから処理開始時刻trまでの時間とは、略同一である。そして、処理液による1枚目の基板Wの処理は、処理開始時刻tp以降の期間SP1において実行される。処理液による2枚目の基板Wの処理は、処理開始時刻tq以降の期間SP2において実行される。処理液による3枚目の基板Wの処理は、処理開始時刻tr以降の期間SP3において実行される。そして、期間SP1の長さと期間SP2の長さと期間SP3の長さとは略同一である。従って、3枚の基板Wは、それぞれ、略同一の長さの期間SP1~期間SP3において、略同一の処理開始時温度Tsの処理液によって処理される。その結果、3枚の基板W間で、処理液による処理結果の均一性を更に向上できる。
 さらに、実施形態1では、プリディスペンス処理における処理液の吐出開始時刻t0での処理液の温度が低い程、プリディスペンス処理を実行する期間を長くしている。曲線C1及び曲線C2に示すように、1枚目の基板Wに対するプリディスペンス処理を実行する期間PD1は、2枚目の基板Wに対するプリディスペンス処理を実行する期間PD2よりも長い。また、曲線C2及び曲線C3に示すように、2枚目の基板Wに対するプリディスペンス処理を実行する期間PD2は、3枚目の基板Wに対するプリディスペンス処理を実行する期間PD3よりも長い。従って、プリディスペンス処理の終了時刻tA~終了時刻tCでの処理液の温度が、3枚の基板W間で相違することを更に抑制できる。その結果、3枚の基板W間で、処理液による処理結果の均一性を更に向上できる。
 以上、図3及び図4を参照して説明したように、実施形態1によれば、複数の基板W間で、処理液による処理結果の均一性を向上できる。
 また、実施形態1に係るプリディスペンス処理は、高温の処理液(例えば、燐酸を含む処理液又はSPMを含む処理液)を使用する場合に特に有効である。一般的には、高温の処理液を使用する場合は、環境温度と処理液の温度との差が大きいため、プリディスペンス処理の終了時刻において複数の基板W間での処理液の温度の相違が、高温でない処理液を使用する場合よりも大きくなるためである。実施形態1では、高温の処理液を使用する場合でも、プリディスペンス処理の終了時刻での処理液の温度が、複数の基板W間で相違することを抑制できるため、複数の基板W間で、処理液による処理結果の均一性を向上できる。
 ここで、一般的な基板処理装置を例に挙げて、基板の環境温度の変動について説明する。一般的な基板処理装置では、環境温度の変動によって、複数の基板間で、処理結果に若干のバラツキが生じる可能性がある。具体的には、処理中の基板の環境温度の変動が、処理液の温度に若干の影響を及ぼす可能性がある。特に、高温の処理液を使用する場合は、環境温度と処理液の温度との差が大きいため、環境温度の変動の影響は、高温でない処理液を使用する場合よりも大きくなる。環境温度の変動が処理液の温度に若干でも影響を及ぼすと、複数の基板間で、処理結果に若干のバラツキが生じる可能性がある。特に、近年、処理結果の若干のバラツキでさえも抑制することを要求される場合がある。換言すれば、複数の基板間で、処理結果の均一性の更なる向上が要求される場合がある。
 これに対して、実施形態1に係る基板処理装置100では、目標温度予測時間に基づいてプリディスペンス処理における処理液の吐出停止時間を設定することで、プリディスペンス処理の終了時刻での処理液の温度が、複数の基板W間で相違することを抑制できる。従って、複数の基板W間で、処理液による処理結果の均一性を向上できる。
 また、実施形態1によれば、目標温度Ttよりも低い検出温度Tdに基づいて、プリディスペンス処理における処理液の吐出を制御している。従って、実施形態1では、検出した目標温度Ttに基づいてプリディスペンス処理における処理液の吐出を制御する場合と比較して、次のような利点を有する。
 すなわち、実施形態1では、処理液の温度が目標温度Ttに到達する時刻よりも前の時刻で処理液の吐出の制御を開始するため、処理液の吐出の制御を確実に行うことができる。なお、検出した目標温度Ttに基づいて処理液の吐出を制御する場合は、処理液の温度が目標温度Ttに到達して直ちに制御を開始する必要があるところ、バルブの動作が制御に追随せずに、目標温度Ttを超えてから処理液の吐出が停止される可能性がある。
 また、実施形態1では、目標温度Ttよりも低い検出温度Tdに基づいて処理液の吐出の制御を実行するため、温度検出部17の性能に好適な温度帯を選択して処理液の温度を検出できる。特に、高温の処理液を使用する場合、高温域では温度検出部17による検出精度が十分でない場合があり得るが、実施形態1では、温度検出部17の性能に好適な温度帯で処理液の温度を検出できる。
 次に、図1、図4、及び図5を参照して、基板処理装置100が実行する基板処理方法について説明する。図5は、基板処理方法を示すフローチャートである。図5に示すように、基板処理方法は、工程S1と、工程S2とを含む。基板処理方法は、基板Wを処理液によって処理する基板処理装置100によって実行される。
 図1及び図5に示すように、工程S1において、基板処理装置100は、プリディスペンス処理条件に従って、プリディスペンス処理を実行する。工程S1は「プリディスペンス工程」の一例に相当する。次に、工程S2において、基板処理装置100は、処理液によって基板Wを処理する。工程S2は「基板処理工程」の一例に相当する。基板処理装置100は、基板Wを1枚ずつ、基板Wごとに、工程S1及び工程S2を実行する。
 具体的には、工程S1は、工程S11~工程S16を含む。
 工程S11において、制御部30は、基板処理装置100の状態情報(以下、「状態情報ST」と記載する。)によって示される基板処理装置100の状態を認識する。基板処理装置100の状態情報STは、直近での基板Wの処理完了時からの経過時間を示す情報と、1枚ずつ基板Wを処理するときに何枚目の基板Wがスピンチャック11に保持されたかを示す情報とのうちの少なくとも一方の情報を含む。工程S11の後、処理は工程S12に進む。
 工程S12において、制御部30は、プリディスペンス処理条件を基板処理装置100に設定する。具体的には、制御部30は、互いに異なる複数のプリディスペンス処理条件から選択したプリディスペンス処理条件を、基板処理装置100に設定する。工程S12の後、処理は工程S13に進む。
 工程S13において、制御部30は、ノズル12が液受け部15に向かって処理液の吐出を開始するように、プリディスペンス処理条件に従って供給調節部2を制御する。その結果、ノズル12が液受け部15に向かって処理液の吐出を開始する。工程S13の後、処理は工程S14に進む。
 工程S14において、温度検出部17は、プリディスペンス処理を実行中の処理液の温度が目標温度Ttに到達する前に、処理液の温度を検出する。具体的には、工程S14では、プリディスペンス処理を実行中に処理液の温度が所定温度Tyに到達したことを検出する。所定温度Tyは目標温度Ttより低い。工程S14は「検出工程」の一例に相当する。
 更に具体的には、工程S14は、工程S141と、工程S142と、工程S143とを含む。
 工程S141において、温度検出部17は、プリディスペンス処理を実行中の処理液の温度が目標温度Ttに到達する前から、処理液の温度を検出して、処理液の温度を示す情報を制御部30に出力する。従って、制御部30は、処理液の温度が目標温度Ttに到達する前から、処理液の温度を監視している。工程S141の後、処理は工程S142に進む。
 工程S142において、制御部30は、処理液の温度が所定温度Tyに到達したか否かを判定する。
 処理液の温度が所定温度Tyに到達していないと判定されると(工程S142でNo)、処理は工程S141に戻る。
 一方、処理液の温度が所定温度Tyに到達したと判定されると(工程S142でYes)、処理は工程S143に進む。なお、処理液の温度が所定温度Tyに到達したと判定された後においても、温度検出部17は処理液の温度を検出し、制御部30は処理液の温度を監視する。
 工程S143において、制御部30は、処理液の温度が所定温度Tyに到達した時刻(例えば時刻ta)を記憶するように、記憶部31を制御する。その結果、記憶部31は、処理液の温度が所定温度Tyに到達した時刻を記憶する。工程S143の後、処理は工程S15に進む。
 工程S15において、制御部30は、目標温度予測時間tPに基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。具体的には、制御部30は、温度プロファイルPFに基づいて、所定温度Tyに応じた目標温度予測時間tPを決定する。そして、制御部30は、目標温度予測時間tPを処理液の吐出停止時間に設定する。所定温度Tyは検出温度Tdに一致する。検出温度Tdは、工程S14によって目標温度Ttに到達する前に検出された処理液の温度を示す。工程S15は「設定工程」の一例に相当する。工程S15の後、処理は工程S16に進む。
 工程S16において、所定温度Tyに到達したことが検出された時刻(例えば時刻ta)から目標温度予測時間tPが経過した時(例えば時刻tA)に、制御部30は、プリディスペンス処理における処理液の吐出を停止するように供給調節部2を制御する。その結果、ノズル12は、処理液の吐出を停止する。そして、プリディスペンス処理が終了する。工程S16は「プリディスペンス終了工程」の一例に相当する。工程S16の後、処理は工程S2に進む。そして、工程S2を完了すると、1枚の基板Wに対するプリディスペンス処理及び処理液による処理が終了する。
 (実施形態2)
 図1及び図6~図8を参照して、本発明の実施形態2に係る基板処理装置100について説明する。実施形態2が所定検出時刻(以下、「所定検出時刻ty」と記載する場合がある。)で検出した処理液の温度に応じて目標温度予測時間を決定する点で、実施形態2は実施形態1と異なる。以下、実施形態2が実施形態1と異なる点を主に説明する。
 まず、図1、図6、及び図7を参照して、実行中のプリディスペンス処理における処理液の吐出の制御について説明する。図6は、処理ユニット1における処理液の温度推移を示す図である。図6に示す曲線C1~曲線C3は、それぞれ、図4に示す曲線C1~曲線C3と同様であり、適宜説明を省略する。
 図1及び図6に示すように、温度検出部17は、基板Wごとに、プリディスペンス処理を実行中の所定検出時刻tyで処理液の温度を検出する。所定検出時刻tyで検出された処理液の温度が検出温度Tdである。所定検出時刻tyは、処理液の温度が目標温度Ttに到達する前の時刻を示し、予め定められる。
 1枚目の基板Wでは、曲線C1に示すように、所定検出時刻tyでの処理液の温度は温度Ty1である。2枚目の基板Wでは、曲線C2に示すように、所定検出時刻tyでの処理液の温度は温度Ty2である。3枚目の基板Wでは、曲線C3に示すように、所定検出時刻tyでの処理液の温度は温度Ty3である。
 制御部30は、温度プロファイルPFを参照して、所定検出時刻tyでの処理液の温度Ty1~温度Ty3のそれぞれに対して、目標温度予測時間tP1~目標温度予測時間tP3を決定する。つまり、制御部30は、温度プロファイルPFに基づいて、所定検出時刻tyでの処理液の温度Ty1~温度Ty3に応じた目標温度予測時間tP1~目標温度予測時間tP3を決定する。
 目標温度予測時間tP1~目標温度予測時間tP3の具体的な決定手順について図6及び図7を参照して説明する。図7は、温度プロファイルPFを示す図である。図7に示す温度プロファイルPFは、図3に示す温度プロファイルPFと同様であり、適宜説明を省略する。
 図6及び図7に示すように、1枚目の基板Wに対して、制御部30は、温度プロファイルPFを参照して、所定検出時刻tyでの処理液の温度Ty1と一致する温度Tx1に基づいて時間tR1を特定する。時間tR1は、処理液の温度が温度Tx1から目標温度Ttに到達するまでの時間を示す。従って、実行中のプリディスペンス処理における処理液の温度Ty1が温度プロファイルPFにおける温度Tx1と略一致する場合は、実行中のプリディスペンス処理における処理液の温度は、所定検出時刻tyから温度プロファイルPFにおける時間tR1の経過時に、温度Ty1から目標温度Ttに到達すると予測できる。そこで、制御部30は、所定検出時刻tyでの処理液の温度Ty1に対して、温度プロファイルPFから特定される時間tR1を、実行中のプリディスペンス処理における目標温度予測時間tP1に決定する。
 2枚目の基板Wに対しても同様に、制御部30は、温度プロファイルPFを参照して、所定検出時刻tyでの処理液の温度Ty2と一致する温度Tx2に基づいて時間tR2を特定する。時間tR2は、処理液の温度が温度Tx2から目標温度Ttに到達するまでの時間を示す。そして、制御部30は、処理液の温度Ty2に対して、時間tR2を目標温度予測時間tP2に決定する。
 3枚目の基板Wに対しても同様に、制御部30は、温度プロファイルPFを参照して、所定検出時刻tyでの処理液の温度Ty3と一致する温度Tx3に基づいて時間tR3を特定する。時間tR3は、処理液の温度が温度Tx3から目標温度Ttに到達するまでの時間を示す。そして、制御部30は、処理液の温度Ty3に対して、時間tR3を目標温度予測時間tP3に決定する。
 以上、図6及び図7を参照して説明したように、制御部30は、温度プロファイルPFに基づいて目標温度予測時間tP1~目標温度予測時間tP3を決定した。そして、図6に示すように、1枚目~3枚目の基板Wのそれぞれに対して、所定検出時刻tyから目標温度予測時間tP1~目標温度予測時間tP3が経過した時に、制御部30は、プリディスペンス処理における処理液の吐出を停止するように供給調節部2(具体的にはバルブ20)を制御する。
 具体的には、1枚目の基板Wでは、曲線C1に示すように、ノズル12は、所定検出時刻tyから目標温度予測時間tP1が経過した時刻tAで処理液の吐出を停止する。2枚目の基板Wでは、曲線C2に示すように、ノズル12は、所定検出時刻tyから目標温度予測時間tP2が経過した時刻tBで処理液の吐出を停止する。3枚目の基板Wでは、曲線C3に示すように、ノズル12は、所定検出時刻tyから目標温度予測時間tP3が経過した時刻tCで処理液の吐出を停止する。
 従って、実施形態2によれば、3枚の基板Wに対するプリディスペンス処理の終了時刻tA~終了時刻tCでの処理液の温度が、目標温度Ttと略同一である。つまり、プリディスペンス処理の終了時刻tA~終了時刻tCでの処理液の温度が、3枚の基板W間で相違することを抑制できる。従って、基板Wの処理開始時温度が、3枚の基板W間で相違することを抑制できる。具体的には、1枚目~3枚目の基板Wの処理開始時温度は、温度Tsであり、略同一である。その結果、3枚の基板W間で、処理液による処理結果の均一性を向上できる。つまり、複数の基板W間で、処理液による処理結果の均一性を向上できる。その他、実施形態2では、実施形態1と同様の効果を有する。
 次に、図1、図6、及び図8を参照して、基板処理装置100が実行する基板処理方法について説明する。図8は、基板処理方法を示すフローチャートである。図8に示すように、基板処理方法は、工程S51と、工程S52とを含む。基板処理方法は、基板Wを処理液によって処理する基板処理装置100によって実行される。
 図1及び図8に示すように、工程S51において、基板処理装置100は、プリディスペンス処理条件に従って、プリディスペンス処理を実行する。工程S51は「プリディスペンス工程」の一例に相当する。次に、工程S52において、基板処理装置100は、処理液によって基板Wを処理する。工程S52は「基板処理工程」の一例に相当する。基板処理装置100は、基板Wを1枚ずつ、基板Wごとに、工程S51及び工程S52を実行する。
 具体的には、工程S51は、工程S511~工程S516を含む。
 工程S511において、制御部30は、基板処理装置100の状態情報STによって示される基板処理装置100の状態を認識する。工程S511の後、処理は工程S512に進む。
 工程S512において、制御部30は、プリディスペンス処理条件を基板処理装置100に設定する。工程S512の後、処理は工程S513に進む。
 工程S513において、制御部30は、ノズル12が液受け部15に向かって処理液の吐出を開始するように、プリディスペンス処理条件に従って供給調節部2を制御する。その結果、ノズル12が液受け部15に向かって処理液の吐出を開始する。工程S513の後、処理は工程S514に進む。
 なお、工程S511~工程S513は、それぞれ、図5に示す工程S11~工程S13と同様である。
 工程S514において、温度検出部17は、プリディスペンス処理を実行中の処理液の温度が目標温度Ttに到達する前に、処理液の温度を検出する。具体的には、工程S514では、プリディスペンス処理を実行中の所定検出時刻tyで処理液の温度を検出する。所定検出時刻tyは、処理液の温度が目標温度Ttに到達する前の時刻を示す。工程S514は「検出工程」の一例に相当する。
 更に具体的には、工程S514は、工程S5141と、工程S5142と、工程S5143とを含む。
 工程S5141において、温度検出部17は、プリディスペンス処理を実行中の処理液の温度が目標温度Ttに到達する前から、処理液の温度を検出して、処理液の温度を示す情報を制御部30に出力する。従って、制御部30は、処理液の温度が目標温度Ttに到達する前から、処理液の温度を監視している。工程S5141の後、処理は工程S5142に進む。
 工程S5142において、制御部30は、時刻が所定検出時刻tyになったか否かを判定する。
 時刻が所定検出時刻tyになっていないと判定されると(工程S5142でNo)、処理は工程S5141に戻る。
 一方、時刻が所定検出時刻tyになったと判定されると(工程S5142でYes)、処理は工程S5143に進む。なお、時刻が所定検出時刻tyになったと判定された後においても、温度検出部17は処理液の温度を検出し、制御部30は処理液の温度を監視する。
 工程S5143において、制御部30は、所定検出時刻tyで検出された処理液の温度(例えば温度Ty1)を記憶するように、記憶部31を制御する。その結果、記憶部31は、所定検出時刻tyでの処理液の温度を記憶する。工程S5143の後、処理は工程S515に進む。
 工程S515において、制御部30は、目標温度予測時間tPに基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。具体的には、制御部30は、温度プロファイルPFに基づいて、所定検出時刻tyで検出した処理液の温度(例えば温度Ty1)に応じた目標温度予測時間(例えば目標温度予測時間tP1)を決定する。そして、制御部30は、目標温度予測時間を処理液の吐出停止時間に設定する。所定検出時刻tyで検出した処理液の温度は、検出温度Tdである。検出温度Tdは、工程S514によって目標温度Ttに到達する前に検出された処理液の温度を示す。工程S515は「設定工程」の一例に相当する。工程S515の後、処理は工程S516に進む。
 工程S516において、所定検出時刻tyから目標温度予測時間が経過した時(例えば時刻tA)に、プリディスペンス処理における処理液の吐出を停止するように供給調節部2を制御する。その結果、ノズル12は、処理液の吐出を停止する。そして、プリディスペンス処理が終了する。工程S516は「プリディスペンス終了工程」の一例に相当する。工程S516の後、処理は工程S52に進む。そして、工程S52を完了すると、1枚の基板Wに対するプリディスペンス処理及び処理液による処理が終了する。
 (実施形態3)
 図1及び図9を参照して、本発明の実施形態3に係る基板処理装置100について説明する。実施形態3が複数のプリディスペンス処理条件にそれぞれ対応する複数の温度プロファイルPFを有する点で、実施形態3は実施形態1と異なる。以下、実施形態3が実施形態1と異なる点を主に説明する。
 図9は、実施形態3に係る基板処理装置100の記憶部31に記憶されたプリディスペンス処理条件PC及び温度プロファイルPFを示す概念図である。図9に示すように、記憶部31は、互いに異なる複数のプリディスペンス処理条件PCを記憶する。さらに、記憶部31は、複数のプリディスペンス処理条件PCにそれぞれ関連付けて、互いに異なる複数の温度プロファイルPFを記憶する。
 図1及び図9に示すように、制御部30は、複数のプリディスペンス処理条件PCから1つのプリディスペンス処理条件PC(以下、「プリディスペンス処理条件PCA」と記載する。)を選択する。そして、制御部30は、複数のプリディスペンス処理条件PCから選択されたプリディスペンス処理条件PCAに従って供給調節部2及びノズル移動ユニット14を制御して、プリディスペンス処理を実行する。
 そして、制御部30は、複数の温度プロファイルPFから、プリディスペンス処理条件PCAに関連付けられた温度プロファイル(以下、「温度プロファイルPFA」と記載する。)を特定する。温度プロファイルPFAにおける温度の時間推移を記録する際のプリディスペンス処理条件は、温度プロファイルPFAに関連付けられたプリディスペンス処理条件PCAと同じである。つまり、温度プロファイルPFAにおける温度の時間推移を記録する際のプリディスペンス処理条件は、選択されたプリディスペンス処理条件PCAと同じである。
 従って、実施形態3によれば、実行中のプリディスペンス処理に更に適合する温度プロファイルPFAに基づいて、目標温度予測時間を決定できる。その結果、目標温度予測時間を更に精度良く決定できる。そして、制御部30は、更に精度の良い目標温度予測時間に基づいて、プリディスペンス処理における処理液の吐出終了時間を設定する。従って、プリディスペンス処理の終了時刻での処理液の温度が、複数の基板W間で相違することを更に抑制できる。その結果、複数の基板W間で、処理液による処理結果の均一性を更に向上できる。その他、実施形態3では、実施形態1と同様の効果を有する。
 例えば、あるプリディスペンス処理条件PC(以下、「プリディスペンス処理条件PC1」と記載する。)と別のプリディスペンス処理条件PC(以下、「プリディスペンス処理条件PC2」と記載する。)とに着目する。プリディスペンス処理条件PC1は、P(リットル/分)の流量を示し、プリディスペンス処理条件PC2は、Q(リットル/分)の流量を示す。流量Pと流量Qとは異なる。従って、流量Pに対応する温度プロファイルPFと流量Qに対応する温度プロファイルPFとは異なる。その結果、例えば、実行中のプリディスペンス処理に対するプリディスペンス処理条件がプリディスペンス処理条件PC1である場合には、流量Qに対応する温度プロファイルPFに基づく目標温度予測時間の精度よりも、流量Pに対応する温度プロファイルPFに基づく目標温度予測時間の精度が高い。
 (実施形態4)
 図1及び図10を参照して、本発明の実施形態4に係る基板処理装置100について説明する。実施形態4が複数の状態情報STにそれぞれ対応する複数の温度プロファイルPFを有する点で、実施形態4は実施形態1と異なる。以下、実施形態4が実施形態1と異なる点を主に説明する。
 図10は、実施形態4に係る基板処理装置100の記憶部31に記憶された基板処理装置100の状態情報ST及び温度プロファイルPFを示す概念図である。図10に示すように、記憶部31は、互いに異なる複数の状態情報STを記憶する。さらに、記憶部31は、複数の状態情報STにそれぞれ関連付けて、互いに異なる複数の温度プロファイルPFを記憶する。基板処理装置100の状態情報STは、直近での基板Wの処理完了時からの経過時間を示す情報と、1枚ずつ基板Wを処理するときに何枚目の基板Wがスピンチャック11に保持されたかを示す情報とのうちの少なくとも一方の情報を含む。
 例えば、ある状態情報STは、直近での基板Wの処理完了時からの経過時間が3時間であることを示し、別の状態情報STは、直近での基板Wの処理完了時からの経過時間が10分であることを示す。例えば、ある状態情報STは、1枚目の基板Wがスピンチャック11に保持されたことを示し、別の状態情報STは、3枚目の基板Wがスピンチャック11に保持されたことを示す。
 図1及び図10に示すように、制御部30は、複数の状態情報STから、現在の基板処理装置100の状態を示す状態情報ST(以下、「状態情報STA」と記載する。)を特定する。
 そして、制御部30は、複数の温度プロファイルPFから、状態情報STAに関連付けられた温度プロファイルPF(以下、「温度プロファイルPFA」と記載する。)を特定する。温度プロファイルPFAは、基板処理装置100の状態が状態情報STAによって示される状態のときに、プリディスペンス処理条件に従って過去にプリディスペンス処理を実行したときの処理液の温度の時間推移の記録を示す。
 従って、実施形態4によれば、プリディスペンス処理を実行中の基板処理装置100の状態に更に適合する温度プロファイルPFAに基づいて、目標温度予測時間を決定できる。その結果、目標温度予測時間を更に精度良く決定できる。そして、制御部30は、更に精度の良い目標温度予測時間に基づいて、プリディスペンス処理における処理液の吐出終了時間を設定する。従って、プリディスペンス処理の終了時刻での処理液の温度が、複数の基板W間で相違することを更に抑制できる。その結果、複数の基板W間で、処理液による処理結果の均一性を更に向上できる。その他、実施形態4では、実施形態1と同様の効果を有する。
 例えば、ある状態情報ST(以下、「状態情報ST1」と記載する。)と別の状態情報ST(以下、「状態情報ST2」と記載する。)とに着目する。状態情報ST1は、直近での基板Wの処理完了時からの経過時間が3時間であることを示し、状態情報ST2は、直近での基板Wの処理完了時からの経過時間が10分であることを示す。従って、状態情報ST1に対応する温度プロファイルPFと状態情報ST2に対応する温度プロファイルPFとは異なる。その結果、例えば、状態情報ST1によってプリディスペンス処理を実行中の基板処理装置100の状態が示される場合は、状態情報ST2に対応する温度プロファイルPFに基づく目標温度予測時間の精度よりも、状態情報ST1に対応する温度プロファイルPFに基づく目標温度予測時間の精度が高い。
 (実施形態5)
 図11及び図12を参照して、本発明の実施形態5に係る基板処理装置100Aについて説明する。実施形態5が複数の処理ユニット1を備えている点で、実施形態5は実施形態1と異なる。以下、実施形態5が実施形態1と異なる点を主に説明する。
 まず、図11を参照して、基板処理装置100Aについて説明する。図11は、基板処理装置100Aを示す平面図である。図11に示すように、基板処理装置100Aは、複数のロードポートLPと、インデクサーロボットIRと、センターロボットCRと、複数の処理ユニット1と、複数の流体ボックス4と、処理液キャビネット5と、制御装置3とを備える。制御装置3は、ロードポートLP、インデクサーロボットIR、センターロボットCR、及び処理ユニット1を制御する。制御装置3は、制御部30と、記憶部31とを含む。
 ロードポートLPの各々は、複数枚の基板Wを積層して収容する。インデクサーロボットIRは、ロードポートLPとセンターロボットCRとの間で基板Wを搬送する。センターロボットCRは、インデクサーロボットIRと処理ユニット1との間で基板Wを搬送する。処理ユニット1の各々は、基板Wに処理液を吐出して、基板Wを処理する。流体ボックス4の各々は流体機器を収容する。処理液キャビネット5は処理液を収容する。
 具体的には、複数の処理ユニット1は、平面視においてセンターロボットCRを取り囲むように配置された複数のタワーTW(実施形態5では4つのタワーTW)を形成している。各タワーTWは、上下に積層された複数の処理ユニット1(実施形態5では3つの処理ユニット1)を含む。複数の流体ボックス4は、それぞれ、複数のタワーTWに対応している。処理液キャビネット5内の処理液は、いずれかの流体ボックス4を介して、流体ボックス4に対応するタワーTWに含まれる全ての処理ユニット1に供給される。
 制御部30は、図1~図5を参照して説明した実施形態1に係る制御部30と同様に動作する。つまり、制御部30は、目標温度予測時間に基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。従って、実施形態5によれば、実施形態1と同様に、1つのチャンバー10で1枚ずつ処理される複数の基板W間で、処理液による処理結果の均一性を向上できる。
 また、実施形態5では、基板処理装置100Aは、チャンバー10ごとに、スピンチャック11とノズル12と供給調節部2と液受け部15と温度検出部17とを備える。チャンバー10の各々は、スピンチャック11とノズル12と供給調節部2と液受け部15と温度検出部17と収容する。
 制御部30は、チャンバー10ごとに、目標温度予測時間に基づいて、プリディスペンス処理における処理液の吐出停止時間を設定する。従って、複数のチャンバー10にわたって、プリディスペンス処理の終了時刻での処理液の温度が、複数の基板W間で相違することを抑制できる。その結果、複数のチャンバー10で処理される複数の基板W間で、処理液による処理結果の均一性を向上できる。例えば、1つのタワーTW内の複数のチャンバー10間で、複数の基板Wに対して、処理液による処理結果の均一性を向上できる。例えば、複数のタワーTW間で、複数の基板Wに対して、処理液による処理結果の均一性を向上できる。なお、基板処理装置100Aは、図5に示す基板処理方法をチャンバー10ごとに実行する。つまり、工程S1及び工程S2は、複数の基板Wをそれぞれ収容する複数のチャンバー10ごとに実行される。
 次に、図12を参照して、ノズル12への処理液の供給について説明する。図12は、基板処理装置100Aの配管を示す図である。図12に示すように、基板処理装置100Aは、各タワーTWにおいて、処理ユニット1ごとに、供給配管13と供給調節部2とを備えている。供給調節部2は、タワーTWに対応する流体ボックス4に収容される。各供給配管13の一部はチャンバー10に収容され、各供給配管13の他の一部は流体ボックス4に収容される。
 また、基板処理装置100Aは、処理液タンク50と、循環配管51と、ポンプ55と、フィルター56と、温度調節器57とを備える。処理液タンク50とポンプ55とフィルター56と温度調節器57とは、処理液キャビネット5に収容される。循環配管51の一部は処理液キャビネット5に収容され、循環配管51の他の一部は流体ボックス4に収容される。
 循環配管51は、処理液タンク50から下流に延びる上流配管52と、上流配管52から分岐した複数の個別配管53と、各個別配管53から処理液タンク50まで下流に延びる下流配管54とを含む。
 上流配管52の上流端は、処理液タンク50に接続されている。下流配管54の下流端は、処理液タンク50に接続されている。上流配管52の上流端は、循環配管51の上流端に相当し、下流配管54の下流端は、循環配管51の下流端に相当する。各個別配管53は、上流配管52の下流端から下流配管54の上流端に延びている。
 複数の個別配管53は、それぞれ、複数のタワーTWに対応している。1つのタワーTWに含まれる3つの処理ユニット1に対応する3つの供給配管13は、1つの個別配管53に接続されている。
 ポンプ55は、処理液タンク50内の処理液を循環配管51に送る。フィルター56は、循環配管51を流れる処理液から異物を除去する。温度調節器57は、処理液タンク50内の処理液の温度を調節する。温度調節器57は、例えば、処理液を加熱するヒーターである。
 ポンプ55、フィルター56、及び温度調節器57は、上流配管52に配置されている。処理液タンク50内の処理液は、ポンプ55によって上流配管52に送られ、上流配管52から複数の個別配管53に流れる。個別配管53内の処理液は、下流配管54に流れ、下流配管54から処理液タンク50に戻る。処理液タンク50内の処理液は、規定温度TM以上の特定温度になるように温度調節器57によって加熱されて上流配管52に送り込まれる。従って、循環配管51を循環する処理液の温度は、規定温度TM以上の特定温度に維持される。そして、循環配管51内で特定温度に維持されている処理液が、供給配管13に供給される。
 以上、図面を参照しながら本発明の実施形態について説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である(例えば、下記に示す(1)~(3))。また、上記の実施形態に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明の形成が可能である。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる3実施形態にわたる構成要素を適宜組み合わせてもよい。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数、間隔等は、図面作成の都合上から実際とは異なる場合もある。また、上記の実施形態で示す各構成要素の材質、形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。
 (1)実施形態1~実施形態5では、温度プロファイルPFを参照して目標温度予測時間を決定した。この場合、温度プロファイルPFは、例えば、テーブルによって表されていてもよいし、関数によって表されていてもよい。また、温度プロファイルPFに基づく目標温度予測時間を決定できる限りにおいては、目標温度予測時間の導出形態は特に限定されない。例えば、実施形態1において、記憶部31が、所定温度Tyと、温度プロファイルPFから予め導出した目標温度予測時間tPとを関連付けて記憶していてもよい(図4)。そして、制御部30は、記憶部31から目標温度予測時間tPを取得する。この場合は、検出温度Tdの検出前においても、制御部30は目標温度予測時間tPを取得できる。
 例えば、実施形態2において、記憶部31は、所定検出時刻tyでの温度Tt1~温度Tt3と目標温度予測時間tP1~目標温度予測時間tP3とをそれぞれに関連付けたテーブルを記憶していてもよい(図6)。そして、制御部30は、テーブルから目標温度予測時間を取得する。例えば、所定検出時刻tyでの温度Tt1~温度Tt3と目標温度予測時間tP1~目標温度予測時間tP3との関係を関数により表すこともできる。そして、制御部30は、関数から目標温度予測時間を導出する。
 (2)実施形態2に係る記憶部31が、実施形態3に係る複数のプリディスペンス処理条件PC及び複数の温度プロファイルPFを記憶していてもよい(図9)。また、実施形態2に係る記憶部31が、実施形態4に係る複数の状態情報ST及び複数の温度プロファイルPFを記憶していてもよい(図10)。さらに、実施形態5に係る基板処理装置100Aの制御部30が、実施形態2に係る制御部30と同様に動作してもよい。また、基板処理装置100Aの記憶部31が、実施形態3又は実施形態4に係る記憶部31と同様の情報を記憶していてもよい。
 (3)実施形態1~実施形態5において、処理液の温度が目標温度Ttに到達する前である限りにおいては、温度検出部17は、任意の時刻に処理液の温度を検出することができる。そして、制御部30は、処理液の検出時刻と検出温度とから、逐次、温度プロファイルPFに基づいて目標温度予測時間を決定することができる。
 本発明は、基板処理装置及び基板処理方法に関するものであり、産業上の利用可能性を有する。
 1  処理ユニット
 2  供給調節部
 3  制御装置
 10  チャンバー
 11  スピンチャック(基板保持部)
 12  ノズル
 15  液受け部
 17  温度検出部
 30  制御部
 31  記憶部
 100、100A  基板処理装置
 W  基板

Claims (16)

  1.  基板を処理液によって処理する基板処理装置であって、
     前記基板を保持して回転する基板保持部と、
     前記保持された基板に前記処理液を吐出するノズルと、
     前記ノズルへの前記処理液の供給量を調節する供給調節部と、
     前記基板保持部よりも外側に位置し、前記ノズルによって吐出される前記処理液を受ける液受け部と、
     プリディスペンス処理を実行中の前記処理液の温度が目標温度に到達する前に、前記処理液の温度を検出する温度検出部と、
     プリディスペンス処理条件に従って前記供給調節部を制御して、前記プリディスペンス処理を実行する制御部と
     を備え、
     前記プリディスペンス処理は、前記基板に前記処理液を吐出する前に、前記液受け部に向けて前記処理液を吐出する処理を示し、
     前記制御部は、目標温度予測時間に基づいて、前記プリディスペンス処理における前記処理液の吐出停止時間を設定し、
     前記目標温度予測時間は、前記処理液の温度が検出温度から前記目標温度に到達するまでの予測時間を示し、
     前記検出温度は、前記温度検出部によって前記目標温度に到達する前に検出された前記処理液の温度を示し、
     前記目標温度予測時間は、温度プロファイルに基づいて定められ、
     前記温度プロファイルは、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示す、基板処理装置。
  2.  前記制御部は、前記温度プロファイルに基づいて、前記処理液の前記検出温度に応じた前記目標温度予測時間を決定する、請求項1に記載の基板処理装置。
  3.  前記温度検出部は、前記プリディスペンス処理を実行中に前記処理液の温度が所定温度に到達したことを検出し、
     前記所定温度は、前記目標温度より低く、
     前記処理液の温度が前記所定温度に到達したことが検出された時刻から前記目標温度予測時間が経過した時に、前記制御部は、前記プリディスペンス処理における前記処理液の吐出を停止するように前記供給調節部を制御する、請求項1又は請求項2に記載の基板処理装置。
  4.  前記温度検出部は、前記プリディスペンス処理を実行中の所定検出時刻で前記処理液の温度を検出し、
     前記所定検出時刻は、前記処理液の温度が前記目標温度に到達する前の時刻を示し、
     前記所定検出時刻から前記目標温度予測時間が経過した時に、前記制御部は、前記プリディスペンス処理における前記処理液の吐出を停止するように前記供給調節部を制御する、請求項1又は請求項2に記載の基板処理装置。
  5.  前記制御部は、複数の前記プリディスペンス処理条件から選択されたプリディスペンス処理条件に従って前記供給調節部を制御して、前記プリディスペンス処理を実行し、
     前記温度プロファイルにおける温度の時間推移を記録する際の前記プリディスペンス処理条件は、前記選択されたプリディスペンス処理条件と同じである、請求項1から請求項4のいずれか1項に記載の基板処理装置。
  6.  前記温度プロファイルは、前記基板処理装置の状態が状態情報によって示される状態のときに、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示し、
     前記状態情報は、直近での基板の処理完了時からの経過時間を示す情報と、1枚ずつ基板を処理するときに何枚目の基板が前記基板保持部に保持されたかを示す情報とのうちの少なくとも一方の情報を含む、請求項1から請求項5のいずれか1項に記載の基板処理装置。
  7.  前記処理液は、燐酸、又は、硫酸過酸化水素水混合液を含む、請求項1から請求項6のいずれか1項に記載の基板処理装置。
  8.  複数のチャンバーをさらに備え、
     前記チャンバーごとに、前記基板保持部と前記ノズルと前記供給調節部と前記液受け部と前記温度検出部とが備えられ、
     前記複数のチャンバーの各々は、前記基板保持部と前記ノズルと前記供給調節部と前記液受け部と前記温度検出部とを収容し、
     前記制御部は、前記チャンバーごとに、前記目標温度予測時間に基づいて、前記プリディスペンス処理における前記処理液の吐出停止時間を設定する、請求項1から請求項7のいずれか1項に記載の基板処理装置。
  9.  基板を処理液によって処理する基板処理装置によって実行される基板処理方法であって、
     プリディスペンス処理条件に従って、プリディスペンス処理を実行するプリディスペンス工程を含み、
     前記プリディスペンス処理は、前記基板に前記処理液を吐出する前に、液受け部に向けて前記処理液を吐出する処理を示し、
     前記プリディスペンス工程は、
     前記プリディスペンス処理を実行中の前記処理液の温度が目標温度に到達する前に、前記処理液の温度を検出する検出工程と、
     目標温度予測時間に基づいて、前記プリディスペンス処理における前記処理液の吐出停止時間を設定する設定工程と
     を含み、
     前記目標温度予測時間は、前記処理液の温度が検出温度から前記目標温度に到達するまでの予測時間を示し、
     前記検出温度は、前記検出工程によって前記目標温度に到達する前に検出された前記処理液の温度を示し、
     前記目標温度予測時間は、温度プロファイルに基づいて定められ、
     前記温度プロファイルは、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示す、基板処理方法。
  10.  前記設定工程では、前記温度プロファイルに基づいて、前記処理液の前記検出温度に応じた前記目標温度予測時間を決定する、請求項9に記載の基板処理方法。
  11.  前記検出工程では、前記プリディスペンス処理を実行中に前記処理液の温度が所定温度に到達したことを検出し、
     前記所定温度は、前記目標温度より低く、
     前記プリディスペンス工程は、
     前記処理液の温度が前記所定温度に到達したことが検出された時刻から前記目標温度予測時間が経過した時に、前記プリディスペンス処理における前記処理液の吐出を停止するプリディスペンス終了工程をさらに含む、請求項9又は請求項10に記載の基板処理方法。
  12.  前記検出工程では、前記プリディスペンス処理を実行中の所定検出時刻で前記処理液の温度を検出し、
     前記所定検出時刻は、前記処理液の温度が前記目標温度に到達する前の時刻を示し、
     前記プリディスペンス工程は、
     前記所定検出時刻から前記目標温度予測時間が経過した時に、前記プリディスペンス処理における前記処理液の吐出を停止するプリディスペンス終了工程をさらに含む、請求項9又は請求項10に記載の基板処理方法。
  13.  前記プリディスペンス工程では、複数の前記プリディスペンス処理条件から選択したプリディスペンス処理条件に従って、前記プリディスペンス処理を実行し、
     前記温度プロファイルにおける温度の時間推移を記録する際の前記プリディスペンス処理条件は、前記選択されたプリディスペンス処理条件と同じである、請求項9から請求項12のいずれか1項に記載の基板処理方法。
  14.  前記温度プロファイルは、前記基板処理装置の状態が状態情報によって示される状態のときに、前記プリディスペンス処理条件に従って過去に前記プリディスペンス処理を実行したときの前記処理液の温度の時間推移の記録を示し、
     前記状態情報は、直近での基板の処理完了時からの経過時間を示す情報と、1枚ずつ基板を処理するときに何枚目の基板が基板保持部に保持されたかを示す情報とのうちの少なくとも一方の情報を含む、請求項9から請求項13のいずれか1項に記載の基板処理方法。
  15.  前記処理液は、燐酸、又は、硫酸過酸化水素水混合液を含む、請求項9から請求項14のいずれか1項に記載の基板処理方法。
  16.  前記プリディスペンス工程は、複数の前記基板をそれぞれ収容する複数のチャンバーごとに実行される、請求項9から請求項15のいずれか1項に記載の基板処理方法。
PCT/JP2018/048469 2018-03-09 2018-12-28 基板処理装置及び基板処理方法 WO2019171734A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207028010A KR102356420B1 (ko) 2018-03-09 2018-12-28 기판 처리 장치 및 기판 처리 방법
US16/979,194 US11569104B2 (en) 2018-03-09 2018-12-28 Substrate processing apparatus and substrate processing method
CN201880090875.1A CN111886677A (zh) 2018-03-09 2018-12-28 基板处理装置以及基板处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-042932 2018-03-09
JP2018042932A JP6942660B2 (ja) 2018-03-09 2018-03-09 基板処理装置及び基板処理方法

Publications (1)

Publication Number Publication Date
WO2019171734A1 true WO2019171734A1 (ja) 2019-09-12

Family

ID=67847037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048469 WO2019171734A1 (ja) 2018-03-09 2018-12-28 基板処理装置及び基板処理方法

Country Status (6)

Country Link
US (1) US11569104B2 (ja)
JP (1) JP6942660B2 (ja)
KR (1) KR102356420B1 (ja)
CN (1) CN111886677A (ja)
TW (1) TWI713107B (ja)
WO (1) WO2019171734A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017645A (ja) * 2018-07-26 2020-01-30 株式会社Kokusai Electric 基板処理装置
JP7441706B2 (ja) 2020-03-31 2024-03-01 株式会社Screenホールディングス 基板処理方法
WO2022064713A1 (ja) * 2020-09-28 2022-03-31 株式会社Kokusai Electric 温度制御方法、半導体装置の製造方法、プログラム及び基板処理装置
JP2023005095A (ja) 2021-06-28 2023-01-18 株式会社Screenホールディングス 基板処理方法
JP7445698B2 (ja) * 2022-04-19 2024-03-07 セメス カンパニー,リミテッド 基板処理装置及び方法
US11940734B2 (en) 2022-04-21 2024-03-26 Semes Co., Ltd. Apparatus and method for treating substrate
CN118133210A (zh) * 2024-05-07 2024-06-04 浙江新再灵科技股份有限公司 电梯人体感应传感器数据异常特征提取方法、装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167568A (ja) * 2015-03-10 2016-09-15 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2017011033A (ja) * 2015-06-18 2017-01-12 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2017028120A (ja) * 2015-07-23 2017-02-02 東京エレクトロン株式会社 基板処理装置
JP2017168774A (ja) * 2016-03-18 2017-09-21 株式会社Screenホールディングス 基板処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504087B2 (ja) 1996-10-07 2004-03-08 大日本スクリーン製造株式会社 回転式基板処理装置
JP4098908B2 (ja) * 1999-01-29 2008-06-11 大日本スクリーン製造株式会社 基板処理装置及び基板処理方法
US6402401B1 (en) 1999-10-19 2002-06-11 Tokyo Electron Limited Substrate processing apparatus and substrate processing method
CN100407084C (zh) * 2001-10-01 2008-07-30 安格斯公司 用于调节流体温度的装置
KR100877472B1 (ko) 2002-01-22 2009-01-07 도쿄엘렉트론가부시키가이샤 기판의 처리방법 및 기판의 처리장치
JP3992601B2 (ja) * 2002-01-31 2007-10-17 大日本スクリーン製造株式会社 薬液処理装置
CN100433255C (zh) * 2004-08-11 2008-11-12 东京毅力科创株式会社 加热板的温度测定方法和基板处理装置
JP4644170B2 (ja) 2006-09-06 2011-03-02 栗田工業株式会社 基板処理装置および基板処理方法
JP2008235779A (ja) 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd 基板処理装置および基板処理システム
GB0913258D0 (en) * 2009-07-29 2009-09-02 Dynex Technologies Inc Reagent dispenser
JP5180263B2 (ja) * 2010-07-23 2013-04-10 倉敷紡績株式会社 基板処理装置
JP2012074601A (ja) 2010-09-29 2012-04-12 Dainippon Screen Mfg Co Ltd 基板処理装置および基板処理方法
JP6313671B2 (ja) 2014-06-23 2018-04-18 株式会社Screenホールディングス 基板処理装置のためのスケジュール作成方法および基板処理装置
JP6808423B2 (ja) * 2016-09-28 2021-01-06 東京エレクトロン株式会社 基板処理装置および処理液供給方法
US10759136B2 (en) * 2017-08-01 2020-09-01 Austyn Daniel Crites Extruded and co-extruded high-altitude balloons and methods and apparatus for manufacture
JP6923419B2 (ja) 2017-10-31 2021-08-18 株式会社Screenホールディングス 基板処理装置及び基板処理方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016167568A (ja) * 2015-03-10 2016-09-15 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2017011033A (ja) * 2015-06-18 2017-01-12 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP2017028120A (ja) * 2015-07-23 2017-02-02 東京エレクトロン株式会社 基板処理装置
JP2017168774A (ja) * 2016-03-18 2017-09-21 株式会社Screenホールディングス 基板処理装置

Also Published As

Publication number Publication date
KR102356420B1 (ko) 2022-02-08
CN111886677A (zh) 2020-11-03
US11569104B2 (en) 2023-01-31
TWI713107B (zh) 2020-12-11
TW201939603A (zh) 2019-10-01
JP2019160910A (ja) 2019-09-19
US20210028032A1 (en) 2021-01-28
JP6942660B2 (ja) 2021-09-29
KR20200126407A (ko) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2019171734A1 (ja) 基板処理装置及び基板処理方法
US9793176B2 (en) Substrate processing apparatus and substrate processing method
JP6139505B2 (ja) 枚葉式基板処理のためのエッチングシステム及び方法
US11075096B2 (en) Substrate processing apparatus
US9452397B2 (en) Liquid processing apparatus, liquid processing method, and storage medium that stores computer program for implementing liquid processing method
JP2018139259A (ja) 処理液供給装置、基板処理装置、および処理液供給方法
US10607849B2 (en) Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium storing substrate liquid processing program
US11410861B2 (en) Substrate liquid processing apparatus
KR20180108432A (ko) 기판 처리 장치 및 기판 처리 방법
JP6887836B2 (ja) 処理液供給装置、基板処理装置、および処理液供給方法
US10269605B2 (en) Processing system and processing program
US10818526B2 (en) Apparatus of controlling temperature in wafer cleaning equipment and method thereof
US11842904B2 (en) Control device and substrate processing method
KR102376797B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP7460983B2 (ja) 処理液供給システムおよび処理液供給方法
JP2021089983A (ja) 基板処理装置、および基板処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207028010

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18909200

Country of ref document: EP

Kind code of ref document: A1