WO2019163042A1 - 空気調和装置およびエアハンドリングユニット - Google Patents

空気調和装置およびエアハンドリングユニット Download PDF

Info

Publication number
WO2019163042A1
WO2019163042A1 PCT/JP2018/006367 JP2018006367W WO2019163042A1 WO 2019163042 A1 WO2019163042 A1 WO 2019163042A1 JP 2018006367 W JP2018006367 W JP 2018006367W WO 2019163042 A1 WO2019163042 A1 WO 2019163042A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat exchanger
external
indoor
external adjustment
Prior art date
Application number
PCT/JP2018/006367
Other languages
English (en)
French (fr)
Inventor
裕介 辻
仁隆 門脇
幸志 東
靖 大越
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020501914A priority Critical patent/JP6921299B2/ja
Priority to EP18907175.6A priority patent/EP3757481B1/en
Priority to US16/965,736 priority patent/US20210033302A1/en
Priority to PCT/JP2018/006367 priority patent/WO2019163042A1/ja
Publication of WO2019163042A1 publication Critical patent/WO2019163042A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/54Heating and cooling, simultaneously or alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner and an air handling unit.
  • the present invention relates to an air conditioner having an air handling unit and an indoor unit.
  • an air handling unit (external air conditioner, AHU: Air Handling Unit) that adjusts the humidity of air outside the air-conditioned space and supplies it to the air-conditioned space may be used.
  • the air handling unit is often used in combination with a unit such as a chiller that supplies heat with heated or cooled water. At this time, in the air handling unit, heat exchange with air outside the air-conditioning target space, which becomes a heat load, is performed using sensible heat in water or the like.
  • indoor units that adjust the temperature of air in the air-conditioning target space and supply the air-conditioning target space.
  • the indoor unit is often connected by piping to an outdoor unit that circulates the refrigerant.
  • heat exchange with the air in the air-conditioning target space, which becomes a heat load is performed using the latent heat of the refrigerant.
  • an air conditioner that performs air conditioning by circulating water or the like in a circuit configured by combining an indoor unit and an air handling unit (see, for example, Patent Document 1).
  • Patent Document 1 described above, the indoor unit and the air handling unit are not structurally linked. For this reason, the heat supply balance becomes worse, for example, the heat supply to the heat medium must be increased with respect to the heat supply to the heat load, and energy is wasted.
  • an object of the present invention is to obtain an air conditioner and an air handling unit that can save energy in order to solve the above-described problems.
  • the air conditioner according to the present invention includes a heat source side unit that heats or cools a heat medium serving as a medium for conveying heat, and an external adjustment side that performs heat exchange between outdoor air blown into the building and the heat medium
  • a heat exchanger and an indoor heat exchanger that exchanges heat between indoor air and the heat medium are connected by piping, and a heat medium circulation circuit that circulates the heat medium is provided. Part of the heat medium heated or cooled by the unit passes through the external heat exchanger and then flows into the indoor heat exchanger, and passes through the external heat exchanger in the heat medium circuit.
  • An external adjustment flow rate adjusting device for adjusting the flow rate of the heat medium is provided.
  • the heat-source-side heat exchange with less change in the amount of heat related to the heat exchange with respect to the flow of the heat medium heated or cooled by the heat source side unit After passing through the chamber, the heat can be supplied without waste by flowing into the indoor heat exchanger.
  • FIG. 1 is a diagram schematically showing an installation example of the air-conditioning apparatus 0 according to Embodiment 1 of the present invention. Based on FIG. 1, the installation example of the air conditioning apparatus 0 which concerns on Embodiment 1 is demonstrated.
  • the air conditioner 0 includes a heat source side refrigerant circulation circuit A that circulates the heat source side refrigerant and a heat medium circulation circuit B that circulates a heat medium such as water.
  • the refrigerant circulating in the heat source side refrigerant circulation circuit A heats or cools the heat medium in the heat medium circulation circuit B. Further, the heated or cooled heat medium is air-conditioned by cooling or heating.
  • an air conditioner 0 includes one outdoor unit 1 serving as a heat source unit, a plurality of indoor units 3 (indoor units 3a to 3c) serving as indoor units, and an air handling unit. (External adjustment unit) 4 and relay unit 2 are provided.
  • the relay unit 2 is a unit that relays heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B.
  • the outdoor unit 1 and the relay unit 2 are connected by a refrigerant pipe 6 serving as a heat source side refrigerant flow path.
  • a plurality of relay units 2 can be connected in parallel to one outdoor unit 1.
  • the outdoor unit 1 and the relay unit 2 correspond to the heat source side unit of the present invention.
  • the air conditioner 0 is a pipe inside the relay unit 2, each indoor unit 3, and the air handling unit 4, or a pipe connecting each unit, and has a heat medium pipe 5 serving as a heat medium flow path.
  • the pipe in the relay unit 2 is referred to as a relay unit internal pipe 5A.
  • a pipe connecting the relay unit 2 and the air handling unit 4 is referred to as a first connection pipe 5B.
  • the pipe in the air handling unit 4 is referred to as an air handling unit internal pipe 5C.
  • a pipe connecting the air handling unit 4 and the indoor unit 3 is defined as a second connection pipe 5D.
  • the piping in the indoor unit 3 is referred to as indoor unit piping 5E (indoor unit piping 5Ea to indoor unit piping 5Ec).
  • the piping which connects between the relay unit 2 and the indoor unit 3 is set to the 3rd connection piping 5F.
  • the second connection pipe 5 ⁇ / b> D has one main pipe 5 ⁇ / b> Da connected to the air handling unit 4 and branch pipes 5 ⁇ / b> Db branched from the main pipe 5 ⁇ / b> Da and connected to each indoor unit 3.
  • the third connection pipe 5F has one main pipe 5Fa connected to the relay unit 2 and branch pipes 5Fb branched from the main pipe 5Fa and connected to the indoor units 3.
  • the heat medium flow is heated or cooled by the heat transfer of the heat source side refrigerant circulation circuit A starting from a heat medium heat exchanger 21 described later. It is assumed that the piping is connected so that the handling unit 4 is on the upstream side and each indoor unit 3 is on the downstream side.
  • the heat medium circulating in the heat medium circuit B for example, brine (antifreeze), water, a mixed liquid of brine and water, or a mixed liquid of an additive and water having a high anticorrosion effect are used. it can.
  • brine antifreeze
  • water a mixed liquid of brine and water
  • a mixed liquid of an additive and water having a high anticorrosion effect are used. it can.
  • a highly safe thing can be used for a heat medium.
  • the air-conditioning apparatus 0 according to Embodiment 1 is safe even if, for example, the heat medium leaks into the air-conditioning target space via the indoor unit 3.
  • brine antifreeze
  • water a mixture of brine and water, or a mixture of additive and water having a high anticorrosive effect are used in an external adjustment side heat exchanger 41 and Even if heat exchange is performed by the indoor heat exchanger 31, a phase change is unlikely to occur.
  • the outdoor unit 1 circulates the heat source side refrigerant with the relay unit 2 through the refrigerant pipe 6. At this time, the heat source side refrigerant exchanges heat with the heat medium when passing through the heat medium heat exchanger 21 in the relay unit 2 described later.
  • the heat medium is heated or cooled by heat exchange. In Embodiment 1, the heat-source-side refrigerant is heated and the heat medium is cooled.
  • the heat medium cooled in the relay unit 2 is circulated between each indoor unit 3 and the air handling unit 4 through the heat medium pipe 5 by a pump 22 described later. At this time, the heat medium exchanges heat with the air sent by the blower in the external conditioning side heat exchanger 41 in the air handling unit 4 and the indoor side heat exchanger 31 in the indoor unit 3 described later. .
  • the air exchanged with the heat medium is subjected to air conditioning in the air-conditioning target space.
  • the air-conditioning target spaces in the indoor unit 3 and the air handling unit 4 are different. For this reason, the space where the indoor unit 3 performs air conditioning will be described as indoor space, and air in the indoor space will be described as indoor air.
  • a space that is subject to air conditioning will be described as a target space. However, the indoor space and the target space may be the same space.
  • FIG. 2 is a diagram showing an example of the configuration of the air-conditioning apparatus 0 according to Embodiment 1 of the present invention. Based on FIG. 2, the structure of the apparatus etc. which the air conditioning apparatus 0 has is demonstrated. As described above, the outdoor unit 1 and the relay unit 2 are connected by the refrigerant pipe 6. Further, the relay unit 2, each indoor unit 3, and the air handling unit 4 are connected by a heat medium pipe 5. Here, in FIG. 2, three indoor units 3 are connected to the relay unit 2 via the heat medium pipe 5. However, the number of connected indoor units 3 is not limited to three.
  • the outdoor unit 1 is a unit that conveys heat by circulating the heat source side refrigerant in the heat source side refrigerant circulation circuit A, and causes the heat medium heat exchanger 21 of the relay unit 2 to exchange heat with the heat medium.
  • cold heat is conveyed by the heat source side refrigerant.
  • the outdoor unit 1 has a compressor 10, a heat source side heat exchanger 12, a throttling device 13, and an accumulator 14 in a housing.
  • the compressor 10, the refrigerant flow switching device 11, the heat source side heat exchanger 12, and the accumulator 14 are pipe-connected by the refrigerant pipe 6 and mounted.
  • the compressor 10 sucks in the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the compressor 10 may be configured by, for example, an inverter compressor capable of capacity control.
  • the heat source side heat exchanger 12 performs heat exchange between, for example, outdoor air supplied from the heat source side blower 15 and the heat source side refrigerant. In the heating operation mode, it functions as an evaporator and absorbs heat by the heat source side refrigerant. Further, in the cooling operation mode, it functions as a condenser or a radiator and dissipates heat to the heat source side refrigerant.
  • the expansion device 13 functions as a pressure reducing valve and an expansion valve, and is a device that decompresses and expands the heat source side refrigerant.
  • the expansion device 13 is preferably a device such as an electronic expansion valve that can control the opening degree to an arbitrary size and can arbitrarily adjust the flow rate of the heat source side refrigerant.
  • the accumulator 14 is provided on the suction side of the compressor 10.
  • the accumulator 14 stores, for example, surplus refrigerant generated in a transition period when the refrigerant amount is different between the heating operation mode and the cooling operation mode, or when the operation changes.
  • the accumulator 14 may not be installed in the heat source side refrigerant circulation circuit A.
  • the outdoor unit 1 has an outdoor unit control device 100.
  • the outdoor unit control apparatus 100 controls at least the capacity of the compressor 10.
  • the outdoor unit control device 100 may add a configuration for controlling the opening degree of the expansion device 13, the flow path of the refrigerant flow switching device 11, or the air volume of the heat source side blower 15.
  • the outdoor unit 1 has a discharge temperature sensor 501, a discharge pressure sensor 502, and an outdoor temperature sensor 503.
  • the discharge temperature sensor 501 is a sensor that detects the temperature of the refrigerant discharged from the compressor 10, and outputs a discharge temperature detection signal including the detected temperature in the data to the outdoor unit control device 100.
  • the discharge pressure sensor 502 is a sensor that detects the pressure of the refrigerant discharged from the compressor 10, and outputs a discharge pressure detection signal including the detected pressure in the data to the outdoor unit control device 100.
  • the outdoor temperature sensor 503 is a sensor that detects an outdoor unit-side outdoor temperature that is a temperature around the outdoor unit 1, and outputs an outdoor unit-side outdoor temperature detection signal including the detected temperature to the outdoor unit control device 100.
  • the relay unit 2 is a unit having a device related to heat transfer between the heat source side refrigerant circulating in the heat source side refrigerant circulation circuit A and the heat medium circulating in the heat medium circulation circuit B.
  • the relay unit 2 includes a heat medium heat exchanger 21 and a pump 22.
  • the heat medium heat exchanger 21 heats or cools the heat medium by exchanging heat between the heat source side refrigerant and the heat medium.
  • the heat medium heat exchanger 21 functions as a condenser or a radiator when heating the heat medium, and the heat source side refrigerant radiates heat to the heat medium. Further, when cooling the heat medium, it functions as an evaporator, and the heat source side refrigerant absorbs heat from the heat medium.
  • the pump 22 is a device that sucks and pressurizes the heat medium and circulates the heat medium circuit B.
  • the pump 22 can perform capacity control, and can adjust the flow rate of the heat medium circulating in the heat medium circuit B according to the magnitude of the heat load in each indoor unit 3 and air handling unit 4. .
  • the relay unit 2 has a relay unit control device 200.
  • the relay unit control device 200 controls at least the capacity of the pump 22.
  • the relay unit 2 includes a first refrigerant temperature sensor 504, a second refrigerant temperature sensor 505, a heat medium inlet side temperature sensor 511, and a heat medium outlet side temperature sensor 512.
  • the first refrigerant temperature sensor 504 determines the temperature of the heat source side refrigerant flowing into the heat medium heat exchanger 21 when the heat medium is cooled and the temperature of the heat source side refrigerant flowing out of the heat medium heat exchanger 21 when the heat medium is heated. It is a sensor to detect, and outputs a first refrigerant temperature detection signal including the detected temperature in the data to the relay unit control device 200.
  • the second refrigerant temperature sensor 505 determines the temperature of the heat source side refrigerant flowing out from the heat medium heat exchanger 21 when the heat medium is cooled and the temperature of the heat source side refrigerant flowing into the heat medium heat exchanger 21 when the heat medium is heated. It is a sensor to detect, and outputs a second refrigerant temperature detection signal including the detected temperature in the data to the relay unit control device 200.
  • the heat medium inlet side temperature sensor 511 is a sensor that detects the temperature of the heat medium flowing into the heat medium heat exchanger 21, and outputs a heat medium inflow temperature detection signal including the detected temperature to the relay unit controller 200. Output.
  • the heat medium outlet side temperature sensor 512 is a sensor that detects the temperature of the heat medium flowing out from the heat medium heat exchanger 21, and outputs a heat medium outflow temperature detection signal that includes the detected temperature in the data to the relay unit controller 200. Output.
  • the indoor unit 3 is a unit that harmonizes the air in the air conditioning target space and sends it to the air conditioning target space.
  • Each indoor unit 3 in the first embodiment includes, in a casing, an indoor heat exchanger 31 (indoor heat exchanger 31a to indoor heat exchanger 31c), an indoor flow rate adjustment device 32 (indoor flow rate adjustment device 32a).
  • the indoor side heat exchanger 31 and the indoor side flow rate adjustment device 32 are devices that constitute the heat medium circulation circuit B.
  • the indoor flow rate adjustment device 32 is configured by, for example, a two-way valve that can control the opening degree (opening area) of the valve.
  • the indoor flow rate adjustment device 32 controls the flow rate of the heat medium flowing in and out of the indoor heat exchanger 31 by adjusting the opening degree. Then, the indoor flow rate adjusting device 32 adjusts the amount of the heat medium that passes through the indoor heat exchanger 31 based on the temperature of the heat medium flowing into the indoor unit 3 and the temperature of the heat medium flowing out.
  • the heat exchanger 31 can perform heat exchange with an amount of heat corresponding to the heat load in the room.
  • the indoor flow rate adjusting device 32 fully closes the valve when the indoor heat exchanger 31 does not need to exchange heat with the heat load as in the case of stopping, thermo-off described later, or the like.
  • the supply can be stopped so that the heat medium does not flow into and out of the indoor heat exchanger 31.
  • the indoor flow rate adjustment device 32 is installed in the piping on the heat medium outflow side of the indoor heat exchanger 31, but is not limited to this.
  • the indoor flow rate adjustment device 32 may be installed on the heat medium inflow side of the indoor heat exchanger 31.
  • the indoor side heat exchanger 31 has, for example, heat transfer tubes and fins. Then, the heat medium passes through the heat transfer tube of the indoor heat exchanger 31. The indoor heat exchanger 31 exchanges heat between the air in the indoor space supplied from the indoor blower 33 and the heat medium. If a heat medium cooler than air passes through the heat transfer tube, the air is cooled and the indoor space is cooled. The indoor blower 33 generates a flow of air that passes air in the indoor space through the indoor heat exchanger 31 and returns the air to the indoor space.
  • Each indoor unit 3 has an indoor unit control device 300 (indoor unit control device 300a to indoor unit control device 300c).
  • the indoor unit control device 300 controls at least the opening degree of the indoor flow rate adjustment device 32.
  • the indoor unit control apparatus 300 may add a configuration for controlling the air volume of the indoor fan 33.
  • Each indoor unit 3 includes an indoor inlet side temperature sensor 513 (indoor inlet side temperature sensor 513a to indoor inlet side temperature sensor 513c) and an indoor outlet side temperature sensor 514 (indoor outlet side temperature sensor 514a to Indoor outlet side temperature sensor 514c), indoor inlet side pressure sensor 521 (indoor inlet side pressure sensor 521a to indoor inlet side pressure sensor 521c), and indoor outlet side pressure sensor 522 (indoor outlet side pressure sensor). 522a to indoor outlet side pressure sensor 522c) and indoor temperature sensor 531 (indoor temperature sensor 531a to indoor temperature sensor 531c).
  • Each indoor inlet side temperature sensor 513 is a sensor that detects the temperature of the heat medium flowing into the indoor heat exchanger 31, and sends an indoor inflow side temperature detection signal that includes the detected temperature to the indoor unit control device 300.
  • Each indoor outlet side temperature sensor 514 is a sensor that detects the temperature of the heat medium flowing out from the indoor side heat exchanger 31, and sends an indoor outflow side temperature detection signal including the detected temperature to the indoor unit control device 300.
  • Each indoor inlet-side pressure sensor 521 is a sensor that detects the pressure of the heat medium flowing into the indoor flow rate adjustment device 32, and sends an indoor inflow-side pressure detection signal including the detected pressure to the indoor unit control device 300. Output.
  • Each indoor outlet side pressure sensor 522 is a sensor that detects the pressure of the heat medium flowing out from the indoor side flow rate adjustment device 32, and sends an indoor outflow side pressure detection signal including the detected pressure to the indoor unit control device 300.
  • Each indoor temperature sensor 531 is a sensor that detects the temperature of indoor air that exchanges heat with the heat medium in the indoor heat exchanger 31, and sends an indoor temperature detection signal that includes the detected temperature to the indoor unit control device 300. Output.
  • the air handling unit 4 is an external air conditioner that sends air outside the target space (hereinafter referred to as “outside air”) to the target space in harmony. For example, the air handling unit 4 can adjust the humidity and send outside air to the target space.
  • the air handling unit 4 includes an air handling unit internal pipe 5C, an external adjustment side heat exchanger 41, an external adjustment side flow rate adjustment device 42, a bypass pipe 44, a bypass side flow rate adjustment device 45, and an external adjustment side blower 43.
  • the air handling unit 4 is formed with an inlet 4a through which the heat medium heated or cooled from the relay unit 2 flows in and an outlet 4b through which the heat medium that has passed through the externally adjusted heat exchanger flows out. .
  • the air handling unit internal pipe 5C is composed of an outgoing pipe 5Ca that connects the inlet 4a and the external adjustment side heat exchanger 41, and a return pipe 5Cb that connects the external adjustment side heat exchanger 41 and the outlet 4b.
  • the outside adjustment side heat exchanger 41 exchanges heat between the heat medium passing through the heat transfer tube and the outside air passing through the heat transfer tube.
  • the external adjustment side flow rate adjustment device 42 is configured by, for example, a two-way valve that can control the opening degree (opening area) of the valve.
  • the external adjustment side flow rate adjusting device 42 controls the flow rate of the heat medium flowing into and out of the external adjustment side heat exchanger 41 by adjusting the opening degree.
  • the external adjustment side flow rate adjustment device 42 is controlled to increase the opening, and the amount of heat exchanged in the external adjustment side heat exchanger 41 is adjusted.
  • control is performed to reduce the opening.
  • the external adjustment side heat exchanger 41 does not need to exchange heat with the outside air serving as a heat load
  • the external adjustment side flow rate adjustment device 42 fully closes the valve and performs external adjustment side heat exchange. The supply can be stopped so that the heat medium does not flow into and out of the vessel 41.
  • bypass pipe 44 is a pipe that is connected in parallel with the external adjustment side heat exchanger 41 and connects the forward pipe 5Ca and the return pipe 5cb.
  • the bypass pipe 44 bypasses the external adjustment side heat exchanger 41 without passing the heat medium.
  • the bypass-side flow rate adjusting device 45 controls the flow rate of the heat medium passing through the bypass pipe 44 by adjusting the opening degree.
  • the external side air blower 43 produces
  • the air handling unit 4 has an air handling unit control device 400.
  • the air handling unit control device 400 controls at least the opening degree of the external adjustment side flow rate adjustment device 42. Further, the air handling unit control device 400 may add a configuration for controlling the opening degree of the bypass side flow rate adjustment device 45 or the air volume of the external adjustment side blower 43.
  • the air handling unit control device 400 stores a preset external adjustment side temperature.
  • the air handling unit control device 400 performs control so that the temperature of the target space reaches the external adjustment side set temperature.
  • the external adjustment side set temperature may be determined in advance by a user from an input device such as a remote controller, or may be determined in advance when the air handling unit 4 is constructed.
  • the external adjustment side set temperature may be set to a different value between when the outside air is cooled and when the outside air is heated.
  • the air handling unit 4 includes an outside conditioned inlet side temperature sensor 515, an outside conditioned outlet side temperature sensor 516, an outside conditioned inlet side pressure sensor 523, an outside conditioned outlet side pressure sensor 524, and an outside air temperature.
  • a sensor 532 is included.
  • the external adjustment inlet side temperature sensor 515 is a sensor that detects the temperature of the heat medium flowing into the external adjustment side heat exchanger 41, and generates an indoor inflow side temperature detection signal that includes the detected temperature in the data.
  • Each indoor outlet side temperature sensor 514 is a sensor that detects the temperature of the heat medium flowing out from the indoor side heat exchanger 31, and outputs an indoor outflow side temperature detection signal that includes the detected temperature in the data to the air handling unit control device 400. Output to.
  • Each indoor inflow side pressure sensor 521 is a sensor for detecting the pressure of the heat medium flowing into the indoor side flow rate adjusting device 32, and an indoor inflow side pressure detection signal including the detected pressure in the data as an air handling unit control device 400.
  • Each indoor outlet side pressure sensor 522 is a sensor that detects the pressure of the heat medium flowing out from the indoor side flow rate adjustment device 32, and outputs an indoor outflow side pressure detection signal including the detected pressure in the data to the air handling unit control device 400.
  • the outside air temperature sensor 532 is a sensor that detects the temperature of the outside air that is heat-exchanged with the heat medium in the outside-side heat exchanger 41, and sends an outside air temperature detection signal that includes the detected temperature to the air handling unit controller 400. Output.
  • the air handling unit control device 400 includes an external adjustment inlet side temperature sensor 515, an external adjustment outlet side temperature sensor 516, an external adjustment inlet side pressure sensor 523, and an external adjustment outlet side pressure. Based on the detection value of the sensor 524, the amount of heat exchanged in the external adjustment side heat exchanger 41 is calculated. Therefore, the air handling unit control device 400, the external adjustment inlet side temperature sensor 515, the external adjustment outlet side temperature sensor 516, the external adjustment inlet side pressure sensor 523, and the external adjustment outlet side pressure sensor 524 are: This corresponds to the external adjustment side heat quantity detection device of the present invention.
  • the outdoor unit control device 100, the relay unit control device 200, the indoor unit control device 300, and the air handling unit control device 400 are connected so as to be communicable wirelessly or in a wired manner. Signals including various data can be communicated with the control device.
  • the outdoor unit control device 100, the indoor unit control device 300, and the air handling unit control device 400 are communicably connected via the relay unit control device 200.
  • the present invention is not limited to this.
  • the unit control device 100, the indoor unit control device 300, and the air handling unit control device 400 may be connected so as to be directly communicable.
  • the outdoor unit control device 100 or the relay unit control device 200 corresponds to the heat source side unit control device of the present invention.
  • the compressor 10 sucks the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the discharged heat source side refrigerant flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11.
  • the heat source side heat exchanger 12 performs heat exchange between the air supplied by the heat source side blower 15 and the heat source side refrigerant, and condenses and liquefies the heat source side refrigerant.
  • the heat-source-side refrigerant that has been condensed and liquefied passes through the expansion device 13.
  • the expansion device 13 depressurizes the condensed and liquefied heat source side refrigerant.
  • the decompressed heat source side refrigerant flows out of the outdoor unit 1, passes through the refrigerant pipe 6, and flows into the heat medium heat exchanger 21 of the relay unit 2.
  • the heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant passing through and the heat medium, and evaporates and gasifies the heat source side refrigerant. At this time, the heat medium is cooled.
  • the heat source side refrigerant flowing out from the heat medium heat exchanger 21 flows out from the relay unit 2, passes through the refrigerant pipe 6, and flows into the outdoor unit 1.
  • the compressor 10 suck
  • the compressor 10 sucks the heat source side refrigerant, compresses it, and discharges it in a high temperature and high pressure state.
  • the discharged heat source side refrigerant flows out of the outdoor unit 1 through the refrigerant flow switching device 11, passes through the refrigerant pipe 6, and flows into the heat medium heat exchanger 21 of the relay unit 2.
  • the heat medium heat exchanger 21 performs heat exchange between the heat source side refrigerant passing through and the heat medium, and condenses and liquefies the heat source side refrigerant. At this time, the heat medium is heated.
  • the heat source side refrigerant that has been condensed and liquefied flows out of the heat medium heat exchanger 21, and the heat source side refrigerant flows out of the relay unit 2, passes through the refrigerant pipe 6, and passes through the expansion device 13 of the outdoor unit 1.
  • the expansion device 13 depressurizes the condensed and liquefied heat source side refrigerant.
  • the decompressed heat source side refrigerant flows into the heat source side heat exchanger 12.
  • the heat source side heat exchanger 12 exchanges heat between the air supplied by the heat source side blower 15 and the heat source side refrigerant, and evaporates the heat source side refrigerant.
  • the compressor 10 suck
  • FIG. 3 is a diagram illustrating an example of the flow of the heat medium in the heat medium circuit B of the air-conditioning apparatus 0 according to Embodiment 1 of the present invention.
  • the specific numerical value of temperature is an example, Comprising: It does not limit to this.
  • a heat medium flow in the heat medium circuit B is formed.
  • the heat medium pressurized by the pump 22 flows into the heat medium heat exchanger 21, performs heat exchange with the heat source side refrigerant in the heat medium heat exchanger 21, and is cooled.
  • the heat medium cooled by the heat medium heat exchanger 21 flows out from the relay unit 2 and flows into the air handling unit 4 through the first connection pipe 5B.
  • the heat medium that has flowed into the air handling unit 4 passes through either the external adjustment side heat exchanger 41 or the bypass pipe 44.
  • the heat medium that has passed through the external adjustment side heat exchanger 41 exchanges heat with the outside air, and the temperature rises by absorbing heat from the outside air.
  • the temperature of the outside air that has exchanged heat with the heat medium is lowered and cooled and dehumidified.
  • the heat medium that has passed through the bypass pipe 44 is not exchanged with the outside air, and the temperature of the heat medium does not change.
  • the temperature of the heat medium flowing out from the air handling unit 4 is assumed to be 12 ° C.
  • the heat medium flowing out from the air handling unit 4 flows into any of the indoor units 3a to 3c via the second connection pipe 5D.
  • the heat medium flowing into the indoor units 3a to 3c passes through the indoor unit internal pipes 5E and the indoor heat exchangers 31.
  • the heat medium that has passed through the indoor heat exchanger 31 exchanges heat with room air, and the temperature rises by absorbing heat from the room air. Moreover, the temperature of the indoor air that has exchanged heat with the heat medium is lowered and cooled.
  • the heat medium that has passed through each indoor-side heat exchanger 31 flows out of the indoor units 3a to 3c and flows to the third connection pipe 5F. In the third connection pipe 5F, the heat medium that has passed through each indoor heat exchanger 31 joins.
  • the temperature of the combined heat medium is increased in each indoor heat exchanger 31.
  • the temperature of the combined heat medium is 15 ° C.
  • the heat medium merged in the third connection pipe 5F flows into the relay unit 2, is pressurized again by the pump 22, and flows into the heat medium heat exchanger 21.
  • the outside air may be dehumidified and supplied to the air-conditioned space.
  • the heat medium it is necessary for the heat medium to pass through the external adjustment side heat exchanger 41 of the air handling unit 4 at a temperature lower than the dew point temperature of the outside air and to transfer heat to the outside air.
  • the temperature of the heat medium used for cooling the indoor space may often be higher than the temperature of the heat medium required by the air handling unit 4. Therefore, in the heat medium circulation circuit B of the first embodiment, the heat medium cooled by the heat medium heat exchanger 21 is configured to flow to the indoor unit 3 after passing through the air handling unit 4. Compared to passing through the air handling unit after passing through the indoor unit 3, the air handling unit 4, which requires a larger amount of cooling than the indoor unit 3, is less likely to generate itself.
  • the flow of the heat medium circulating in the heat medium circuit B is the same as that in FIG.
  • the heat medium is heated by the heat source side refrigerant in the heat medium heat exchanger 21, and is converted into indoor air or outdoor air in the indoor heat exchanger 31 and the externally adjusted heat exchanger 41. Heat is applied and the temperature drops. Therefore, the air handling unit 4 is on the upstream side and each indoor unit 3 is on the downstream side with respect to the flow of the heat medium heated by the heat transfer from the heat source side refrigerant circulation circuit A. Since the dehumidification is not performed when the outside air is heated, the temperature of the heat medium may not be higher than that of each indoor unit 3 in some cases.
  • the air handling unit 4 the outside air that exchanges heat with the heat medium does not undergo a rapid temperature change. In addition, there is little change in the temperature of the target space. Therefore, the temperature of the heat medium flowing to each indoor unit 3 side can be stabilized. For this reason, in the heat medium circulation circuit B, not only cooling but also the case where the heated heat medium is circulated, the air handling unit 4 is preferably located on the upstream side.
  • FIG. 4 is a flowchart of control performed by the air handling unit control apparatus 400 according to Embodiment 1 of the present invention.
  • the air handling unit control device 400 determines whether or not it is necessary to exchange heat between the outside air and the heat medium. For example, when the air handling unit 4 is performing an operation for cooling the outside air such as cooling or dehumidification, it is determined that heat exchange is required when the outside air temperature is higher than the outside adjustment side set temperature. If it is below the external adjustment side set temperature, it is determined that it is not necessary to perform heat exchange. Further, when the air handling unit 4 is performing an operation for heating the outside air such as heating, it is determined that heat exchange is necessary if the outside air temperature is lower than the outside adjustment temperature, and the outside air temperature is outside. It is determined that it is not necessary to perform heat exchange if the temperature is higher than the control side set temperature. Note that the temperature related to detection by the outside air temperature sensor 532 is used as the outside air temperature used for the determination.
  • step S101 If the air handling unit control device 400 determines that it is not necessary to perform heat exchange (No in step S101), the process proceeds to step S102.
  • step S ⁇ b> 102 the air handling unit control device 400 performs control so that the heat medium does not pass through the external adjustment side heat exchanger 41. Specifically, the air handling unit control device 400 controls the external adjustment side flow rate adjustment device 42 to be fully closed. Then, after the process of step S102, the process related to the control of FIG.
  • step S101 the air handling unit control device 400 determines that it is necessary to perform heat exchange (Yes in step S101), the process proceeds to step S103 and step S104.
  • step S103 the air handling unit control device 400 calculates the external adjustment side required heat amount Tan.
  • the external adjustment side required heat amount Tan is an amount of heat necessary for the outside air temperature to reach the external adjustment side set temperature. For example, when the air handling unit 4 is operating to cool the outside air, the cooling amount is necessary for cooling the outside air to the outside adjustment side set temperature, and the air handling unit 4 is configured to heat the outside air. When performing, it is a heating amount required in order to heat outside air to outside adjustment side set temperature.
  • the outside adjustment side required heat amount Tan is calculated based on the difference between the outside air temperature and the outside adjustment side set temperature, and if the difference between the outside air temperature and the outside adjustment side set temperature becomes small, the outside adjustment side required heat amount Tan becomes small, and the outside air If the difference between the temperature and the external adjustment side set temperature increases, the external adjustment side required heat amount Tan increases.
  • step S104 the air handling unit control device 400 calculates the amount of heat Ta exchanged by the external adjustment side heat exchanger 41. Since the phase of the heat medium does not change in the external adjustment side heat exchanger 41, the amount of heat Ta exchanged in the external adjustment side heat exchanger 41 is equal to the temperature of the heat medium flowing into the external adjustment side heat exchanger 41 and the external adjustment side. It can be calculated based on the temperature difference with the temperature of the heat medium flowing out from the heat exchanger 41 and the flow rate of the heat medium passing through the external adjustment side heat exchanger 41.
  • the flow rate of the heat medium passing through the external adjustment side heat exchanger 41 is the difference between the pressure of the heat medium flowing into the external adjustment side heat exchanger 41 and the pressure of the heat medium flowing out of the external adjustment side heat exchanger 41. It can be calculated based on the pressure and the Cv value of the external adjustment side flow rate adjustment device 42.
  • the Cv value is a count for calculating the flow rate of the fluid passing through the valve with a predetermined differential pressure. If the same valve and the same heat medium are used, the Cv value is determined by the opening of the valve.
  • the air handling unit controller 400 detects the detected temperature of the external conditioned flow inlet side temperature sensor 515, the detected temperature of the external conditioned flow outlet side temperature sensor 516, the detected pressure of the external conditioned flow inlet side pressure sensor 523, Based on the detected pressure of the rectification outlet side pressure sensor 524 and the opening degree of the external adjustment side flow rate adjustment device 42, the amount of heat Ta exchanged by the external adjustment side heat exchanger 41 is calculated.
  • step S105 the air handling unit control device 400 determines whether or not the external adjustment side required heat amount Tan calculated in step S103 is larger than the heat amount Ta calculated in step S102.
  • step S105 If it is determined in step S105 that the air handling unit control apparatus 400 calculates that the external adjustment-side required heat amount Tan calculated in step S103 is greater than the heat amount Ta calculated in step S104 (Yes in step S105), the process proceeds to step S106.
  • step S106 the air handling unit control device 400 controls the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 to be larger than the flow rate in step S104.
  • the opening degree of the external adjustment side flow rate adjustment device 42 is controlled to be larger than the opening degree used for calculating the amount of heat Ta exchanged by the external adjustment side heat exchanger 41 at the time of step S104.
  • a method of performing control so that the opening degree of the bypass side flow rate adjusting device 45 is made smaller than the opening degree in step S104, or a method of performing both of the two controls.
  • step S105 determines in step S105 that the external adjustment-side required heat amount Tan calculated in step S103 is equal to or less than the heat amount Ta calculated in step S104 (No in step S105), the process proceeds to step S107.
  • step S107 the air handling unit control device 400 determines whether or not the external adjustment-side required heat amount Tan calculated in step S103 is smaller than the heat amount Ta calculated in step S104.
  • step S108 the air handling unit controller 400 controls the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 to be smaller than the flow rate at the time of step S104.
  • the opening degree of the external adjustment side flow control device 42 is controlled to be smaller than the opening degree used for calculating the amount of heat Ta exchanged by the external adjustment side heat exchanger 41 at the time of step S104.
  • a method of performing control so that the opening degree of the bypass side flow rate adjusting device 45 is larger than the opening degree in step S104, or a method of performing both of the two controls.
  • step S107 When the air handling unit control device 400 determines in step S107 that the external adjustment-side required heat amount Tan calculated in step S103 is equal to or greater than the heat amount Ta calculated in step S104 (No in step S107), in other words, calculated in step S103. This is a case in which the external adjustment side required heat amount Tan is equal to the heat amount Ta calculated in step S104. Therefore, the opening degree of the external adjustment side flow rate adjustment device 42 is not changed, and the process related to the control in FIG.
  • FIG. 5 is a flowchart of control performed by the indoor unit control apparatus 300 according to Embodiment 1 of the present invention.
  • the indoor unit control device 300 determines whether or not it is necessary to exchange heat between the indoor air and the heat medium. For example, when the indoor unit 3 is performing an operation of cooling indoor air such as cooling or dehumidification, it is determined that heat exchange needs to be performed when the temperature of the indoor air is higher than the set temperature on the indoor side. It is determined that it is not necessary to perform heat exchange if the temperature of the room temperature is equal to or lower than the indoor set temperature. Further, when the indoor unit 3 is performing an operation of heating indoor air such as heating, it is determined that heat exchange is required when the temperature of the indoor air is lower than the indoor side set temperature, and the temperature of the indoor air is determined. If it is equal to or higher than the indoor side set temperature, it is determined that there is no need to perform heat exchange. In addition, the temperature which the detection of the indoor temperature sensor 531 uses is used for the temperature of the indoor air used for judgment.
  • step S202 the indoor unit control device 300 controls the indoor unit 3 to the thermo-off state.
  • the thermo-off state is a state in which heat exchange between the heat medium and room air is not performed in the indoor heat exchanger 31.
  • the heat medium is exchanged indoors with the indoor flow rate adjustment device 32 fully closed.
  • the indoor air blower 33 is stopped and the room air is not blown to the indoor heat exchanger 31.
  • step S203 the indoor unit control apparatus 300 calculates the indoor required heat quantity Tin.
  • the indoor side required heat amount Tin is an amount of heat necessary for the indoor unit 3 to allow the indoor air to reach the indoor side set temperature. For example, when the indoor unit 3 is performing an operation of cooling the indoor air, the indoor air is This is the cooling amount necessary for cooling to the indoor side set temperature, and when the indoor unit 3 is operating to heat the indoor air, it is the heating amount necessary for heating the indoor air to the indoor side set temperature. .
  • the indoor required heat amount Tin is calculated based on the difference between the temperature of the indoor air and the indoor set temperature, and if the difference between the indoor air temperature and the indoor set temperature becomes small, the indoor required heat Tin becomes small and the indoor air If the difference between the temperature and the indoor side set temperature increases, the indoor side required heat amount Tin increases.
  • the indoor unit control apparatus 300 calculates the amount of heat Ti to be heat exchanged by the indoor side heat exchanger 31. Since the heat medium does not change in phase in the indoor heat exchanger 31, the amount of heat Ti exchanged in the indoor heat exchanger 31 depends on the temperature of the heat medium flowing into the indoor heat exchanger 31 and the indoor heat exchanger. It can be calculated on the basis of the temperature difference from the temperature of the heat medium flowing out from the 31 and the flow rate of the heat medium passing through the indoor heat exchanger 31. The flow rate of the heat medium passing through the indoor heat exchanger 31 is the difference between the pressure of the heat medium flowing into the indoor heat exchanger 31 and the pressure of the heat medium flowing out of the indoor heat exchanger 31 and the chamber.
  • the indoor unit controller 300 detects the detected temperature of the indoor inlet side temperature sensor 513, the detected temperature of the indoor outlet side temperature sensor 514, the detected pressure of the indoor inlet side pressure sensor 521, and the indoor outlet side pressure. Based on the detected pressure of the sensor 522 and the opening of the indoor flow rate adjustment device 32, the amount of heat Ti exchanged by the indoor heat exchanger 31 is calculated.
  • step S203 the indoor unit control apparatus 300 determines whether or not the indoor required heat amount Tin calculated in step S203 is larger than the heat amount Ti calculated in step S204.
  • step S205 the indoor unit control apparatus 300 determines in step S205 that the indoor required heat amount Tin calculated in step S203 is larger than the heat amount Ti calculated in step S204 (Yes in step S205), the process proceeds to step S206.
  • step S206 the indoor unit control device 300 controls the flow rate of the heat medium flowing into the indoor heat exchanger 31 to be larger than the flow rate at the time of step S204. Specifically, the indoor unit control device 300 controls the opening of the indoor flow rate adjustment device 32 to be larger than the opening at the time of step S204.
  • step S205 determines whether the indoor required heat amount Tin calculated in step S203 is equal to or less than the heat amount Ti calculated in step S204 (No in step S205). If the indoor unit control apparatus 300 determines in step S205 that the indoor required heat amount Tin calculated in step S203 is equal to or less than the heat amount Ti calculated in step S204 (No in step S205), the process proceeds to step S207. In step S207, the indoor unit control apparatus 300 determines whether the indoor-side required heat amount Tin calculated in step S203 is smaller than the heat amount Ti calculated in step S204.
  • step S207 the indoor unit control apparatus 300 determines in step S207 that the indoor-side required heat amount Tin calculated in step S203 is smaller than the heat amount Ti calculated in step S204 (Yes in step S207), the process proceeds to step S208.
  • step S208 the indoor unit control apparatus 300 controls the flow rate of the heat medium flowing into the indoor heat exchanger 31 to be smaller than the flow rate at the time of step S204.
  • the indoor unit control device 300 controls the opening of the indoor flow rate adjustment device 32 to be smaller than the opening at the time of step S204.
  • step S207 If the indoor unit control apparatus 300 determines in step S207 that the indoor-side required heat amount Tin calculated in step S203 is equal to or greater than the heat amount Ti calculated in step S204 (No in step S207), in other words, the room calculated in step S203. This is a case where the inner required heat amount Tin is equal to the heat amount Ti calculated in step S204. Therefore, the opening degree of the indoor flow rate adjustment device 32 is not changed, and the process related to the control in FIG.
  • the control of the flowchart in FIG. That is, in the air conditioner 0 in Embodiment 1, the control of the flowchart of FIG. 5 is executed by the indoor unit control devices 300 of the indoor units 3a, 3b, and 3c.
  • FIG. 6 is a flowchart of cooperative control of the air-conditioning apparatus 0 according to Embodiment 1 of the present invention.
  • step S301a the air handling unit control device 400 calculates the external adjustment side required heat amount Tan.
  • the calculation method of the external adjustment side required heat amount Tan may be calculated by the same method as in step S103, and the value calculated in step S103 may be used.
  • step S302a the air handling unit control device 400 calculates the heat amount Ta of the external adjustment side heat exchanger 41.
  • the method for calculating the amount of heat Ta exchanged by the external adjustment side heat exchanger 41 may be calculated by the same method as in step S104, and the value calculated in step S104 may be used.
  • step S303a the air handling unit control device 400 includes data related to the external adjustment-side required heat amount Tan calculated in step S301a and data related to the heat amount Ta exchanged in the external adjustment-side heat exchanger 41 calculated in step S302a.
  • the signal is transmitted to the relay unit control apparatus 200.
  • the air handling unit control apparatus 400 ends the process related to the cooperative control in FIG.
  • step S301c the indoor unit control apparatus 300 calculates the indoor-side required heat amount Tin.
  • the indoor side required heat amount Tin may be calculated by the same method as in step S203, and the value calculated in step S203 may be used.
  • step S ⁇ b> 302 c the indoor unit control device 300 calculates the amount of heat Ti exchanged by the indoor heat exchanger 31.
  • the calculation method of the heat quantity Ti exchanged by the indoor heat exchanger 31 may be calculated by the same method as in step S204, and the value calculated in step S204 may be used.
  • step S303c the indoor unit control apparatus 300 outputs a signal including data related to the indoor required heat amount Tin calculated in step S301c and data related to the heat amount Ti heat exchanged in the indoor heat exchanger 31 calculated in step S302c. Transmit to the relay unit controller 200.
  • step S303c the indoor unit control apparatus 300 ends the process related to the cooperative control in FIG.
  • each indoor unit control device 300a, 300b, 300c performs heat exchange with indoor side required heat quantity Tina, Tinb, Tinc which each indoor unit 3a, 3b, 3c requires, and indoor side heat exchanger 31a, 31b, 31c.
  • the calculated heat amounts Tia, Tib, and Tic are calculated, and a signal including the calculated data is transmitted to the relay unit control apparatus 200.
  • the relay unit control device 200 receives the signal transmitted from the air handling unit control device 400 in step S303a and the signal transmitted from each indoor unit control device 300 in step S303c. That is, the relay unit control apparatus 200 includes the data related to the external adjustment-side required heat amount Tan, the data related to the heat amount Ta exchanged by the external adjustment-side heat exchanger 41, and the indoor-side required heat amounts of the indoor units 3a, 3b, and 3c. Data relating to Tina, Tinb, and Tinc and data relating to the heat amounts Tia, Tib, and Tic exchanged in the indoor heat exchangers 31a, 31b, and 31c are obtained.
  • step S303b after receiving signals from all the air handling unit control devices 400 and the indoor unit control devices 300a, 300b, and 300c to which the relay unit control device 200 is communicatively connected, the process proceeds to step S304b and step S305b.
  • the relay unit control apparatus 200 calculates the total required heat amount Ttn based on the signal received in step S303b.
  • the total required heat amount Ttn is the sum of the external adjustment side required heat amount Tan calculated by the air handling unit control device 400 communicatively connected to the relay unit control device 200 and the indoor side required heat amount Tin calculated by the indoor unit control device 300. It is. That is, the total required heat amount Ttn in the first embodiment is the external adjustment side required heat amount Tan calculated by the air handling unit control device 400, the indoor side required heat amount Tina calculated by the indoor unit control device 300a, and the indoor unit control device 300b. Is the sum of the indoor-side required heat amount Tinb calculated in step S3 and the indoor-side required heat amount Tinc calculated by the indoor unit control device 300c.
  • step S305b the relay unit control apparatus 200 calculates the total heat exchanger heat amount Tt based on the signal received in step S303b.
  • the total heat exchanger heat amount Tt is calculated by the indoor unit control device 300 and the heat amount exchanged by the external adjustment side heat exchanger 41 calculated by the air handling unit control device 400 connected in communication with the relay unit control device 200. It is the sum total with the quantity of heat exchanged in the indoor side heat exchanger 31. That is, the total heat exchanger heat amount Tt in the first embodiment is the amount of heat Ta exchanged by the external adjustment side heat exchanger 41 calculated by the air handling unit control device 400 and the indoor side calculated by the indoor unit control device 300a.
  • step S304b and step S305b are completed, the process proceeds to step S306b.
  • step S306b the relay unit controller 200 determines whether or not the total required heat amount Ttn calculated in step S304b is larger than the total heat exchanger heat amount Tt calculated in step S305b.
  • step S307b the relay unit control device 200 performs control to increase the amount of heating or cooling given to the heat medium in the heat medium heat exchanger 21.
  • a method of increasing the amount of heating or cooling applied to the heat medium for example, a method of increasing the number of revolutions of the pump 22 or a method of increasing the number of revolutions of the compressor 10 by sending a signal to the outdoor unit controller 100. Can be mentioned.
  • the relay unit control apparatus 200 ends the process related to the cooperative control in FIG.
  • step S308b the relay unit control apparatus 200 determines whether or not the total required heat amount Ttn calculated in step S304b is smaller than the total heat exchanger heat amount Tt calculated in step S305b.
  • step S309b the relay unit control device 200 performs control to reduce the amount of heating or cooling given to the heat medium in the heat medium heat exchanger 21.
  • a method of decreasing the heating amount or cooling amount applied to the heat medium contrary to step S307b, a method of decreasing the rotation speed of the pump 22, or a signal is sent to the outdoor unit control device 100 to rotate the rotation speed of the compressor 10. There is a method of decreasing the value.
  • the relay unit control apparatus 200 ends the process related to the cooperative control in FIG.
  • the relay unit control apparatus 200 determines that the total required heat amount calculated in step S304b is larger than the total heat exchanger heat amount calculated in step S305b (No in step S308b), the total required heat amount calculated in step S304b is This is a case where the total heat exchanger heat amount calculated in step S305b is equal. For this reason, the heating amount or cooling amount given to the heat medium in the heat medium heat exchanger 21 is not changed, and the relay unit control device 200 ends the process related to the cooperative control in FIG. 6.
  • the air handling unit 4 is on the upstream side, and each indoor unit 3 is on the downstream side.
  • the indoor unit 3 only cools the heat generated in the room, such as heat generated by a human body or equipment, but the air handling unit 4 needs to cool and dehumidify the outside air.
  • the air handling unit 4 performs both sensible heat treatment and latent heat treatment, and the air handling unit 4 requires more heat. Therefore, since the air conditioning apparatus 0 of Embodiment 1 allows the heat medium exchanged by the heat medium heat exchanger 21 to flow into the indoor unit 3 after passing through the air handling unit 4, the amount of heat required first.
  • the air handling unit 4 is supplied to the air handling unit 4 and the amount of heat in the air handling unit 4 is less likely to occur. Therefore, heat can be supplied without waste. This is particularly effective when dehumidifying is performed in the air handling unit 4 and cooling is performed in the indoor unit 3.
  • the air conditioner 0 of the first embodiment has the external adjustment side flow rate adjustment device 42 that adjusts the flow rate of the heat medium passing through the external adjustment side heat exchanger 41. Therefore, by adjusting the flow rate of the heat medium, the amount of heat exchanged by the external adjustment side heat exchanger 41 can be adjusted, and heat can be supplied without waste.
  • the operation of adjusting the flow rate of the heat medium by the heat medium flow control device is energy saving and wasteful than adjusting the heating amount or cooling amount of the heat medium by the heat source side unit (the outdoor unit 1 and the relay unit 2). Heat can be supplied.
  • the air conditioning apparatus 0 of Embodiment 1 passes the external adjustment side heat exchanger 41 according to the amount of heat exchanged in the external adjustment side heat exchanger and the amount of heat required by the external adjustment side heat exchanger.
  • the flow rate of the heat medium is controlled. Therefore, if the difference between the outdoor temperature and the external adjustment side set temperature increases, the amount of heat detected by the external adjustment side heat quantity detection device and the external adjustment side heat so that the flow rate of the heat medium passing through the external adjustment side heat exchanger 41 increases. Control is performed according to the amount of heat required by the exchanger, and heat can be supplied without waste.
  • the air conditioning apparatus 0 of Embodiment 1 is the outdoor unit control apparatus 100, the relay unit control apparatus 200, the indoor unit control apparatus 300, and the air handling unit control apparatus 400 communicate signals including various data. be able to.
  • the relay unit control device 200 can perform cooperative control with each device of the air conditioner 0, such as changing the capacity of the internal pump.
  • the heat source side unit the outdoor unit 1 and the relay unit 2 can be controlled based on the total amount of heat required by the indoor unit 3 and the air handling unit 4, heat can be supplied without waste. .
  • each indoor unit 3 and the air handling unit 4 have a heat quantity detection device that detects the heat quantity related to heat exchange with the heat load. And the signal containing the data of the calorie
  • the air handling unit 4 has a calorific value detection device.
  • the heat medium heated or cooled by the heat medium heat exchanger 21 passes through the air handling unit 4 before each indoor unit 3. For this reason, in the air handling unit 4, even if it cannot grasp
  • the air handling unit 4 has a heat quantity detection device, and by obtaining the heat quantity supplied by the air handling unit 4, the heat medium circulation circuit B can accurately obtain the total quantity of heat exchanged by the heat medium. Furthermore, energy saving can be achieved.
  • the external adjustment side heat exchanger or the indoor side heat exchange is performed rather than the period of controlling the amount of heat exchanged between the heat source side refrigerant and the heat medium as shown in FIG. It is more desirable to shorten the cycle for controlling the flow rate of the heat medium passing through the vessel.
  • the external adjustment side heat quantity detection device includes an air handling unit control device 400, an external adjustment inlet side temperature sensor 515, an external adjustment outlet side temperature sensor 516, and an external adjustment flow.
  • the inlet side pressure sensor 523 and the external adjustment outlet side pressure sensor 524 it is not restricted to this.
  • a flow rate sensor for measuring the flow rate of the heat medium passing through the externally regulated side heat exchanger is provided, and the externally regulated side heat exchanger is provided.
  • the air handling unit control device 400 uses the external adjustment side heat exchanger 41.
  • the amount of heat Ta to be heat exchanged may be calculated.
  • the air handling unit control device 400, the external adjustment flow inlet side temperature sensor 515, the external adjustment flow outlet side temperature sensor 516, and the flow rate sensor correspond to the external adjustment side heat quantity detection device.
  • heat quantity sensors that directly measure the heat quantity of the heat medium are provided on the inflow side and the outflow side of the external adjustment side heat exchanger 41, and the difference between the detected heat quantity of the inflow side heat quantity sensor and the detected heat quantity of the outflow side heat quantity sensor.
  • the air handling unit control device may be configured to calculate the amount of heat Ta exchanged by the external adjustment side heat exchanger.
  • the air handling unit control device and each heat quantity sensor correspond to the external adjustment side heat quantity detection device.
  • the flow rate sensor and the calorie sensor are more expensive than the pressure sensor and the temperature sensor, the cost is reduced when the amount of heat exchanged based on the pressure sensor and the temperature sensor is calculated.
  • the amount of heat Ti exchanged in the indoor heat exchanger 31 is measured for the flow rate of the heat medium passing through the indoor heat exchanger 31 in the same manner as the amount of heat Ta exchanged in the external heat exchanger 41.
  • the flow rate sensor is provided, and based on the temperature difference between the temperature of the heat medium flowing into the indoor heat exchanger 31 and the temperature of the heat medium flowing out of the indoor heat exchanger 31, and the flow rate measured by the flow sensor, the indoor heat The configuration may be such that the amount of heat Ta exchanged by the exchanger is calculated.
  • sensors for directly measuring the heat quantity of the heat medium are provided on the inflow side and the outflow side of the indoor heat exchanger 31, and the difference between the detected heat quantity of the inflow side sensor and the detected heat quantity of the outflow side sensor is calculated on the indoor side.
  • the configuration may be such that it is calculated as the amount of heat Ta exchanged by the heat exchanger 31.
  • FIG. FIG. 7 is a flowchart of control performed by the air handling unit control apparatus 400 according to Embodiment 2 of the present invention.
  • the second embodiment is different from the first embodiment only in the flowchart of the control performed by the air handling unit control device 400.
  • step S101 the air handling unit control device 400 determines whether or not it is necessary to exchange heat between the outside air and the heat medium.
  • the process proceeds to step S102, and the air handling unit control device 400 does not pass through the external adjustment side heat exchanger 41. Then, the process related to the control in FIG.
  • step S101 If the air handling unit control device 400 determines that it is necessary to perform heat exchange (Yes in step S101), the process proceeds to step S103 and step S104. As in the first embodiment, the air handling unit control device 400 calculates the external adjustment-side required heat amount Tan in step S103, and calculates the heat amount Ta of the external adjustment-side heat exchanger 41 in step S104.
  • step S105 the air handling unit control device 400 determines whether or not the external adjustment side required heat amount Tan calculated in step S103 is larger than the heat amount Ta calculated in step S102.
  • step S105 the air handling unit control device 400 determines in step S105 that the external adjustment-side required heat amount Tan calculated in step S103 is greater than the heat amount Ta calculated in step S104 (Yes in step S105), the process proceeds to step S109.
  • step S109 the air handling unit control device 400 determines whether or not the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 at the time of step S104 is the maximum flow rate that can be adjusted only by the air handling unit control device 400. .
  • a state where the opening degree of the external adjustment side flow rate adjustment device 42 is maximum, a state where the opening degree of the bypass side flow rate adjustment device 45 is minimum, or the opening degree of the external adjustment side flow rate adjustment device 42 is maximum and A state in which the opening degree of the bypass-side flow rate adjusting device 45 is the minimum is mentioned.
  • step S109 When it is determined in step S109 that the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 is the maximum flow rate that can be adjusted only by the air handling unit control device 400 (Yes in step S109), the process proceeds to step S110.
  • step S110 the air handling unit control device 400 transmits a signal requesting the relay unit control device 200 to increase the amount of heating or cooling given to the heat medium in the heat medium heat exchanger 21.
  • the relay unit control device 200 that has received the signal performs control to increase the amount of heating or cooling that the heat source unit gives to the heat medium, as in step S304b of the first embodiment.
  • step S109 If it is determined in step S109 that the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 is not the maximum flow rate that can be adjusted only by the air handling unit control device 400 (No in step S109), the process proceeds to step S106.
  • the air handling unit control device 400 controls the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 to be larger than the flow rate in step S104.
  • step S105 determines in step S105 that the external adjustment-side required heat amount Tan calculated in step S103 is equal to or less than the heat amount Ta calculated in step S104 (No in step S105), the process proceeds to step S107.
  • step S107 the air handling unit control device 400 determines whether or not the external adjustment-side required heat amount Tan calculated in step S103 is smaller than the heat amount Ta calculated in step S104.
  • step S111 the air handling unit control device 400 determines whether or not the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 at the time of step S104 is the minimum flow rate that can be adjusted only by the air handling unit control device 400. . Specifically, the state in which the opening degree of the external adjustment side flow rate adjustment device 42 is minimum, the state in which the opening degree of the bypass side flow rate adjustment device 45 is maximum, or the opening degree of the external adjustment side flow rate adjustment device 42 is minimum. A state in which the opening degree of the bypass-side flow rate adjusting device 45 is maximum is mentioned.
  • step S111 When it is determined in step S111 that the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 is the minimum flow rate that can be adjusted only by the air handling unit control device 400 (Yes in step S111), the external adjustment side to be reworded Since the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 cannot be reduced by the flow rate adjustment device 42, the opening degree of the external adjustment side flow rate adjustment device 42 is not changed, and the processing relating to the control of FIG. finish.
  • step S111 When it is determined in step S111 that the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 is not the minimum flow rate that can be adjusted only by the air handling unit control device 400 (No in step S111), the process proceeds to step S108. As in the first embodiment, the flow rate of the heat medium flowing into the external adjustment side heat exchanger 41 is controlled to be smaller than the flow rate in step S104. After the process of step S108, the process related to the control of FIG.
  • step S107 If it is determined in step S107 that the air handling unit control device 400 calculates that the external adjustment side required heat amount Tan calculated in step S103 is equal to or greater than the heat amount Ta calculated in step S104 (No in step S107), the external adjustment side flow rate adjustment device 42 is opened. The process related to the control in FIG. 7 is terminated without changing the degree.
  • the heat medium that has flowed out of the heat medium heat exchanger 21 first flows into the air handling unit 4. Therefore, even if the maximum flow rate that can be controlled only by the air handling unit control device 400 has not reached the amount of heat necessary for the external adjustment side heat exchanger 41, the amount of heat transferred to the air handling unit 4 must be increased. The amount of heat necessary for the externally adjusted heat exchanger 41 is not reached. In the air conditioner 0 according to the second embodiment, the air handling unit control device 400 reaches the amount of heat required by the external adjustment side heat exchanger 41 even if the maximum flow rate can be controlled only by the air handling unit control device 400.
  • the relay unit control device 200 is transmitted with a signal requesting control to increase the amount of heat exchanged between the refrigerant and the heat medium in the heat medium heat exchanger 21. With this configuration, the necessary amount of heat can be achieved in the external adjustment side heat exchanger 41 more reliably.
  • FIG. FIG. 8 is a diagram showing an example of the configuration of the air-conditioning apparatus 0 according to Embodiment 3 of the present invention.
  • the same reference numerals as those in FIG. 1 to FIG. 3 perform the same operations as those in the first embodiment.
  • the indoor unit 3 of the third embodiment controls the flowchart of FIG. 5 of the first embodiment
  • the air handling unit 4 of the third embodiment controls or controls the flowchart of FIG. 4 of the first embodiment. 2 is controlled.
  • the air conditioner 0 of the third embodiment has an auxiliary outdoor unit 1a and an auxiliary relay unit 2a in addition to the configuration described in the first embodiment.
  • the equipment configuration inside the auxiliary outdoor unit 1a and the auxiliary relay unit 2a is the same as that of the outdoor unit 1 and the relay unit 2 described in the first embodiment, and is connected by a refrigerant pipe 6a. Therefore, the auxiliary outdoor unit 1a and the auxiliary relay unit 2a constitute an auxiliary heat source side refrigerant circulation circuit A2 having the same structure as the heat source side refrigerant circulation circuit A1, and the auxiliary heat source refrigerant flows through the auxiliary heat source side refrigerant circulation circuit. .
  • the auxiliary heat source side refrigerant circulation circuit A2 when the heat source side refrigerant circulation circuit A1 flows the heat source side refrigerant so as to cool the heat medium, the auxiliary heat source side refrigerant circulation circuit A2 also flows so that the auxiliary heat source side refrigerant circulation circuit A2 also cools the heat medium, and the heat source side refrigerant circulation
  • the heat source side refrigerant flows so that the auxiliary heat source side refrigerant circulation circuit A2 also heats the heat medium.
  • the auxiliary outdoor unit 1a and the auxiliary relay unit 2a correspond to the auxiliary heat source side unit of the present invention.
  • the auxiliary outdoor unit 1 a includes an auxiliary outdoor unit control device 100 a that controls at least the capacity of the compressor in the auxiliary outdoor unit 1 a, similarly to the outdoor unit 1.
  • the auxiliary relay unit 2a includes an auxiliary relay unit controller 200a that controls at least the capacity of the pump in the auxiliary relay unit 2a.
  • the auxiliary outdoor unit control device 100a and the auxiliary relay unit control device 200a are connected to at least the relay unit control device 200 so that they can communicate with each other wirelessly or in a wired manner. Various data can be exchanged with the relay unit control device 200. The containing signal can be communicated.
  • the heat medium circulation circuit B is provided with a fourth connection pipe 5G and a fifth connection pipe 5H.
  • the fourth connection pipe 5G connects the main pipe 5Fa of the third connection pipe 5F and the auxiliary relay unit 2a, and the air conditioner 0 flows out of the indoor units 3a to 3c and a part of the combined heat medium Is configured to flow into the auxiliary relay unit 2a.
  • the fifth connection pipe 5H connects the auxiliary relay unit 2a and the main pipe 5Da of the second connection pipe 5D.
  • the heat medium flowing out from the auxiliary relay unit 2a passes through the second connection pipe 5D. Via, it is configured to flow into the indoor unit 3a to the indoor unit 3c.
  • the auxiliary relay unit 2a heats or cools a part of the heat medium flowing out from the indoor units 3a to 3c with the heat source side refrigerant flowing through the auxiliary heat source side refrigerant circulation circuit A2 to be heated or cooled.
  • a part of the heat medium joins the heat medium flowing out from the air handling unit 4 through the third connection pipe 5I and flows into the indoor unit 3.
  • the temperature of the heat medium passing through the auxiliary relay unit 2a is lower than the temperature of the heat medium flowing out from the air handling unit 4 when the heat medium is cooled by the relay unit 2, and the heat medium is When heated, the cooling amount or heating amount given from the auxiliary relay unit 2a is controlled so as to be higher than the temperature of the heat medium flowing out from the air handling unit 4. Therefore, the auxiliary relay unit 2a raises or lowers the temperature of the heat medium flowing out from the air handling unit 4.
  • FIG. 9 is a flowchart of cooperative control of the air-conditioning apparatus 0 according to Embodiment 3 of the present invention. Note that at the start of the flowchart of FIG. 9, it is assumed that the auxiliary heat source-side refrigerant circulation circuit A2 is not heating or cooling the heat medium.
  • step S401c the indoor unit control device 300 calculates the indoor-side required heat amount Tin.
  • the indoor side required heat amount Tin may be calculated by the same method as in step S203, and the value calculated in step S203 may be used.
  • step S402c the indoor unit control device 300 calculates the amount of heat Ti exchanged by the indoor heat exchanger 31.
  • the calculation method of the heat quantity Ti exchanged by the indoor heat exchanger 31 may be calculated by the same method as in step S204, and the value calculated in step S204 may be used.
  • step S403c the indoor unit control device 300 outputs a signal including data related to the indoor required heat quantity Tin calculated in step S401c and data related to the heat quantity Ti exchanged in the indoor heat exchanger 31 calculated in step S402c. Transmit to the relay unit controller 200.
  • step S403c the indoor unit control apparatus 300 ends the process related to the cooperative control in FIG.
  • step S401c to step S403c in FIG. 9 is executed by each of the indoor unit control devices 300a, 300b, and 300c. That is, the indoor unit control devices 300a, 300b, and 300c are heat-exchanged by the indoor-side required heat amounts Tina, Tinb, and Tinc required by the indoor units 3a, 3b, and 3c and the indoor-side heat exchangers 31a, 31b, and 31c. The heat amounts Tia, Tib, and Tic are calculated, and a signal including the calculated data is transmitted to the relay unit control apparatus 200.
  • the relay unit control device 200 receives the signal transmitted from each indoor unit control device 300 in step S403c. That is, the relay unit control apparatus 200 includes the data on the indoor side required heat amounts Tina, Tinb, and Tinc of the indoor units 3a, 3b, and 3c and the heat amounts Tia and Tib that are heat-exchanged by the indoor side heat exchangers 31a, 31b, and 31c. , Data on Tic is obtained.
  • step S403b the relay unit control device 200 receives signals from all the indoor unit control devices 300a, 300b, and 300c that are communicatively connected, and then proceeds to step S404b and step S405b.
  • the relay unit control device 200 calculates the total indoor heat requirement Ttin based on the signal received in step S403b.
  • the total indoor-side required heat amount Ttin is the total sum of the indoor-side required heat amount Tin calculated by the indoor unit control device 300 calculated by the air handling unit control device 400 connected to the relay unit control device 200. That is, the total indoor required heat amount Ttin in the third embodiment is the indoor required heat amount Tina calculated by the indoor unit control device 300a, the indoor required heat amount Tinb calculated by the indoor unit control device 300b, and the indoor unit control device 300c. It is the sum total with the indoor required heat quantity Tinc calculated in
  • step S405b the relay unit control apparatus 200 calculates the total indoor heat exchanger heat amount Tti based on the signal received in step S403b.
  • the total indoor heat exchanger heat amount Tti is the amount of heat exchanged by the external adjustment heat exchanger 41 calculated by the air handling unit control device 400 connected to the relay unit control device 200 and the indoor unit control device 300. It is the sum total with the heat quantity which is heat-exchanged by the indoor side heat exchanger 31 calculated in (1). That is, the total indoor heat exchanger heat amount Tti in the third embodiment is calculated by the heat amount Ta exchanged by the external adjustment heat exchanger 41 calculated by the air handling unit controller 400 and the indoor unit controller 300a.
  • step S406b the relay unit control apparatus 200 determines whether or not the total indoor-side required heat amount Ttni calculated in step S404b is larger than the total indoor-side heat exchanger heat amount Tti calculated in step S405b.
  • the relay unit control device 200 determines that the total indoor heat requirement Ttni calculated in step S404b is equal to or less than the total indoor heat exchanger heat amount Tti calculated in step S405b (No in step S406b), the relay unit control device 200 Then, the process related to the cooperative control in FIG.
  • step S407b the relay unit control apparatus 200 determines whether the heat source side units (the outdoor unit 1 and the relay unit 2) have reached a predetermined output upper limit.
  • the compressor 10 has reached a predetermined upper limit capacity, or when the pump 202 has reached a predetermined upper limit capacity, or when the heat medium is cooled by the heat medium heat exchanger 21
  • the temperature detected by the heat medium outlet side temperature sensor 512 is lower than the predetermined lower limit heat medium temperature at a temperature higher than the freezing point of the heat medium or when the heat medium is heated by the heat medium heat exchanger 21. If the detected temperature of the heat medium outlet side temperature sensor 512 is higher than the predetermined upper limit heat medium temperature at a temperature lower than the boiling point of the medium, the relay unit control device 200 indicates that the heat source side unit reaches the output upper limit.
  • step S408b the relay unit control device 200 transmits a signal requesting the operation start of the auxiliary heat source side unit to the auxiliary relay unit control device 200a of the auxiliary relay unit 2a.
  • step S408b the relay unit control apparatus 200 ends the process related to the cooperative control in FIG.
  • step S408d the auxiliary relay unit control device 200a receives the signal transmitted from the relay unit control device 200 in step S408b. After receiving the signal in step S408d, the process proceeds to step S409d, and the auxiliary relay unit control device 200a starts heating or cooling the heat medium by the auxiliary heat source side refrigerant circulation circuit A2. After the process of step S409d, the auxiliary relay unit control apparatus 200a ends the process related to the cooperative control in FIG.
  • step S409b the relay unit control device 200 performs the heat in the same manner as in step S307b in FIG. Control is performed to increase the amount of heat exchanged between the refrigerant and the heat medium in the medium heat exchanger 21.
  • step S409b the relay unit control apparatus 200 ends the process related to the cooperative control in FIG.
  • compressors and pumps have a predetermined upper limit for capacity in order to prevent damage.
  • the heat source side refrigerant circulation circuit A has an upper limit on the amount of heat exchanged between the heat source side refrigerant and the heat medium in order to prevent damage to the compressor 10, the pump 22, the piping, and the heat exchanger. Therefore, for example, in the air handling unit 4, if the amount of heat consumed by heat exchange with the outside air increases, each indoor unit even if the upper limit of the amount of heat exchanged between the heat source side refrigerant and the heat medium is reached. There is a possibility that the amount of heat necessary for heat exchange with room air in 3 cannot be met.
  • the auxiliary heat source side refrigerant circulation Heating or cooling of the heat medium by the circuit A2 is started.
  • the auxiliary heat source side refrigerant circulation circuit A2 can cover the shortage of heat, and the air conditioning of the indoor space can be performed more reliably.
  • the above-described flowchart relating to the cooperative control of the air conditioner 0 in FIG. 9 is periodically executed when the air conditioner 0 is operating.
  • the cycle in which the flowchart relating to the cooperative control in FIG. 9 is executed may be freely determined by the designer or the user.
  • the energy consumption increases. Therefore, as shown in FIG. 9, the period for controlling the amount of heat exchanged between the heat source side refrigerant and the heat medium, as shown in FIG. 7, rather than the period for performing the control for starting up the auxiliary heat source side unit, as shown in FIG.
  • FIG. 5 or FIG. 6 it is more desirable to shorten the cycle for controlling the flow rate of the heat medium passing through the external adjustment side heat exchanger or the indoor side heat exchanger.
  • FIG. FIG. 10 is a diagram showing a configuration of an air-conditioning apparatus 0 according to Embodiment 4 of the present invention.
  • the air conditioner 0 according to the fourth embodiment is an apparatus in which the devices in the relay unit 2 described in the first to third embodiments are integrated in the outdoor unit 1. For this reason, in the air conditioner 0 of Embodiment 4, the outdoor unit 1, the air handling unit 4, and each indoor unit 3 are connected by a heat medium pipe 5. Thus, the control described in the first and second embodiments can be performed without providing the relay unit 2 independently.
  • the outdoor unit 1 corresponds to the heat source side unit of the present invention.
  • the outdoor unit control apparatus 100 has the functions of both the outdoor unit control apparatus 100 and the relay unit control apparatus 200 in the first to third embodiments. Therefore, the control performed by the relay unit control device 200 in the control of FIGS. 6 and 9 is performed by the outdoor unit control device 100.
  • the auxiliary outdoor unit 1a and the auxiliary relay unit 2a according to the third embodiment may be integrated by including the devices in the auxiliary relay unit 2a in the same manner.
  • Embodiments 1 to 4 In the above-described Embodiments 1 to 4, the air handling unit 4 has the external adjustment side flow rate adjustment device 42. Each indoor unit 3 has an indoor flow rate adjustment device 32. However, these flow control devices may be included in another independent unit.
  • the outdoor unit 1 and the relay unit 2 are used as the heat source side unit, the heat source side refrigerant circulation circuit A for circulating the heat source side refrigerant is formed, and the heat medium heat exchanger
  • the heat medium is heated or cooled by making 21 function as an evaporator or a condenser
  • the refrigerant flow switching device in the heat source side refrigerant circulation circuit may not be provided, and the heat medium heat exchanger may function only as an evaporator and only heat the heat medium, or the heat medium heat exchanger may be a condenser.
  • the structure which functions only as above and only cools the heat medium may be used.
  • the heat source side unit heats or cools the heat medium, not limited to the heat source side refrigerant circulation circuit, for example, a structure in which the heat medium is heated by the combustion heat of an electric heater or gas, or a structure in which the heat medium is cooled by ice. Any configuration is possible as long as it is configured.
  • the relay unit control apparatus 200 calculates the total required heat amount Ttn (step S304b), calculates the total heat exchanger heat amount Tt (step S305b), the total required heat amount Ttn, and the total heat exchanger heat amount.
  • the comparison of Tt steps S306b and S308b
  • the outdoor unit control device 100 performs heat exchange between the external adjustment side required heat quantity Tan and the external adjustment side heat exchanger 41, heat quantity Ta, indoor side required heat quantity Tin, and heat quantity Ti exchanged by the indoor side heat exchanger 31.
  • the total required heat amount Ttn is calculated (corresponding to step S304b)
  • the total heat exchanger heat amount Tt is calculated (corresponding to step S305b)
  • the total required heat amount Ttn and the total heat exchange are calculated.
  • the heat quantity Tt is compared (corresponding to step S306b and step S308b), and the amount of heat exchanged between the heat-source-side refrigerant and the heat medium is increased or decreased (corresponding to step S307b and step S309b) based on the comparison result. May be.
  • Step S406b it is determined whether the total indoor-side required heat amount Ttin performed by the relay unit control apparatus 200 can be achieved only by the heat source side unit (step S406b), and an operation to the auxiliary heat source side unit is requested.
  • Step S408b and the start of heat exchange of the heat medium by the auxiliary heat source side unit (step S409d) performed by the auxiliary relay unit control device 200a may also be performed by another control device.
  • the first air conditioner 0 that solves the problem of the present application is to heat or cool a heat medium that is a medium for conveying heat.
  • Indoor side heat exchange that performs heat exchange between the indoor air and the heat medium
  • the outdoor-side heat exchanger 41 that exchanges heat between the heat source side unit that performs, the outdoor air blown into the building and the heat medium
  • a heat medium circulation circuit B that circulates the heat medium by piping connection to the heat exchanger 31, and in the heat medium circulation circuit B, a part of the heat medium heated or cooled by the heat source side unit is an external adjustment side heat exchanger After passing through 41, it flows into the indoor heat exchanger 31, and the heat medium circulation circuit B includes an external adjustment side flow rate adjustment device 42 that adjusts the flow rate of the heat medium passing through the external adjustment side heat exchanger 41.
  • the structure provided with the external adjustment side flow volume adjustment apparatus 42 which adjusts the flow volume of the thermal medium which passes the external adjustment side heat exchanger 41 in the heat medium circulation circuit B.
  • the external adjustment side flow volume adjustment apparatus 42 which adjusts the flow volume of the thermal medium which passes the external adjustment side heat exchanger 41 in the heat medium circulation circuit B.
  • FIG. 1 With this configuration, since the heat medium that has not passed through the external adjustment side heat exchanger 41 also flows into the indoor side heat exchanger 31, only the heat medium that has passed through the external adjustment side heat exchanger 41 is the indoor side heat exchanger 31. Compared with the case where it flows in, a heat medium of a high temperature or a low temperature can be supplied to the indoor heat exchanger, and heat can be supplied more efficiently.
  • the aspect relating to the second air conditioner 0 described above is a part of the heat medium heated or cooled by the heat source side unit, and the external adjustment side heat exchanger 41
  • the heat medium that has passed through and the other heat medium that has been heated or cooled by the heat source side unit and does not pass through the external heat exchanger 41 are the external heat exchanger 41 and the indoor side.
  • FIG. With this configuration, the heat medium that has passed through the external heat exchanger 41 and the heat medium that has not passed through the external heat exchanger 41 are mixed and then flow into the indoor heat exchanger 31, so the indoor heat exchanger
  • the structure of 31 can be simplified.
  • the heat medium circulation circuit B includes the heat source side unit and the external adjustment side heat exchanger 41. And a bypass pipe 44 that connects the external conditioning side heat exchanger 41 and the indoor side heat exchanger 31 without passing through the external conditioning heat exchanger 41.
  • the side flow rate adjusting device 42 flows through the external adjustment side heat exchanger 41 and flows into the indoor side heat exchanger 31, and heat flows into the indoor side heat exchanger 31 through the bypass pipe 44. You may add the structure which adjusts the ratio of the flow volume of a medium.
  • the heat source side unit includes a compressor that compresses the heat source side refrigerant, and a heat source side refrigerant.
  • Source side refrigerant that pipe-connects a heat source side heat exchanger that exchanges heat with air, a throttling device that decompresses the heat source side refrigerant, and a heat medium heat exchanger that exchanges heat between the heat source side refrigerant and the heat medium
  • a configuration having a circulation circuit may be added.
  • the external adjustment side flow rate adjustment device 42 is predetermined as the temperature of the outdoor air.
  • a configuration for increasing the flow rate of the heat medium flowing in the external adjustment side heat exchanger 41 may be added. With this configuration, the amount of heat exchanged by the external adjustment side heat exchanger 41 can be controlled on the basis of the outdoor temperature and the set temperature, so that heat can be supplied more efficiently.
  • the external adjustment side flow rate adjustment device 42 is heated in the external adjustment side heat exchanger 41 in any of the above-described aspects related to the first to sixth air conditioners 0.
  • the external adjustment side flow rate adjustment device 42 has an amount of heat required by the external adjustment side heat exchanger 41 greater than an amount of heat exchanged in the external adjustment side heat exchanger 41.
  • a configuration for increasing the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 may be added. With this configuration, when the amount of heat supplied to the external adjustment side heat exchanger 41 is insufficient, the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 is increased and supplied to the external adjustment side heat exchanger 41. The amount of heat generated can be increased.
  • the external adjustment side flow rate adjustment device 42 has an amount of heat required by the external adjustment side heat exchanger 41 larger than an amount of heat exchanged in the external adjustment side heat exchanger 41.
  • a configuration for reducing the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 may be added. With this configuration, when the amount of heat supplied to the external adjustment side heat exchanger 41 is excessive, the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 is reduced and supplied to the external adjustment side heat exchanger 41. The amount of heat generated can be reduced.
  • the heat source side unit has a heat amount required by the external adjustment side heat exchanger 41.
  • the amount of heating or cooling applied to the heat medium is increased when the upper limit of the flow rate that can be adjusted by the external adjustment side flow rate adjustment device 42 is reached, which is larger than the amount of heat exchanged in the external adjustment side heat exchanger 41. You may add the structure to do. With this configuration, even when the amount of heat required for the external adjustment side heat exchanger 41 cannot be achieved by the flow rate adjustment by the external adjustment side flow rate adjustment device 42, the heating amount or the cooling amount given to the heat medium by the heat source side unit can be reduced. In order to increase, the amount of heat required for the external adjustment side heat exchanger 41 can be achieved more reliably.
  • the heat source side unit has an amount of heat exchanged in the external adjustment side heat exchanger 41.
  • a configuration may be added in which the amount of heating or cooling applied to the heat medium is changed based on the sum of the amount of heat exchanged in the indoor heat exchanger 31. With this configuration, the heat source side unit can adjust the heating amount or the cooling amount based on the amount of heat exchanged in the external adjustment side heat exchanger 41 and the indoor side heat exchanger 31, and more efficient heat supply It can be performed.
  • the heat source side unit is outside the sum of the amount of heat exchanged in the external adjustment side heat exchanger 41 and the amount of heat exchanged in the indoor heat exchanger 31.
  • a configuration for increasing the heating amount or the cooling amount may be added.
  • the heat source side unit increases the heating amount or cooling amount of the heat medium when the amount of heat supplied to the external adjustment side heat exchanger 41 and the indoor side heat exchanger 31 is insufficient. The amount of heat required by the heat exchanger 41 and the indoor heat exchanger 31 can be supplied.
  • the heat source side unit is outside the sum of the amount of heat exchanged in the external adjustment side heat exchanger 41 and the amount of heat exchanged in the indoor heat exchanger 31.
  • a configuration for reducing the heating amount or the cooling amount may be added.
  • the heat source side unit reduces the heating amount or cooling amount of the heat medium when the amount of heat supplied to the external adjustment side heat exchanger 41 and the indoor side heat exchanger 31 is excessive, thereby saving energy. be able to.
  • the external adjustment side heat quantity detection device includes an external adjustment inlet side temperature sensor 515 that detects the temperature of the heat medium flowing into the external adjustment side heat exchanger 41, and the external adjustment side heat exchanger 41.
  • An external conditioned outlet side temperature sensor 516 that detects the temperature of the flowing heat medium, a temperature related to detection by the external conditioned flow inlet side temperature sensor 515, a temperature related to detection by the external conditioned flow outlet side temperature sensor 516, and an external adjusted side You may add the structure provided with the air handling unit control apparatus 400 which calculates the calorie
  • the external adjustment side flow rate adjustment device 42 is a valve capable of adjusting the opening degree, and the external adjustment side heat quantity detection device
  • the external adjustment inlet side pressure sensor 523 that detects the pressure of the heat medium flowing into the external adjustment side heat exchanger 41 and the external adjustment flow outlet side that detects the pressure of the heat medium flowing out of the external adjustment side heat exchanger 41
  • the air handling unit control device 400 includes a pressure sensor 524, and the air handling unit control device 400 includes a differential pressure between the pressure detected by the external conditioned flow inlet side pressure sensor 523 and the pressure detected by the external conditioned flow outlet side pressure sensor 524, and the external adjusted side.
  • a configuration for calculating the flow rate of the heat medium passing through the external adjustment side heat exchanger 41 based on the opening degree of the flow rate adjusting device 42 may be added.
  • the flow rate of the heat medium passing through the external adjustment side heat exchanger 41 is calculated based on the pressure difference between the inflow side and the outflow side of the external adjustment side heat exchanger 41 and the opening degree of the external adjustment side flow rate adjustment device 42. Therefore, the flow rate can be calculated with an inexpensive pressure sensor without using an expensive flow meter, and the cost of the air conditioner 0 can be suppressed.
  • any one of the above-described first to eleventh aspects related to the air conditioner 0 is different from the external adjustment side flow rate adjustment device 42, the external adjustment side heat exchanger 41, and the external adjustment.
  • An air handling unit housing that houses an air handling unit control device 400 that controls the side flow rate adjusting device 42, and a heat source side unit control device that controls the amount of heating or cooling that the heat source side unit supplies to the heat medium.
  • the cooperative control means that, for example, the heat source side unit control device controls the equipment mounted on the heat source side unit based on the information on the state of the air handling unit 4, or the air handling unit control device 400 This is to control the equipment mounted on the air handling unit 4 based on the information on the state of the heat source unit.
  • the indoor air heat exchanger 31 passes through the external adjustment side heat exchanger 41 in any of the above-described first to twelfth air conditioner 0 aspects.
  • the auxiliary heat source side unit heats or cools the heat medium and passes through the external adjustment side heat exchanger 41 as compared to the above-described thirteenth air conditioner 0 related aspect.
  • the heat medium up to flowing into the indoor heat exchanger 31 may be added to the heat medium heated or cooled by the auxiliary heat source unit and then flow into the indoor heat exchanger 31.
  • the heat medium that has passed through the external heat exchanger 41 and the heat medium heated or cooled by the auxiliary heat source unit are mixed and then flow into the indoor heat exchanger 31.
  • the structure of the vessel 31 can be simplified.
  • the auxiliary heat source side unit heats or cools the heat medium flowing out from the indoor heat exchanger 31 in the above-described aspect related to the fourteenth air conditioner 0, and
  • the heat medium heated or cooled by the heat source side unit does not pass through the heat source side unit and the external adjustment side heat exchanger 41, but is added with a structure that merges with the heat medium that has passed through the external adjustment side heat exchanger 41. Also good.
  • the auxiliary heat source side unit has an amount of heat exchanged by the indoor heat exchanger 31.
  • the auxiliary heat source side unit may be configured to heat or cool the heat medium. With this configuration, even if the amount of heat exchanged by the indoor heat exchanger 31 is insufficient with only the heat source side unit, the amount of heat can be supplied by the auxiliary heat source side unit.
  • the aspect relating to the first air handling unit 4 that solves the problem of the present application is that air blown into the target space from outside the target space, An external adjustment side heat exchanger 41 that exchanges heat with a part of the heat medium heated or cooled by the heat source side unit, and an external adjustment side that adjusts the flow rate of the heat medium passing through the external adjustment side heat exchanger 41
  • the heat medium that is provided with the flow rate adjusting device 42 and has exchanged heat with the external adjustment side heat exchanger 41 flows into the indoor side heat exchanger 31 that exchanges heat between the indoor air and the heat medium.
  • the bypass pipe 44 is provided in the air handling unit 4, it is not necessary to provide the bypass pipe 44 in the pipe connecting the heat source side unit and the air handling unit 4, and the construction is facilitated.
  • the external adjustment side flow rate adjusting device 42 is heat-exchanged in the external adjustment side heat exchanger 41 as in the above-described aspect relating to the first or second air handling unit 4.
  • the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 is adjusted based on the amount of heat exchanged by the external adjustment side heat exchanger 41 and the amount of heat required by the external adjustment side heat exchanger 41. It is possible to supply heat more efficiently.
  • the external adjustment side flow rate adjustment device 42 is configured such that the amount of heat required by the external adjustment side heat exchanger 41 is greater than the amount of heat exchanged in the external adjustment side heat exchanger 41.
  • a configuration for increasing the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 may be added. With this configuration, when the amount of heat supplied to the external adjustment side heat exchanger 41 is insufficient, the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 is increased and supplied to the external adjustment side heat exchanger 41. The amount of heat generated can be increased.
  • the external adjustment side flow rate adjustment device 42 is configured so that the amount of heat required by the external adjustment side heat exchanger 41 is greater than the amount of heat exchanged in the external adjustment side heat exchanger 41.
  • a configuration for reducing the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 may be added. With this configuration, when the amount of heat supplied to the external adjustment side heat exchanger 41 is excessive, the flow rate of the heat medium flowing through the external adjustment side heat exchanger 41 is reduced and supplied to the external adjustment side heat exchanger 41. The amount of heat generated can be reduced.
  • an air handling unit control device 400 that controls the external adjustment side flow rate adjustment device 42 is provided in any of the above-described aspects related to the first to third air handling units 4.
  • the air handling unit control device 400 may be configured to be connected in communication with a heat source side unit control device that controls a heat source side unit that heats or cools a heat medium serving as a medium for transferring heat. With this configuration, information can be transmitted and received between the air handling unit control device 400 and the heat source side unit control device, and cooperative control can be performed between the air handling unit 4 and the heat source side unit.
  • the cooperative control refers to, for example, that the heat source side unit control device controls a device mounted on the heat source side unit based on information on the state of the air handling unit 4, or the air handling unit control device 400 is on the heat source side. This is to control the equipment mounted on the air handling unit 4 based on the information on the state of the unit.
  • an external adjustment side heat quantity detection for detecting the amount of heat exchanged by the external adjustment side heat exchanger 41 in the above-described aspect related to the fourth or fifth air handling unit 4.
  • the air handling unit control device 400 is configured to transmit data related to the heat amount related to heat exchange in the external adjustment side heat exchanger 41 detected by the external adjustment side heat amount detection device to the heat source side unit control device. May be.
  • the heat source side unit control unit can control the heat source side unit based on the amount of heat exchanged by the external adjustment side heat exchanger 41, and can perform more wasteful heat supply.
  • the external adjustment side heat quantity detection device detects the temperature of the heat medium flowing into the external adjustment side heat exchanger 41.
  • the unit controller 400 determines the amount of heat exchange in the external adjustment side heat exchanger 41 based on the detected temperature of the external adjustment outlet side temperature sensor 516 and the flow rate of the heat medium passing through the external adjustment side heat exchanger 41. You may add the structure which calculates and transmits the calculated calorie
  • the external adjustment side flow rate adjustment device 42 is a valve capable of adjusting the opening degree as in the above-described aspect relating to the seventh air handling unit 4.
  • the external adjustment inlet side pressure sensor 523 that detects the pressure of the heat medium flowing into the external adjustment side heat exchanger 41 and the external adjustment flow outlet side that detects the pressure of the heat medium flowing out of the external adjustment side heat exchanger 41
  • the air handling unit control device 400 includes a pressure sensor 524, and the air handling unit control device 400 includes a differential pressure between the detected pressure of the external conditioned flow inlet side pressure sensor 523 and the detected pressure of the external conditioned flow outlet side pressure sensor 524, and the external adjusted flow rate adjustment device 42.
  • a configuration may be added in which the flow rate of the heat medium passing through the external adjustment side heat exchanger 41 is calculated based on the degree of opening.
  • the flow rate of the heat medium passing through the external adjustment side heat exchanger 41 is calculated based on the pressure difference between the inflow side and the outflow side of the external adjustment side heat exchanger 41 and the opening degree of the external adjustment side flow rate adjustment device 42. Therefore, the flow rate can be calculated with an inexpensive pressure sensor without using an expensive flow meter, and the cost of the air handling unit 4 can be suppressed.
  • the air handling unit control device 400 requires the external adjustment side heat exchanger 41 in any of the above-described aspects related to the fifth to eighth air handling units 4.
  • the amount of heat to be supplied by the heat source unit to the heat medium when the amount of heat to be generated is larger than the amount of heat detected by the external adjustment side heat amount detection device and reaches the upper limit of the flow rate adjustable by the external adjustment side flow rate adjustment device 42

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

この発明に係る空気調和装置(0)は、熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側ユニット(1)と、建物内へ送風される室外空気と熱媒体との間で熱交換を行う外調側熱交換器(41)と、室内空気と熱媒体との間で熱交換を行う室内側熱交換器(31)とを配管接続して、熱媒体を循環させる熱媒体循環回路(B)を備え、熱媒体循環回路(B)において、熱源側ユニットで加熱または冷却された熱媒体の一部は、外調側熱交換器(41)を通過してから室内側熱交換器(31)に流入し、熱媒体循環回路(B)には、外調側熱交換器(41)を通過する熱媒体の流量を調整する外調側流量調整装置(42)を備えるものである。

Description

空気調和装置およびエアハンドリングユニット
 この発明は、空気調和装置およびエアハンドリングユニットに関するものである。特に、エアハンドリングユニットおよび室内ユニットを有する空気調和装置に関するものである。
 空気調和装置として、空調対象空間外の空気の湿度などを調整して、空調対象空間に供給するエアハンドリングユニット(外調機、AHU:Air Handling Unit)が用いられることがある。エアハンドリングユニットは、加熱または冷却した水などで熱供給を行うチラーのようなユニットと組み合わせて用いられることが多い。このとき、エアハンドリングユニットでは、水などにおける顕熱を利用して、熱負荷となる空調対象空間外の空気との熱交換が行われる。
 一方で、空調対象空間の空気の温度などを調整して、空調対象空間に供給する室内ユニットもある。室内ユニットは、冷媒を循環させる室外ユニットと配管接続されることが多い。このとき、室内ユニットでは、冷媒の潜熱などを利用して、熱負荷となる空調対象空間の空気との熱交換が行われる。また、室内ユニットおよびエアハンドリングユニットを組み合わせて構成した回路に、水などを循環させて空気調和を行う空気調和装置もある(たとえば、特許文献1参照)。
実開平05-054921号公報
 しかし、前述した特許文献1では、室内ユニットとエアハンドリングユニットとは構成的に連携していない。このため、熱負荷への熱供給に対して、熱媒体への熱供給を多くしなければならなくなるなど、熱供給のバランスが悪くなり、エネルギが無駄に消費されることとなっていた。
 そこで、この発明は、上記のような課題を解決するため、省エネルギをはかることができる空気調和装置およびエアハンドリングユニットを得ることを目的とする。
 この発明に係る空気調和装置は、熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側ユニットと、建物内へ送風される室外空気と熱媒体との間で熱交換を行う外調側熱交換器と、室内空気と熱媒体との間で熱交換を行う室内側熱交換器とを配管接続して、熱媒体を循環させる熱媒体循環回路を備え、熱媒体循環回路において、熱源側ユニットで加熱または冷却された熱媒体の一部は、外調側熱交換器を通過してから室内側熱交換器に流入し、熱媒体循環回路には、外調側熱交換器を通過する熱媒体の流量を調整する外調側流量調整装置を備えるものである。
 この発明では、熱媒体を循環して空気調和を行う熱媒体循環回路において、熱源側ユニットが加熱または冷却した熱媒体の流れに対して、熱交換に係る熱量の変化が少ない外調側熱交換器を通過してから室内側熱交換器に流入するようにしたことで、無駄なく熱供給を行うことができる。
この発明の実施の形態1に係る空気調和装置0の設置例の概略を示す図である。 この発明の実施の形態1に係る空気調和装置0の構成の一例を示す図である。 この発明の実施の形態1に係る空気調和装置0の熱媒体循環回路Bにおける熱媒体の流れの一例について説明する図である。 この発明の実施の形態1に係るエアハンドリングユニット制御装置400が行う制御のフローチャートである。 この発明の実施の形態1に係る室内ユニット制御装置300が行う制御のフローチャートである。 この発明の実施の形態1に係る空気調和装置0の連携制御のフローチャートである。 この発明の実施の形態2に係るエアハンドリングユニット制御装置400が行う制御のフローチャートである。 この発明の実施の形態3に係る空気調和装置0の構成の一例を示す図である。 この発明の実施の形態3に係る空気調和装置0の連携制御のフローチャートである。 この発明の実施の形態4に係る空気調和装置0の構成を示す図である。
 以下、発明の実施の形態に係る空気調和装置について、図面などを参照しながら説明する。以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。また、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態、動作などにおいて相対的に定まるものとする。また、添字で区別などしている複数の同種の機器などについて、特に区別したり、特定したりする必要がない場合には、添字などを省略して記載する場合がある。
実施の形態1.
 図1は、この発明の実施の形態1に係る空気調和装置0の設置例の概略を示す図である。図1に基づいて、実施の形態1に係る空気調和装置0の設置例について説明する。空気調和装置0は、熱源側冷媒を循環させる熱源側冷媒循環回路Aおよび水などの熱媒体を循環させる熱媒体循環回路Bを備える。熱源側冷媒循環回路Aを循環する冷媒は熱媒体循環回路B内の熱媒体を加熱または冷却する。さらに、加熱または冷却された熱媒体は冷房、暖房などにより空気調和を行う。
 図1では、実施の形態1に係る空気調和装置0は、熱源機となる1台の室外ユニット1、室内機となる複数台の室内ユニット3(室内ユニット3a~室内ユニット3c)、エアハンドリングユニット(外調ユニット)4および中継ユニット2を有している。中継ユニット2は、熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体との間の伝熱を中継するユニットである。室外ユニット1と中継ユニット2とは、熱源側冷媒の流路となる冷媒配管6で接続されている。ここで、1台の室外ユニット1に対して、複数台の中継ユニット2を並列に接続することもできる。なお、実施の形態1において、室外ユニット1および中継ユニット2がこの発明の熱源側ユニットに該当する。
 また、空気調和装置0は、中継ユニット2、各室内ユニット3およびエアハンドリングユニット4の内部の配管または各ユニットを接続する配管であり、熱媒体の流路となる熱媒体配管5を有する。ここで、後述する図2に示すように、熱媒体配管5において、中継ユニット2内における配管を中継ユニット内配管5Aとする。中継ユニット2とエアハンドリングユニット4との間を接続する配管を第1接続配管5Bとする。エアハンドリングユニット4内における配管を、エアハンドリングユニット内配管5Cとする。エアハンドリングユニット4と室内ユニット3との間を接続する配管を第2接続配管5Dとする。室内ユニット3内の配管を、室内ユニット内配管5E(室内ユニット内配管5Ea~室内ユニット内配管5Ec)とする。そして、中継ユニット2と室内ユニット3の間を接続する配管を第3接続配管5Fとする。また、第2接続配管5Dは、エアハンドリングユニット4と接続される1本の主配管5Daと、主配管5Daから分岐し、各室内ユニット3に接続される枝配管5Dbを有する。また、第3接続配管5Fは、中継ユニット2と接続される1本の主配管5Faと、主配管5Faから分岐し、各室内ユニット3に接続される枝配管5Fbを有する。そして、実施の形態1の熱媒体循環回路Bにおいては、後述する熱媒体熱交換器21を起点として、熱源側冷媒循環回路Aの伝熱により加熱または冷却された熱媒体の流れに対し、エアハンドリングユニット4が上流側となり、各室内ユニット3が下流側となるように配管接続されているものとする。
 熱源側冷媒循環回路Aを循環する熱源側冷媒としては、たとえば、R-22、R-134aなどの単一冷媒、R-410A、R-404Aなどの擬似共沸混合冷媒、R-407Cなどの非共沸混合冷媒を用いることができる。また、化学式内に二重結合を含む、CFCF=CHなどの地球温暖化係数が比較的小さい値とされている冷媒、その混合物、CO、プロパンなどの自然冷媒などを用いることができる。
 また、熱媒体循環回路Bを循環する熱媒体としては、たとえば、ブライン(不凍液)、水、ブラインと水との混合液、または防食効果が高い添加剤と水との混合液などを用いることができる。このように、実施の形態1の空気調和装置0では、安全性の高いものを熱媒体に使用することができる。このため、実施の形態1に係る空気調和装置0は、たとえば、熱媒体が室内ユニット3を介して空調対象空間に漏洩したとしても、安全である。また、ブライン(不凍液)、水、ブラインと水との混合液、または防食効果が高い添加剤と水との混合液は、上述の熱源側冷媒と比べて後述する外調側熱交換器41および室内側熱交換器31で熱交換を行っても相変化が生じ難い。
 次に、図1に基づいて、空気調和装置0の動作について説明する。室外ユニット1は、冷媒配管6を通して中継ユニット2との間で熱源側冷媒を循環させる。このとき、熱源側冷媒は、後述する中継ユニット2内の熱媒体熱交換器21を通過する際、熱媒体との間で熱交換を行う。熱媒体は、熱交換によって加熱または冷却される。実施の形態1においては、熱源側冷媒が加熱され、熱媒体が冷却されるものとする。
 中継ユニット2において冷却された熱媒体は、後述するポンプ22により、熱媒体配管5を通して、各室内ユニット3およびエアハンドリングユニット4との間で熱媒体を循環させる。このとき、熱媒体は、後述するエアハンドリングユニット4内の外調側熱交換器41および室内ユニット3内の室内側熱交換器31において、送風機により送られた空気との間で熱交換を行う。熱媒体との間で熱交換された空気は、空調対象空間の空気調和に供される。ここで、以下では、室内ユニット3とエアハンドリングユニット4とにおける空調対象空間が異なるものとする。このため、室内ユニット3が空気調和を行う対象となる空間を室内空間とし、室内空間の空気を室内空気として説明する。また、エアハンドリングユニット4において、空気調和を行う対象となる空間を、対象空間として説明する。ただし、室内空間と対象空間とが同じ空間であってもよい。
 図2は、この発明の実施の形態1に係る空気調和装置0の構成の一例を示す図である。図2に基づいて、空気調和装置0が有する機器などの構成について説明する。前述したように、室外ユニット1と中継ユニット2とが、冷媒配管6で接続されている。また、中継ユニット2と各室内ユニット3およびエアハンドリングユニット4とが熱媒体配管5で接続されている。ここで、図2においては、3台の室内ユニット3が、熱媒体配管5を介して中継ユニット2と接続されている。ただし、室内ユニット3の接続台数は、3台に限定されない。
[室外ユニット1]
 まずは、室外ユニット1の構成について説明する。室外ユニット1は、熱源側冷媒循環回路Aにおいて熱源側冷媒を循環させて熱を搬送し、中継ユニット2の熱媒体熱交換器21において、熱媒体との熱交換を行わせるユニットである。実施の形態1においては、熱源側冷媒により冷熱を搬送させる。室外ユニット1は、筐体内に、圧縮機10、熱源側熱交換器12、絞り装置13およびアキュムレータ14を有している。圧縮機10、冷媒流路切替装置11、熱源側熱交換器12およびアキュムレータ14は、冷媒配管6で配管接続され、搭載されている。圧縮機10は、熱源側冷媒を、吸入し、圧縮して、高温および高圧状態にして吐出する。ここで、圧縮機10は、たとえば、容量制御可能なインバータ圧縮機などで構成するとよい。
 熱源側熱交換器12は、たとえば、熱源側送風機15から供給される室外の空気と熱源側冷媒との間で熱交換を行う。暖房運転モードにおいては、蒸発器として機能し、熱源側冷媒に吸熱させる。また、冷房運転モードにおいては、凝縮器または放熱器として機能し、熱源側冷媒に放熱させる。また、絞り装置13は、減圧弁、膨張弁として機能し、熱源側冷媒を減圧して膨張させる装置である。ここで、絞り装置13は、たとえば、開度を任意の大きさに制御することができ、熱源側冷媒の流量などを任意に調整することができる電子式膨張弁などのような装置がよい。アキュムレータ14は、圧縮機10の吸入側に設けられている。アキュムレータ14は、たとえば、暖房運転モードと冷房運転モードとで用いられる冷媒量の違い、運転が変化するときの過渡期などに生じる余剰冷媒を蓄える。ここで、アキュムレータ14は、熱源側冷媒循環回路Aに設置されない場合もある。
 また、室外ユニット1は、室外ユニット制御装置100を有している。室外ユニット制御装置100は、少なくとも圧縮機10の容量の制御を行う。また、室外ユニット制御装置100は、絞り装置13の開度、冷媒流路切替装置11の流路、または熱源側送風機15の風量を制御する構成を付加しても構わない。
 また、室外ユニット1は、吐出温度センサ501、吐出圧力センサ502および室外温度センサ503を有している。吐出温度センサ501は、圧縮機10が吐出する冷媒の温度を検出するセンサであり、検出した温度をデータに含む吐出温度検出信号を室外ユニット制御装置100へ出力する。吐出圧力センサ502は、圧縮機10が吐出する冷媒の圧力を検出するセンサであり、検出した圧力をデータに含む吐出圧力検出信号を室外ユニット制御装置100へ出力する。室外温度センサ503は、室外ユニット1の周囲の温度となる室外ユニット側室外温度を検出するセンサであり、検出した温度を含む室外ユニット側室外温度検出信号を室外ユニット制御装置100へ出力する。
[中継ユニット2]
 次に、中継ユニット2の構成について説明する。中継ユニット2は、熱源側冷媒循環回路Aを循環する熱源側冷媒と熱媒体循環回路Bを循環する熱媒体との伝熱に係る機器を有するユニットである。中継ユニット2は、熱媒体熱交換器21およびポンプ22を有している。
 熱媒体熱交換器21は、熱源側冷媒と熱媒体との熱交換を行って、熱媒体を加熱または冷却する。熱媒体熱交換器21は、熱媒体を加熱する場合には、凝縮器または放熱器として機能し、熱源側冷媒は熱媒体へ放熱する。また、熱媒体を冷却する場合には、蒸発器として機能し、熱源側冷媒は熱媒体から吸熱する。ポンプ22は、熱媒体を吸引し、加圧して熱媒体循環回路Bを循環させる装置である。ここで、ポンプ22は、容量制御を行うことができ、各室内ユニット3およびエアハンドリングユニット4における熱負荷の大きさによって、熱媒体循環回路Bを循環する熱媒体の流量を調整することができる。
 中継ユニット2は、中継ユニット制御装置200を有する。中継ユニット制御装置200は、少なくともポンプ22の容量の制御を行う。
 中継ユニット2は、第1冷媒温度センサ504と、第2冷媒温度センサ505と、熱媒体流入口側温度センサ511と、熱媒体流出口側温度センサ512を有する。第1冷媒温度センサ504は、熱媒体を冷却する場合に熱媒体熱交換器21に流入する熱源側冷媒および熱媒体を加熱する場合に熱媒体熱交換器21より流出する熱源側冷媒の温度を検出するセンサであり、検出した温度をデータに含む第1冷媒温度検出信号を中継ユニット制御装置200へ出力する。第2冷媒温度センサ505は、熱媒体を冷却する場合に熱媒体熱交換器21より流出する熱源側冷媒および熱媒体を加熱する場合に熱媒体熱交換器21へ流入する熱源側冷媒の温度を検出するセンサであり、検出した温度をデータに含む第2冷媒温度検出信号を中継ユニット制御装置200へ出力する。熱媒体流入口側温度センサ511は、熱媒体熱交換器21へ流入する熱媒体の温度を検出するセンサであり、検出した温度をデータに含む熱媒体流入温度検出信号を中継ユニット制御装置200へ出力する。熱媒体流出口側温度センサ512は、熱媒体熱交換器21より流出する熱媒体の温度を検出するセンサであり、検出した温度をデータに含む熱媒体流出温度検出信号を中継ユニット制御装置200へ出力する。
[室内ユニット3]
 次に室内ユニット3の構成について説明する。室内ユニット3は、空調対象空間内の空気を調和して空調対象空間に送るユニットである。実施の形態1における各室内ユニット3は、筐体内に、室内側熱交換器31(室内側熱交換器31a~室内側熱交換器31c)、室内側流量調整装置32(室内側流量調整装置32a~室内側流量調整装置32c)および室内側送風機33(室内側送風機33a~室内側送風機33c)を有している。室内側熱交換器31および室内側流量調整装置32は、熱媒体循環回路Bを構成する機器となる。
 室内側流量調整装置32は、たとえば、弁の開度(開口面積)を制御することができる二方弁などで構成されている。室内側流量調整装置32は、開度を調整することで、室内側熱交換器31を流入出する熱媒体の流量を制御する。そして、室内側流量調整装置32は、室内ユニット3へ流入する熱媒体の温度および流出する熱媒体の温度に基づいて、室内側熱交換器31を通過させる熱媒体の量を調整し、室内側熱交換器31が、室内の熱負荷に応じた熱量による熱交換を行えるようにする。ここで、室内側流量調整装置32は、停止、後述するサーモオフなどのときのように、室内側熱交換器31が熱負荷との熱交換をする必要がないときは、弁を全閉にして、室内側熱交換器31に熱媒体が流入出しないように供給を止めることができる。図2において、室内側流量調整装置32は、室内側熱交換器31の熱媒体流出側の配管に設置されているが、これに限定するものではない。たとえば、室内側流量調整装置32が、室内側熱交換器31の熱媒体流入側に設置されてもよい。
 また、室内側熱交換器31は、たとえば、伝熱管およびフィンを有する。そして、室内側熱交換器31の伝熱管内を熱媒体が通過する。室内側熱交換器31は、室内側送風機33から供給される室内空間の空気と熱媒体との間で熱交換を行う。空気よりも冷たい熱媒体が伝熱管内を通過すれば、空気は冷却され、室内空間は冷房される。室内側送風機33は、室内空間の空気を室内側熱交換器31に通過させ、室内空間に戻す空気の流れを生成する。
 また、各室内ユニット3は、室内ユニット制御装置300(室内ユニット制御装置300a~室内ユニット制御装置300c)を有している。室内ユニット制御装置300は、少なくとも室内側流量調整装置32の開度の制御を行う。また、室内ユニット制御装置300は、室内側送風機33の風量を制御する構成を付加しても構わない。
 また、各室内ユニット3は、室内流入口側温度センサ513(室内流入口側温度センサ513a~室内流入口側温度センサ513c)と、室内流出口側温度センサ514(室内流出口側温度センサ514a~室内流出口側温度センサ514c)と、室内流入口側圧力センサ521(室内流入口側圧力センサ521a~室内流入口側圧力センサ521c)と、室内流出口側圧力センサ522(室内流出口側圧力センサ522a~室内流出口側圧力センサ522c)と、室内温度センサ531(室内温度センサ531a~室内温度センサ531c)を有している。
 各室内流入口側温度センサ513は、室内側熱交換器31に流入する熱媒体の温度を検出するセンサであり、検出した温度をデータに含む室内流入側温度検出信号を室内ユニット制御装置300へ出力する。各室内流出口側温度センサ514は、室内側熱交換器31から流出する熱媒体の温度を検出するセンサであり、検出した温度をデータに含む室内流出側温度検出信号を室内ユニット制御装置300へ出力する。各室内流入口側圧力センサ521は、室内側流量調整装置32に流入する熱媒体の圧力を検出するセンサであり、検出した圧力をデータに含む室内流入側圧力検出信号を室内ユニット制御装置300へ出力する。各室内流出口側圧力センサ522は、室内側流量調整装置32から流出する熱媒体の圧力を検出するセンサであり、検出した圧力をデータに含む室内流出側圧力検出信号を室内ユニット制御装置300へ出力する。各室内温度センサ531は、室内側熱交換器31で熱媒体と熱交換を行う室内空気の温度を検出するセンサであり、検出した温度をデータに含む室内温度検出信号を室内ユニット制御装置300へ出力する。
[エアハンドリングユニット4]
 エアハンドリングユニット4は、対象空間外の空気(以下、外気という)を調和して対象空間に送る外調機である。エアハンドリングユニット4は、たとえば、湿度の調整を行って外気を対象空間に送ることができる。エアハンドリングユニット4は、エアハンドリングユニット内配管5C、外調側熱交換器41、外調側流量調整装置42、バイパス配管44、バイパス側流量調整装置45および外調側送風機43を有している。また、エアハンドリングユニット4には、中継ユニット2から加熱または冷却された熱媒体が流入する流入口4aと、外調側熱交換器を通過した熱媒体が流出する流出口4bが形成されている。また、エアハンドリングユニット内配管5Cは、流入口4aと外調側熱交換器41を接続する往路配管5Caと、外調側熱交換器41と流出口4bを接続する復路配管5Cbとで構成される。外調側熱交換器41は、伝熱管内を通過する熱媒体と伝熱管外を通過する外気とを熱交換する。
 外調側流量調整装置42は、たとえば、弁の開度(開口面積)を制御することができる二方弁などで構成されている。外調側流量調整装置42は、開度を調整することで、外調側熱交換器41を流入出する熱媒体の流量を制御する。外調側流量調整装置42は、外調側熱交換器41において熱交換される熱量を多くするときには、開度を大きくする制御がなされ、外調側熱交換器41において熱交換される熱量を少なくするときには、開度を小さくする制御がなされる。ここで、外調側流量調整装置42は、外調側熱交換器41において、熱負荷となる外気との熱交換をする必要がないときは、弁を全閉にして、外調側熱交換器41に熱媒体が流入出しないように供給を止めることができる。
 また、バイパス配管44は、外調側熱交換器41と並列し、往路配管5Caと復路配管5cbとを接続する配管である。バイパス配管44は、熱媒体循環回路Bにおいて、外調側熱交換器41に熱媒体を通過させずにバイパスさせる。さらに、バイパス側流量調整装置45は、開度を調整することで、バイパス配管44を通過する熱媒体の流量を制御する。そして、外調側送風機43は、外気を外調側熱交換器41に通過させ、対象空間に送る空気の流れを生成する。
 また、エアハンドリングユニット4は、エアハンドリングユニット制御装置400を有している。エアハンドリングユニット制御装置400は、少なくとも外調側流量調整装置42の開度の制御を行う。また、エアハンドリングユニット制御装置400は、バイパス側流量調整装置45の開度、または外調側送風機43の風量を制御する構成を付加しても構わない。
 さらに、エアハンドリングユニット制御装置400は、あらかじめ定められた外調側設定温度を記憶している。エアハンドリングユニット制御装置400は、対象空間の温度が外調側設定温度に到達するように制御を行う。なお、外調側設定温度は、たとえばリモコンなどの入力機器よりユーザーによってあらかじめ定められてもよいし、エアハンドリングユニット4の施工時にあらかじめ定められてもよい。また、外調側設定温度は、外気を冷却する場合と外気を加熱する場合で異なる値に定められていてもよい。
 また、エアハンドリングユニット4は、外調流入口側温度センサ515と、外調流出口側温度センサ516と、外調流入口側圧力センサ523と、外調流出口側圧力センサ524と、外気温度センサ532を有している。外調流入口側温度センサ515は、外調側熱交換器41に流入する熱媒体の温度を検出するセンサであり、検出した温度をデータに含む室内流入側温度検出信号を室内ユニット制御装置300へ出力する。各室内流出口側温度センサ514は、室内側熱交換器31から流出する熱媒体の温度を検出するセンサであり、検出した温度をデータに含む室内流出側温度検出信号をエアハンドリングユニット制御装置400へ出力する。各室内流入口側圧力センサ521は、室内側流量調整装置32に流入する熱媒体の圧力を検出するセンサであり、検出した圧力をデータに含む室内流入側圧力検出信号をエアハンドリングユニット制御装置400へ出力する。各室内流出口側圧力センサ522は、室内側流量調整装置32から流出する熱媒体の圧力を検出するセンサであり、検出した圧力をデータに含む室内流出側圧力検出信号をエアハンドリングユニット制御装置400へ出力する。外気温度センサ532は、外調側熱交換器41で熱媒体と熱交換される外気の温度を検出するセンサであり、検出した温度をデータに含む外気温度検出信号をエアハンドリングユニット制御装置400へ出力する。
 なお、後述するようにエアハンドリングユニット制御装置400は、外調流入口側温度センサ515と、外調流出口側温度センサ516と、外調流入口側圧力センサ523と、外調流出口側圧力センサ524の検出値に基づいて外調側熱交換器41において熱交換される熱量を算出する。したがって、エアハンドリングユニット制御装置400と、外調流入口側温度センサ515と、外調流出口側温度センサ516と、外調流入口側圧力センサ523と、外調流出口側圧力センサ524が、この発明の外調側熱量検出装置に該当する。
 図2に示すように、室外ユニット制御装置100と、中継ユニット制御装置200と、室内ユニット制御装置300と、エアハンドリングユニット制御装置400は、それぞれ無線または有線で通信可能に接続されており、他の制御装置との間で、各種データを含む信号を通信することができる。なお、図2において室外ユニット制御装置100と、室内ユニット制御装置300と、エアハンドリングユニット制御装置400はそれぞれ中継ユニット制御装置200を介して通信可能に接続されているが、これに限らず、室外ユニット制御装置100と室内ユニット制御装置300とエアハンドリングユニット制御装置400が直接通信可能に接続されていてもよい。なお、室外ユニット制御装置100または中継ユニット制御装置200が、この発明の熱源側ユニット制御装置に該当する。
 ここで、空気調和装置0の熱源側冷媒循環回路A側の構成機器における動作などについて、熱源側冷媒循環回路Aを循環する熱源側冷媒の流れに基づいて説明する。まず、熱媒体を冷却する場合について説明する。圧縮機10は、熱源側冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出された熱源側冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12へ流入する。熱源側熱交換器12は、熱源側送風機15により供給される空気と熱源側冷媒との間で熱交換を行い、熱源側冷媒を凝縮液化させる。凝縮液化された熱源側冷媒は、絞り装置13を通過する。絞り装置13は、通過する凝縮液化した熱源側冷媒を減圧する。減圧された熱源側冷媒は、室外ユニット1から流出し、冷媒配管6を通過して、中継ユニット2の熱媒体熱交換器21に流入する。熱媒体熱交換器21は、通過する熱源側冷媒と熱媒体との間で熱交換を行い、熱源側冷媒を蒸発ガス化させる。このとき、熱媒体は冷却される。熱媒体熱交換器21から流出した熱源側冷媒は、中継ユニット2から流出し、冷媒配管6を通過して、室外ユニット1に流入する。そして、冷媒流路切替装置11を再度通過した蒸発ガス化した熱源側冷媒を圧縮機10が吸入する。
 次に、熱媒体を加熱する場合について説明する。圧縮機10は、熱源側冷媒を吸入し、圧縮して高温および高圧の状態にして吐出する。吐出された熱源側冷媒は、冷媒流路切替装置11を介して、室外ユニット1から流出し、冷媒配管6を通過して、中継ユニット2の熱媒体熱交換器21に流入する。熱媒体熱交換器21は、通過する熱源側冷媒と熱媒体との間で熱交換を行い、熱源側冷媒を凝縮液化させる。このとき、熱媒体は加熱される。凝縮液化された熱源側冷媒は、熱媒体熱交換器21から流出した熱源側冷媒は、中継ユニット2から流出し、冷媒配管6を通過して、室外ユニット1の絞り装置13を通過する。絞り装置13は、通過する凝縮液化した熱源側冷媒を減圧する。減圧された熱源側冷媒は、熱源側熱交換器12へ流入する。熱源側熱交換器12は、熱源側送風機15により供給される空気と熱源側冷媒との間で熱交換を行い、熱源側冷媒を蒸発ガス化させる。そして、冷媒流路切替装置11を再度通過した蒸発ガス化した熱源側冷媒を圧縮機10が吸入する。
 さらに、空気調和装置0の熱媒体循環回路B側の構成機器における動作などについて、熱媒体循環回路Bを循環する熱媒体の流れに基づいて説明する。図3は、この発明の実施の形態1に係る空気調和装置0の熱媒体循環回路Bにおける熱媒体の流れの一例について説明する図である。ここでは、冷却された熱媒体を循環させる場合について説明する。ここで、温度の具体的数値は、一例であって、これに限定するものではない。
 ポンプ22が駆動することにより熱媒体循環回路Bにおける熱媒体の流れが形成される。ポンプ22により加圧された熱媒体は、熱媒体熱交換器21に流入し、熱媒体熱交換器21において熱源側冷媒と熱交換を行い、冷却される。ここでは説明のため、熱媒体熱交換器21を通過した熱媒体の温度は7℃に冷却されるものとする。
 熱媒体熱交換器21で冷却された熱媒体は中継ユニット2から流出し、第1接続配管5Bを介してエアハンドリングユニット4へ流入する。エアハンドリングユニット4へ流入した熱媒体は、外調側熱交換器41またはバイパス配管44のいずれかを通過する。外調側熱交換器41を通過した熱媒体は外気と熱交換を行い、外気から熱を吸収することで温度が上がる。また、熱媒体と熱交換した外気は温度が下がり、冷却および除湿される。対して、バイパス配管44を通過した熱媒体は外気と熱交換は行われず、熱媒体の温度は変化しない。外調側熱交換器41を通過した熱媒体とバイパス配管44を通過した熱媒体は復路配管5Cbで合流し、エアハンドリングユニット4から流出する。したがって、エアハンドリングユニット4から流出する熱媒体の温度は、外調側熱交換器41を通過した熱媒体の温度よりも下がる。ここでは説明のため、エアハンドリングユニット4から流出する熱媒体の温度は12℃とする。
 エアハンドリングユニット4から流出した熱媒体は第2接続配管5Dを介して室内ユニット3a~室内ユニット3cのいずれかに流入する。室内ユニット3a~室内ユニット3cに流入した熱媒体は各室内ユニット内配管5Eと各室内側熱交換器31を通過する。室内側熱交換器31を通過した熱媒体は室内空気と熱交換を行い、室内空気より熱を吸収することで温度が上がる。また、熱媒体と熱交換した室内空気は温度が下がり、冷却される。各室内側熱交換器31を通過した熱媒体は室内ユニット3a~室内ユニット3cより流出し、第3接続配管5Fへ流れる。第3接続配管5Fで、各室内側熱交換器31を通過した熱媒体は合流する。合流した熱媒体は各室内側熱交換器31で温度が上がっている。ここでは説明のため、合流した熱媒体の温度は15℃とする。
 第3接続配管5Fで合流した熱媒体は、中継ユニット2へ流入し、再びポンプ22により加圧されて熱媒体熱交換器21へ流入する。
 たとえば、外気との熱交換を行うエアハンドリングユニット4では、外気の除湿を行って空調対象空間に供給する場合がある。このとき、熱媒体は、外気の露点温度よりも低い温度でエアハンドリングユニット4の外調側熱交換器41を通過し、外気に伝熱する必要がある。一方、室内空間の冷房に用いる熱媒体の温度は、エアハンドリングユニット4が必要とする熱媒体の温度より高くてもよい場合が多い。そこで、実施の形態1の熱媒体循環回路Bにおいて、熱媒体熱交換器21で冷却された熱媒体は、エアハンドリングユニット4を通過してから室内ユニット3に流れるように構成されているため、室内ユニット3を通過してからエアハンドリングユニットを通過する場合に比べて、室内ユニット3よりも冷却量が多く必要なエアハンドリングユニット4で冷却量が不足するような自体が生じにくくなる。
 また、加熱された熱媒体を循環させる場合であっても、熱媒体循環回路Bを循環する熱媒体の流れは図3と同じである。ただし、加熱された熱媒体を循環させる場合では、熱媒体は熱媒体熱交換器21で熱源側冷媒によって加熱され、室内側熱交換器31と外調側熱交換器41では室内空気または外気に熱を与えて温度が下がる。したがって、熱源側冷媒循環回路Aからの伝熱により加熱された熱媒体の流れに対して、エアハンドリングユニット4が上流側となり、各室内ユニット3が下流側となる。外気を加熱する場合には、除湿は行われないため、各室内ユニット3よりも熱媒体の温度が高くなくもてよい場合がある。ただ、エアハンドリングユニット4において、熱媒体と熱交換される外気は、急激な温度変化がない。また、対象空間の温度の変化も少ない。したがって、各室内ユニット3側に流れる熱媒体の温度を安定させることができる。このため、熱媒体循環回路Bにおいて、冷却だけでなく、加熱された熱媒体を循環させる場合も、エアハンドリングユニット4が上流側に位置する方がよい。
 次に、実施の形態1におけるエアハンドリングユニット制御装置400が行う制御について説明する。図4は、この発明の実施の形態1に係るエアハンドリングユニット制御装置400が行う制御のフローチャートである。
 まず、ステップS101において、エアハンドリングユニット制御装置400は、外気と熱媒体との間で熱交換を行う必要があるか否かを判断する。たとえば、エアハンドリングユニット4が、冷房、除湿など外気を冷却する運転を行っている場合には、外気温度が外調側設定温度よりも高いと熱交換を行う必要があると判断し、外気温度が外調側設定温度以下であると熱交換を行う必要がないと判断する。また、エアハンドリングユニット4が、暖房など外気を加熱する運転を行っている場合には、外気温度が外調側設定温度よりも低いと熱交換を行う必要があると判断し、外気温度が外調側設定温度以上であると熱交換を行う必要がないと判断する。なお、判断に用いられる外気の温度は、外気温度センサ532の検出に係る温度が用いられる。
 エアハンドリングユニット制御装置400が熱交換を行う必要がないと判断した場合(ステップS101 No)は、ステップS102へ進む。ステップS102では、エアハンドリングユニット制御装置400は、熱媒体が外調側熱交換器41を通過しないように制御する。具体的には、エアハンドリングユニット制御装置400は、外調側流量調整装置42を全閉に制御する。そして、ステップS102の処理の後、図4の制御に係る処理を終了する。
 エアハンドリングユニット制御装置400が熱交換を行う必要があると判断した場合(ステップS101 Yes)は、ステップS103およびステップS104へ進む。ステップS103では、エアハンドリングユニット制御装置400は、外調側必要熱量Tanを算出する。外調側必要熱量Tanは、外気温度が外調側設定温度に到達するために必要な熱量である。たとえば、エアハンドリングユニット4が外気を冷却する運転を行っている場合は、外気空気を外調側設定温度まで冷却するために必要な冷却量であり、エアハンドリングユニット4が外気を加熱する運転を行っている場合は、外気空気を外調側設定温度まで加熱するために必要な加熱量である。外調側必要熱量Tanは、外気温度と外調側設定温度の差に基づいて算出され、外気温度と外調側設定温度との差が小さくなれば外調側必要熱量Tanは小さくなり、外気温度と外調側設定温度の差が大きくなれば外調側必要熱量Tanは大きくなる。
 さらに、ステップS104では、エアハンドリングユニット制御装置400は、外調側熱交換器41で熱交換される熱量Taを算出する。熱媒体は外調側熱交換器41において相変化しないため、外調側熱交換器41で熱交換される熱量Taは、外調側熱交換器41に流入する熱媒体の温度と外調側熱交換器41より流出する熱媒体の温度との温度差と、外調側熱交換器41を通過する熱媒体の流量とに基づいて算出することができる。また、外調側熱交換器41を通過する熱媒体の流量は、外調側熱交換器41に流入する熱媒体の圧力と外調側熱交換器41より流出する熱媒体の圧力との差圧および外調側流量調整装置42のCv値に基づいて算出することができる。なお、Cv値とは、所定の差圧で弁を通過する流体の流量を算出するための計数であり、同一の弁かつ同一の熱媒体であれば、弁の開度によってCv値は定まる。したがって、エアハンドリングユニット制御装置400は、外調流入口側温度センサ515の検出温度と、外調流出口側温度センサ516の検出温度と、外調流入口側圧力センサ523の検出圧力と、外調流出口側圧力センサ524の検出圧力と、外調側流量調整装置42の開度とに基づき外調側熱交換器41で熱交換される熱量Taを算出する。
 ステップS103およびステップS104の処理が終了した後、ステップS105へ進む。ステップS105では、エアハンドリングユニット制御装置400は、ステップS103で算出した外調側必要熱量TanがステップS102で算出した熱量Taよりも大きいか否かを判断する。
 ステップS105でエアハンドリングユニット制御装置400がステップS103で算出した外調側必要熱量Tanが、ステップS104で算出した熱量Taよりも大きいと判断した場合(ステップS105 Yes)は、ステップS106へ進む。ステップS106では、エアハンドリングユニット制御装置400は、外調側熱交換器41に流入する熱媒体の流量をステップS104における流量よりも多くするように制御する。具体的には、外調側流量調整装置42の開度をステップS104時点における外調側熱交換器41で熱交換される熱量Taを算出するために用いた開度よりも大きくするように制御を行う方法、バイパス側流量調整装置45の開度をステップS104における開度よりも小さくするように制御を行う方法、またはその2つの制御の両方を行う方法が挙げられる。ステップS106の処理後、図4の制御に係る処理を終了する。
 ステップS105で、エアハンドリングユニット制御装置400が、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Ta以下と判断した場合(ステップS105 No)は、ステップS107へ進む。ステップS107では、エアハンドリングユニット制御装置400は、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Taより小さいか否かを判断する。
 ステップS107で、エアハンドリングユニット制御装置400が、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Taより小さいと判断した場合(ステップS107 Yes)は、ステップS108へ進む。ステップS108では、エアハンドリングユニット制御装置400は、外調側熱交換器41に流入する熱媒体の流量をステップS104の時点の流量よりも少なくするように制御する。具体的には、外調側流量調整装置42の開度をステップS104時点における外調側熱交換器41で熱交換される熱量Taを算出するために用いた開度よりも小さくするように制御を行う方法、バイパス側流量調整装置45の開度をステップS104における開度よりも大きくするように制御を行う方法、またはその2つの制御の両方を行う方法が挙げられる。ステップS108の処理を行って制御した後、図4の制御に係る処理を終了する。
 ステップS107で、エアハンドリングユニット制御装置400が、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Ta以上と判断した場合(ステップS107 No)は、換言すると、ステップS103で算出した外調側必要熱量TanとステップS104で算出した熱量Taが等しい場合である。したがって、外調側流量調整装置42の開度は変更せず、図4の制御に係る処理を終了する。
 なお、図4のフローチャートにおいて、外気温度と外調側設定温度との差が大きくなると、外調側熱交換器に流れる熱媒体の流量は増加する。これは、外気温度と外調側設定温度との差が大きくなるほど、外調側必要熱量Tanも大きくなり、ステップS105の条件を満たす熱量Taの範囲も広くなるため、ステップS106で外調側熱交換器に流れる熱媒体の流量が増加するためである。
 次に、実施の形態1における室内ユニット制御装置300が行う制御について説明する。図5は、この発明の実施の形態1に係る室内ユニット制御装置300が行う制御のフローチャートである。
 まず、ステップS201において、室内ユニット制御装置300は、室内空気と熱媒体との間で熱交換を行う必要があるか否かを判断する。たとえば、室内ユニット3が冷房または除湿など室内空気を冷却する運転を行っている場合には、室内空気の温度が室内側設定温度よりも高いと熱交換を行う必要があると判断し、室内空気の温度が室内側設定温度以下であると熱交換を行う必要がないと判断する。また、室内ユニット3が暖房など室内空気を加熱する運転を行っている場合には、室内空気の温度が室内側設定温度よりも低いと熱交換を行う必要があると判断し、室内空気の温度が室内側設定温度以上であると熱交換を行う必要がないと判断する。なお、判断に用いられる室内空気の温度は、室内温度センサ531の検出に係る温度が用いられる。
 室内ユニット制御装置300が熱交換を行う必要がないと判断した場合(ステップS201 No)は、ステップS202へ進む。ステップS202では、室内ユニット制御装置300は、室内ユニット3をサーモオフ状態に制御する。サーモオフ状態とは、室内側熱交換器31において、熱媒体と室内空気とが熱交換を行わない状態のことであり、たとえば、室内側流量調整装置32を全閉として熱媒体が室内側熱交換器31を通過しない状態、または室内側送風機33を停止させ室内空気が室内側熱交換器31に送風されない状態である。ステップS202の処理後、図5の制御に係る処理を終了する。
 室内ユニット制御装置300が熱交換を行う必要があると判断した場合(ステップS201 Yes)は、ステップS203およびステップS204へ進む。ステップS203では、室内ユニット制御装置300は、室内側必要熱量Tinを算出する。室内側必要熱量Tinは、室内ユニット3が室内空気を室内側設定温度に到達させるために必要な熱量であり、たとえば、室内ユニット3が室内空気を冷却する運転を行っている場合は室内空気を室内側設定温度まで冷却するために必要な冷却量であり、室内ユニット3が室内空気を加熱する運転を行っている場合は室内空気を室内側設定温度まで加熱するために必要な加熱量である。室内側必要熱量Tinは、室内空気の温度と室内側設定温度の差に基づき算出され、室内空気の温度と室内側設定温度の差が小さくなれば室内側必要熱量Tinは小さくなり、室内空気の温度と室内側設定温度の差が大きくなれば室内側必要熱量Tinは大きくなる。
 さらに、ステップS204では、室内ユニット制御装置300は、室内側熱交換器31で熱交換される熱量Tiを算出する。熱媒体は、室内側熱交換器31において相変化しないため、室内側熱交換器31で熱交換される熱量Tiは、室内側熱交換器31に流入する熱媒体の温度と室内側熱交換器31より流出する熱媒体の温度との温度差および室内側熱交換器31を通過する熱媒体の流量に基づいて算出することができる。また、室内側熱交換器31を通過する熱媒体の流量は、室内側熱交換器31に流入する熱媒体の圧力と室内側熱交換器31より流出する熱媒体の圧力との差圧および室内側流量調整装置32のCv値に基づいて算出することができる。つまり、室内ユニット制御装置300は、室内流入口側温度センサ513の検出温度と、室内流出口側温度センサ514の検出温度と、室内流入口側圧力センサ521の検出圧力と、室内流出口側圧力センサ522の検出圧力と、室内側流量調整装置32の開度とに基づいて室内側熱交換器31で熱交換される熱量Tiを算出する。
 ステップS203およびステップS204の処理が終了した後、ステップS205へ進む。ステップS205では、室内ユニット制御装置300は、ステップS203で算出した室内側必要熱量TinがステップS204で算出した熱量Tiよりも大きいか否かを判断する。
 ステップS205で、室内ユニット制御装置300が、ステップS203で算出した室内側必要熱量Tinが、ステップS204で算出した熱量Tiよりも大きいと判断した場合(ステップS205 Yes)は、ステップS206へ進む。ステップS206では、室内ユニット制御装置300は、室内側熱交換器31に流入する熱媒体の流量をステップS204の時点の流量よりも大きくするように制御する。具体的には、室内ユニット制御装置300は、室内側流量調整装置32の開度をステップS204時点の開度よりも大きくするように制御する。ステップS206の処理後、図5の制御に係る処理を終了する。
 ステップS205で、室内ユニット制御装置300が、ステップS203で算出した室内側必要熱量Tinが、ステップS204で算出した熱量Ti以下と判断した場合(ステップS205 No)は、ステップS207へ進む。ステップS207では、室内ユニット制御装置300は、ステップS203で算出した室内側必要熱量TinがステップS204で算出した熱量Tiより小さいか否かを判断する。
 ステップS207で、室内ユニット制御装置300が、ステップS203で算出した室内側必要熱量TinがステップS204で算出した熱量Tiより小さいと判断した場合(ステップS207 Yes)は、ステップS208へ進む。ステップS208では、室内ユニット制御装置300は、室内側熱交換器31に流入する熱媒体の流量をステップS204の時点の流量よりも小さくするように制御する。具体的には、室内ユニット制御装置300は室内側流量調整装置32の開度をステップS204時点の開度よりも小さくするように制御する。ステップS208の処理後、図5の制御に係る処理を終了する。
 ステップS207で、室内ユニット制御装置300が、ステップS203で算出した室内側必要熱量TinがステップS204で算出した熱量Ti以上と判断した場合(ステップS207 No)は、換言すると、ステップS203で算出した室内側必要熱量TinとステップS204で算出した熱量Tiが等しい場合である。したがって、室内側流量調整装置32の開度は変更せず、図5の制御に係る処理を終了する。
 なお、空気調和装置0が複数の室内ユニット3を有する場合は、図5のフローチャートの制御は、各室内ユニット3で実行される。つまり、実施の形態1における空気調和装置0において、室内ユニット3a、3b、3cのそれぞれの室内ユニット制御装置300で図5のフローチャートの制御が実行される。
 次に、室外ユニット1と、中継ユニット2と、室内ユニット3と、エアハンドリングユニット4の連携制御について説明する。図6は、この発明の実施の形態1に係る空気調和装置0の連携制御のフローチャートである。
 まず、ステップS301aでは、エアハンドリングユニット制御装置400は、外調側必要熱量Tanを算出する。外調側必要熱量Tanの算出方法は、ステップS103と同様の方法で算出を行い、ステップS103で算出した値を用いてもよい。
 ステップS302aでは、エアハンドリングユニット制御装置400は、外調側熱交換器41の熱量Taを算出する。外調側熱交換器41で熱交換される熱量Taを算出方法はステップS104と同様の方法で算出を行い、ステップS104で算出した値を用いてもよい。
 ステップS301aおよびステップS302aの処理が終了すると、ステップS303aへ進む。ステップS303aでは、エアハンドリングユニット制御装置400はステップS301aで算出した外調側必要熱量Tanに関するデータと、ステップS302aで算出した外調側熱交換器41で熱交換される熱量Taに関するデータとを含む信号を中継ユニット制御装置200へ送信する。ステップS303aの処理後、エアハンドリングユニット制御装置400は、図6の連携制御に係る処理を終了する。
 また、ステップS301cでは、室内ユニット制御装置300は、室内側必要熱量Tinを算出する。室内側必要熱量Tinの算出方法は、ステップS203と同様の方法で算出を行い、ステップS203で算出した値を用いてもよい。
 ステップS302cでは、室内ユニット制御装置300は、室内側熱交換器31で熱交換される熱量Tiを算出する。室内側熱交換器31で熱交換される熱量Tiの算出方法は、ステップS204と同様の方法で算出を行い、ステップS204で算出した値を用いてもよい。
 ステップS301cおよびステップS302cの処理が終了すると、ステップS303cへ進む。ステップS303cでは、室内ユニット制御装置300は、ステップS301cで算出した室内側必要熱量Tinに関するデータと、ステップS302cで算出した室内側熱交換器31で熱交換される熱量Tiに関するデータとを含む信号を中継ユニット制御装置200へ送信する。ステップS303cの処理後、室内ユニット制御装置300は、図6の連携制御に係る処理を終了する。
 なお、図6におけるステップS301c~ステップS303cまでの処理は、各室内ユニット制御装置300a、300b、300cが実行する。つまり、各室内ユニット制御装置300a、300b、300cは、各室内ユニット3a、3b、3cが必要とする室内側必要熱量Tina、Tinb、Tincと、室内側熱交換器31a、31b、31cで熱交換される熱量Tia、Tib、Ticとを算出し、算出したデータを含む信号を中継ユニット制御装置200へ送信する。
 ステップS303bでは、中継ユニット制御装置200は、ステップS303aでエアハンドリングユニット制御装置400より送信された信号と、ステップS303cで各室内ユニット制御装置300より送信された信号とを受信する。つまり、中継ユニット制御装置200は、外調側必要熱量Tanに関するデータと、外調側熱交換器41で熱交換される熱量Taに関するデータと、各室内ユニット3a、3b、3cの室内側必要熱量Tina、Tinb、Tincに関するデータと、室内側熱交換器31a、31b、31cで熱交換される熱量Tia、Tib、Ticに関するデータを得る。
 ステップS303bで、中継ユニット制御装置200が通信接続されている全てのエアハンドリングユニット制御装置400および室内ユニット制御装置300a、300b、300cより信号を受信後、ステップS304bおよびステップS305bへ進む。
 ステップS304bでは、中継ユニット制御装置200は、ステップS303bで受信した信号に基づき、合計必要熱量Ttnを算出する。合計必要熱量Ttnとは、中継ユニット制御装置200と通信接続されているエアハンドリングユニット制御装置400で算出した外調側必要熱量Tanと室内ユニット制御装置300で算出した室内側必要熱量Tinとの総和である。つまり、実施の形態1における合計必要熱量Ttnは、エアハンドリングユニット制御装置400で算出した外調側必要熱量Tanと、室内ユニット制御装置300aで算出した室内側必要熱量Tinaと、室内ユニット制御装置300bで算出した室内側必要熱量Tinbと、室内ユニット制御装置300cで算出した室内側必要熱量Tincとの総和である。
 ステップS305bでは、中継ユニット制御装置200は、ステップS303bで受信した信号に基づき、合計熱交換器熱量Ttを算出する。合計熱交換器熱量Ttとは、中継ユニット制御装置200と通信接続されているエアハンドリングユニット制御装置400で算出した外調側熱交換器41で熱交換される熱量と室内ユニット制御装置300で算出した室内側熱交換器31で熱交換される熱量との総和である。つまり、実施の形態1における合計熱交換器熱量Ttは、エアハンドリングユニット制御装置400で算出した外調側熱交換器41で熱交換される熱量Taと、室内ユニット制御装置300aで算出した室内側熱交換器31aで熱交換される熱量Tiaと、室内ユニット制御装置300bで算出した室内側熱交換器31bで熱交換される熱量Tibと、室内ユニット制御装置300cで算出した室内側熱交換器31cで熱交換される熱量Ticとの総和である。
 ステップS304bおよびステップS305bの処理が終了した後、ステップS306bへ進む。ステップS306bでは、中継ユニット制御装置200は、ステップS304bで算出した合計必要熱量Ttnが、ステップS305bで算出した合計熱交換器熱量Ttよりも大きいか否かを判断する。
 中継ユニット制御装置200が、ステップS304bで算出した合計必要熱量TtnがステップS305bで算出した合計熱交換器熱量Ttよりも大きいと判断した場合(ステップS306b Yes)は、ステップS307bへ進む。ステップS307bでは、中継ユニット制御装置200は、熱媒体熱交換器21において熱媒体へ与える加熱量または冷却量を増加させる制御を行う。熱媒体へ与える加熱量または冷却量を増加させる方法としては、たとえば、ポンプ22の回転数を増加させる方法、または室外ユニット制御装置100に信号を送り、圧縮機10の回転数を増加させる方法が挙げられる。ステップS307bの処理後、中継ユニット制御装置200は、図6の連携制御に係る処理を終了する。
 中継ユニット制御装置200が、ステップS304bで算出した合計必要熱量TtnがステップS305bで算出した合計熱交換器熱量Ttよりも大きいと判断した場合(ステップS306b No)は、ステップS308bへ進む。ステップS308bでは、中継ユニット制御装置200は、ステップS304bで算出した合計必要熱量Ttnが、ステップS305bで算出した合計熱交換器熱量Ttよりも小さいか否かを判断する。
 中継ユニット制御装置200が、ステップS304bで算出した合計必要熱量がステップS305bで算出した合計熱交換器熱量よりも小さいと判断した場合(ステップS308b Yes)は、ステップS309bへ進む。ステップS309bでは、中継ユニット制御装置200は、熱媒体熱交換器21において熱媒体へ与える加熱量または冷却量を減少させる制御を行う。熱媒体へ与える加熱量または冷却量を減少させる方法としては、ステップS307bとは逆に、ポンプ22の回転数を減少させる方法、または室外ユニット制御装置100に信号を送り、圧縮機10の回転数を減少させる方法が挙げられる。ステップS309bの処理後、中継ユニット制御装置200は、図6の連携制御に係る処理を終了する。
 中継ユニット制御装置200が、ステップS304bで算出した合計必要熱量がステップS305bで算出した合計熱交換器熱量よりも大きいと判断した場合(ステップS308b No)は、ステップS304bで算出した合計必要熱量が、ステップS305bで算出した合計熱交換器熱量と等しい場合である。このため、熱媒体熱交換器21において熱媒体へ与える加熱量または冷却量は変更せず、中継ユニット制御装置200は、図6の連携制御に係る処理を終了する。
 以上のように、実施の形態1の空気調和装置0によれば、熱媒体循環回路Bにおいて、熱媒体熱交換器21を起点とし、熱媒体熱交換器21が加熱または冷却した熱媒体の流れに対し、エアハンドリングユニット4が上流側となり、各室内ユニット3が下流側となるようにした。ここで、室内空気並びに外気を冷却する環境では、外気は室内空気に比べて暖かく湿った状態であることが多い。したがって、室内ユニット3は人体や機器の発熱など室内で発生する熱の冷却のみを行うが、エアハンドリングユニット4では外気の冷却と除湿を行う必要がある。つまり、室内ユニット3は顕熱処理のみを行うのに対し、エアハンドリングユニット4では顕熱処理と潜熱処理の両方を行い、エアハンドリングユニット4の方が必要な熱量が多くなる。したがって、実施の形態1の空気調和装置0は、熱媒体熱交換器21で熱交換した熱媒体を、エアハンドリングユニット4を通過させてから、室内ユニット3へ流入させるため、先に必要な熱量が多いエアハンドリングユニット4へ供給されエアハンドリングユニット4での熱量の不足が起こり難くなる。したがって、無駄なく熱供給を行うことができる。エアハンドリングユニット4において除湿を行い、室内ユニット3において冷房を行う場合に特に有効である。
 また、実施の形態1の空気調和装置0は、外調側熱交換器41を通過する熱媒体の流量を調整する外調側流量調整装置42を有している。したがって、熱媒体の流量を調整することにより、外調側熱交換器41で熱交換される熱量を調整し、無駄なく熱供給を行うことができる。特に、熱媒体流量調整装置で熱媒体の流量を調整する動作は、熱源側ユニット(室外ユニット1と中継ユニット2)による熱媒体の加熱量または冷却量を調整するよりも省エネルギであり、無駄なく熱供給を行うことができる。
 また、実施の形態1の空気調和装置0は、外調側熱交換器において熱交換される熱量と外調側熱交換器が必要とする熱量に応じて外調側熱交換器41を通過する熱媒体の流量を制御する。したがって、室外温度と外調側設定温度との差が大きくなれば外調側熱交換器41を通過する熱媒体の流量が増加するよう外調側熱量検出装置で検出した熱量と外調側熱交換器が必要とする熱量に応じて制御が行われ、無駄なく熱供給を行うことができる。
 また、実施の形態1の空気調和装置0は、室外ユニット制御装置100と、中継ユニット制御装置200と、室内ユニット制御装置300と、エアハンドリングユニット制御装置400は、各種データを含む信号を通信することができる。たとえば室内ユニット制御装置300が収集したデータに基づき、中継ユニット制御装置200が内部のポンプの容量を変更するなど、空気調和装置0の各機器で連携制御を行うことができる。特に、室内ユニット3とエアハンドリングユニット4で必要としている熱量の総和に基づいて、熱源側ユニット(室外ユニット1と中継ユニット2)を制御することができるため、無駄なく熱供給を行うことができる。
 また、実施の形態1における空気調和装置0では、各室内ユニット3およびエアハンドリングユニット4では、熱負荷との熱交換に係る熱量を検出する熱量検出装置を有している。そして、熱交換に係る熱量のデータを含む信号を通信することができる。このため、エアハンドリングユニット4および各室内ユニット3において、熱媒体が熱交換する熱量の総量により、熱源側冷媒循環回路Aを循環する熱源側冷媒により熱媒体に与える熱量を制御することができ、省エネルギをはかることができる。特に、実施の形態1では、エアハンドリングユニット4が熱量検出装置を有している。実施の形態1の空気調和装置0では、熱媒体熱交換器21によって加熱または冷却された熱媒体が各室内ユニット3よりも先にエアハンドリングユニット4を通過する。このため、エアハンドリングユニット4では、熱量検出装置を設置せずに熱量が把握できなくても、熱量の不足が起こりにくい。しかし、エアハンドリングユニット4が熱量検出装置を有し、エアハンドリングユニット4において供給する熱量を得ることで、熱媒体循環回路Bにおいて、熱媒体が熱交換する熱量の総量を精度よく得ることができ、さらに省エネルギをはかることができる。
 なお、上述の図5のエアハンドリングユニット制御装置400が行う制御のフローチャートと、図6の室内ユニット制御装置300が行う制御のフローチャートと、図7の空気調和装置の連携制御のフローチャートは、空気調和装置0が運転している場合において、それぞれ周期的に実行されることが望ましい。各フローチャートが実行される周期は、設計者または使用者が自由に定めて構わない。ただし、一般的には、圧縮機10またはポンプ22の回転数を変更するために必要な電力よりも、外調側流量調整装置42または室内側流量調整装置32の開度を変更するために必要な電力の方が小さいため、外調側流量調整装置42または室内側流量調整装置32の開度を変更した後に、圧縮機10またはポンプ22の回転数を変更する方が、より省エネルギに外気または室内空気の温度調整を行うことができる。したがって、図7のように、熱源側冷媒と熱媒体の間で熱交換される熱量の制御を行う周期よりも、図5または図6のように、外調側熱交換器または室内側熱交換器を通過する熱媒体の流量の制御を行う周期を短くする方がより望ましい。
 また、この発明の実施の形態1では、外調側熱量検出装置が、エアハンドリングユニット制御装置400と、外調流入口側温度センサ515と、外調流出口側温度センサ516と、外調流入口側圧力センサ523と、外調流出口側圧力センサ524とであるが、これに限らない。たとえば、外調流入口側圧力センサ523および外調流出口側圧力センサ524の代わりに、外調側熱交換器を通過する熱媒体の流量を測定する流量センサを設け、外調側熱交換器に流入する熱媒体の温度と外調側熱交換器41より流出する熱媒体の温度との温度差および流量センサで測定した流量に基づき、エアハンドリングユニット制御装置400で外調側熱交換器41で熱交換される熱量Taを算出する構成でもよい。この場合、エアハンドリングユニット制御装置400と、外調流入口側温度センサ515と、外調流出口側温度センサ516と、流量センサとが、外調側熱量検出装置に該当する。また、熱媒体の熱量を直接測定する熱量センサを外調側熱交換器41の流入側と流出側に設け、流入側の熱量センサの検出熱量と流出側の熱量センサの検出熱量との差に基づき、エアハンドリングユニット制御装置で外調側熱交換器で熱交換される熱量Taを算出する構成としてもよい。この場合、エアハンドリングユニット制御装置と、各熱量センサが外調側熱量検出装置に該当する。ただし、圧力センサおよび温度センサに比べ、流量センサおよび熱量センサは高価であるため、圧力センサと温度センサに基づいて熱交換される熱量を算出する方が、コストは低下する。
 さらに、室内側熱交換器31で熱交換される熱量Tiも、外調側熱交換器41で熱交換される熱量Taと同様に、室内側熱交換器31を通過する熱媒体の流量を測定する流量センサを設け、室内側熱交換器31に流入する熱媒体の温度と室内側熱交換器31より流出する熱媒体の温度との温度差および流量センサで測定した流量に基づき、室内側熱交換器で熱交換される熱量Taを算出する構成でもよい。また、熱媒体の熱量を直接測定するセンサを室内側熱交換器31の流入側と流出側とに設け、流入側のセンサの検出熱量と流出側のセンサの検出熱量との差を、室内側熱交換器31で熱交換される熱量Taとして算出する構成でもよい。
実施の形態2.
 図7は、この発明の実施の形態2に係るエアハンドリングユニット制御装置400が行う制御のフローチャートである。実施の形態2は、エアハンドリングユニット制御装置400が行う制御のフローチャートのみが実施の形態1と異なっており、空気調和装置0の構成と、室内ユニット制御装置300の制御と、各制御装置の連携制御とについては、実施の形態1と同じであるため、説明を割愛する。
 実施の形態1と同じく、ステップS101において、エアハンドリングユニット制御装置400は、外気と熱媒体との間で熱交換を行う必要があるか否かを判断する。エアハンドリングユニット制御装置400が熱交換を行う必要がないと判断した場合(ステップS101 No)は、ステップS102へ進み、エアハンドリングユニット制御装置400は熱媒体が外調側熱交換器41を通過しないように制御し、図7の制御に係る処理を終了する。
 エアハンドリングユニット制御装置400が熱交換を行う必要があると判断した場合(ステップS101 Yes)は、ステップS103およびステップS104へ進む。実施の形態1と同じく、エアハンドリングユニット制御装置400は、ステップS103では外調側必要熱量Tanを算出し、ステップS104では外調側熱交換器41の熱量Taを算出する。
 ステップS103およびステップS104の処理が終了した後、ステップS105へ進む。ステップS105では、エアハンドリングユニット制御装置400は、ステップS103で算出した外調側必要熱量TanがステップS102で算出した熱量Taよりも大きいか否かを判断する。
 ステップS105で、エアハンドリングユニット制御装置400が、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Taよりも大きいと判断した場合(ステップS105 Yes)は、ステップS109へ進む。ステップS109では、エアハンドリングユニット制御装置400は、ステップS104の時点における外調側熱交換器41に流入する熱媒体の流量がエアハンドリングユニット制御装置400のみで調整できる最大流量か否かを判断する。具体的には、外調側流量調整装置42の開度が最大である状態、バイパス側流量調整装置45の開度が最小である状態、または外調側流量調整装置42の開度が最大かつバイパス側流量調整装置45の開度が最小である状態が挙げられる。
 ステップS109で、外調側熱交換器41に流入する熱媒体の流量が、エアハンドリングユニット制御装置400のみで調整できる最大流量であると判断した場合(ステップS109 Yes)は、ステップS110へ進む。ステップS110では、エアハンドリングユニット制御装置400は、中継ユニット制御装置200に対して熱媒体熱交換器21において熱媒体へ与える加熱量または冷却量の増加を要請する信号を送信する。当該信号を受け取った中継ユニット制御装置200は、実施の形態1のステップS304bと同様に、熱源側ユニットが熱媒体へ与える加熱量または冷却量を増加させる制御を行う。ステップS110の処理後、図7の制御に係る処理を終了する。
 ステップS109で、外調側熱交換器41に流入する熱媒体の流量が、エアハンドリングユニット制御装置400のみで調整できる最大流量ではないと判断した場合(ステップS109 No)は、ステップS106へ進み、実施の形態1と同様に、エアハンドリングユニット制御装置400は、外調側熱交換器41に流入する熱媒体の流量をステップS104における流量よりも大きくするように制御する。ステップS106の処理後、図7の制御に係る処理を終了する。
 ステップS105で、エアハンドリングユニット制御装置400が、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Ta以下と判断した場合(ステップS105 No)は、ステップS107へ進む。ステップS107では、エアハンドリングユニット制御装置400は、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Taより小さいか否かを判断する。
 ステップS107で、エアハンドリングユニット制御装置400が、ステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Taより小さい判断した場合(ステップS107 Yes)は、ステップS111へ進む。ステップS111では、エアハンドリングユニット制御装置400は、ステップS104の時点における外調側熱交換器41に流入する熱媒体の流量がエアハンドリングユニット制御装置400のみで調整できる最小流量か否かを判断する。具体的には、外調側流量調整装置42の開度が最小である状態、バイパス側流量調整装置45の開度が最大である状態、または外調側流量調整装置42の開度が最小かつバイパス側流量調整装置45の開度が最大である状態が挙げられる。
 ステップS111で、外調側熱交換器41に流入する熱媒体の流量が、エアハンドリングユニット制御装置400のみで調整できる最小流量であると判断した場合(ステップS111 Yes)は、換言する外調側流量調整装置42で外調側熱交換器41に流入する熱媒体の流量を少なくすることはできないため、外調側流量調整装置42の開度は変更せず、図7の制御に係る処理を終了する。
 ステップS111で外調側熱交換器41に流入する熱媒体の流量がエアハンドリングユニット制御装置400のみで調整できる最小流量ではないと判断した場合(ステップS111 No)は、ステップS108へ進み、実施の形態1と同様に、外調側熱交換器41に流入する熱媒体の流量をステップS104における流量よりも小さくするように制御する。ステップS108の処理後、図7の制御に係る処理を終了する。
 ステップS107でエアハンドリングユニット制御装置400がステップS103で算出した外調側必要熱量TanがステップS104で算出した熱量Ta以上と判断した場合(ステップS107 No)は、外調側流量調整装置42の開度は変更せず、図7の制御に係る処理を終了する。
 熱媒体熱交換器21を流出した熱媒体は、まず、エアハンドリングユニット4へ流入する。したがって、エアハンドリングユニット制御装置400のみで制御できる最大流量であっても外調側熱交換器41で必要な熱量に達していない場合は、エアハンドリングユニット4へ搬送される熱量を増加させなければ外調側熱交換器41で必要な熱量に達しない。実施の形態2に係る空気調和装置0では、エアハンドリングユニット制御装置400は、エアハンドリングユニット制御装置400のみで制御できる最大流量であっても外調側熱交換器41で必要な熱量に到達していない場合には、中継ユニット制御装置200へ熱媒体熱交換器21における冷媒と熱媒体との間で熱交換される熱量を増加させる制御を行うように要請する信号を送信する。この構成によって、より確実に、外調側熱交換器41で必要な熱量を達することができる。
実施の形態3.
 図8は、この発明の実施の形態3に係る空気調和装置0の構成の一例を示す図である。図8において、図1~図3と同じ符号を付している機器などについては、実施の形態1と同様の動作を行う。また、実施の形態3の室内ユニット3は実施の形態1の図5のフローチャートの制御を行い、実施の形態3のエアハンドリングユニット4は実施の形態1の図4のフローチャートの制御または実施の形態2の図7のフローチャートの制御を行う。実施の形態3の空気調和装置0は、実施の形態1において説明した構成に加え、補助室外ユニット1aおよび補助中継ユニット2aを有している。
 補助室外ユニット1aと補助中継ユニット2aの内部の機器構成は実施の形態1において説明した室外ユニット1および中継ユニット2と同様であり、冷媒配管6aで接続されている。したがって、補助室外ユニット1aと補助中継ユニット2aは熱源側冷媒循環回路A1と同様の構造の補助熱源側冷媒循環回路A2を構成し、補助熱源側冷媒循環回路には補助用熱源冷媒が流れている。ここで熱源側冷媒循環回路A1が熱媒体を冷却するよう熱源側冷媒を流している場合には補助熱源側冷媒循環回路A2も熱媒体を冷却するよう補助熱源側冷媒は流れ、熱源側冷媒循環回路A1が熱媒体を加熱するよう熱源側冷媒を流している場合には補助熱源側冷媒循環回路A2も熱媒体を加熱するよう熱源側冷媒は流れる。なお、補助室外ユニット1aと補助中継ユニット2aが、この発明の補助熱源側ユニットに該当する。
 また、補助室外ユニット1aは、室外ユニット1と同様に、少なくとも補助室外ユニット1a内の圧縮機の容量の制御を行う補助室外ユニット制御装置100aを備えている。さらに、補助中継ユニット2aは、中継ユニット2と同様に、少なくとも補助中継ユニット2a内のポンプの容量の制御を行う補助中継ユニット制御装置200aを備えている。補助室外ユニット制御装置100aと、補助中継ユニット制御装置200aは、少なくとも中継ユニット制御装置200と、それぞれ無線または有線で通信可能に接続されており、中継ユニット制御装置200との間で、各種データを含む信号を通信することができる。
 実施の形態3の空気調和装置0では、熱媒体循環回路Bに第4接続配管5Gと、第5接続配管5Hが設けられている。第4接続配管5Gは、第3接続配管5Fの主配管5Faと補助中継ユニット2aを接続しており、空気調和装置0は室内ユニット3a~室内ユニット3cより流出し、合流した熱媒体の一部が、補助中継ユニット2aに流入するように構成されている。第5接続配管5Hは、補助中継ユニット2aと第2接続配管5Dの主配管5Daとを接続しており、空気調和装置0は、補助中継ユニット2aから流出した熱媒体が第2接続配管5Dを経由し、室内ユニット3a~室内ユニット3cに流入するように構成されている。したがって、補助中継ユニット2aは、室内ユニット3a~室内ユニット3cより流出した熱媒体の一部を補助熱源側冷媒循環回路A2を流れる熱源側冷媒と熱交換させて加熱または冷却し、加熱または冷却された熱媒体の一部は第3接続配管5Iでエアハンドリングユニット4から流出した熱媒体と合流して室内ユニット3に流入する。
 ここで、補助中継ユニット2aを通過する熱媒体の温度は、中継ユニット2で熱媒体が冷却される場合はエアハンドリングユニット4より流出した熱媒体の温度よりも低く、中継ユニット2で熱媒体が加熱される場合はエアハンドリングユニット4より流出した熱媒体の温度よりも高くなるよう、補助中継ユニット2aより与えられる冷却量または加熱量が制御されている。したがって、補助中継ユニット2aは、エアハンドリングユニット4より流出した熱媒体の温度を上昇または下降させている。
 次に、実施の形態3における室外ユニット1と、中継ユニット2と、室内ユニット3と、補助室外ユニット1aと、補助中継ユニット2aによる連携制御について説明する。図9は、この発明の実施の形態3に係る空気調和装置0の連携制御のフローチャートである。なお、図9のフローチャートの開始時点では、補助熱源側冷媒循環回路A2は、熱媒体を加熱または冷却していない状態であるとする。
 ステップS401cでは、室内ユニット制御装置300は、室内側必要熱量Tinを算出する。室内側必要熱量Tinの算出方法は、ステップS203と同様の方法で算出を行い、ステップS203で算出した値を用いてもよい。
 ステップS402cでは、室内ユニット制御装置300は、室内側熱交換器31で熱交換される熱量Tiを算出する。室内側熱交換器31で熱交換される熱量Tiの算出方法は、ステップS204と同様の方法で算出を行い、ステップS204で算出した値を用いてもよい。
 ステップS401cおよびステップS402cの処理が終了すると、ステップS403cへ進む。ステップS403cでは、室内ユニット制御装置300は、ステップS401cで算出した室内側必要熱量Tinに関するデータと、ステップS402cで算出した室内側熱交換器31で熱交換される熱量Tiに関するデータとを含む信号を中継ユニット制御装置200へ送信する。ステップS403cの処理後、室内ユニット制御装置300は、図9の連携制御に係る処理を終了する。
 なお、図9におけるステップS401c~ステップS403cまでの処理は、各室内ユニット制御装置300a、300b、300cで実行される。つまり、各室内ユニット制御装置300a、300b、300cは各室内ユニット3a、3b、3cが必要とする室内側必要熱量Tina、Tinb、Tincと室内側熱交換器31a、31b、31cで熱交換される熱量Tia、Tib、Ticを算出し、算出したデータを含む信号を中継ユニット制御装置200へ送信する。
 ステップS403bでは、中継ユニット制御装置200は、ステップS403cで各室内ユニット制御装置300より送信された信号を受信する。つまり、中継ユニット制御装置200は、各室内ユニット3a、3b、3cの室内側必要熱量Tina、Tinb、Tincに関するデータと、室内側熱交換器31a、31b、31cで熱交換される熱量Tia、Tib、Ticに関するデータとを得る。
 ステップS403bで、中継ユニット制御装置200が、通信接続されている全ての室内ユニット制御装置300a、300b、300cより信号を受信後、ステップS404bおよびステップS405bへ進む。
 ステップS404bでは、中継ユニット制御装置200は、ステップS403bで受信した信号に基づき、合計室内側必要熱量Ttinを算出する。合計室内側必要熱量Ttinとは、中継ユニット制御装置200と通信接続されているエアハンドリングユニット制御装置400で算出した室内ユニット制御装置300で算出した室内側必要熱量Tinの総和である。つまり、実施の形態3における合計室内側必要熱量Ttinは、室内ユニット制御装置300aで算出した室内側必要熱量Tinaと、室内ユニット制御装置300bで算出した室内側必要熱量Tinbと、室内ユニット制御装置300cで算出した室内側必要熱量Tincとの総和である。
 ステップS405bでは、中継ユニット制御装置200は、ステップS403bで受信した信号に基づき、合計室内側熱交換器熱量Ttiを算出する。合計室内側熱交換器熱量Ttiとは、中継ユニット制御装置200と通信接続されているエアハンドリングユニット制御装置400で算出した外調側熱交換器41で熱交換される熱量と室内ユニット制御装置300で算出した室内側熱交換器31で熱交換される熱量との総和である。つまり、実施の形態3における合計室内側熱交換器熱量Ttiは、エアハンドリングユニット制御装置400で算出した外調側熱交換器41で熱交換される熱量Taと、室内ユニット制御装置300aで算出した室内側熱交換器31aで熱交換される熱量Tiaと、室内ユニット制御装置300bで算出した室内側熱交換器31bで熱交換される熱量Tibと、室内ユニット制御装置300cで算出した室内側熱交換器31cで熱交換される熱量Ticとの総和である。
 ステップS404bおよびステップS405bの処理が終了した後、ステップS406bへ進む。ステップS406bでは、中継ユニット制御装置200は、ステップS404bで算出した合計室内側必要熱量Ttniが、ステップS405bで算出した合計室内側熱交換器熱量Ttiよりも大きいか否かを判断する。中継ユニット制御装置200が、ステップS404bで算出した合計室内側必要熱量TtniがステップS405bで算出した合計室内側熱交換器熱量Tti以下と判断した場合(ステップS406b No)は、中継ユニット制御装置200は、図9の連携制御に係る処理を終了する。
 中継ユニット制御装置200が、ステップS404bで算出した合計室内側必要熱量TtniがステップS405bで算出した合計室内側熱交換器熱量Ttiよりも大きいと判断した場合(ステップS406b Yes)は、室内側熱交換器31で熱交換される熱量が不足している状態であり、ステップS407bへ進む。ステップS407bでは、中継ユニット制御装置200は、熱源側ユニット(室外ユニット1および中継ユニット2)があらかじめ定められた出力上限に達しているかを判断する。たとえば、圧縮機10があらかじめ定められた上限容量に到達している状態、またはポンプ202があらかじめ定められた上限容量に到達している状態、または熱媒体熱交換器21で熱媒体を冷却する場合において熱媒体の凝固点より高い温度にあらかじめ定められた下限熱媒体温度よりも熱媒体流出口側温度センサ512の検出温度が低い状態、または熱媒体熱交換器21で熱媒体を加熱する場合において熱媒体の沸点より小さい温度にあらかじめ定められた上限熱媒体温度よりも熱媒体流出口側温度センサ512の検出温度が高い状態であれば、中継ユニット制御装置200は、熱源側ユニットが出力上限に達していると判断する。
 中継ユニット制御装置200が、熱源側ユニットが出力上限に達していると判断した場合(ステップS407b Yes)は、ステップS408bへ進む。ステップS408bでは、中継ユニット制御装置200は、補助熱源側ユニットの動作開始を要請する信号を、補助中継ユニット2aの補助中継ユニット制御装置200aに送信する。ステップS408bの処理後、中継ユニット制御装置200は、図9の連携制御に係る処理を終了する。
 ステップS408dでは、補助中継ユニット制御装置200aは、ステップS408bで中継ユニット制御装置200より送信された信号を受信する。ステップS408dで信号を受信後、ステップS409dへ進み、補助中継ユニット制御装置200aは、補助熱源側冷媒循環回路A2による熱媒体の加熱または冷却を開始する。ステップS409dの処理後、補助中継ユニット制御装置200aは、図9の連携制御に係る処理を終了する。
 中継ユニット制御装置200が、熱源側ユニットが出力上限に達していないと判断した場合(ステップS407b No)は、ステップS409bへ進み、図6のステップS307bと同様に、中継ユニット制御装置200は、熱媒体熱交換器21における冷媒と熱媒体との間で熱交換される熱量を増加させる制御を行う。ステップS409bの処理後、中継ユニット制御装置200は、図9の連携制御に係る処理を終了する。
 一般的に、圧縮機およびポンプは、破損を防ぐため、容量には上限値があらかじめ定められている。また、熱媒体が凍結または気化すると、配管や熱交換器が破損してしまう可能性がある。したがって、熱源側冷媒循環回路Aは、圧縮機10、ポンプ22、配管および熱交換器の破損を防ぐために、熱源側冷媒と熱媒体との間で熱交換される熱量には上限が存在する。このため、たとえば、エアハンドリングユニット4において、外気との熱交換によって消費される熱量が多くなると、熱源側冷媒と熱媒体との間で熱交換される熱量の上限に達しても、各室内ユニット3において室内空気との熱交換に必要な熱量がまかなえなくなる可能性がある。
 そこで、実施の形態3の空気調和装置0は、熱源側ユニットが出力上限に達しており、室内側熱交換器31で熱交換される熱量が不足している状態になると、補助熱源側冷媒循環回路A2による熱媒体の加熱または冷却を開始させる。補助熱源側冷媒循環回路A2によって、不足分の熱量をまかなうことができ、より確実に室内空間の空気調和を行うことができる。
 なお、上述の図9の空気調和装置0の連携制御に係るフローチャートは、空気調和装置0が運転している場合において、周期的に実行されることが望ましい。図9の連携制御に係るフローチャートが実行される周期は、設計者または使用者が自由に定めて構わない。ただし、補助熱源側冷媒循環回路A2による熱媒体の加熱または冷却を開始すると、エネルギ消費量が大きくなる。したがって、図9のように、補助熱源側ユニットを起動させる制御を行う周期よりも、図7のように、熱源側冷媒と熱媒体の間で熱交換される熱量の制御を行う周期、または図5若しくは図6のように、外調側熱交換器若しくは室内側熱交換器を通過する熱媒体の流量の制御を行う周期を短くする方がより望ましい。
実施の形態4.
 図10は、この発明の実施の形態4に係る空気調和装置0の構成を示す図である。図10において、図2と同じ符号を付している機器などについては、実施の形態1~実施の形態3のいずれかの空気調和装置0と同様の動作を行う。実施の形態4の空気調和装置0は、実施の形態1~実施の形態3で説明した中継ユニット2内の機器を、室外ユニット1に含めて一体化したものである。このため、実施の形態4の空気調和装置0は、室外ユニット1、エアハンドリングユニット4および各室内ユニット3を、熱媒体配管5で配管接続する。これにより、中継ユニット2を独立して設けなくても、実施の形態1および実施の形態2で説明した制御などを行うことができる。
 実施の形態4では、室外ユニット1がこの発明の熱源側ユニットに該当する。また、室外ユニット制御装置100は、実施の形態1~実施の形態3における室外ユニット制御装置100と中継ユニット制御装置200の双方の働きを有する。したがって、図6および図9の制御において中継ユニット制御装置200が実行していた制御は室外ユニット制御装置100が実行する。
 なお、実施の形態3における補助室外ユニット1aと補助中継ユニット2aについても、同様に補助中継ユニット2a内の機器を補助室外ユニット1aに含めて一体化してもよい。
実施の形態1~実施の形態4の変形例
 前述した実施の形態1~実施の形態4においては、エアハンドリングユニット4は、外調側流量調整装置42を有していた。また、各室内ユニット3は、室内側流量調整装置32を有していた。しかしながら、これらの流量調整装置を、独立した別のユニットに含めるようにしてもよい。
 また、上述した実施の形態1~実施の形態4においては、室外ユニット1と中継ユニット2を熱源側ユニットとし、熱源側冷媒を循環させる熱源側冷媒循環回路Aを形成し、熱媒体熱交換器21を蒸発器または凝縮器として機能させることで熱媒体を加熱または冷却しているが、これに限らない。たとえば、熱源側冷媒循環回路内の冷媒流路切替装置を設けず、熱媒体熱交換器が蒸発器としてのみ機能し熱媒体の加熱のみを行う構成でもよいし、熱媒体熱交換器が凝縮器としてのみ機能し熱媒体の冷却のみを行う構成でもよい。また、熱源側冷媒循環回路に限らず、たとえば、電気ヒータまたはガスの燃焼熱で熱媒体を加熱する構成、氷によって熱媒体を冷却する構成など、熱源側ユニットは、熱媒体を加熱または冷却する構成であれば、いかなる構成であってもよい。
 また、図6のフローチャートにおいて、中継ユニット制御装置200が合計必要熱量Ttnの算出(ステップS304b)と、合計熱交換器熱量Ttの算出(ステップS305b)と、合計必要熱量Ttnと合計熱交換器熱量Ttの比較(ステップS306bとステップS308b)とを行っているが、他の制御装置が行っていても構わない。たとえば、室外ユニット制御装置100が、外調側必要熱量Tanと外調側熱交換器41で熱交換される熱量Taと室内側必要熱量Tinと室内側熱交換器31で熱交換される熱量Tiに関するデータを受信(ステップS303bに相当)し、合計必要熱量Ttnを算出(ステップS304bに相当)し、合計熱交換器熱量Ttの算出(ステップS305bに相当)し、合計必要熱量Ttnと合計熱交換器熱量Ttの比較(ステップS306bとステップS308bに相当)を行い、比較結果に基づいて熱源側冷媒と熱媒体との間で熱交換される熱量の増減(ステップS307bとステップS309bに相当)を行ってもよい。また、同様に、図9のフローチャートにおいて、中継ユニット制御装置200が行う合計室内側必要熱量Ttinを、熱源側ユニットのみで達成可能かの判断(ステップS406b)および補助熱源側ユニットへの動作を要求(ステップS408b)と、補助中継ユニット制御装置200aが行う補助熱源側ユニットによる熱媒体の熱交換の開始(ステップS409d)も、他の制御装置が行ってもよい。
 以上の実施の形態1~実施の形態4およびその変形例に示すように、本願の課題を解決する第1の空気調和装置0に関する様態は、熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側ユニットと、建物内へ送風される室外空気と熱媒体との間で熱交換を行う外調側熱交換器41と室内空気と熱媒体との間で熱交換を行う室内側熱交換器31とを配管接続して熱媒体を循環させる熱媒体循環回路Bを備え、熱媒体循環回路Bにおいて、熱源側ユニットで加熱または冷却された熱媒体の一部は、外調側熱交換器41を通過してから室内側熱交換器31に流入し、熱媒体循環回路Bには外調側熱交換器41を通過する熱媒体の流量を調整する外調側流量調整装置42を備えた構成である。
 この構成により、熱媒体循環回路Bにおいて、熱源側ユニットで加熱または冷却された熱媒体の一部は、外調側熱交換器41を通過してから室内側熱交換器31に流入する構成によって、熱媒体は熱負荷によって消費される熱量の変化が少ない外調側熱交換器41を通過してから室内側熱交換器31を通過するため、無駄なく熱供給を行うことができる効果を奏する。特に外調側熱交換器41が除湿を行い、室内側熱交換器31が冷房を行う場合において、より有用である。
 さらに、第1の空気調和装置0に関する様態では、熱媒体循環回路Bには外調側熱交換器41を通過する熱媒体の流量を調整する外調側流量調整装置42を備えた構成である。
 この構成によって、外調側熱交換器41に搬送する熱量を制御することができ、無駄なく熱供給を行うことができる効果を奏する。
 また、第2の空気調和装置0に関する様態として、上述の第1の空気調和装置0に関する様態に、熱源側ユニットで加熱または冷却された熱媒体の他の一部は、外調側熱交換器41を通過せずに室内側熱交換器31に流入し、外調側流量調整装置42は、外調側熱交換器を通過して室内側熱交換器31に流入する熱媒体の流量と、外調側熱交換器41を通過せずに室内側熱交換器31に流入する熱媒体の流量との比率を調整する構成を付加してもよい。
 この構成によって、外調側熱交換器41を通過していない熱媒体も室内側熱交換器31に流入するため、外調側熱交換器41を通過した熱媒体のみが室内側熱交換器31に流入する場合に比べて、高温または低温の熱媒体を室内側熱交換器に供給することができ、より無駄の無い熱供給を行うことができる。
 また、第3の空気調和装置0に関する様態として、上述の第2の空気調和装置0に関する様態に、熱源側ユニットで加熱または冷却された熱媒体の一部であり、外調側熱交換器41を通過した熱媒体と、熱源側ユニットで加熱または冷却された熱媒体の他の一部であり外調側熱交換器41を通過しない熱媒体とは、外調側熱交換器41と室内側熱交換器31とを接続する配管で合流した後に、室内側熱交換器31へ流入する構成を付加してもよい。
 この構成によって外調側熱交換器41を通過した熱媒体と外調側熱交換器41を通過しない熱媒体とが混合されてから室内側熱交換器31に流入するため、室内側熱交換器31の構造を簡略化できる。
 また、第4の空気調和装置0に関する様態として、上述の第1~第3の空気調和装置0に関する様態のいずれかに、熱媒体循環回路Bは、熱源側ユニットと外調側熱交換器41とを接続する配管と、外調側熱交換器41と室内側熱交換器31とを接続する配管とを、外調側熱交換器41を介さずに接続するバイパス配管44を備え、外調側流量調整装置42は、外調側熱交換器41を通過して室内側熱交換器31に流入する熱媒体の流量と、バイパス配管44を通過して室内側熱交換器31に流入する熱媒体の流量の比率とを調整する構成を付加してもよい。
 この構成によって、外調側熱交換器41を通過していない熱媒体も室内側熱交換器31に流入するため、外調側熱交換器41を通過した熱媒体のみが室内側熱交換器31に流入する場合に比べて、高温または低温の熱媒体を室内側熱交換器31に供給することができ、より無駄の無い熱供給を行うことができる。
 また、第5の空気調和装置0に関する様態として、上述の第1~第4の空気調和装置0に関する様態のいずれかに、熱源側ユニットは、熱源側冷媒を圧縮する圧縮機と、熱源側冷媒と空気との熱交換を行う熱源側熱交換器と、熱源側冷媒を減圧する絞り装置と、熱源側冷媒と熱媒体との熱交換を行う熱媒体熱交換器とを配管接続した熱源側冷媒循環回路を有する構成を付加してもよい。
 また、第6の空気調和装置0に関する様態として、上述の第1~第5の空気調和装置0に関する様態のいずれかに、外調側流量調整装置42は、室外空気の温度とあらかじめ定められた外調側設定温度との差が大きくなると、外調側熱交換器41に流れる熱媒体の流量を増加させる構成を付加してもよい。
 この構成によって、室外温度と設定温度に基づいて外調側熱交換器41で熱交換される熱量を制御できるため、より無駄の無い熱供給を行うことができる。
 また、第7の空気調和装置0に関する様態として、上述の第1~第6の空気調和装置0に関する様態のいずれかに、外調側流量調整装置42は、外調側熱交換器41において熱交換される熱量と、外調側熱交換器41が必要とする熱量に基づき、外調側熱交換器41に流れる熱媒体の流量を調整する構成を付加してもよい。
 この構成によって、外調側熱交換器41で熱交換される熱量と外調側熱交換器41が必要とする熱量に基づき外調側熱交換器41に流れる熱媒体の流量を調整することができ、より無駄の無い熱供給を行うことができる。
 なお、第7の空気調和装置0に関する様態に、外調側流量調整装置42は、外調側熱交換器41が必要とする熱量が外調側熱交換器41において熱交換される熱量よりも大きい場合に、外調側熱交換器41に流れる熱媒体の流量を増加する構成を付加してもよい。
 この構成によって、外調側熱交換器41に供給される熱量が不足している場合に、外調側熱交換器41に流れる熱媒体の流量を増加させ、外調側熱交換器41に供給される熱量を増加させることができる。
 さらに、第7の空気調和装置0に関する様態に、外調側流量調整装置42は、外調側熱交換器41が必要とする熱量が外調側熱交換器41において熱交換される熱量よりも小さい場合に、外調側熱交換器41に流れる熱媒体の流量を減少する構成を付加してもよい。
 この構成によって、外調側熱交換器41に供給される熱量が過剰である場合に、外調側熱交換器41に流れる熱媒体の流量を減少させ、外調側熱交換器41に供給される熱量を減少させることができる。
 また、第8の空気調和装置0に関する様態として、上述の第1~第7の空気調和装置0に関する様態のいずれかに、熱源側ユニットは、外調側熱交換器41が必要とする熱量が、外調側熱交換器41において熱交換される熱量よりも大きく、外調側流量調整装置42で調整可能な流量の上限に達している場合に、熱媒体に与える加熱量または冷却量を増加する構成を付加してもよい。
 この構成によって、外調側流量調整装置42による流量調整で外調側熱交換器41に必要とする熱量を達成できない場合であっても、熱源側ユニットが熱媒体に与える加熱量または冷却量を増加させるため、外調側熱交換器41に必要とする熱量を、より確実に達成させることができる。
 また、第9の空気調和装置0に関する様態として、上述の第1~第8の空気調和装置0に関する様態のいずれかに、熱源側ユニットは、外調側熱交換器41において熱交換される熱量と、室内側熱交換器31において熱交換される熱量との和に基づいて、熱媒体へ与える加熱量または冷却量を変更する構成を付加してもよい。
 この構成によって、熱源側ユニットは、外調側熱交換器41および室内側熱交換器31において熱交換される熱量に基づき、加熱量または冷却量を調整することができ、より無駄のない熱供給を行うことができる。
 なお、第9の空気調和装置0に関する様態に、熱源側ユニットは、外調側熱交換器41において熱交換される熱量と室内側熱交換器31において熱交換される熱量との和よりも外調側熱交換器41が必要とする熱量と室内側熱交換器31が必要とする熱量との和が大きい場合に、加熱量または冷却量を増加させる構成を付加してもよい。
 この構成によって、熱源側ユニットは、外調側熱交換器41および室内側熱交換器31に供給する熱量が不足している場合に、熱媒体の加熱量または冷却量を増加させ、外調側熱交換器41および室内側熱交換器31が必要とする熱量を供給することができる。
 なお、第9の空気調和装置0に関する様態に、熱源側ユニットは、外調側熱交換器41において熱交換される熱量と室内側熱交換器31において熱交換される熱量との和よりも外調側熱交換器41が必要とする熱量と室内側熱交換器31が必要とする熱量の和が小さい場合に、加熱量または冷却量を減少させる構成を付加してもよい。
 この構成によって、熱源側ユニットは、外調側熱交換器41および室内側熱交換器31に供給する熱量が過剰である場合に熱媒体の加熱量または冷却量を減少させ、省エネルギ化を行うことができる。
 また、第10の空気調和装置0に関する様態として、上述の第7または第9の空気調和装置0に関する様態のいずれかに、外調側熱交換器41において熱交換される熱量を検出する外調側熱量検出装置を備え、外調側熱量検出装置は、外調側熱交換器41に流入する熱媒体の温度を検出する外調流入口側温度センサ515と、外調側熱交換器41より流出する熱媒体の温度を検出する外調流出口側温度センサ516と、外調流入口側温度センサ515の検出に係る温度、外調流出口側温度センサ516の検出に係る温度および外調側熱交換器41を通過する熱媒体の流量に基づき、外調側熱交換器41において熱交換される熱量を算出するエアハンドリングユニット制御装置400とを備える構成を付加してもよい。
 この構成によって、外調側熱交換器41に流入する熱媒体の温度と、外調側熱交換器41より流出する熱媒体の温度と、外調側熱交換器41を通過する熱媒体の流量に基づき、より精度よく外調側熱交換器41において熱交換を行う熱量を算出することができる。
 また、第11の空気調和装置0に関する様態として、上述の第10の空気調和装置0に関する様態に、外調側流量調整装置42は開度を調整できる弁であり、外調側熱量検出装置は、外調側熱交換器41に流入する熱媒体の圧力を検出する外調流入口側圧力センサ523と、外調側熱交換器41より流出する熱媒体の圧力を検出する外調流出口側圧力センサ524とを備え、エアハンドリングユニット制御装置400は、外調流入口側圧力センサ523の検出に係る圧力と外調流出口側圧力センサ524の検出に係る圧力との差圧および外調側流量調整装置42の開度に基づき、外調側熱交換器41を通過する熱媒体の流量を算出する構成を付加してもよい。
 この構成によって、外調側熱交換器41の流入側と流出側の圧力差および外調側流量調整装置42の開度に基づき外調側熱交換器41を通過する熱媒体の流量を算出するため、高価な流量計を用いずに、安価な圧力センサで流量を算出でき空気調和装置0のコストを抑えることができる。
 また、第12の空気調和装置0に関する様態として、上述の第1~第11の空気調和装置0に関する様態のいずれかに、外調側流量調整装置42、外調側熱交換器41および外調側流量調整装置42を制御するエアハンドリングユニット制御装置400を収納するエアハンドリングユニット筐体と、熱源側ユニットが熱媒体に供給する加熱量または冷却量を制御する熱源側ユニット制御装置とを備え、エアハンドリングユニット制御装置400と、熱源側ユニット制御装置との間が通信接続されている構成を付加してもよい。
 この構成によって、エアハンドリングユニット制御装置400と熱源側ユニット制御装置との間で情報の送受信を行うことができ、エアハンドリングユニット4と熱源側ユニットとの間で連携制御を行うことができる。ここで、連携制御とは、たとえば、熱源側ユニット制御装置がエアハンドリングユニット4の状態に関する情報に基づいて、熱源側ユニットに搭載された機器の制御を行うこと、またはエアハンドリングユニット制御装置400が熱源側ユニットの状態に関する情報に基づいて、エアハンドリングユニット4に搭載された機器の制御を行うことである。
 また、第13の空気調和装置0に関する様態として、上述の第1~第12の空気調和装置0に関する様態のいずれかに、外調側熱交換器41を通過して、室内側熱交換器31に流入するまでの熱媒体の温度を上昇または下降させる補助熱源側ユニットを備える構成を付加してもよい。
 この構成によって、室内側熱交換器31で熱交換される熱量が不足している状態になっても、補助熱源側ユニットによって、不足分の熱量を賄うことができ、より確実に室内空間の空気調和を行うことができる。
 また、第14の空気調和装置0に関する様態として、上述の第13の空気調和装置0に関する様態に、補助熱源側ユニットは、熱媒体を加熱または冷却し、外調側熱交換器41を通過して、室内側熱交換器31に流入するまでの熱媒体は、補助熱源側ユニットで加熱または冷却された熱媒体と合流してから室内側熱交換器31に流入する構成を付加してもよい。
 この構成によって、外調側熱交換器41を通過した熱媒体と補助熱源側ユニットで加熱または冷却された熱媒体とが混合されてから室内側熱交換器31に流入するため、室内側熱交換器31の構造を簡略化できる。
 また、第15の空気調和装置0に関する様態として、上述の第14の空気調和装置0に関する様態に、補助熱源側ユニットは、室内側熱交換器31より流出した熱媒体を加熱または冷却し、補助熱源側ユニットで加熱または冷却された熱媒体は、熱源側ユニットおよび外調側熱交換器41を通過せずに、外調側熱交換器41を通過した熱媒体と合流する構成を付加してもよい。
 また、第16の空気調和装置0に関する様態として、上述の第13~第15の空気調和装置0に関する様態のいずれかに、補助熱源側ユニットは、室内側熱交換器31で熱交換される熱量が不足している状態であり、熱源側ユニットがあらかじめ定められた出力上限に達している場合に、補助熱源側ユニットは熱媒体の加熱または冷却を行う構成を付加してもよい。
 この構成によって、熱源側ユニットのみでは室内側熱交換器31で熱交換される熱量が不足している状態であっても、補助熱源側ユニットによって熱量を供給することができる。
 さらに、以上の実施の形態1~4およびその変形例に示すように、本願の課題を解決する第1のエアハンドリングユニット4に関する様態は、対象空間外から対象空間内に送風される空気と、熱源側ユニットで加熱または冷却した熱媒体の一部との間で熱交換を行う外調側熱交換器41と、外調側熱交換器41を通過する熱媒体の流量を調整する外調側流量調整装置42とを備え、外調側熱交換器41で熱交換を行った熱媒体は、室内空気と熱媒体の間で熱交換を行う室内側熱交換器31に流入する構成である。
 この構成によって、外調側熱交換器41を通過する熱媒体の流量を調整して、外調側熱交換器41に搬送される熱量を制御することができ、無駄なく熱供給を行うことができる効果を奏する。
 また、第2のエアハンドリングユニット4に関する様態として、上述の第1のエアハンドリングユニット4に関する様態に、熱源側ユニットで加熱または冷却された熱媒体が流入する流入口4aと、流入口4aと外調側熱交換器41とを接続する往路配管5Caと、外調側熱交換器41で熱交換を行った熱媒体が流出する流出口4bと、流出口4bと外調側熱交換器41とを接続する復路配管5Cbと、往路配管5Caと復路配管5Cbとを外調側熱交換器41を介さずに接続するバイパス配管44とを備え、外調側流量調整装置42は、流入口4aから外調側熱交換器41に流れる熱媒体の流量と、流入口4aからバイパス配管44に流れる熱媒体の流量との比率を調整する構成を付加してもよい。
 この構成によって、バイパス配管44がエアハンドリングユニット4に設けられるため、熱源側ユニットとエアハンドリングユニット4を繋ぐ配管にバイパス配管44を設ける必要が無く、施工が容易となる。
 また、第3のエアハンドリングユニット4に関する様態として、上述の第1または第2のエアハンドリングユニット4に関する様態に、外調側流量調整装置42は、外調側熱交換器41において熱交換される熱量と、外調側熱交換器41が必要とする熱量に基づき、外調側熱交換器41に流れる熱媒体の流量を調整する構成を付加してもよい。
 この構成によって、外調側熱交換器41で熱交換される熱量と外調側熱交換器41が必要とする熱量とに基づき、外調側熱交換器41に流れる熱媒体の流量を調整することができ、より無駄の無い熱供給を行うことができる。
 なお、第3のエアハンドリングユニット4に関する様態に、外調側流量調整装置42は、外調側熱交換器41が必要とする熱量が外調側熱交換器41において熱交換される熱量よりも大きい場合に、外調側熱交換器41に流れる熱媒体の流量を増加する構成を付加してもよい。
 この構成によって、外調側熱交換器41に供給される熱量が不足している場合に、外調側熱交換器41に流れる熱媒体の流量を増加させ、外調側熱交換器41に供給される熱量を増加させることができる。
 さらに、第3のエアハンドリングユニット4に関する様態に、外調側流量調整装置42は、外調側熱交換器41が必要とする熱量が外調側熱交換器41において熱交換される熱量よりも小さい場合に、外調側熱交換器41に流れる熱媒体の流量を減少する構成を付加してもよい。
 この構成によって、外調側熱交換器41に供給される熱量が過剰である場合に、外調側熱交換器41に流れる熱媒体の流量を減少させ、外調側熱交換器41に供給される熱量を減少させることができる。
 また、第4のエアハンドリングユニット4に関する様態として、上述の第1~第3のエアハンドリングユニット4に関する様態のいずれかに、外調側流量調整装置42を制御するエアハンドリングユニット制御装置400を備え、エアハンドリングユニット制御装置400は、熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側ユニットを制御する熱源側ユニット制御装置と通信接続される構成を付加してもよい。
 この構成によって、エアハンドリングユニット制御装置400と熱源側ユニット制御装置との間で情報の送受信を行うことができ、エアハンドリングユニット4と熱源側ユニットとの間で連携制御を行うことができる。ここで連携制御とは、たとえば、熱源側ユニット制御装置がエアハンドリングユニット4の状態に関する情報に基づいて熱源側ユニットに搭載された機器の制御を行うこと、またはエアハンドリングユニット制御装置400が熱源側ユニットの状態に関する情報に基づいてエアハンドリングユニット4に搭載された機器の制御を行うことである。
 また、第5のエアハンドリングユニット4に関する様態として、上述の第4または第5のエアハンドリングユニット4に関する様態に、外調側熱交換器41で熱交換される熱量を検出する外調側熱量検出装置を備え、エアハンドリングユニット制御装置400は、外調側熱量検出装置により検出した外調側熱交換器41における熱交換に係る熱量に関するデータを、熱源側ユニット制御装置に送信する構成を付加してもよい。この構成によって、熱源側ユニット制御部は外調側熱交換器41で熱交換される熱量に基づき熱源側ユニットの制御を行うことができ、より無駄の無い熱供給を行うことができる。
 また、第6のエアハンドリングユニット4に関する様態として、上述の第6のエアハンドリングユニット4に関する様態に、外調側熱量検出装置は、外調側熱交換器41に流入する熱媒体の温度を検出する外調流入口側温度センサ515と、外調側熱交換器41より流出する熱媒体の温度を検出する外調流出口側温度センサ516と、エアハンドリングユニット制御装置400とであり、エアハンドリングユニット制御装置400は、外調流出口側温度センサ516の検出温度と、外調側熱交換器41を通過する熱媒体の流量とに基づき、外調側熱交換器41において熱交換の熱量を算出し、算出した熱量を、熱源側ユニット制御装置に送信する構成を付加してもよい。この構成によって、外調側熱交換器41に流入する熱媒体の温度と、外調側熱交換器41より流出する熱媒体の温度と、外調側熱交換器41を通過する熱媒体の流量に基づき、より精度よく外調側熱交換器41において熱交換を行う熱量を算出することができる。
 また、第7のエアハンドリングユニット4に関する様態として、上述の第7のエアハンドリングユニット4に関する様態に、外調側流量調整装置42は開度を調整できる弁であり、外調側熱量検出装置は、外調側熱交換器41に流入する熱媒体の圧力を検出する外調流入口側圧力センサ523と、外調側熱交換器41より流出する熱媒体の圧力を検出する外調流出口側圧力センサ524とを備え、エアハンドリングユニット制御装置400は、外調流入口側圧力センサ523の検出圧力と外調流出口側圧力センサ524の検出圧力の差圧と、外調側流量調整装置42の開度と、に基づき外調側熱交換器41を通過する熱媒体の流量を算出する構成を付加してもよい。
 この構成によって、外調側熱交換器41の流入側と流出側の圧力差および外調側流量調整装置42の開度に基づき、外調側熱交換器41を通過する熱媒体の流量を算出するため、高価な流量計を用いずに、安価な圧力センサで流量を算出でき、エアハンドリングユニット4のコストを抑えることができる。
 また、第8のエアハンドリングユニット4に関する様態として、上述の第5~第8のエアハンドリングユニット4に関する様態のいずれかに、エアハンドリングユニット制御装置400は、外調側熱交換器41が必要とする熱量が外調側熱量検出装置で検出した熱量よりも大きく、外調側流量調整装置42で調整可能な流量の上限に達している場合に、熱源側ユニットが熱媒体に供給する加熱量または冷却量を制御する熱源側ユニット制御装置へ熱媒体に供給する加熱量または冷却量の増加を要請する信号を送信する構成を付加してもよい。
 この構成によって、外調側流量調整装置42による流量調整で外調側熱交換器41に必要とする熱量を達成できない場合であっても、熱源側ユニットが熱媒体に与える加熱量または冷却量を増加させるため、外調側熱交換器41に必要とする熱量をより確実に達成させることができる。
 0 空気調和装置、1 室外ユニット、1a 補助室外ユニット、2 中継ユニット、2a 補助中継ユニット、3,3a,3b,3c 室内ユニット、4 エアハンドリングユニット、4a 流入口、4b 流出口、5 熱媒体配管、5A 中継ユニット内配管、5B 第1接続配管、5C エアハンドリングユニット内配管、5Ca 往路配管、5Cb 復路配管、5D 第2接続配管、5Da 主配管、5Db 枝配管、5E,5Ea,5Eb,5Ec 室内ユニット内配管、5F 第3接続配管、5Fa 主配管、5Fb 枝配管、5G 第4接続配管、5H 第5接続配管、6,6a 冷媒配管、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 絞り装置、14 アキュムレータ、15 熱源側送風機、21 熱媒体熱交換器、22 ポンプ、31,31a,31b,31c 室内側熱交換器、32,32a,32b,32c 室内側流量調整装置、33,33a,33b,33c 室内側送風機、41 外調側熱交換器、42 外調側流量調整装置、43 外調側送風機、44 バイパス配管、45 バイパス側流量調整装置、100 室外ユニット制御装置、200 中継ユニット制御装置、200a 補助中継ユニット制御装置、300 室内ユニット制御装置、400 エアハンドリングユニット制御装置、501 吐出温度センサ、502 吐出圧力センサ、503 室外温度センサ、504 第1冷媒温度センサ、505 第2冷媒温度センサ、511 熱媒体流入口側温度センサ、512 熱媒体流出口側温度センサ、513,513a,513b,513c 室内流入口側温度センサ、514,514a,514b,514c 室内流出口側温度センサ、515 外調流入口側温度センサ、516 外調流出口側温度センサ、521,521a,521b,521c 室内流入口側圧力センサ、522,522a,522b,522c 室内流出口側圧力センサ、523 外調流入口側圧力センサ、524 外調流出口側圧力センサ、532 外気温度センサ、531,531a,531b,531c 室内温度センサ。

Claims (24)

  1.  熱を搬送する媒体となる熱媒体を加熱または冷却する熱源側ユニットと、
     建物内へ送風される室外空気と前記熱媒体との間で熱交換を行う外調側熱交換器と、
     室内空気と前記熱媒体との間で熱交換を行う室内側熱交換器と
    を配管接続して、前記熱媒体を循環させる熱媒体循環回路を備え、
     前記熱媒体循環回路において、前記熱源側ユニットで加熱または冷却された前記熱媒体の一部は、前記外調側熱交換器を通過してから前記室内側熱交換器に流入し、
     前記熱媒体循環回路には、前記外調側熱交換器を通過する前記熱媒体の流量を調整する外調側流量調整装置を備える空気調和装置。
  2.  前記熱源側ユニットで加熱または冷却された前記熱媒体の他の一部は、前記外調側熱交換器を通過せずに前記室内側熱交換器に流入し、
     前記外調側流量調整装置は、前記外調側熱交換器を通過して前記室内側熱交換器に流入する前記熱媒体の流量と、前記外調側熱交換器を通過せずに前記室内側熱交換器に流入する前記熱媒体の流量との比率を調整する請求項1に記載の空気調和装置。
  3.  前記熱源側ユニットで加熱または冷却された前記熱媒体の一部であり、前記外調側熱交換器を通過した前記熱媒体と、前記熱源側ユニットで加熱または冷却された前記熱媒体の他の一部であり、前記外調側熱交換器を通過しない前記熱媒体とは、前記外調側熱交換器と前記室内側熱交換器とを接続する配管で合流した後に、前記室内側熱交換器へ流入する請求項2に記載の空気調和装置。
  4.  前記熱媒体循環回路は、前記熱源側ユニットと前記外調側熱交換器とを接続する配管と、前記外調側熱交換器と前記室内側熱交換器とを接続する配管とを、前記外調側熱交換器を介さずに接続するバイパス配管を備え、
     前記外調側流量調整装置は、前記外調側熱交換器を通過して前記室内側熱交換器に流入する前記熱媒体の流量と、前記バイパス配管を通過して前記室内側熱交換器に流入する前記熱媒体の流量の比率とを調整する請求項1~請求項3のいずれか一項に記載の空気調和装置。
  5.  前記熱源側ユニットは、
     熱源側冷媒を圧縮する圧縮機と、
     前記熱源側冷媒と空気との熱交換を行う熱源側熱交換器と、
     前記熱源側冷媒を減圧する絞り装置と、
     前記熱源側冷媒と前記熱媒体との熱交換を行う熱媒体熱交換器と
    を配管接続した熱源側冷媒循環回路を有する請求項1~請求項4のいずれか一項に記載の空気調和装置。
  6.  前記外調側流量調整装置は、前記室外空気の温度とあらかじめ定められた外調側設定温度との差が大きくなると、前記外調側熱交換器に流れる前記熱媒体の流量を増加させる請求項1~請求項5のいずれか一項に記載の空気調和装置。
  7.  前記外調側流量調整装置は、前記外調側熱交換器において熱交換される熱量と、前記外調側熱交換器が必要とする熱量とに基づき、前記外調側熱交換器に流れる前記熱媒体の流量を調整する請求項1~請求項6のいずれか一項に記載の空気調和装置。
  8.  前記熱源側ユニットは、前記外調側熱交換器が必要とする熱量が前記外調側熱交換器において熱交換される熱量よりも大きく、前記外調側流量調整装置で調整可能な流量の上限に達している場合に、前記熱媒体に与える加熱量または冷却量を増加する請求項1~請求項7のいずれか一項に記載の空気調和装置。
  9.  前記熱源側ユニットは、前記外調側熱交換器において熱交換される熱量と前記室内側熱交換器において熱交換される熱量との和に基づいて、前記熱媒体へ与える加熱量または冷却量を変更する請求項1~請求項8のいずれか一項に記載の空気調和装置。
  10.  前記外調側熱交換器において熱交換される熱量を検出する外調側熱量検出装置を備え、
     前記外調側熱量検出装置は、
     前記外調側熱交換器に流入する前記熱媒体の温度を検出する外調流入口側温度センサと、
     前記外調側熱交換器より流出する前記熱媒体の温度を検出する外調流出口側温度センサと、
     前記外調流入口側温度センサの検出に係る温度、前記外調流出口側温度センサの検出に係る温度および前記外調側熱交換器を通過する前記熱媒体の流量に基づき、前記外調側熱交換器において熱交換される熱量を算出するエアハンドリングユニット制御装置と
    を備える請求項7~請求項9のいずれか一項に記載の空気調和装置。
  11.  前記外調側流量調整装置は開度を調整できる弁であり、
     前記外調側熱量検出装置は、
     前記外調側熱交換器に流入する前記熱媒体の圧力を検出する外調流入口側圧力センサと、
     前記外調側熱交換器より流出する前記熱媒体の圧力を検出する外調流出口側圧力センサとを備え、
     前記エアハンドリングユニット制御装置は、前記外調流入口側圧力センサの検出に係る圧力と前記外調流出口側圧力センサの検出に係る圧力との差圧および前記外調側流量調整装置の開度に基づき、前記外調側熱交換器を通過する前記熱媒体の流量を算出する請求項10に記載の空気調和装置。
  12.  前記外調側流量調整装置、前記外調側熱交換器および前記外調側流量調整装置を制御するエアハンドリングユニット制御装置を収納するエアハンドリングユニット筐体と、
     前記熱源側ユニットが前記熱媒体に供給する加熱量または冷却量を制御する熱源側ユニット制御装置と
    を備え、
     前記エアハンドリングユニット制御装置と、前記熱源側ユニット制御装置との間が通信接続されている請求項1~請求項11のいずれか一項に記載の空気調和装置。
  13.  前記外調側熱交換器を通過して、前記室内側熱交換器に流入するまでの前記熱媒体の温度を上昇または下降させる補助熱源側ユニットを備える請求項1~請求項12のいずれか一項に記載の空気調和装置。
  14.  前記補助熱源側ユニットは、前記熱媒体を加熱または冷却し、
     前記外調側熱交換器を通過して、前記室内側熱交換器に流入するまでの前記熱媒体は、前記補助熱源側ユニットで加熱または冷却された前記熱媒体と合流してから前記室内側熱交換器に流入する請求項13に記載の空気調和装置。
  15.  前記補助熱源側ユニットは、前記室内側熱交換器より流出した前記熱媒体を加熱または冷却し、
     前記補助熱源側ユニットで加熱または冷却された前記熱媒体は、前記熱源側ユニットおよび前記外調側熱交換器を通過せずに、前記外調側熱交換器を通過した前記熱媒体と合流する請求項14に記載の空気調和装置。
  16.  前記補助熱源側ユニットは、前記室内側熱交換器で熱交換される熱量が不足している状態であり、前記熱源側ユニットがあらかじめ定められた出力上限に達している場合に、前記補助熱源側ユニットは前記熱媒体の加熱または冷却を行う請求項13~請求項15のいずれか一項に記載の空気調和装置。
  17.  対象空間外から対象空間内に送風される空気と、熱源側ユニットで加熱または冷却した熱媒体の一部との間で熱交換を行う外調側熱交換器と、
     前記外調側熱交換器を通過する前記熱媒体の流量を調整する外調側流量調整装置と
    を備え、
     前記外調側熱交換器で熱交換を行った前記熱媒体は、室内空気と前記熱媒体の間で熱交換を行う室内側熱交換器に流入するエアハンドリングユニット。
  18.  前記熱源側ユニットで加熱または冷却された前記熱媒体が流入する流入口と、
     前記流入口と前記外調側熱交換器とを接続する往路配管と、
     前記外調側熱交換器で熱交換を行った前記熱媒体が流出する流出口と、
     前記流出口と前記外調側熱交換器とを接続する復路配管と、
     前記往路配管と前記復路配管とを前記外調側熱交換器を介さずに接続するバイパス配管とを備え、
     前記外調側流量調整装置は、前記流入口から前記外調側熱交換器に流れる前記熱媒体の流量と、前記流入口から前記バイパス配管に流れる前記熱媒体の流量との比率を調整する請求項17に記載のエアハンドリングユニット。
  19.  前記外調側流量調整装置は、前記外調側熱交換器において熱交換される熱量と前記外調側熱交換器が必要とする熱量とに基づき、前記外調側熱交換器に流れる前記熱媒体の流量を調整する請求項17または請求項18に記載のエアハンドリングユニット。
  20.  前記外調側流量調整装置を制御するエアハンドリングユニット制御装置を備え、
     前記エアハンドリングユニット制御装置は、熱を搬送する媒体となる前記熱媒体を加熱または冷却する熱源側ユニットを制御する熱源側ユニット制御装置と通信接続される請求項17~請求項19のいずれか一項に記載のエアハンドリングユニット。
  21.  前記外調側熱交換器において熱交換される熱量を検出する外調側熱量検出装置を備え、
     前記エアハンドリングユニット制御装置は、前記外調側熱量検出装置により検出した前記外調側熱交換器において熱交換される熱量に関するデータを、前記熱源側ユニット制御装置に送信する請求項20に記載のエアハンドリングユニット。
  22.  前記外調側熱量検出装置は、
     前記外調側熱交換器に流入する前記熱媒体の温度を検出する外調流入口側温度センサと、
     前記外調側熱交換器より流出する前記熱媒体の温度を検出する外調流出口側温度センサと、
     前記エアハンドリングユニット制御装置と、を有し、
     前記エアハンドリングユニット制御装置は、前記外調流出口側温度センサの検出温度と、前記外調側熱交換器を通過する前記熱媒体の流量とに基づき、前記外調側熱交換器において熱交換の熱量を算出し、算出した熱量を、前記熱源側ユニット制御装置に送信する請求項21に記載のエアハンドリングユニット。
  23.  前記外調側流量調整装置は開度を調整できる弁であり、
     前記外調側熱量検出装置は、
     前記外調側熱交換器に流入する前記熱媒体の圧力を検出する外調流入口側圧力センサと、
     前記外調側熱交換器より流出する前記熱媒体の圧力を検出する外調流出口側圧力センサと
    を備え、
     前記エアハンドリングユニット制御装置は、前記外調流入口側圧力センサの検出圧力と前記外調流出口側圧力センサの検出圧力の差圧と、前記外調側流量調整装置の開度と、に基づき前記外調側熱交換器を通過する前記熱媒体の流量を算出する請求項22に記載のエアハンドリングユニット。
  24.  前記エアハンドリングユニット制御装置は、前記外調側熱交換器が必要とする熱量が前記外調側熱量検出装置で検出した熱量よりも大きく、前記外調側流量調整装置で調整可能な流量の上限に達している場合に、前記熱源側ユニットが前記熱媒体に供給する加熱量または冷却量を制御する熱源側ユニット制御装置へ前記熱媒体に供給する加熱量または冷却量の増加を要請する信号を送信する請求項21~請求項23のいずれか一項に記載のエアハンドリングユニット。
PCT/JP2018/006367 2018-02-22 2018-02-22 空気調和装置およびエアハンドリングユニット WO2019163042A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020501914A JP6921299B2 (ja) 2018-02-22 2018-02-22 空気調和装置およびエアハンドリングユニット
EP18907175.6A EP3757481B1 (en) 2018-02-22 2018-02-22 Air conditioning device
US16/965,736 US20210033302A1 (en) 2018-02-22 2018-02-22 Air-conditioning apparatus and air handling unit
PCT/JP2018/006367 WO2019163042A1 (ja) 2018-02-22 2018-02-22 空気調和装置およびエアハンドリングユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/006367 WO2019163042A1 (ja) 2018-02-22 2018-02-22 空気調和装置およびエアハンドリングユニット

Publications (1)

Publication Number Publication Date
WO2019163042A1 true WO2019163042A1 (ja) 2019-08-29

Family

ID=67688015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006367 WO2019163042A1 (ja) 2018-02-22 2018-02-22 空気調和装置およびエアハンドリングユニット

Country Status (4)

Country Link
US (1) US20210033302A1 (ja)
EP (1) EP3757481B1 (ja)
JP (1) JP6921299B2 (ja)
WO (1) WO2019163042A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123689A1 (ja) * 2020-12-09 2022-06-16 三菱電機株式会社 中継機、および空気調和装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554921U (ja) 1991-12-26 1993-07-23 三機工業株式会社 冷温水供給装置
JP2001227841A (ja) * 2000-02-18 2001-08-24 Sanyo Electric Co Ltd マルチ型空気調和装置
DE10044210A1 (de) * 2000-09-07 2002-04-04 Inst Luft Kaeltetech Gem Gmbh Verfahren zum Regeln des thermischen Luftzustandes in Räumen
JP2005061647A (ja) * 2003-08-18 2005-03-10 Sanki Eng Co Ltd 空調システム
WO2013031813A1 (ja) * 2011-09-01 2013-03-07 八洋エンジニアリング株式会社 空気調和装置
JP2014142100A (ja) * 2013-01-23 2014-08-07 Denso Corp 暖房システム
JP2014152985A (ja) * 2013-02-08 2014-08-25 Denso Corp 暖房システム
WO2014132433A1 (ja) * 2013-03-01 2014-09-04 三菱電機株式会社 空気調和装置
JP2016003799A (ja) * 2014-06-16 2016-01-12 株式会社竹中工務店 空調システム

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946465A (ja) * 1982-09-10 1984-03-15 三菱電機株式会社 空調給湯装置
US5758514A (en) * 1995-05-02 1998-06-02 Envirotherm Heating & Cooling Systems, Inc. Geothermal heat pump system
JP2001227798A (ja) * 2000-02-14 2001-08-24 Yamatake Building Systems Co Ltd 外調機による冷水製造システム
IT1317633B1 (it) * 2000-03-16 2003-07-15 Rc Group Spa Gruppo refrigeratore con free-cooling, atto a funzionare anche conportaata variabile, impianto e procedimento.
JP2002031371A (ja) * 2000-07-19 2002-01-31 Fujitsu General Ltd 空気調和機
JP2006200812A (ja) * 2005-01-20 2006-08-03 Ishimoto Kenchiku Jimusho:Kk 空調システム
KR101270615B1 (ko) * 2006-07-25 2013-06-07 엘지전자 주식회사 코제너레이션 및 그 제어 방법
FI20085412L (fi) * 2008-05-06 2009-11-07 Flaekt Woods Ab Menetelmä ulkoilman käyttämiseksi huonelaitteiden jäähdytykseen
CH699225A1 (de) * 2008-07-21 2010-01-29 Ul Tech Ag Kühlvorrichtung.
CN102378880B (zh) * 2009-04-01 2014-03-19 三菱电机株式会社 空气调节装置
FR2948990A1 (fr) * 2009-08-04 2011-02-11 Mobile Comfort Holding Dispositif thermodynamique multi-energie modulaire
CN102236324A (zh) * 2010-05-07 2011-11-09 王卫东 用于流体热交换器的热功率分配阀
JP5717873B2 (ja) * 2011-11-18 2015-05-13 三菱電機株式会社 空気調和装置
US8991198B2 (en) * 2012-04-10 2015-03-31 International Business Machines Corporation Cooling system control and servicing based on time-based variation of an operational variable
JP5734524B2 (ja) * 2012-08-08 2015-06-17 三菱電機株式会社 空気調和装置
JP5892120B2 (ja) * 2013-08-02 2016-03-23 三菱電機株式会社 暖房給湯システム
US10451324B2 (en) * 2014-05-30 2019-10-22 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2017067585A (ja) * 2015-09-30 2017-04-06 アズビル株式会社 流量演算装置、流量演算方法および流量制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0554921U (ja) 1991-12-26 1993-07-23 三機工業株式会社 冷温水供給装置
JP2001227841A (ja) * 2000-02-18 2001-08-24 Sanyo Electric Co Ltd マルチ型空気調和装置
DE10044210A1 (de) * 2000-09-07 2002-04-04 Inst Luft Kaeltetech Gem Gmbh Verfahren zum Regeln des thermischen Luftzustandes in Räumen
JP2005061647A (ja) * 2003-08-18 2005-03-10 Sanki Eng Co Ltd 空調システム
WO2013031813A1 (ja) * 2011-09-01 2013-03-07 八洋エンジニアリング株式会社 空気調和装置
JP2014142100A (ja) * 2013-01-23 2014-08-07 Denso Corp 暖房システム
JP2014152985A (ja) * 2013-02-08 2014-08-25 Denso Corp 暖房システム
WO2014132433A1 (ja) * 2013-03-01 2014-09-04 三菱電機株式会社 空気調和装置
JP2016003799A (ja) * 2014-06-16 2016-01-12 株式会社竹中工務店 空調システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3757481A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123689A1 (ja) * 2020-12-09 2022-06-16 三菱電機株式会社 中継機、および空気調和装置

Also Published As

Publication number Publication date
EP3757481A1 (en) 2020-12-30
JP6921299B2 (ja) 2021-08-18
EP3757481B1 (en) 2024-06-26
US20210033302A1 (en) 2021-02-04
EP3757481A4 (en) 2021-02-17
JPWO2019163042A1 (ja) 2020-12-17

Similar Documents

Publication Publication Date Title
US9657955B2 (en) Air-conditioning apparatus
CN107228455B (zh) 一种空调器及控制方法
JP4829147B2 (ja) 空気調和設備
US9273875B2 (en) Air conditioning apparatus having indoor, outdoor, and relay units
ES2716469T3 (es) Acondicionador de aire
JP5710021B2 (ja) 空気調和装置
US9651287B2 (en) Air-conditioning apparatus
US9857113B2 (en) Air-conditioning apparatus
JP2009139014A (ja) 空気調和装置およびその運転制御方法
US10451305B2 (en) Air-conditioning apparatus
WO2016208042A1 (ja) 空気調和装置
JP7069298B2 (ja) 空気調和装置
CN104797887A (zh) 空调装置、空调装置的设计方法
US20240053077A1 (en) Systems and methods for humidity control in an air conditioning system
US9587861B2 (en) Air-conditioning apparatus
WO2019163042A1 (ja) 空気調和装置およびエアハンドリングユニット
JP7019066B2 (ja) 空気調和装置
WO2022259396A1 (ja) 空気調和装置
WO2020065924A1 (ja) 空気調和装置
WO2021024411A1 (ja) 空気調和装置
Wujek et al. Experimental Investigation of an Environmental Control Unit Utilizing Carbon Dioxide for Heating and Cooling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501914

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018907175

Country of ref document: EP

Effective date: 20200922