WO2019151774A1 - 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 - Google Patents

음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 Download PDF

Info

Publication number
WO2019151774A1
WO2019151774A1 PCT/KR2019/001297 KR2019001297W WO2019151774A1 WO 2019151774 A1 WO2019151774 A1 WO 2019151774A1 KR 2019001297 W KR2019001297 W KR 2019001297W WO 2019151774 A1 WO2019151774 A1 WO 2019151774A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
electrode active
lithium
sio
Prior art date
Application number
PCT/KR2019/001297
Other languages
English (en)
French (fr)
Inventor
이수민
이용주
조래환
김동혁
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980006352.9A priority Critical patent/CN111466045B/zh
Priority to EP19746961.2A priority patent/EP3709405A4/en
Priority to US16/772,585 priority patent/US11605811B2/en
Publication of WO2019151774A1 publication Critical patent/WO2019151774A1/ko
Priority to US18/107,263 priority patent/US20230197938A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a method of manufacturing the negative electrode active material, a negative electrode including the negative electrode active material, and a secondary battery including the negative electrode.
  • the negative electrode active material is SiO x (0 ⁇ x ⁇ 2) and lithium A core comprising a containing compound; And a shell disposed on the core, the shell including SiO x (0 ⁇ x ⁇ 2) and magnesium silicate.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • portable devices such as portable computers, portable telephones, cameras, and the like
  • secondary batteries high energy density, that is, high capacity lithium secondary batteries
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material for inserting and detaching lithium ions from the positive electrode, and silicon-based particles having a large discharge capacity may be used as the negative electrode active material.
  • silicon-based particles such as SiO x (0 ⁇ x ⁇ 2) have low initial efficiency and excessively change in volume during charge and discharge. Therefore, a problem occurs that the life of the battery is reduced. In particular, as the charge and discharge cycles are repeated, cracks are generated in the silicon-based particles, resulting in deterioration of life and deterioration of mechanical stability.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2015-0112746
  • One problem to be solved by the present invention is a negative electrode active material and a method of manufacturing the same, including the negative electrode active material which has a high initial efficiency and can effectively control the volume change during the charging and discharging process of the secondary battery to improve the life characteristics of the battery It is to provide a negative electrode and a secondary battery.
  • a core including SiO x (0 ⁇ x ⁇ 2) and a lithium-containing compound; And a shell disposed on the core, the shell including SiO x (0 ⁇ x ⁇ 2) and magnesium silicate.
  • the step of mixing the SiO x (0 ⁇ x ⁇ 2) particles and magnesium powder to form a first mixture First heat treating the first mixture to form silicon-based particles comprising magnesium silicate; Mixing the silicon-based particles and lithium powder to form a second mixture; And a second heat treatment of the second mixture.
  • a negative electrode including the negative electrode active material is provided.
  • a secondary battery including the negative electrode is provided.
  • the negative electrode active material includes a core including a lithium-containing compound and a shell including magnesium silicate.
  • a process of forming a magnesium silicate and a process of forming a lithium-containing compound relative to the core portion where the magnesium silicate is not formed are relatively performed, so that the metal-containing compound may be uniformly distributed in the negative electrode active material. . Accordingly, nonuniform volume expansion of the negative electrode active material may be suppressed when the battery is driven, thereby reducing cracks.
  • magnesium silicate such as magnesium silicate, has a high hardness, the volume expansion and crack generation of the negative electrode active material may be further suppressed by the shell including the magnesium silicate. Accordingly, the initial efficiency of the secondary battery can be improved, and the volume expansion of Si and / or SiO 2 included in the negative electrode active material can be effectively controlled to improve the life characteristics of the battery.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • a negative active material according to an embodiment of the present invention is a core containing SiO x (0 ⁇ x ⁇ 2) and a lithium-containing compound; And a shell disposed on the core, the shell including SiO x (0 ⁇ x ⁇ 2) and magnesium silicate.
  • the core may comprise SiO x (0 ⁇ x ⁇ 2).
  • the SiO x (0 ⁇ x ⁇ 2) may be in a form containing Si and SiO 2 . That is, x corresponds to the number ratio of O to Si contained in the SiO x (0 ⁇ x ⁇ 2).
  • X may be more specifically 0.5 to 1.5.
  • the SiO 2 may be crystalline SiO 2 .
  • the crystalline SiO 2 may be quartz, cristobalite or tridymite.
  • the average particle diameter (D 50 ) of the core may be 1 ⁇ m to 20 ⁇ m, and specifically 3 ⁇ m to 10 ⁇ m.
  • the average particle diameter (D 50 ) may be defined as a particle diameter based on 50% of the particle size distribution of the particles.
  • the average particle diameter D 50 may be measured using, for example, a laser diffraction method. In general, the laser diffraction method can measure the particle diameter of several mm from the submicron region, and high reproducibility and high resolution can be obtained.
  • the core may comprise a lithium containing compound.
  • the lithium-containing compound may be a compound formed by doping lithium metal into silicon-based particles during the preparation of the negative electrode active material.
  • the lithium-containing compound may improve the initial efficiency of the secondary battery and increase the energy density of the negative electrode.
  • the metal silicate and the metal-containing compound including the lithium-containing compound may be uniformly present in the negative electrode active material, so that uneven volume expansion may be suppressed during battery charging and discharging, resulting in crack generation. This can be reduced. Accordingly, the life characteristics of the battery can be improved.
  • the lithium-containing compound may include at least one of lithium silicate and lithium silicide.
  • the lithium silicate may include at least one selected from the group consisting of Li 2 Si 2 O 5 , Li 2 SiO 3, and Li 4 SiO 4 . Since the core includes lithium silicate, the initial efficiency of the secondary battery and the energy density of the negative electrode may be improved.
  • the lithium silicide may include Li y Si (2 ⁇ y ⁇ 5), and specifically, may include at least one selected from the group consisting of Li 4.4 Si, Li 3.75 Si, Li 3.25 Si, and Li 2.33 Si. have.
  • the lithium silicate included in the core may be included in an amount of 0.1% to 50% by weight, specifically, 1% to 30% by weight, and more specifically 3% to 3% by weight, based on the total weight of the negative electrode active material. It may be included in 10% by weight. When the above range is satisfied, the initial efficiency and lifespan characteristics of the battery may be improved.
  • the lithium silicate type may be measured by XRD, and the content of the lithium silicate may be measured by an ICP method, but is not necessarily limited thereto.
  • the shell may be disposed on the core. Specifically, the shell may cover at least a portion of the core surface, and more specifically, cover all of the core surface.
  • the shell may comprise SiO x (0 ⁇ x ⁇ 2). At this time, since SiO x (0 ⁇ x ⁇ 2) is the same as that of SiO x (0 ⁇ x ⁇ 2), the description is omitted.
  • the shell may comprise magnesium silicate.
  • the magnesium silicate may be a compound formed by doping magnesium metal particles with silicon-based particles during the preparation of the negative electrode active material.
  • the magnesium silicate may improve the initial efficiency of the secondary battery.
  • magnesium silicate such as magnesium silicate, has a high hardness, the volume expansion and crack generation of the negative electrode active material may be further suppressed by the shell including the magnesium silicate.
  • the magnesium silicate may include at least one of Mg 2 SiO 4 and MgSiO 3 . Since the shell includes the magnesium silicate, volume expansion and cracking of the negative electrode active material may be further suppressed.
  • the magnesium silicate included in the shell may be included in an amount of 0.1 wt% to 50 wt%, specifically 1 wt% to 30 wt%, and more specifically 3 wt% to It may be included in 10% by weight. When the above range is satisfied, the initial efficiency and lifespan characteristics of the battery may be improved.
  • the magnesium silicate type may be measured by XRD, and the magnesium silicate content may be measured by an ICP method, but is not necessarily limited thereto.
  • the shell may have a thickness of 0.02 ⁇ m to 5 ⁇ m, specifically 0.3 ⁇ m to 3 ⁇ m, and more specifically 0.5 ⁇ m to 1 ⁇ m. When the above range is satisfied, the initial efficiency and lifespan characteristics of the battery may be further improved. Although not limited thereto, the thickness of the shell may be measured by SEM. In addition, the thickness of the shell from the surface of the negative electrode active material means the distance from the point where the magnesium silicate is detected.
  • the shell may further comprise a lithium containing compound, where the lithium containing compound may be the same as the lithium containing compound contained in the core. Therefore, the lithium-containing compound included in the core may be included in an amount of 70% by weight to 100% by weight based on the total weight of the lithium-containing compound present in the negative electrode active material, specifically, 90% by weight to 100% by weight. In other words, when the lithium-containing compound included in the core is 100% by weight based on the total weight of the lithium-containing compound present in the negative electrode active material, the lithium-containing compound is present only in the core. On the contrary, when it is not 100% by weight, it means that the lithium-containing compound may also be present in the shell.
  • the average particle diameter (D 50 ) of the negative electrode active material may be 1 ⁇ m to 20 ⁇ m, and specifically 3 ⁇ m to 10 ⁇ m.
  • the side reaction with the electrolyte may be reduced, and the defective rate may be reduced in the process of coating and rolling the negative electrode slurry on the current collector.
  • crack generation of the negative electrode active material may be reduced during charging / discharging of the battery.
  • the heat treatment proceeds at a relatively low temperature, not using a manufacturing method accompanied by high temperature heat treatment such as milling, so that the negative electrode active material does not include silicon grains or even contains silicon crystal grains. May have a small particle size. Accordingly, when the battery is charged and discharged, excessive volume expansion of the negative electrode active material can be suppressed, so that the life characteristics of the battery can be improved.
  • the grain size of the silicon grains may be 50 nm or less, specifically 30 nm or less, more specifically 20 nm or less, for example, 8 nm to 15 nm.
  • Presence and particle size of the silicon crystal grains can be confirmed by XRD (X-Ray Diffraction) analysis method. Specifically, after checking the (111) peak of the silicon by XRD analysis of the prepared negative active material, the particle size (L) of the silicon crystal grains can be calculated through the P.Sherrer equation.
  • L is the particle size of the silicon grains (unit: nm)
  • is the shape factor 0.9 (elements for particle shape, no unit)
  • is 0.154056 (unit: nm)
  • is the (111) peak half-width ( Unit: radian).
  • the negative electrode active material according to another embodiment of the present invention is similar to the negative electrode active material according to the above-described embodiment, except that it further includes a carbon coating layer disposed on the shell. Thus, the difference will be described.
  • the carbon coating layer may be disposed on the shell. Specifically, the carbon coating layer may cover at least a portion of the shell surface, more specifically, the carbon coating layer may cover 50% to 100% of the surface of the shell portion. Since the conductivity of the negative electrode active material may be improved by the carbon coating layer, initial efficiency, lifespan characteristics, and battery capacity characteristics of the secondary battery may be improved.
  • the carbon coating layer may be 1% by weight to 15% by weight based on the total weight of the negative electrode active material, and specifically 3% by weight to 10% by weight. When satisfying the above range, the life characteristics and output characteristics of the battery can be further improved.
  • the carbon coating layer may include a carbon-based material.
  • the carbonaceous material may include at least one of amorphous carbon and crystalline carbon.
  • the crystalline carbon may further improve the conductivity of the negative electrode active material.
  • the crystalline carbon may include at least one selected from the group consisting of florene, carbon nanotubes, and graphene.
  • the amorphous carbon can appropriately maintain the strength of the carbon coating layer, to suppress expansion of the core.
  • the amorphous carbon may be a carbon-based material formed by using at least one carbide or hydrocarbon selected from the group consisting of tar, pitch and other organic materials as a source of chemical vapor deposition.
  • the carbide of the other organic material may be a carbide of an organic material selected from carbides of sucrose, glucose, galactose, fructose, lactose, manos, ribose, aldohexose or kedohexose, and combinations thereof.
  • the hydrocarbon may be a substituted or unsubstituted aliphatic or alicyclic hydrocarbon, a substituted or unsubstituted aromatic hydrocarbon.
  • the aliphatic or alicyclic hydrocarbons of the substituted or unsubstituted aliphatic or alicyclic hydrocarbons may be meterin, ether, ethylene, acetylene, propane, butane, butene, pentane, isobutane or hexane.
  • the aromatic hydrocarbons of the substituted or unsubstituted aromatic hydrocarbons include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, Anthracene, phenanthrene, and the like.
  • the carbon coating layer may have a thickness of 10 nm to 1000 nm, specifically 100 nm to 800 nm, and more specifically 200 nm to 500 nm. When satisfying the above range, the life characteristics and output characteristics of the battery can be further improved. Although not limited thereto, the thickness of the carbon coating layer may be measured by SEM or TEM.
  • a method of manufacturing a negative active material includes: mixing a SiO x (0 ⁇ x ⁇ 2) particle and a magnesium powder to form a first mixture; First heat treating the first mixture to form silicon-based particles comprising magnesium silicate; Mixing the silicon-based particles and lithium powder to form a second mixture; And a second heat treatment of the second mixture.
  • the magnesium silicate is the same as the magnesium silicate mentioned in the above embodiments, and thus description thereof is omitted.
  • the weight ratio of the SiO x (0 ⁇ x ⁇ 2) particles and the magnesium powder may be 99: 1 to 70:30, specifically 95: 5 to 80:20 days And more specifically 93: 7 to 84:16.
  • an appropriate amount of magnesium silicate is formed, so that the initial efficiency and lifespan characteristics of the battery can be further improved.
  • the average particle diameter (D 50 ) of the SiO x (0 ⁇ x ⁇ 2) particles may be 1 ⁇ m to 20 ⁇ m, specifically 3 ⁇ m to 10 ⁇ m.
  • the first heat treatment may be performed at 300 °C to 1200 °C, specifically may be carried out at 500 °C to 1100 °C, more specifically 800 °C to 1000 °C Can be proceeded from. Proceeding to the above temperature, an appropriate amount of magnesium silicate can be formed while preventing the growth of silicon crystals in the negative electrode active material, so that the battery life performance can be improved.
  • the weight ratio of the silicon-based particles and the lithium powder may be 99: 1 to 70:30, specifically 98: 2 to 80:20, and more specifically 97: 3 to 90:10.
  • an appropriate amount of lithium-containing compound can be formed, so that the initial efficiency and lifespan characteristics of the battery can be further improved.
  • the second heat treatment may be performed at 100 ° C to 1000 ° C, specifically, may proceed at 300 ° C to 900 ° C, more specifically at 400 ° C to 800 ° C Can be. Proceeding to the above temperature, it is possible to form an appropriate amount of the lithium-containing compound while preventing the growth of the silicon crystals in the negative electrode active material, the battery life performance can be improved.
  • a lithium-containing compound may be formed at the center of the silicon-based particle (corresponding to the core described in an embodiment). Specifically, after magnesium silicate is formed near the surface of the silicon-based particles by the first heat treatment, there is almost no SiO 2 in which the lithium metal reacts with the silicon-based particles in the region where the magnesium silicate is formed even after the second heat treatment. Do not. Accordingly, most of the lithium-containing compound may be formed at the center of the silicon-based particles in which SiO 2 to react is present.
  • the method of manufacturing the negative electrode active material according to another embodiment of the present invention is similar to the method of manufacturing the negative electrode active material of the other embodiments described above, but differs in that it further comprises the step of forming a carbon coating layer. Thus, the difference will be described.
  • the method may further include forming a carbon coating layer on the second heat-treated silicon-based particle surface.
  • the carbon coating layer is the same as the carbon coating layer described in the above-described negative active material of another embodiment.
  • the carbon coating layer may be formed by arranging a carbon precursor on the silicon-based particles and then heat-treating them, but is not necessarily limited thereto.
  • the negative electrode according to another embodiment of the present invention may include a negative electrode active material, wherein the negative electrode active material is the same as the negative electrode active material of the above-described embodiments.
  • the negative electrode may include a current collector and a negative electrode active material layer disposed on the current collector.
  • the negative electrode active material layer may include the negative electrode active material.
  • the negative electrode active material layer may further include a binder and / or a conductive material.
  • the current collector may be any conductive material without causing chemical change in the battery, and is not particularly limited.
  • the current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel.
  • a transition metal that adsorbs carbon such as copper and nickel can be used as the current collector.
  • the thickness of the current collector may be 6 ⁇ m to 20 ⁇ m, but the thickness of the current collector is not limited thereto.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile, polymethylmethacrylate, polymethylmethacrylate, poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), liquor It may include at least one selected from the group consisting of fonned EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid, and a substance in which hydrogen thereof is replaced with Li, Na, or Ca. It may also include various copolymers thereof.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoro
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
  • the positive electrode may be formed on the positive electrode current collector and the positive electrode current collector, and may include a positive electrode active material layer including the positive electrode active material.
  • the positive electrode current collector is not particularly limited as long as it is conductive without causing chemical change in the battery.
  • the positive electrode current collector is made of stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. Surface treated with nickel, titanium, silver, or the like may be used.
  • the positive electrode current collector may have a thickness of about 3 to 500 ⁇ m, and may form fine irregularities on the surface of the current collector to increase adhesion of the positive electrode active material.
  • it can be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the cathode active material may be a cathode active material that is commonly used.
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium iron oxides such as LiFe 3 O 4 ; Lithium manganese oxides such as Li 1 + c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Represented by the formula LiNi 1-c2 M c2 O 2 , wherein M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B, and Ga, and satis
  • the cathode active material layer may include a cathode conductive material and a cathode binder together with the cathode active material described above.
  • the cathode conductive material is used to impart conductivity to the electrode, and in the battery constituted, the cathode conductive material may be used without particular limitation as long as it has electron conductivity without causing chemical change.
  • Specific examples thereof include graphite such as natural graphite and artificial graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black and carbon fiber; Metal powder or metal fibers such as copper, nickel, aluminum, and silver; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Or conductive polymers such as polyphenylene derivatives, and the like, or a mixture of two or more kinds thereof may be used.
  • the positive electrode binder serves to improve adhesion between the positive electrode active material particles and the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC).
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • mixed negative active material and graphite prepared by mixing the negative electrode active material and graphite in a weight ratio of 1: 9, conductive material carbon black, binder carboxymethyl cellulose (CMC) and styrene butadiene rubber (SBR) 5 g of a mixture was prepared by mixing at a weight ratio of 1: 1.7: 1.5. 28.9 distilled water was added to the mixture to prepare a negative electrode slurry.
  • the negative electrode slurry was applied and dried on a copper (Cu) metal thin film, which is a negative electrode current collector having a thickness of 20 ⁇ m. At this time, the temperature of the air circulated was 60 °C. Subsequently, a roll was pressed and dried in a vacuum oven at 130 ° C. for 12 hours, and then spun into a circle of 1.4875 cm 2 to prepare a negative electrode.
  • Cu copper
  • the prepared negative electrode was a lithium (Li) metal thin film cut in a circular shape of 1.7671 cm 2 as a positive electrode.
  • EMC methyl ethyl carbonate
  • EC ethylene carbonate
  • a negative electrode active material was prepared in the same manner as in Example 1, except that 35 g of magnesium powder was used. As a result of analyzing the prepared negative active material by XRD, ICP and SEM, a core containing lithium silicate and a shell containing magnesium silicate were observed.
  • a negative electrode and a secondary battery were prepared in the same manner as in Example 1.
  • a negative electrode active material was manufactured in the same manner as in Example 1, except that 0.5 g of magnesium powder was used. As a result of analyzing the prepared negative active material by XRD, ICP and SEM, a core containing lithium silicate and a shell containing magnesium silicate were observed.
  • a negative electrode and a secondary battery were prepared in the same manner as in Example 1.
  • a negative electrode and a secondary battery were prepared in the same manner as in Example 1.
  • a mixture was formed by mixing 100 g of SiO having an average particle diameter (D 50 ) of 6 ⁇ m and 6 g of lithium powder having an average particle diameter (D 50 ) of 5 ⁇ m. Thereafter, the mixture was introduced into a chamber, and heat was performed by applying heat at 750 ° C. for 2 hours. Through this, a negative electrode active material was prepared.
  • lithium silicate generally exists in the negative electrode active material. That is, lithium silicate was dispersed and present in the negative electrode active material such that the core and the shell could not be distinguished with or without lithium silicate.
  • a negative electrode and a secondary battery were prepared in the same manner as in Example 1.
  • each of the lithium silicate and magnesium silicate were all based on the total weight of the negative electrode active material, and were measured by the method of ICP.
  • the size of the core and the thickness of the shell were measured by SEM.
  • the particle size of the silicon crystal grains in the anode active material was derived by applying the P.Sherrer equation to the (111) peak of silicon derived through X-ray diffraction (XRD) analysis.
  • Test Example 1 Evaluation of discharge capacity, initial efficiency, lifetime characteristics, and crack occurrence
  • Discharge capacity (mAh / g) and initial efficiency (%) were derived through the result at the time of single charge / discharge. Specifically, the initial efficiency (%) was derived by the following calculation.
  • Capacity retention rate (%) (49 discharge capacity / 1 discharge capacity) ⁇ 100
  • crack generation was determined by measuring the cross section of the negative electrode active material in the negative electrode after completion of the capacity retention measurement.
  • Example 2 and 3 since the discharge capacity and capacity retention rate of Examples 2 and 3 are smaller than those of Example 1, the discharge capacity and capacity retention rate can be further improved when the content of magnesium silicate included in the shell satisfies an appropriate level. It was confirmed that there is.
  • the metal-containing compound in the negative electrode active material since too much or too little magnesium silicate is included in the negative electrode active material, the metal-containing compound in the negative electrode active material is distributed relatively non-uniformly compared to Example 1, so that the volume expansion of the negative electrode active material is suppressed. Appears to be at a lower level than Example 1.
  • Example 3 since the shell contains less magnesium silicate and the hardness of the shell is lower than that of Examples 1 and 2, the capacity retention rate is inferior to Examples 1 and 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 SiOx(0≤x<2) 및 리튬 함유 화합물을 포함하는 코어; 및 상기 코어 상에 배치되며, SiOx(0≤x<2) 및 마그네슘 실리케이트를 포함하는 쉘을 포함하는 음극 활물질에 관한 것이다.

Description

음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
관련출원과의 상호인용
본 출원은 2018년 1월 30일자 출원된 한국 특허 출원 제10-2018-0011185호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지에 관한 것으로, 구체적으로 상기 음극 활물질은 SiOx(0≤x<2) 및 리튬 함유 화합물을 포함하는 코어; 및 상기 코어 상에 배치되며, SiOx(0≤x<2) 및 마그네슘 실리케이트를 포함하는 쉘을 포함하는 것을 특징으로 한다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도, 즉 고용량의 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다. 다만, SiOx(0≤x<2)등의 실리콘계 입자는 초기 효율이 낮으며, 충방전 과정에서 부피가 지나치게 변화한다. 따라서, 전지의 수명이 저하되는 문제가 발생한다. 특히, 충방전 사이클이 반복될수록, 실리콘계 입자에 크랙(crack) 발생하여 수명이 저하되면서 기계적 안정성이 악화된다.
종래에는 이러한 문제를 해결하기 위해, 이러한 문제를 해결하기 위해, 실리콘계 입자 표면에 탄소 코팅층을 형성하는 기술들이 이용되어 왔다(대한민국 공개특허공보 제10-2015-0112746호). 그러나 상기 탄소 코팅층이 형성되더라도 초기 효율과 전지의 수명 저하가 크게 개선되지 않으며, 전지 저항의 감소 효과가 크지 않았다.
따라서, 초기 효율이 높으며 이차 전지의 충방전 과정에서 부피 변화가 효과적으로 제어될 수 있어서 전지의 수명 특성이 향상될 수 있는 음극 활물질의 개발이 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 공개특허공보 제10-2015-0112746호
본 발명이 해결하고자 하는 일 과제는 초기 효율이 높으며 이차 전지의 충방전 과정에서 부피 변화가 효과적으로 제어될 수 있어서 전지의 수명 특성이 향상될 수 있는 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 이차전지를 제공하는 것이다.
본 발명의 일 실시예에 따르면, SiOx(0≤x<2) 및 리튬 함유 화합물을 포함하는 코어; 및 상기 코어 상에 배치되며, SiOx(0≤x<2) 및 마그네슘 실리케이트를 포함하는 쉘을 포함하는 음극 활물질이 제공된다.
본 발명의 다른 실시예에 따르면, SiOx(0<x<2) 입자와 마그네슘 분말을 혼합하여 제1 혼합물을 형성하는 단계; 상기 제1 혼합물을 제1 열처리하여 마그네슘 실리케이트를 포함하는 실리콘계 입자를 형성하는 단계; 상기 실리콘계 입자와 리튬 분말을 혼합하여 제2 혼합물을 형성하는 단계; 및 상기 제2 혼합물을 제2 열처리하는 단계를 포함하는 음극 활물질의 제조 방법이 제공된다.
본 발명의 또 다른 실시예에 따르면, 상기 음극 활물질을 포함하는 음극이 제공된다.
본 발명의 또 다른 실시예에 따르면, 상기 음극을 포함하는 이차 전지가 제공된다.
본 발명의 일 실시예에 따르면, 상기 음극 활물질이 리튬 함유 화합물을 포함하는 코어와 마그네슘 실리케이트를 포함하는 쉘을 포함한다. 이와 같은 음극 활물질 제조 시에는, 마그네슘 실리케이트를 형성하는 공정, 상대적을 마그네슘 실리케이트가 형성되지 않은 코어 부분에 리튬 함유 화합물을 형성하는 공정이 진행되므로, 금속 함유 화합물이 음극 활물질 내에 균일하게 분포될 수 있다. 이에 따라, 전지 구동 시 음극 활물질의 불균일한 부피 팽창이 억제되어 크랙이 줄어들 수 있다. 또한, 마그네슘 실리케이트, 예컨대 마그네슘 실리케이트는 경도(hardness)가 높은 편이므로, 상기 마그네슘 실리케이트를 포함하는 쉘에 의해 음극 활물질의 부피 팽창 및 크랙 발생이 더욱 억제될 수 있다. 이에 따라, 이차 전지의 초기 효율이 개선될 수 있으며, 음극 활물질에 포함된 Si 및/또는 SiO2의 부피 팽창이 효과적으로 제어되어 전지의 수명 특성이 개선될 수 있다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 일 실시예에 따른 음극 활물질은 SiOx(0≤x<2) 및 리튬 함유 화합물을 포함하는 코어; 및 상기 코어 상에 배치되며, SiOx(0≤x<2) 및 마그네슘 실리케이트를 포함하는 쉘을 포함할 수 있다.
상기 코어는 SiOx(0≤x<2)를 포함할 수 있다. 상기 SiOx(0≤x<2)는 Si 및 SiO2가 포함된 형태일 수 있다. 즉, 상기 x는 상기 SiOx(0≤x<2) 내에 포함된 Si에 대한 O의 개수비에 해당한다. 상기 코어가 SiOx(0≤x<2)를 포함하는 경우, 이차 전지의 방전 용량이 개선될 수 있다. 상기 x는 더욱 구체적으로 0.5 내지 1.5일 수 있다.
상기 SiO2는 결정성 SiO2일 수 있다. 상기 결정성 SiO2 는 석영(quartz), 크리스토발라이트(cristobalite) 또는 트리디마이트(tridymite)일 수 있다.
상기 코어의 평균 입경(D50)은 1㎛ 내지 20㎛일 수 있으며, 구체적으로 3㎛ 내지 10㎛일 수 있다. 상기 평균 입경 범위를 만족하는 경우, 전해액과의 부반응을 줄일 수 있으며, 음극 슬러리를 집전체에 도포하고 압연하는 공정에 있어서 불량률을 줄일 수 있다. 또한, 전지의 충/방전 시 음극 활물질의 크랙 발생을 줄일 수 있다. 본 명세서에서 평균 입경(D50)은 입자의 입경 분포의 50% 기준에서의 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
상기 코어는 리튬 함유 화합물을 포함할 수 있다. 상기 리튬 함유 화합물은 상기 음극 활물질의 제조 과정에서 리튬 금속이 실리콘계 입자에 도핑되어 형성된 화합물일 수 있다. 상기 리튬 함유 화합물은 이차 전지의 초기 효율을 개선시키며, 음극의 에너지 밀도를 증가시킬 수 있다. 또한, 리튬 함유 화합물이 음극 활물질 내 포함되면서, 마그네슘 실리케이트와 리튬 함유 화합물을 포함하는 금속 함유 화합물이 음극 활물질 내에 균일하게 분포되어 존재할 수 있으므로, 전지 충방전 시 불균일한 부피 팽창이 억제되어, 크랙 발생이 줄어들 수 있다. 이에 따라, 전지의 수명 특성이 개선될 수 있다.
상기 리튬 함유 화합물은 리튬 실리케이트 및 리튬 실리사이드 중 적어도 어느 하나를 포함할 수 있다. 상기 리튬 실리케이트는 Li2Si2O5, Li2SiO3 및 Li4SiO4로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다. 상기 코어가 리튬 실리케이트를 포함하므로, 이차 전지의 초기 효율 및 음극의 에너지 밀도가 개선될 수 있다.
상기 리튬 실리사이드는 LiySi(2<y<5)를 포함할 수 있으며, 구체적으로 Li4.4Si, Li3.75Si, Li3.25Si, Li2.33Si로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 코어에 포함된 상기 리튬 실리케이트는 상기 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 50중량%로 포함될 수 있으며, 구체적으로 1중량% 내지 30중량%로 포함될 수 있고, 보다 구체적으로 3중량% 내지 10중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 전지의 초기 효율 및 수명 특성이 개선될 수 있다. 상기 리튬 실리케이트 종류는 XRD로 측정 가능하며, 상기 리튬 실리케이트의 함량은 ICP 방법으로 측정될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 쉘은 코어 상에 배치될 수 있다. 구체적으로, 상기 쉘은 상기 코어 표면의 적어도 일부를 덮을 수 있으며, 보다 구체적으로 상기 코어 표면의 전부를 덮을 수 있다.
상기 쉘은 SiOx(0≤x<2)를 포함할 수 있다. 이 때, 상기 SiOx(0≤x<2)는 상술한 SiOx(0≤x<2)와 동일하므로, 설명을 생략한다.
상기 쉘은 마그네슘 실리케이트를 포함할 수 있다. 상기 마그네슘 실리케이트는 상기 음극 활물질의 제조 과정에서 마그네슘 금속이 실리콘계 입자에 도핑되어 형성된 화합물일 수 있다. 상기 마그네슘 실리케이트는 이차 전지의 초기 효율을 개선시킬 수 있다. 또한, 마그네슘 실리케이트, 예컨대 마그네슘 실리케이트는 경도(hardness)가 높은 편이므로, 상기 마그네슘 실리케이트를 포함하는 쉘에 의해 음극 활물질의 부피 팽창 및 크랙 발생이 더욱 억제될 수 있다.
구체적으로 상기 마그네슘 실리케이트는 Mg2SiO4 및 MgSiO3 중 적어도 어느 하나를 포함할 수 있다. 상기 쉘이 상기 마그네슘 실리케이트를 포함하므로, 음극 활물질의 부피 팽창 및 크랙 발생이 더욱 억제될 수 있다.
상기 쉘에 포함된 상기 마그네슘 실리케이트는 상기 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 50중량%로 포함될 수 있으며, 구체적으로 1중량% 내지 30중량%로 포함될 수 있고, 보다 구체적으로 3중량% 내지 10중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 전지의 초기 효율 및 수명 특성이 개선될 수 있다. 상기 마그네슘 실리케이트 종류는 XRD로 측정 가능하며, 상기 마그네슘 실리케이트의 함량은 ICP 방법으로 측정될 수 있으나, 반드시 이에 한정되는 것은 아니다.
상기 쉘의 두께는 0.02㎛ 내지 5㎛일 수 있으며, 구체적으로 0.3㎛ 내지 3㎛일 수 있고, 보다 구체적으로 0.5㎛ 내지 1㎛일 수 있다. 상기 범위를 만족하는 경우, 전지의 초기 효율 및 수명 특성이 더욱 개선될 수 있다. 이에 한정되는 것은 아니나, 상기 쉘의 두께는 SEM으로 측정될 수 있다. 또한, 음극 활물질의 표면에서부터 상기 쉘의 두께란 마그네슘 실리케이트가 검출되는 지점까지의 거리를 의미한다.
상기 쉘은 리튬 함유 화합물을 더 포함할 수도 있으며, 여기서 리튬 함유 화합물은 코어에 포함되는 리튬 함유 화합물과 동일할 수 있다. 따라서, 상기 코어에 포함되는 리튬 함유 화합물은 상기 음극 활물질 내 존재하는 리튬 함유 화합물 전체 중량을 기준으로 70중량% 내지 100중량%로 포함될 수 있으며, 구체적으로 90중량% 내지 100중량%일 수 있다. 다시 말해, 상기 코어에 포함되는 리튬 함유 화합물은 상기 음극 활물질 내 존재하는 리튬 함유 화합물 전체 중량을 기준으로 100중량%인 경우는, 상기 코어에만 리튬 함유 화합물이 존재하는 것이다. 이와 달리, 100중량%가 아닌 경우는, 상기 쉘에도 리튬 함유 화합물이 존재할 수 있음을 의미한다.
상기 음극 활물질의 평균 입경(D50)은 1㎛ 내지 20㎛일 수 있으며, 구체적으로 3㎛ 내지 10㎛일 수 있다. 상기 평균 입경 범위를 만족하는 경우, 전해액과의 부반응이 줄어들 수 있으며, 음극 슬러리를 집전체에 도포하고 압연하는 공정에 있어서 불량률이 줄어들 수 있다. 또한, 전지의 충/방전 시 음극 활물질의 크랙 발생이 감소할 수 있다.
상기 음극 활물질을 제조함에 있어서, 밀링 등의 고온 열처리가 동반되는 제조 방법을 사용한 것이 아니라, 비교적 낮은 온도에서 열처리가 진행되므로, 상기 음극 활물질은 실리콘 결정립을 불포함하거나, 실리콘 결정립을 포함하더라도 상기 실리콘 결정립의 입경이 작은 수준일 수 있다. 이에 따라, 전지의 충방전 시, 음극 활물질의 지나친 부피 팽창이 억제될 수 있으므로, 전지의 수명 특성이 개선될 수 있다.
상기 음극 활물질이 실리콘 결정립을 포함하는 경우, 상기 실리콘 결정립의 입경은 50nm 이하일 수 있으며, 구체적으로 30nm 이하일 수 있고, 보다 구체적으로 20nm 이하일 수 있으며, 예를 들어 8nm 내지 15nm일 수 있다.
상기 실리콘 결정립의 존재 여부 및 입경은 XRD(X-Ray Diffraction) 분석 방법으로 확인할 수 있다. 구체적으로, 제조된 음극 활물질에 대해 XRD 분석을 진행하여 실리콘의 (111) 피크(peak)를 확인한 뒤, 하기 식(P.Sherrer equation)을 통해 상기 실리콘 결정립의 입경(L)을 계산할 수 있다.
L=(κ×λ)/(β×cosθ)
상기 식에서 L은 실리콘 결정립의 입경(단위: nm), κ은 형상 인자로써 0.9(입자 형상에 대한 요소이며 단위 없음), λ는 0.154056(단위: nm), β는 (111)피크의 반가폭(단위: radian)을 의미한다.
본 발명의 다른 실시예에 따른 음극 활물질은 상술한 일 실시예에 따른 음극 활물질과 유사하나, 상기 쉘 상에 배치된 탄소 코팅층을 더 포함하는 점에서 차이가 있다. 이에, 상기 차이점에 대해서 설명하도록 한다.
상기 탄소 코팅층은 상기 쉘 상에 배치될 수 있다. 구체적으로, 상기 탄소 코팅층은 상기 쉘 표면의 적어도 일부를 덮을 수 있으며, 보다 구체적으로 상기 탄소 코팅층은 상기 쉘부의 표면의 50% 내지 100%를 덮을 수 있다. 상기 탄소 코팅층에 의해 상기 음극 활물질의 도전성이 개선될 수 있으므로, 상기 이차전지의 초기 효율, 수명 특성 및 전지 용량 특성이 향상될 수 있다.
상기 탄소 코팅층은 상기 음극 활물질 전체 중량을 기준으로 1중량% 내지 15중량%일 수 있으며, 구체적으로 3중량% 내지 10중량%일 수 있다. 상기 범위를 만족하는 경우, 전지의 수명 특성 및 출력 특성이 더욱 개선될 수 있다.
상기 탄소 코팅층은 탄소계 물질을 포함할 수 있다. 상기 탄소계 물질은 비정질 탄소 및 결정질 탄소 중 적어도 어느 하나를 포함할 수 있다.
상기 결정질 탄소는 상기 음극 활물질의 도전성을 보다 향상시킬 수 있다. 상기 결정질 탄소는 플로렌, 탄소나노튜브 및 그래핀으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 비정질 탄소는 상기 탄소 코팅층의 강도를 적절하게 유지시켜, 상기 코어의 팽창을 억제시킬 수 있다. 상기 비정질 탄소는 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 적어도 어느 하나의 탄화물, 또는 탄화수소를 화학기상증착법의 소스로 이용하여 형성된 탄소계 물질일 수 있다.
상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.
상기 탄화수소는 치환 또는 비치환된 지방족 또는 지환식 탄화수소, 치환 또는 비치환된 방향족 탄화수소일 수 있다. 상기 치환 또는 비치환된 지방족 또는 지환식 탄화수소의 지방족 또는 지환식 탄화수소는 메테린, 에테린, 에틸렌, 아세틸렌, 프로페인, 뷰태인, 뷰텐, 펜테인, 아이소뷰테인 또는 헥세인 등일 수 있다. 상기 치환 또는 비치환된 방향족 탄화수소의 방향족 탄화수소는 벤젠, 톨루엔, 자일렌, 스티렌, 에틸벤젠, 다이페닐메테인, 나프탈렌, 페놀, 크레졸, 나이트로벤젠, 클로로벤젠, 인덴, 쿠마론, 파이리딘, 안트라센 또는 페난트렌 등을 들 수 있다.
상기 탄소 코팅층의 두께는 10nm 내지 1000nm일 수 있으며, 구체적으로 100nm 내지 800nm 일 수 있고, 보다 구체적으로 200nm 내지 500nm 일 수 있다. 상기 범위를 만족하는 경우, 전지의 수명 특성 및 출력 특성이 더욱 개선될 수 있다. 이에 한정되는 것은 아니나, 상기 탄소 코팅층의 두께는 SEM 또는 TEM으로 측정될 수 있다.
본 발명의 또 다른 실시예에 따른 음극 활물질의 제조 방법은, SiOx(0<x<2) 입자와 마그네슘 분말을 혼합하여 제1 혼합물을 형성하는 단계; 상기 제1 혼합물을 제1 열처리하여 마그네슘 실리케이트를 포함하는 실리콘계 입자를 형성하는 단계; 상기 실리콘계 입자와 리튬 분말을 혼합하여 제2 혼합물을 형성하는 단계; 및 상기 제2 혼합물을 제2 열처리하는 단계를 포함할 수 있다. 여기서 상기 마그네슘 실리케이트는 상술한 실시예들에서 언급한 마그네슘 실리케이트과 동일하므로 설명을 생략한다.
상기 제1 혼합물을 형성하는 단계에 있어서, 상기 SiOx(0<x<2) 입자와 상기 마그네슘 분말의 중량비는 99:1 내지 70:30일 수 있으며, 구체적으로 95:5 내지 80:20일 수 있고, 보다 구체적으로 93:7 내지 84:16일 수 있다. 상기 범위를 만족하는 경우, 적절한 함량의 마그네슘 실리케이트가 형성되어, 전지의 초기 효율 및 수명 특성이 더욱 개선될 수 있다.
상기 제1 혼합물을 형성하는 단계에 있어서, 상기 SiOx(0<x<2) 입자의 평균 입경(D50)은 1㎛ 내지 20㎛일 수 있으며, 구체적으로 3㎛ 내지 10㎛일 수 있다.
상기 마그네슘 실리케이트를 포함하는 실리콘계 입자를 형성하는 단계에 있어서, 상기 제1 열처리는 300℃ 내지 1200℃에서 진행될 수 있으며, 구체적으로 500℃ 내지 1100℃에서 진행될 수 있으며, 보다 구체적으로 800℃ 내지 1000℃에서 진행될 수 있다. 상기 온도로 진행하는 경우, 음극 활물질 내 실리콘 결정의 성장을 방지하면서 적절한 양의 마그네슘 실리케이트를 형성할 수 있으므로, 전지의 수명 성능이 개선될 수 있다.
상기 제2 혼합물을 형성하는 단계에 있어서, 상기 실리콘계 입자와 상기 리튬 분말의 중량비는 99:1 내지 70:30일 수 있으며, 구체적으로 98:2 내지 80:20일 수 있고, 보다 구체적으로 97:3 내지 90:10일 수 있다. 상기 범위를 만족하는 경우, 적절한 함량의 리튬 함유 화합물이 형성될 수 있어서, 전지의 초기 효율 및 수명 특성이 더욱 개선될 수 있다.
상기 제2 혼합물을 제2 열처리하는 단계에 있어서, 상기 제2 열처리는 100℃ 내지 1000℃에서 진행될 수 있으며, 구체적으로 300℃ 내지 900℃에서 진행될 수 있으며, 보다 구체적으로 400℃ 내지 800℃에서 진행될 수 있다. 상기 온도로 진행하는 경우, 음극 활물질 내 실리콘 결정의 성장을 방지하면서 적절한 양의 리튬 함유 화합물을 형성할 수 있으므로, 전지의 수명 성능이 개선될 수 있다.
상기 제2 열처리에 의해 상기 실리콘계 입자의 중심부(일 실시예에서 설명한 코어에 해당)에 리튬 함유 화합물이 형성될 수 있다. 구체적으로, 제1 열처리에 의해 실리콘계 입자의 표면 가까이에 마그네슘 실리케이트가 형성되고 나면, 이 후 제2 열처리에 의하더라도 상기 마그네슘 실리케이트가 형성된 영역에서는 리튬 금속이 실리콘계 입자와 반응할 SiO2가 거의 존재하지 않는다. 이에 따라, 리튬 함유 화합물의 대부분이 반응할 SiO2가 존재하는 상기 실리콘계 입자의 중심부에서 형성될 수 있다.
본 발명의 또 다른 실시예에 따른 음극 활물질의 제조 방법은 상술한 다른 실시예의 음극 활물질의 제조 방법과 유사하나, 탄소 코팅층을 형성하는 단계를 더 포함하는 점에서 차이가 있다. 이에, 상기 차이점에 대해 설명하도록 한다.
구체적으로, 상술한 다른 실시예에서 제2 열처리를 진행하고 난 뒤, 상기 제2 열처리된 상기 실리콘계 입자 표면에 탄소 코팅층을 형성하는 단계가 더 포함될 수 있다.
상기 탄소 코팅층은 상술한 다른 실시예의 음극 활물질에서 설명한 탄소 코팅층과 동일하다. 상기 탄소 코팅층은 탄소 전구체를 상기 실리콘계 입자 상에 배치한 뒤 열처리하는 것을 통해 형성할 수 있으나, 이에 반드시 한정되는 것은 아니다.
본 발명의 또 다른 실시예에 따른 음극은 음극 활물질을 포함할 수 있으며, 여기서 상기 음극 활물질은 상술한 실시예들의 음극 활물질과 동일하다. 구체적으로, 상기 음극은 집전체 및 상기 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 상기 음극 활물질을 포함할 수 있다. 나아가, 상기 음극 활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다.
상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 집전체의 두께는 6㎛ 내지 20㎛일 수 있으나, 상기 집전체의 두께가 이에 제한되는 것은 아니다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체 및 상기 양극 집전체 상에 형성되며, 상기 양극활물질을 포함하는 양극활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 또 다른 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
실시예 및 비교예
실시예 1: 전지의 제조
(1) 음극 활물질의 제조
1) SiO와 마그네슘 분말의 혼합 및 제1 열처리
평균 입경(D50)이 6㎛인 SiO 100g과 평균 입경(D50)이 10㎛인 마그네슘 분말 10g을 혼합하여 제1 혼합물을 형성하였다. 이 후, 상기 제1 혼합물을 챔버에 투입한 뒤, 950℃에서 2시간 동안 열을 가하여 제1 열처리를 진행하였다.
2) 제1 열처리된 입자와 리튬 분말의 혼합 및 제2 열처리
제1 열처리된 상기 입자 100g과 평균 입경(D50)이 5㎛인 리튬 분말 6g을 혼합하여 제2 혼합물을 형성하였다. 이 후, 상기 제2 혼합물을 챔버에 투입한 뒤, 750℃에서 2시간 동안 열을 가하여 제2 열처리를 진행하였다. 이를 통해, 음극 활물질이 제조되었다.
제조된 음극 활물질을 XRD, ICP, SEM로 분석한 결과, 리튬 실리케이트가 포함된 코어 및 마그네슘 실리케이트가 포함된 쉘이 관찰되었다.
(2) 음극의 제조
상기 제조된 음극 활물질과 흑연을 1:9의 중량비로 혼합한 혼합 음극 활물질, 도전재인 카본 블랙, 바인더인 카르복시메틸 셀룰로오스(Carboxylmethyl cellulose, CMC) 및 스티렌 부타디엔 고무(Styrene butadiene rubber, SBR)을 95.8:1:1.7:1.5의 중량비로 혼합하여 혼합물 5g을 제조하였다. 상기 혼합물에 증류수를 28.9 첨가하여 음극 슬러리를 제조하였다. 상기 음극 슬러리를 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 도포, 건조하였다. 이때 순환되는 공기의 온도는 60℃였다. 이어서, 압연(roll press)하고 130℃의 진공 오븐에서 12시간 동안 건조한 뒤, 1.4875cm2의 원형으로 타발하여 음극을 제조하였다.
(3) 이차 전지의 제조
제조된 음극을 1.7671㎠의 원형으로 절단한 리튬(Li) 금속 박막을 양극으로 하였다. 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 메틸에틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피비가 7:3인 혼합 용액에 0.5 중량%로 용해된 비닐렌 카보네이트를 용해시키고, 1M 농도의 LiPF6가 용해된 전해액을 주입하여, 리튬 코인 하프 셀(coin half-cell)을 제조하였다.
실시예 2: 전지의 제조
(1) 음극 활물질의 제조
마그네슘 분말 35g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. 제조된 음극 활물질을 XRD, ICP, SEM로 분석한 결과, 리튬 실리케이트가 포함된 코어 및 마그네슘 실리케이트가 포함된 쉘이 관찰되었다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
실시예 3: 전지의 제조
(1) 음극 활물질의 제조
마그네슘 분말 0.5g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 음극 활물질을 제조하였다. 제조된 음극 활물질을 XRD, ICP, SEM로 분석한 결과, 리튬 실리케이트가 포함된 코어 및 마그네슘 실리케이트가 포함된 쉘이 관찰되었다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 1: 전지의 제조
(1) 음극 활물질의 제조
1) SiO와 마그네슘 분말의 혼합 및 열처리
평균 입경(D50)이 6㎛인 SiO 100g과 평균 입경(D50)이 10㎛인 마그네슘 분말 10g을 혼합하여 제1 혼합물을 형성하였다. 이 후, 상기 제1 혼합물을 챔버에 투입한 뒤, 950℃에서 2시간 동안 열을 가하여 열처리를 진행하였다. 이를 통해 음극 활물질을 제조하였다.
제조된 음극 활물질을 XRD, ICP, SEM로 분석한 결과, 금속 실리케이트를 포함하지 않는 코어 및 마그네슘 실리케이트가 포함된 쉘이 관찰되었다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
비교예 2: 전지의 제조
(1) 음극 활물질의 제조
1) SiO와 리튬 분말의 혼합 및 열처리
평균 입경(D50)이 6㎛인 SiO 100g과 평균 입경(D50)이 5㎛인 리튬 분말 6g을 혼합하여 혼합물을 형성하였다. 이 후, 상기 혼합물을 챔버에 투입한 뒤, 750℃에서 2시간 동안 열을 가하여 열처리를 진행하였다. 이를 통해 음극 활물질을 제조하였다.
제조된 음극 활물질을 XRD, ICP, SEM로 분석한 결과, 리튬 실리케이트가 음극 활물질 내에 전반적으로 존재하는 형태가 관찰되었다. 즉, 리튬 실리케이트의 유무로 코어와 쉘을 구분할 수 없을 정도로 음극 활물질 내에 리튬 실리케이트가 분산되어 존재하고 있었다.
(2) 음극 및 이차 전지의 제조
상기 음극 활물질을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 음극 및 이차 전지를 제조하였다.
코어의 크기(㎛) 코어에 포함된 리튬 실리케이트의 함량(중량%) 쉘의 두께(㎛) 쉘에 포함된 마그네슘 실리케이트의 함량(중량%) 음극 활물질 내 실리콘 결정립의 입경(nm)
실시예 1 6 4 0.5 8 10
실시예 2 6 3.8 4 30 13
실시예 3 6 4 0.03 0.4 9
비교예 1 6 - 0.5 8 10
비교예 2 - 4(음극 활물질 내에 포함된 리튬 실리케이트 전체 함량(중량%)) - - 10
상기 리튬 실리케이트 및 마그네슘 실리케이트 각각의 함량은 모두 음극 활물질 전체 중량을 기준으로 하며, ICP의 방법으로 측정되었다.상기 코어의 크기 및 쉘의 두께는 SEM으로 측정되었다.
상기 음극 활물질 내 실리콘 결정립의 입경은 XRD(X-Ray Diffraction) 분석을 통해 도출된 실리콘의 (111) 피크에 대해 P.Sherrer equation을 적용하여 도출하였다.
시험예 1: 방전 용량, 초기 효율, 수명 특성, 및 크랙 발생 여부 평가
실시예 1 내지 3 및 비교예 1, 2의 전지에 대해 충·방전을 수행하여, 방전 용량, 초기 효율, 수명 특성(용량 유지율), 전극 두께 변화율 및 크랙 발생 여부를 평가하였고, 이를 하기 표 2에 나타내었다.
한편, 1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 50회 싸이클까지는 0.5C로 충·방전을 수행하였다.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.5V
1회 충방전 시의 결과를 통해, 방전 용량(mAh/g) 및 초기 효율(%)을 도출하였다. 구체적으로 초기 효율(%)은 다음과 같은 계산에 의해 도출되었다.
초기 효율(%) = (1회 방전 후 방전 용량 / 1회 충전 용량)×100
용량 유지율은 각각 다음과 같은 계산에 의해 도출되었다.
용량 유지율(%) = (49회 방전 용량 / 1회 방전 용량)×100
아울러, 크랙 발생 여부는 용량 유지율 측정 완료 후 음극 내 음극 활물질의 단면을 SEM으로 측정하여 판단하였다.
전지 방전 용량(mAh/g) 초기 효율(%) 용량 유지율(%) 크랙 발생 여부
실시예 1 460 90 80 X
실시예 2 440 91 77 X
실시예 3 450 89 72 X
비교예 1 450 87 65 O
비교예 2 450 88 70 O
표 2에 따르면, 사이클 구동 후 실시예 1 내지 3의 음극 활물질에는 크랙이 발생하지 않은 반면, 비교예 1 및 2에는 크랙이 발생하였다. 또한, 실시예 1 내지 3의 초기 효율 및 용량 유지율이 비교예 1 및 2의 초기 효율 및 용량 유지율보다 높은 것을 확인하였다. 이는 리튬 함유 화합물이 코어에, 마그네슘 실리케이트가 쉘에 포함되어, 음극 활물질 전체적으로 금속 함유 화합물이 균일하게 분포됨으로써, 음극 활물질의 불균일한 부피 팽창이 억제되어 크랙이 줄어들어, 전지의 초기 효율 및 수명 특성이 개선된 것임을 알 수 있다.
또한, 실시예 1에 비해, 실시예 2 및 3의 방전 용량 및 용량 유지율이 작으므로, 쉘에 포함되는 마그네슘 실리케이트의 함량이 적정 수준을 만족하는 경우에 있어서 방전 용량 및 용량 유지율이 더욱 개선될 수 있음을 확인하였다. 실시예 2 및 3의 경우, 지나치게 많거나 지나치게 적은 마그네슘 실리케이트가 음극 활물질에 포함되면서 음극 활물질 내 금속 함유 화합물이 실시예 1에 비해 상대적으로 불균일하게 분포하게 되므로, 음극 활물질의 부피 팽창이 억제되는 정도가 실시예 1보다 낮은 수준인 것으로 보인다. 또한, 실시예 3의 경우, 쉘에 마그네슘 실리케이트가 적게 포함되어 쉘의 경도가 실시예 1, 2보다 낮으므로, 실시예 1, 2보다 용량 유지율이 열위인 것으로 보인다.

Claims (21)

  1. SiOx(0≤x<2) 및 리튬 함유 화합물을 포함하는 코어; 및
    상기 코어 상에 배치되며, SiOx(0≤x<2) 및 마그네슘 실리케이트를 포함하는 쉘을 포함하는 음극 활물질.
  2. 청구항 1에 있어서,
    상기 리튬 함유 화합물은 리튬 실리케이트 및 리튬 실리사이드 중 적어도 어느 하나를 포함하는 음극 활물질.
  3. 청구항 2에 있어서,
    상기 리튬 실리케이트는 Li2Si2O5, Li2SiO3 및 Li4SiO4로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 음극 활물질.
  4. 청구항 2에 있어서,
    상기 리튬 실리사이드는 LiySi(2<y<5)를 포함하는 음극 활물질.
  5. 청구항 2에 있어서,
    상기 코어에 포함된 상기 리튬 실리케이트는 상기 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 50중량%로 포함되는 음극 활물질.
  6. 청구항 1에 있어서,
    상기 코어의 평균 입경(D50)은 1㎛ 내지 20㎛인 음극 활물질.
  7. 청구항 1에 있어서,
    상기 마그네슘 실리케이트는 Mg2SiO4 및 MgSiO3 중 적어도 어느 하나를 포함하는 음극 활물질.
  8. 청구항 1에 있어서,
    상기 쉘에 포함된 상기 마그네슘 실리케이트는 상기 음극 활물질 전체 중량을 기준으로 0.1중량% 내지 50중량%인 음극 활물질.
  9. 청구항 1에 있어서,
    상기 쉘의 두께는 0.02㎛ 내지 5㎛인 음극 활물질.
  10. 청구항 1에 있어서,
    상기 쉘 상에 배치되며 탄소계 물질을 포함하는 탄소 코팅층을 더 포함하는 음극 활물질.
  11. 청구항 10에 있어서,
    상기 탄소 코팅층의 두께는 10nm 내지 1000nm인 음극 활물질.
  12. 청구항 10에 있어서,
    상기 탄소 코팅층은 상기 쉘부의 표면의 50% 내지 100%를 덮는 음극 활물질.
  13. 청구항 1에 있어서,
    상기 음극 활물질이 실리콘 결정립을 포함하지 않거나,
    상기 음극 활물질이 입경이 50nm 이하인 실리콘 결정립을 포함하는, 음극 활물질.
  14. SiOx(0<x<2) 입자와 마그네슘 분말을 혼합하여 제1 혼합물을 형성하는 단계;
    상기 제1 혼합물을 제1 열처리하여 마그네슘 실리케이트를 포함하는 실리콘계 입자를 형성하는 단계;
    상기 실리콘계 입자와 리튬 분말을 혼합하여 제2 혼합물을 형성하는 단계; 및
    상기 제2 혼합물을 제2 열처리하는 단계를 포함하는 음극 활물질의 제조 방법.
  15. 청구항 14에 있어서,
    상기 제1 혼합물을 형성하는 단계에 있어서,
    상기 SiOx(0<x<2) 입자와 상기 마그네슘 분말의 중량비는 99:1 내지 70:30인 음극 활물질의 제조 방법.
  16. 청구항 14에 있어서,
    상기 제1 열처리는 300℃ 내지 1200℃에서 진행되는 음극 활물질의 제조 방법.
  17. 청구항 14에 있어서,
    상기 제2 혼합물을 형성하는 단계에 있어서,
    상기 실리콘계 입자와 상기 리튬 분말의 중량비는 99:1 내지 70:30인 음극 활물질의 제조 방법.
  18. 청구항 14에 있어서,
    상기 제2 열처리는 100℃ 내지 1000℃에서 진행되는 음극 활물질의 제조 방법.
  19. 청구항 14에 있어서,
    상기 제2 열처리된 상기 실리콘계 입자 표면에 탄소 코팅층을 형성하는 단계를 더 포함하는 음극 활물질의 제조 방법.
  20. 청구항 1 내지 13 중 어느 하나의 음극 활물질을 포함하는 음극.
  21. 청구항 20의 음극;
    양극;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및
    전해질을 포함하는 이차 전지.
PCT/KR2019/001297 2018-01-30 2019-01-30 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 WO2019151774A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980006352.9A CN111466045B (zh) 2018-01-30 2019-01-30 负极活性材料、其制备方法、包含所述负极活性材料的负极和包含所述负极的二次电池
EP19746961.2A EP3709405A4 (en) 2018-01-30 2019-01-30 ANODE ACTIVE MATERIAL, METHOD FOR MANUFACTURING ANODE ACTIVE MATERIAL, ANODE WITH ANODE ACTIVE MATERIAL AND SECONDARY BATTERY WITH ANODE
US16/772,585 US11605811B2 (en) 2018-01-30 2019-01-30 Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode
US18/107,263 US20230197938A1 (en) 2018-01-30 2023-02-08 Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180011185 2018-01-30
KR10-2018-0011185 2018-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/772,585 A-371-Of-International US11605811B2 (en) 2018-01-30 2019-01-30 Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode
US18/107,263 Division US20230197938A1 (en) 2018-01-30 2023-02-08 Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode

Publications (1)

Publication Number Publication Date
WO2019151774A1 true WO2019151774A1 (ko) 2019-08-08

Family

ID=67479335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001297 WO2019151774A1 (ko) 2018-01-30 2019-01-30 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Country Status (5)

Country Link
US (2) US11605811B2 (ko)
EP (1) EP3709405A4 (ko)
KR (1) KR102290961B1 (ko)
CN (1) CN111466045B (ko)
WO (1) WO2019151774A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713545A (zh) * 2019-09-11 2020-01-21 潍坊医学院 一种人源程序性细胞死亡因子受体蛋白-1及其生产方法和应用
CN111342031A (zh) * 2020-03-28 2020-06-26 兰溪致德新能源材料有限公司 一种多元梯度复合高首效锂电池负极材料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7063981B2 (ja) * 2018-01-31 2022-05-09 エルジー エナジー ソリューション リミテッド 負極活物質、これを含む負極及びリチウム二次電池
US20220037643A1 (en) * 2018-09-26 2022-02-03 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
WO2020103914A1 (zh) * 2018-11-24 2020-05-28 华为技术有限公司 一种硅氧复合负极材料及其制作方法
US20220231280A1 (en) * 2019-12-11 2022-07-21 Lg Energy Solution, Ltd. Negative electrode active material, preparation method thereof, and negative electrode and secondary battery including same
CN111342030B (zh) * 2020-03-28 2022-03-15 兰溪致德新能源材料有限公司 一种多元复合高首效锂电池负极材料及其制备方法
CN116235310A (zh) * 2020-09-18 2023-06-06 株式会社村田制作所 二次电池用负极活性物质、二次电池用负极以及二次电池
CN112289993B (zh) * 2020-10-26 2022-03-11 合肥国轩高科动力能源有限公司 一种碳包覆核壳结构氧化亚硅/硅复合材料及其制备方法
KR20220065124A (ko) * 2020-11-12 2022-05-20 에스케이온 주식회사 코어-쉘 복합체를 포함하는 음극 활물질 및 이의 제조방법
CN116670859A (zh) * 2021-08-13 2023-08-29 株式会社Lg新能源 负极活性材料、负极浆料、负极和二次电池
KR102635060B1 (ko) * 2021-11-25 2024-02-08 주식회사 엘지에너지솔루션 음극 활물질, 음극 및 이차 전지
EP4340068A1 (en) * 2021-11-25 2024-03-20 LG Energy Solution, Ltd. Negative electrode active material, negative electrode, and secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150112746A (ko) 2014-03-28 2015-10-07 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
KR101586816B1 (ko) * 2015-06-15 2016-01-20 대주전자재료 주식회사 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지
KR101676405B1 (ko) * 2013-10-04 2016-11-29 주식회사 엘지화학 음극 활물질, 이를 포함하는 리튬 이차전지 및 상기 음극 활물질의 제조방법
US20160372753A1 (en) * 2014-03-24 2016-12-22 Kabushiki Kaisha Toshiba Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and vehicle
JP2017152375A (ja) * 2016-02-23 2017-08-31 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
JP2017536676A (ja) * 2014-11-25 2017-12-07 コーニング インコーポレイテッド リチウムイオン電池アノードのための方法および材料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5369708B2 (ja) 2009-01-26 2013-12-18 旭硝子株式会社 二次電池用負極材料およびその製造方法
JP5406799B2 (ja) 2010-07-29 2014-02-05 信越化学工業株式会社 非水電解質二次電池用負極材とその製造方法及びリチウムイオン二次電池
US8415555B2 (en) 2010-08-24 2013-04-09 Corning Incorporated Dimensional silica-based porous silicon structures and methods of fabrication
JP2012178548A (ja) 2011-02-03 2012-09-13 Soytec 層移転用金属キャリア及びその形成方法
KR20120101971A (ko) * 2011-03-07 2012-09-17 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
JP6059941B2 (ja) * 2011-12-07 2017-01-11 株式会社半導体エネルギー研究所 リチウム二次電池用負極及びリチウム二次電池
JP6092885B2 (ja) * 2012-09-27 2017-03-08 三洋電機株式会社 非水電解質二次電池用負極活物質及びその負極活物質を用いた非水電解質二次電池
KR101911434B1 (ko) 2013-01-03 2019-01-07 삼성전자주식회사 복합음극활물질, 이를 포함하는 음극 및 리튬전지, 및 이의 제조 방법
CN107431249A (zh) * 2015-02-27 2017-12-01 三洋电机株式会社 非水电解质二次电池的制造方法
US10879531B2 (en) * 2015-10-26 2020-12-29 Lg Chem, Ltd. Negative electrode active particle and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101676405B1 (ko) * 2013-10-04 2016-11-29 주식회사 엘지화학 음극 활물질, 이를 포함하는 리튬 이차전지 및 상기 음극 활물질의 제조방법
US20160372753A1 (en) * 2014-03-24 2016-12-22 Kabushiki Kaisha Toshiba Electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and vehicle
KR20150112746A (ko) 2014-03-28 2015-10-07 주식회사 엘지화학 리튬 이차전지용 음극활물질 및 그 제조방법
JP2017536676A (ja) * 2014-11-25 2017-12-07 コーニング インコーポレイテッド リチウムイオン電池アノードのための方法および材料
KR101586816B1 (ko) * 2015-06-15 2016-01-20 대주전자재료 주식회사 비수전해질 이차전지용 음극재, 이의 제조방법, 및 이를 포함하는 비수전해질 이차전지
JP2017152375A (ja) * 2016-02-23 2017-08-31 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3709405A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110713545A (zh) * 2019-09-11 2020-01-21 潍坊医学院 一种人源程序性细胞死亡因子受体蛋白-1及其生产方法和应用
CN110713545B (zh) * 2019-09-11 2021-10-22 潍坊医学院 一种人源程序性细胞死亡因子受体蛋白-1及其生产方法和应用
CN111342031A (zh) * 2020-03-28 2020-06-26 兰溪致德新能源材料有限公司 一种多元梯度复合高首效锂电池负极材料及其制备方法
CN111342031B (zh) * 2020-03-28 2022-11-29 兰溪致德新能源材料有限公司 一种多元梯度复合高首效锂电池负极材料及其制备方法

Also Published As

Publication number Publication date
CN111466045B (zh) 2022-07-08
EP3709405A1 (en) 2020-09-16
EP3709405A4 (en) 2021-01-20
US20200388833A1 (en) 2020-12-10
CN111466045A (zh) 2020-07-28
KR20190092311A (ko) 2019-08-07
US20230197938A1 (en) 2023-06-22
US11605811B2 (en) 2023-03-14
KR102290961B1 (ko) 2021-08-20

Similar Documents

Publication Publication Date Title
WO2019151774A1 (ko) 음극 활물질, 상기 음극 활물질의 제조 방법, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019103460A1 (ko) 이차전지용 양극재 및 이를 포함하는 리튬 이차전지
WO2018208111A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2018164405A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019172661A1 (ko) 음극의 제조 방법
WO2020149622A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019078690A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093830A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019093820A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020101301A1 (ko) 음극 활물질 및 이의 제조 방법
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019103499A1 (ko) 리튬 이차전지용 음극 활물질, 및 이의 제조방법
WO2022055309A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020149681A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2018226070A1 (ko) 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극의 제조 방법
WO2019050216A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2019147084A1 (ko) 리튬 이차전지용 음극의 제조방법
WO2019093825A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2020242257A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2020149618A1 (ko) 음극 활물질의 제조 방법
WO2018203731A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법
WO2020138629A1 (ko) 복합 음극활물질, 이의 제조 방법, 및 이를 포함한 음극을 구비한 리튬 이차 전지
WO2019088808A2 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지, 및 상기 음극 활물질의 제조 방법
WO2024019429A1 (ko) 음극 활물질, 이를 포함하는 음극, 이를 포함하는 이차전지 및 음극 활물질의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019746961

Country of ref document: EP

Effective date: 20200608

NENP Non-entry into the national phase

Ref country code: DE