WO2019151636A1 - Méthode de préparation de mxene de haute pureté - Google Patents

Méthode de préparation de mxene de haute pureté Download PDF

Info

Publication number
WO2019151636A1
WO2019151636A1 PCT/KR2018/015469 KR2018015469W WO2019151636A1 WO 2019151636 A1 WO2019151636 A1 WO 2019151636A1 KR 2018015469 W KR2018015469 W KR 2018015469W WO 2019151636 A1 WO2019151636 A1 WO 2019151636A1
Authority
WO
WIPO (PCT)
Prior art keywords
maxine
carbonate
high purity
reacting
mxene
Prior art date
Application number
PCT/KR2018/015469
Other languages
English (en)
Korean (ko)
Inventor
서유경
김연승
이동욱
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2019151636A1 publication Critical patent/WO2019151636A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a manufacturing method, and more particularly, to a method for manufacturing a high purity maxine ( 611 ⁇ 2) having high purity and excellent electrical properties more efficiently.
  • phase « ⁇ 336 a silver transition metal, a group 13 or 14 element
  • X is carbon and / or nitrogen
  • the X phase has electrical conductivity, oxidation resistance, It is also known to have excellent physical properties such as machinability.
  • the present invention relates to a method for producing high purity Maxene (MXene) with higher purity and excellent electrical properties more efficiently.
  • MXene a high purity maxine
  • a method for preparing high purity Maxine (MXene) may be provided.
  • the present inventors conducted a study on a method to more easily provide high purity Maxine (MXene), and by reacting Maxine obtained by reacting the MX phase with a strong acid with carbonate or hydrogen carbonate, The high efficiency of the Maxine (MXene) with high purity can be provided in a short time, and the experiment confirmed that the Maxine (MXene) can achieve excellent electrical conductivity and electromagnetic shielding effect with high purity, and completed the invention. .
  • reaction mechanism is to react with the Max phase and the remaining strong acid and carbonate or hydrogen carbonate reacts to generate carbon dioxide and carbon dioxide bubbles in the dispersion.
  • These bubbles in particular, the bubbles generated by the Maxine interlayer, is a process in which the Maxine interlayer peeling proceeds and desorption of the acid and salt inserted into the layer occurs to increase the purification efficiency.
  • the high purity Maxine ( ⁇ 611 ⁇ 2 ) by-product means less than 30% by weight, or less than 20% by weight, or less than 10% by weight, or less than 5% by weight.
  • carbonate or hydrogen carbonate examples include sodium carbonate, sodium bicarbonate, potassium carbonate, potassium hydrogen carbonate, lithium carbonate, sodium carbonate, rubidium carbonate, cesium carbonate, cesium carbonate, ammonium carbonate, ammonium bicarbonate, or these Two or more kinds of mixtures.
  • the phase may be defined as a silver transition metal, the show is a group 13 or 14 element, X is carbon and / or nitrogen. Specific examples of the phase include three o'clock (: 2, or 3 2, four, Ti 3 GeC2, 3 3 ⁇ 4 ( : 2, 13 ⁇ 4 hours (: 2 , 413 ⁇ 4 , ⁇ 41 (: 3 , ⁇ 3 (: 3,
  • the carbonate or hydrogen carbonate may be used at 0.1 1110 1% to 25 1 ⁇ 1%, or 1 1% to 15% () 1% of the strong acid.
  • the amount of the carbonate or the hydrogen carbonate is too low compared to the amount of the strong acid, since the generation of carbon dioxide that can remove or help by-products present in the maxine is insignificant, the removal efficiency of the acid and the salt may be technically disadvantageous. On the contrary, if the amount of the strong acid is too high, additional purification time of the salt may occur, which may be technically corrected.
  • the maxine obtained by reacting the Max phase (3 ⁇ 41 / shank with a strong acid may contain various salt compounds which appear in the reaction with the above-mentioned strong acid, and the Maxine ( ⁇ is hydrochloric acid ( ⁇ 1) and lithium chloride (Ni)). , it can contain by-products, including ammonium fluoride Lyrium (Nishi ⁇ 1 6) or ammonium fluoride (3 ⁇ 4 hour).
  • the high purity maxine obtained through the manufacturing method of high purity maxine (1X 6116 ) of the above embodiment is hydrochloric acid ( ⁇ 1), lithium chloride (Ni): 1, lithium aluminum fluoride (Ni ⁇ 13 ⁇ 4), or aluminum fluoride (Si3 ⁇ 4). It can contain up to 5 wt% of by-products,
  • the purification efficiency may be further improved due to the carbon dioxide bubbles generated in the step of reacting the prepared Maxine) with carbonate or hydrogen carbonate.
  • the high purity maxine ( 0! 1 ⁇ 2 ) manufacturing method of the above embodiment may include a step of purifying with water after the step of reacting the prepared maxine ( ⁇ ) with carbonate or hydrogen carbonate.
  • the amount of water used may be greatly reduced due to the step of reacting the prepared maxine (e) with carbonate or hydrogen carbonate, and in the step of purifying the prepared maxine ( ⁇ ) with water, the preparation May be removed using less than 2000 parts by weight or 100 to 1000 parts by weight of water.
  • the high purity Maxine (Chelene) can have an electrical conductivity of 5.0 X 10 5 / mi or more.
  • the manufactured high purity Maxine » 611 ⁇ 2 can be used as an internal / external electrode of a cathode conductive material for a secondary battery or a secondary battery.
  • the high-purity maxine provided as described above can realize electromagnetic shielding effect by using excellent electrical conductivity, and thus internal and external electrodes, etc. It can be easily applied as a material to various industrial fields.
  • FIG. 1 shows Maxine (Original seedling images prepared in each of Example 1 and Comparative Example 1).
  • the lg MAX phase (Ti 3 AlC 2) was added to 20 mL of 6 M HC1 solution in which lg fluoride was dissolved and stirred at 50 ° C. for 24 hours.
  • the lg MAX phase (Ti 3 AlC 2) was added to 20 mL of 6 M HC1 solution in which lgium fluoride was dissolved and stirred at 50 ° C. for 24 hours. Then, the mixture was filtered using water until the pH of the filtrate was neutral, and dried for 12 hours in a vacuum oven to obtain MXne powder.
  • the electrical conductivity of the maxine (11X 6116 ) of the said Example and the comparative example was measured through 4 ⁇ 01 ⁇ .
  • Example 1 Example 1 and Comparative purification rate, the electric conductivity of Maxine ( ⁇ 611 ⁇ 2) been prepared by Example 1, and a) ®! 2- ⁇ 3 value comparison Example 1 was confirmed to be the greater as higher the electrical conductivity having a short time Maxine obtained though not completed the tablets within, than the distance between layers is also identified in the XI ⁇ 2- 3 value as shown in Table 1 above.
  • the purification rate difference 5 minutes VI 10 minutes
  • Example 1 clearly distinguished the particles between layers as compared with the maxine obtained in Comparative Example 1.

Abstract

La présente invention concerne une méthode de préparation de MXene de haute pureté comprenant les étapes consistant à : former du MXene par réaction d'une phase MAX avec un acide fort ; et faire réagir le MXene formé avec des carbonates ou des carbonates d'hydrogène.
PCT/KR2018/015469 2018-02-02 2018-12-07 Méthode de préparation de mxene de haute pureté WO2019151636A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0013604 2018-02-02
KR1020180013604A KR20190094037A (ko) 2018-02-02 2018-02-02 고순도의 맥신 (MXene) 제조 방법

Publications (1)

Publication Number Publication Date
WO2019151636A1 true WO2019151636A1 (fr) 2019-08-08

Family

ID=67479815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015469 WO2019151636A1 (fr) 2018-02-02 2018-12-07 Méthode de préparation de mxene de haute pureté

Country Status (2)

Country Link
KR (1) KR20190094037A (fr)
WO (1) WO2019151636A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683586A (zh) * 2019-10-25 2020-01-14 南昌大学 一种一步合成金属氧化物负载的过渡族金属碳化物的方法
CN111003686A (zh) * 2019-12-06 2020-04-14 北京航空航天大学 一种新型室温储氢材料及其制备方法
CN111172672A (zh) * 2020-01-16 2020-05-19 太原师范学院 一种MXenes/聚氨酯保温材料及其制备方法
CN114361570A (zh) * 2022-01-11 2022-04-15 山东大学 一种钠电池及其制备方法
CN114423269A (zh) * 2022-01-24 2022-04-29 同济大学 一种氮掺杂的MXene@HCF电磁复合吸波材料及其制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102365011B1 (ko) 2019-12-05 2022-02-22 한국과학기술원 맥신 필름의 제조방법
CN111732103B (zh) * 2020-06-10 2022-01-11 中国科学技术大学 无氟Mo2CTx MXenes材料、其制备方法及应用
CN115367754B (zh) * 2021-05-21 2023-11-14 北京航空航天大学 由MXene转化制备MAX相材料的方法及用途
KR102560098B1 (ko) 2021-06-24 2023-07-26 한국교통대학교산학협력단 유기염기 불화수소 첨가생성물에 의한 유기에칭을 이용한 유분산 2 차원 맥신 및 그 맥신의 제조방법
KR20230109215A (ko) 2022-01-12 2023-07-20 한국교통대학교산학협력단 맥신­pva­카테콜 고분자 하이드로겔 재료 및 그 제조방법
KR20230165952A (ko) 2022-05-26 2023-12-06 한국교통대학교산학협력단 아자이드계 화합물로 표면 개질된 2차원 맥신, 맥신잉크, 및 그의 제조방법
KR20230165951A (ko) 2022-05-26 2023-12-06 한국교통대학교산학협력단 고강도 맥신 필름 및 이의 제조 방법
KR20240006997A (ko) 2022-07-07 2024-01-16 한국교통대학교산학협력단 포스페이트로 표면 개질된 맥신, 유기잉크, 그 제조방법 및 그 용도

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162130A1 (en) * 2011-06-21 2014-06-12 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
CN106082175A (zh) * 2016-08-25 2016-11-09 北京化工大学 一种熔融碳酸钠高温制备碳化物衍生碳的方法
KR20170036507A (ko) * 2015-09-24 2017-04-03 삼성전자주식회사 멕신(MXene) 나노시트 및 그 제조방법
KR20170102768A (ko) * 2016-03-02 2017-09-12 성균관대학교산학협력단 2차원 맥세인 박막의 제조방법, 이를 이용한 전자 소자의 제조 방법, 2차원 맥세인 박막을 포함하는 전자 소자
CN107161999A (zh) * 2017-05-18 2017-09-15 深圳大学 一种基于Ti2CMXene的电池电极材料的制备方法
KR20170106860A (ko) * 2016-03-14 2017-09-22 한국에너지기술연구원 황으로 표면이 변형된 Mxene 구조체
CN107381518A (zh) * 2017-07-26 2017-11-24 华南理工大学 一种二维氮化钛纳米片溶液的快速制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140162130A1 (en) * 2011-06-21 2014-06-12 Drexel University Compositions comprising free-standing two-dimensional nanocrystals
KR20170036507A (ko) * 2015-09-24 2017-04-03 삼성전자주식회사 멕신(MXene) 나노시트 및 그 제조방법
KR20170102768A (ko) * 2016-03-02 2017-09-12 성균관대학교산학협력단 2차원 맥세인 박막의 제조방법, 이를 이용한 전자 소자의 제조 방법, 2차원 맥세인 박막을 포함하는 전자 소자
KR20170106860A (ko) * 2016-03-14 2017-09-22 한국에너지기술연구원 황으로 표면이 변형된 Mxene 구조체
CN106082175A (zh) * 2016-08-25 2016-11-09 北京化工大学 一种熔融碳酸钠高温制备碳化物衍生碳的方法
CN107161999A (zh) * 2017-05-18 2017-09-15 深圳大学 一种基于Ti2CMXene的电池电极材料的制备方法
CN107381518A (zh) * 2017-07-26 2017-11-24 华南理工大学 一种二维氮化钛纳米片溶液的快速制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683586A (zh) * 2019-10-25 2020-01-14 南昌大学 一种一步合成金属氧化物负载的过渡族金属碳化物的方法
CN111003686A (zh) * 2019-12-06 2020-04-14 北京航空航天大学 一种新型室温储氢材料及其制备方法
CN111172672A (zh) * 2020-01-16 2020-05-19 太原师范学院 一种MXenes/聚氨酯保温材料及其制备方法
CN114361570A (zh) * 2022-01-11 2022-04-15 山东大学 一种钠电池及其制备方法
CN114361570B (zh) * 2022-01-11 2023-09-01 山东大学 一种钠电池及其制备方法
CN114423269A (zh) * 2022-01-24 2022-04-29 同济大学 一种氮掺杂的MXene@HCF电磁复合吸波材料及其制备方法

Also Published As

Publication number Publication date
KR20190094037A (ko) 2019-08-12

Similar Documents

Publication Publication Date Title
WO2019151636A1 (fr) Méthode de préparation de mxene de haute pureté
KR102373455B1 (ko) 멕신(MXene) 나노시트 및 그 제조방법
WO2018201711A1 (fr) Méthode de préparation de bis(fluorosulfonyl)imide de lithium
US20180237313A1 (en) Anhydrous nickel chloride and method for producing the same
WO2019061802A1 (fr) Procédé de préparation de difluorophosphate de lithium
JP4747286B2 (ja) 微細な酸化スズ粉末とその製造方法および用途
JP2008088135A (ja) 第四級イミダゾリウムテトラフルオロボレートの精製方法及び該方法により精製した第四級イミダゾリウムテトラフルオロボレートを用いた電気二重層キャパシタ
CN105017110B (zh) 一种三氟甲硫基铜(i)及三氟甲硫基银(i)的制备方法
JP2013151717A (ja) 高純度硫酸ニッケルの製造方法、及びニッケルを含む溶液からの不純物元素除去方法
CN102583563B (zh) 一种用于电池材料的超高纯电池级氯化锰制造方法
KR20060026967A (ko) 고순도 하프늄 재료, 이 재료로 이루어진 타겟트 및 박막과고순도 하프늄의 제조방법
JP6097111B2 (ja) フッ化リチウム粉末の製造方法及び六フッ化リン酸リチウムの製造方法
JP2012036498A (ja) イリジウムの製造方法
WO2004018369A1 (fr) Procede de recuperation de fluor
CN104326512B (zh) 一种氟化镍的制备方法
TWI623516B (zh) 1,2,3-三亞基三(氰甲基亞基)三(2,3,5,6-四氟苯甲腈)環丙烷程序
EP2428501A1 (fr) Mélange de sels de diaryliodonium et son procédé de production, et procédé de production d'un composé de diaryliodonium
JP5756999B2 (ja) ビス(ペルフルオロアルカンスルホン)イミド塩の製造方法
JP5447824B2 (ja) 亜硝酸ロジウム錯イオン溶液の精製方法と、そのアンモニウム塩の製造方法。
WO2016002773A1 (fr) Procédé de production d'un complexe ionique purifié
JP2011252224A (ja) 銅微粉末とその製造方法
JP2015229619A (ja) 二酸化チタンとグラフェンとの複合体、およびその製造方法。
JP7300461B2 (ja) 炭酸ランタン水和物の製造方法
JP2016027029A (ja) 精製イオン性錯体の製造方法及びイオン性錯体
CN106744959B (zh) 一种新型二维晶体Mxenes的低成本制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903550

Country of ref document: EP

Kind code of ref document: A1