WO2019144274A1 - 一种控制电池充电的方法、设备及其*** - Google Patents

一种控制电池充电的方法、设备及其*** Download PDF

Info

Publication number
WO2019144274A1
WO2019144274A1 PCT/CN2018/073811 CN2018073811W WO2019144274A1 WO 2019144274 A1 WO2019144274 A1 WO 2019144274A1 CN 2018073811 W CN2018073811 W CN 2018073811W WO 2019144274 A1 WO2019144274 A1 WO 2019144274A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
power source
bin
parameter
Prior art date
Application number
PCT/CN2018/073811
Other languages
English (en)
French (fr)
Inventor
潘江洪
沈剑
唐梅宣
王冰
罗剑锋
江旭峰
黄嘉曦
Original Assignee
深圳易马达科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳易马达科技有限公司 filed Critical 深圳易马达科技有限公司
Priority to PCT/CN2018/073811 priority Critical patent/WO2019144274A1/zh
Priority to CN201880000015.4A priority patent/CN108702017B/zh
Publication of WO2019144274A1 publication Critical patent/WO2019144274A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0022
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • H02J7/0021
    • H02J7/0026
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the field of battery technologies, and in particular, to a method, device, and system for controlling battery charging.
  • the existing battery charging device simply performs the charging operation for the battery provided by the user, and does not care whether the state of the required rechargeable battery is good, and the user lacks the professional knowledge, and only finds the battery when the battery abnormality occurs. Maintenance is required, which may result in a risk of battery explosion and low safety.
  • the embodiments of the present application provide a method, a device, and a system for controlling battery charging, so as to solve the existing battery charging device, only the battery provided by the user is completely charged, and only when the battery is abnormal. It was discovered that the battery needs to be repaired, which may cause the risk of battery explosion and low safety.
  • the state parameter of the battery is placed by the battery charging bin to detect that the battery body is to be charged Collected when the battery is obtained;
  • the battery If the battery is in a normal state, collecting a charging environment parameter, and determining a charging mode according to the charging environment parameter;
  • the charging control command is configured to control the battery charging bin to adjust an output current of the charging power source according to the charging mode, and perform the battery on the battery Charging.
  • the embodiment of the present application collects the state parameter of the battery to be charged through the battery charging bin, and determines the working state of the battery according to the state parameter of the battery, identifies whether the battery has an abnormality, performs a charging process for the normal battery, and collects the current time charging.
  • the environmental parameter determines a charging mode matched with the battery, and generates a charging control command according to the charging mode, and the battery charging bin adjusts an output current of the charging power source according to the charging control command, thereby achieving the purpose of charging the battery and improving battery charging.
  • Security Moreover, by collecting the charging environment parameters, the charging mode that matches the battery at the current time is determined, and the charging efficiency is also improved.
  • FIG. 1 is a flowchart of an implementation of a method for controlling battery charging according to a first embodiment of the present application
  • FIG. 2 is a flowchart of implementing a method for controlling a battery charging method S104 according to a second embodiment of the present application;
  • FIG. 3 is a flowchart of a specific implementation of a method for controlling battery charging according to a third embodiment of the present application
  • FIG. 4 is a flowchart of a specific implementation of a method for controlling battery charging according to a fourth embodiment of the present application.
  • FIG. 5 is a flowchart of implementing a method for controlling a battery charging method S103 according to a fifth embodiment of the present application;
  • FIG. 6 is a flowchart of a specific implementation of a method for controlling battery charging according to a sixth embodiment of the present application.
  • FIG. 7 is a flowchart of a specific implementation of a method for controlling battery charging according to a seventh embodiment of the present application.
  • FIG. 8 is a structural block diagram of a charging management device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a system for controlling battery charging according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a charging management device according to an embodiment of the present application.
  • FIG. 1 is a flowchart showing an implementation of a method for controlling battery charging according to the first embodiment of the present application, which is described in detail below. :
  • a battery charging request is received, and a battery opening command is sent to the battery charging bin, and the opening command is used to control the battery charging bin to open the door.
  • a battery charging request may be sent to the charging management device, and then the charging management device will perform a battery charging response operation after receiving the battery charging request.
  • the user may send the battery charging request to the charging management device through the user terminal, or directly generate a battery charging request on the interaction interface of the charging management device.
  • the user terminal may send a battery charging request to the server to which the charging management device belongs, and then the server performs an authentication operation on the battery charging request, for example, verifying the legality of the user account, or determining whether the balance of the user account is Sufficiently used to pay for the charging operation, etc., when the server determines that the user account is successfully authenticated, it sends a battery charging request to the charging management device, so that the charging management device starts the charging process.
  • the user terminal may further send a charging management device query request to the server, and then the server pushes the location information of the charging management device that is closer to the current location to the user according to the location of the user terminal, and invokes the third-party electronic device built in the user terminal.
  • the map application which marks the location of the above charging management device on an electronic map.
  • the user may send a charging reservation request to the charging management device, the charging reservation request including the time of the scheduled charging and the number of batteries to be charged.
  • the charging management device locks the corresponding number of battery charging bins according to the number of batteries to be charged, and sets the battery charging bin to occupy the working state corresponding to the scheduled charging time, so as to arrive at the reservation.
  • the charging management device may further send charging reminding information to the user before the time when the scheduled charging is reached, to remind the user to carry the battery for charging.
  • the charging management device can be used to manage a plurality of battery charging bins.
  • the charging management device When receiving a battery charging request initiated by the user, the charging management device first queries the working state of each battery charging bin to determine which battery charging bins are Which battery charging bins are occupied are idle, and a spare battery charging bin is used as the target charging bin for the user to charge the battery, and an opening command is sent to the target charging bin.
  • the battery charging compartment receives the opening command, the battery charging compartment door is opened, so that the user places the battery to be charged into the battery compartment of the battery charging compartment.
  • the charging management device further feeds back to the user a charging indication information, where the charging indication information includes an identifier or location information of the battery charging bin, and the user can determine a corresponding battery charging bin according to the charging indication information.
  • the charging indication information includes an identifier or location information of the battery charging bin, and the user can determine a corresponding battery charging bin according to the charging indication information.
  • S102 receiving a state parameter of the battery sent by the battery charging bin, and identifying an operating state of the battery according to the state parameter of the battery; the state parameter of the battery is detected by the battery charging bin in the cartridge body Collected when the battery to be charged is placed.
  • the user is detected in real time whether the battery to be charged is placed in the warehouse body. If the battery to be charged is detected in the storage compartment, the state parameter of the battery is obtained.
  • the method for detecting whether a battery is placed in the warehouse body may be: a pressure sensor is disposed in the base of the battery charging compartment, and when the pressure value of the pressure sensor is detected to be greater than a preset threshold, the battery is placed in the warehouse body, Then close the door of the battery charging compartment and start the acquisition of the status parameter.
  • the battery charging chamber performs a charging and discharging operation on the battery to be charged to obtain a state parameter in the normal working state of the battery, and sends the collected state parameter to the charging management device.
  • the charging management device determines whether the battery is an abnormal battery according to the status parameter.
  • the method for identifying the working state of the battery may be: comparing each parameter value in the state parameter with a corresponding standard parameter range, and if any one of the parameter values exceeds a corresponding standard parameter range, identifying that the battery is in Abnormal state, the exception handling operation is performed; conversely, if each parameter value is within the corresponding standard parameter range, the battery is in a normal state, and the related operation of S103 is performed.
  • the status parameter includes at least one of the following: a battery operating voltage, a battery capacity, a battery state of charge, and a number of times of charging. Since the battery is good, it can be mainly reflected by the above various indicators:
  • the charging management device can obtain the operating voltage of the battery, and the rated voltage If the difference between the two exceeds the preset threshold, it indicates that the output voltage deviation of the battery is large, and the battery is identified as being in an abnormal state.
  • the ability of the battery to store charge is also an important indicator of whether the battery is normal. If the storage capacity of the battery, that is, the battery capacity, the charging management device obtains the standard battery capacity of the battery to be charged, and compares the collected battery capacity with the standard battery capacity, if the difference between the two is less than the pre- If the threshold is set, it means that the battery is in a normal state. On the contrary, the chemical substance used for storing the battery may be abnormal, the standard amount of charge cannot be stored, and the battery is identified as being in an abnormal state.
  • the battery state of charge includes two values, which are the corresponding state of charge SOC1 at the completion of charging and the state of charge SOC2 corresponding to the completion of the discharge, and the difference between SOC1 and 1 is calculated, and SOC2 and 0 are calculated. If the difference is greater than the preset threshold, the battery is identified as being in an abnormal state. If the two differences are less than or equal to the preset threshold, the battery is identified as being in a normal state.
  • each battery has a certain number of charging times.
  • the charging management device will send a battery recycling request to the server, and after receiving the battery recycling request, the server forwards the request to the corresponding recycling handler, and the recycling processor recycles the battery to avoid the battery to the environment. create pollution.
  • the charging management device charges the battery only when the battery is in a normal state, thereby reducing the occurrence of dangerous situations such as battery leakage and battery explosion caused by charging the abnormal battery, thereby improving the occurrence of dangerous conditions such as battery leakage and battery explosion.
  • the safety of the charging operation Before charging, in order to provide a charging mode matched with the battery and improve charging efficiency, the charging management device also collects current charging environment parameters, and determines a charging mode according to the charging environment parameter.
  • the charging environment parameters include, but are not limited to, at least one of the following: a temperature value of the battery, a temperature value in the battery charging chamber, a maximum power value currently available, a number of available charging power sources, and the like.
  • the charging management device determines the output power, the output current, and the charging time for charging the battery according to the collected charging environment parameters, and then obtains the charging mode of the battery.
  • the charging management device may acquire a model of the battery in addition to the charging environment parameter, determine a maximum charging voltage or a maximum charging current of the battery according to the model of the battery, and then according to the maximum charging voltage or the maximum The charging current, and the charging environment parameters obtained above, determine the charging mode of the battery to be charged, thereby taking into consideration the charging efficiency and ensuring safe charging. For example, for a battery with an output voltage of 48V, the charging voltage is up to 54.6V; and for a battery with an output voltage of 60V, the maximum charging voltage can be adjusted to 67.2V.
  • the charging management device rejects the charging request of the user, opens the battery door of the battery charging compartment, pops up the battery to be charged, and outputs an abnormality report to the terminal, and the output manner may be: charging Display in the display interface of the management device, or send the exception report to the user terminal.
  • a charging control command carrying information of the charging mode is sent to the battery charging bin; the charging control command is configured to control the battery charging bin to adjust an output current of the charging power source according to the charging mode, The battery is charged.
  • the charging management device generates a charging control command according to the charging mode, and the charging control command carries information of the charging mode. Then, the charging management device transmits the generated charging control command to the battery charging bin so that the battery charging bin charges the battery according to the charging control command.
  • the battery charging bin after receiving the charging control command, the battery charging bin turns on the corresponding number of charging power sources according to the charging control command, and adjusts the output current of each charging power source to make the sum of the output powers of the respective charging power sources. Consistent with the output power required by the charge control command, since the output end of the charging power source is connected to the charging input terminal of the charging power supply bay, the output power of the charging power source is actually the charging power for charging the battery to be charged.
  • the battery charging bin collects the charging state parameter of the battery at a preset time interval during charging of the battery, and the charging state parameter includes but is not limited to: current charging power, actual charging Power, charge loss ratio.
  • the battery charging compartment sends the charging state parameter to the charging management device, and the charging management device determines whether the battery is damaged according to the charging state parameter. If the battery is damaged, the charging operation of the battery is stopped, and the battery damage information is sent to the server for notification. The relevant maintenance personnel repair the battery.
  • the charging management device identifies whether the battery is damaged by comparing each parameter value in the charging state parameter with a corresponding standard charging parameter threshold, and determining whether the standard charging parameter threshold is exceeded, and if any parameter value exceeds the corresponding value
  • the standard charging parameter threshold identifies the battery as a damaged battery. For example, if the charging loss of the battery is relatively large, that is, the ratio between the amount of charge loss and the total input power is greater than the standard damage ratio, it indicates that the battery has a leakage condition, and thus the battery is judged to be damaged.
  • the present application collects the state parameter of the battery to be charged through the battery charging bin, and determines the working state of the battery according to the state parameter of the battery, identifies whether the battery is abnormal, performs a charging process for the normal battery, and collects the current
  • the charging environment parameter at the moment determines a charging mode that matches the battery, and generates a charging control command according to the charging mode, and the battery charging bin adjusts an output current of the charging power source according to the charging control command to achieve charging of the battery.
  • the embodiment of the present application collects the state parameter of the battery before charging the battery, determines whether the battery is an abnormal battery, and only charges the battery whose working state is normal.
  • FIG. 2 is a flowchart showing a specific implementation of a method S104 for controlling battery charging according to a second embodiment of the present application.
  • the method S104 for controlling battery charging provided by this embodiment includes S1041 ⁇ S1043, which are as follows:
  • the first N charging power sources are selected as the target power source based on the order of the charging power source values, and the value of N is smaller than the charging power source. The total number of.
  • each charging power source has a difference in the number of times of use and the length of use, and the remaining power values are also different. It should be noted that when the brother charges When the power of the power supply is full, the power value is the same.
  • the charging management device detects that the current charging period is currently in use, it determines that the current charging mode is the busy charging mode, and obtains the current charging value of each charging power source to determine the appropriate target power source pair.
  • the battery is charged.
  • the charging management device sorts the power values of the respective charging power sources from large to small, and selects the first N charging power sources with large power consumption values as the target power source, and charges the battery through the target power source.
  • the value of N can be set according to the requirements of the charging administrator. When the value of N must be less than the total number of charging power sources. Preferably, the value of N may be one-half of the total number of charging power sources.
  • the charging management device can determine whether the current power consumption peak is based on the current power usage condition, that is, the power consumption of the entire system for controlling battery charging. If the power consumption is greater than the preset power threshold, it means that the power consumption of the whole system is large. If the idle time charging mode is used, the overall consumption will be too large, so the number of charging power sources that are activated will be limited; Less than or equal to the preset power threshold means that the entire system has low power consumption, and all charging power sources can be activated to charge the battery.
  • a busy charging command is generated according to the power source identifier of the target power source, and the busy charging command is sent to the battery charging bin; the busy charging command is used to control the battery charging bin to start the target power source And setting an output current of each of the target power sources to a first output current to charge the battery.
  • the charging management device acquires the power identifier of each target power source, and the power source identifier may be a power source number or an output line of the power source, generate a busy charging command according to the power source identifier, and send the battery to the battery.
  • the charging bin sends a busy charging command, and then the battery charging bin can turn on the corresponding target power source according to the battery identifier carried in the busy charging command, and adjust the output current of each target power source to be the first output current, so that the target power sources are The total output power is the same as the preset charging power in the busy charging command.
  • the charging mode is the idle time charging mode, generating a idle time charging command, and transmitting the idle time charging command to the battery charging bin; the idle time point command is used to control the battery charging
  • the cartridge activates all of the charging power sources, and sets an output current of each of the charging power sources to a second output current to charge the battery.
  • the charging management device determines that the current charging mode is the idle charging mode. In this mode, the charging management device turns on all charging power sources to charge the battery.
  • the parameter value of the target battery in the idle charging instruction can be set to the default. If the battery charging bin detects that the parameter value of the target battery in the charging control command is empty, it means that all charging power sources need to be turned on; of course, the charging management device is also the same.
  • the power identification of all charging power sources can be packaged in the idle time charging command, so that the battery charging compartment turns on all charging power sources according to the power source identification described in the charging control instruction.
  • the battery charging compartment turns on all charging power sources, and sets the output current of all charging power sources to the second output current, so that the sum of the output powers of all the charging power sources is The preset charging power in the idle charging command is the same.
  • FIG. 3 is a flow chart showing a specific implementation of a method for controlling battery charging according to a third embodiment of the present application.
  • a method for controlling battery charging according to the embodiment of FIG. 2 generates a busy charging command according to the power source identifier of the target power source, and charges the battery.
  • the warehouse sends the busy charging instruction, it also includes S301 ⁇ S303:
  • the charging management device monitors the first output power when the battery charging bin charges the battery, and compares the first output power with the generated standard included in the busy charging command. The charging power is compared. If the first output power is greater than the preset standard charging power, the operation of S302 is performed; if the first output power is less than the preset standard charging power, the operation of S303 is performed; and when the first output power is Equal to the preset standard charging power, it means that the battery charging compartment charges the battery in the rated working mode. In this case, continue to maintain the current output current and the number of target power sources that are turned on, and then charge the battery. No adjustments are required.
  • the standard charging power can be set according to the maximum power draw of the area in which the system controlling the battery charging is located.
  • any one of the target power sources is turned off, and the output current of the currently activated target power source is adjusted by the first step length.
  • the charging management device turns off one of the target power sources that are running, and the selection method may be randomly selected, or one target power source with the lowest power value may be selected as the target power source for shutdown. After the shutdown operation is completed, the charging management device gradually adjusts the output current of the remaining target power sources in the first step to make the first output power coincide with the standard charging power.
  • the output current of each target power source is reduced by the first step length; if the current first output power is less than the standard charging power For power, increase the output current of each target power source by the first step.
  • the adjustment operation is stopped.
  • the charging management device selects a charging power source having the largest power value as the target power source from the unpowered charging power source, and turns on the target power source. Then, the charging management device gradually adjusts the output current of all the target power sources currently being started in the second step, including the newly added target power source and the output current of the target power source that has been previously turned on, so that the first output power and the standard charging power are made. Consistent. It should be noted that the initial current value of the newly set target power source is equal to the value of the second output current.
  • the switching state of each target power source and the value of the output current are adjusted according to the actual output power, thereby achieving the purpose of accurately regulating the charging process, and taking into consideration the charging efficiency and safety of the system for controlling battery charging.
  • FIG. 4 is a flow chart showing a specific implementation of a method for controlling battery charging according to a fourth embodiment of the present application.
  • a method for controlling battery charging according to the embodiment shown in FIG. 2 generates a idle time charging command when the charging mode is a free charging mode. After the battery is charged, it also includes S401 ⁇ S403:
  • the charging management device when the charging management device performs the idle time charging mode, it also monitors the second output power when the battery charging compartment charges the battery, and outputs the first output power and the generated idle time charging command.
  • the standard charging power included in the comparison is performed. If the second output power is greater than the preset standard charging power, the operation of S402 is performed; if the second output power is less than the preset standard charging power, the operation of S403 is performed; The second output power is equal to the preset standard charging power, which means that the battery charging compartment charges the battery in the rated working mode. In this case, the current output current is continuously maintained, and the battery can be charged without adjustment. operating.
  • the second output power for charging is greater than the preset standard charging power, it means that the electric energy consumed by the charging is excessive, so it is necessary to gradually reduce the output current of all the charging power sources in the third step until The second output power is equal to the standard charging power.
  • the charging time process may be caused, so the output current of each charging power source is increased in the third step until the second output power and the standard charging power. equal.
  • the switching state of each target power source and the value of the output current are adjusted according to the actual output power, thereby achieving the purpose of accurately regulating the charging process, and taking into consideration the charging efficiency and safety of the system for controlling battery charging. .
  • FIG. 5 is a flowchart showing a specific implementation of a method S103 for controlling battery charging according to a fifth embodiment of the present application.
  • the charging environment parameter is collected, and according to the The charging environment parameters determine the charging mode, including S1031 and S1032:
  • the charging environment parameter includes the temperature parameter of the battery charging bin and the number of running of the charging bin that is currently being tested.
  • the charging management device will send a temperature acquisition request to the battery charging bin, and the battery charging bin will obtain the temperature value in the current bin, the ambient temperature value outside the bin, and the temperature value of the battery surface, and the above three
  • the temperature value generates a temperature parameter that is returned to the charge management device.
  • the charging management device also acquires the working state of each battery charging bin, and records the working state as the number of occupied battery charging bins, which is identified as the number of running.
  • the charging mode is determined according to the temperature parameter and the number of runs.
  • the number of operation of the battery charging bin determines whether the current charging state or the idle state charging state determines the number of charging power sources that need to be turned on, and then determines the output current of each charging power source according to the temperature parameter, and The corresponding charging mode is obtained by the above two parameters. Specifically, if the number of running of the battery charging bin is greater than a preset number threshold, it indicates that more batteries are used for charging operation, and the overall system consumes a large amount of power, so it will be recognized as a busy state of power consumption; If the number of running is less than or equal to the preset threshold, it means that the number of batteries currently charged is small, and the power consumption of the overall system is small, so it is recognized as the idle charging state.
  • the charging mode is determined by obtaining the temperature parameter of the battery charging bin and the running number of the battery charging bin currently running, thereby improving the matching degree between the charging mode and the current charging environment of the battery, and improving the safety of charging. And charging efficiency.
  • FIG. 6 is a flowchart showing a specific implementation of a method S103 for controlling battery charging according to a sixth embodiment of the present application.
  • the method for controlling battery charging according to the embodiment of FIG. 5 after the charging execution instruction carrying the charging mode is sent to the battery charging bin, Also included are S601 and S602.
  • the battery charging compartment feeds back the temperature parameter to the charging management device at a preset frequency during the charging process, and the charging management device compares the temperature parameter with the preset temperature threshold, if the temperature parameter exceeds the preset.
  • the temperature threshold indicates that the temperature of the battery charging compartment is too high, and the related operation of S602 is performed; if the temperature parameter is less than or equal to the preset temperature threshold, it indicates that the temperature of the battery charging battery is in a normal range, and there is no need to dissipate heat in the chamber.
  • the method for reducing the temperature of the battery charging compartment includes: performing a heat dissipation operation and reducing an output current of the charging power source.
  • the heat dissipation operation may be: the charging management device starts the heat dissipation device, and the heat dissipation device heats the battery charging compartment, for example, turns on the air conditioner or the ventilation fan; the charging management device can also reduce the output current of the charging power source to reduce the charging time. The heat, which in turn reduces the temperature of the battery charging compartment.
  • the charging management device can start one of the above two methods for cooling, or can adopt two means at the same time, which is determined according to the setting of the user.
  • the battery by monitoring the temperature parameter, the battery can be correspondingly protected in real time even during the charging process, thereby improving the safety of the battery charging process.
  • FIG. 7 is a flowchart showing a specific implementation of a method for controlling battery charging according to a seventh embodiment of the present application.
  • the present embodiment provides a method for controlling battery charging in the state parameter of the battery that is received by the battery charging bin, and according to the After the status parameter of the battery identifies the operating state of the battery, S701 is further included.
  • the charging management device detects that the battery is in an abnormal state, it indicates that the battery is not suitable for charging operation at present. If the battery is charged, there may be a security risk, and therefore, the charging management device sends a message to the server. The battery abnormality notification is then forwarded to the charging management device of the corresponding processing personnel according to the battery abnormality notification to notify the processing personnel to perform thread processing.
  • the charging management device may further identify and classify the abnormal state of the battery, and determine an abnormal type of the battery, where the abnormal type may be: battery damage, battery aging, battery output abnormality, etc., and generate according to the identified abnormal type.
  • Battery abnormal notification After receiving the battery abnormality notification, the server determines the corresponding processing personnel according to the abnormality type, and pushes the battery abnormality notification to the terminal of the processing personnel.
  • the battery abnormality notification is sent to notify the relevant processing person to perform an abnormal response, thereby improving the safety of the battery use, and the abnormality detection is completed by the terminal, and need not be performed.
  • Users have the relevant expertise to facilitate user anomaly detection.
  • FIG. 8 is a structural block diagram of a charging management device according to an embodiment of the present application.
  • the charging management device includes units for performing the steps in the embodiments corresponding to FIG. 1 to FIG. 7.
  • the charging management device includes units for performing the steps in the embodiments corresponding to FIG. 1 to FIG. 7.
  • only the parts related to the present embodiment are shown.
  • a charging management device includes:
  • the issuing order sending unit 81 is configured to receive a battery charging request, and send a opening order to the battery charging bin, where the opening order is used to control the battery charging bin to open the door;
  • the state parameter receiving unit 82 is configured to receive a state parameter of the battery sent by the battery charging bin, and identify an operating state of the battery according to the state parameter of the battery; the state parameter of the battery is in the battery charging bin Collected when the battery to be charged is placed in the warehouse;
  • the charging mode determining unit 83 is configured to collect a charging environment parameter if the battery is in a normal state, and determine a charging mode according to the charging environment parameter;
  • a battery charging execution unit 84 configured to send, to the battery charging bin, a charging control command carrying information of the charging mode; the charging control command is configured to control the battery charging bin to adjust a charging power source according to the charging mode The current is output to charge the battery.
  • the number of the charging power sources is multiple, and the battery charging execution unit 84 includes:
  • a target power determining unit configured to select the first N charging power sources as the target power source based on the order of the charging power source from the largest to the smallest if the charging mode is the busy charging mode, where the value of N is less than The total number of charging power sources;
  • a busy charging execution unit configured to generate a busy charging instruction according to the power identification of the target power supply, and send the busy charging instruction to the battery charging bin;
  • the busy charging instruction is used to control the battery charging warehouse startup Determining a target power source, and setting an output current of each of the target power sources to a first output current to charge the battery;
  • a idle time charging execution unit configured to generate a idle time charging command if the charging mode is a free time charging mode, and send the idle time charging command to the battery charging bin; the idle time point command is used for controlling
  • the battery charging compartment activates all of the charging power sources, and sets an output current of each of the charging power sources to a second output current to charge the battery.
  • the charging management device further includes:
  • a first output power monitoring unit configured to monitor a first output power output by the battery charging compartment when charging the battery
  • a target power off unit configured to turn off any one of the target power sources if the first output power is greater than a preset standard charging power, and adjust an output current of the currently activated target power source by using a first step length;
  • a target power-on unit configured to: if the first output power is less than the standard charging power, select a charging power source with the largest power value as the target power source from the unpowered charging power source, and adjust the second step The output current of all target power supplies currently turned on.
  • the charging management device further includes:
  • a second output power monitoring unit configured to monitor a second output power output by the battery charging compartment when charging the battery
  • a first adjusting unit configured to reduce an output current of the charging power source by a third step if the second output power is greater than a preset standard charging power
  • a second adjusting unit configured to increase an output current of the charging power source by a third step if the second output power is less than a preset standard charging power.
  • the charging mode determining unit 83 includes:
  • a state parameter obtaining unit configured to acquire a temperature parameter of the battery charging bin, and a running number of battery charging bins currently performing a charging operation
  • a state parameter conversion unit configured to determine the charging mode according to the temperature parameter and the number of operations.
  • the charging management device further includes:
  • the heat dissipation response unit is configured to perform a heat dissipation operation and/or reduce an output current of the charging power source if the temperature parameter exceeds a preset temperature threshold.
  • the status parameter includes at least one of the following: a battery operating voltage, a battery capacity, a battery state of charge, and a number of times of charging.
  • the charging management device further includes:
  • the abnormality notification transmitting unit is configured to send a battery abnormality notification to the server if the battery is in an abnormal state.
  • the charging management device can also collect the state parameter of the battery before charging the battery, determine whether the battery is an abnormal battery, and only charge the battery whose working state is normal, and for the abnormal battery. For example, if the battery is damaged or the number of battery usage exceeds the limit, it may be a safety hazard to continue charging it. Therefore, the abnormal battery is not charged, and the abnormal monitoring step is pre-charged before the charging operation, thereby improving the safety of the battery charging. Moreover, by collecting the charging environment parameters, the charging mode that matches the battery at the current time is determined, and the charging efficiency is also improved.
  • FIG. 9 is a schematic diagram of a system for controlling battery charging according to an embodiment of the present application.
  • the terminal and device included in the system for controlling battery charging are used to perform steps in the embodiments corresponding to FIG. 1 to FIG. 7. .
  • only the parts related to the present embodiment are shown.
  • a system for controlling battery charging includes: a charging management device 91, a battery charging chamber 92, and a charging power source 93;
  • the charging management device 91 receives a battery charging request, and sends a battery opening command to the battery charging bin 92, the opening command is used to control the battery charging bin 92 to open the door;
  • the battery charging compartment 92 when detecting that the battery is to be charged in the cartridge body, collects the state parameter of the battery, and sends the state parameter to the charging management device 91;
  • the charging management device 91 identifies an operating state of the battery according to a state parameter of the battery
  • the charging management device 91 recognizes that the battery is in a normal state, collecting a charging environment parameter, and determining a charging mode according to the charging environment parameter;
  • the battery charging compartment 92 receives a charging control instruction sent by the charging management device 91 carrying the information of the charging mode;
  • the battery charging compartment 92 adjusts the output current of the charging power source 93 according to the charging mode to charge the battery.
  • the charging management device 91 further includes a security management module, where the security management module includes a remote power-off unit, an input power management unit, a lightning protection unit, and a water inlet protection unit, configured to secure the system for controlling battery charging. Protection and improve the safety of equipment.
  • the security management module includes a remote power-off unit, an input power management unit, a lightning protection unit, and a water inlet protection unit, configured to secure the system for controlling battery charging. Protection and improve the safety of equipment.
  • the charging management device 91 further includes an intelligent communication interface for communicating with the cloud platform and performing data interaction with the server 94 and the user terminal 95 through the cloud platform.
  • the charging management device 91 further includes a temperature management module, where the temperature management module includes a charging power cooling unit, a cabinet cooling unit, and a battery charging compartment heat dissipation unit.
  • the temperature management module includes a charging power cooling unit, a cabinet cooling unit, and a battery charging compartment heat dissipation unit.
  • the charging management device 91 further includes a module management communication module for communicating with the battery charging bay 92 and the charging power source 93.
  • the battery charging compartment 92 further includes a charging communication unit for communicating with the charging power source to control an output parameter of the charging power source.
  • the battery charging compartment 92 further includes an information communication unit for communicating with the charging management device 91.
  • the battery charging compartment 92 further includes a lock battery unit for locking the battery when the battery to be charged is placed in the bin.
  • the battery charging compartment 92 can also communicate with the battery to be charged through an interface such as NFC/serial port/I2C/485 to obtain the state parameter of the battery.
  • FIG. 10 is a schematic diagram of a charging management device according to another embodiment of the present application.
  • the charge management device 10 of this embodiment includes a processor 100, a memory 101, and a computer program 102 stored in the memory 101 and operable on the processor 100, for example, controlling battery charging. program.
  • the functions of the units in the above various device embodiments are implemented, such as the functions of the modules 81 to 84 shown in FIG.
  • the computer program 102 can be partitioned into one or more units that are stored in the memory 101 and executed by the processor 100 to complete the application.
  • the one or more units may be a series of computer program instruction segments capable of performing a particular function for describing the execution of the computer program 102 in the charge management device 10.
  • the computer program 102 can be divided into a hairpin instruction transmitting unit, a state parameter receiving unit, a charging mode determining unit, and a battery charging executing unit.
  • the charging management device 10 can be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the charging management device may include, but is not limited to, the processor 100 and the memory 101. It will be understood by those skilled in the art that FIG. 10 is merely an example of the charging management device 10, does not constitute a limitation of the charging management device 10, may include more or less components than those illustrated, or may combine certain components, or different.
  • the components, such as the charging management device may also include input and output devices, network access devices, buses, and the like.
  • the so-called processor 100 can be a central processing unit (Central Processing Unit, CPU), can also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 101 may be an internal storage unit of the charging management device 10, such as a hard disk or a memory of the charging management device 10.
  • the memory 101 may also be an external storage device of the charging management device 10, such as a plug-in hard disk provided on the charging management device 10, a smart memory card (SMC), and a secure digital (Secure Digital, SD) card, flash card (Flash Card) and so on.
  • the memory 101 may also include both an internal storage unit of the charging management device 10 and an external storage device.
  • the memory 101 is used to store the computer program and other programs and data required by the charge management device.
  • the memory 101 can also be used to temporarily store data that has been output or is about to be output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种控制电池充电的方法、设备及其***,包括:接收电池充电请求,并向电池充电仓发送开仓指令(S101);接收电池充电仓发送的电池的状态参数,并根据电池的状态参数识别电池的工作状态(S102);若电池处于正常状态,则采集充电环境参数,并根据充电环境参数确定充电模式(S103);向电池充电仓发送携带有充电模式的信息的充电控制指令(S104)。该控制电池充电的方法、设备及其***能够将异常监测的步骤前置到充电操作之前,提高了电池充电的安全性。并且,通过采集充电环境参数,确定当前时刻与电池匹配的充电模式,也提高了充电的效率。

Description

一种控制电池充电的方法、设备及其*** 技术领域
本申请属于电池技术领域,尤其涉及一种控制电池充电的方法、设备及其***。
背景技术
随着清洁能源的不断普及,越来越多用户的出行工具也从汽油驱动转变为清洁能源驱动。电能作为应用领域最广的清洁能源,其电池充电的便捷性以及安全性决定着电能驱动普及速度。然而现有的电池充电装置,只是单纯给用户提供的电池完成充电操作,而并不关心所需充电电池的状态是否良好,而用户由于缺乏专业知识,只有在电池出现异常情况时才发现该电池需要维修,可能会导致电池***的风险,安全性较低。
技术问题
有鉴于此,本申请实施例提供了一种控制电池充电的方法、设备及其***,以解决现有的电池充电装置,只是单纯给用户提供的电池完成充电操作,只有在电池出现异常情况时才发现该电池需要维修,可能会导致电池***的风险,安全性较低的问题。
技术解决方案
接收电池充电请求,并向电池充电仓发送开仓指令,所述开仓指令用于控制所述电池充电仓开启仓门;
接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态;所述电池的状态参数由所述电池充电仓在检测到仓体内放置有待充电的电池时采集得到;
若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式;
向所述电池充电仓发送携带有所述充电模式的信息的充电控制指令;所述充电控制指令用于控制所述电池充电仓根据所述充电模式调整充电电源的输出电流,对所述电池进行充电。
有益效果
实施本申请实施例提供的一种控制电池充电的方法具有以下有益效果:
本申请实施例通过电池充电仓采集待充电的电池的状态参数,并根据该电池的状态参数确定电池的工作状态,识别该电池是否存在异常,对于正常的电池执行充电流程,采集当前时刻的充电环境参数,确定与该电池相匹配的充电模式,并根据该充电模式生成充电控制指令,电池充电仓根据该充电控制指令调整充电电源的输出电流,实现对电池进行充电的目的,提高了电池充电的安全性。并且,通过采集充电环境参数,确定当前时刻与电池匹配的充电模式,也提高了充电的效率。
附图说明
图1是本申请第一实施例提供的一种控制电池充电的方法的实现流程图;
图2是本申请第二实施例提供一种控制电池充电方法S104实现流程图;
图3是本申请第三实施例提供的一种控制电池充电方法具体实现流程图;
图4是本申请第四实施例提供的一种控制电池充电方法具体实现流程图;
图5是本申请第五实施例提供的一种控制电池充电方法S103实现流程图;
图6是本申请第六实施例提供的一种控制电池充电方法具体实现流程图;
图7是本申请第七实施例提供的一种控制电池充电方法具体实现流程图;
图8是本申请一实施例提供的一种充电管理设备的结构框图;
图9是本申请一实施例提供的一种控制电池充电的***的示意图;
图10是本申请一实施例提供的一种充电管理设备的示意图。
本发明的实施方式
在本申请实施例中,流程的执行主体为安装有控制电池充电的程序的充电管理设备,图1示出了本申请第一实施例提供的控制电池充电的方法的实现流程图,详述如下:
在S101中,接收电池充电请求,并向电池充电仓发送开仓指令,所述开仓指令用于控制所述电池充电仓开启仓门。
在本实施例中,当用户需要对电池进行充电时,可以向充电管理设备发送一个电池充电请求,继而充电管理设备在接收到该电池充电请求后,将执行电池充电响应操作。具体地,用户可通过用户终端向充电管理设备发送该电池充电请求,或在充电管理设备的交互界面上直接生成一个电池充电请求。
可选地,用户终端可向充电管理设备所属的服务器发送电池充电请求,继而服务器对该电池充电请求进行鉴权操作,例如对该用户账户的合法性进行校验,或者判断用户账户的余额是否充足用于支付本次充电操作等,当服务器确定该用户账户鉴权成功后,则向充电管理设备发送一个电池充电请求,以便充电管理设备启动充电流程。
当然,用户终端还可以向服务器发送充电管理设备查询请求,继而服务器根据用户终端所在的位置,向用户推送离当前位置较近的充电管理设备的位置信息,通过调用用户终端中内置的第三方电子地图应用程序,将上述充电管理设备的位置在电子地图上标注。
可选地,用户可向充电管理设备发送充电预约请求,该充电预约请求包含预约充电的时间以及所需充电的电池的数量。充电管理设备在接收到该充电预约请求时,将根据所需充电的电池的数量,锁定相应数量的电池充电仓,并设置电池充电仓在预约充电时间所对应的工作状态为占用,以便到达预约时间时,上述锁定的电池充电仓不响应其他用户的充电请求。优选地,充电管理设备在到达预约充电的时刻之前还可以向用户发送充电提醒信息,以提醒用户携带电池进行充电。
在本实施例中,充电管理设备可以用于管理多个电池充电仓,当接收到用户发起的电池充电请求时,充电管理设备首先查询各个电池充电仓的工作状态,确定哪些电池充电仓是被占用的,哪些电池充电仓是空闲的,将空闲的一个电池充电仓作为本次供用户进行电池充电的目标充电仓,并向该目标充电仓发送开仓指令。当电池充电仓接收到该开仓指令后,则开启电池充电仓的仓门,以便用户将待充电的电池放置入电池充电仓的仓体内。
可选地,充电管理设备还向用户反馈一个充电指示信息,该充电指示信息中包含电池充电仓的标识或位置信息,用户可根据该充电指示信息确定对应的电池充电仓。
在S102中,接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态;所述电池的状态参数由所述电池充电仓在检测到仓体内放置有待充电的电池时采集得到。
在本实施例中,电池充电仓在开启仓门后,则实时检测用户是否将待充电的电池放置入仓体内,若检测到仓体内放置有待充电的电池,则获取该电池的状态参数。具体地,检测是否有电池放置入仓体内的方式可以为:电池充电仓的底座中设置有压力传感器,当检测到压力传感器的压力值大于预设阈值时,则证明有电池放置入仓体内,则关闭电池充电仓的仓门,开启状态参数的获取操作。
在本实施例中,电池充电仓对待充电的电池进行充放电操作,以获取该电池的常规工作状态下的状态参数,并将采集到的状态参数发送给充电管理设备。充电管理设备在接收到该状态参数后,将根据该状态参数确定该电池是否为异常电池。其中,识别电池的工作状态的方式可以为:将状态参数中各项参数值与对应的标准参数范围进行比对,若任一项参数值超出与之对应的标准参数范围,则识别该电池处于异常状态,执行异常处理操作;反之,若各项参数值均在对应的标准参数范围内,则是被该电池处于正常状态,执行S103的相关操作。
可选地,作为本申请另一实施例,所述状态参数包括以下至少一种:电池工作电压、电池容量、电池荷电状态以及充电次数。由于电池是否良好主要可以通过上述各个指标体体现:
第一,若电池处于正常状态,其输出电压是稳定且固定的,则为额定电压,对于电流源而言,则为额定电流,因此充电管理设备可获取该电池的工作电压,与额定电压进行比较,若两者之间的差异超过预设阈值,则表示该电池的输出电压偏差较大,识别该电池处于异常状态。
第二,电池的存储电荷的能力,也是衡量电池是否正常的重要指标之一。若电池的存储电荷的容量,即电池容量,因此充电管理设备获取待充电的电池的标准电池容量,将采集得到的电池容量与标准电池容量进行比对,若两者之间的差值小于预设阈值,则表示该电池处于正常状态,反之,则可能该电池用于蓄电的化学物质存在异常,无法存储标准的电荷量,识别该电池处于异常状态。
第三,电池荷电状态包含两个数值,分别为充电完成时对应的荷电状态SOC1以及放电完成时对应的荷电状态SOC2,将计算SOC1与1之间的差值,以及计算SOC2与0之间的差值,若上述任一个差值大于预设阈值,则识别该电池处于异常状态,反之,若上述两个差值均小于或等于预设阈值,则识别该电池处于正常状态。
第四,每个电池均有一定的充电次数限制,当电池的充电次数超过预设的次数阈值,则表示该电池已经超出使用时限,再次充电可能会存在危险,因此识别该电池需要进行回收,在该情况下,充电管理设备将向服务器发送一个电池回收请求,服务器在接收到该电池回收请求后,则转发给对应的回收处理人员,回收处理人员对该电池进行回收,避免该电池对环境造成污染。
在S103中,若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式。
在本实施例中,只有在电池处于正常状态下,充电管理设备才对该电池进行充电操作,从而降低了对异常电池充电而引发的诸如电池电量泄露、电池***等危险情况的发生,提高了充电操作的安全性。在进行充电之前,为了提供与该电池匹配的充电模式,提高充电效率,充电管理设备还采集当前的充电环境参数,根据充电环境参数确定充电模式。
在本实施例中,充电环境参数包括但不限于以下至少一种:电池的温度值、电池充电仓的仓内温度值、当前可用的最大功率值、可用的充电电源的个数等。充电管理设备则根据采集得到的充电环境参数,确定对电池充电的输出功率、输出电流以及充电时间,继而得到该电池的充电模式。
例如,由于对电池充电会产生一定的热量,电池的温度以及电池充电仓的温度越高,因此充电的输出功率则较低;若当前可用的最大功率值越高,也可以适当地提高充电的输出功率。当然充电电源的可用个数越多,能够提供用于充电的输出功率将越大。
可选地,在S104中,充电管理设备除了获取充电环境参数之外,还可以获取电池的型号,根据该电池的型号确定该电池的最大充电电压或最大充电电流,继而根据最大充电电压或最大充电电流,以及上述获取到的充电环境参数,确定该待充电电池的充电模式,从而兼顾了充电效率,还能保证安全充电。例如对于输出电压48V的电池,其充电电压为最高为54.6V;而对于输出电压60V的电池,其最大充电电压可以调整为67.2V。
可选地,若电池处于异常状态,充电管理设备则拒绝用户的充电请求,打开电池充电仓的仓门,弹出待充电的电池,并将异常报告输出给终端,输出的方式可以为,在充电管理设备的显示界面中进行显示,或将该异常报告发送给用户终端。
在S104中,向所述电池充电仓发送携带有所述充电模式的信息的充电控制指令;所述充电控制指令用于控制所述电池充电仓根据所述充电模式调整充电电源的输出电流,对所述电池进行充电。
在本实施例中,充电管理设备根据充电模式生成充电控制指令,该充电控制指令中携带有充电模式的信息。然后,充电管理设备将生成的充电控制指令发送给电池充电仓,以便电池充电仓根据该充电控制指令对电池进行充电。
在本实施例中,电池充电仓在接收到充电控制指令后,则根据该充电控制指令,开启对应数量的充电电源,以及调整各个充电电源的输出电流,以使各个充电电源的输出功率之和与充电控制指令所要求的输出功率一致,由于充电电源的输出端与充电供电仓的充电输入端相连,因此充电电源的输出功率实际就是对待充电的电池进行充电的充电功率。
可选地,在本实施例中,电池充电仓在对电池进行充电的过程中,以预设的时间间隔采集电池的充电状态参数,该充电状态参数包括但不限于:当前充电电量、实际充电功率、充电损耗比。电池充电仓将充电状态参数发送给充电管理设备,充电管理设备根据充电状态参数判断电池是否存在损坏,若识别电池存在损坏,则停止对电池的充电操作,并向服务器发送电池损坏信息,以便通知相关的维护人员对电池进行维修。其中,充电管理设备识别电池是否损坏的方式为:将充电状态参数中各个参数值与对应的标准充电参数阈值进行比对,判断是否超过标准充电参数阈值,若任一参数值超过与之对应的标准充电参数阈值,则识别该电池为损坏电池。例如,若该电池的充电损耗比较大,即充电损耗的电量与总输入电量之间的比值大于标准损坏比,则表示该电池存在漏电情况,因此判断该电池存在损坏。
以上可以看出,本申请通过电池充电仓采集待充电的电池的状态参数,并根据该电池的状态参数确定电池的工作状态,识别该电池是否存在异常,对于正常的电池执行充电流程,采集当前时刻的充电环境参数,确定与该电池相匹配的充电模式,并根据该充电模式生成充电控制指令,电池充电仓根据该充电控制指令调整充电电源的输出电流,实现对电池进行充电的目的。与现有的控制电池充电技术相比,本申请实施例在对电池充电之前采集该电池的状态参数,判定该电池是否为异常电池,只对电池的工作状态为正常状态的电池进行充电,而对于异常电池,例如电池损坏或电池使用次数超出限制,继续对其充电可能存在安全隐患,因此不对该类型异常电池进行充电,将异常监测的步骤前置到充电操作之前,提高了电池充电的安全性。并且,通过采集充电环境参数,确定当前时刻与电池匹配的充电模式,也提高了充电的效率。
图2示出了本申请第二实施例提供的一种控制电池充电的方法S104的具体实现流程图。参见图2所示,相对于图1所述实施例,本实施例提供的一种控制电池充电的方法S104包括S1041~S1043,详述如下:
在S1041中,若所述充电模式为繁忙充电模式,则基于所述充电电源的电量值从大到小的次序,选取前N个充电电源作为目标电源,所述N的值小于所述充电电源的总个数。
在本实施例中,用于给电池充电的充电电源有多个,且每个充电电源由于使用次数以及使用时长存在差异,其剩余的电量值也各不相同,需要说明的是,当哥哥充电电源的电量充满的情况下,其电量值的相同的。
在本实施例中,若充电管理设备检测到当前处于用电高峰期,则会确定当前的充电模式为繁忙充电模式,并获取当前时刻各个充电电源的电量值,以确定选取合适的目标电源对电池进行充电。其中,充电管理设备根据各个充电电源的电量值由大到小进行排序,并选取电量值较大的前N个充电电源作为目标电源,通过目标电源对电池进行充电。其中,该N值可根据充电管理员的需求进行设置,当N值必须小于充电电源的总个数。优选地,该N值可以为充电电源的总个数的二分之一。
在本实施例中,充电管理设备可根据当前的用电情况,即整个控制电池充电的***的消耗功率,确定当前是否为用电高峰。若消耗功率大于预设的功率阈值,则表示整个***的电量消耗较大,若采用闲时充电模式,则会导致整体消耗过大,因此将限制启动的充电电源的数量;反之,若消耗功率小于或等于预设的功率阈值,则表示整个***的电量消耗较低,可启动所有充电电源对电池进行充电。
在S1042中,根据所述目标供电源的电源标识生成繁忙充电指令,并向所述电池充电仓发送所述繁忙充电指令;所述繁忙充电指令用于控制所述电池充电仓启动所述目标电源,并将各个所述目标电源的输出电流设置为第一输出电流,对所述电池进行充电。
在本实施例中,充电管理设备在确定了目标电源后,将获取各个目标电源的电源标识,该电源标识可以为电源编号或该电源的输出线路,根据电源标识生成繁忙充电指令,并向电池充电仓发送繁忙充电指令,继而电池充电仓可根据该繁忙充电指令中携带有的电池标识,开启对应的目标电源,并调整各个目标电源的输出电流为第一输出电流,以使各个目标电源的总输出功率与繁忙充电指令中预设的充电功率一致。
在S1043中,若所述充电模式为闲时充电模式,则生成闲时充电指令,并向所述电池充电仓发送所述闲时充电指令;所述闲时空点指令用于控制所述电池充电仓启动所有所述充电电源,并将各个所述充电电源的输出电流设置为第二输出电流,对所述电池进行充电。
在本实施例中,若充电管理设备检测到当前并非处于用电高峰期,则确定当前的充电模式为闲时充电模式,在该模式下,充电管理设备则开启所有充电电源对电池进行充电。其中,闲时充电指令中目标电池的参数值可以设置为缺省,电池充电仓若检测到充电控制指令中目标电池的参数值为空,则表示需要开启所有充电电源;当然,充电管理设备同样可以将所有充电电源的电源标识封装于该闲时充电指令内,以便电池充电仓根据充电控制指令中记载的电源标识开启所有充电电源。
在本实施例中,电池充电仓在接收到闲时充电指令后,则开启所有充电电源,并将所有充电电源的输出电流设置为第二输出电流,以使所有充电电源的输出功率之和与闲时充电指令中预设的充电功率一致。
需要说明的是,由于繁忙充电模式开启的电池的数量较少,为了保证繁忙充电模式的充电效率与闲时充电模式的充电效率相当,因此第一输出电流应大于第二输出电流,优选地,两者的关系可以为: N 1I 1=N I 2 ,其中, N 1 为目标电源的个数, I 1 为第一输出电流, N 为充电电源的总个数, I 2 为第二输出电流。
在本申请实施例中,通过区分显示充电模式以及繁忙充电模式,确定开启充电电源的数量,实现对电池进行高效充电的目的,提高了电池充电的效率,同时节省了用户对电池进行充电所需的时间,提高用户的使用体验。
图3示出了本申请第三实施例提供的一种控制电池充电的方法的具体实现流程图。参见图3所示,相对于图2所述实施例,本实施例提供的一种控制电池充电的方法在所述根据所述目标供电源的电源标识生成繁忙充电指令,并向所述电池充电仓发送所述繁忙充电指令之后,还包括 S301~S303:
在S301中,监测所述电池充电仓对所述电池进行充电时输出的第一输出功率。
在本实施例中,充电管理设备在执行电池充电的过程中,会监测电池充电仓对电池进行充电时的第一输出功率,并将该第一输出功率与生成的繁忙充电指令中包含的标准充电功率进行比对,若第一输出功率大于预设的标准充电功率,则执行S302的操作;若第一输出功率小于预设的标准充电功率,则执行S303的操作;而当第一输出功率等于预设的标准充电功率,则表示电池充电仓在额定的工作模式下对电池进行充电,在该情况下,继续保持当前的输出电流以及开启的目标电源的个数,对电池进行充电即可,无需进行调整操作。
可选地,该标准充电功率可根据控制电池充电的***所在的区域的最大取电功率进行设置。
在S302中,若所述第一输出功率大于预设的标准充电功率,则关闭任一个所述目标电源,并以第一步长调整当前启动的目标电源的输出电流。
在本实施例中,若第一输出功率大于预设的标准充电功率,则表示充电所消耗的功率过高,可能会存在用电危险,或者影响其他设备的正常运作。在该情况下,充电管理设备则关闭正在运行的其中一个目标电源,选取的方式可以为随机选取,也可以选取电量值最少的一个目标电源作为进行关闭的目标电源。在关闭操作完成后,充电管理设备则以第一步长逐步调整剩余的正在启动的目标电源的输出电流,以使第一输出功率与标准充电功率一致。
在本实施例中,若关闭了一个目标电源后,当前的第一输出功率仍大于标准充电功率,则以第一步长减少各个目标电源的输出电流;若当前的第一输出功率小于标准充电功率,则以第一步长增大各个目标电源的输出电流。当检测到第一输出功率等于标准充电功率时,停止调整操作。
在S303中,若所述第一输出功率小于所述标准充电功率,则从未开启的充电电源中选取电量值最大的一个充电电源作为所述目标电源,并以第二步长调整当前开启的所有目标电源的输出电流。
在本实施例中,若第一输出功率小于预设的标准充电功率,则表示充电所消耗的功率过低,完成对电池充电所需的时间会过长。在该情况下,充电管理设备则从未开启的充电电源中选取电量值最大的一个充电电源作为目标电源,并开启该目标电源。继而充电管理设备则以第二步长逐步调整当前正在启动的所有目标电源的输出电流,包括新加入的目标电源以及之前已经开启的目标电源的输出电流,以使第一输出功率与标准充电功率一致。需要说明的是,新设置的目标电源的初始电流值与第二输出电流的值相等。
在本申请实施例中,根据实际的输出功率调整各个目标电源的开关状态以及输出电流的数值,实现精准调控充电过程的目的,同时兼顾了控制电池充电的***的充电效率以及安全性。
图4示出了本申请第四实施例提供的一种控制电池充电的方法的具体实现流程图。参见图4所示,相对于图2所述实施例,本实施例提供的一种控制电池充电的方法在所述若所述充电模式为闲时充电模式,则生成闲时充电指令,对所述电池进行充电之后,还包括S401~S403:
在S401中,监测所述电池充电仓对所述电池进行充电时输出的第二输出功率。
与S301的实现过程类似,充电管理设备在执行闲时充电模式时,也同样会监测电池充电仓对电池进行充电时的第二输出功率,并将该第一输出功率与生成的闲时充电指令中包含的标准充电功率进行比对,若第二输出功率大于预设的标准充电功率,则执行S402的操作;若第二输出功率小于预设的标准充电功率,则执行S403的操作;而当第二输出功率等于预设的标准充电功率,则表示电池充电仓在额定的工作模式下对电池进行充电,在该情况下,继续保持当前的输出电流,对电池进行充电即可,无需进行调整操作。
在S402中,若所述第二输出功率大于预设的标准充电功率,则以第三步长减少所述充电电源的输出电流。
在本实施例中,由于用于充电的第二输出功率大于预设的标准充电功率,则表示充电所消耗的电能过多,因此需要以第三步长逐步减少所有充电电源的输出电流,直到第二输出功率与标准充电功率相等。
在S403中,若所述第二输出功率小于预设的标准充电功率,则以第三步长增大所述充电电源的输出电流。
在本实施例中,由于第二输出功率小于预设的标准充电功率,则可能导致充电时间过程,因此以第三步长增大各个充电电源的输出电流,直到第二输出功率与标准充电功率相等。
在本申请实施例中,根据实际的输出功率调整各个目标电源的开关状态以及输出电流的数值,实现精准调控充电过程的目的,同时兼顾了控制电池充电的***的充电效率以及安全性。。
图5示出了本申请第五实施例提供的一种控制电池充电的方法S103的具体实现流程图。参见图5所示,相对于图1-图4所述实施例,本实施例提供的一种控制电池充电的方法中所述若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式,包括S1031以及S1032:
在S1031中,获取所述电池充电仓的温度参数,以及当前执行充电操作的电池充电仓的运行个数。
在本实施例中,充电环境参数包括电池充电仓的温度参数以及当前正在执行充电操作的待测你还充电仓的运行个数。
在本实施例中,充电管理设备将发送一个温度获取请求给到电池充电仓,电池充电仓将获取当前仓体内的温度值、仓体外的环境温度值以及电池表面的温度值,将上述三个温度值生成温度参数,返回给充电管理设备。
在本实施例中,充电管理设备还获取各个电池充电仓的工作状态,记录工作状态为占用的电池充电仓的个数,识别为运行个数。
在S1032中,根据所述温度参数以及所述运行个数,确定所述充电模式。
在本实施例中,电池充电仓的运行个数,确定当前为充电繁忙状态或是闲时充电状态,确定需要开启的充电电源的个数,继而根据温度参数确定各个充电电源的输出电流,并通过上述两个参数得到对应的充电模式。具体地,若电池充电仓的运行个数大于预设的个数阈值,则表示有较多的电池进行充电操作,整体***的消耗功率较大,因此将识别为用电繁忙状态;反之,若运行个数小于或等于预设的个数阈值,则表示当前充电的电池数量较少,整体***的消耗功率较小,因此识别为闲时充电状态。
在本申请实施例中,通过获取电池充电仓的温度参数以及当前运行的电池充电仓的运行个数,确定充电模式,提高了充电模式与电池当前充电环境的匹配度,提高了充电的安全性以及充电效率。
图6示出了本申请第六实施例提供的一种控制电池充电的方法S103的具体实现流程图。参见图6所示,相对于图5所述实施例,本实施例提供的一种控制电池充电的方法中在所述向所述电池充电仓发送携带有所述充电模式的充电执行指令之后,还包括S601以及S602。
在S601中,检测所述温度参数是否超过预设的温度阈值。
在本实施例中,电池充电仓在充电的过程中以预设的频率向充电管理设备反馈温度参数,充电管理设备将该温度参数与预设的温度阈值进行比对,若温度参数超过预设的温度阈值,则表示电池充电仓的温度过高,执行S602的相关操作;若温度参数小于或等于预设的温度阈值,则表示电池充电池的温度处于正常范围,无需对仓内进行散热。
在S602中,若所述温度参数超过预设的温度阈值,则执行散热操作,和/或降低所述充电电源的输出电流。
在本实施例中,充电管理设备若检测到温度参数超过温度阈值,则需要采取相关的措施降低电池充电仓的温度,避免因过热而导致电池损坏,降低事故发生的几率。其中,降低电池充电仓温度的方法包括:执行散热操作以及降低充电电源的输出电流。其中,散热操作可以为:充电管理设备启动散热设备,通过散热设备对电池充电仓进行散热,例如开启空调或换气风扇;充电管理设备还可以降低充电电源的输出电流,以降低充电时所产生的热量,继而降低电池充电仓的温度。充电管理设备可启动上述两种手段中的一种进行降温,也可以同时采用两种手段,具体根据用户的设置而确定。
在本申请实施例中,通过对温度参数进行监测,即便在充电过程中也能够实时对电池采取相应的保护措施,从而提高了电池充电过程的安全性。
图7示出了本申请第七实施例提供的一种控制电池充电的方法的具体实现流程图。参见图7所示,相对于图1-图4所述实施例,本实施例提供的一种控制电池充电的方法中在所述接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态之后,还包括S701。
在S701中,若所述电池处于异常状态,则向服务器发送电池异常通知。
在本实施例中,若充电管理设备检测到电池处于异常状态,则表示电池当前不适合进行充电操作,若对该电池进行充电,可能会存在安全风险,因此,充电管理设备会向服务器发送一个电池异常通知,继而服务器根据该电池异常通知转发给对应的处理人员的充电管理设备,以通知该处理人员进行线程处理。
可选地,充电管理设备还可以对电池的异常状态进行识别、分类,确定该电池的异常类型,异常类型可以为:电池损坏、电池老化、电池输出异常等类型,根据识别得到的异常类型生成电池异常通知。服务器在接收到该电池异常通知后,根据该异常类型,确定对应的处理人员,并向该处理人员的终端推送该电池异常通知。
在本申请实施例中,在检测到电池为异常电池时,则发送电池异常通知,以通知相关处理人进行异常响应,从而提高了电池使用的安全性,并且异常检测是有终端完成的,无需用户具备相关的专业知识,便于用户进行异常检测。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图8示出了本申请一实施例提供的一种充电管理设备的结构框图,该充电管理设备包括的各单元用于执行图1至图7对应的实施例中的各步骤。具体请参阅图1至图7所对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。
如图8所示的,一种充电管理设备,包括:
发仓指令发送单元81,用于接收电池充电请求,并向电池充电仓发送开仓指令,所述开仓指令用于控制所述电池充电仓开启仓门;
状态参数接收单元82,用于接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态;所述电池的状态参数由所述电池充电仓在检测到仓体内放置有待充电的电池时采集得到;
充电模式确定单元83,用于若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式;
电池充电执行单元84,用于向所述电池充电仓发送携带有所述充电模式的信息的充电控制指令;所述充电控制指令用于控制所述电池充电仓根据所述充电模式调整充电电源的输出电流,对所述电池进行充电。
可选地,所述充电电源的数目为多个,所述电池充电执行单元84包括:
目标电源确定单元,用于若所述充电模式为繁忙充电模式,则基于所述充电电源的电量值从大到小的次序,选取前N个充电电源作为目标电源,所述N的值小于所述充电电源的总个数;
繁忙充电执行单元,用于根据所述目标供电源的电源标识生成繁忙充电指令,并向所述电池充电仓发送所述繁忙充电指令;所述繁忙充电指令用于控制所述电池充电仓启动所述目标电源,并将各个所述目标电源的输出电流设置为第一输出电流,对所述电池进行充电;
闲时充电执行单元,用于若所述充电模式为闲时充电模式,则生成闲时充电指令,并向所述电池充电仓发送所述闲时充电指令;所述闲时空点指令用于控制所述电池充电仓启动所有所述充电电源,并将各个所述充电电源的输出电流设置为第二输出电流,对所述电池进行充电。
可选地,充电管理设备还包括:
第一输出功率监测单元,用于监测所述电池充电仓对所述电池进行充电时输出的第一输出功率;
目标电源关闭单元,用于若所述第一输出功率大于预设的标准充电功率,则关闭任一个所述目标电源,并以第一步长调整当前启动的目标电源的输出电流;
目标电源开启单元,用于若所述第一输出功率小于所述标准充电功率,则从未开启的充电电源中选取电量值最大的一个充电电源作为所述目标电源,并以第二步长调整当前开启的所有目标电源的输出电流。
可选地,充电管理设备还包括:
第二输出功率监测单元,用于监测所述电池充电仓对所述电池进行充电时输出的第二输出功率;
第一调整单元,用于若所述第二输出功率大于预设的标准充电功率,则以第三步长减少所述充电电源的输出电流;
第二调整单元,用于若所述第二输出功率小于预设的标准充电功率,则以第三步长增大所述充电电源的输出电流。
可选地,所述充电模式确定单元83,包括:
状态参数获取单元,用于获取所述电池充电仓的温度参数,以及当前执行充电操作的电池充电仓的运行个数;
状态参数转换单元,用于根据所述温度参数以及所述运行个数,确定所述充电模式。
可选地,所述充电管理设备还包括:
散热响应单元,用于若所述温度参数超过预设的温度阈值,则执行散热操作,和/或降低所述充电电源的输出电流。
可选地,所述状态参数包括以下至少一种:电池工作电压、电池容量、电池荷电状态以及充电次数。
可选地,所述充电管理设备还包括:
异常通知发送单元,用于若所述电池处于异常状态,则向服务器发送电池异常通知。
因此,本申请实施例提供的充电管理设备同样可以对电池充电之前采集该电池的状态参数,判定该电池是否为异常电池,只对电池的工作状态为正常状态的电池进行充电,而对于异常电池,例如电池损坏或电池使用次数超出限制,继续对其充电可能存在安全隐患,因此不对该类型异常电池进行充电,将异常监测的步骤前置到充电操作之前,提高了电池充电的安全性。并且,通过采集充电环境参数,确定当前时刻与电池匹配的充电模式,也提高了充电的效率。
图9示出了本申请一实施例提供的一种控制电池充电的***的示意图,该控制电池充电的***包括的各终端和设备用于执行图1至图7对应的实施例中的各步骤。具体请参阅图1至图7所对应的实施例中的相关描述。为了便于说明,仅示出了与本实施例相关的部分。
如图9所示,本申请实施例提供的一种控制电池充电的***,包括:充电管理设备91、电池充电仓92以及充电电源93;
所述充电管理设备91接收电池充电请求,并向所述电池充电仓92发送开仓指令,所述开仓指令用于控制所述电池充电仓92开启仓门;
所述电池充电仓92在检测到仓体内放置有待充电的电池时,采集所述电池的状态参数,并将所述状态参数发送给所述充电管理设备91;
所述充电管理设备91根据所述电池的状态参数识别所述电池的工作状态;
所述充电管理设备91若识别到所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式;
所述电池充电仓92接收所述充电管理设备91发送的携带有所述充电模式的信息的充电控制指令;
所述电池充电仓92根据所述充电模式调整充电电源93的输出电流,对所述电池进行充电。
可选地,充电管理设备91还包括安全管理模块,该安全管理模块中包含远程断电单元、输入功率管理单元、防雷击单元以及进水保护单元,用于对控制电池充电的***进行安全保护,提高设备的安全性。
可选地,充电管理设备91还包括智能通信接口,用于与云平台进行通信,并通过该云平台与服务器94以及用户终端95进行数据交互。
可选地,充电管理设备91还包括温度管理模块,该温度管理模块中包含充电电源散热单元、机柜散热单元以及电池充电仓散热单元。
可选地,充电管理设备91还包括模组管理通讯模块,用于与电池充电仓92以及充电电源93进行通信。
可选地,电池充电仓92还包括充电通讯单元,用于与充电电源进行通信,控制充电电源的输出参数。
可选地,电池充电仓92还包括信息通信单元,用于与充电管理设备91进行通信。
可选地,电池充电仓92还包括锁电池单元,用于当待充电电池放置入仓内对电池进行锁定。
可选地,电池充电仓92还可以通过NFC/串口/I2C/485等接口与待充电电池进行通信,获取电池的状态参数。
图10是本申请另一实施例提供的一种充电管理设备的示意图。如图10所示,该实施例的充电管理设备10包括:处理器100、存储器101以及存储在所述存储器101中并可在所述处理器100上运行的计算机程序102,例如控制电池充电的程序。所述处理器100执行所述计算机程序102时实现上述各个控制电池充电的方法实施例中的步骤,例如图1所示的S101至S104。或者,所述处理器100执行所述计算机程序102时实现上述各装置实施例中各单元的功能,例如图8所示模块81至84功能。
示例性的,所述计算机程序102可以被分割成一个或多个单元,所述一个或者多个单元被存储在所述存储器101中,并由所述处理器100执行,以完成本申请。所述一个或多个单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序102在所述充电管理设备10中的执行过程。例如,所述计算机程序102可以被分割成发仓指令发送单元、状态参数接收单元、充电模式确定单元以及电池充电执行单元。
所述充电管理设备10可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述充电管理设备可包括,但不仅限于,处理器100、存储器101。本领域技术人员可以理解,图10仅仅是充电管理设备10的示例,并不构成对充电管理设备10的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述充电管理设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器100可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器 (Digital Signal Processor,DSP)、专用集成电路 (Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器101可以是所述充电管理设备10的内部存储单元,例如充电管理设备10的硬盘或内存。所述存储器101也可以是所述充电管理设备10的外部存储设备,例如所述充电管理设备10上配备的插接式硬盘,智能存储卡(Smart Media Card, SMC),安全数字(Secure Digital, SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器101还可以既包括所述充电管理设备10的内部存储单元也包括外部存储设备。所述存储器101用于存储所述计算机程序以及所述充电管理设备所需的其他程序和数据。所述存储器101还可以用于暂时地存储已经输出或者将要输出的数据。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种控制电池充电的方法,其特征在于,包括:
    接收电池充电请求,并向电池充电仓发送开仓指令,所述开仓指令用于控制所述电池充电仓开启仓门;
    接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态;所述电池的状态参数由所述电池充电仓在检测到仓体内放置有待充电的电池时采集得到;
    若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式;
    向所述电池充电仓发送携带有所述充电模式的信息的充电控制指令;所述充电控制指令用于控制所述电池充电仓根据所述充电模式调整充电电源的输出电流,对所述电池进行充电。
  2. 根据权利要求1所述的方法,其特征在于,所述充电电源的数目为多个,所述向所述电池充电仓发送携带有所述充电模式的信息的充电执行指令,包括:
    若所述充电模式为繁忙充电模式,则基于所述充电电源的电量值从大到小的次序,选取N个充电电源作为目标电源,所述N的值小于所述充电电源的总个数;
    根据所述目标供电源的电源标识生成繁忙充电指令,并向所述电池充电仓发送所述繁忙充电指令;所述繁忙充电指令用于控制所述电池充电仓启动所述目标电源,并将各个所述目标电源的输出电流设置为第一输出电流,对所述电池进行充电;
    若所述充电模式为闲时充电模式,则生成闲时充电指令,并向所述电池充电仓发送所述闲时充电指令;所述闲时空点指令用于控制所述电池充电仓启动所有所述充电电源,并将各个所述充电电源的输出电流设置为第二输出电流,对所述电池进行充电。
  3. 根据权利要求2所述的方法,其特征在于,在所述根据所述目标供电源的电源标识生成繁忙充电指令,并向所述电池充电仓发送所述繁忙充电指令之后,还包括:
    监测所述电池充电仓对所述电池进行充电时输出的第一输出功率;
    若所述第一输出功率大于预设的标准充电功率,则关闭任一个所述目标电源,并以第一步长调整当前启动的目标电源的输出电流;
    若所述第一输出功率小于所述标准充电功率,则从未开启的充电电源中选取电量值最大的一个充电电源作为所述目标电源,并以第二步长调整当前开启的所有目标电源的输出电流。
  4. 根据权利要求2所述的方法,其特征在于,在所述若所述充电模式为闲时充电模式,则生成闲时充电指令,对所述电池进行充电之后,还包括:
    监测所述电池充电仓对所述电池进行充电时输出的第二输出功率;
    若所述第二输出功率大于预设的标准充电功率,则以第三步长减少所述充电电源的输出电流;
    若所述第二输出功率小于预设的标准充电功率,则以第三步长增大所述充电电源的输出电流。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式,包括:
    获取所述电池充电仓的温度参数,以及当前执行充电操作的电池充电仓的运行个数;
    根据所述温度参数以及所述运行个数,确定所述充电模式。
  6. 根据权利要求5所述的方法,其特征在于,在所述向所述电池充电仓发送携带有所述充电模式的充电执行指令之后,还包括:
    若所述温度参数超过预设的温度阈值,则执行散热操作,和/或降低所述充电电源的输出电流。
  7. 根据权利要求1-4任一项所述的方法,其特征在于,所述状态参数包括以下至少一种:电池工作电压、电池容量、电池荷电状态以及充电次数。
  8. 根据权利要求1-4任一项所述的方法,其特征在于,在所述接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态之后,还包括:
    若所述电池处于异常状态,则向服务器发送电池异常通知。
  9. 一种充电管理设备,其特征在于,包括:
    发仓指令发送单元,用于接收电池充电请求,并向电池充电仓发送开仓指令,所述开仓指令用于控制所述电池充电仓开启仓门;
    状态参数接收单元,用于接收所述电池充电仓发送的电池的状态参数,并根据所述电池的状态参数识别所述电池的工作状态;所述电池的状态参数由所述电池充电仓在检测到仓体内放置有待充电的电池时采集得到;
    充电模式确定单元,用于若所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式;
    电池充电执行单元,用于向所述电池充电仓发送携带有所述充电模式的信息的充电控制指令;所述充电控制指令用于控制所述电池充电仓根据所述充电模式调整充电电源的输出电流,对所述电池进行充电。
  10. 根据权利要求9所述的设备,其特征在于,所述充电电源的数目为多个,所述电池充电执行单元包括:
    目标电源确定单元,用于若所述充电模式为繁忙充电模式,则基于所述充电电源的电量值从大到小的次序,选取前N个充电电源作为目标电源,所述N的值小于所述充电电源的总个数;
    繁忙充电执行单元,用于根据所述目标供电源的电源标识生成繁忙充电指令,并向所述电池充电仓发送所述繁忙充电指令;所述繁忙充电指令用于控制所述电池充电仓启动所述目标电源,并将各个所述目标电源的输出电流设置为第一输出电流,对所述电池进行充电;
    闲时充电执行单元,用于若所述充电模式为闲时充电模式,则生成闲时充电指令,并向所述电池充电仓发送所述闲时充电指令;所述闲时空点指令用于控制所述电池充电仓启动所有所述充电电源,并将各个所述充电电源的输出电流设置为第二输出电流,对所述电池进行充电。
  11. 根据权利要求9或10所述的设备,其特征在于,所述充电模式确定单元,包括:
    状态参数获取单元,用于获取所述电池充电仓的温度参数,以及当前执行充电操作的电池充电仓的运行个数;
    状态参数转换单元,用于根据所述温度参数以及所述运行个数,确定所述充电模式。
  12. 根据权利要求11所述的设备,其特征在于,还包括:
    散热响应单元,用于若所述温度参数超过预设的温度阈值,则执行散热操作,和/或降低所述充电电源的输出电流。
  13. 一种控制电池充电的***,其特征在于,包括:充电管理设备、电池充电仓以及充电电源;
    所述充电管理设备接收电池充电请求,并向所述电池充电仓发送开仓指令,所述开仓指令用于控制所述电池充电仓开启仓门;
    所述电池充电仓在检测到仓体内放置有待充电的电池时,采集所述电池的状态参数,并将所述状态参数发送给所述充电管理设备;
    所述充电管理设备根据所述电池的状态参数识别所述电池的工作状态;
    所述充电管理设备若识别到所述电池处于正常状态,则采集充电环境参数,并根据所述充电环境参数确定充电模式;
    所述电池充电仓接收所述充电管理设备发送的携带有所述充电模式的信息的充电控制指令;
    所述电池充电仓根据所述充电模式调整充电电源的输出电流,对所述电池进行充电。
  14. 一种充电管理设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至8任一项所述方法的步骤。
  15. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述方法的步骤。
PCT/CN2018/073811 2018-01-23 2018-01-23 一种控制电池充电的方法、设备及其*** WO2019144274A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/073811 WO2019144274A1 (zh) 2018-01-23 2018-01-23 一种控制电池充电的方法、设备及其***
CN201880000015.4A CN108702017B (zh) 2018-01-23 2018-01-23 一种控制电池充电的方法、设备及其***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/073811 WO2019144274A1 (zh) 2018-01-23 2018-01-23 一种控制电池充电的方法、设备及其***

Publications (1)

Publication Number Publication Date
WO2019144274A1 true WO2019144274A1 (zh) 2019-08-01

Family

ID=63841472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/073811 WO2019144274A1 (zh) 2018-01-23 2018-01-23 一种控制电池充电的方法、设备及其***

Country Status (2)

Country Link
CN (1) CN108702017B (zh)
WO (1) WO2019144274A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427305A (zh) * 2019-08-06 2019-11-08 Oppo广东移动通信有限公司 电池漏气处理方法和装置、电子设备、可读存储介质
CN111597194A (zh) * 2020-04-30 2020-08-28 广东良实机电工程有限公司 设备能耗控制方法、装置、终端设备及存储介质
CN111959301A (zh) * 2020-09-15 2020-11-20 江苏猎吧科技有限公司 电池充电控制方法及智能充换电柜
CN113540585A (zh) * 2021-06-11 2021-10-22 丽水市金贝聚医疗器械有限公司 一种电源管理方法
CN114179675A (zh) * 2022-02-16 2022-03-15 深圳康普盾科技股份有限公司 一种基于物联网的换电柜安全控制方法、***及存储介质
CN114256918A (zh) * 2021-12-03 2022-03-29 摩拜(北京)信息技术有限公司 充电柜及其充电控制方法、装置、电子设备
CN114312424A (zh) * 2021-11-30 2022-04-12 度普(苏州)新能源科技有限公司 一种移动式储能充电桩的控制***
CN115743661A (zh) * 2022-11-17 2023-03-07 广州优飞智能设备有限公司 无人机的换电机场、无人机换电方法及存储介质
CN116054344A (zh) * 2023-01-31 2023-05-02 中国铁塔股份有限公司 一种电池功率控制方法及装置
CN117134025A (zh) * 2023-08-29 2023-11-28 广东派沃新能源科技有限公司 一种储能液冷设备pack流量均匀分配方法及装置
CN117151255A (zh) * 2023-10-30 2023-12-01 速源芯(东莞)能源科技有限公司 一种模块化储能电池充放电调度管理***
CN117200401A (zh) * 2023-11-07 2023-12-08 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、设备和存储介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109714414A (zh) * 2018-12-26 2019-05-03 深圳云动未来科技有限公司 物联网平台、电动车、电动车更换电池方法及***
CN110048485A (zh) * 2019-04-30 2019-07-23 广州三星通信技术研究有限公司 电子设备和电子设备的电压调节方法
CN110350619B (zh) * 2019-07-09 2021-09-28 Oppo(重庆)智能科技有限公司 充电控制方法、装置、终端及存储介质
CN110457111A (zh) * 2019-08-19 2019-11-15 深圳传音控股股份有限公司 一种图标显示方法、装置及终端
CN110460130B (zh) * 2019-08-26 2022-06-21 北京字节跳动网络技术有限公司 充电方法、装置、***、终端及存储介质
CN110838742A (zh) * 2019-10-25 2020-02-25 深圳市道通智能航空技术有限公司 充电装置、充电***和充电方法
US20220407357A1 (en) * 2019-11-07 2022-12-22 Beijing Xiaomi Mobile Software Co., Ltd. Charging power control method and apparatus, and readable storage medium
CN110994720A (zh) * 2019-12-01 2020-04-10 苏州易换骑网络科技有限公司 一种控制电池充电的方法
CN111404231A (zh) * 2020-04-16 2020-07-10 南京快轮智能科技有限公司 一种多功能智能充电柜
CN112003919A (zh) * 2020-08-17 2020-11-27 深圳市万为物联科技有限公司 一种充换电柜控制***及控制方法
CN112297889A (zh) * 2020-10-14 2021-02-02 武汉蔚来能源有限公司 充电管理方法、***及充电电池
CN112421735B (zh) * 2020-12-01 2021-06-29 江苏新源太阳能科技有限公司 电池模组的充放电控制***和方法
CN113595191A (zh) * 2021-08-03 2021-11-02 深圳市沃尔德储能技术有限公司 一种防爆型户外便携式储能电源
CN114973467B (zh) * 2022-07-07 2022-10-18 深圳市经纬纵横科技有限公司 一种基于通讯平台的家庭智能门锁控制***
CN115610278A (zh) * 2022-11-07 2023-01-17 中国第一汽车股份有限公司 电池的充电控制方法和车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007065B2 (en) * 2011-10-24 2015-04-14 Denso Corporation Battery monitoring apparatus
CN106654424A (zh) * 2016-11-30 2017-05-10 努比亚技术有限公司 充电的方法及终端
CN107453444A (zh) * 2017-09-15 2017-12-08 苏州易换骑网络科技有限公司 一种换电柜及电动车电池的充电方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823324B2 (en) * 2008-06-26 2014-09-02 Eveready Battery Company, Inc. Staggered multi-battery battery charging
CN101728854A (zh) * 2009-10-16 2010-06-09 苏州工业园区胜欣电子有限公司 一种手机充电机
CN203522270U (zh) * 2013-10-23 2014-04-02 尚禹河北电子科技有限公司 一种可对环境温度自适应的锂电池充电器
WO2016106567A1 (zh) * 2014-12-30 2016-07-07 深圳市大疆创新科技有限公司 一种电池预热方法、装置及设备
US9991727B2 (en) * 2015-03-06 2018-06-05 International Business Machines Corporation Smart battery charging to improve the lifespan of batteries
CN105098899B (zh) * 2015-07-31 2018-07-20 深圳市大疆创新科技有限公司 充电箱、充电箱的控制方法及可移动平台
CN205385310U (zh) * 2016-01-29 2016-07-13 深圳市大疆创新科技有限公司 电池充电箱
CN105703431B (zh) * 2016-03-09 2018-05-01 中山市科博电器有限公司 一种电池充电装置的智能多模式充电方法
CN107508361A (zh) * 2017-09-29 2017-12-22 维沃移动通信有限公司 一种充放电参数调整方法、装置、移动终端

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9007065B2 (en) * 2011-10-24 2015-04-14 Denso Corporation Battery monitoring apparatus
CN106654424A (zh) * 2016-11-30 2017-05-10 努比亚技术有限公司 充电的方法及终端
CN107453444A (zh) * 2017-09-15 2017-12-08 苏州易换骑网络科技有限公司 一种换电柜及电动车电池的充电方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110427305B (zh) * 2019-08-06 2023-04-11 Oppo广东移动通信有限公司 电池漏气处理方法和装置、电子设备、可读存储介质
CN110427305A (zh) * 2019-08-06 2019-11-08 Oppo广东移动通信有限公司 电池漏气处理方法和装置、电子设备、可读存储介质
CN111597194A (zh) * 2020-04-30 2020-08-28 广东良实机电工程有限公司 设备能耗控制方法、装置、终端设备及存储介质
CN111597194B (zh) * 2020-04-30 2023-05-05 广东良实机电工程有限公司 设备能耗控制方法、装置、终端设备及存储介质
CN111959301A (zh) * 2020-09-15 2020-11-20 江苏猎吧科技有限公司 电池充电控制方法及智能充换电柜
CN113540585A (zh) * 2021-06-11 2021-10-22 丽水市金贝聚医疗器械有限公司 一种电源管理方法
CN113540585B (zh) * 2021-06-11 2024-02-20 丽水市金贝聚医疗器械有限公司 一种电源管理方法
CN114312424A (zh) * 2021-11-30 2022-04-12 度普(苏州)新能源科技有限公司 一种移动式储能充电桩的控制***
CN114256918A (zh) * 2021-12-03 2022-03-29 摩拜(北京)信息技术有限公司 充电柜及其充电控制方法、装置、电子设备
CN114179675B (zh) * 2022-02-16 2022-05-10 深圳康普盾科技股份有限公司 一种基于物联网的换电柜安全控制方法、***及存储介质
CN114179675A (zh) * 2022-02-16 2022-03-15 深圳康普盾科技股份有限公司 一种基于物联网的换电柜安全控制方法、***及存储介质
CN115743661A (zh) * 2022-11-17 2023-03-07 广州优飞智能设备有限公司 无人机的换电机场、无人机换电方法及存储介质
CN115743661B (zh) * 2022-11-17 2023-06-16 广州优飞智能设备有限公司 无人机的换电机场、无人机换电方法及存储介质
CN116054344A (zh) * 2023-01-31 2023-05-02 中国铁塔股份有限公司 一种电池功率控制方法及装置
CN116054344B (zh) * 2023-01-31 2024-03-19 铁塔能源有限公司 一种电池功率控制方法及装置
CN117134025A (zh) * 2023-08-29 2023-11-28 广东派沃新能源科技有限公司 一种储能液冷设备pack流量均匀分配方法及装置
CN117134025B (zh) * 2023-08-29 2024-03-19 广东派沃新能源科技有限公司 一种储能液冷设备pack流量均匀分配方法及装置
CN117151255A (zh) * 2023-10-30 2023-12-01 速源芯(东莞)能源科技有限公司 一种模块化储能电池充放电调度管理***
CN117151255B (zh) * 2023-10-30 2024-01-26 速源芯(东莞)能源科技有限公司 一种模块化储能电池充放电调度管理***
CN117200401A (zh) * 2023-11-07 2023-12-08 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、设备和存储介质
CN117200401B (zh) * 2023-11-07 2024-03-29 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN108702017B (zh) 2021-10-29
CN108702017A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
WO2019144274A1 (zh) 一种控制电池充电的方法、设备及其***
TWI431835B (zh) 電池充放電管理系統及方法
TWI399903B (zh) 電池充電電路、電池充電方法及積體電路晶片
US8154255B2 (en) Systems and methods for waking up a battery system
US11784368B2 (en) Energy storage system and thermal management method for the same
WO2018126558A1 (zh) 充电电流门限调整方法、终端设备和图形用户界面
WO2021190196A1 (zh) 并联电池组充放电管理方法、电子装置及电气***
WO2020239034A1 (zh) 一种电池管理方法、电池管理装置及飞行器
US11710979B2 (en) Method and apparatus for charging a battery with AC power based on state of battery related information
US11437659B2 (en) Battery managing method and battery managing apparatus
US10547185B2 (en) Battery device, electronic device and method for protecting a battery device
TW201507317A (zh) 充電器、電池模組及充電器識別監控系統與方法
WO2023197848A1 (zh) 一种电池及电池充电方法
WO2013166991A1 (zh) 一种零时备电***和零时备电方法
KR20130114698A (ko) 에너지 저장 디바이스들을 충전하기 위한 방법 및 디바이스
TW201411325A (zh) 電子系統、電子裝置以及電源管理方法
WO2022051990A1 (zh) 供电方法、装置、电子设备和可读存储介质
CN208461479U (zh) 大功率高压电池组的电池管理***
WO2014176980A1 (zh) 一种充电方法、装置及电子设备
CN110391685B (zh) 智能门锁的充电控制方法、装置及智能门锁
US20140173309A1 (en) Information processing apparatus, and control method for information processing apparatus
CN205583092U (zh) 一种高效散热不间断电源***
CN108306076B (zh) 数据中心电池室空调联动控制方法及***
WO2014190831A1 (zh) 一种电池控制方法、装置、终端及计算机存储介质
KR20220145663A (ko) 배터리 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18902384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18902384

Country of ref document: EP

Kind code of ref document: A1