WO2019131868A1 - フィルタモジュール - Google Patents

フィルタモジュール Download PDF

Info

Publication number
WO2019131868A1
WO2019131868A1 PCT/JP2018/048119 JP2018048119W WO2019131868A1 WO 2019131868 A1 WO2019131868 A1 WO 2019131868A1 JP 2018048119 W JP2018048119 W JP 2018048119W WO 2019131868 A1 WO2019131868 A1 WO 2019131868A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
input
filter
output terminal
ground
Prior art date
Application number
PCT/JP2018/048119
Other languages
English (en)
French (fr)
Inventor
潤平 安田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019562159A priority Critical patent/JP7032441B2/ja
Priority to CN201880083562.3A priority patent/CN111512546B/zh
Publication of WO2019131868A1 publication Critical patent/WO2019131868A1/ja
Priority to US16/898,593 priority patent/US11336260B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/545Filters comprising resonators of piezoelectric or electrostrictive material including active elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/165A filter circuit coupled to the input of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/03Type of tuning
    • H03H2210/036Stepwise

Definitions

  • the present invention relates to a filter module.
  • a filter module in which a plurality of filters are collectively provided on one substrate is disclosed (for example, Patent Document 1).
  • Patent Document 1 a filter module in which a plurality of filters are collectively provided on one substrate.
  • a plurality of filters having different frequency bands as pass bands may be disposed on the same substrate, and filters having similar frequency bands may be disposed adjacent to each other.
  • the signals passing through the filters interfere with each other, and there is a possibility that sufficient isolation can not be secured between the wirings connected to the respective filters.
  • the attenuation characteristics of the filter may be degraded, and a desired function may not be exhibited.
  • an object of this invention is to provide the filter module which can suppress deterioration of an attenuation characteristic, achieving size reduction.
  • a filter module includes a first filter disposed on a path connecting a first input / output terminal, a second input / output terminal, the first input / output terminal, and the second input / output terminal.
  • a third filter disposed on a path connecting the third input / output terminal, the fourth input / output terminal, the third input / output terminal and the fourth input / output terminal, and the first input / output terminal It is connected to the first substrate on which the second input / output terminal, the first filter, the third input / output terminal, the fourth input / output terminal and the second filter are provided, and the first input / output terminal,
  • the first input / output terminal of the first filter and the third input / output terminal of the second filter may be disposed close to each other.
  • the first wiring connected to the first input / output terminal is close to the second wiring connected to the third input / output terminal, and there is a possibility that sufficient isolation between the wirings can not be secured.
  • the second switch and the ground are conducted by the second switch. That is, the third input / output terminal connected to the second wiring and the second wiring is at the ground potential. Therefore, the ground (the third input / output terminal and the second wiring) is disposed in the vicinity of the first input / output terminal and the first wiring, and the deterioration of the attenuation characteristic of the first filter can be suppressed.
  • the first switch makes the first wiring and the ground conductive by the first switch. Ru. That is, the first input / output terminal connected to the first wiring and the first wiring is at the ground potential. Therefore, the ground (the first input / output terminal and the first wiring) is disposed in the vicinity of the third input / output terminal and the second wiring, and the deterioration of the attenuation characteristic of the second filter can be suppressed.
  • the input / output terminal of the high frequency signal connected to each filter can be used as the ground terminal without increasing the ground terminal, the size can be reduced. Thus, the deterioration of the attenuation characteristic can be suppressed while achieving the downsizing.
  • the first switch is a single pole single throw (SPST) switch, and further, the SPST switch switches between conduction and non-conduction between the first wiring and an input / output terminal of a signal passing through the first filter. May be provided.
  • SPST single pole single throw
  • the first switch is a switch of single pole double throw (SPDT)
  • the first wiring is connected to a common terminal of the first switch, and one of two selection terminals of the first switch is connected.
  • the selection terminal may be connected to the input / output terminal of the signal passing through the first filter, and the other selection terminal may be connected to the ground.
  • the second switch may be an SPST switch, and may further include an SPST switch that switches between conduction and non-conduction between the second wiring and an input / output terminal of a signal passing through the second filter. .
  • the second switch is a switch of SPDT
  • the second wiring is connected to a common terminal of the second switch
  • the second switch is connected to a selection terminal of one of two selection terminals of the second switch.
  • the input and output terminals of the signal passing through the two filters may be connected, and the ground may be connected to the other selection terminal.
  • the filter module may further include a second substrate, and the first switch and the second switch may be provided on the second substrate. Also, for example, the first switch and the second switch may be provided on the same chip.
  • the filter module is further connected to the second input / output terminal, and switches between conduction and non-conduction between a third wiring through which a signal passing through the first filter is propagated, and the third wiring and the ground.
  • a third switch, a fourth wiring connected to the fourth input / output terminal through which a signal passing through the second filter is propagated, and a fourth switch switching between conduction and non-conduction between the fourth wiring and the ground When the first switch and the ground are electrically connected by the first switch, and when the third wiring and the ground are electrically connected by the third switch, the second switch The second wiring and the ground are nonconductive, and the fourth switch is nonconductive between the fourth wiring and the ground, and the second switch When the second wiring and the ground are conductive, and when the fourth wiring and the ground are conductive by the fourth switch, the first wiring and the ground are non-conductive by the first switch. It may be conductive, and the third wiring and the ground may be nonconductive by the third switch.
  • the second input / output terminal of the first filter and the fourth input / output terminal of the second filter may be disposed close to each other.
  • the third wiring connected to the second input / output terminal and the fourth wiring connected to the fourth input / output terminal may be close to each other and sufficient isolation between the wirings can not be secured.
  • the second switch causes the second wiring and the ground to be conductive by the second switch, and
  • the fourth wiring and the ground are conducted by the four switches. That is, not only one of the wiring connected to the input terminal of the second filter and the wiring connected to the output terminal but both are made conductive with the ground. Therefore, grounds (third input / output terminal, fourth input / output terminal, second wiring and fourth wiring) are arranged in the vicinity of the first input / output terminal, the second input / output terminal, the first wiring and the third wiring. As a result, the deterioration of the attenuation characteristic of the first filter can be suppressed more effectively.
  • the first switch makes the first wiring and the ground conductive by the first switch.
  • the third wiring and the ground are conducted by the third switch. That is, not only one of the wiring connected to the input terminal of the first filter and the wiring connected to the output terminal but both are made conductive with the ground. Therefore, grounds (first input / output terminal, second input / output terminal, first wiring and third wiring) are arranged in the vicinity of the third input / output terminal, the fourth input / output terminal, the second wiring and the fourth wiring. As a result, the deterioration of the attenuation characteristic of the second filter can be suppressed more effectively.
  • the third switch may be an SPST switch, and may further include an SPST switch that switches between conduction and non-conduction between the third wiring and an input / output terminal of a signal passing through the first filter. .
  • the third switch is a switch of SPDT
  • the third wire is connected to a common terminal of the third switch
  • the third switch is connected to one of selection terminals of the two selection terminals of the third switch.
  • the input / output terminal of the signal passing through one filter may be connected, and the ground may be connected to the other selection terminal.
  • the fourth switch may be an SPST switch, and may further include an SPST switch that switches between conduction and non-conduction between the fourth wiring and an input / output terminal of a signal passing through the second filter. .
  • the fourth switch is a switch of SPDT
  • the fourth wiring is connected to a common terminal of the fourth switch
  • the fourth switch is connected to a selection terminal of one of two selection terminals of the fourth switch.
  • the input and output terminals of the signal passing through the two filters may be connected, and the ground may be connected to the other selection terminal.
  • the filter module may further include a second substrate, and the first switch to the fourth switch may be provided on the second substrate. Also, for example, the first switch to the fourth switch may be provided on the same chip.
  • the filter module further includes a first input terminal connected to the first filter, a second input terminal connected to the second filter, and an output terminal, and the filter module is input to the first input terminal.
  • a fifth switch that switches between conduction and non-conduction, and a sixth switch that switches between conduction and non-conduction between the second input terminal and the ground, and the first wiring and the ground are electrically connected by the first switch
  • the fifth switch causes the first input terminal and the ground to be electrically connected
  • the sixth switch causes the second input terminal and When the second wiring and the ground are conductive by the second switch, the first input terminal and the ground are nonconductive by the fifth switch, and the sixth switch
  • the second input terminal may be electrically connected to the ground by a switch.
  • the sixth switch when communication is performed in the pass band of the first filter and communication in the pass band of the second filter is not performed, the sixth switch causes the second input terminal of the amplifier circuit to be conductive with the ground. Ru. Also, for example, when communication is performed in the pass band of the second filter and communication is not performed in the pass band of the first filter, the first switch of the amplifier circuit and the ground are conducted by the fifth switch. To be That is, since the input terminal not used for communication is brought into conduction with the ground, malfunction of the amplifier circuit can be prevented.
  • the filter module may further include a second substrate, and the first to sixth switches may be provided on the second substrate.
  • the first switch to the sixth switch and the amplifier circuit may be provided on the same chip.
  • the first substrate is further provided with at least one ground terminal connected to the first filter and the second filter, and the first input / output terminal and the third input / output terminal are the same. Any one of the at least one ground terminal is adjacent without being interposed, and the second input / output terminal and the fourth input / output terminal are adjacent without being interposed any of the at least one ground terminal. It may be
  • the ground terminal is connected between the first input / output terminal and the third input / output terminal, and the second input / output terminal Since it is not necessary to provide between the four input / output terminals, the degree of freedom in design can be increased.
  • the pass band of the first filter and the pass band of the second filter may be different from each other.
  • the filter module of the present invention it is possible to suppress the deterioration of the attenuation characteristics while achieving the downsizing.
  • FIG. 1 is a block diagram showing an example of a filter module according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the first filter according to the first embodiment.
  • FIG. 3 is a block diagram showing an example of the second filter according to the first embodiment.
  • FIG. 4 is a plan view showing an example of the layout of the first substrate according to the first embodiment.
  • FIG. 5 is a plan view showing an example of the wiring connected to the first substrate according to the first embodiment.
  • FIG. 6A is a diagram showing pass characteristics of the first filter according to Embodiment 1 when the switches are in the first state and in the second state.
  • FIG. 6B is an enlarged view around the encircled part of FIG. 6A.
  • FIG. 7 is a block diagram showing another example of the filter module according to the first embodiment.
  • FIG. 8 is a block diagram showing an example of a filter module according to the second embodiment.
  • FIG. 9 is a block diagram showing another example of the filter module according to the second embodiment.
  • FIG. 10 is a block diagram showing an example of a filter module according to the third embodiment.
  • Embodiment 1 [1. Configuration of filter module] First, the configuration of the filter module according to the first embodiment will be described with reference to FIG.
  • FIG. 1 is a block diagram showing an example of the filter module 1 according to the first embodiment.
  • the filter module 1 is a module corresponding to multibands, and corresponds to, for example, two frequency bands. For example, time division communication of signals in two frequency bands is performed using the filter module 1.
  • the filter module 1 includes input / output terminals n1 to n4.
  • antenna elements are connected to the input / output terminals n1 and n3, and input terminals of an amplifier circuit such as a low noise amplifier are connected to the input / output terminals n2 and n4.
  • the filter module 1 includes a second substrate 100, a first substrate 10 provided on the second substrate 100, switches SW1, SW1a, SW2, SW2a, SW3, SW3a, SW4 and SW4a, and wirings L1, L2, L3 and It has L4.
  • the second substrate 100 is a mounting substrate on which the components described above and other substrates such as the first substrate 10 are mounted, and is, for example, a printed substrate.
  • the input / output terminals n1 to n4 are provided, for example, on the second substrate 100.
  • the first substrate 10 and the switches are connected by the wirings L1, L2, L3 and L4 provided on the second substrate 100.
  • the first substrate 10 includes an input / output terminal m1 (first input / output terminal), an input / output terminal m2 (second input / output terminal), a filter 11, and an input / output terminal m3 (third input / output terminal) An input / output terminal m4 (fourth input / output terminal) and a filter 12 are provided. That is, these configurations are collectively provided on the first substrate 10.
  • the first substrate 10 is, for example, a printed circuit board or a low temperature co-fired ceramic (LTC) substrate.
  • LTC low temperature co-fired ceramic
  • the input / output terminals m1 to m4 and the ground terminals are, for example, bumps or surface electrodes (pads) provided on the first substrate 10.
  • the filter 11 is a first filter disposed on a path connecting the input / output terminal m1 and the input / output terminal m2.
  • the filter 11 is a reception filter, and its passband is Band 25 Rx (1930-1995 MHz) of LTE (Long Term Evolution).
  • the filter 12 is a second filter disposed on a path connecting the input / output terminal m3 and the input / output terminal m4.
  • the filter 12 is a reception filter, and its passband is LTE Band 3 Rx (1805-1880 MHz).
  • the filters 11 and 12 are, for example, elastic wave filters, and the resonators forming the elastic wave filters are, for example, resonators using surface acoustic waves (SAW).
  • SAW surface acoustic waves
  • a resonator using boundary waves or a resonator using bulk acoustic waves (BAW) such as a film bulk acoustic resonator (FBAR) may be used.
  • the SAW resonator has an IDT (InterDigital Transducer) electrode formed on a substrate having piezoelectricity, and can realize a small and low-profile filter circuit having high steepness passing characteristics. Note that the substrate having piezoelectricity is a substrate having piezoelectricity at least on the surface.
  • the substrate may be provided with a piezoelectric thin film on the surface, and may be formed of a film having a sound velocity different from that of the piezoelectric thin film, and a laminated body such as a support substrate.
  • the substrate may be, for example, a laminate including a high sound velocity support substrate and a piezoelectric thin film formed on the high sound velocity support substrate, or may be formed on the high sound velocity support substrate and the high sound velocity support substrate. It may be a laminate including the low sound velocity film and the piezoelectric thin film formed on the low sound velocity film.
  • a laminate including a support substrate, a high sound velocity film formed on the support substrate, a low sound velocity film formed on the high sound velocity film, and a piezoelectric thin film formed on the low sound velocity film Good.
  • the substrate may have piezoelectricity over the entire substrate.
  • the wiring L1 is a first wiring which is connected to the input / output terminal m1 and to which a signal passing through the filter 11 is propagated.
  • the wiring L1 connects the input / output terminal m1 and the switch SW1.
  • the wiring L1 is also a wiring that connects the input / output terminal m1 and the switch SW1a.
  • the wire L2 is a second wire connected to the input / output terminal m3 and through which a signal passing through the filter 12 is propagated.
  • the wiring L2 connects the input / output terminal m3 and the switch SW2.
  • the line L2 is also a line connecting the input / output terminal m3 and the switch SW2a.
  • the wiring L3 is a third wiring which is connected to the input / output terminal m2 and to which a signal passing through the filter 11 is propagated.
  • the wiring L3 connects the input / output terminal m2 and the switch SW3.
  • the wiring L3 is also a wiring that connects the input / output terminal m2 and the switch SW3a.
  • the wire L4 is a fourth wire connected to the input / output terminal m4 and to which a signal passing through the filter 12 is propagated.
  • the wiring L4 connects the input / output terminal m4 and the switch SW4.
  • the wiring L4 is also a wiring that connects the input / output terminal m4 and the switch SW4a.
  • the switch SW1 is a first switch that switches between conduction and non-conduction between the wiring L1 (the input / output terminal m1) and the ground.
  • the switch SW1 is a switch of SPST.
  • the filter module 1 further switches conduction and non-conduction between the wiring L1 (input / output terminal m1) and the input / output terminal n1 of the signal passing through the filter 11.
  • An SPST switch SW1a is provided. Note that SPDT switches may be provided instead of the switches SW1 and SW1a that are SPST switches.
  • the first switch is an SPDT switch
  • the wiring L1 input / output terminal m1
  • the first switch is connected to one of the two selection terminals of the first switch.
  • the output terminal n1 is connected, and the ground is connected to the other selection terminal.
  • the wiring connecting the common terminal of the switch and the input / output terminal m1 is the first wiring.
  • the switch SW2 is a second switch that switches between conduction and non-conduction between the wiring L2 (input / output terminal m3) and the ground.
  • the switch SW2 is a switch of SPST.
  • the filter module 1 further switches conduction and non-conduction between the wiring L2 (input / output terminal m3) and the input / output terminal n3 of the signal passing through the filter 12.
  • An SPST switch SW2a is provided. Note that SPDT switches may be provided instead of the switches SW2 and SW2a that are SPST switches.
  • the second switch is an SPDT switch
  • the line L2 input / output terminal m3
  • the second switch is input to one of the two selection terminals of the second switch.
  • the output terminal n3 is connected, and the ground is connected to the other selection terminal.
  • the wiring connecting the common terminal of the switch and the input / output terminal m3 is the second wiring.
  • the switch SW3 is a third switch that switches between conduction and non-conduction between the wiring L3 (input / output terminal m2) and the ground.
  • the switch SW3 is a switch of SPST.
  • the filter module 1 further switches between conduction and non-conduction between the wiring L3 (input / output terminal m2) and the input / output terminal n2 of the signal passing through the filter 11.
  • An SPST switch SW3a is provided. Note that SPDT switches may be provided instead of the switches SW3 and SW3a that are SPST switches.
  • the third switch is an SPDT switch
  • the wiring L3 input / output terminal m2
  • the third switch is input to one of the two selection terminals of the third switch.
  • the output terminal n2 is connected, and the ground is connected to the other selection terminal.
  • the wiring connecting the common terminal of the switch and the input / output terminal m2 is the third wiring.
  • the switch SW4 is a fourth switch that switches between conduction and non-conduction between the wiring L4 (input / output terminal m4) and the ground.
  • the switch SW4 is a switch of SPST.
  • the filter module 1 further switches conduction and non-conduction between the wiring L4 (input / output terminal m4) and the input / output terminal n4 of the signal passing through the filter 12.
  • An SPST switch SW4a is provided. Note that SPDT switches may be provided instead of the switches SW4 and SW4a that are SPST switches.
  • the fourth switch is an SPDT switch
  • the wiring L4 input / output terminal m4
  • the fourth switch is input to one of the two selection terminals of the fourth switch.
  • the output terminal n4 is connected, and the ground is connected to the other selection terminal.
  • the wiring connecting the common terminal of the switch and the input / output terminal m4 is the fourth wiring.
  • switches are, for example, FET (Field Effect Transistor) switches or diode switches made of GaAs or Complementary Metal Oxide Semiconductor (CMOS).
  • FET Field Effect Transistor
  • CMOS Complementary Metal Oxide Semiconductor
  • these switches are switched between the conduction state and the non-conduction state in the case of the SPST switch, for example, based on a control signal from the outside (for example, an RF signal processing circuit), and in the case of the SPDT switch. And the connection between the common terminal and one of the plurality of selection terminals is switched. Also, these switches are controlled synchronously, for example, based on control signals from one RF signal processing circuit.
  • the switch SW1 makes the wiring L2 (input / output terminal m3) nonconductive to the ground
  • the switch SW4 makes the wiring L4 (input / output terminal m4) non-conductive to the ground.
  • the wiring L1 (input / output terminal m1) and the input / output terminal n1 become nonconductive by the switch SW1a
  • the wiring L3 (input / output terminal m2) and the input / output terminal n2 become nonconductive by the switch SW3a
  • the switch SW2a The wiring L2 (input / output terminal m3) and the input / output terminal n3 become conductive
  • the switch L4a makes the wiring L4 (input / output terminal m4) and the input / output terminal n4 conductive.
  • the wiring L2 (input / output terminal m3) and the input / output terminal n3 become nonconductive by the switch SW2a
  • the wiring L4 (input / output terminal m4) and the input / output terminal n4 become nonconductive by the switch SW4a
  • the switch SW1a The wiring L1 (input / output terminal m1) and the input / output terminal n1 become conductive
  • the switch L3a makes the wiring L3 (input / output terminal m2) and the input / output terminal n2 conductive.
  • the wirings L1 and L3 and the input / output terminals m1 and m2 connected to the wirings L1 and L3 are connected to the ground
  • the interconnections L2 and L4 and the input / output terminals m3 and m4 connected to the interconnections L2 and L4 are rendered non-conductive and electrically connected to the ground.
  • switches may be provided inside the second substrate 100 or may be provided on the second substrate 100.
  • the filter module 1 may not have the second substrate 100, and the switches SW1, SW1a, SW2, SW2a, SW3, SW3a, SW4 and SW4a, and the wires L1, L2, L3 and L4 are separate bodies. May be provided.
  • FIG. 2 is a block diagram showing an example of the filter 11 (first filter) according to the first embodiment.
  • FIG. 2 also shows input / output terminals m1 and m2.
  • the filter 11 includes series arm resonators S11 to S13 and a double mode SAW filter DMS1 disposed on a path connecting the input / output terminal m1 and the input / output terminal m2, and each of them is provided on the path. It has parallel arm resonators P11 and P12 arranged between different connection nodes and the ground.
  • the connection node is a connection point between an element and an element or an element and a terminal.
  • the parallel arm resonator P11 is connected between the connection node between the series arm resonator S11 and the double mode SAW filter DMS1 and the ground
  • the parallel arm resonator P12 is a series arm resonator S12 and a series arm resonator It is connected between the connection node during S13 and the ground.
  • the pass band for example, Band 25 Rx
  • FIG. 3 is a block diagram showing an example of the filter 12 (second filter) according to the first embodiment.
  • FIG. 3 also shows input / output terminals m3 and m4.
  • the filter 12 includes series arm resonators S21 to S23 and a double mode type SAW filter DMS2 disposed on a path connecting the input / output terminal m3 and the input / output terminal m4 and each other provided on the path. It has parallel arm resonators P21 and P22 arranged between different connection nodes and the ground.
  • the parallel arm resonator P21 is connected between the connection node between the series arm resonator S21 and the series arm resonator S22 and the ground
  • the parallel arm resonator P22 is a double mode SAW filter DMS2 and a series arm resonator It is connected between the connection node between S23 and the ground.
  • the pass band for example, Band 3 Rx
  • the number of resonators constituting the filters 11 and 12, the presence or absence of the double mode type SAW filter, and the like are merely examples, and the present invention is not limited to those described here.
  • FIG. 4 is a plan view showing an example of the layout of the first substrate 10 according to the first embodiment.
  • the wiring connecting the terminals and the components and the wiring connecting the components and the components are hatched.
  • the ground lines connected to the ground are hatched by parallel lines extending from upper left to lower right
  • the signal lines through which high frequency signals pass are hatched by parallel lines extending from upper right to lower left There is.
  • the signal line and the ground line are in contact and conducted in the periphery of the double mode type SAW filters DMS1 and DMS2, for example, one of the wires is not conducted.
  • the other wire here, a ground line
  • filters 11 and 12 and input / output terminals m1 to m4 are collectively provided on the first substrate 10.
  • the first substrate 10 is also provided with at least one ground terminal connected to the filter 11 and the filter 12.
  • the ground terminal g1 connected to the filter 11 specifically, the parallel arm resonators P11 and P12 and the double mode SAW filter DMS1
  • the filter 12 specifically, parallel
  • a ground terminal g2 connected to the arm resonators P21 and P22 and the double mode SAW filter DMS2 is provided.
  • the components of the filters 11 and 12, the input / output terminals m1 to m4 connected thereto, and the ground terminals g1 and g2 are closely arranged. Therefore, the input / output terminal m1 (here, for example, an input terminal) connected to the filter 11 and the input / output terminal m3 (here, for example, an input terminal) connected to the filter 12 are disposed close to each other. Further, an input / output terminal m2 (here, for example, an output terminal) connected to the filter 11 and an input / output terminal m4 (here, for example, an output terminal) connected to the filter 12 are disposed close to each other.
  • the input / output terminal m1 and the input / output terminal m3 are adjacent to each other without being sandwiched between at least one ground terminal, and the input / output terminal m2 and the input / output terminal m4 are at least one ground terminal. Both are adjacent without being sandwiched.
  • FIG. 5 is a plan view showing an example of the wiring connected to the first substrate 10 according to the first embodiment.
  • substrate 10 is abbreviate
  • FIG. 6A is a diagram showing pass characteristics of the filter 11 (first filter) according to Embodiment 1 when the switches are in the first state and in the second state.
  • FIG. 6B is an enlarged view around the encircled part of FIG. 6A.
  • switches SW1a and SW3a are conductive, switches SW1 and SW3 are nonconductive, switches SW2a and SW4a are nonconductive, and switches SW2 and SW4 are conductive.
  • the switches SW2 and SW4 are in the non-conductive state with respect to the first state.
  • both of the switches SW1a and SW3a are conductive in the first state and the second state, and the switch SW1 and the switch SW1
  • the switch SW3 is in the nonconductive state, and the switches SW2a and SW4a are in the nonconductive state.
  • the switches SW2 and SW4 are further conductive, and the wires L2 and L4 (input and output terminals m3 and m4) are conductive with the ground.
  • the switches SW2 and SW4 are in the non-conductive state, and the wires L2 and L4 (input and output terminals m3 and m4) are in the non-conductive state with the ground.
  • each switch is in the first state, but the problem that occurs in the second state will be described first.
  • the terminals and wiring relating to the filter 12 float from the ground.
  • the wirings L1 and L2 are disposed close to each other, a part of the high frequency signal which passes through the wiring L1 and is input to the input / output terminal m1 may leak to the wiring L2.
  • the wires L3 and L4 are disposed close to each other, a part of the leak signal that has passed through the filter 12 may return to the wire L3.
  • the filter 12 has Band 3 Rx (1805-1880 MHz) as the pass band, and Band 3 Rx is located in the lower attenuation band of Band 25 Rx (1930-1995 MHz) which is the pass band of the filter 11. That is, in the high frequency signal which passes through the wiring L1 and is input to the input / output terminal m1, the filter 11 can attenuate the component of Band 3 Rx. However, when a part of the high frequency signal leaks to the wiring L2, the component of Band3Rx included in the leak signal passes through the filter 12 that has Band3Rx as a pass band.
  • the filter 11 can not partially attenuate the component of Band3Rx, and the attenuation characteristic is Will deteriorate. Therefore, as shown in FIGS. 6A and 6B, in the second state, the attenuation characteristics are degraded more than in the first state described later around the Band 3 Rx (1805-1880 MHz).
  • each switch is set to the first state, and the terminal and wiring related to the filter 12 are connected to the ground.
  • the input / output terminals m3 and m4 and the wires L2 and L4 are connected to the ground. Therefore, even if a part of the high frequency signal input to the input / output terminal m1 passes through the wiring L1 and leaks to the wiring L2, the wiring L2 and the input / output terminal m3 are connected to the ground, so the leakage signal Flows to the ground. Further, since the line L4 and the input / output terminal m4 are connected to the ground, the leak signal is less likely to return from the line L4 to the line L3. Therefore, as shown in FIGS. 6A and 6B, in the first state, deterioration of the attenuation characteristics is suppressed more than in the second state around Band3Rx (1805-1880 MHz).
  • the ground terminal is not provided on the first substrate 10 other than the minimum necessary ground terminals g 1 and g 2, it is possible to suppress the deterioration of the attenuation characteristics. .
  • the input / output terminals m1 to m4 can also be used as ground terminals, and the ground terminals will be substantially increased. That is, since it is not necessary to increase the number of ground terminals, it is possible to suppress the deterioration of the attenuation characteristics without increasing the size.
  • the isolation can be enhanced (that is, the deterioration of the attenuation characteristics can be suppressed). As shown in FIG. 4, it is possible to suppress the deterioration of the attenuation characteristics without using such an arrangement.
  • a state in which the isolation between the interconnections L1 and L2 and the interconnections L3 and L4 is deteriorated for example, a state in which the interconnections are parallel or cross without interposing the ground between the interconnections. Even in the above, it is possible to suppress the deterioration of the attenuation characteristics. This is because, as described above, isolation can be enhanced by using, as a ground, a terminal and a wire related to the filter not used for communication. Therefore, it is not necessary to design separately to improve isolation, and the degree of freedom in design can be increased.
  • the switches SW1 to SW4 may be provided on the same chip.
  • FIG. 7 is a block diagram showing another example of the filter module 1 according to the first embodiment. As shown in FIG. 7, the switches SW1, SW1a, SW2, SW2a, SW3, SW3a, SW4 and SW4a may be provided on the same chip 20. Then, the chip 20 may be mounted on the second substrate 100.
  • the ground (the input / output terminal m3, the input / output terminal m4, the wiring L2 and the wiring L4) is disposed in the vicinity of the input / output terminal m1, the input / output terminal m2, the wiring L1 and the wiring L3. Deterioration of attenuation characteristics can be suppressed.
  • the switch SW1 brings the wiring L1 into conduction with the ground, and the switch The wiring L3 and the ground are conducted by the SW3. That is, not only one of the wiring connected to the input terminal of the filter 11 and the wiring connected to the output terminal but both are electrically connected to the ground.
  • the ground (the input / output terminal m1, the input / output terminal m2, the wiring L1 and the wiring L3) is disposed in the vicinity of the input / output terminal m3 and the input / output terminal m4 and the wiring L2. Deterioration of attenuation characteristics can be suppressed.
  • the input / output terminal of the high frequency signal connected to each filter can be used as the ground terminal without increasing the ground terminal, the size can be reduced. Thus, the deterioration of the attenuation characteristic can be suppressed while achieving the downsizing.
  • FIG. 8 is a block diagram showing an example of the filter module 2 according to the second embodiment.
  • the filter module 2 according to the second embodiment is different from the filter module 1 according to the first embodiment in that switches SW5 and SW6 and an amplifier circuit 30 are connected to input / output terminals n2 and n4.
  • the other points are the same as those of the filter module 1 according to the first embodiment, and therefore the description thereof is omitted.
  • the amplification circuit 30 has an input terminal i1 (first input terminal) connected to the filter 11, an input terminal i2 (second input terminal) connected to the filter 12, and an output terminal o1.
  • the input terminal i1 is connected via the switch SW5 provided between the connection node on the path connecting the input / output terminal m2 and the input terminal i1 to the ground, and the switch SW3a provided on the path Is connected to the filter 11.
  • the input terminal i2 is a filter via the switch SW6 provided between the connection node on the path connecting the input / output terminal m4 and the input terminal i2 and the ground, and the switch SW4a provided on the path Connected to 12
  • the amplification circuit 30 is, for example, a low noise amplifier that amplifies one of the signal passing through the filter 11 input to the input terminal i1 and the signal passing through the filter 12 input to the input terminal i2 and outputs the amplified signal from the output terminal o1.
  • an RF signal processing circuit or the like is connected to the output terminal o1.
  • the switch SW5 is a fifth switch that switches between conduction and non-conduction between the input terminal i1 and the ground.
  • the switch SW5 may be directly connected to the input terminal i1 or may be connected via a wire.
  • the switch SW5 switches conduction and non-conduction between the wire and the ground to make the conduction and non-conduction between the input terminal i1 and the ground.
  • the switch SW6 is a sixth switch that switches between conduction and non-conduction between the input terminal i2 and the ground.
  • the switch SW6 may be directly connected to the input terminal i2, or may be connected via a wire.
  • the switch SW6 When the switch SW6 is connected to the input terminal i2 through a wire, the switch SW6 switches conduction and non-conduction between the wire and the ground to make the conduction and non-conduction between the input terminal i2 and the ground.
  • the switches SW5 and SW6 are, for example, FET switches made of GaAs or CMOS, or diode switches.
  • the switches SW5 and SW6 are switched between the conductive state and the nonconductive state, for example, based on a control signal from the outside (for example, an RF signal processing circuit).
  • switches SW5 and SW6 are controlled in synchronization with, for example, the above-described switches SW1, SW1a, SW2, SW2a, SW3, SW3a, SW4 and SW4a based on a control signal from one RF signal processing circuit, for example. .
  • the input terminal i1 to which the high frequency signal passing through the filter 11 is input is disconnected from the ground, and communication is not performed.
  • the input terminal i2 to which is not input is conducted to the ground.
  • the input terminal i2 to which the high frequency signal passing through the filter 12 is input is disconnected from the ground, and communication is not performed, and the high frequency signal is not transmitted.
  • the input terminal i1 to which is not input is brought into conduction with the ground.
  • the filter module 2 may not include the second substrate 100, and the switches SW1, SW1a, SW2, SW2a, SW3, SW3a, SW4, SW4a, SW5 and SW6, the amplifier circuit 30, and the wires L1, L2 , L3 and L4 may be provided separately.
  • switches SW1 to SW6 and the amplifier circuit 30 may be provided in the same chip.
  • FIG. 9 is a block diagram showing another example of the filter module 2 according to the second embodiment.
  • the switches SW1, SW1a, SW2, SW2a, SW3, SW3a, SW4, SW4a, SW5, SW6 and the amplifier circuit 30 may be provided on the same chip 20a.
  • the chip 20 a may be mounted on the second substrate 100.
  • the switch SW6 when the communication in the frequency band corresponding to the pass band of the filter 11 is performed, when the switch SW6 is in the non-conductive state, the switch SW4a in the non-conductive state is used. If a signal leaks and is input to the input terminal i2, the amplifier circuit 30 may malfunction due to the signal input to the input terminal i2 while amplifying only the signal input to the input terminal i1. is there. Therefore, when the switch SW6 is made conductive and the input terminal i2 is connected to the ground, a signal is not input to the input terminal i2, and malfunction of the amplification circuit 30 can be prevented. As described above, since the input terminal on the side not used for communication of the amplifier circuit 30 is brought into conduction with the ground, malfunction of the amplifier circuit 30 can be prevented.
  • FIG. 10 is a block diagram showing an example of the filter module 3 according to the third embodiment.
  • the filter module 3 according to the third embodiment differs from the filter module 1 according to the first embodiment in that the switches SW3 and SW4 and the like are not connected to the input / output terminals m2 and m4.
  • the other points are the same as those of the filter module 1 according to the first embodiment, and therefore the description thereof is omitted.
  • both the input terminal and the output terminal of the filters 11 and 12 which are not used for communication are made conductive with the ground, but only one may be made conductive with the ground. Therefore, as in the filter module 3 shown in FIG. 10, the switches SW3 and SW3a may not be connected to the input / output terminal m2, and the switches SW4 and SW4a may not be connected to the input / output terminal m4. Good.
  • the filter module 3 may not include the second substrate 100, and the switches SW1, SW1a, SW2 and SW2a, and the wires L1 and L2 may be separately provided.
  • switches SW1 and SW2 may be provided on the same chip.
  • the wiring SW2 (input / output terminal m3) and the ground are conducted by the switch SW2. It is assumed. That is, the input / output terminal m3 connected to the wiring L2 and the wiring L2 becomes the ground potential. Therefore, the ground (the input / output terminal m3 and the wiring L2) is disposed in the vicinity of the input / output terminal m1 and the wiring L1, and the deterioration of the attenuation characteristic of the filter 11 can be suppressed.
  • the switch SW1 electrically connects the wiring L1 (input / output terminal m1) to the ground. It is assumed. That is, the input / output terminal m1 connected to the wiring L1 and the wiring L1 is at the ground potential. Therefore, the ground (the input / output terminal m1 and the wiring L1) is disposed in the vicinity of the input / output terminal m3 and the wiring L2, and the deterioration of the attenuation characteristic of the filter 12 can be suppressed. In addition, since the input / output terminal of the high frequency signal connected to each filter can be used as the ground terminal without increasing the ground terminal, the size can be reduced. Thus, the deterioration of the attenuation characteristic can be suppressed while achieving the downsizing.
  • the filter module includes the two filters 11 and 12, but may have three or more filters.
  • the input / output terminal m1 and the input / output terminal m3 are adjacent to each other without being sandwiched between at least one ground terminal, and the input / output terminal m2 and the input / output terminal m4 Are adjacent to each other without any one of the at least one ground terminal interposed therebetween, but the present invention is not limited thereto.
  • the input / output terminal m1 and the input / output terminal m3 may be adjacent to each other with one of at least one ground terminal interposed therebetween, and the input / output terminal m2 and the input / output terminal m4 are at least one ground It may be adjacent to sandwich any of the terminals.
  • the pass band of the filter 11 is Band 25 Rx (1930-1995 MHz), and the pass band of the filter 12 is Band 3 Rx (1805-1880 MHz), but the present invention is not limited to this.
  • the frequency band of Also, these pass bands may be the same.
  • the present invention can be widely used in communication devices such as mobile phones as filter modules applicable to multi-band systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Filters And Equalizers (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

フィルタモジュール(3)は、入出力端子(m1)と入出力端子(m2)とを結ぶ経路上に配置されたフィルタ(11)と、入出力端子(m3)と入出力端子(m4)とを結ぶ経路上に配置されたフィルタ(12)と、入出力端子(m1)に接続された配線(L1)とグランドとの導通および非導通を切り替えるスイッチ(SW1)と、入出力端子(m3)に接続された配線(L2)とグランドとの導通および非導通を切り替えるスイッチ(SW2)と、を備え、スイッチ(SW1)によって配線(L1)とグランドとが導通となっているときには、スイッチ(SW2)によって配線(L2)とグランドとは非導通となり、スイッチ(SW2)によって配線(L2)とグランドとが導通となっているときには、スイッチ(SW1)によって配線(L1)とグランドとは非導通となる。

Description

フィルタモジュール
 本発明は、フィルタモジュールに関する。
 近年、マルチバンドに対応した無線端末の開発が進んでおり、複数の周波数帯域に対応するために、設けられるフィルタの数が増加している一方で、無線端末の小型化が求められている。
 これに対して、例えば、複数のフィルタが1つの基板にまとめて設けられたフィルタモジュールが開示されている(例えば、特許文献1)。これにより、フィルタモジュールが小型化され、ひいては、無線端末の小型化が図られる。
特開2005-057342号公報
 しかしながら、上記従来のフィルタモジュールでは、例えば、互いに異なる周波数帯域を通過帯域とする複数のフィルタが同一の基板に配置され、周波数帯域が近いフィルタ同士が隣接して配置される場合がある。この場合、フィルタを通過する信号が互いに干渉し、それぞれのフィルタに接続された配線間のアイソレーションを十分に確保できないおそれがある。その結果、フィルタの減衰特性が劣化し、所望の機能を発揮できなくなってしまうことがある。
 これに対して、上記同一の基板上にグランド端子を増やすことで減衰特性の劣化を抑制することが考えられるが、その場合、グランド端子を増やす分大型化してしまい、小型化を図ることが難しくなる。
 そこで、本発明は、小型化を図りつつ、減衰特性の劣化を抑制できるフィルタモジュールを提供することを目的とする。
 本発明の一態様に係るフィルタモジュールは、第1入出力端子と、第2入出力端子と、前記第1入出力端子と前記第2入出力端子とを結ぶ経路上に配置された第1フィルタと、第3入出力端子と、第4入出力端子と、前記第3入出力端子と前記第4入出力端子とを結ぶ経路上に配置された第2フィルタと、前記第1入出力端子、前記第2入出力端子、前記第1フィルタ、前記第3入出力端子、前記第4入出力端子および前記第2フィルタが設けられた第1基板と、前記第1入出力端子に接続され、前記第1フィルタを通過する信号が伝搬される第1配線と、前記第1配線とグランドとの導通および非導通を切り替える第1スイッチと、前記第3入出力端子に接続され、前記第2フィルタを通過する信号が伝搬される第2配線と、前記第2配線とグランドとの導通および非導通を切り替える第2スイッチと、を備え、前記第1スイッチによって前記第1配線とグランドとが導通となっているときには、前記第2スイッチによって前記第2配線とグランドとは非導通となり、前記第2スイッチによって前記第2配線とグランドとが導通となっているときには、前記第1スイッチによって前記第1配線とグランドとは非導通となる。
 第1基板に、第1フィルタおよび第2フィルタがまとめて設けられるため、第1フィルタの第1入出力端子と第2フィルタの第3入出力端子とが近接して配置され得る。それに伴い、第1入出力端子に接続される第1配線と第3入出力端子に接続される第2配線とが近接して、配線間のアイソレーションを十分に確保できないおそれがある。
 これに対して、例えば、第1フィルタの通過帯域と第2フィルタの通過帯域とが異なる場合に、第1フィルタの通過帯域での通信を行い、かつ、第2フィルタの通過帯域での通信を行わない場合には、第2スイッチによって第2配線とグランドとが導通とされる。つまり、第2配線および第2配線に接続された第3入出力端子がグランド電位となる。このため、第1入出力端子および第1配線の近傍にグランド(第3入出力端子および第2配線)が配置されることになり、第1フィルタの減衰特性の劣化を抑制できる。同じように、例えば、第2フィルタの通過帯域での通信を行い、かつ、第1フィルタの通過帯域での通信を行わない場合には、第1スイッチによって第1配線とグランドとが導通とされる。つまり、第1配線および第1配線に接続された第1入出力端子がグランド電位となる。このため、第3入出力端子および第2配線の近傍にグランド(第1入出力端子および第1配線)が配置されることになり、第2フィルタの減衰特性の劣化を抑制できる。また、グランド端子を増やすことなく、各フィルタに接続された高周波信号の入出力端子をグランド端子としても用いることができるため、小型化が可能となる。このように、小型化を図りつつ、減衰特性の劣化を抑制できる。
 例えば、前記第1スイッチは、SPST(single pole single throw)のスイッチであり、さらに、前記第1配線と前記第1フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備えていてもよい。
 例えば、前記第1スイッチは、SPDT(single pole double throw)のスイッチであり、前記第1スイッチの共通端子に前記第1配線が接続され、前記第1スイッチの2つの選択端子のうちの一の選択端子に、前記第1フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続されていてもよい。
 例えば、前記第2スイッチは、SPSTのスイッチであり、さらに、前記第2配線と前記第2フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備えていてもよい。
 例えば、前記第2スイッチは、SPDTのスイッチであり、前記第2スイッチの共通端子に前記第2配線が接続され、前記第2スイッチの2つの選択端子のうちの一の選択端子に、前記第2フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続されていてもよい。
 例えば、前記フィルタモジュールは、さらに、第2基板を備え、前記第1スイッチおよび前記第2スイッチは、前記第2基板に設けられていてもよい。また、例えば、前記第1スイッチおよび前記第2スイッチは、同一のチップに設けられていてもよい。
 また、前記フィルタモジュールは、さらに、前記第2入出力端子に接続され、前記第1フィルタを通過する信号が伝搬される第3配線と、前記第3配線とグランドとの導通および非導通を切り替える第3スイッチと、前記第4入出力端子に接続され、前記第2フィルタを通過する信号が伝搬される第4配線と、前記第4配線とグランドとの導通および非導通を切り替える第4スイッチと、を備え、前記第1スイッチによって前記第1配線とグランドとが導通となっており、かつ、前記第3スイッチによって前記第3配線とグランドとが導通となっているときには、前記第2スイッチによって前記第2配線とグランドとは非導通となり、かつ、前記第4スイッチによって前記第4配線とグランドとは非導通となり、前記第2スイッチによって前記第2配線とグランドとが導通となっており、かつ、前記第4スイッチによって前記第4配線とグランドとが導通となっているときには、前記第1スイッチによって前記第1配線とグランドとは非導通となり、かつ、前記第3スイッチによって前記第3配線とグランドとは非導通となってもよい。
 第1基板に、第1フィルタおよび第2フィルタがまとめて設けられるため、第1フィルタの第2入出力端子と第2フィルタの第4入出力端子とについても近接して配置され得る。それに伴い、第2入出力端子に接続された第3配線と第4入出力端子に接続された第4配線とが近接して配線間のアイソレーションを十分に確保できないおそれがある。
 例えば、第1フィルタの通過帯域での通信を行い、かつ、第2フィルタの通過帯域での通信を行わない場合には、第2スイッチによって第2配線とグランドとが導通とされ、かつ、第4スイッチによって第4配線とグランドとが導通とされる。つまり、第2フィルタの入力端子に接続された配線および出力端子に接続された配線の一方のみではなく、両方がグランドと導通とされる。このため、第1入出力端子、第2入出力端子、第1配線および第3配線の近傍にグランド(第3入出力端子、第4入出力端子、第2配線および第4配線)が配置されることになり、第1フィルタの減衰特性の劣化をより効果的に抑制できる。同じように、例えば、第2フィルタの通過帯域での通信を行い、かつ、第1フィルタの通過帯域での通信を行わない場合には、第1スイッチによって第1配線とグランドとが導通とされ、かつ、第3スイッチによって第3配線とグランドとが導通とされる。つまり、第1フィルタの入力端子に接続された配線および出力端子に接続された配線の一方のみではなく、両方がグランドと導通とされる。このため、第3入出力端子、第4入出力端子、第2配線および第4配線の近傍にグランド(第1入出力端子、第2入出力端子、第1配線および第3配線)が配置されることになり、第2フィルタの減衰特性の劣化をより効果的に抑制できる。
 例えば、前記第3スイッチは、SPSTのスイッチであり、さらに、前記第3配線と前記第1フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備えていてもよい。
 例えば、前記第3スイッチは、SPDTのスイッチであり、前記第3スイッチの共通端子に前記第3配線が接続され、前記第3スイッチの2つの選択端子のうちの一の選択端子に、前記第1フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続されていてもよい。
 例えば、前記第4スイッチは、SPSTのスイッチであり、さらに、前記第4配線と前記第2フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備えていてもよい。
 例えば、前記第4スイッチは、SPDTのスイッチであり、前記第4スイッチの共通端子に前記第4配線が接続され、前記第4スイッチの2つの選択端子のうちの一の選択端子に、前記第2フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続されていてもよい。
 例えば、前記フィルタモジュールは、さらに、第2基板を備え、前記第1スイッチ乃至前記第4スイッチは、前記第2基板に設けられていてもよい。また、例えば、前記第1スイッチ乃至前記第4スイッチは、同一のチップに設けられていてもよい。
 また、前記フィルタモジュールは、さらに、前記第1フィルタに接続される第1入力端子、前記第2フィルタに接続される第2入力端子および出力端子を有し、前記第1入力端子に入力される前記第1フィルタを通過する信号および前記第2入力端子に入力される前記第2フィルタを通過する信号の一方を増幅して前記出力端子から出力する増幅回路と、前記第1入力端子とグランドとの導通および非導通を切り替える第5スイッチと、前記第2入力端子とグランドとの導通および非導通を切り替える第6スイッチと、を備え、前記第1スイッチによって前記第1配線とグランドとが導通となっているときには、前記第5スイッチによって前記第1入力端子とグランドとは導通となり、かつ、前記第6スイッチによって前記第2入力端子とグランドとは非導通となり、前記第2スイッチによって前記第2配線とグランドとが導通となっているときには、前記第5スイッチによって前記第1入力端子とグランドとは非導通となり、かつ、前記第6スイッチによって前記第2入力端子とグランドとは導通となってもよい。
 例えば、第1フィルタの通過帯域での通信を行い、かつ、第2フィルタの通過帯域での通信を行わない場合には、第6スイッチによって増幅回路の第2入力端子とグランドとが導通にされる。また、例えば、第2フィルタの通過帯域での通信を行い、かつ、第1フィルタの通過帯域での通信を行わない場合には、第5スイッチによって増幅回路の第1入力端子とグランドとが導通にされる。つまり、通信に用いられない側の入力端子がグランドと導通にされるため、増幅回路の誤動作を防止できる。
 例えば、前記フィルタモジュールは、さらに、第2基板を備え、前記第1スイッチ乃至前記第6スイッチは、前記第2基板に設けられていてもよい。また、例えば、前記第1スイッチ乃至前記第6スイッチ、および、前記増幅回路は、同一のチップに設けられていてもよい。
 また、前記第1基板には、さらに、前記第1フィルタおよび前記第2フィルタに接続される少なくとも1つのグランド端子が設けられ、前記第1入出力端子と前記第3入出力端子とは、前記少なくとも1つのグランド端子のいずれも間に挟まずに隣接しており、前記第2入出力端子と前記第4入出力端子とは、前記少なくとも1つのグランド端子のいずれも間に挟まずに隣接していてもよい。
 これによれば、それぞれのフィルタに接続された配線間のアイソレーションを確保するために、グランド端子を第1入出力端子と第3入出力端子との間、および、第2入出力端子と第4入出力端子との間に設ける必要がないため、設計の自由度を高めることができる。
 また、前記第1フィルタの通過帯域と、前記第2フィルタの通過帯域とは、互いに異なる帯域であってもよい。
 これによれば、互いに異なる周波数帯域でのマルチバンド化が可能となる。
 本発明に係るフィルタモジュールによれば、小型化を図りつつ、減衰特性の劣化を抑制できる。
図1は、実施の形態1に係るフィルタモジュールの一例を示す構成図である。 図2は、実施の形態1に係る第1フィルタの一例を示す構成図である。 図3は、実施の形態1に係る第2フィルタの一例を示す構成図である。 図4は、実施の形態1に係る第1基板のレイアウトの一例を示す平面図である。 図5は、実施の形態1に係る第1基板に接続される配線の一例を示す平面図である。 図6Aは、実施の形態1に係る第1フィルタの、各スイッチが第1状態のときと第2状態のときの通過特性を示す図である。 図6Bは、図6Aの丸で囲った部分周辺の拡大図である。 図7は、実施の形態1に係るフィルタモジュールの他の一例を示す構成図である。 図8は、実施の形態2に係るフィルタモジュールの一例を示す構成図である。 図9は、実施の形態2に係るフィルタモジュールの他の一例を示す構成図である。 図10は、実施の形態3に係るフィルタモジュールの一例を示す構成図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する場合がある。また、以下の実施の形態において、「接続される」とは、直接接続される場合だけでなく、他の素子等を介して電気的に接続される場合も含まれる。
 (実施の形態1)
 [1.フィルタモジュールの構成]
 まず、実施の形態1に係るフィルタモジュールの構成について図1を用いて説明する。
 図1は、実施の形態1に係るフィルタモジュール1の一例を示す構成図である。
 フィルタモジュール1は、マルチバンドに対応したモジュールであり、例えば、2つの周波数帯域に対応している。フィルタモジュール1を用いて、例えば、2つの周波数帯域の信号の時分割通信が行われる。フィルタモジュール1は、入出力端子n1~n4を備える。例えば、入出力端子n1およびn3にはアンテナ素子が接続され、入出力端子n2およびn4にはローノイズアンプ等の増幅回路の入力端子が接続される。
 フィルタモジュール1は、第2基板100と、第2基板100に設けられた第1基板10、スイッチSW1、SW1a、SW2、SW2a、SW3、SW3a、SW4およびSW4a、ならびに、配線L1、L2、L3およびL4を備える。
 第2基板100は、上述した部品や第1基板10等の他の基板が実装される実装基板であり、例えば、プリント基板等である。入出力端子n1~n4は、例えば、第2基板100に設けられている。第1基板10と上記各スイッチとは、第2基板100に設けられた配線L1、L2、L3およびL4によって接続されている。
 第1基板10には、入出力端子m1(第1入出力端子)と、入出力端子m2(第2入出力端子)と、フィルタ11と、入出力端子m3(第3入出力端子)と、入出力端子m4(第4入出力端子)と、フィルタ12と、が設けられている。つまり、これらの構成は、第1基板10にまとめて設けられている。第1基板10は、例えばプリント基板またはLTCC(Low Temperature Co-fired Ceramics)基板等である。なお、図1には図示していないが、第1基板10には、フィルタ11および12に接続される少なくとも1つのグランド端子が設けられる(後述する図4参照)。入出力端子m1~m4およびグランド端子は、例えば、第1基板10に設けられたバンプ又は表面電極(パッド)等である。
 フィルタ11は、入出力端子m1と入出力端子m2とを結ぶ経路上に配置された第1フィルタである。例えば、フィルタ11は、受信フィルタであり、その通過帯域は、LTE(Long Term Evolution)のBand25Rx(1930-1995MHz)である。
 フィルタ12は、入出力端子m3と入出力端子m4とを結ぶ経路上に配置された第2フィルタである。例えば、フィルタ12は、受信フィルタであり、その通過帯域は、LTEのBand3Rx(1805-1880MHz)である。
 フィルタ11および12は、例えば、弾性波フィルタであり、弾性波フィルタを構成する共振子は、例えば、表面波(SAW:Surface Acoustic Wave)を利用した共振子である。なお、境界波を利用した共振子、もしくは、FBAR(Film Bulk Acoustic Resonator)等のバルク波(BAW:Bulk Acoustic Wave)を利用した共振子等であってもよい。SAW共振子は、圧電性を有する基板上に形成されたIDT(InterDigital Transducer)電極を有しており、急峻度の高い通過特性を有する小型かつ低背のフィルタ回路を実現できる。なお、圧電性を有する基板は、少なくとも表面に圧電性を有する基板である。当該基板は、例えば、表面に圧電薄膜を備え、当該圧電薄膜と音速の異なる膜、および、支持基板などの積層体で構成されていてもよい。また、当該基板は、例えば、高音速支持基板と、高音速支持基板上に形成された圧電薄膜とを含む積層体であってもよいし、高音速支持基板と、高音速支持基板上に形成された低音速膜と、低音速膜上に形成された圧電薄膜とを含む積層体であってもよい。または、支持基板と、支持基板上に形成された高音速膜と、高音速膜上に形成された低音速膜と、低音速膜上に形成された圧電薄膜とを含む積層体であってもよい。なお、当該基板は、基板全体に圧電性を有していてもよい。
 配線L1は、入出力端子m1に接続され、フィルタ11を通過する信号が伝搬される第1配線である。配線L1は、入出力端子m1とスイッチSW1とを接続する。また、配線L1は、入出力端子m1とスイッチSW1aとを接続する配線でもある。配線L2は、入出力端子m3に接続され、フィルタ12を通過する信号が伝搬される第2配線である。配線L2は、入出力端子m3とスイッチSW2とを接続する。また、配線L2は、入出力端子m3とスイッチSW2aとを接続する配線でもある。配線L3は、入出力端子m2に接続され、フィルタ11を通過する信号が伝搬される第3配線である。配線L3は、入出力端子m2とスイッチSW3とを接続する。また、配線L3は、入出力端子m2とスイッチSW3aとを接続する配線でもある。配線L4は、入出力端子m4に接続され、フィルタ12を通過する信号が伝搬される第4配線である。配線L4は、入出力端子m4とスイッチSW4とを接続する。また、配線L4は、入出力端子m4とスイッチSW4aとを接続する配線でもある。
 スイッチSW1は、配線L1(入出力端子m1)とグランドとの導通および非導通を切り替える第1スイッチである。例えば、スイッチSW1は、SPSTのスイッチであり、この場合、フィルタモジュール1は、さらに、配線L1(入出力端子m1)とフィルタ11を通過する信号の入出力端子n1との導通および非導通を切り替えるSPSTのスイッチSW1aを備える。なお、SPSTのスイッチであるスイッチSW1およびSW1aの代わりにSPDTのスイッチが設けられてもよい。この場合、第1スイッチは、SPDTのスイッチであり、第1スイッチの共通端子に配線L1(入出力端子m1)が接続され、第1スイッチの2つの選択端子のうちの一の選択端子に入出力端子n1が接続され、他の選択端子にグランドが接続される。また、この場合、当該スイッチの共通端子と入出力端子m1とを接続する配線が第1配線となる。
 スイッチSW2は、配線L2(入出力端子m3)とグランドとの導通および非導通を切り替える第2スイッチである。例えば、スイッチSW2は、SPSTのスイッチであり、この場合、フィルタモジュール1は、さらに、配線L2(入出力端子m3)とフィルタ12を通過する信号の入出力端子n3との導通および非導通を切り替えるSPSTのスイッチSW2aを備える。なお、SPSTのスイッチであるスイッチSW2およびSW2aの代わりにSPDTのスイッチが設けられてもよい。この場合、第2スイッチは、SPDTのスイッチであり、第2スイッチの共通端子に配線L2(入出力端子m3)が接続され、第2スイッチの2つの選択端子のうちの一の選択端子に入出力端子n3が接続され、他の選択端子にグランドが接続される。また、この場合、当該スイッチの共通端子と入出力端子m3とを接続する配線が第2配線となる。
 スイッチSW3は、配線L3(入出力端子m2)とグランドとの導通および非導通を切り替える第3スイッチである。例えば、スイッチSW3は、SPSTのスイッチであり、この場合、フィルタモジュール1は、さらに、配線L3(入出力端子m2)とフィルタ11を通過する信号の入出力端子n2との導通および非導通を切り替えるSPSTのスイッチSW3aを備える。なお、SPSTのスイッチであるスイッチSW3およびSW3aの代わりにSPDTのスイッチが設けられてもよい。この場合、第3スイッチは、SPDTのスイッチであり、第3スイッチの共通端子に配線L3(入出力端子m2)が接続され、第3スイッチの2つの選択端子のうちの一の選択端子に入出力端子n2が接続され、他の選択端子にグランドが接続される。また、この場合、当該スイッチの共通端子と入出力端子m2とを接続する配線が第3配線となる。
 スイッチSW4は、配線L4(入出力端子m4)とグランドとの導通および非導通を切り替える第4スイッチである。例えば、スイッチSW4は、SPSTのスイッチであり、この場合、フィルタモジュール1は、さらに、配線L4(入出力端子m4)とフィルタ12を通過する信号の入出力端子n4との導通および非導通を切り替えるSPSTのスイッチSW4aを備える。なお、SPSTのスイッチであるスイッチSW4およびSW4aの代わりにSPDTのスイッチが設けられてもよい。この場合、第4スイッチは、SPDTのスイッチであり、第4スイッチの共通端子に配線L4(入出力端子m4)が接続され、第4スイッチの2つの選択端子のうちの一の選択端子に入出力端子n4が接続され、他の選択端子にグランドが接続される。また、この場合、当該スイッチの共通端子と入出力端子m4とを接続する配線が第4配線となる。
 これらのスイッチは、例えば、GaAs若しくはCMOS(Complementary Metal Oxide Semiconductor)からなるFET(Field Effect Transistor)スイッチ、又は、ダイオードスイッチ等である。
 また、これらのスイッチは、例えば、外部(例えばRF信号処理回路)からの制御信号に基づいて、SPSTのスイッチの場合には、導通状態および非導通状態が切り替えられ、SPDTのスイッチの場合には、共通端子と複数の選択端子のいずれかとの接続が切り替えられる。また、これらのスイッチは、例えば、1つのRF信号処理回路からの制御信号に基づいて、同期して制御される。
 具体的には、スイッチSW1によって配線L1(入出力端子m1)とグランドとが導通となっており、かつ、スイッチSW3によって配線L3(入出力端子m2)とグランドとが導通となっているときには、スイッチSW2によって配線L2(入出力端子m3)とグランドとは非導通となり、かつ、スイッチSW4によって配線L4(入出力端子m4)とグランドとは非導通となる。このとき、スイッチSW1aによって配線L1(入出力端子m1)と入出力端子n1とが非導通となり、スイッチSW3aによって配線L3(入出力端子m2)と入出力端子n2とが非導通となり、スイッチSW2aによって配線L2(入出力端子m3)と入出力端子n3とが導通となり、スイッチSW4aによって配線L4(入出力端子m4)と入出力端子n4とが導通となる。
 また、スイッチSW2によって配線L2(入出力端子m3)とグランドとが導通となっており、かつ、スイッチSW4によって配線L4(入出力端子m4)とグランドとが導通となっているときには、スイッチSW1によって配線L1(入出力端子m1)とグランドとは非導通となり、かつ、スイッチSW3によって配線L3(入出力端子m2)とグランドとは非導通となる。このとき、スイッチSW2aによって配線L2(入出力端子m3)と入出力端子n3とが非導通となり、スイッチSW4aによって配線L4(入出力端子m4)と入出力端子n4とが非導通となり、スイッチSW1aによって配線L1(入出力端子m1)と入出力端子n1とが導通となり、スイッチSW3aによって配線L3(入出力端子m2)と入出力端子n2とが導通となる。
 つまり、フィルタ11の通過帯域に対応する周波数帯域(例えばBand25Rx)での通信が行われる際には、配線L1およびL3、ならびに、配線L1およびL3に接続された入出力端子m1およびm2はグランドと非導通とされ、配線L2およびL4、ならびに、配線L2およびL4に接続された入出力端子m3およびm4はグランドと導通とされる。また、フィルタ12の通過帯域に対応する周波数帯域(例えばBand3Rx)での通信が行われる際には、配線L2およびL4、ならびに、配線L2およびL4に接続された入出力端子m3およびm4はグランドと非導通とされ、配線L1およびL3、ならびに、配線L1およびL3に接続された入出力端子m1およびm2はグランドと導通とされる。
 なお、これらのスイッチは、第2基板100の内部に設けられていてもよいし、第2基板100上に設けられていてもよい。また、フィルタモジュール1は、第2基板100を備えていなくてもよく、スイッチSW1、SW1a、SW2、SW2a、SW3、SW3a、SW4およびSW4a、ならびに、配線L1、L2、L3およびL4がそれぞれ別体に設けられていてもよい。
 [2.第1フィルタおよび第2フィルタの構成]
 次に、フィルタ11および12の具体的な構成について、図2および図3を用いて説明する。
 図2は、実施の形態1に係るフィルタ11(第1フィルタ)の一例を示す構成図である。図2には、フィルタ11の他に入出力端子m1およびm2も示している。
 フィルタ11は、入出力端子m1と入出力端子m2とを結ぶ経路上に配置された直列腕共振子S11~S13およびダブルモード型SAWフィルタDMS1、ならびに、各々が、当該経路上に設けられた互いに異なる接続ノードとグランドとの間に配置された並列腕共振子P11およびP12を有する。接続ノードとは、素子と素子、または、素子と端子の間の接続点である。並列腕共振子P11は、直列腕共振子S11およびダブルモード型SAWフィルタDMS1の間の接続ノードとグランドとの間に接続され、並列腕共振子P12は、直列腕共振子S12および直列腕共振子S13の間の接続ノードとグランドとの間に接続される。当該構成により、フィルタ11の通過帯域(例えばBand25Rx)は形成される。
 図3は、実施の形態1に係るフィルタ12(第2フィルタ)の一例を示す構成図である。図3には、フィルタ12の他に入出力端子m3およびm4も示している。
 フィルタ12は、入出力端子m3と入出力端子m4とを結ぶ経路上に配置された直列腕共振子S21~S23およびダブルモード型SAWフィルタDMS2、ならびに、各々が、当該経路上に設けられた互いに異なる接続ノードとグランドとの間に配置された並列腕共振子P21およびP22を有する。並列腕共振子P21は、直列腕共振子S21および直列腕共振子S22の間の接続ノードとグランドとの間に接続され、並列腕共振子P22は、ダブルモード型SAWフィルタDMS2および直列腕共振子S23の間の接続ノードとグランドとの間に接続される。当該構成により、フィルタ12の通過帯域(例えばBand3Rx)は形成される。
 なお、フィルタ11および12を構成する共振子の数やダブルモード型SAWフィルタの有無等は一例であり、ここで説明したものに限らない。
 [3.第1基板のレイアウトおよび第1基板に接続される配線の配線例]
 次に、第1基板10のレイアウトおよび第1基板10に接続される配線の配線例について、図4および図5を用いて説明する。
 まず、第1基板10のレイアウトについて、図4を用いて説明する。
 図4は、実施の形態1に係る第1基板10のレイアウトの一例を示す平面図である。なお、図4において、端子と部品とを接続する配線および部品と部品とを接続する配線にハッチングを付している。具体的には、グランドに接続されるグランドラインには左上から右下へ延びる平行線によるハッチングを付し、高周波信号が通過する信号ラインには右上から左下へ延びる平行線によるハッチングを付している。また、図4上では、ダブルモード型SAWフィルタDMS1およびDMS2の周辺において上記信号ラインと上記グランドラインとが接触して導通しているように見えるが、例えば、互いに導通しないように、一方の配線(ここでは信号ライン)の下に他方の配線(ここではグランドライン)が設けられている。
 図4に示されるように、第1基板10には、フィルタ11および12、ならびに、入出力端子m1~m4がまとめて設けられている。また、第1基板10には、フィルタ11およびフィルタ12に接続される少なくとも1つのグランド端子が設けられる。例えば、第1基板10には、フィルタ11(具体的には、並列腕共振子P11およびP12ならびにダブルモード型SAWフィルタDMS1)に接続されるグランド端子g1と、フィルタ12(具体的には、並列腕共振子P21およびP22ならびにダブルモード型SAWフィルタDMS2)に接続されるグランド端子g2とが設けられる。
 第1基板10のサイズをなるべく小型化するために、フィルタ11および12の構成部品や、これらに接続される入出力端子m1~m4、ならびに、グランド端子g1およびg2は密集して配置される。したがって、フィルタ11に接続される入出力端子m1(ここでは例えば入力端子)と、フィルタ12に接続される入出力端子m3(ここでは例えば入力端子)とが近接して配置される。また、フィルタ11に接続される入出力端子m2(ここでは例えば出力端子)と、フィルタ12に接続される入出力端子m4(ここでは例えば出力端子)とが近接して配置される。例えば、入出力端子m1と入出力端子m3とは、少なくとも1つのグランド端子のいずれも間に挟まずに隣接しており、入出力端子m2と入出力端子m4とは、少なくとも1つのグランド端子のいずれも間に挟まずに隣接している。
 次に、第1基板10に接続される配線の配線例について、図5を用いて説明する。
 図5は、実施の形態1に係る第1基板10に接続される配線の一例を示す平面図である。なお、図5では、第1基板10に設けられた部品および配線の図示を省略し、第1基板10については端子のみを図示している。
 図5に示されるように、第1基板10において入出力端子m1と入出力端子m3とが近接して配置されているため、これらに接続される配線L1およびL2も、近接して配置される。同じように、第1基板10において入出力端子m2と入出力端子m4とが近接して配置されているため、これらに接続される配線L3およびL4も、近接して配置される。これにより、配線L1およびL2間、ならびに、配線L3およびL4間のアイソレーションを十分に確保できないおそれがある。
 [4.フィルタ特性]
 次に、フィルタ11の通過帯域に対応する周波数帯域(例えばBand25Rx)での通信が行われ、フィルタ12の通過帯域に対応する周波数帯域(例えばBand3Rx)での通信が行われないときのフィルタ11の通過特性について、図6Aおよび図6Bを用いて説明する。
 図6Aは、実施の形態1に係るフィルタ11(第1フィルタ)の、各スイッチが第1状態のときと第2状態のときの通過特性を示す図である。図6Bは、図6Aの丸で囲った部分周辺の拡大図である。
 なお、第1状態とは、スイッチSW1aおよびSW3aが導通状態となり、かつ、スイッチSW1およびSW3が非導通状態となり、かつ、スイッチSW2aおよびSW4aが非導通状態となり、かつ、スイッチSW2およびSW4が導通状態となっている状態であり、第2状態とは、第1状態に対してスイッチSW2およびSW4が非導通状態となっている状態である。
 フィルタ11の通過帯域での通信が行われ、フィルタ12の通過帯域での通信が行われない場合には、第1状態および第2状態では、ともに、スイッチSW1aおよびSW3aは導通状態、スイッチSW1およびSW3は非導通状態、スイッチSW2aおよびSW4aは非導通状態となっている。第1状態では、さらに、スイッチSW2およびSW4が導通状態となり、配線L2およびL4(入出力端子m3およびm4)がグランドと導通となっている。第2状態では、さらに、スイッチSW2およびSW4が非導通状態となり、配線L2およびL4(入出力端子m3およびm4)がグランドと非導通となっている。本発明では、各スイッチを第1状態としているが、まず第2状態となっているときに発生する問題について説明する。
 第2状態では、フィルタ12に関する端子および配線は、グランドから浮いた状態となる。このとき、配線L1およびL2は近接して配置されているため、配線L1を通過して入出力端子m1に入力される高周波信号の一部が配線L2に漏れてしまうことがある。また、配線L3およびL4は近接して配置されているため、フィルタ12を通過した当該漏れ信号の一部が配線L3へ戻ってしまうことがある。
 上述したように、フィルタ12は、Band3Rx(1805-1880MHz)を通過帯域とし、Band3Rxは、フィルタ11の通過帯域であるBand25Rx(1930-1995MHz)の低域側の減衰帯域に位置する。つまり、配線L1を通過して入出力端子m1に入力される高周波信号は、フィルタ11によってBand3Rxの成分を減衰させることはできる。しかし、当該高周波信号の一部が配線L2に漏れると、当該漏れ信号に含まれるBand3Rxの成分は、Band3Rxを通過帯域とするフィルタ12を通過してしまう。そして、フィルタ12を通過したBand3Rxの成分を含む漏れ信号が配線L4から配線L3へ戻ってしまうと、結果的に、フィルタ11は、Band3Rxの成分を一部減衰できなかったことになり、減衰特性が劣化してしまう。よって、図6Aおよび図6Bに示されるように、Band3Rx(1805-1880MHz)周辺において、第2状態では、後述する第1状態よりも減衰特性が劣化している。
 そこで、本発明では、各スイッチを第1状態とし、フィルタ12に関する端子および配線をグランドと接続する。
 第1状態では、入出力端子m3およびm4、ならびに、配線L2およびL4は、グランドと接続された状態となる。このため、配線L1を通過して入出力端子m1に入力される高周波信号の一部が配線L2に漏れたとしても、配線L2および入出力端子m3はグランドに接続されているため、当該漏れ信号はグランドへと流れる。また、配線L4および入出力端子m4はグランドに接続されているため、当該漏れ信号が配線L4から配線L3へ戻りにくくなっている。よって、図6Aおよび図6Bに示されるように、Band3Rx(1805-1880MHz)周辺において、第1状態では、第2状態よりも減衰特性の劣化が抑制されている。
 なお、フィルタ12の通過帯域に対応する周波数帯域(例えばBand3Rx)での通信が行われ、フィルタ11の通過帯域に対応する周波数帯域(例えばBand25Rx)での通信が行われないときのフィルタ12の通過特性については、上記説明と同様の傾向となる。詳細な説明は省略するが、フィルタ12の通過帯域であるBand3Rx(1805-1880MHz)の高域側に位置するBand25Rx(1930-1995MHz)周辺において、フィルタ12の減衰特性の劣化を抑制できる。
 また、図4に示されるように、第1基板10には、最低限必要なグランド端子g1およびg2以外にグランド端子が設けられてはいないが、減衰特性の劣化の抑制が可能となっている。これは、入出力端子m1~m4をグランド端子としても用いることができ、実質的にグランド端子が増えることになるためである。つまり、グランド端子を増やす必要がないため、大型化することなく減衰特性の劣化の抑制が可能となっている。
 また、グランド端子を入出力端子m1およびm3間、ならびに、入出力端子m2およびm4間に配置することで、アイソレーションを高めること(つまり減衰特性の劣化の抑制)が可能だが、本発明では、図4に示されるように、このような配置にすることなく減衰特性の劣化の抑制が可能となっている。同じように、配線L1およびL2間、ならびに、配線L3およびL4間のアイソレーションが悪くなるような状態(例えば、配線間にグランドを挟まずに、配線同士が並行したり、クロスしたりする状態)であっても、減衰特性の劣化の抑制が可能となっている。これは、上述したように、通信に用いられない側のフィルタに関する端子および配線をグランドとして用いることでアイソレーションを高めることができるためである。したがって、これとは別に、アイソレーションを高めるための設計をする必要がなく、設計の自由度を高めることができる。
 [5.変形例]
 なお、スイッチSW1乃至スイッチSW4は、同一のチップに設けられていてもよい。
 図7は、実施の形態1に係るフィルタモジュール1の他の一例を示す構成図である。図7に示されるように、スイッチSW1、SW1a、SW2、SW2a、SW3、SW3a、SW4およびSW4aは、同一のチップ20に設けられていてもよい。そして、チップ20が第2基板100に実装されていてもよい。
 [6.まとめ]
 以上説明したように、例えば、フィルタ11の通過帯域とフィルタ12の通過帯域とが異なる場合に、フィルタ11の通過帯域での通信を行い、かつ、フィルタ12の通過帯域での通信を行わない場合には、スイッチSW2によって配線L2とグランドとが導通とされ、かつ、スイッチSW4によって配線L4とグランドとが導通とされる。つまり、フィルタ12の入力端子に接続された配線および出力端子に接続された配線の一方のみではなく、両方がグランドと導通とされる。このため、入出力端子m1、入出力端子m2、配線L1および配線L3の近傍にグランド(入出力端子m3、入出力端子m4、配線L2および配線L4)が配置されることになり、フィルタ11の減衰特性の劣化を抑制できる。同じように、例えば、フィルタ12の通過帯域での通信を行い、かつ、フィルタ11の通過帯域での通信を行わない場合には、スイッチSW1によって配線L1とグランドとが導通とされ、かつ、スイッチSW3によって配線L3とグランドとが導通とされる。つまり、フィルタ11の入力端子に接続された配線および出力端子に接続された配線の一方のみではなく、両方がグランドと導通とされる。このため、入出力端子m3、入出力端子m4、配線L2および配線L4の近傍にグランド(入出力端子m1、入出力端子m2、配線L1および配線L3)が配置されることになり、フィルタ12の減衰特性の劣化を抑制できる。また、グランド端子を増やすことなく、各フィルタに接続された高周波信号の入出力端子をグランド端子としても用いることができるため、小型化が可能となる。このように、小型化を図りつつ、減衰特性の劣化を抑制できる。
 (実施の形態2)
 次に、実施の形態2に係るフィルタモジュールについて図8を用いて説明する。
 図8は、実施の形態2に係るフィルタモジュール2の一例を示す構成図である。
 実施の形態2に係るフィルタモジュール2では、入出力端子n2およびn4にスイッチSW5およびSW6、ならびに、増幅回路30が接続されている点が、実施の形態1におけるフィルタモジュール1と異なる。その他の点は、実施の形態1におけるフィルタモジュール1と同じであるため説明を省略する。
 増幅回路30は、フィルタ11に接続される入力端子i1(第1入力端子)、フィルタ12に接続される入力端子i2(第2入力端子)、および出力端子o1を有する。具体的には、入力端子i1は、入出力端子m2と入力端子i1とを結ぶ経路上の接続ノードとグランドとの間に設けられたスイッチSW5、および当該経路上に設けられたスイッチSW3aを介してフィルタ11に接続される。また、入力端子i2は、入出力端子m4と入力端子i2とを結ぶ経路上の接続ノードとグランドとの間に設けられたスイッチSW6、および、当該経路上に設けられたスイッチSW4aを介してフィルタ12に接続される。増幅回路30は、入力端子i1に入力されるフィルタ11を通過する信号および入力端子i2に入力されるフィルタ12を通過する信号の一方を増幅して出力端子o1から出力する、例えばローノイズアンプである。出力端子o1には、例えば、RF信号処理回路等が接続される。
 スイッチSW5は、入力端子i1とグランドとの導通および非導通を切り替える第5スイッチである。なお、スイッチSW5は、入力端子i1に直接接続されていてもよいし、配線を介して接続されていてもよい。スイッチSW5が配線を介して入力端子i1に接続されている場合には、スイッチSW5は、当該配線とグランドとの導通および非導通を切り替えることで、入力端子i1とグランドとの導通および非導通を切り替える。スイッチSW6は、入力端子i2とグランドとの導通および非導通を切り替える第6スイッチである。なお、スイッチSW6は、入力端子i2に直接接続されていてもよいし、配線を介して接続されていてもよい。スイッチSW6が配線を介して入力端子i2に接続されている場合には、スイッチSW6は、当該配線とグランドとの導通および非導通を切り替えることで、入力端子i2とグランドとの導通および非導通を切り替える。スイッチSW5およびSW6は、例えば、GaAs若しくはCMOSからなるFETスイッチ、又は、ダイオードスイッチ等である。また、スイッチSW5およびSW6は、例えば、外部(例えばRF信号処理回路)からの制御信号に基づいて導通状態および非導通状態が切り替えられる。また、スイッチSW5およびSW6は、上述したスイッチSW1、SW1a、SW2、SW2a、SW3、SW3a、SW4およびSW4aとともに、例えば、1つのRF信号処理回路からの制御信号に基づいて、同期して制御される。
 具体的には、スイッチSW1によって配線L1(入出力端子m1)とグランドとが導通となっているときには、スイッチSW5によって入力端子i1とグランドとは導通となり、かつ、スイッチSW6によって入力端子i2とグランドとは非導通となる。なお、スイッチSW1によって配線L1(入出力端子m1)とグランドとが導通となっているときには、スイッチSW3、SW2aおよびSW4aも導通となり、スイッチSW1a、SW3a、SW2およびSW4は非導通となる。
 また、スイッチSW2によって配線L2(入出力端子m3)とグランドとが導通となっているときには、スイッチSW5によって入力端子i1とグランドとは非導通となり、スイッチSW6によって入力端子i2とグランドとは導通となる。なお、スイッチSW2によって配線L2(入出力端子m3)とグランドとが導通となっているときには、スイッチSW4、SW1aおよびSW3aも導通となり、スイッチSW2a、SW4a、SW1およびSW3は非導通となる。
 つまり、フィルタ11の通過帯域に対応する周波数帯域での通信が行われる際には、フィルタ11を通過する高周波信号が入力される入力端子i1はグランドと非導通とされ、通信が行われず高周波信号が入力されない入力端子i2はグランドと導通とされる。また、フィルタ12の通過帯域に対応する周波数帯域での通信が行われる際には、フィルタ12を通過する高周波信号が入力される入力端子i2はグランドと非導通とされ、通信が行われず高周波信号が入力されない入力端子i1はグランドと導通とされる。
 なお、フィルタモジュール2は、第2基板100を備えていなくてもよく、スイッチSW1、SW1a、SW2、SW2a、SW3、SW3a、SW4、SW4a、SW5およびSW6、増幅回路30、ならびに、配線L1、L2、L3およびL4がそれぞれ別体に設けられていてもよい。
 また、スイッチSW1乃至スイッチSW6、および、増幅回路30は、同一のチップに設けられていてもよい。
 図9は、実施の形態2に係るフィルタモジュール2の他の一例を示す構成図である。図9に示されるように、スイッチSW1、SW1a、SW2、SW2a、SW3、SW3a、SW4、SW4a、SW5、SW6および増幅回路30は、同一のチップ20aに設けられていてもよい。そして、チップ20aが第2基板100に実装されていてもよい。
 以上説明したように、例えば、フィルタ11の通過帯域に対応する周波数帯域での通信が行われる際に、スイッチSW6が非導通状態となっている場合において、非導通状態となっているスイッチSW4aから信号が漏れて入力端子i2に入力されると、増幅回路30は、入力端子i1に入力された信号のみを増幅すべきところを、入力端子i2に入力された信号によって誤動作をしてしまうおそれがある。そこで、スイッチSW6が導通状態とされて、入力端子i2がグランドに接続されることで、入力端子i2に信号が入力されなくなり、増幅回路30の誤動作を防止できる。このように、増幅回路30の通信に用いられない側の入力端子がグランドと導通にされるため、増幅回路30の誤動作を防止できる。
 (実施の形態3)
 次に、実施の形態3に係るフィルタモジュールについて図10を用いて説明する。
 図10は、実施の形態3に係るフィルタモジュール3の一例を示す構成図である。
 実施の形態3に係るフィルタモジュール3では、入出力端子m2およびm4にスイッチSW3およびSW4等が接続されていない点が、実施の形態1におけるフィルタモジュール1と異なる。その他の点は、実施の形態1におけるフィルタモジュール1と同じであるため説明を省略する。
 実施の形態1では、フィルタ11および12のうちの、通信に用いられないフィルタの入力端子および出力端子の両方がグランドと導通とされたが、一方のみがグランドと導通とされてもよい。したがって、図10に示されるフィルタモジュール3のように、入出力端子m2にスイッチSW3およびSW3aが接続されていなくてもよく、また、入出力端子m4にスイッチSW4およびSW4aが接続されていなくてもよい。
 なお、フィルタモジュール3は、第2基板100を備えていなくてもよく、スイッチSW1、SW1a、SW2およびSW2a、ならびに、配線L1およびL2がそれぞれ別体に設けられていてもよい。
 また、図示は省略するが、スイッチSW1およびSW2は、同一のチップに設けられていてもよい。
 以上説明したように、フィルタ11の通過帯域での通信を行い、かつ、フィルタ12の通過帯域での通信を行わない場合には、スイッチSW2によって配線L2(入出力端子m3)とグランドとが導通とされる。つまり、配線L2および配線L2に接続された入出力端子m3がグランド電位となる。このため、入出力端子m1および配線L1の近傍にグランド(入出力端子m3および配線L2)が配置されることになり、フィルタ11の減衰特性の劣化を抑制できる。同じように、例えば、フィルタ12の通過帯域での通信を行い、かつ、フィルタ11の通過帯域での通信を行わない場合には、スイッチSW1によって配線L1(入出力端子m1)とグランドとが導通とされる。つまり、配線L1および配線L1に接続された入出力端子m1がグランド電位となる。このため、入出力端子m3および配線L2の近傍にグランド(入出力端子m1および配線L1)が配置されることになり、フィルタ12の減衰特性の劣化を抑制できる。また、グランド端子を増やすことなく、各フィルタに接続された高周波信号の入出力端子をグランド端子としても用いることができるため、小型化が可能となる。このように、小型化を図りつつ、減衰特性の劣化を抑制できる。
 (その他の実施の形態)
 以上、本発明に係るフィルタモジュールについて、実施の形態を挙げて説明したが、本発明は、上記実施の形態に限定されるものではない。上記実施の形態における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、本発明に係るフィルタモジュールを内蔵した各種機器も本発明に含まれる。
 例えば、上記実施の形態では、フィルタモジュールは、2つのフィルタ11および12を備えていたが、3つ以上備えていてもよい。
 また、例えば、上記実施の形態では、入出力端子m1と入出力端子m3とは、少なくとも1つのグランド端子のいずれも間に挟まずに隣接しており、入出力端子m2と入出力端子m4とは、少なくとも1つのグランド端子のいずれも間に挟まずに隣接していたが、これに限らない。例えば、入出力端子m1と入出力端子m3とは、少なくとも1つのグランド端子のいずれかを間に挟んで隣接していてもよく、入出力端子m2と入出力端子m4とは、少なくとも1つのグランド端子のいずれかを間に挟んで隣接していてもよい。
 また、例えば、上記実施の形態では、フィルタ11の通過帯域は、Band25Rx(1930-1995MHz)であり、フィルタ12の通過帯域は、Band3Rx(1805-1880MHz)であったが、これに限らず、その他の周波数帯域であってもよい。また、これらの通過帯域は同じであってもよい。
 本発明は、マルチバンドシステムに適用できるフィルタモジュールとして、携帯電話などの通信機器に広く利用できる。
 1、2、3  フィルタモジュール
 10  第1基板
 11  フィルタ(第1フィルタ)
 12  フィルタ(第2フィルタ)
 20、20a  チップ
 30  増幅回路
 100  第2基板
 DMS1、DMS2  ダブルモード型SAWフィルタ
 L1  配線(第1配線)
 L2  配線(第2配線)
 L3  配線(第3配線)
 L4  配線(第4配線)
 S11、S12、S13、S21、S22、S23  直列腕共振子
 SW1  スイッチ(第1スイッチ)
 SW2  スイッチ(第2スイッチ)
 SW3  スイッチ(第3スイッチ)
 SW4  スイッチ(第4スイッチ)
 SW5  スイッチ(第5スイッチ)
 SW6  スイッチ(第6スイッチ)
 SW1a、SW2a、SW3a、SW4a  スイッチ
 P11、P12、P21、P22  並列腕共振子
 g1、g2  グランド端子
 i1  入力端子(第1入力端子)
 i2  入力端子(第2入力端子)
 m1  入出力端子(第1入出力端子)
 m2  入出力端子(第2入出力端子)
 m3  入出力端子(第3入出力端子)
 m4  入出力端子(第4入出力端子)
 n1~n4  入出力端子
 o1  出力端子

Claims (20)

  1.  第1入出力端子と、
     第2入出力端子と、
     前記第1入出力端子と前記第2入出力端子とを結ぶ経路上に配置された第1フィルタと、
     第3入出力端子と、
     第4入出力端子と、
     前記第3入出力端子と前記第4入出力端子とを結ぶ経路上に配置された第2フィルタと、
     前記第1入出力端子、前記第2入出力端子、前記第1フィルタ、前記第3入出力端子、前記第4入出力端子および前記第2フィルタが設けられた第1基板と、
     前記第1入出力端子に接続され、前記第1フィルタを通過する信号が伝搬される第1配線と、
     前記第1配線とグランドとの導通および非導通を切り替える第1スイッチと、
     前記第3入出力端子に接続され、前記第2フィルタを通過する信号が伝搬される第2配線と、
     前記第2配線とグランドとの導通および非導通を切り替える第2スイッチと、を備え、
     前記第1スイッチによって前記第1配線とグランドとが導通となっているときには、前記第2スイッチによって前記第2配線とグランドとは非導通となり、
     前記第2スイッチによって前記第2配線とグランドとが導通となっているときには、前記第1スイッチによって前記第1配線とグランドとは非導通となる、
     フィルタモジュール。
  2.  前記第1スイッチは、SPST(single pole single throw)のスイッチであり、
     さらに、前記第1配線と前記第1フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備える、
     請求項1に記載のフィルタモジュール。
  3.  前記第1スイッチは、SPDT(single pole double throw)のスイッチであり、
     前記第1スイッチの共通端子に前記第1配線が接続され、
     前記第1スイッチの2つの選択端子のうちの一の選択端子に、前記第1フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続される、
     請求項1に記載のフィルタモジュール。
  4.  前記第2スイッチは、SPSTのスイッチであり、
     さらに、前記第2配線と前記第2フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備える、
     請求項1~3のいずれか1項に記載のフィルタモジュール。
  5.  前記第2スイッチは、SPDTのスイッチであり、
     前記第2スイッチの共通端子に前記第2配線が接続され、
     前記第2スイッチの2つの選択端子のうちの一の選択端子に、前記第2フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続される、
     請求項1~3のいずれか1項に記載のフィルタモジュール。
  6.  前記フィルタモジュールは、さらに、第2基板を備え、
     前記第1スイッチおよび前記第2スイッチは、前記第2基板に設けられる、
     請求項1~5のいずれか1項に記載のフィルタモジュール。
  7.  前記第1スイッチおよび前記第2スイッチは、同一のチップに設けられる、
     請求項1~6のいずれか1項に記載のフィルタモジュール。
  8.  前記フィルタモジュールは、さらに、
     前記第2入出力端子に接続され、前記第1フィルタを通過する信号が伝搬される第3配線と、
     前記第3配線とグランドとの導通および非導通を切り替える第3スイッチと、
     前記第4入出力端子に接続され、前記第2フィルタを通過する信号が伝搬される第4配線と、
     前記第4配線とグランドとの導通および非導通を切り替える第4スイッチと、を備え、
     前記第1スイッチによって前記第1配線とグランドとが導通となっており、かつ、前記第3スイッチによって前記第3配線とグランドとが導通となっているときには、前記第2スイッチによって前記第2配線とグランドとは非導通となり、かつ、前記第4スイッチによって前記第4配線とグランドとは非導通となり、
     前記第2スイッチによって前記第2配線とグランドとが導通となっており、かつ、前記第4スイッチによって前記第4配線とグランドとが導通となっているときには、前記第1スイッチによって前記第1配線とグランドとは非導通となり、かつ、前記第3スイッチによって前記第3配線とグランドとは非導通となる、
     請求項1~5のいずれか1項に記載のフィルタモジュール。
  9.  前記第3スイッチは、SPSTのスイッチであり、
     さらに、前記第3配線と前記第1フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備える、
     請求項8に記載のフィルタモジュール。
  10.  前記第3スイッチは、SPDTのスイッチであり、
     前記第3スイッチの共通端子に前記第3配線が接続され、
     前記第3スイッチの2つの選択端子のうちの一の選択端子に、前記第1フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続される、
     請求項8に記載のフィルタモジュール。
  11.  前記第4スイッチは、SPSTのスイッチであり、
     さらに、前記第4配線と前記第2フィルタを通過する信号の入出力端子との導通および非導通を切り替えるSPSTのスイッチを備える、
     請求項8~10のいずれか1項に記載のフィルタモジュール。
  12.  前記第4スイッチは、SPDTのスイッチであり、
     前記第4スイッチの共通端子に前記第4配線が接続され、
     前記第4スイッチの2つの選択端子のうちの一の選択端子に、前記第2フィルタを通過する信号の入出力端子が接続され、他の選択端子にグランドが接続される、
     請求項8~10のいずれか1項に記載のフィルタモジュール。
  13.  前記フィルタモジュールは、さらに、第2基板を備え、
     前記第1スイッチ乃至前記第4スイッチは、前記第2基板に設けられる、
     請求項8~12のいずれか1項に記載のフィルタモジュール。
  14.  前記第1スイッチ乃至前記第4スイッチは、同一のチップに設けられる、
     請求項8~13のいずれか1項に記載のフィルタモジュール。
  15.  前記フィルタモジュールは、さらに、
     前記第1フィルタに接続される第1入力端子、前記第2フィルタに接続される第2入力端子および出力端子を有し、前記第1入力端子に入力される前記第1フィルタを通過する信号および前記第2入力端子に入力される前記第2フィルタを通過する信号の一方を増幅して前記出力端子から出力する増幅回路と、
     前記第1入力端子とグランドとの導通および非導通を切り替える第5スイッチと、
     前記第2入力端子とグランドとの導通および非導通を切り替える第6スイッチと、を備え、
     前記第1スイッチによって前記第1配線とグランドとが導通となっているときには、前記第5スイッチによって前記第1入力端子とグランドとは導通となり、かつ、前記第6スイッチによって前記第2入力端子とグランドとは非導通となり、
     前記第2スイッチによって前記第2配線とグランドとが導通となっているときには、前記第5スイッチによって前記第1入力端子とグランドとは非導通となり、かつ、前記第6スイッチによって前記第2入力端子とグランドとは導通となる、
     請求項1~5および8~12のいずれか1項に記載のフィルタモジュール。
  16.  前記フィルタモジュールは、さらに、第2基板を備え、
     前記第1スイッチ乃至前記第6スイッチは、前記第2基板に設けられる、
     請求項15に記載のフィルタモジュール。
  17.  前記増幅回路は、前記第2基板に設けられる、
     請求項16に記載のフィルタモジュール。
  18.  前記第1スイッチ乃至前記第6スイッチ、および、前記増幅回路は、同一のチップに設けられる、
     請求項15~17のいずれか1項に記載のフィルタモジュール。
  19.  前記第1基板には、さらに、前記第1フィルタおよび前記第2フィルタに接続される少なくとも1つのグランド端子が設けられ、
     前記第1入出力端子と前記第3入出力端子とは、前記少なくとも1つのグランド端子のいずれも間に挟まずに隣接しており、
     前記第2入出力端子と前記第4入出力端子とは、前記少なくとも1つのグランド端子のいずれも間に挟まずに隣接している、
     請求項1~18のいずれか1項に記載のフィルタモジュール。
  20.  前記第1フィルタの通過帯域と、前記第2フィルタの通過帯域とは、互いに異なる帯域である、
     請求項1~19のいずれか1項に記載のフィルタモジュール。
PCT/JP2018/048119 2017-12-28 2018-12-27 フィルタモジュール WO2019131868A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019562159A JP7032441B2 (ja) 2017-12-28 2018-12-27 フィルタモジュール
CN201880083562.3A CN111512546B (zh) 2017-12-28 2018-12-27 滤波器模块
US16/898,593 US11336260B2 (en) 2017-12-28 2020-06-11 Filter module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-254382 2017-12-28
JP2017254382 2017-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/898,593 Continuation US11336260B2 (en) 2017-12-28 2020-06-11 Filter module

Publications (1)

Publication Number Publication Date
WO2019131868A1 true WO2019131868A1 (ja) 2019-07-04

Family

ID=67067575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048119 WO2019131868A1 (ja) 2017-12-28 2018-12-27 フィルタモジュール

Country Status (4)

Country Link
US (1) US11336260B2 (ja)
JP (1) JP7032441B2 (ja)
CN (1) CN111512546B (ja)
WO (1) WO2019131868A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008118624A (ja) * 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd 高周波電力増幅装置
JP2008533914A (ja) * 2005-03-14 2008-08-21 ノースロップ グラマン コーポレーション スイッチマルチプレクサを用いて複数の広帯域rf源を組み合わせる方法
JP2014154942A (ja) * 2013-02-05 2014-08-25 Taiyo Yuden Co Ltd 高周波モジュール
JP2017204761A (ja) * 2016-05-12 2017-11-16 株式会社村田製作所 スイッチモジュール

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6676602B1 (en) * 2002-07-25 2004-01-13 Siemens Medical Solutions Usa, Inc. Two dimensional array switching for beamforming in a volume
JP2005057342A (ja) 2003-08-05 2005-03-03 Oki Electric Ind Co Ltd 分波器および分波器における分波線路の線路長決定方法
CN101162928A (zh) 2006-10-13 2008-04-16 松下电器产业株式会社 高频功率放大器
JP5177392B2 (ja) * 2008-03-17 2013-04-03 Tdk株式会社 弾性表面波装置
JP5677499B2 (ja) * 2013-04-11 2015-02-25 太陽誘電株式会社 高周波回路モジュール
JP6390787B2 (ja) * 2015-03-30 2018-09-19 株式会社村田製作所 高周波フィルタ、フロントエンド回路、および通信機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533914A (ja) * 2005-03-14 2008-08-21 ノースロップ グラマン コーポレーション スイッチマルチプレクサを用いて複数の広帯域rf源を組み合わせる方法
JP2008118624A (ja) * 2006-10-13 2008-05-22 Matsushita Electric Ind Co Ltd 高周波電力増幅装置
JP2014154942A (ja) * 2013-02-05 2014-08-25 Taiyo Yuden Co Ltd 高周波モジュール
JP2017204761A (ja) * 2016-05-12 2017-11-16 株式会社村田製作所 スイッチモジュール

Also Published As

Publication number Publication date
US11336260B2 (en) 2022-05-17
CN111512546A (zh) 2020-08-07
JPWO2019131868A1 (ja) 2020-11-26
CN111512546B (zh) 2023-11-21
US20200304100A1 (en) 2020-09-24
JP7032441B2 (ja) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6725059B2 (ja) 高周波モジュール及び通信装置
KR102021252B1 (ko) 스위치 모듈
US10873352B2 (en) Radio-frequency module and communication apparatus
WO2018116961A1 (ja) 高周波スイッチ及び通信装置
US20180227008A1 (en) Power amplification module, front-end circuit, and communication device
CN111164899B (zh) 高频电路以及通信装置
CN213213455U (zh) 高频模块和通信装置
CN215682277U (zh) 高频模块和通信装置
US11777534B2 (en) Radio frequency module and communication device
WO2018110577A1 (ja) 高周波モジュール及び通信装置
US11716099B2 (en) Radio frequency module and communication device
WO2019073899A1 (ja) マルチプレクサおよび高周波フィルタ
JP2017050741A (ja) 分波器及びモジュール
WO2020261777A1 (ja) 高周波モジュール及び通信装置
JPWO2019131501A1 (ja) マルチプレクサ
CN215646781U (zh) 高频模块和通信装置
JP2021197644A (ja) 高周波モジュールおよび通信装置
WO2019131868A1 (ja) フィルタモジュール
CN213937899U (zh) 高频模块和通信装置
WO2020262028A1 (ja) 高周波モジュール及び通信装置
CN110476355B (zh) 多工器、高频前端电路以及通信装置
US12040755B2 (en) High-frequency module and communication device
JP6105358B2 (ja) 回路基板
KR20220116249A (ko) 필터 장치, 멀티플렉서, 고주파 프론트엔드 회로 및 통신 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019562159

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894415

Country of ref document: EP

Kind code of ref document: A1