WO2019128656A1 - 一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法 - Google Patents

一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法 Download PDF

Info

Publication number
WO2019128656A1
WO2019128656A1 PCT/CN2018/119317 CN2018119317W WO2019128656A1 WO 2019128656 A1 WO2019128656 A1 WO 2019128656A1 CN 2018119317 W CN2018119317 W CN 2018119317W WO 2019128656 A1 WO2019128656 A1 WO 2019128656A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
layer
film
light
film layer
Prior art date
Application number
PCT/CN2018/119317
Other languages
English (en)
French (fr)
Inventor
王建浦
王娜娜
曹雨
黄维
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Priority to JP2020528951A priority Critical patent/JP6954699B2/ja
Priority to US16/771,230 priority patent/US11158830B2/en
Priority to KR1020207014074A priority patent/KR102342350B1/ko
Priority to EP18896772.3A priority patent/EP3734678A4/en
Publication of WO2019128656A1 publication Critical patent/WO2019128656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the invention relates to a perovskite light-emitting diode, in particular to a perovskite film layer and a device and a preparation method thereof for effectively improving the efficiency of a perovskite device.
  • the organic-inorganic hybrid perovskite has the advantages of simple preparation process, adjustable color, high color purity and solution preparation, which has the potential to realize low-cost mass production in the field of optoelectronics.
  • the external quantum efficiency of perovskite light-emitting diodes has increased rapidly.
  • the external quantum efficiency of three-dimensional green PeLED reaches 8.53%,
  • the external quantum efficiency of the multi-quantum well near-infrared PeLED reaches 11.7%.
  • Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells, Nat. Photonics, 2016, 10, 699.
  • the external quantum efficiency of the perovskite light-emitting diode is still far from the industrialization requirement, so it is necessary to further improve the external quantum efficiency of the PeLED device.
  • the refractive index of the perovskite layer is large, the refractive index difference between the ITO electrode, the glass substrate and the air is large, so that only a small part of the light energy emitted from the substrate is emitted, and the large Part of the light is trapped in the glass or plastic substrate in the substrate mode, trapped in the device functional layer in the waveguide mode, or surface plasma loss near the metal electrode, resulting in lower light extraction efficiency of the device.
  • OLED organic electroluminescent device
  • it is generally possible to suppress the waveguide mode in the device by introducing a patterned grating structure, and enhance the light extraction of the substrate Enhanced light out-coupling of organic light-emitting Devices using embedded low-index grids, Nat. Photonics, 2008, 2, 483.
  • such a method of using a periodic structure to improve the light extraction efficiency causes a change in the luminescence spectrum and the light-emitting direction of the device, and does not require a complicated process such as photolithography to prepare a grating structure, that is, a method such as film transfer is required to form a wrinkle on the substrate.
  • the structure, the preparation process is complicated, and the cost is high.
  • the technical problem to be solved by the present invention is to provide a perovskite film layer and a device and a preparation method thereof which effectively improve the efficiency of a perovskite device in view of the deficiencies of the prior art.
  • a simple solution preparation method is used to realize a new perovskite film layer structure, and the formed perovskite film crystal has high quality, which can effectively improve the luminescence collection efficiency of the device, thereby improving the external quantum efficiency of the PeLED device.
  • a perovskite film layer effective to improve the efficiency of a light-emitting device the perovskite film layer being composed of a layer of discontinuous, irregularly distributed perovskite grains and low refraction embedded between perovskite grains a composition of an organic insulating layer, wherein the perovskite crystal grains form a plurality of convex portions, and the organic insulating layer is formed in a plurality of concave portions between the convex portions, and the refractive index of the organic insulating layer is lower than the refractive index of the perovskite, Part of the light trapped in the device is emitted through the substrate, which improves the light extraction efficiency of the device, thereby increasing the external quantum efficiency of the device.
  • the perovskite film layer wherein the organic insulating layer is formed by adding an excess of an alkylammonium salt and/or an organic molecule having a specific functional group to a substrate film in a perovskite precursor solution.
  • the perovskite film layer, the organic insulating layer having a thickness of between 1 nm and 300 nm.
  • the perovskite film layer, the organic insulating layer can avoid direct contact between the hole transport layer and the electron transport layer in the device.
  • the perovskite grain size is between 3 nm and 100 ⁇ m.
  • the perovskite grain thickness is between 5 nm and 500 nm.
  • the morphology of the perovskite film layer directly affects the morphology of the upper layer charge transport layer and the electrode, so that the wrinkle structure having high and low undulations is spontaneously formed, wherein the formed wrinkle structure can be further Improve the light extraction efficiency of the device, thereby increasing the external quantum efficiency of the device.
  • a method for preparing a perovskite film layer for effectively improving the efficiency of a perovskite device wherein an excessive amount of an alkylammonium salt and/or a functional group-containing organic molecule is added to a perovskite precursor solution to form a spontaneous reaction with a substrate film
  • the perovskite crystal grains in the film layer form a plurality of convex portions
  • the organic insulating layer forms a plurality of concave portions between the convex portions.
  • the preparation method comprises spontaneously forming an excess of an alkylammonium salt and/or a functional group-containing organic molecule from a perovskite precursor solution by combining or reacting with a substrate film, wherein the alkylammonium salt comprises CH 3 .
  • functional groups of the organic molecule include -X, -NH 2 , -OH, -COOH, -CN, -NC, -SH, -PH 2 , -SCN, -CHO, -SO 3
  • One or more of H, -CH(O)CH, and X is a halogen.
  • the organic molecule is any one or more of the following organic molecules:
  • the substrate film is a charge transport layer.
  • the charge transport layer comprises PEDOT:PSS, PVK, TFB, PFB, Poly-TPD, F8, ZnO, TiO x , SnO 2 , NiO x , and is modified by an amino acid organic substance or a polyamine organic substance. Multilayer film.
  • the amino acid organic substance includes 5AVA, 6ACA, 7APA, 8AOA, and the polyamine organic substance includes PEI, PEIE, PEOz.
  • the perovskite crystal grain has the structural formula ABX 3 , wherein A is a metal cation or an alkyl ammonium salt, including Rb + , Cs + , CH 3 NH 3 + , NH 2 CHNH 2 + Any combination of one or more; B is a divalent metal cation including Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge Any combination of 2+ , Sn 2+ , Pb 2+ , Eu 2+ , Yb 2+ or a combination of several; X is a halogen anion, including any one or a few of I - , Br - , Cl - The combination of the species; the perovskite precursor solution is prepared by dissolving AX, BX 2 and organic molecules in a molar ratio of 1 to 100:1 to 100:0 to 100 in a solvent, and the mass
  • a device comprising a substrate, an anode, a hole transport layer, the perovskite film layer, an electron transport layer, and a cathode.
  • an alkylammonium salt and/or a functional group-containing organic molecule By adding an excess of an alkylammonium salt and/or a functional group-containing organic molecule to the perovskite precursor solution, spontaneous formation of discontinuous, irregularly distributed perovskite grains and embedding in calcium during film preparation
  • a special uneven film layer structure composed of an organic insulating layer between the titanium ore grains, which can cause the upper layer charge transport layer and the electrode to spontaneously form a wrinkle structure having high and low undulations.
  • the special perovskite film structure formed by the simple solution method can effectively improve the light collection efficiency of the device, and the added organic molecules can modify the perovskite crystal, reduce the defect density, improve the crystal quality of the perovskite, and finally optimize the calcium. Titanium ore light emitting device performance.
  • FIG. 1 is a schematic view showing a preparation process and a special structure of a perovskite film layer
  • Figure 2 is an SEM image of the morphology of the perovskite film
  • 3 is an SEM image of the morphology of a perovskite film at different annealing times
  • Figure 4 is a X-ray diffraction spectrum (XRD) pattern of a perovskite film
  • Figure 5 is a comparison of absorption and photoluminescence of a perovskite film and a three-dimensional (FAPbI 3 ) film;
  • Figure 6 is a TCSPC spectrum of a perovskite film
  • Figure 7 is a graph showing the relationship between photoluminescence quantum efficiency and laser intensity of a perovskite film
  • Figure 10 is a graph showing voltage-current density and voltage-irradiance of a perovskite light-emitting diode of Example 2;
  • Figure 11 is a graph showing the lifetime of the perovskite light-emitting diode of Example 2 when the luminous efficiency is reduced to half;
  • Figure 12 is an angle-dependent spectrum of the perovskite light-emitting diode of Example 2.
  • Figure 13 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 3.
  • Figure 14 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 3.
  • Figure 15 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 3.
  • Figure 16 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 3;
  • Figure 17 is a photoluminescence spectrum of the perovskite light-emitting diode of Example 4.
  • Figure 18 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 4.
  • Figure 19 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 4.
  • Figure 20 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 4.
  • FIG. 21 is a STEM and EDX elemental analysis diagram of a perovskite film structure
  • a diagram, a diagram B is a STEM diagram of a perovskite film structure
  • a graph C is an EDX elemental analysis diagram corresponding to the position of the diagram b;
  • Figure 22 is an AFM diagram of a device using a perovskite film having a special structure
  • Figure a is a topographical view of the surface of the device electrode, and b and c are respectively a height undulation of the different regions in the a picture
  • d is an AFM phase diagram. ;
  • Figure 23 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 6;
  • Figure 24 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 6;
  • Figure 25 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 6;
  • Figure 26 is a graph showing the relationship between the current density and the external quantum efficiency of the perovskite light-emitting diode of Example 6;
  • Figure 27 is a SEM image of the morphology of the perovskite film of Example 7.
  • Figure 28 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 7.
  • Figure 29 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 7.
  • Figure 30 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 7.
  • Figure 31 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 7;
  • Figure 32 is a SEM image of the morphology of the perovskite film of Example 8.
  • Figure 33 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 8.
  • Figure 34 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 8.
  • Figure 35 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 8.
  • Figure 36 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 8.
  • Figure 37 is a SEM image of the morphology of the perovskite film of Example 9;
  • Figure 38 is a photoluminescence spectrum of the perovskite light-emitting diode of Example 9;
  • Figure 39 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 9;
  • Figure 40 is a graph showing the voltage-luminance relationship of the perovskite light-emitting diode of Example 9;
  • Figure 41 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 9;
  • Figure 42 is a SEM image of the morphology of the perovskite film of Example 10.
  • Figure 43 is a photoluminescence spectrum of the perovskite light-emitting diode of Example 10.
  • Figure 44 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 10.
  • Figure 45 is a graph showing the voltage-luminance relationship of the perovskite light-emitting diode of Example 10.
  • Figure 46 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 10.
  • Figure 47 is a SEM image of the morphology of the perovskite film of Example 11.
  • Figure 48 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 11;
  • Figure 49 is a photoluminescence spectrum of the perovskite light-emitting diode of Example 12;
  • Figure 50 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 12;
  • Figure 51 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 12;
  • Figure 52 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 12;
  • Figure 53 is an electroluminescence spectrum of a perovskite light-emitting diode of Example 13;
  • Figure 54 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 13;
  • Figure 55 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 13;
  • Figure 56 is a graph showing the relationship between current density and external quantum efficiency of a perovskite light-emitting diode of Example 13;
  • Figure 57 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 14;
  • Figure 58 is a graph showing the voltage-current density relationship of the perovskite light-emitting diode of Example 14.
  • Figure 59 is a graph showing the voltage-irradiance relationship of the perovskite light-emitting diode of Example 14;
  • Figure 60 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 14;
  • Figure 61 is an electroluminescence spectrum of the perovskite light-emitting diode of Example 15;
  • Figure 62 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 15;
  • Figure 63 is a SEM image of the morphology of the perovskite film of Example 16.
  • Figure 64 is a graph showing the relationship between current density and external quantum efficiency of the perovskite light-emitting diode of Example 16;
  • the substrate 1 is sequentially included from bottom to top, and may be any one of glass, a flexible substrate, and a metal foil.
  • the cathode layer 2 is a transparent electrode and may be indium tin oxide (ITO) or silver nanowires.
  • the electron transport layer 3 is made of a metal oxide and is modified by using an organic substance containing an amino group or a carbonyl group (such as PEIE, PEI, PEOz, etc.).
  • the organic layer 4 is formed spontaneously by binding or reacting an excess of an alkylammonium salt and/or a functional group-containing organic molecule added to the perovskite precursor solution with a substrate film.
  • Perovskite layer 5 the material is detailed in the process steps.
  • the hole transport layer 6 is poly(9,9-dioctylfluorene-co-anthone) (TFB), poly[bis(4-phenyl)(4-butylphenyl)amine] (Poly-TPD) ), [N,N'-(4-n-butylphenyl)-N,N'-diphenyl-p-phenylenediamine]-[9,9-di-n-octyldecyl-2,7-diyl Copolymer (PFB), poly 9,9-dioctylfluorene (F8), 2,2',7,7'-tetra[N,N-bis(4-methoxyphenyl)amino]-9 , 9'-Spiro-MeOTAD, or a carbazole polymer, an aromatic diamine compound or a star triphenylamine compound, and the carbazole polymer may be polyvinyl carbazole (PVK).
  • the aromatic diamine compound may be N,N'-bis-(3-methylphenyl)-N,N'-diphenyl-[1,1'-biphenyl]-4,4' -diamine (TPD) or N,N'-bis(3-naphthyl)-N,N'-diphenyl-[1,1'-diphenyl]-4,4'-diamine (NPB)
  • TPD N,N'-bis(3-naphthyl)-N,N'-diphenyl-[1,1'-diphenyl]-4,4'-diamine
  • the star triphenylamine compound may be tris-[4-(5-phenyl-2-thienyl)benzene]amine (PTDATA series).
  • the anode layer 7 is a metal (any one of Au, Al, Cu, Ag) and is modified with an interface modification layer MoO 3 .
  • Figure 1 shows the preparation process and the special structure of a device with a special structure perovskite layer.
  • the excess alkylammonium salt and/or the functional group-containing organic molecule added to the perovskite solution may combine with or react with the substrate film to spontaneously form the organic insulating layer 4, and the perovskite crystal grains 5 in the film layer are discontinuous, Irregularly dispersed in the organic layer 4, the organic molecule will modify the perovskite film to make the perovskite crystal 5 higher in quality.
  • Conventional perovskite films are continuous.
  • the total reflection of the emitted light at the interface of perovskite/ZnO and ZnO/ITO causes only some of the light emitted by the luminescent layer. Emitted from the substrate.
  • the present invention devises a novel perovskite film layer structure which allows part of the light trapped in the device to be emitted through the substrate, and path 1 indicates that light emitted from the perovskite crystal grains is directly emitted to the air; It indicates that the large-angle light emitted by the perovskite crystal grains is refracted to the air through the organic layer (or the charge transport layer); the path 3 indicates that the light trapped in the device is spontaneously formed into a discontinuous structure due to the total reflection of the ITO/glass interface.
  • the effect can be reflected again to the air after being reflected by the hole transport layer/electrode interface; the path 4 indicates that the upwardly emitted light is reflected by the metal electrode and then affected by the discontinuous structure, and is refracted through the organic layer to the air.
  • This structure can improve the light output of the device by dispersing the perovskite crystal grains in the low refractive index organic insulating layer (or charge transport layer), and the perovskite upper layer transport layer and the metal electrode have high and low undulating wrinkles. Efficiency, thereby increasing the external quantum efficiency of the device.
  • the structure of the perovskite grains is ABX 3 , wherein A is a metal cation or an alkyl ammonium salt (including Rb + , Cs + , CH 3 NH 3 + , NH 2 CHNH 2 + ); B is a divalent metal cation (including Cu 2+ , Ni 2+ , Co 2+ , Fe 2+ , Mn 2+ , Cr 2+ , Pd 2+ , Cd 2+ , Ge 2+ , Sn 2+ , Pb 2+ , Eu 2+ , Yb 2+ ); X is a halogen anion (including I - , Br - , Cl - ).
  • the perovskite precursor solution consists of AX, BX 2 and organic molecules (with functional groups such as -X, -NH 2 , -OH, -COOH, -CN, -NC, -SH, -PH 2 , -SCN, -CHO , one or more of -SO 3 H, -CH(O)CH, X is a halogen) dissolved in a solvent (DMF, DMSO, GBL) in a molar ratio of 1 to 100:1 to 100:0 to 100, mass The score is 1% to 50%.
  • a solvent DMF, DMSO, GBL
  • the electron transport layer was prepared by spin coating and thermally annealed separately.
  • the hole transport layer is continuously prepared by spin coating.
  • the precursor solution was heated and annealed at 105 ° C for 15 minutes to obtain a perovskite film having a novel film structure as shown in FIG. 1 .
  • Figure 2 is a surface topography (SEM) of the film. It can be found that the film is composed of many non-continuous, irregularly distributed perovskite grains with high crystal quality and regular grain shape.
  • Figure 3 is a SEM of the film at different annealing times. It can be found that the structure of the epitaxial film layer composed of perovskite grains and an organic insulating layer embedded between the perovskite grains changes with annealing time, and the crystal on the surface of the film The grain grows and the grain shape is more regular.
  • Figure 4 is the X-ray diffraction spectrum (XRD) of the film.
  • the 13.7 o and 27.8 o in XRD represent the (111) and (222) crystal planes of the perovskite crystal, respectively.
  • the signals of these two peaks are very strong, indicating calcium in the film. Titanium ore crystals are very ordered.
  • Figure 5 is a UV-absorption spectrum and a photoluminescence spectrum of a film compared with a conventional perovskite film (FAPbI 3 ).
  • the narrower luminescence spectrum of the 5AVA modified perovskite film indicates that the modified perovskite crystal is more ordered. The crystal quality is higher.
  • Figure 6 is a TCSPC spectrum of the film showing that at low laser intensities, the film has a fluorescence lifetime of about 2 microseconds, a low density of film defects, and high crystal quality.
  • Fig. 7 is a correlation diagram between the photoluminescence quantum efficiency and the laser intensity of the film. It can be seen from the figure that as the intensity of the excitation light increases, the photoluminescence quantum efficiency of the film rapidly reaches a maximum value, indicating that the defect density of the film is low. And still maintain a fairly high photoluminescence quantum efficiency under high light intensity, up to 68%.
  • the substrate is a glass-ITO combination
  • the electron transport-hole blocking layer is ZnO/PEIE
  • the light emitting layer is a novel perovskite film
  • the hole transport-electron blocking layer is TFB
  • the top electrode is MoOx/Au, and the entire device structure is described.
  • glass substrate / ITO / ZnO - PEIE / Perovskite / TFB / MoOx / Au glass substrate / ITO / ZnO - PEIE / Perovskite / TFB / MoOx / Au.
  • the preparation method is as follows:
  • the transparent conductive substrate ITO glass was ultrasonically cleaned with an acetone solution, an ethanol solution, and deionized water, and washed and dried with dry nitrogen.
  • the ITO on the glass substrate serves as the anode layer of the device, and the sheet resistance of the ITO is 15 ⁇ / ⁇ .
  • the dried substrate was transferred into a vacuum chamber, and the ITO glass was subjected to ultraviolet ozone pretreatment for 10 minutes in an oxygen atmosphere.
  • the prepared device was packaged in a glove box with a 99.9% nitrogen atmosphere.
  • Figure 8 is a graph of current-external quantum efficiency characteristics of the fabricated device. As shown in the figure, the highest external quantum efficiency of the device can reach 19.43%, which is greatly improved compared to the external quantum efficiency of ordinary perovskite thin film devices.
  • Figure 9 is an electroluminescence spectrum of the device produced. As shown in the figure, the device has an electroluminescence peak at 802 nm.
  • Figure 10 is a graph of voltage-current and voltage-irradiance characteristics of the fabricated device. As shown in the figure, the maximum irradiance of the device can reach 328W sr -1 m -2 .
  • Figure 11 is a time plot of the device EQE reduced to half. As shown in the figure, due to the high quality of the formed perovskite film crystal, the device has a lifetime of nearly 20 hours at a large current density of 100 mA cm -2 and high stability.
  • Figure 12 is a diagram of the device's angle dependent illumination characteristics. As shown in the figure, the angle-dependent luminescence of the device coincides with the Lambert body, indicating that the special film structure does not change the luminescence spectrum and light emission of the device because the perovskite grains are discontinuous and irregularly distributed in the organic insulating layer. The directionality can avoid the strong directivity of the device illumination caused by the periodic arrangement of the grating structure.
  • the precursor solution is annealed to obtain a film having a novel perovskite film layer structure, and then prepared into a near-infrared light device.
  • Figure 13 shows the electroluminescence spectrum of the device.
  • the electroluminescence spectra are basically the same at different ratios.
  • Figure 14, Figure 15, and Figure 16 show the voltage-current density, voltage-radiation intensity, and current-external quantum efficiency characteristics of different ratios of devices. These devices can achieve a low turn-on voltage of 1.4V.
  • the composition of the structure of the perovskite film can be adjusted by the change of the proportion of the precursor solution. When the ratio is 0.5:2.4:1, the external quantum conversion efficiency reaches 19.4%.
  • the precursor solution of different concentrations (5%, 7%, 10%, 12%, 15%) is annealed to obtain a film having a novel perovskite film layer structure, and then prepared into a near-infrared light device.
  • Figure 17 shows the electroluminescence spectrum of the device.
  • the electroluminescence spectra are basically the same at different concentrations.
  • Fig. 18, Fig. 19 and Fig. 20 are voltage-current density, voltage-radiation intensity, current-external quantum efficiency characteristic curves of different concentration devices, respectively, and the external quantum conversion efficiency of the device reaches the highest at 7% concentration.
  • the prepared perovskite film structure device was observed by STEM electron microscopy. As shown in Fig. 21, it can be seen from the figure a that the surface of the ZnO/PEIE surface spontaneously forms a dense organic layer, and the perovskite crystal grains are dispersed. An uneven structure is formed above the organic layer, and a thin organic layer is formed in the lower layer of the perovskite crystal grain, which is thinner than the organic layer between the perovskite grains; elemental analysis is performed on the region shown in FIG. From Figure c, it can be found that a dense organic layer rich in C exists on the surface of the substrate ZnO/PEIE, further confirming the existence of this structure.
  • the TFB and Au films in the upper layer of perovskite are affected by the morphology of the perovskite film layer, and have high and low undulating fold structure.
  • the AFM test of the device electrode surface a picture shows the AFM topography of the device electrode surface.
  • b and c are respectively the height undulations of different regions in the a picture, it can be clearly seen that the upper film is affected by the perovskite film with high and low undulations, and the d picture is the AFM phase diagram, which can clearly see the electrode surface.
  • the folds of the topography is the AFM test of the device electrode surface.
  • the precursor solution is annealed to obtain a film having a novel perovskite film layer structure, and then prepared into a near-infrared light device.
  • Fig. 23 is an electroluminescence spectrum of the device
  • Fig. 24, Fig. 25 and Fig. 26 are graphs showing voltage-current density, voltage-radiation intensity, current-external quantum efficiency characteristics of devices of different concentrations, respectively. It can be found that the device has a brightness of 1.5V and an external quantum conversion efficiency of 14.3%.
  • the body solution, the solution concentration is 12%, and after annealing, a film having a novel perovskite film layer structure is obtained, and then a near-infrared light device is prepared.
  • Figure 27 is a SEM topography of the film. It can be seen that the perovskite film has a special film structure, and Figure 28 shows the electroluminescence spectrum of the device. 29, FIG. 30 and FIG. 31 are graphs of voltage-current density, voltage-radiation intensity, current-external quantum efficiency characteristics of devices of different concentrations, respectively. It can be found that the device has a brightness of 1.4V and an external quantum conversion efficiency of 14.4%.
  • Example 8 Preparation of a device based on a novel perovskite film layer structure
  • the body solution, the solution concentration is 12%, and after annealing, a film having a novel perovskite film layer structure is obtained, and then a near-infrared light device is prepared.
  • Figure 32 is a SEM topography of the film, the perovskite film has a special film structure, and Figure 33 shows the electroluminescence spectrum of the device.
  • Figure 34, Figure 35 and Figure 36 are voltage-current density, voltage-radiation intensity, current-external quantum efficiency characteristic curves of different concentration devices, respectively. It can be found that the device has a brightness of 1.4V and an external quantum conversion efficiency of 15.2%.
  • Figure 37 is a SEM topography of the film.
  • the perovskite film has a special film structure.
  • Figure 38 shows the electroluminescence spectrum of the device.
  • the device has an electroluminescence spectrum at 690 nm.
  • 39, 40, and 41 are graphs of voltage-current density, voltage-luminance, current-external quantum efficiency of the device, respectively. It can be found that the device has a brightening voltage of 2V, a brightness of more than 1000 cd/m 2 , and an external quantum conversion efficiency of 8.6%, which is the highest efficiency of the current perovskite red light device.
  • Figure 42 is a SEM topography of the film.
  • the perovskite film has a special film structure, and Figure 43 shows the electroluminescence spectrum of the device.
  • the device electroluminescence spectrum is at 662 nm.
  • Figure 44, Figure 45, and Figure 46 are voltage-current density, voltage-luminance, current-external quantum efficiency characteristics of the device, respectively. It can be found that the device has a brightness of 1.75V and a maximum brightness of nearly 10000 cd/m 2 , which is the highest brightness of the current perovskite red light device, and the external quantum conversion efficiency reaches 4.8%.
  • a precursor of NH 2 C 4 H 8 COOH 5 AVA
  • Figure 47 is a SEM topography of the film.
  • the perovskite film has a special film structure.
  • Figure 48 shows the electroluminescence spectrum of the device, which can realize the device with 535 nm emission.
  • Figure 49 is an electroluminescence spectrum of the device with a device electroluminescence spectrum at 800 nm.
  • Figure 50, Figure 51 and Figure 52 are voltage-current density, voltage-radiation intensity, current-external quantum efficiency characteristics of the device, respectively. It can be found that the device has a brightness of 1.4V and an external quantum conversion efficiency of 7%.
  • Figure 53 shows the electroluminescence spectrum of the device with a device electroluminescence spectrum at 803 nm.
  • Figure 54, Figure 55, and Figure 56 are voltage-current density, voltage-radiation intensity, and current-external quantum efficiency characteristics of the device, respectively. It can be found that the device has a starting voltage of 1.3V and an external quantum conversion efficiency of 10.3%.
  • Example 14 Preparation of a device based on a novel perovskite film layer structure
  • Figure 57 is an electroluminescence spectrum of the device with a device electroluminescence spectrum at 800 nm.
  • Fig. 58, Fig. 59 and Fig. 60 are graphs of voltage-current density, voltage-radiation intensity, current-external quantum efficiency of the device, respectively. It can be found that the device has a brightness of 1.4V and an external quantum conversion efficiency of 10.4%.
  • Figure 61 shows the electroluminescence spectrum of the device with a device electroluminescence spectrum at 786 nm.
  • Figure 62 is a graph of current-external quantum efficiency characteristics of the device. It can be found that the external quantum conversion efficiency of the device reaches 11%.
  • the quaternary ammonium salt is annealed to obtain a film having a novel perovskite film layer structure, which is then prepared into a device.
  • Figure 63 is a SEM topography of the film. It can be seen that the perovskite film prepared by adding an excess of the alkylammonium salt in the precursor solution has a typical concave-convex structure, and Figure 64 shows the current-external quantum efficiency characteristic curve of the device. Figure. It can be found that the external quantum conversion efficiency of the device reaches 5.8%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种有效提升钙钛矿光电器件效率的钙钛矿膜层及器件和制备方法,这种钙钛矿膜层是由一层非连续、不规则分布的钙钛矿晶粒(5)和嵌入在钙钛矿晶粒之间的低折射率有机绝缘层(4)组成,其中,钙钛矿晶粒形成多个凸部,有机绝缘层形成在凸部之间的多个凹部。通过在钙钛矿前驱体溶液中添加过量的烷基铵盐和/或带有特定官能团的有机分子,在薄膜制备过程中自发形成钙钛矿晶粒和嵌入在钙钛矿晶粒之间有机绝缘层的凹凸结构,并且其可使上层电荷传输层和电极自发形成具有高低起伏的褶皱结构。这种通过简单溶液法形成的特殊钙钛矿薄膜结构可有效提高光收集效率,最终提升钙钛矿发光器件性能。

Description

一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法 技术领域
本发明涉及钙钛矿发光二极管,尤其涉及的是一种有效提升钙钛矿器件效率的钙钛矿膜层及器件和制备方法。
背景技术
有机-无机杂化钙钛矿由于具备制备工艺简单、颜色可调节、色纯度高、可溶液法制备等优势,使其在光电领域有潜力实现低成本大规模生产。近两年来,钙钛矿发光二极管(PeLED)的外量子效率提升迅猛。目前,三维绿光PeLED的外量子效率达到8.53%,Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes,Science,2015,350(6265),1222;多量子阱近红外PeLED的外量子效率达到11.7%,Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells,Nat.Photonics,2016,10,699。然而钙钛矿发光二极管的外量子效率离产业化要求还有一定距离,因此需要进一步提高PeLED器件的外量子效率。
现有的钙钛矿发光器件中,由于钙钛矿层的折射率大,与ITO电极、玻璃基底、空气之间的折射率差异较大,造成只有发出的少部分光能从基底出射,而大部分光以基底模式陷于玻璃或塑料基板、以波导模式陷于器件功能层或在金属电极附近以表面等离子体损耗,导致器件光提取效率较低。在有机电致发光器件(OLED)中,为了提高器件的光提取效率,通常可以通过引入图案化光栅结构来抑制器件中的波导模式,增强基底光提取,Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids,Nat.Photonics,2008,2,483。或者在衬底上制备周期性的图案结构,使器件中形成高低起伏的褶皱结构,提高器件的光提取效率,Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles,Nat.Photonics,2010,4, 222。但是这类采用周期性结构来提高光提取效率的方法,会导致器件发光光谱和出光方向的变化,并且不是需要光刻等复杂工艺制备光栅结构,就是需要薄膜转移等方法在衬底上形成褶皱结构,制备工艺复杂,成本较高。
发明内容
本发明所要解决的技术问题是针对现有技术的不足提供一种有效提升钙钛矿器件效率的钙钛矿膜层及器件和制备方法。采用一种简单的溶液制备方法,实现了一种新的钙钛矿膜层结构,形成的钙钛矿薄膜晶体质量较高,能有效提高器件的发光收集效率,从而提高PeLED器件外量子效率。
本发明的技术方案如下:
一种有效提升发光器件效率的钙钛矿膜层,所述钙钛矿膜层是由一层非连续、不规则分布的钙钛矿晶粒和嵌入在钙钛矿晶粒之间的低折射率有机绝缘层组成,其中,钙钛矿晶粒形成多个凸部,有机绝缘层形成在凸部之间的多个凹部,有机绝缘层的折射率低于钙钛矿的折射率,可使陷于器件中的部分光通过衬底发射出来,可提高器件的出光效率,从而提高器件的外量子效率。
所述的钙钛矿膜层,所述有机绝缘层由钙钛矿前驱体溶液中添加过量的烷基铵盐和/或带有特定官能团的有机分子与衬底薄膜结合或进行反应而自发形成。
所述的钙钛矿膜层,所述有机绝缘层厚度在1nm到300nm之间。
所述的钙钛矿膜层,所述有机绝缘层可避免器件中空穴传输层和电子传输层的直接接触。
所述的钙钛矿膜层,所述钙钛矿晶粒尺寸在3nm到100μm之间。
所述的钙钛矿膜层,所述钙钛矿晶粒厚度在5nm到500nm之间。
所述的钙钛矿膜层,所述钙钛矿膜层形貌直接影响上层电荷传输层和电极的形貌,使其自发形成具有高低起伏的褶皱结构,其中,所形成的褶皱结构可进一步提高器件的出光效率,从而提高器件的外量子效率。
有效提升钙钛矿器件效率的钙钛矿膜层的制备方法,钙钛矿前驱体溶液中加入过量 的烷基铵盐和/或带官能团的有机分子与衬底薄膜结合或进行反应而自发形成有机绝缘层,膜层中的钙钛矿晶粒形成多个凸部,有机绝缘层形成在凸部之间的多个凹部。
所述的制备方法,由钙钛矿前驱体溶液中加入过量烷基铵盐和/或带官能团的有机分子与衬底薄膜结合或进行反应而自发形成,其中所述烷基铵盐包括CH 3NH 3X,NH 2CHNH 2X;有机分子的官能团包括-X、-NH 2、-OH、-COOH、-CN、-NC、-SH、-PH 2、-SCN、-CHO、-SO 3H、-CH(O)CH中的一个或多个,X为卤素。
所述的制备方法,所述有机分子为下述有机分子中的任意一种或几种:
Figure PCTCN2018119317-appb-000001
所述的制备方法,所述衬底薄膜为电荷传输层。
所述的制备方法,所述电荷传输层包括PEDOT:PSS、PVK、TFB、PFB、Poly-TPD、F8、ZnO、TiO x、SnO 2、NiO x,以及采用氨基酸类有机物、聚胺类有机物修饰的多层薄膜。
所述的制备方法,所述氨基酸类有机物包括5AVA、6ACA、7APA、8AOA,所述聚胺类有机物包括PEI、PEIE、PEOz。
所述的制备方法,钙钛矿晶粒的结构通式为ABX 3,其中A为金属阳离子或烷基铵盐,包括Rb +、Cs +、CH 3NH 3 +、NH 2CHNH 2 +中的任意一种或者几种的组合;B为二价金属阳离子,包括Cu 2+、Ni 2+、Co 2+、Fe 2+、Mn 2+、Cr 2+、Pd 2+、Cd 2+、Ge 2+、Sn 2+、Pb 2+、 Eu 2+、Yb 2+中的任意一种或者几种的组合;X为卤素阴离子,包括I -、Br -、Cl -中的任意一种或者几种的组合;钙钛矿前驱体溶液由AX、BX 2和有机分子以摩尔比1~100:1~100:0~100溶于溶剂中配制得到,质量分数为1%~50%。
根据所述钙钛矿膜层的器件,包括衬底、阳极、空穴传输层、所述钙钛矿膜层、电子传输层、阴极。
通过在钙钛矿前驱体溶液中添加过量的烷基铵盐和/或带有官能团的有机分子,在薄膜制备过程中自发形成由非连续、不规则分布的钙钛矿晶粒和嵌入在钙钛矿晶粒之间的有机绝缘层组成的特殊凹凸膜层结构,其可使上层电荷传输层和电极自发形成具有高低起伏的褶皱结构。这种通过简单溶液法形成的特殊钙钛矿薄膜结构可有效提高器件的光收集效率,同时添加的有机分子可修饰钙钛矿晶体,降低缺陷密度、提高钙钛矿的晶体质量,最终优化钙钛矿发光器件性能。
附图说明
图1为钙钛矿膜层制备过程和形成的特殊结构示意图;
图2为钙钛矿薄膜形貌SEM图;
图3为不同退火时间的钙钛矿薄膜形貌SEM图;
图4为钙钛矿薄膜X射线衍射谱(XRD)图;
图5为钙钛矿薄膜与三维(FAPbI 3)薄膜的吸收和光致发光对比图;
图6为钙钛矿薄膜的TCSPC谱图;
图7为钙钛矿薄膜的光致发光量子效率与激光强度的关系图;
图8为实施例2钙钛矿发光二极管电流密度-外量子效率关系图;
图9为实施例2钙钛矿发光二极管电致发光光谱;
图10为实施例2钙钛矿发光二极管电压-电流密度和电压-辐照度关系图;
图11为实施例2钙钛矿发光二极管发光效率降低到一半时寿命图;
图12为实施例2钙钛矿发光二极管角度依赖发光谱图;
图13为实施例3钙钛矿发光二极管电致发光光谱;
图14为实施例3钙钛矿发光二极管电压-电流密度关系图;
图15为实施例3钙钛矿发光二极管电压-辐照度关系图;
图16为实施例3钙钛矿发光二极管电流密度-外量子效率关系图;
图17为实施例4钙钛矿发光二极管电致发光光谱;
图18为实施例4钙钛矿发光二极管电压-电流密度关系图;
图19为实施例4钙钛矿发光二极管电压-辐照度关系图;
图20为实施例4钙钛矿发光二极管电流密度-外量子效率关系图;
图21为钙钛矿薄膜结构STEM和EDX元素分析图;a图、图b为钙钛矿薄膜结构STEM图,图c为图b对应位置的EDX元素分析图;
图22为采用具有特殊结构钙钛矿薄膜制备器件的AFM图;a图为器件电极表面AFM形貌图,b和c图分别为a图中不同区域表面高度起伏图,d图为AFM相图;
图23为实施例6钙钛矿发光二极管电致发光光谱;
图24为实施例6钙钛矿发光二极管电压-电流密度关系图;
图25为实施例6钙钛矿发光二极管电压-辐照度关系图;
图26为实施例6钙钛矿发光二极管电流密度-外量子效率度关系谱图;
图27为实施例7钙钛矿薄膜形貌SEM图;
图28为实施例7钙钛矿发光二极管电致发光光谱;
图29为实施例7钙钛矿发光二极管电压-电流密度关系图;
图30为实施例7钙钛矿发光二极管电压-辐照度关系图;
图31为实施例7钙钛矿发光二极管电流密度-外量子效率度关系图;
图32为实施例8钙钛矿薄膜形貌SEM图;
图33为实施例8钙钛矿发光二极管电致发光光谱;
图34为实施例8钙钛矿发光二极管电压-电流密度关系图;
图35为实施例8钙钛矿发光二极管电压-辐照度关系图;
图36为实施例8钙钛矿发光二极管电流密度-外量子效率关系图;
图37为实施例9钙钛矿薄膜形貌SEM图;
图38为实施例9钙钛矿发光二极管电致发光光谱;
图39为实施例9钙钛矿发光二极管电压-电流密度关系图;
图40为实施例9钙钛矿发光二极管电压-亮度关系图;
图41为实施例9钙钛矿发光二极管电流密度-外量子效率关系图;
图42为实施例10钙钛矿薄膜形貌SEM图;
图43为实施例10钙钛矿发光二极管电致发光光谱;
图44为实施例10钙钛矿发光二极管电压-电流密度关系图;
图45为实施例10钙钛矿发光二极管电压-亮度关系图;
图46为实施例10钙钛矿发光二极管电流密度-外量子效率关系图;
图47为实施例11钙钛矿薄膜形貌SEM图;
图48为实施例11钙钛矿发光二极管电致发光光谱;
图49为实施例12钙钛矿发光二极管电致发光光谱;
图50为实施例12钙钛矿发光二极管电压-电流密度关系图;
图51为实施例12钙钛矿发光二极管电压-辐照度关系图;
图52为实施例12钙钛矿发光二极管电流密度-外量子效率关系图;
图53为实施例13钙钛矿发光二极管电致发光光谱;
图54为实施例13钙钛矿发光二极管电压-电流密度关系图;
图55为实施例13钙钛矿发光二极管电压-辐照度关系图;
图56为实施例13钙钛矿发光二极管电流密度-外量子效率关系图;
图57为实施例14钙钛矿发光二极管电致发光光谱;
图58为实施例14钙钛矿发光二极管电压-电流密度关系图;
图59为实施例14钙钛矿发光二极管电压-辐照度关系图;
图60为实施例14钙钛矿发光二极管电流密度-外量子效率关系图;
图61为实施例15钙钛矿发光二极管电致发光光谱;
图62为实施例15钙钛矿发光二极管电流密度-外量子效率关系图;
图63为实施例16钙钛矿薄膜形貌SEM图;
图64为实施例16钙钛矿发光二极管电流密度-外量子效率关系图;
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
如图1所示。从下到上依次包括:衬底1,可以是玻璃、柔性基片和金属薄片中任意一种。阴极层2,为透明电极,可以是氧化铟锡(ITO)、银纳米线。电子传输层3,材料为金属氧化物,同时使用含有氨基或羰基的有机物(如PEIE、PEI、PEOz等)进行修饰。有机层4,其由钙钛矿前驱体溶液中加入的过量烷基铵盐和/或带官能团的有机分子与衬底薄膜结合或进行反应自发形成。钙钛矿层5,材料详见工艺步骤。空穴传输层6,为聚(9,9-二辛基芴-共聚-芴酮)(TFB)、聚[双(4-苯基)(4-丁基苯基)胺](Poly-TPD)、[N,N'-(4-正丁基苯基)-N,N'-二苯基对苯二胺]-[9,9-二正辛基芴基-2,7-二基]共聚物(PFB)、聚9,9-二辛基芴(F8)、2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-MeOTAD),或者咔唑类聚合物、芳香族二胺类化合物或星形三苯胺化合物,所述咔唑类聚合物可以是聚乙烯咔唑(PVK),所述芳香族二胺类化合物可以是N,N’-双-(3-甲基苯基)-N,N’-二苯基-[1,1’-联苯基]-4,4’-二胺(TPD)或者N,N’-双(3-萘基)-N,N’-二苯基-[1,1’-二苯基]-4,4’-二胺(NPB),所述星形三苯胺化合物可以是三-[4-(5-苯基-2-噻吩基)苯]胺(PTDATA系列)。阳极层7,为金属(Au,Al,Cu,Ag中任意一种),同时使用界面修饰层MoO 3修饰。
图1给出了具有特殊结构钙钛矿层器件的制备过程及形成的特殊结构。钙钛矿溶液中加入的过量烷基铵盐和/或带官能团的有机分子会与衬底薄膜结合或进行反应,自发形成有机绝缘层4,膜层中的钙钛矿晶粒5非连续、不规则的分散在有机层4中,同时这种有机分子会修饰钙钛矿薄膜,使钙钛矿晶体5质量更高。常规钙钛矿薄膜都是连续的,由于钙钛矿薄膜的折射率较高,发出的光在钙钛矿/ZnO、ZnO/ITO界面处的全反射作用会使发光层发出的光只有部分能从衬底发射出来。本发明设计出一种新型钙钛矿膜层结构,这种结构可使陷于器件中的部分光通过衬底发射出来,路径①表示从钙钛矿晶粒发出的光直接出射到空气;路径②表示钙钛矿晶粒发出的大角度光,经有机层(或电 荷输运层)折射出射到空气;路径③表示由于ITO/玻璃界面全反射作用,陷于器件中的光受自发形成非连续结构的影响,经空穴传输层/电极界面反射后,可再次出射到空气;路径④表示向上发射的光被金属电极反射后受非连续结构影响,经有机层折射出射到空气。这种结构由于使钙钛矿晶粒分布在低折射率的有机绝缘层(或电荷输运层)中,并且钙钛矿上层传输层和金属电极具有高低起伏的褶皱结构,可提高器件的出光效率,从而提高器件的外量子效率。
工艺步骤:
1)钙钛矿前驱体溶液配制
钙钛矿晶粒的结构通式为ABX 3,其中A为金属阳离子或烷基铵盐(包括Rb +,Cs +,CH 3NH 3 +,NH 2CHNH 2 +);B为二价金属阳离子(包括Cu 2+,Ni 2+,Co 2+,Fe 2+,Mn 2+,Cr 2+,Pd 2+,Cd 2+,Ge 2+,Sn 2+,Pb 2+,Eu 2+,Yb 2+);X为卤素阴离子(包括I -,Br -,Cl -)。钙钛矿前驱体溶液由AX、BX 2和有机分子(带有官能团如-X、-NH 2、-OH、-COOH、-CN、-NC、-SH、-PH 2、-SCN、-CHO、-SO 3H、-CH(O)CH中的一个或多个,X为卤素)以摩尔比1~100:1~100:0~100溶于溶剂(DMF,DMSO,GBL)中,质量分数为1%~50%。
2)器件制备
a)分别利用丙酮、乙醇溶液对透明导电衬底ITO玻璃进行超声清洗两次,处理后用氮气吹干,将ITO转移至氧等离子清洗机内,在真空条件下对其进行氧等离子清洗。
b)利用旋涂法制备电子传输层,并分别进行热退火。
c)利用一步旋涂法或两步旋涂法制备钙钛矿层,同时在旋涂开始以后滴加氯苯、甲苯、氯仿、甲醚、乙酸乙酯或几种溶液的混合液来调控钙钛矿薄膜的结晶过程,并进行热退火,形成具有特殊膜层结构的薄膜,如图1所示。
d)继续利用旋涂法制备空穴传输层。
e)利用热蒸发法在空穴传输层表面沉积MoO 3和Au,形成具有特殊膜层结构的器件。
实施例1 制备具有新型膜层结构的钙钛矿薄膜
将NH 2C 4H 8COOH(5AVA)、NH 2CH=NH 2I(FAI)和PbI 2按摩尔比0.5:2.4:1配成前 驱体溶液,在制备了电荷传输层的基底上旋涂前驱体溶液,105℃加热退火15分钟后得到图1所示具有新型膜层结构的钙钛矿薄膜。
图2是薄膜的表面形貌图(SEM),可以发现,薄膜是由许多非连续、不规则分布的钙钛矿晶粒组成的,同时晶体质量高、晶粒形状较规整。
图3是不同退火时间下薄膜的SEM,可以发现,钙钛矿晶粒和嵌入在钙钛矿晶粒之间的有机绝缘层组成的凹凸膜层结构随着退火时间增加变化,薄膜表面的晶粒长大,并且晶粒形状更加规则。
图4是薄膜的X射线衍射谱(XRD),XRD中13.7 o和27.8 o分别代表钙钛矿晶体的(111)和(222)晶面,这两个峰的信号非常强,表明薄膜中钙钛矿晶体是非常有序排列的。
图5是薄膜与普通钙钛矿薄膜(FAPbI 3)对比的紫外-吸收图谱和光致发光图谱,通过5AVA修饰的钙钛矿薄膜发光光谱窄化,表明修饰后的钙钛矿晶体更加有序、晶体质量更高。
图6是薄膜的TCSPC谱图,显示在低激光强度下,薄膜荧光寿命约有2微秒,薄膜缺陷态密度低、晶体质量高。
图7是薄膜的光致发光量子效率与激光强度相关图谱,从图中可以发现,随着激发光强度的增加,薄膜的光致发光量子效率迅速达到最大值,表明薄膜缺陷态密度低。并且在大光强下依然保持相当高的光致发光量子效率,最高超过68%。
实施例2 基于新型钙钛矿膜层结构器件的制备
衬底为玻璃-ITO组合,电子传输-空穴阻挡层为ZnO/PEIE、发光层为新型钙钛矿薄膜、空穴传输-电子阻挡层为TFB、顶电极为MoOx/Au,整个器件结构描述为:玻璃衬底/ITO/ZnO-PEIE/Perovskite/TFB/MoOx/Au。制备方法如下:
①利用丙酮溶液、乙醇溶液和去离子水对透明导电基片ITO玻璃进行超声清洗,清洗后用干燥氮气吹干。其中玻璃衬底上面的ITO作为器件的阳极层,ITO的方块电阻为15Ω/□。
②将干燥后的基片移入真空室,在氧气环境下对ITO玻璃进行紫外臭氧预处理10分钟
③在预处理后的衬底上分别旋涂ZnO和PEIE,并进行退火处理,然后转移至氮气手套箱中,通过在衬底上旋涂NH 2C 4H 8COOH、NH 2CH=NH 2I和PbI 2摩尔比为0.5:2.4:1的前驱体溶液,退火后得到具有新型膜层结构的钙钛矿薄膜,TFB溶液通过旋涂覆盖在发光层上方作为空穴传输层。
④在各功能层制备结束后进行MoO x/Au复合电极的制备,气压为6×10 -7Torr,蒸镀速率为0.1nm/s,蒸镀速率及厚度由膜厚仪监控。
⑤将制备的器件在手套箱中进行封装,手套箱为99.9%氮气氛围。
⑥测试器件的电流-电压-辐射强度特性,同时测试器件的发光光谱参数。
图8为所制备器件的电流-外量子效率特征曲线图。如图中所示,器件的最高外量子效率可以达到19.43%,相比较于普通钙钛矿薄膜器件的外量子效率有很大的提高。
图9为所制备器件的电致发光光谱图。如图中所示,器件电致发光峰位在802nm。
图10为所制备器件的电压-电流和电压-辐照度特征曲线图。如图中所示,器件最大辐照度可以达到328W sr -1m -2
图11为器件EQE降低到一半时的时间图谱。如图中所示,由于所形成的钙钛矿薄膜晶体质量高,器件在100mA cm -2的大电流密度下,寿命接近20小时,稳定性高。
图12为器件角度依赖发光特征图。如图所示,器件的角度依赖发光与朗伯体吻合,表明由于钙钛矿晶粒是非连续、不规则分布在有机绝缘层中,因此这种特殊膜层结构不会改变器件发光光谱和出光的方向性,可以避免出现周期性排布光栅结构导致的器件发光的强方向性。
实施例3 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 4H 8COOH(5AVA)、NH 2CH=NH 2I(FAI)和PbI 2摩尔比分别为0.5:2:1、0.5:2.2:1、0.5:2.4:1、0.5:2.6:1、0.5:2.8:1、0.5:3:1、0.3:2.4:1、0.7:2.4:1、0.9:2.4:1的前驱体溶液,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图13为器件的电致发光光谱,不同比例下电致发光光谱基本一致。图14、图15和图16分别为不同比例器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征 曲线图,该类器件可实现1.4V的低开启电压。通过前驱体溶液比例的变化可调控钙钛矿薄膜凹凸结构的组成,当比例为0.5:2.4:1时,外量子转换效率达到最高19.4%。
实施例4 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 4H 8COOH(5AVA)、NH 2CH=NH 2I(FAI)和PbI 2摩尔比为0.5:2.4:1的不同浓度(5%、7%、10%、12%、15%)的前驱体溶液,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。图17为器件的电致发光光谱,不同浓度下电致发光光谱基本一致。图18、图19和图20分别为不同浓度器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图,图中所示,7%浓度时器件外量子转换效率达到最高。
实施例5 基于新型钙钛矿膜层结构器件的制备
将制备得到的新型钙钛矿膜层结构器件通过STEM电镜观察,如图21所示,从a图可以看出基底ZnO/PEIE表面自发形成了一层致密的有机层,钙钛矿晶粒分散在这层有机层上方形成凹凸结构,并且钙钛矿晶粒下层有一层很薄的有机层,比钙钛矿晶粒之间的有机层薄一些;通过EDX对图b所示区域进行元素分析,从图c可以发现在基底ZnO/PEIE表面存在一层富C的致密有机层,进一步证明了这种结构的存在。同时钙钛矿上层的TFB和Au薄膜受钙钛矿膜层形貌影响,具有高低起伏的褶皱结构,如图22对器件电极表面的AFM测试所示,a图为器件电极表面AFM形貌图,b和c图分别为a图中不同区域表面高度起伏图,可以明显看出上层薄膜受钙钛矿薄膜的影响具有高低起伏的形貌,d图为AFM相图,可以明显看出电极表面的褶皱形貌。
实施例6 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 6H 12COOH(7APA)、NH 2CH=NH 2I(FAI)和PbI 2摩尔比为0.5:2.4:1的前驱体溶液,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图23为器件的电致发光光谱,图24、图25和图26分别为不同浓度器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.5V,外量子转换效率达到14.3%。
实施例7 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂BrC 6H 4CH 2NH 2、NH 2CH=NH 2I(FAI)和PbI 2摩尔比为0.5:3.4:1.8的前驱体溶液,溶液浓度为12%,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图27为薄膜SEM形貌图,可以看出钙钛矿薄膜具有特殊膜层结构,图28为器件的电致发光光谱。图29、图30和图31分别为不同浓度器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.4V,外量子转换效率可以达到14.4%。
实施例8 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂ClC 6H 4CH 2NH 2、NH 2CH=NH 2I(FAI)和PbI 2摩尔比为0.5:3.4:1.8的前驱体溶液,溶液浓度为12%,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图32为薄膜SEM形貌图,钙钛矿薄膜具有特殊膜层结构,图33为器件的电致发光光谱。图34、图35和图36分别为不同浓度器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.4V,外量子转换效率可以达到15.2%。
实施例9 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 4H 8COOH(5AVA)、NH 2CH=NH 2I(FAI)、NH 2CH=NH 2Br、CsI和PbI 2摩尔比为0.5:0.4:0.5:1:1的前驱体溶液,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成红光器件。
图37为薄膜SEM形貌图,钙钛矿薄膜具有特殊膜层结构,图38为器件的电致发光光谱,器件电致发光光谱在690nm。图39、图40和图41分别为器件的电压-电流密度,电压-亮度,电流-外量子效率特征曲线图。可以发现,器件启亮电压为2V,亮度超过1000cd/m 2,外量子转换效率达到8.6%,是目前钙钛矿红光器件的最高效率。
实施例10 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 4H 8COOH(5AVA)、 NH 2CH=NH 2I(FAI)、NH 2CH=NH 2Br、CsI、PbBr 2和PbI 2摩尔比为0.3:0.3:0.6:1:0.6:0.4的前驱体溶液,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成红光器件。
图42为薄膜SEM形貌图,钙钛矿薄膜具有特殊膜层结构,图43为器件的电致发光光谱,器件电致发光光谱在662nm。图44、图45和图46分别为器件的电压-电流密度,电压-亮度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.75V,最大亮度接近10000cd/m 2,是目前钙钛矿红光器件的最高亮度,外量子转换效率达到4.8%。
实施例11 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 4H 8COOH(5AVA)、NH 2CH=NH 2Br和PbBr 2摩尔比为0.5:2:1的前驱体溶液,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成绿光器件。
图47为薄膜SEM形貌图,钙钛矿薄膜具有特殊膜层结构,图48为器件的电致发光光谱,可实现发光在535nm的器件。
实施例12 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂C 6H 5COOH、NH 2CH=NH 2I和PbI 2摩尔比为1:2:1.2的前驱体溶液,溶液浓度为10%,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图49为器件的电致发光光谱,器件电致发光光谱在800nm。图50、图51和图52分别为器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.4V,外量子转换效率达到7%。
实施例13 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂FC 6H 4CH 2NH 2、NH 2CH=NH 2I和PbI 2摩尔比为0.2:2:1的前驱体溶液,溶液浓度为10%,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图53为器件的电致发光光谱,器件电致发光光谱在803nm。图54、图55和图56分别为器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.3V,外量子转换效率达到10.3%。
实施例14 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2C 6H 4COOH、NH 2CH=NH 2I和PbI 2摩尔比为0.8:2:1.2的前驱体溶液,溶液浓度为10%,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成近红外光器件。
图57为器件的电致发光光谱,器件电致发光光谱在800nm。图58、图59和图60分别为器件的电压-电流密度,电压-辐射强度,电流-外量子效率特征曲线图。可以发现,器件启亮电压在1.4V,外量子转换效率达到10.4%。
实施例15 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂CH 2NH 2C 6H 4COOH、NH 2CH=NH 2I和PbI 2摩尔比为0.8:2:1.2的前驱体溶液,溶液浓度为10%,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成器件。
图61为器件的电致发光光谱,器件电致发光光谱在786nm。图62为器件的电流-外量子效率特征曲线图。可以发现,器件外量子转换效率达到11%。
实施例16 基于新型钙钛矿膜层结构器件的制备
器件采用与实施例2同样的器件结构,通过在衬底上旋涂NH 2CH=NH 2I和PbI 2摩尔比为3.4:1.8的前驱体溶液,溶液浓度为12%,由于加入过量的烷基铵盐,退火后得到具有新型钙钛矿膜层结构的薄膜,再制备成器件。
图63为薄膜的SEM形貌图,可以看出通过在前驱体溶液中添加过量的烷基铵盐制备的钙钛矿薄膜具有典型的凹凸结构,图64为器件的电流-外量子效率特征曲线图。可以发现,器件外量子转换效率达到5.8%。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种有效提升发光器件效率的钙钛矿膜层,其特征在于:所述钙钛矿膜层是由一层非连续、不规则分布的钙钛矿晶粒和嵌入在钙钛矿晶粒之间的低折射率有机绝缘层组成,其中,钙钛矿晶粒形成多个凸部,有机绝缘层形成在凸部之间的多个凹部,有机绝缘层的折射率低于钙钛矿的折射率,可使陷于器件中的部分光通过衬底发射出来,可提高器件的出光效率,从而提高器件的外量子效率。
  2. 根据权利要求1所述的钙钛矿膜层,其特征在于,所述有机绝缘层由钙钛矿前驱体溶液中添加过量的烷基铵盐和/或带有特定官能团的有机分子与衬底薄膜结合或进行反应而自发形成。
  3. 根据权利要求1所述的钙钛矿膜层,其特征在于,所述有机绝缘层厚度在1nm到300nm之间。
  4. 根据权利要求1所述的钙钛矿膜层,其特征在于,所述有机绝缘层可避免器件中空穴传输层和电子传输层的直接接触。
  5. 根据权利要求1所述的钙钛矿膜层,其特征在于,所述钙钛矿晶粒尺寸在3nm到100μm之间。
  6. 根据权利要求1所述的钙钛矿膜层,其特征在于,所述钙钛矿晶粒厚度在5nm到500nm之间。
  7. 根据权利要求1所述的钙钛矿膜层,其特征在于,所述钙钛矿膜层形貌直接影响上层电荷传输层和电极的形貌,使其自发形成具有高低起伏的褶皱结构,其中,所形成的褶皱结构可进一步提高器件的出光效率,从而提高器件的外量子效率。
  8. 根据权利要求1-7任一所述钙钛矿膜层的器件,其特征在于,包括衬底、阳极、空穴传输层、所述钙钛矿膜层、电子传输层、阴极。
  9. 一种有效提升发光器件效率的钙钛矿膜层的制备方法,其特征在于,钙钛矿前驱体溶液中加入过量的烷基铵盐和/或带官能团的有机分子与衬底薄膜结合或进行反应而自发形成有机绝缘层,膜层中的钙钛矿晶粒形成多个凸部,有机绝缘层形成在凸部之间的多个凹部。
  10. 根据权利要求9所述的制备方法,其特征在于,由钙钛矿前驱体溶液中加入过量烷基铵盐和/或带官能团的有机分子与衬底薄膜结合或进行反应而自发形成,其中所述烷基铵盐包括CH 3NH 3X,NH 2CHNH 2X;有机分子的官能团包括-X、-NH 2、-OH、-COOH、-CN、-NC、-SH、-PH 2、-SCN、-CHO、-SO 3H、-CH(O)CH中的一个或多个,X为卤素。
  11. 根据权利要求9所述的制备方法,其特征在于,所述有机分子为下述有机分子中的任意一种或几种:
    Figure PCTCN2018119317-appb-100001
  12. 根据权利要求9所述的制备方法,其特征在于,所述衬底薄膜为电荷传输层。
  13. 根据权利要求12所述的制备方法,其特征在于,所述电荷传输层包括PEDOT:PSS、PVK、TFB、PFB、Poly-TPD、F8、ZnO、TiO x、SnO 2、NiO x,以及采用氨基酸类有机物、聚胺类有机物修饰的多层薄膜。
  14. 根据权利要求13所述的制备方法,其特征在于,所述氨基酸类有机物包括5AVA、6ACA、7APA、8AOA,所述聚胺类有机物包括PEI、PEIE、PEOz。
  15. 根据权利要求9所述的制备方法,其特征在于,钙钛矿晶粒的结构通式为ABX 3,其中A为金属阳离子或烷基铵盐,包括Rb +、Cs +、CH 3NH 3 +、NH 2CHNH 2 +中的任意一种或者几种的组合;B为二价金属阳离子,包括Cu 2+、Ni 2+、Co 2+、Fe 2+、Mn 2+、Cr 2+、Pd 2+、Cd 2+、Ge 2+、Sn 2+、Pb 2+、Eu 2+、Yb 2+中的任意一种或者几种的组合;X为卤素阴离子,包括I -、Br -、Cl -中的任意一种或者几种的组合;钙钛矿前驱体溶液由AX、BX 2和有机分子以摩尔比1~100:1~100:0~100溶于溶剂中配制得到,质量分数为1%~50%。
PCT/CN2018/119317 2017-12-27 2018-12-05 一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法 WO2019128656A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020528951A JP6954699B2 (ja) 2017-12-27 2018-12-05 発光デバイスの効率を効果的に向上させるペロブスカイト膜層を有するデバイスの製造方法
US16/771,230 US11158830B2 (en) 2017-12-27 2018-12-05 Perovskite film layer, device and preparation method for effectively improving efficiency of light-emitting device
KR1020207014074A KR102342350B1 (ko) 2017-12-27 2018-12-05 발광 소자 효율을 효과적으로 향상시키는 페로브스카이트 필름층, 소자 및 제조방법
EP18896772.3A EP3734678A4 (en) 2017-12-27 2018-12-05 PEROWSKIT FILM LAYER, DEVICE, AND MANUFACTURING METHOD FOR EFFECTIVELY IMPROVING THE EFFICIENCY OF A LIGHT EMITTING DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711439127.3 2017-12-27
CN201711439127.3A CN109980095B (zh) 2017-12-27 2017-12-27 一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法

Publications (1)

Publication Number Publication Date
WO2019128656A1 true WO2019128656A1 (zh) 2019-07-04

Family

ID=67066451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/119317 WO2019128656A1 (zh) 2017-12-27 2018-12-05 一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法

Country Status (6)

Country Link
US (1) US11158830B2 (zh)
EP (1) EP3734678A4 (zh)
JP (1) JP6954699B2 (zh)
KR (1) KR102342350B1 (zh)
CN (1) CN109980095B (zh)
WO (1) WO2019128656A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117832349A (zh) * 2022-11-04 2024-04-05 宁波杭州湾新材料研究院 连续高质量钙钛矿薄膜、其制备方法及应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220194969A1 (en) * 2018-12-17 2022-06-23 Seoul National University R&Db Foundation Metal halide perovskite light emitting device and method for manufacturing same
TWI753551B (zh) * 2020-08-27 2022-01-21 財團法人工業技術研究院 鈣鈦礦膜及其製造方法
CN114497426A (zh) * 2020-10-28 2022-05-13 南京工业大学 一种提高钙钛矿发光二极管亮度的方法及钙钛矿发光二极管
CN113571644B (zh) * 2021-07-22 2023-11-28 昆山协鑫光电材料有限公司 一种钙钛矿太阳能电池及其制备方法和应用
CN114649492A (zh) * 2022-03-22 2022-06-21 吉林大学 双功能团修饰的准二维钙钛矿发光二极管及其制备方法
CN115881841B (zh) * 2022-11-29 2024-05-07 中国科学院宁波材料技术与工程研究所 硫化铅量子点太阳能电池结构及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227330A (ja) * 2007-03-15 2008-09-25 Canon Inc 発光素子
CN102621607A (zh) * 2011-04-02 2012-08-01 南京第壹有机光电有限公司 一种微纳米膜、其制备方法及使用该微纳米膜的器件
JP2014229747A (ja) * 2013-05-22 2014-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法
KR20170028054A (ko) * 2015-09-03 2017-03-13 울산과학기술원 페로브스카이트 필름, 페로브스카이트 led 및 그 제조방법
CN107438907A (zh) * 2014-11-28 2017-12-05 剑桥企业有限公司 电致发光器件
CN107507918A (zh) * 2017-08-30 2017-12-22 电子科技大学 一种钙钛矿发光二极管及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4573009B2 (ja) * 2000-08-09 2010-11-04 日本電気株式会社 金属酸化物誘電体膜の気相成長方法
JP6913310B2 (ja) * 2015-12-15 2021-08-04 三菱ケミカル株式会社 半導体デバイス、太陽電池、及び太陽電池モジュール
US11130910B2 (en) * 2016-04-22 2021-09-28 The Trustees Of Princeton University Organic-inorganic hybrid perovskite nanocrystals and methods of making the same
CN106064831B (zh) * 2016-05-13 2017-11-03 南京工业大学 一种纳米颗粒嵌入钙钛矿纳米线形成复合材料的制备方法
CN107068865A (zh) * 2016-12-12 2017-08-18 苏州大学 一种钙钛矿太阳能电池及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227330A (ja) * 2007-03-15 2008-09-25 Canon Inc 発光素子
CN102621607A (zh) * 2011-04-02 2012-08-01 南京第壹有机光电有限公司 一种微纳米膜、其制备方法及使用该微纳米膜的器件
JP2014229747A (ja) * 2013-05-22 2014-12-08 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた光電変換素子およびその製造方法
CN107438907A (zh) * 2014-11-28 2017-12-05 剑桥企业有限公司 电致发光器件
KR20170028054A (ko) * 2015-09-03 2017-03-13 울산과학기술원 페로브스카이트 필름, 페로브스카이트 led 및 그 제조방법
CN107507918A (zh) * 2017-08-30 2017-12-22 电子科技大学 一种钙钛矿发光二极管及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids", NAT. PHOTONICS, vol. 2, 2008, pages 483
"Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles", NAT. PHOTONICS, vol. 4, 2010, pages 222
"Overcoming the electroluminescence (EL) efficiency limitations of perovskite light-emitting diodes", SCIENCE, vol. 350, no. 6265, 2015, pages 1222
"Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells", NAT. PHOTONICS, vol. 10, 2016, pages 699

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117832349A (zh) * 2022-11-04 2024-04-05 宁波杭州湾新材料研究院 连续高质量钙钛矿薄膜、其制备方法及应用

Also Published As

Publication number Publication date
KR20200070338A (ko) 2020-06-17
JP6954699B2 (ja) 2021-10-27
KR102342350B1 (ko) 2021-12-22
JP2021504901A (ja) 2021-02-15
EP3734678A1 (en) 2020-11-04
US11158830B2 (en) 2021-10-26
US20210098731A1 (en) 2021-04-01
CN109980095A (zh) 2019-07-05
CN109980095B (zh) 2020-06-09
EP3734678A4 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
WO2019128656A1 (zh) 一种有效提升发光器件效率的钙钛矿膜层、器件和制备方法
US11245076B2 (en) Perovskite optoelectronic device, preparation method therefor and perovskite material
JP7170998B2 (ja) ペロブスカイトナノ粒子、発光層、発光素子及び太陽電池
KR101620870B1 (ko) 표면 개질된 산화아연을 전자전달층 물질로 포함하는 발광 다이오드
CN109411614B (zh) 一种有机无机复合型钙钛矿发光二极管器件及其制备方法
KR102581601B1 (ko) 발광 특성이 향상된 양자 발광다이오드 및 이를 포함하는 양자 발광 장치
US11730047B1 (en) Perovskite based charge transport layers for thin film optoelectronic devices and methods of making
KR102392485B1 (ko) 페로브스카이트막, 이의 제조방법 및 이를 포함하는 광전소자
WO2022011988A1 (zh) 一种纳米材料及其制备方法与量子点发光二极管
KR101174573B1 (ko) 유기물?무기물 반도체 이종접합 발광소자 및 이의 제조 방법
Dinh et al. Enhancement of performance of organic light emitting diodes by using Ti-and Mo-oxide nano hybrid layers
WO2019099647A1 (en) Light-emitting device structures for blue light and other applications
CN112928221B (zh) 一种发光层含有纳米聚集体的晶态有机电致发光二极管及应用
KR102685147B1 (ko) 금속 산화물 나노입자, 전자 수송층, 이를 포함하는 양자점 발광 소자 및 관련 제조 방법들
KR102574969B1 (ko) 페로브스카이트 박막, 페로브스카이트 광전소자 및 이의 제조방법
CN109244252A (zh) Qled器件及其制备方法
CN114891498B (zh) 一种阳离子包覆一维钙钛矿的纳米晶薄膜及其应用
KR101354468B1 (ko) N형 수용성 공액 고분자 화합물 및 이의 제조방법
WO2023125072A1 (zh) 一种发光二极管及其制备方法
WO2022244187A1 (ja) 量子ドット含有膜、発光素子、量子ドット組成物およびその製造方法、量子ドット含有膜の製造方法
Jiang Surface and interface engineering in quantum dot and double-heterojunction nanorod light-emitting diodes
WO2020108087A1 (zh) 一种量子点发光二极管及其制备方法
Bade Fully Printable Single Layer Halide Perovskite/Peo Composite Thin Film LEDs
CN115915802A (zh) 纳米颗粒及纳米薄膜、量子点发光二极管和显示装置
KR20220000303A (ko) 전자 수송층, 이를 포함하는 양자점 발광 소자, 이러한 전자 수송층 평가를 위한 단일 전하 소자 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18896772

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207014074

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020528951

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018896772

Country of ref document: EP

Effective date: 20200727