WO2022011988A1 - 一种纳米材料及其制备方法与量子点发光二极管 - Google Patents

一种纳米材料及其制备方法与量子点发光二极管 Download PDF

Info

Publication number
WO2022011988A1
WO2022011988A1 PCT/CN2020/141155 CN2020141155W WO2022011988A1 WO 2022011988 A1 WO2022011988 A1 WO 2022011988A1 CN 2020141155 W CN2020141155 W CN 2020141155W WO 2022011988 A1 WO2022011988 A1 WO 2022011988A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
quantum dot
nanomaterial
dot light
metal
Prior art date
Application number
PCT/CN2020/141155
Other languages
English (en)
French (fr)
Inventor
马兴远
徐威
张建新
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to EP20944956.0A priority Critical patent/EP4184602A4/en
Priority to JP2022555174A priority patent/JP2023517364A/ja
Publication of WO2022011988A1 publication Critical patent/WO2022011988A1/zh
Priority to US17/950,090 priority patent/US20230023531A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present disclosure relates to the field of quantum dot light-emitting devices, and in particular, to a nanomaterial, a preparation method thereof, and a quantum dot light-emitting diode.
  • Quantum dot electroluminescence display technology has become the best candidate for next-generation display technology due to its tunable wavelength, high color saturation, high material stability, and low fabrication cost.
  • the external quantum efficiency of quantum dot light-emitting diodes has increased from 0.01% to over 20%.
  • quantum dot light-emitting diodes are quite close to organic light-emitting diodes (OLEDs).
  • OLEDs organic light-emitting diodes
  • the device structure of QLED is similar to that of OLED.
  • a sandwich structure similar to a p-i-n junction is formed by a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer.
  • the factors affecting the efficiency and life of QLED devices mainly include the following:
  • ZnO and cathode metal will produce metal oxides, which will lead to an increase in the interface barrier, and may also increase the oxygen vacancy concentration of ZnO, improve the conductivity of ZnO, and so on.
  • the light extraction efficiency of QLED devices is also an important factor affecting the device efficiency.
  • the monochromaticity and intensity of light extraction of the device can be improved.
  • the purpose of the present disclosure is to provide a nanomaterial, a preparation method thereof, and a quantum dot light-emitting diode, aiming to solve the problems that the efficiency and lifespan of the existing devices still need to be improved.
  • a nanomaterial the nanomaterial has a core-shell structure, wherein the core of the nanomaterial comprises: ZnO nanoparticles, and metal elements doped in the ZnO nanoparticles;
  • the outer shell of the nanomaterial includes: metal oxide.
  • a method for preparing nanomaterials comprising the steps of:
  • a metal oxide shell is formed on the surface of the core to obtain a nanomaterial with a core-shell structure.
  • a quantum dot light-emitting diode comprising:
  • a quantum dot light-emitting layer disposed between the anode and the cathode;
  • the present disclosure can adjust the energy level structure and electron transport efficiency of the overall nanomaterial by doping other metal elements in zinc oxide nanoparticles and wrapping a metal oxide shell.
  • the energy levels of the nanomaterial (as the material of the electron transport layer) in the quantum dot light-emitting diode and the quantum dot are more matched, reducing the electron-to-electron transport in the light-emitting layer of the quantum dot Layer transfer improves the electron-hole recombination efficiency in the quantum dot light-emitting layer, which greatly improves the efficiency of quantum dot light-emitting diodes;
  • the quantum dots The electron-hole injection of the dot light-emitting diode is more balanced, the charge accumulation of the quantum dot light-emitting layer is reduced, the Auger recombination is suppressed, and the radiative recombination efficiency of the
  • the present disclosure can make the zinc oxide nanoparticles more stable, improve the stability of the quantum dot light-emitting diode, and make the lifespan of the quantum dot light-emitting diode longer. big boost.
  • FIG. 1 is a schematic flowchart of a method for preparing a nanomaterial provided in an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a quantum dot light emitting diode provided in an embodiment of the present disclosure.
  • the present disclosure provides a nanomaterial, a preparation method thereof, and a quantum dot light-emitting diode.
  • a nanomaterial a preparation method thereof, and a quantum dot light-emitting diode.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • An embodiment of the present disclosure provides a nanomaterial, the nanomaterial has a core-shell structure, wherein the core of the nanomaterial includes: ZnO nanoparticles, and a metal element doped in the ZnO nanoparticles;
  • the outer shell of the nanomaterial includes: metal oxide.
  • the core of the nanomaterial is: ZnO nanoparticles, and metal elements doped in the ZnO nanoparticles;
  • the shell of the nanomaterial is: metal oxide.
  • the embodiments of the present disclosure improve zinc oxide nanoparticles, specifically, doping zinc oxide nanoparticles with other metal elements (such as aluminum, magnesium, lithium, etc.), and wrapping a layer of metal oxide shell (such as aluminum oxide, oxide Magnesium, lithium oxide, etc.), since the conduction band energy levels of doped metal oxides and shell metal oxides are higher than those of zinc oxide, the conduction band energy level of the overall nanomaterial can be improved, so that the It can match the energy level structure of different quantum dots, reduce the transfer of electrons in the quantum dot light-emitting layer to the electron transport layer, and improve the electron-hole recombination efficiency in the quantum dot light-emitting layer, so that the efficiency of the quantum dot light-emitting diode can be obtained.
  • other metal elements such as aluminum, magnesium, lithium, etc.
  • metal oxide shell such as aluminum oxide, oxide Magnesium, lithium oxide, etc.
  • the corresponding ZnO nanoparticles used due to the higher conduction band energy level of blue QDs (green QDs are higher than red QDs, and blue QDs are higher than green QDs), the corresponding ZnO nanoparticles used
  • the conduction band energy level is also required to be relatively high, and the nanomaterials described in the embodiments of the present disclosure can also match the energy level structure of the blue quantum dots.
  • the electron transport rate of the overall nanomaterial can be adjusted, so that the quantum dot light-emitting diode
  • the electron transport rate of the overall nanomaterial can be adjusted, so that the quantum dot light-emitting diode
  • the injection of electrons and holes is more balanced, and the radiation recombination efficiency of electrons and holes is improved, so that the efficiency of quantum dot light-emitting diodes has been greatly improved.
  • doping with different metal elements when doping metal elements such as Mg, Ca, Li, etc., due to the large band gap of metal oxides such as magnesium oxide, calcium oxide, and lithium oxide, the resistance is also large. Ca, Li, etc.
  • the shell material is magnesium oxide, aluminum oxide and other metal oxides
  • due to the large resistance of metal oxides such as magnesium oxide and aluminum oxide the thicker the shell layer, the more conductive the overall nanomaterial is.
  • the ability is worse.
  • the shell material is a metal oxide such as indium oxide, since the resistance of the metal oxide such as indium oxide is small, the thicker the shell layer, the better the conductivity of the overall nanomaterial.
  • quantum dots with shorter emission wavelengths the emission wavelengths of red, green and blue quantum dots are getting shorter and shorter
  • dope metals with larger oxide band gaps such as Mg, Ca, Li, etc.
  • doping ratio Properly increase the doping ratio and increase the shell thickness to increase the band gap of ZnO, so that its energy level is more matched with the quantum dot energy level, and the device performance is maximized.
  • the surface of the zinc oxide nanoparticles is coated with a layer of metal oxide, so that the electron transport stability of the zinc oxide nanoparticles has been greatly improved, so that the stability of the quantum dot light-emitting diode has been improved, thereby improving the quantum Lifetime of point LEDs.
  • the metal elements doped in the ZnO nanoparticles include Al, Mg, Li, Ca, Ga, In, etc., but are not limited to one or more of them.
  • the metal elements in the metal oxide include Al, Mg, Li, Ca, Ga, In, etc., but are not limited to one or more of them.
  • the metal elements doped in the ZnO nanoparticles and the metal elements in the metal oxide have the same material selection range. Specifically, the same metal elements can be selected, or different metal elements can be selected.
  • the metal element doped in the ZnO nanoparticles is the same as the metal element in the metal oxide, which can reduce the lattice mismatch between the shell and the core and improve the stability of the nanomaterial .
  • the metal element doped in the ZnO nanoparticles and the metal element in the metal oxide are both Mg or Li.
  • Oxides of Mg or Li have wider band gaps. Doping this metal element in ZnO nanoparticles and wrapping the oxide shell of the metal can further increase the conduction band energy level of ZnO nanoparticles, making it compatible with short-wavelength ZnO nanoparticles. The energy level structures of quantum dots are more matched.
  • the ratio of the molar amount of the doped metal element to the total molar amount of the doped metal element to the zinc element is 0.5%-30%. Too high a proportion of doped metal will result in too large lattice distortion and too high structural instability of nanoparticles.
  • the shell has a thickness of 0.5-2 nm.
  • FIG. 1 an embodiment of the present disclosure provides a schematic flowchart of a method for preparing nanomaterials, as shown in the figure, including steps:
  • the nanomaterial prepared by the method in the embodiment of the present disclosure can be the nanomaterial described above, and thus, the method can have all the features and advantages of the nanomaterial described above, which will not be repeated here.
  • the step of forming a metal oxide shell on the surface of the core by using the metal-doped ZnO nanoparticles as a core to obtain a nanomaterial with a core-shell structure includes:
  • a metal salt is added to carry out the reaction, and a metal oxide shell is obtained on the surface of the metal element-doped ZnO nanoparticle core to obtain a core-shell structure of nanomaterials.
  • the zinc salt is a soluble inorganic zinc salt or a soluble organic zinc salt.
  • the zinc salts include zinc acetate, zinc nitrate, zinc chloride, zinc sulfate, and zinc acetate dihydrate, but are not limited to one or more of them.
  • the alkaline solution is prepared by dissolving an alkali in an organic solvent.
  • the organic solvent includes, but is not limited to, one or more of 2-methoxyethanol, methanol, ethanol, isopropanol, dimethyl sulfoxide, and the like.
  • the salt of the metal element to be doped includes one or more of Al salts, Mg salts, Li salts, Ca salts, Ga salts, In salts, etc. which are not limited thereto.
  • the metal elements in the metal oxide include one or more of Al, Mg, Li, Ca, Ga, In, etc., which are not limited thereto.
  • the base includes potassium hydroxide, sodium hydroxide and tetramethylammonium hydroxide, etc., but is not limited to one or more of them.
  • the temperature at which the reaction treatment is performed is 20-150 degrees Celsius. Further, the temperature for the reaction treatment is 60-90 degrees Celsius.
  • the time for the reaction treatment is 1-10 h. Further, the time for the reaction treatment is 2 to 4 hours.
  • An embodiment of the present disclosure provides a quantum dot light-emitting diode, comprising: an anode and a cathode disposed opposite to each other, a quantum dot light-emitting layer disposed between the anode and the cathode, and electrons disposed between the cathode and the quantum dot light-emitting layer
  • the transport layer wherein the material forming the electron transport layer includes the nanomaterials described above or the nanomaterials prepared by the preparation method described above.
  • the material for forming the electron transport layer of the quantum dot light-emitting diode includes the nanomaterials described in the embodiments of the present disclosure or the nanomaterials prepared by the preparation methods described in the embodiments of the present disclosure.
  • the quantum dot light-emitting diode has various forms, and the quantum dot light-emitting diode is divided into a positive structure and an inversion structure.
  • the quantum dot light-emitting diode with a positive structure as shown in FIG. 2 is mainly used. Take an example for a detailed introduction. Specifically, as shown in FIG.
  • the quantum dot light-emitting diode includes a substrate 1, an anode 2, a hole transport layer 3, a quantum dot light-emitting layer 4, an electron transport layer 5 and a cathode 6 stacked from bottom to top;
  • the material of the electron transport layer 5 is the nanomaterial, and the core of the nanomaterial includes: ZnO nanoparticles, and metal elements doped in the ZnO nanoparticles;
  • the outer shell of the nanomaterial includes: metal oxide.
  • the electron transport layer has a thickness of 20-60 nm.
  • the substrate may be a rigid material, such as glass, or a flexible material, such as polyethylene terephthalate (PET) or polyimide (PI) ), etc.
  • PET polyethylene terephthalate
  • PI polyimide
  • the anode may be selected from one of indium-doped tin oxide (ITO), fluorine-doped tin oxide (FTO), antimony-doped tin oxide (ATO), and aluminum-doped zinc oxide (AZO), etc. one or more.
  • ITO indium-doped tin oxide
  • FTO fluorine-doped tin oxide
  • ATO antimony-doped tin oxide
  • AZO aluminum-doped zinc oxide
  • the material of the hole transport layer can be selected from materials with good hole transport properties, such as but not limited to poly(9,9-dioctylfluorene-CO-N-(4-butylene) phenyl)diphenylamine) (TFB), polyvinylcarbazole (PVK), poly(N,N'bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine) (Poly -TPD), 4,4',4"-tris(carbazol-9-yl)triphenylamine (TCTA), poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonic acid) (PEDOT : PSS), 4,4'- bis (9-carbazolyl) biphenyl (CBP), NiO, MoO 3 and the like, one or more.
  • TFB poly(9,9-dioctylfluorene-CO-N-(4-butylene) pheny
  • the material of the quantum dot light-emitting layer may be oil-soluble quantum dots, and the oil-soluble quantum dots include one or more of binary phase, ternary phase, quaternary phase quantum dots, etc.; wherein Binary phase quantum dots include one or more of CdS, CdSe, CdTe, InP, AgS, PbS, PbSe, HgS, etc., ternary phase quantum dots include ZnCdS, CuInS, ZnCdSe, ZnSeS, ZnCdTe, PbSeS, etc.
  • One or more, quaternary phase quantum dots include one or more of ZnCdS/ZnSe, CuInS/ZnS, ZnCdSe/ZnS, CuInSeS, ZnCdTe/ZnS, PbSeS/ZnS, etc.
  • the material of the quantum dot light-emitting layer can be any one of the common red, green and blue quantum dots or other yellow light, and the quantum dots can be cadmium-containing or cadmium-free.
  • the quantum dot light-emitting layer of the material has the characteristics of wide excitation spectrum and continuous distribution, and high stability of emission spectrum. In this embodiment, the thickness of the quantum dot light-emitting layer is about 20-60 nm.
  • the cathode can be selected from one of aluminum (Al) electrodes, silver (Ag) electrodes, and gold (Au) electrodes, etc., and can also be selected from nano-aluminum wires, nano-silver wires, and nano-gold wires, etc. one of the.
  • the above-mentioned materials have relatively low resistance, so that carriers can be injected smoothly.
  • the thickness of the cathode is about 15-30 nm.
  • the quantum dot light-emitting diode of the present disclosure may also include one or more layers of the following functional layers: a hole injection layer disposed between the hole transport layer and the anode, a hole injection layer disposed between the electron transport layer and the cathode electron injection layer.
  • Embodiments of the present disclosure also provide a method for preparing a quantum dot light-emitting diode with a positive structure, including the steps of:
  • An electron transport layer is prepared on the quantum dot light-emitting layer;
  • the material of the electron transport layer is a nanomaterial, and the core of the nanomaterial includes: ZnO nanoparticles, and metal elements doped in the ZnO nanoparticles, the nanomaterials
  • the shell includes: metal oxide;
  • a cathode is prepared on the electron transport layer to obtain a quantum dot light-emitting diode.
  • the anode in order to obtain a high-quality hole transport layer, the anode needs to undergo a pretreatment process.
  • the pretreatment process specifically includes: cleaning the anode with a detergent to preliminarily remove the stains existing on the surface of the anode, followed by ultrasonic cleaning in deionized water, acetone, anhydrous ethanol, and deionized water for 20 minutes respectively to remove the existing stains on the surface. Impurities, and finally dry with high-purity nitrogen to get the anode.
  • the step of preparing the hole transport layer on the substrate includes: placing the substrate on a glue spinner, and spin-coating the prepared solution of the hole transport material to form a film; adjusting the concentration of the solution, The spin coating speed and spin coating time are used to control the film thickness, followed by thermal annealing at an appropriate temperature to obtain the hole transport layer.
  • the step of preparing the quantum dot light-emitting layer on the hole transport layer includes: placing the substrate on which the hole transport layer has been prepared on a glue spinner, and preparing a solution of a light-emitting substance with a certain concentration
  • the film is formed by spin coating, the thickness of the quantum dot light-emitting layer is controlled by adjusting the concentration of the solution, the spin coating speed and the spin coating time, and finally the quantum dot light-emitting layer is obtained by drying at an appropriate temperature.
  • the step of preparing the electron transport layer on the quantum dot light-emitting layer includes: placing the prepared quantum dot light-emitting layer substrate on a glue spinner, and spinning the prepared electron transport material solution with a certain concentration Coating to form a film, the thickness of the electron transport layer is controlled by adjusting the concentration of the solution, the spin coating speed (eg, between 3000-5000 rpm) and the spin coating time, and then annealing to form a film to obtain the electron transport layer.
  • This step can be annealed in air or in nitrogen atmosphere, and the annealing atmosphere can be selected according to actual needs.
  • the obtained quantum dot light-emitting diode is packaged.
  • the encapsulation process can be packaged by a commonly used machine, or can also be packaged manually.
  • the oxygen content and the water content are both lower than 0.1 ppm to ensure the stability of the device.
  • the preparation method of each layer may be a chemical method or a physical method, wherein the chemical method includes but is not limited to chemical vapor deposition method, continuous ion layer adsorption and reaction method, anodic oxidation method, electrolytic deposition method, and co-precipitation method.
  • One or more; physical methods include but are not limited to solution methods (such as spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating method or strip coating method, etc.), evaporation method (such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.), deposition method (such as physical vapor deposition method, elemental One or more of layer deposition method, pulsed laser deposition method, etc.).
  • solution methods such as spin coating, printing, blade coating, dip-pulling, immersion, spraying, roll coating, casting, slot coating method or strip coating method, etc.
  • evaporation method such as thermal evaporation method, electron beam evaporation method, magnetron sputtering method or multi-arc ion coating method, etc.
  • deposition method such as physical vapor deposition method, elemental One or more of layer deposition method, pulsed laser deposition method, etc.
  • the nanomaterials were replaced with pure zinc oxide nanoparticles, and other steps remained the same.
  • T95 (1000nit) in the table represents the time it takes for the device to decay to 95% at 1000nit brightness.
  • the present disclosure provides a nanomaterial, a preparation method thereof, and a quantum dot light-emitting diode.
  • the present disclosure prepares nanomaterials as electron transport layer materials of devices by a simple sol-gel method.
  • the energy level structure and electron transport efficiency of the overall nanomaterial can be adjusted, so that the energy level of quantum dots and nanomaterials in the device can be adjusted.
  • the level is more matched, reducing the transfer of electrons in the quantum dot light-emitting layer to the electron transport layer, improving the electron-hole recombination efficiency of the quantum dot light-emitting layer; making the electron-hole injection of the device more balanced and reducing the charge accumulation of the quantum dot light-emitting layer , inhibit Auger recombination, improve the radiation recombination efficiency of electron holes; make the zinc oxide nanoparticles more stable, and improve the overall stability of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种纳米材料及其制备方法与量子点发光二极管,所述纳米材料具有核壳结构,所述纳米材料的核包括:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;所述纳米材料的外壳包括:金属氧化物。通过在氧化锌纳米颗粒中掺杂其他金属元素,和包裹一层金属氧化物外壳,可以对整体纳米材料的能级结构和电子传输效率进行调节,使得器件中量子点和纳米材料的能级更加匹配,减少量子点发光层中的电子向电子传输层的转移,提高了量子点发光层的电子空穴复合效率;使得器件的电子空穴注入更加平衡,减少量子点发光层的电荷积累,抑制俄歇复合,提高电子空穴的辐射复合效率;使得氧化锌纳米颗粒更加稳定,提高了器件整体的稳定性。

Description

一种纳米材料及其制备方法与量子点发光二极管
优先权
本公开要求于申请日为2020年07月17日提交中国专利局、申请号为“202010692288.9”、申请名称为“一种纳米材料及其制备方法与量子点发光二极管”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及量子点发光器件领域,尤其涉及一种纳米材料及其制备方法与量子点发光二极管。
背景技术
量子点电致发光显示技术,由于其波长可调,色彩饱和度高,材料稳定性高,和制备成本低廉等优点,成为了下一代显示技术的最佳候选者。经过了将近二十几年的发展,量子点发光二极管的外量子效率已经由0.01%提升至超过20%,从器件效率方面,量子点发光二极管(QLED)已经相当接近有机发光二极管(OLED)。然而,尽管量子点器件拥有上述的优势,目前器件的性能仍未完全达到产业化的要求,特别是对于蓝色QLED器件来说。
目前QLED的器件结构与OLED相似,通过空穴注入层、空穴传输层、发光层、电子传输层等构成类似p-i-n结的三明治结构,通过平衡电子和空穴的注入,达到高效发光的效果。由于蓝色量子点的带隙较红绿色量子点带隙宽,电子空穴更加难以注入,启动电压进一步增大,界面电荷积累更加严重,对器件的寿命和效率造成了很大影响。特别是,氧化锌和量子点界面间存在电荷转移现象且量子点对电子束缚能力低于对空穴的束缚,这导致了氧化锌和量子点界面出现严重的电荷转移现象,而且伴随着蓝色量子点的导带能级的提高,这种电荷转移更加严重。界面间的激发电子的转移不仅导致了界面处的电荷积累,而且极大提高了非辐射俄歇复合的概率,严重影响了器件的效率和寿 命。所以,设计更加合理的器件结构、能级结构和引入稳定性更好的材料体系是进一步提高器件效率和寿命的关键。
从器件结构上分析,影响QLED器件效率和寿命的因素主要包括以下几点:
1、电极与空穴注入层之间的能级差或是空穴注入层对电极的腐蚀,如PEDOT:PSS(聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐)对电极的腐蚀导致的界面损坏、电荷积累、注入势垒提高。
2、HIL(空穴注入层)和HTL(空穴传输层)之间的HOMO能级差,即HIL和HTL之间的势垒高度。
3、HTL和量子点界面处的势垒高度和由此引发的电荷积累,如TFB/QD界面处由于电子积累导致的TFB的退化,导致器件失效。
4、QD和ZnO层之间复杂的相互作用,包括QD/ZnO界面处的能级差、激子转移、电子转移,该作用的效果与ZnO中的氧空位浓度、导带位置和电子传输率密切相关,这些在器件的储存老化过程中会发生一定变化。
5、ZnO和阴极,ZnO和阴极金属之间的反应会产生金属氧化物,导致界面势垒提高,也可能会提高ZnO的氧空位浓度,提高ZnO导电性等等。
此外,QLED器件中出光效率也是影响器件效率的一个重要因素,通过合理的光学结构设计可以提高器件出光的单色性和出光的强度。
所以,设计更加合理的器件结构、能级结构和引入稳定性更好的材料体系是进一步提高器件效率和寿命的关键。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种纳米材料及其制备方法与量子点发光二极管,旨在解决现有器件的效率和寿命仍有待于提高的问题。
本公开的技术方案如下:
一种纳米材料,所述纳米材料具有核壳结构,其中,所述纳米材料的核包括:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;
所述纳米材料的外壳包括:金属氧化物。
一种纳米材料的制备方法,其中,包括步骤:
将锌盐、待掺杂金属元素的盐与碱液混合,进行反应,得到掺杂金属元素的ZnO纳米颗粒;
以所述掺杂金属元素的ZnO纳米颗粒作为核,在所述核的表面形成金属氧化物外壳,得到具有核壳结构的纳米材料。
一种量子点发光二极管,其中,包括:
相对设置的阳极以及阴极;
设置在所述阳极和阴极之间的量子点发光层;
设置在所述阴极和量子点发光层之间的电子传输层,其中,形成所述电子传输层的材料包括本公开所述的纳米材料或利用本公开所述的制备方法制备得到的纳米材料。
有益效果:本公开通过在氧化锌纳米颗粒中掺杂其他金属元素,和包裹一层金属氧化物外壳,可以对整体纳米材料的能级结构和电子传输效率进行调节。一方面,通过对整体纳米材料的能级结构进行调节,使得量子点发光二极管中纳米材料(作为电子传输层材料)和量子点的能级更加匹配,减少量子点发光层中的电子向电子传输层的转移,提高了量子点发光层中的电子空穴复合效率,使得量子点发光二极管的效率得到了较大的提升;另一方面,通过对整体纳米材料的电子传输效率进行调节,使得量子点发光二极管的电子空穴注入更加平衡,减少量子点发光层的电荷积累,抑制俄歇复合,提高电子空穴的辐射复合效率,使得量子点发光二极管的效率得到了较大的提升。此外,本公开通过在掺杂的ZnO纳米颗粒表面包裹一层金属氧化物外壳,可以使氧化锌纳米颗粒更加稳定,提高了量子点发光二极管的稳定性,使得量子点发光二极管的寿命得到了较大的提升。
附图说明
图1为本公开实施例中提供的一种纳米材料的制备方法的流程示意图。
图2为本公开实施例中提供的一种量子点发光二极管的结构示意图。
具体实施方式
本公开提供一种纳米材料及其制备方法与量子点发光二极管,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
本公开实施例提供一种纳米材料,所述纳米材料具有核壳结构,其中,所述纳米材料的核包括:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;
所述纳米材料的外壳包括:金属氧化物。
在一种实施方式中,所述纳米材料的核为:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;
所述纳米材料的外壳为:金属氧化物。
本公开实施例对氧化锌纳米颗粒进行了改进,具体为在氧化锌纳米颗粒中掺杂其他金属元素(如铝、镁、锂等),和包裹一层金属氧化物外壳(如氧化铝、氧化镁、氧化锂等),由于掺杂金属的氧化物和壳层的金属氧化物的导带能级都高于氧化锌的导带能级,所以可以提高整体纳米材料的导带能级,使其能够与不同的量子点的能级结构匹配,减少量子点发光层中的电子向电子传输层的转移,提高了量子点发光层中的电子空穴复合效率,使得量子点发光二极管的效率得到了较大的提升。即使是对于蓝色量子点,由于蓝色量子点的导带能级较高(绿色量子点比红色量子点高、蓝色量子点比绿色量子点高),因此对应使用的氧化锌纳米颗粒的导带能级也就要求较高,采用本公开实施例所述纳米材料也能够与蓝色量子点的能级结构匹配。
另外,本公开实施例通过在氧化锌纳米颗粒中掺杂不同的金属元素、调节掺杂比例、调节金属氧化物外壳的厚度,可以对整体纳米材料的电子传输速率进行调节,使得量子点发光二极管中的电子和空穴注入更加平衡,提高电子和空穴的辐射复合效率,使得量子点发光二极管的效率得到了较大的提升。关于掺杂不同的金属元素,在掺杂Mg、Ca、Li等金属元素时,由于氧化镁、氧化钙、氧化锂等金属氧化物的带隙很大,电阻也很大,因此掺杂Mg、Ca、Li等就会降低氧化锌纳米颗粒的导电率。而掺杂Ga、In等金属元素时,由于其是第三主族的金属元素,比Zn多一个价电子,可以提供多余的电子,且 氧化镓和氧化铟的带隙较小,本身导电性也较好,因此掺杂Ga、In等就可以提高氧化锌纳米颗粒的导电率。通过对掺杂比例进行调节,可以调节导电率的变化大小,掺杂比例越大,导电率的变化就越大。关于金属氧化物外壳厚度的调节,当外壳材料为氧化镁、氧化铝等金属氧化物时,由于氧化镁、氧化铝等金属氧化物的电阻较大,因此壳层越厚,整体纳米材料的导电能力就越差。而外壳材料为氧化铟等金属氧化物时,由于氧化铟等金属氧化物的电阻较小,因此壳层越厚,整体纳米材料的导电能力就越好。
针对发光波长越短的量子点(红色、绿色和蓝色量子点的发光波长越来越短),可以选择掺杂氧化物带隙更大的金属(如Mg、Ca、Li等)、也可以适当地提高掺杂的比例并增加壳层厚度,以提高氧化锌的带隙,使其能级与量子点能级更加匹配,最大化提高器件性能。
此外,由于氧化锌纳米颗粒的表面包裹有一层金属氧化物,使得氧化锌纳米颗粒的电子传输稳定性得到了极大的提升,从而使得量子点发光二极管的稳定性得到了提升,进而提高了量子点发光二极管的寿命。
在一种实施方式中,所述ZnO纳米颗粒中掺杂的金属元素包括Al、Mg、Li、Ca、Ga、In等不限于此中的一种或多种。
在一种实施方式中,所述金属氧化物中的金属元素包括Al、Mg、Li、Ca、Ga、In等不限于此中的一种或多种。
也就是说,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素所具有的材料选择范围相同,具体可以选择相同的金属元素,也可以选择不同的金属元素。
在一种实施方式中,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素相同,这样可以降低壳层与核的晶格失配度,提高纳米材料的稳定性。
在一种实施方式中,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素均为Mg或Li。Mg或Li的氧化物具有更宽的带隙,ZnO纳米颗粒中掺杂该金属元素和包裹该金属的氧化物外壳,可以进一步提高氧化锌纳米颗粒的导带能级,使其与短波长的量子点的能级结构更加匹配。
在一种实施方式中,所述掺杂的金属元素的摩尔量占掺杂的金属元素与锌元素的总摩尔量的比为0.5%-30%。掺杂金属比例过高会导致纳米颗粒的晶格畸变太大,结构不稳定性太高。
在一种实施方式中,所述外壳的厚度为0.5-2nm。
请结合图1,本公开实施例提供一种纳米材料的制备方法的流程示意图,如图所示,包括步骤:
S10、将锌盐、待掺杂金属元素的盐与碱液混合,进行反应,得到掺杂金属元素的ZnO纳米颗粒;
S20、以所述掺杂金属元素的ZnO纳米颗粒作为核,在所述核的表面形成金属氧化物外壳,得到具有核壳结构的纳米材料。
本公开实施例该方法制备得到的纳米材料可以是前面描述的纳米材料,由此,该方法可以具有前面描述的纳米材料所具有的全部特征以及优点,在此不再赘述。
在一种实施方式中,所述以所述掺杂金属元素的ZnO纳米颗粒作为核,在所述核的表面形成金属氧化物外壳,得到具有核壳结构的纳米材料的步骤,包括:
在反应得到所述掺杂金属元素的ZnO纳米颗粒的反应体系中,加入金属盐,进行反应,在所述掺杂金属元素的ZnO纳米颗粒核的表面得到金属氧化物外壳,得到具有核壳结构的纳米材料。
在一种实施方式中,所述锌盐为可溶性无机锌盐或可溶性有机锌盐。作为举例,所述锌盐包括醋酸锌、硝酸锌、氯化锌、硫酸锌和二水合乙酸锌等不限于此中的一种或多种。
本公开实施例中,所述碱液由碱溶解于有机溶剂中配制得到。在一种实施方式中,所述有机溶剂包括2-甲氧基乙醇、甲醇、乙醇、异丙醇、二甲基亚砜等不限于此中的一种或多种。
在一种实施方式中,所述待掺杂金属元素的盐包括Al盐、Mg盐、Li盐、Ca盐、Ga盐、In盐等不限于此的一种或多种。
在一种实施方式中,所述金属氧化物中的金属元素包括Al、Mg、Li、Ca、Ga、In 等不限于此的一种或多种。
在一种实施方式中,所述碱包括氢氧化钾、氢氧化钠和四甲基氢氧化铵等不限于此中的一种或多种。
在一种实施方式中,所述进行反应处理的温度为20~150摄氏度。进一步地,所述进行反应处理的温度为60~90摄氏度。
在一种实施方式中,所述进行反应处理的时间为1~10h。进一步地,所述进行反应处理的时间为2~4h。
本公开实施例提供一种量子点发光二极管,包括:相对设置的阳极以及阴极、设置在所述阳极和阴极之间的量子点发光层、设置在所述阴极和量子点发光层之间的电子传输层,其中,形成所述电子传输层的材料包括前面描述的纳米材料或利用前面描述的制备方法制备得到的纳米材料。
在一种实施方式中,形成所述量子点发光二极管的电子传输层的材料包括本公开实施例所述的纳米材料或本公开实施例所述的制备方法制备得到的纳米材料。
本实施例中,量子点发光二极管有多种形式,且所述量子点发光二极管分正型结构和反型结构,本实施例将主要以如图2所示的正型结构的量子点发光二极管为例进行详细介绍。具体地,如图2所示,所述量子点发光二极管包括从下往上层叠设置的衬底1、阳极2、空穴传输层3、量子点发光层4、电子传输层5和阴极6;其中,所述电子传输层5材料为所述纳米材料,所述纳米材料的核包括:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;
所述纳米材料的外壳包括:金属氧化物。
在一种实施方式中,所述电子传输层的厚度为20~60nm。
本实施例中,所述衬底可以为刚性材质的衬底,如玻璃等,也可以为柔性材质的衬底,如聚对苯二甲酸乙二醇酯(PET)或聚酰亚胺(PI)等中的一种。
本实施例中,所述阳极可以选自铟掺杂氧化锡(ITO)、氟掺杂氧化锡(FTO)、锑掺杂氧化锡(ATO)和铝掺杂氧化锌(AZO)等中的一种或多种。
本实施例中,所述空穴传输层的材料可以选自具有良好空穴传输性能的材料,例如 可以包括但不限于聚(9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)(TFB)、聚乙烯咔唑(PVK)、聚(N,N'双(4-丁基苯基)-N,N'-双(苯基)联苯胺)(Poly-TPD)、4,4’,4”-三(咔唑-9-基)三苯胺(TCTA)、聚(3,4-亚乙二氧基噻吩)-聚(苯乙烯磺酸)(PEDOT:PSS)、4,4'-二(9-咔唑)联苯(CBP)、NiO、MoO 3等中的一种或多种。
本实施例中,所述量子点发光层的材料可以为油溶性量子点,所述油溶性量子点包括二元相、三元相、四元相量子点等中的一种或多种;其中二元相量子点包括CdS、CdSe、CdTe、InP、AgS、PbS、PbSe、HgS等中的一种或多种,三元相量子点包括ZnCdS、CuInS、ZnCdSe、ZnSeS、ZnCdTe、PbSeS等中的一种或多种,四元相量子点包括ZnCdS/ZnSe、CuInS/ZnS、ZnCdSe/ZnS、CuInSeS、ZnCdTe/ZnS、PbSeS/ZnS等中的一种或多种。所述量子点发光层的材料可以为常见的红、绿、蓝三种中的任意一种量子点或者其它黄光均可以,该量子点可以为含镉或者不含镉。该材料的量子点发光层具有激发光谱宽并且连续分布,发射光谱稳定性高等特点。本实施例中,所述量子点发光层的厚度约为20~60nm。
本实施例中,所述阴极可选自铝(Al)电极、银(Ag)电极和金(Au)电极等中的一种,还可选自纳米铝线、纳米银线和纳米金线等中的一种。上述材料具有较小的电阻,使得载流子能顺利的注入。本实施例中,所述阴极的厚度约为15~30nm。
需说明的是,本公开量子点发光二极管还可以包含以下功能层的一层或者多层:设置于空穴传输层与阳极之间的空穴注入层,设置于电子传输层与阴极之间的电子注入层。
本公开实施例还提供一种正型结构的量子点发光二极管的制备方法,其中,包括步骤:
在基板上制备空穴传输层;
在空穴传输层上制备量子点发光层;
在量子点发光层制备电子传输层;所述电子传输层材料为纳米材料,所述纳米材料的核包括:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素,所述纳米材料的外壳包括:金属氧化物;
在电子传输层上制备阴极,得到量子点发光二极管。
本实施例中,为了得到高质量的空穴传输层,阳极需要经过预处理过程。其中所述预处理过程具体包括:将阳极用清洁剂清洗,初步去除阳极表面存在的污渍,随后依次在去离子水、丙酮、无水乙醇、去离子水中分别超声清洗20min,以除去表面存在的杂质,最后用高纯氮气吹干,即可得到阳极。
在一种实施方式中,所述在基板上制备空穴传输层的步骤包括:将基板置于匀胶机上,用配制好的空穴传输材料的溶液旋涂成膜;通过调节溶液的浓度、旋涂速度和旋涂时间来控制膜厚,然后在适当温度下热退火处理,得到所述空穴传输层。
在一种实施方式中,所述在空穴传输层上制备量子点发光层的步骤包括:将已制备好空穴传输层的基片置于匀胶机上,将配制好一定浓度的发光物质溶液旋涂成膜,通过调节溶液的浓度、旋涂速度和旋涂时间来控制量子点发光层的厚度,最后在适当温度下干燥,得到所述量子点发光层。
在一种实施方式中,所述在量子点发光层制备电子传输层的步骤包括:将已制备好量子点发光层的基片置于匀胶机上,将配制好一定浓度的电子传输材料溶液旋涂成膜,通过调节溶液的浓度、旋涂速度(如转速在3000~5000rpm之间)和旋涂时间来控制电子传输层的厚度,然后退火成膜,得到所述电子传输层。此步骤可以在空气中退火、亦可以在氮气氛围中退火,具体根据实际需要选择退火氛围。
在一种实施方式中,对得到的量子点发光二极管进行封装处理。其中所述封装处理可采用常用的机器封装,也可以采用手动封装。在一种实施方式中,所述封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证器件的稳定性。
本实施例中,各层制备方法可以是化学法或物理法,其中化学法包括但不限于化学气相沉积法、连续离子层吸附与反应法、阳极氧化法、电解沉积法、共沉淀法中的一种或多种;物理法包括但不限于溶液法(如旋涂法、印刷法、刮涂法、浸渍提拉法、浸泡法、喷涂法、滚涂法、浇铸法、狭缝式涂布法或条状涂布法等)、蒸镀法(如热蒸镀法、电子束蒸镀法、磁控溅射法或多弧离子镀膜法等)、沉积法(如物理气相沉积法、元素层沉积法、脉冲激光沉积法等)中的一种或多种。
下面通过具体的实施例对本公开进行详细说明。
实施例
1、纳米材料的制备
1)、将10mmol的四甲基氢氧化胺加入到30ml的2-甲氧基乙醇中,水浴加热20min;
2)、加入6mmol的醋酸锌和2mmol的醋酸铝,并搅拌3h得到澄清溶液,制得铝掺杂的氧化锌纳米颗粒;
3)、再加入2mmol的醋酸铝,超声45min,并且每2min暂停5s,给纳米颗粒包裹上壳层,得到具有核壳结构的纳米材料;
4)、用乙酸乙酯和乙醇清洗得到的纳米材料,最后将纳米材料溶解在乙醇溶液中。
2、量子点发光二极管的制备
1)、在基板上蒸镀ITO做第一电极,ITO的厚度为40nm,之后UVO(紫外光臭氧)清洗15min,清洗表面的同时改善表面浸润度;
2)、在ITO上旋涂一层PEDOT:PSS做空穴注入层,旋涂转速为5000转每分钟,旋涂40s,之后在150℃退火15min,整个步骤在空气中进行;
3)、在PEDOT:PSS上旋涂一层TFB做空穴传输层,TFB溶解在氯苯中,浓度为8mg/ml,旋涂转速为3000转每分钟,旋涂30s,之后在150℃下加热30min,该步骤在手套箱中进行;
4)、在TFB上旋涂量子点发光层,量子点溶解在正辛烷中,浓度为20mg/ml,转速为2000转每分钟,旋涂30s,之后在100℃下加热20min,该步骤在手套箱中进行;
5)、在量子点发光层上旋涂制备好的纳米材料做电子传输层,纳米材料溶解在乙醇中,浓度为30mg/ml,旋涂转速为3000转每分钟,旋涂时间30s,之后在100℃下加热30min,该步骤在手套箱中进行;
6)、在电子传输层上蒸镀一层Al做第二电极,Al电极的厚度100nm。
对比例
将纳米材料替换为纯净的氧化锌纳米颗粒,其他步骤保持不变。
分别对实施例和对比例的量子点发光二极管的性能进行测试,测试结果见下表1所示:
表1、量子点发光二极管的效率和寿命
项目组别 外量子效率(EQE) T95(1000nit)
实施例 22.3% 8500h
对比例 15.2% 3530h
表中的T95(1000nit)表示的是器件在1000nit的亮度下衰减到95%所用的时间。
从上述表1可以看出,使用了实施例中制得的纳米材料后,器件的效率和寿命都有了显著的提高,特别是器件效率已经达到了理论效率的最高值,寿命也增加了两倍以上。
综上所述,本公开提供一种纳米材料及其制备方法与量子点发光二极管。本公开通过简单的溶胶-凝胶法制备了纳米材料作为器件的电子传输层材料。本公开通过在氧化锌纳米颗粒中掺杂其他金属元素,和包裹一层金属氧化物外壳,可以对整体纳米材料的能级结构和电子传输效率进行调节,使得器件中量子点和纳米材料的能级更加匹配,减少量子点发光层中的电子向电子传输层的转移,提高了量子点发光层的电子空穴复合效率;使得器件的电子空穴注入更加平衡,减少量子点发光层的电荷积累,抑制俄歇复合,提高电子空穴的辐射复合效率;使得氧化锌纳米颗粒更加稳定,提高了器件整体的稳定性。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (18)

  1. 一种纳米材料,所述纳米材料具有核壳结构,其中,所述纳米材料的核包括:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;
    所述纳米材料的外壳包括:金属氧化物。
  2. 根据权利要求1所述的纳米材料,其中,所述ZnO纳米颗粒中掺杂的金属元素包括Al、Mg、Li、Ca、Ga、In中的一种或多种,所述金属氧化物中的金属元素包括Al、Mg、Li、Ca、Ga、In中的一种或多种。
  3. 根据权利要求1或2所述的纳米材料,其中,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素相同。
  4. 根据权利要求1所述的纳米材料,其中,所述掺杂的金属元素的摩尔量占掺杂的金属元素与锌元素的总摩尔量的比为0.5%-30%。
  5. 根据权利要求1所述的纳米材料,其中,所述外壳的厚度为0.5-2nm。
  6. 根据权利要求1所述的纳米材料,其中,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素均为Mg或Li。
  7. 根据权利要求1所述的纳米材料,其中,所述纳米材料的核为:ZnO纳米颗粒,以及掺杂于所述ZnO纳米颗粒中的金属元素;
    所述纳米材料的外壳为:金属氧化物。
  8. 一种纳米材料的制备方法,其中,包括步骤:
    将锌盐、待掺杂金属元素的盐与碱液混合,进行反应,得到掺杂金属元素的ZnO纳米颗粒;
    以所述掺杂金属元素的ZnO纳米颗粒作为核,在所述核的表面形成金属氧化物外壳,得到具有核壳结构的纳米材料。
  9. 根据权利要求8所述的纳米材料的制备方法,其中,所述以所述掺杂金属元素的ZnO纳米颗粒作为核,在所述核的表面形成金属氧化物外壳,得到具有核壳结构的纳米材料的步骤,包括:
    在反应得到所述掺杂金属元素的ZnO纳米颗粒的反应体系中,加入金属盐,进行反应,在所述掺杂金属元素的ZnO纳米颗粒核的表面得到金属氧化物外壳,得到具有 核壳结构的纳米材料。
  10. 根据权利要求8所述的纳米材料的制备方法,其中,所述锌盐包括醋酸锌、硝酸锌、氯化锌、硫酸锌和二水合乙酸锌中的一种或多种;和/或,
    所述待掺杂金属元素的盐包括Al盐、Mg盐、Li盐、Ca盐、Ga盐、In盐中的一种或多种;和/或,
    所述金属氧化物中的金属元素包括Al、Mg、Li、Ca、Ga、In中的一种或多种;和/或,
    所述碱液中的碱包括氢氧化钾、氢氧化钠和四甲基氢氧化铵中的一种或多种。
  11. 根据权利要求8所述的纳米材料的制备方法,其中,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素相同。
  12. 根据权利要求8所述的纳米材料的制备方法,其中,所述掺杂的金属元素的摩尔量占掺杂的金属元素与锌元素的总摩尔量的比为0.5%-30%。
  13. 根据权利要求8所述的纳米材料的制备方法,其中,所述外壳的厚度为0.5-2nm。
  14. 根据权利要求8所述的纳米材料的制备方法,其中,所述ZnO纳米颗粒中掺杂的金属元素与所述金属氧化物中的金属元素均为Mg或Li。
  15. 一种量子点发光二极管,其中,包括:
    相对设置的阳极以及阴极;
    设置在所述阳极和阴极之间的量子点发光层;
    设置在所述阴极和量子点发光层之间的电子传输层,其中,形成所述电子传输层的材料包括权利要求1~7任一项所述的纳米材料或利用权利要求8~14任一项所述的制备方法制备得到的纳米材料。
  16. 根据权利要求15所述的量子点发光二极管,其中,形成所述电子传输层的材料为权利要求1~7任一项所述的纳米材料或利用权利要求8~14任一项所述的制备方法制备得到的纳米材料。
  17. 根据权利要求15所述的量子点发光二极管,其中,所述量子点发光二极管还包括:设置在所述阳极和量子点发光层之间的空穴传输层。
  18. 根据权利要求15所述的量子点发光二极管,其中,所述电子传输层的厚度为20~60nm。
PCT/CN2020/141155 2020-07-17 2020-12-30 一种纳米材料及其制备方法与量子点发光二极管 WO2022011988A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20944956.0A EP4184602A4 (en) 2020-07-17 2020-12-30 NANOMATERIAL AND PRODUCTION PROCESS THEREOF AS WELL AS QUANTUM POINT LIGHT LIGHT DIODE
JP2022555174A JP2023517364A (ja) 2020-07-17 2020-12-30 ナノ材料、その製造方法及び量子ドット発光ダイオード
US17/950,090 US20230023531A1 (en) 2020-07-17 2022-09-21 Nanomaterial, preparation method thereof, and quantum dot light-emitting diode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010692288.9A CN113948647A (zh) 2020-07-17 2020-07-17 一种纳米材料及其制备方法与量子点发光二极管
CN202010692288.9 2020-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/950,090 Continuation US20230023531A1 (en) 2020-07-17 2022-09-21 Nanomaterial, preparation method thereof, and quantum dot light-emitting diode

Publications (1)

Publication Number Publication Date
WO2022011988A1 true WO2022011988A1 (zh) 2022-01-20

Family

ID=79326701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141155 WO2022011988A1 (zh) 2020-07-17 2020-12-30 一种纳米材料及其制备方法与量子点发光二极管

Country Status (5)

Country Link
US (1) US20230023531A1 (zh)
EP (1) EP4184602A4 (zh)
JP (1) JP2023517364A (zh)
CN (1) CN113948647A (zh)
WO (1) WO2022011988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193427A1 (zh) * 2022-04-07 2023-10-12 Tcl科技集团股份有限公司 一种发光器件及其制备方法、显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023155605A1 (zh) * 2022-02-18 2023-08-24 Tcl科技集团股份有限公司 纳米颗粒、发光二极管及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323772B2 (en) * 2010-01-27 2012-12-04 S.A.W. Green Technology Corporation Photon-alignment optical film
US20150047417A1 (en) * 2013-08-13 2015-02-19 Electronics And Telecommunications Research Institute Core-shell nanoparticle, method of fabricating the same and gas sensor using the same
US20180019371A1 (en) * 2016-03-17 2018-01-18 Apple Inc. Quantum dot spacing for high efficiency quantum dot led displays

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767260B2 (en) * 2003-01-22 2010-08-03 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
CN108439456A (zh) * 2018-04-16 2018-08-24 苏州星烁纳米科技有限公司 ZnLiMgO纳米颗粒的制备方法和由其制备的产品
CN110970579B (zh) * 2018-09-30 2022-12-02 纳晶科技股份有限公司 一种氧化锌纳米晶电子传输层及其制备方法、电子器件
CN110526277B (zh) * 2019-10-09 2022-08-02 纳晶科技股份有限公司 掺杂氧化锌纳米晶的制备方法、电子传输层、发光器件
CN110993808B (zh) * 2019-11-29 2022-09-13 纳晶科技股份有限公司 纳米晶、纳米晶组合物、发光装置及纳米晶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323772B2 (en) * 2010-01-27 2012-12-04 S.A.W. Green Technology Corporation Photon-alignment optical film
US20150047417A1 (en) * 2013-08-13 2015-02-19 Electronics And Telecommunications Research Institute Core-shell nanoparticle, method of fabricating the same and gas sensor using the same
US20180019371A1 (en) * 2016-03-17 2018-01-18 Apple Inc. Quantum dot spacing for high efficiency quantum dot led displays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184602A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193427A1 (zh) * 2022-04-07 2023-10-12 Tcl科技集团股份有限公司 一种发光器件及其制备方法、显示装置

Also Published As

Publication number Publication date
CN113948647A (zh) 2022-01-18
JP2023517364A (ja) 2023-04-25
US20230023531A1 (en) 2023-01-26
EP4184602A4 (en) 2024-01-24
EP4184602A1 (en) 2023-05-24

Similar Documents

Publication Publication Date Title
Acharya et al. High efficiency quantum dot light emitting diodes from positive aging
WO2018090691A1 (zh) 量子点发光二极管及其制备方法与发光模组、显示装置
CN111192971B (zh) 低滚降准二维钙钛矿发光二极管及其制备方法
WO2021103471A1 (zh) 一种自组装多维量子阱CsPbX 3钙钛矿纳米晶电致发光二极管
KR101607478B1 (ko) 핵-껍질 구조의 나노입자를 이용한 역구조 유기태양전지 소자와 그 제조방법
US20230023531A1 (en) Nanomaterial, preparation method thereof, and quantum dot light-emitting diode
WO2021136044A1 (zh) 一种量子点发光二极管及其制备方法
WO2023005756A9 (zh) 量子点膜及其制备方法、光电器件、显示装置、量子点发光器件的制备方法
Zhu et al. All-solution-processed high-performance quantum dot light emitting devices employing an inorganic thiocyanate as hole injection layer
Chen et al. Influence of surface passivation on perovskite CsPbBr1. 2I1. 8 quantum dots and application of high purity red light-emitting diodes
WO2021136119A1 (zh) 一种量子点发光二极管及其制备方法
CN112341606A (zh) 化合物及其制备方法和量子点发光二极管
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
KR101687637B1 (ko) 단일의 양자점으로 이루어지는 발광층과 컬러변환층을 이용한 백색광 발광소자
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
CN112320838B (zh) 纳米材料及其制备方法和应用
CN113130779B (zh) 一种纳米材料及其制备方法与量子点发光二极管
CN113948657B (zh) 一种晶体管及其制备方法
WO2022143554A1 (zh) 发光器件及其制备方法
Du et al. Design and assembly of an aqueous red CdTe QD-LED: major factors to fabricate aqueous QD-LEDs
WO2022143882A1 (zh) 一种量子点发光二极管及其制备方法
WO2022011990A1 (zh) 发光器件及其制备方法
WO2022111583A1 (zh) 一种量子点发光二极管及其制备方法
Chen et al. Phenethylammonium bromide interlayer for high-performance red quantum-dot light emitting diodes
CN113054143A (zh) 一种纳米材料及其制备方法与量子点发光二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944956

Country of ref document: EP

Effective date: 20230217