WO2019126884A1 - Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas mas pequeñas del metal secundario - Google Patents

Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas mas pequeñas del metal secundario Download PDF

Info

Publication number
WO2019126884A1
WO2019126884A1 PCT/CL2018/000042 CL2018000042W WO2019126884A1 WO 2019126884 A1 WO2019126884 A1 WO 2019126884A1 CL 2018000042 W CL2018000042 W CL 2018000042W WO 2019126884 A1 WO2019126884 A1 WO 2019126884A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
nanoparticles
derivatives
nps
reaction mixture
Prior art date
Application number
PCT/CL2018/000042
Other languages
English (en)
French (fr)
Inventor
Harold Iván LOZANO ZARTO
Guillermo Antonio GONZALEZ MORAGA
Eglantina Javiera Benavente Espinosa
Fernando MENDIZABAL
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Publication of WO2019126884A1 publication Critical patent/WO2019126884A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the present invention relates to a process for obtaining copper nanoparticles (NPs), specifically with a size between 10 nm and 200 nm.
  • the state of the art does not propose a method of reducing the diffusion of copper in silicon by using a secondary metal that produces chemically stable bimetallic nanoparticles capable of blocking the copper path avoiding or delaying its diffusion, by a sequential method.
  • An object of the invention is a sequential method for the construction of decorated metallic copper nanoparticles (NPs), with a coating of smaller nanoparticles of the secondary metal, comprising: Dispersing in a hermetically sealed and oxygen-free container the amount of nanoparticles of copper in the working liquid medium, water, organic solvent, or solvent mixture, polar or apolar, necessary to reach a copper concentration in the range 0.00001 mg / mL - 1000 mg / mL, with an optimum of 6 mg / mL; Dissolve in a second container at least one stabilizing agent in an appropriate solvent until a molar concentration of 0.5 to 20 M is obtained; Mix the two solutions prepared in the previous steps in a reactor in oxygen-free atmosphere, with agitation in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours; Add to the reaction mixture of the previous step a primary complexing agent in a molar concentration 5 to 12 M with agitation in the range of 5 to 10,000 rpm for
  • Figure 1 describes the method of the invention.
  • Figure 2 describes copper nanoparticles between 10 nm and 200 nm coated with secondary metal nanoparticles between 0.5-20 nm.
  • Figures 3 to 5 describe composition of the nanoparticles by atomic distribution maps of the elements present in some areas of the decorated nanoparticles.
  • Figures 6 to 8 describe suspensions stable to premature oxidation, as well as agglomeration, suitable for printing processes, according to the method of the invention.
  • Figures 9 and 10 describe the surface resistivity of the nanoparticles obtained with the method of the invention.
  • Figure 11 describes the degree of diffusion of copper from the composite nanoparticles obtained with the method of the invention.
  • Figure 12 describes the best behavior of one of the selected secondary metals, by the method of the invention. DESCRIPTION OF A PREFERRED EMBODIMENT
  • a method of reducing the diffusion of copper in silicon is proposed through the use of a secondary metal that produces chemically stable nanoparticles, capable of blocking the copper path, avoiding or delaying its diffusion.
  • the method is based on the manufacture of copper nanoparticles decorated with a metal of a specific group of metals that when applied on silicon and thanks to the sintering of CuNps, a diffusional barrier is created in situ.
  • silver is used for the collectors and, in the case of microprocessors, it is preferred to use aluminum for the interconnectors.
  • a diffusional barrier ⁇ 10nm
  • the materials used so far include nitrides (TiNX, SiCN, SiNX, TaNX, WNX, HfNX), carbides (SiCO, SiC), pure elements (Ta, Ru, Co, W, Ni) and alloys (RuW, TaSiN / Ti , CuMn, CuTi, CuZr, CuAL).
  • physical deposit techniques are used to create the diffusional barrier (PVD, CVD, PECVD, LPCVD, HFCVD, ALD, PEALD and sputtering).
  • the sequential method is the construction of metallic copper nanoparticles and their subsequent decoration or coating with smaller nanoparticles of the secondary metal.
  • Stage A Disperse in a hermetically sealed and oxygen-free container the amount of copper nanoparticles in the working liquid medium, water, organic solvent, or solvent mixture, polar or apolar, necessary to reach a copper concentration in the range 0.00001 mg / mL - 1000 mg / mL, with an optimum of 6 mg / mL.
  • Step B Dissolve in a second container at least one stabilizing agent in an appropriate solvent until a molar concentration of 0.5 to 20 M is reached, where the stabilizer which must be soluble and / or dispersible in the working liquid medium, can be selected among amphiphilic molecules, surfactants or polymers.
  • Amphiphilic molecules containing carboxyl, carbonyl, amino, amido, ammonium, thiol, hydroxyl, ketone, ester, ether, nitro, sulfonyl, phosphate, borate, halide or mixture thereof, with apolar groups such as aliphatic, aromatic or mixtures thereof .
  • Polymers such as poly (vinylpyrrolidone) (PVP), polyvinyl alcohol, polycarbonates, polyphenols, polyethylene glycol and polyols such as ethylene glycol, diethylene glycol, tri-ethylene glycol, propylene glycols, alkyldiols such as butanediols, dipropylene glycol and polyethylene glycols, chitosan and its derivatives, polyacids and derivatives thereof, mercaptoalkanoates, and oxybenzoic acids; herein, the polyacids including any one or more of those selected from a group of poly (acrylic acid), poly (maleic acid), poly (methyl methacrylate), poly (acrylic acid-co-methacrylic acid), poly (maleic acid- co-acrylic acid), and poly (acrylamide-co-coacrylic acid); cellulose acetates, polyvinylacetates, polysulfone, polyphenylsulphones, polyethersulfones, polyket
  • Step C Mix the two solutions prepared in stages A and B in a reactor in oxygen-free atmosphere, with agitation in the range of 5 to 10,000 rpm for a homogenization time between 1 min and 24 hours.
  • Step D Add to the reaction mixture of step C a primary complexer in a 5 to 12 M molar concentration with agitation in the range of 5 to 10,000 rpm for a time between 1 min and 24 hours, where the primary complexing agent is selected between mono-, bi- and / or tridentate chelating molecules; with givers, acceptors or both; inorganic such as ammonia (NH 3 ) and ammonium hydroxide, organic, or amphoteric; like those with carboxylic groups, thiols, hydroxyl, ketones, nitro, syphones, and / or halides such as carboxylic acids; primary and secondary amines: isopropylamine, butylamine, pentylamine, hexylamine heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, pentadecyl
  • Step E Add a pH regulator to the reaction mixture of step C, until the mixture is adjusted to a pH that increases the solvation of the secondary metal and it is in solution; where the regulator can be alkalis, acids or buffer solutions or pH buffer, weak or strong, or mixtures of them.
  • the regulator can be alkalis, sodium hydroxide (NaOH), potassium hydroxide (KOH), lithium hydroxide (LiOH), magnesium hydroxide (Mg (OH) 2 ), barium hydroxide (Ba (OH) 2 ) are selected, calcium hydroxide (Ca (OH) 2 ) including Arrhenius bases.
  • acids can be monoprotic or diprotic, organic or inorganic, but not limited to these.
  • Step F Add antifoam to the reaction mixture of step D in a concentration not greater than 1% of the total mixture and heat the reaction mixture between 10 and 120 ° C with agitation in the range of 5 to 10,000 rpm per a homogenization time between 1 min and 24 hours; wherein the antifoam is selected from high molecular weight alcohols such as hexanol, 1-heptanol, 1-octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1- pentadecanol, 1- hexadecanol, 1-heptadecanol, 1-octadecanol and any of these with branches in its main chain.
  • aromatics alcohols, and any defoamers for water-based systems are selected as antisugars based on polysiloxanes, based on mineral oil, based on vegetable oil, and based on polyure
  • Step G Add at least one ion source of the reductible secondary metal under stirring in the range of 5 to 10,000 rpm to the reaction mixture of step E which is in a 0.5 to 3 M molar concentration and maintain stirring in the range of 5 to 10,000 rpm of the reaction mixture for a time between 1 min and 24 hours; where the secondary metal is selected from at least one metallic element from the groups of III A to VA and from IB to VIII B of the periodic table of elements.
  • the secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge , Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements.
  • Source ions of the secondary metal is selected from the salts of metals, metal oxides, hydroxides, hydroxides, or binary salts and organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes. It is possible to use all metal ion sources that are compatible in the context of this process and particularly that they are soluble or dispersible in the liquid reaction medium.
  • Step H Set the temperature of the reaction mixture of step E between -10 ° C to 120 ° C, depending on the metal, the additives and the liquid reaction medium.
  • Step I Add in agitation in the range of 5 to 10,000 rpm at least one reducer to the reaction mixture of stage H which is in a molar concentration between 0.5 and 3 M and maintain agitation in the range of 5 to 10,000 rpm of the reaction mixture for a time between 1 min and 24 hours; wherein the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehyde such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts thereof, hypophosphites, sulfites, tetrahydroborates, lithium tetraaluminohydride.
  • the reductant is selected from hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehyde such as formaldehyde, ammonium formate, acetalde
  • LiAIH 4 sodium borohydride
  • polyhydroxybenzene such as hydroquinone and its derivatives, phenylenediamines and their derivatives, aminophenols and their derivatives, carboxylic acids and their derivatives such as ascorbic acid, citric acid, but not limited thereto.
  • Step J Stop the reaction of step I by cooling to a temperature between 0 ° C-25 ° C keeping the agitation in the range of 5 to 10,000 rpm.
  • Step K Addition of at least one secondary complex pre-dissolved in the liquid reaction medium in a molar concentration between 0.1 and 1.5 M to the reaction mixture of stage I, where the secondary complexer is selected from chelating molecules mono-, bi- and / or tridentate; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulfonic, and / or halide groups such as carboxylic acids and their derivatives, dicarboxylic acids, unsaturated carboxylic acids, ammonia (NH.), ammonium hydroxide, primary and secondary amines .
  • the secondary complexer is selected from chelating molecules mono-, bi- and / or tridentate; with givers, acceptors or both; inorganic, organic, or amphoteric; as those with carboxylic, aminos, thiols, hydroxyl, ketonic, nitro, sulf
  • the carboxylic acids and their derivatives are selected from the group ascorbic acid, citric acid, aliphatic and aromatic carboxylic acids, such as benzoic acid, phenylacetic acid, but not limited thereto.
  • dicarboxylic acids ethanedioic acid, propanedioic acid, butanedioic acid, pentanedioic acid, hexanedioic acid, heptanedioic acid, octanedioic acid, nonadioic acid, decadioic acid, butenedioic acid, italic acid, 2,4-diphenylcyclobutan-1,3 acid - dicarboxylic acid, 3,4- diphenylcyclobutane-1,2-dicarboxylic acid, but not limited thereto.
  • the secondary complexing agent can be selected from unsaturated carboxylic acids: acrylic, crotonic, isocrotonic, sorbic, palmitoleic, sapienic, oleic, elaidic, vaccenic, linoleic, linoelaidic, citric acid, tartaric acid, cinnamic acid, without limiting them.
  • the primary and secondary amines are selected from, but not limited to: isopropylamine, butylamine, pentylamine, hexylamine, heptylamine, octylamine.
  • Step L Add at least one antioxidant pre-dissolved in liquid reaction medium with a molar concentration between 0.5 and 3 M in the reaction mixture of step J; wherein the antioxidant is selected from carboxylic acids and their derivatives such as ascorbic acid, citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts of these, hypophosphites and similar antioxidant agents.
  • carboxylic acids and their derivatives such as ascorbic acid, citric acid, hydrazine monohydrate and derivatives, hydroxylamine and its derivatives, monohydric alcohols such as methanol, ethanol, aldehydes such as formaldehyde, ammonium formate, acetaldehyde and propanoaldehyde or salts of these, hypophosphites and similar antioxidant agents.
  • Step M Ripen the mixture of stage L for a time of 1 min to 15 days, at a temperature between 10 ° C and 70 ° C with or without agitation in the range of 5 to 10,000 rpm.
  • Step N Wash the nanoparticles by centrifugation and / or dialysis with at least one solvent selected from water, preferably deionized, monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mixture of these, but not limited to these.
  • monoprotic solvents such as methanol, ethanol, isopropanol, acetone, low-boiling apolar solvents or a mixture of these, but not limited to these.
  • the size of the nanoparticles can be regulated by varying the molar ratio between the copper source, the polymer, the reaction temperature, the pH of the solution, the liquid reaction medium and the concentration and amount of the secondary metal.
  • inks are prepared in a matrix based on ethylene glycol and water with other stabilizers and compatibilizers with nanoparticulate contents of up to 50% w / w based on the matrix.
  • those nanoparticles can be used in the form of dispersions in water or in polar solvents of known concentration or in dry powder form.
  • amphiphilic molecules surfactants
  • polymers such as PVP or chitosan
  • at least one metallic element is selected from the groups of III A to VA and from IB to VIII B of the periodic table of elements.
  • the secondary metal can be selected from the group: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re and / or Mo and mixtures, alloys and co-crystals of at least one of these elements.
  • the ion source of the secondary metal is selected from the salts of metals, metal oxides, hydroxides, hydroxides, or binary salts and organometallic species, ionic or covalent compounds, coordination compounds, hybrid composites and / or metal electrodes, among others.
  • alkali metal hydrides As reducing agents, alkali metal hydrides, hydrazine, ascorbic acid, etc. can be used.
  • ascorbic acid Ascorbic acid, sodium citrate and small donor molecules can be used.
  • antioxidants we use ascorbic acid, sodium citrate and small donor molecules.
  • the solution acquires a blackish color that turns slowly to reddish black until reaching a dark burgundy red color with controlled release of foam on the surface.
  • the mixture matures for 30 minutes.
  • the reaction is stopped by the addition of 0.8806 g of pre-dissolved ascorbic acid in 5 mL of distilled water and 1.4705 g of pre-dissolved sodium citrate in 5 mL of distilled water. Magnetic stirring is maintained for 1 hour at room temperature.
  • the nanoparticles can be separated and washed by centrifugation with an aqueous solution of 1% ascorbic acid.
  • the metal distribution of decorated nanoparticles depends mainly on the synthesis method, but also on the nature of the metal.
  • the sequential method causes coating of the copper nanoparticles by those of the secondary metal, as shown in Figures 3 to 5.
  • Decorated nanoparticle inks The regulation of the synthesis conditions of the decorated nanoparticles, particularly the ripening time, allows to obtain stable suspensions to the premature oxidation, as well as to the agglomeration, with metal concentrations (between 5 and 50%) suitable for printing processes.
  • the products of the described preparations separated by centrifugation and re-dispersed in water or suitable solvents have sizes in the range 10-70 nm and optimal surface charge for injection printing or other type of deposition, as shown in figures 6 to 8 .
  • decorated nanoparticle inks (30-40% m / m) are prepared.
  • the substrate, silicon is cleaned by the RCA method, also removing the SiO 2 layer.
  • the application of the ink on the clean substrate is done by forming a thin layer of the suspension using the spin coating technique, ie dispersion by rotation at high speed (2000 rpm). The process is repeated several times until homogenous and reproducible layers are obtained.
  • the conductivity measurements glass is used instead of silicon.
  • the determination of the degree of diffusion of copper from the decorated nanoparticles is carried out by means of the direct determination of the profile of the copper concentration in the silicon. Analytical techniques of the highest degree of available sensitivity are used; that is, spectroscopy of photoelectrons emitted by X-rays (XPS) and X-ray microanalysis (EDS).
  • XPS X-ray photoelelectrons emitted by X-rays
  • EDS X-ray microanalysis
  • the XPS analyzes shown in Figure 1 1, show that under conditions of thermal stress (800 ° C) copper diffuses into silicon, regardless of the secondary metal (M1-M3) used, diffuses towards silicon, although in different proportions. However, that temperature far exceeds those usually used in applications, for example, those used in the field of solar cells (maximum 300 ° C). In fact, experiments performed with a lower heating ramp show the best behavior of one of the selected secondary metals, as shown in figure 12. This method also shows that there is a process of prior segregation of the secondary metal that leads to the formation of a barrier that decreases the diffusion of copper in silicon.

Abstract

El invento se refiere a un proceso de obtención de nanopartículas (NPs) de cobre, específicamente con un tamaño entre los 10nm a los 50nm. Específicamente, se describe un método para la construcción de NPs de cobre metálico y su posterior decoración o revestimiento con nanopartículas más pequeñas del metal secundario. Las tecnologías existentes para celdas solares base silicio utilizan plata, pero nunca cobre debido a que su penetración en sustrato reduce severamente la eficiencia del dispositivo. Para las interconexiones eléctricas en micriprocesadores se usan otros metales, principalmente aluminio, a pesar de su menor conductividad eléctrica. Dado el relativamente alto costo de la plata, el reemplazo de plata de cobre es económicamente interesante, especialmente si ello, permite, además utilizar tecnologías de impresión por inyección de tinta.

Description

MÉTODO SECUENCIA!. PARA LA CONSTRUCCIÓN DE NANOPARTÍCULAS DE COBRE METÁLICO Y SU POSTERIOR DECORACIÓN O REVESTIMIENTO CON NANOPARTÍCULAS MAS PEQUEÑAS DEL METAL SECUNDARIO.
CAMPO DE APLICACIÓN
La presente invención se relaciona con un proceso de obtención de nanoparticulas (NPs) de cobre, específicamente con un tamaño entre los 10 nm a los 200 nm.
Específicamente, se describe un método secuencial para la construcción de NPs de cobre metálico y su posterior decoración o revestimiento con nanoparticulas más pequeñas del metal secundario.
ESTADO DEL ARTE PREVIO
La solicitud CL201503794, de fecha 30.12.2015, de Lozano y otros, titulada "Método de obtención de nanoparticulas de cobre y uso de dichas partículas", describe nanoparticulas de cobre y método de obtención de ellas que comprende las siguientes etapas: disolver en un recipiente al menos una sal, Oxido a hidróxido de cobre en agua destilada; disolver en un recipiente al menos un estabilizante en agua destilada; mezclar las dos soluciones y en un reactor; adicionar un acomplejante primario; adicionar un álcali; adicionar un antiespumante; adicionar al menos un reductor, detener la reacción enfriando a una temperatura de reacción de entre 0°C a 25°C manteniendo la agitación; adicionar al menos un antioxidante; adicionar al menos un acomplejante secundario; madurar y lavar la mezcla.
La solicitud US2012037041 , de fecha 16.02.2012, de Nolte Ulrich y otros, titulada“Método para producir nanoparticulas metálicas”; describe un método para producir nanoparticulas metálicas, en el que los iones metálicos se reducen por medio de al menos un agente reductor en presencia de al menos un estabilizador polimérico y se convierten en nanoparticulas metálicas. La invención se refiere además a nanoparticulas metálicas obtenidas de esta manera y al uso de las mismas.
El uso de nanoparticulas de cobre en la impresión de colectores y circuitos eléctricos en dispositivos fotovoltaicos y electrónicos sobre silicio mono- o policristalino es inconveniente debido a su difusión en el silicio. Las tecnologías existentes para celdas solares base silicio utilizan plata, pero nunca cobre debido a que su penetración en sustrato reduce severamente la eficiencia del dispositivo. Para las interconexiones eléctricas en microprocesadores se usan otros metales, principalmente aluminio, a pesar de su menor conductividad eléctrica. Dado el
1
HOJA DE REEMPLAZO (Regla 26) relativamente alto costo de la plata, el reemplazo de plata por cobre es económicamente interesante, especialmente si ello, permite, además, utilizar tecnologías de impresión por inyección de tinta.
El estado de la técnica no propone un método de reducir la difusión de cobre en silicio mediante el uso de un metal secundario que origine nanopartículas bimetálicas químicamente estables capaces de bloquear el camino del cobre evitando o retardando su difusión, mediante un método secuencial.
RESUMEN DE LA INVENCIÓN
Un objetivo de la invención es un método secuencial para la construcción de nanopartículas (NPs) de cobre metálico decoradas, con un revestimiento de nanopartículas más pequeñas del metal secundario, que comprende: Dispersar en un recipiente herméticamente cerrado y libre de oxígeno la cantidad de nanopartículas de cobre en el medio liquido de trabajo, agua, solvente orgánico, o mezcla de solventes, polar o apolar, necesaria para alcanzar una concentración en cobre en el rango 0,00001 mg/mL - 1000 mg/mL, siendo lo óptimo 6 mg/mL; Disolver en un segundo recipiente al menos un agente estabilizante en un solvente apropiado hasta lograr una concentración molar de 0,5 a 20 M; Mezclar las dos soluciones preparadas en las etapas anteriores en un reactor en atmosfera libre de oxígeno, con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; Adicionar a la mezcla de reacción de la etapa anterior un acomplejante primario en una concentración molar 5 a 12 M con agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas; Adicionar un regulador de pH a la mezcla de reacción de la etapa anterior hasta ajustar la mezcla a un pH que aumente la solvatación el metal secundario y éste se encuentre en solución; Adicionar antiespumante a la mezcla de reacción de la etapa anterior en una concentración no mayor de 1% del total de la mezcla y calentar la mezcla de reacción entre 10 y 120°C con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; Adicionar al menos una fuente de iones del metal secundario reductible en agitación en el rango de 5 a 10.000 rpm a la mezcla de reacción de la etapa anterior que se encuentra en una concentración molar 0,5 a 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas; Establecer la temperatura de la mezcla de reacción entre -10°C a 120°C, dependiendo del metal, de los aditivos y del medio líquido de reacción; Adicionar en agitación en el rango de 5 a 10.000 rpm al menos un reductor a la mezcla de reacción de la etapa anterior que se encuentra en una concentración molar entre 0,5 y 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas; Detener la reacción de la etapa anterior enfriando a una temperatura entre 0°C-25°C manteniendo la agitación en el rango de 5 a 10.000 rpm; Adicionar al menos un acomplejante secundario pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa anterior; Adicionar al menos un antioxidante pre-disuelto en medio liquido de reacción con una concentración molar entre 0,5 y 3 M en la mezcla de reacción de la etapa anterior; Madurar la mezcla de la etapa L por un tiempo de 1 min a 15 días, a una temperatura de 10°C a 70°C con y/o sin agitación en el rango de 5 a 10.000 rpm; y Lavar las nanopartículas por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, solventes apolares de bajo punto de ebullición o una mezcla de estos, pero no limitándose a estos. Ademas, las Nanopartículas (NPs) de cobre metálico y su uso, para el revestimiento con nanopartículas más pequeñas del metal secundario, se obtienen con el método secuencial ya descrito.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La figura 1 describe el método de la invención.
La figura 2 describe nanopartículas de cobre entre los 10 nm a los 200 nm recubierta con nanopartículas del metal secundario entre 0.5-20 nm.
Las figuras 3 a 5 describen composición de las nanopartículas mediante mapas de distribución atómica de los elementos presentes en algunas zonas de las nanopartículas decoradas.
Las figuras 6 a 8 describen suspensiones estables a la oxidación prematura, así como a la aglomeración, adecuadas para procesos de impresión, de acuerdo con el método de la invención.
Las figuras 9 y 10 describen la resistividad superficial de las nanopartículas obtenidas con el método de la invención.
La figura 11 describe el grado de difusión del cobre desde las nanopartículas compuestas obtenidas con el método de la invención.
La figura 12 describe el mejor comportamiento de uno de los metales secundarios seleccionados, mediante el método de la invención. DESCRIPCIÓN DE UNA REALIZACIÓN PREFERIDA
Se propone un método de reducir la difusión de cobre en silicio mediante el uso de un metal secundario que origine nanopartículas decoradas químicamente estables capaces de bloquear el camino del cobre evitando o retardando su difusión.
El método se basa en la fabricación de nanopartículas de cobre decoradas con un metal de un grupo de metales específico que al ser aplicados sobre silicio y gracias a la sinterización de las CuNps, se crea in- situ una barrera difusional.
En las celdas solares se usa plata para los colectores y, en el caso de microprocesadores, se prefiere usar aluminio para los interconectores. Para lo cual se requiere crear una barrera difusional (~10nm) de otro material. Esta puede ser barrera de sacrificio o barrera de relleno, depositada o autoformada. Los materiales utilizados hasta el momento incluyen nitruros (TiNX, SiCN, SiNX, TaNX, WNX, HfNX), carburos (SiCO, SiC), elementos puros (Ta, Ru, Co, W, Ni) y aleaciones (RuW, TaSiN/Ti, CuMn, CuTi, CuZr, CuAl). Por lo general se usan técnicas físicas de depósito para crear la barrera difusional (PVD, CVD, PECVD, LPCVD, HFCVD, ALD, PEALD y pulverización catódica).
El método secuencial es la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas más pequeñas del metal secundario.
En general, en el método se involucran varias etapas: (0) Síntesis o adquisición de CuNPs; (1) Dispersión de las CuNPs en un medio liquido de reacción, (2) Disolución y mezcla de la fuente de iones del metal secundario; (3) Disolución y mezcla del estabilizante. (3) La adición de agente acomplejante de los iones metálicos;
(3) Ajuste de las condiciones de síntesis (e.g. pH tiempo y temperatura de reacción);
(4) Reducción de metal secundario; (5) Crecimiento y maduración de las nanopartículas decoradas (6) la Protección de las nanopartículas metálicas ante la oxidación prematura y (7) Limpieza del producto mediante métodos convencionales (centrifugación, diálisis, etc.). El esquema general del método se ilustra en la figura 1.
Descripción detallada del Método Secuencial:
Etapa A: Dispersar en un recipiente herméticamente cerrado y libre de oxígeno la cantidad de nanopartículas de cobre en el medio liquido de trabajo, agua, solvente orgánico, o mezcla de solventes, polar o apolar, necesaria para alcanzar una concentración en cobre en el rango 0,00001 mg/mL - 1000 mg/mL, siendo lo óptimo 6 mg/mL.
Etapa B: Disolver en un segundo recipiente al menos un agente estabilizante en un solvente apropiado hasta lograr una concentración molar de 0,5 a 20 M, donde el estabilizante que debe ser soluble y/o dispersable en el medio liquido de trabajo, puede ser seleccionado entre moléculas anfifilicas, surfactantes o polímeros. Moléculas anfifilicas que contengan grupos carboxíl, carbonil, amino, amido, amonium, tiol, hidroxil, cetónico, ester, éter, nitro, sulfonil, fosfatos, boratos, haluros o mezcla de ellos, con grupos apolares como alifáticos, aromáticos o mezcla de ellos. Polímeros como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenglicol y polioles como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoicos; aquí, los poliácidos incluyendo uno cualquiera o más de los seleccionados de un grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico-co-ácido metacrílico), poli(ácido maleico-co-ácido acrílico), y poli(acrilamida-co-ácido coacrílico); acetatos de celulosa, polivinilacetatos, polisulfona, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres, poliacetatos, polímeros y copolímeros de dos o más de estos; y los derivados incluyendo entre otros uno cualquiera o más de los seleccionados de un grupo de sales de amonio, sodio o potasio de los poliácidos, polímeros inorgánicos tipo fosfacenos y donde una molécula modificante es seleccionada del grupo de moléculas alifáticas y/o aromáticas, con 2 o más átomos de carbono, que puede incluir átomos de oxígeno, nitrógeno, azufre, fosforo o varios de ellos, con uno o más grupos funcionales, que además pueden ser complejos organometálicos, clústeres o mezcla de átomos, grupos funcionales homo- y heteronucleares, y moléculas con propiedades químicas y física definidas, sin limitarse a estos.
Etapa C: Mezclar las dos soluciones preparadas en las etapas A y B en un reactor en atmosfera libre de oxígeno, con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas.
Etapa D: Adicionar a la mezcla de reacción de la etapa C un acomplejante primario en una concentración molar 5 a 12 M con agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas, donde el acomplejante primario es seleccionado entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos como amoniaco (NH3) e hidróxido de amonio, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, tioles, hidroxilo, cetónicos, nitro, sinfónicos, y/o haluros como ácidos carboxílicos; aminas primarias y secundarias: isopropilamina, butilamina, pentilamina, hexilamina heptilamina, octilamina, nonilamina, decilamina, undecilamina, dodecilamina, tridecilamina, tetradecilamina, pentadecilamina, hexadecilamina, heptadecílamina, octadecilamina, dietilamina, dipropilamina, dibutílamina, dipentilamina, dihexilamina, diheptilamina, dioctilamina, además, terbutilamina, anilina, o cualquier bases de Schiff, pero no limitándose a estos.
Etapa E: Adicionar un regulador de pH a la mezcla de reacción de la etapa C, hasta ajustar la mezcla a un pH que aumente la solvatación del metal secundario y éste se encuentre en solución; donde el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos. En caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius. En caso de ácidos pueden ser monopróticos o dipróticos, orgánicos o inorgánicos, pero no limitándose a estos.
Etapa F: Adicionar antiespumante a la mezcla de reacción de la etapa D en una concentración no mayor de 1 % del total de la mezcla y calentar la mezcla de reacción entre 10 y 120°C con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas; donde el antiespumante se selecciona de alcoholes de alto peso molar como hexanol, 1-heptanol, 1 -octanol, 1-nonanol, 1-decanol, 1-undecanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, 1- pentadecanol, 1- hexadecanol, 1-heptadecanol, 1-octadecanol y cualquiera de estos con ramificaciones en su cadena principal. Además, se seleccionan de alcoholes aromáticos, y cualquier antiespumante para sistemas de base acuosa como antiespumantes a base de polisiloxanos, a base de aceite mineral, a base de aceite vegetal, y a base de polímeros, pero no limitándose a estos.
Etapa G: Adicionar al menos una fuente de iones del metal secundario reductible en agitación en el rango de 5 a 10.000 rpm a la mezcla de reacción de la etapa E que se encuentra en una concentración molar 0,5 a 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas; donde el metal secundario se selecciona de al menos un elemento metálico de los grupos del III A al V A y del I B al VIII B de la tabla periódica de elementos. El metal secundario puede ser seleccionado del grupo: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re y/o Mo y mezclas, aleaciones y co-cristales de al menos uno de estos elementos. La fuente de iones del metal secundario se selecciona de las sales de metales, óxidos de metales, hidrácidos, hidróxidos, o sales binarias y especies Organometálicos, compuestos iónicos o covalentes, compuestos de coordinación, compósitos híbridos y/o electrodos metálicos. Es posible el uso de todas las fuentes de iones metálicos que son compatibles en el contexto de este proceso y particularmente que sean solubles o dispersable en el medio liquido de reacción.
Etapa H: Establecer la temperatura de la mezcla de reacción de la etapa E entre -10°C a 120°C, dependiendo del metal, de los aditivos y del medio líquido de reacción.
Etapa I: Adicionar en agitación en el rango de 5 a 10.000 rpm al menos un reductor a la mezcla de reacción de la etapa H que se encuentra en una concentración molar entre 0,5 y 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas; donde el reductor se selecciona de entre monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehido como formaldehido, formiato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos, sulfitos, tetrahídroboratos, tetraalumínohídruro de litio (LiAIH4), borohidruro de sodio, polihidroxibenceno como hidroquinona y sus derivados, fenilendiaminas y sus derivados, aminofenoles y sus derivados, ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, pero no limitándose a estos.
Etapa J: Detener la reacción de la etapa I enfriando a una temperatura entre 0°C-25°C manteniendo la agitación en el rango de 5 a 10.000 rpm.
Etapa K: Adicionar al menos un acomplejante secundario pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa I, donde el acomplejante secundario es seleccionado entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, aminos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH.), hidróxido de amonio, aminas primarias y secundarias. De los ácidos carboxílico y sus derivados se selecciona del grupo ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético, pero no limitándose a estos. Además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioico, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido itálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4- d¡fenilciclobutan-1 ,2-dicarboxílico, pero no limitándose a estos. Así también el acomplejante secundario se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, sin limitar a estos. Asimismo, las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, pero no limitándose a estos.
Etapa L: Adicionar al menos un antioxidante pre-disuelto en medio liquido de reacción con una concentración molar entre 0,5 y 3 M en la mezcla de reacción de la etapa J; donde el antloxldante sea seleccionado entre ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehidos como formaldehido, formato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos y agentes antioxidantes similares.
Etapa M: Madurar la mezcla de la etapa L por un tiempo de 1 min a 15 días, a una temperatura entre 10°C y 70°C con o sin agitación en el rango de 5 a 10.000 rpm.
Etapa N: Lavar las nanopartículas por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, solventes apolares de bajo punto de ebullición o una mezcla de estos, pero no limitándose a estos.
Con este proceso se obtienen nanopartículas de cobre decoradas de tamaño entre 0,1 nm y 200 nm recubiertas con nanopartículas de igual o menor tamaño del metal secundario entre 0,1 -y 100 nm, como se muestra en la figura 2.
El tamaño de las nanopartículas puede ser regulado al variar la relación molar entre la fuente de cobre, el polímero, la temperatura de reacción, el pH de la solución, el medio líquido de reacción y la concentración y cantidad del metal secundario.
Con las nanopartículas obtenidas por el método descrito, se preparan tintas, en una matriz a base de etilenglicol y agua con otros estabilizantes y compatibilizantes con contenidos de nanopartículas de hasta un 50% p/p en base a la matriz.
Como fuente de nanopartículas de cobre se pueden emplear aquellas nanopartículas en forma de dispersiones en agua o en solventes polares de concentración conocida o en forma de polvo seco.
Como estabilizantes se pueden usar moléculas anfifilicas (surfactantes) o polímeros como el PVP o el quitosano. Como fuente del metal secundario se selecciona de al menos un elemento metálico de los grupos del III A al V A y del I B al VIII B de la tabla periódica de elementos. El metal secundario puede ser seleccionado del grupo: de Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re y/o Mo y mezclas, aleaciones y co-cristales de al menos uno de estos elementos. La fuente de iones del metal secundario se selecciona de las sales de metales, óxidos de metales, hidrácidos, hidróxidos, o sales binarias y especies organometálicas, compuestos iónicos o covalentes, compuestos de coordinación, compósitos híbridos y/o electrodos metálicos, entre otros.
Como reductores se pueden utilizar hidruros de metales alcalinos, hidracina, ácido ascórbico, etc.
Como agentes acomplejante se puede usar el ácido ascórbico, el citrato de sodio y moléculas pequeñas dadoras.
Como agentes antioxidantes, usamos el ácido ascórbico, el citrato de sodio y moléculas pequeñas dadoras.
Como ejemplo específico de este método, se describe a continuación una síntesis para NPs de 10-30nm.
En un recipiente cerrado herméticamente y con en atmósfera de argón se dispersan 0,3000 g de nanopartículas de cobre en agua. Separadamente se disuelve 2,7750 g de PVP (140 kD) con 20 mL de agua destilada. Se mezclan ambos líquidos con agitación magnética bajo agitación continua (1000 rpm) por 30 min. Luego se adicionan 25 mL de una solución de Bi(N03)3 0,1 M. Se adiciona 0,5 mL de 1 -octanol a la mezcla y se deja homogenizar durante 30 minutos con agitación magnética (1000 rpm). Tras ello se inyectan 0,5675 g de NaBH4 disueltos en 10 mL de agua. La solución adquiere un color negruzco que vira lentamente a negro rojizo hasta alcanzar un color rojo burdeos oscuro con liberación controlada de espuma en la superficie. La mezcla se madura por 30 minutos. La reacción detiene con mediante la adición de 0,8806 g de ácido ascórbico pre-disuelto en 5 mL de agua destilada y 1 ,4705 g de citrato de sodio pre-disuelto en 5 mL de agua destilada. Se mantiene la agitación magnética por 1 hora a temperatura ambiente. Las nanopartículas se pueden separan y lavar por centrifugación con una solución acuosa de ácido ascórbico al 1 %.
Distribución de componentes en las nanopartículas compuestas.
La distribución metálica de las nanopartículas decoradas depende principalmente del método de síntesis, pero también de la naturaleza del metal. En general el método secuencial origina recubrimiento de las nanopartículas de cobre por aquellas del metal secundario, como se muestra en las figuras 3 a 5.
Tintas de nanopartículas decoradas. La regulación de las condiciones de síntesis de las nanopartículas decoradas, particularmente del tiempo de maduración, permite obtener suspensiones estables a la oxidación prematura, así como a la aglomeración, con concentraciones de metal (entre 5 y 50%) adecuadas para procesos de impresión. Los productos de las preparaciones descritas separados por centrifugación y re-dispersos en agua o solventes adecuados tienen tamaños en el rango 10-70 nm y carga superficial óptimos para Impresión por inyección u otro tipo de deposición, como se muestra en las figuras 6 a 8.
Conductividad eléctrica de nanopartículas bimetálicas
Para los estudios de conductividad eléctrica se utilizan depósitos dip coating sobre vidrio de las tintas a base de las nanopartículas decoradas y, también de NPs de cobre puro como referencia. Las muestras son sinterizadas durante una hora a diferentes temperaturas, en el rango 100°C- 800 °C en horno horizontal con flujo de argón. La conductividad eléctrica se mide por el método de 4 puntas, evaluando la resistividad superficial (W/sq), como se muestra en las figuras 9 y 10.
Penetración de cobre en silicio
Para evaluar el grado de difusión del cobre en silicio se preparan tintas de nanopartículas decoradas (30-40% m/m). El sustrato, silicio, se limpia por el método RCA, eliminado además la capa de Si02. La aplicación de la tinta sobre el sustrato limpio se realiza formando una capa delgada de la suspensión mediante la técnica spin coating, i.e. dispersión por rotación a alta velocidad (2000 rpm). El proceso se repite sucesivas veces hasta lograr capas homogéneas y reproducibles. Para las medidas de conductividad se utiliza vidrio en lugar de silicio.
La determinación del grado de difusión del cobre desde las nanopartículas decoradas, se realiza mediante la determinación directa del perfil de la concentración de cobre en el silicio. Se utilizan técnicas analíticas del más alto grado de sensibilidad disponible; esto es, espectroscopia de fotoelectrones emitidos por rayos X (XPS) y microanálisis por rayos-X (EDS).
Los análisis XPS, que se enseñan en la figura 1 1 , muestran que bajo condiciones de estrés térmico (800 °C) el cobre difunde en el silicio, independientemente del metal secundarios (M1-M3) utilizado, difunde hacia el silicio, aunque si en diferentes proporciones. Sin embargo, esa temperatura sobrepasa con creces aquellas usualmente utilizadas en aplicaciones, por ejemplo, las empleadas en el campo de las celdas solares (máximo 300°C). De hecho, experimentos realizados con una rampa de calentamiento más baja evidencian el mejor comportamiento de uno de los metales secundarios seleccionados, como se enseña en la figura 12. Este método muestra además que existe un proceso de segregación previo del metal secundario que lleva a la formación de una barrera que disminuye la difusión de cobre en silicio.

Claims

REIVINDICACIONES
1.- Un método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, CARACTERIZADO porque comprende las siguientes etapas:
A) Dispersar en un recipiente herméticamente cerrado y libre de oxígeno la cantidad de nanopartículas de cobre en el medio liquido de trabajo, agua, solvente orgánico, o mezcla de solventes, polar o apolar, necesaria para alcanzar una concentración en cobre en el rango 0,00001 mg/mL - 1000 mg/mL, siendo lo óptimo 6 mg/ml_;
B) Disolver en un segundo recipiente al menos un agente estabilizante en un solvente apropiado hasta lograr una concentración molar de 0,5 a 20 M;
C) Mezclar las dos soluciones preparadas en las etapas A y B en un reactor en atmosfera libre de oxígeno, con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas;
D) Adicionar a la mezcla de reacción de la etapa C un acomplejante primario en una concentración molar 5 a 12 M con agitación en el rango de 5 a 10.000 rpm por un tiempo entre 1 min y 24 horas;
E) Adicionar un regulador de pH a la mezcla de reacción de la etapa C, hasta ajustar la mezcla a un pH que aumente la solvatación el metal secundario y éste se encuentre en solución;
F) Adicionar antiespumante a la mezcla de reacción de la etapa D en una concentración no mayor de 1% del total de la mezcla y calentar la mezcla de reacción entre 10 y 120°C con agitación en el rango de 5 a 10.000 rpm por un tiempo de homogenización entre 1 min y 24 horas;
G) Adicionar al menos una fuente de iones del metal secundario reductible en agitación en el rango de 5 a 10.000 rpm a la mezcla de reacción de la etapa E que se encuentra en una concentración molar 0,5 a 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas;
H) Establecer la temperatura de la mezcla de reacción entre -10°C a 120°C, dependiendo del metal, de los aditivos y del medio líquido de reacción; I) Adicionar en agitación en el rango de 5 a 10.000 rpm al menos un reductor a la mezcla de reacción de la etapa H que se encuentra en una concentración molar entre 0,5 y 3 M y mantener agitación en el rango de 5 a 10.000 rpm de la mezcla de reacción por un tiempo entre 1 min y 24 horas;
J) Detener la reacción de la etapa I enfriando a una temperatura entre 0°C- 25°C manteniendo la agitación en el rango de 5 a 10.000 rpm;
K) Adicionar al menos un acomplejante secundario pre-disuelto en el medio liquido de reacción en una concentración molar entre 0,1 y 1 ,5 M a la mezcla de reacción de la etapa I;
L) Adicionar al menos un antioxidante pre-disuelto en medio liquido de reacción con una concentración molar entre 0,5 y 3 M en la mezcla de reacción de la etapa J;
M) Madurar la mezcla de la etapa L por un tiempo de 1 min a 15 días, a una temperatura de 10°C a 70°C con y/o sin agitación en el rango de 5 a 10.000 rpm; y
N) Lavar las nanopartículas por centrifugación y/o diálisis con al menos un solvente seleccionado de entre agua, preferiblemente desionizada, solventes monopróticos como metanol, etanol, isopropanol, acetona, solventes apolares de bajo punto de ebullición o una mezcla de estos, pero no limitándose a estos.
2.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según la reivindicación 1 , CARACTERIZADO porque en la etapa B) el estabilizante que debe ser soluble y/o dispersable en el medio liquido de trabajo, puede ser seleccionado entre moléculas anfifilicas, surfactantes o polímeros; y las moléculas anfifilicas que contengan grupos carboxíl, carbonil, amino, amido, amonium, tiol, hidroxil, cetónico, ester, éter, nitro, sulfonil, fosfatos, boratos, haluros o mezcla de ellos, con grupos apolares como alifáticos, aromáticos o mezcla de ellos; los polímeros como poli(vinilpirrolidona) (PVP), polivinil alcohol, policarbonatos, polifenoles, polietilenglicol y polioles como etilenglicol, dietilenglicol, tri-etilenglicol, propilenglicoles, alquildioles como butanodioles, dipropilenglicol y polietilenglicoles, quitosano y sus derivados, poliácidos y derivados de estos, mercaptoalcanoatos, y ácidos oxibenzoicos; aquí, los poliácidos incluyendo uno cualquiera o más de los seleccionados de un grupo de ácido poli(acrílico), acido poli(maleico), poli(metil metacrilato), poli(ácido acrílico-co-ácido metacrílico), poli(ácido maleico-co-ácido acrílico), y poli(acrilamida-co-ácido coacrílico); acetatos de celulosa, polivinilacetatos, polisulfona, polifenilsulfonas, polietersulfonas, policetonas, polietercetonas, poliésteres, poliacetatos, polímeros y copolímeros de dos o más de estos; y los derivados incluyendo entre otros uno cualquiera o más de los seleccionados de un grupo de sales de amonio, sodio o potasio de los poliácidos, polímeros inorgánicos tipo fosfacenos y donde una molécula modificante es seleccionada del grupo de moléculas alifáticas y/o aromáticas, con 2 o más átomos de carbono, que puede incluir átomos de oxígeno, nitrógeno, azufre, fosforo o varios de ellos, con uno o más grupos funcionales, que además pueden ser complejos organometálicos, clústeres o mezcla de átomos, grupos funcionales homo- y heteronucleares, y moléculas con propiedades químicas y física definidas, sin limitarse a estos.
3.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa D) anterior el acomplejante primario y el acomplejante secundario es seleccionado entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos como amoniaco (NH3) e hidróxido de amonio, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, tioles, hidroxilo, cetónicos, nitro, sinfónicos, y/o haluros como ácidos carboxílicos; aminas primarias y secundarias: isopropilamina, butilamina, pentilamina, hexilamina heptilamina, octilamina, nonilamina, decilamina, undecilamina, dodecilamina, tridecilamina, tetradecilamina, pentadecilamina, hexadecilamina, heptadecilamina, octadecilamina, dietilamina, dipropilamina, dibutilamina, dipentilamina, dihexilamina, diheptilamina, dioctilamina, además, terbutilamina, anilina, o cualquier bases de Schiff, sin limitarse a estos.
4.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa E) el regulador puede ser álcalis, ácidos o soluciones tampón o buffer de pH, débiles o fuertes, o mezclas de ellos; y en caso de álcalis se selecciona entre hidróxido de sodio (NaOH), hidróxido de potasio (KOH), hidróxido de litio (LiOH), hidróxido de magnesio (Mg(OH)2), hidróxido de bario (Ba(OH)2), hidróxido de calcio (Ca(OH)2) incluyendo bases de Arrhenius; y en caso de ácidos pueden ser monopróticos o dipróticos, orgánicos o inorgánicos, sin limitarse a estos.
5.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa F) el antiespumante se selecciona de alcoholes de alto peso molar como hexanol, 1-heptanol, 1 -octanol, 1 -nonanol, 1 -decanol, 1-undecanol, 1 - dodecanol, 1 -tridecanol, 1 -tetradecanol, 1 - pentadecanol, 1 -hexadecanol, 1 - heptadecanol, 1-octadecanol y cualquiera de estos con ramificaciones en su cadena principal. Además, se seleccionan de alcoholes aromáticos, y cualquier antiespumante para sistemas de base acuosa como antiespumantes a base de polisiloxanos, a base de aceite mineral, a base de aceite vegetal, y a base de polímeros, sin limitarse a estos.
6.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa G) el metal secundario se selecciona de al menos un elemento metálico de los grupos del III A al V A y del I B al VIII B de la tabla periódica de elementos. El metal secundario puede ser seleccionado del grupo: Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Hg, Ag, Au, Pd, Pt, Rh, Ir, Ru, Ta, Os, Sn, Sb, Ge, Ga, Se, Te, Cd, Si, Bi, In, Al, Re y/o Mo y mezclas, aleaciones y co-cristales de al menos uno de estos elementos. La fuente de iones del metal secundario se selecciona de las sales de metales, óxidos de metales, hidrácidos, hidróxidos, o sales binarias y especies Organometálicos, compuestos iónicos o covalentes, compuestos de coordinación, compósitos híbridos y/o electrodos metálicos; en donde es posible el uso de todas las fuentes de iones metálicos que son compatibles en el contexto de este proceso y particularmente que sean solubles o dispersables el medio liquido de reacción.
7.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa I) el reductor se selecciona de entre monohidrato de hidracina y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehido como formaldehido, formiato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos, sulfitos, tetrahídroboratos, tetraalumínohídruro de litio (UAIH4), borohidruro de sodio, polihidroxibenceno como hidroquinona y sus derivados, fenilendiaminas y sus derivados, aminofenoles y sus derivados, ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, sin limitarse a estos.
8.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa I) el acomplejante secundario es seleccionado entre moléculas quelantes mono-, bi- y/o tridentados; con dadores, aceptores o ambos; inorgánicos, orgánicos, o anfóteros; como aquellos con grupos carboxílicos, aminos, tioles, hidroxilo, cetónicos, nitro, sulfonicos, y/o haluros como ácidos carboxílicos y sus derivados, ácidos dicarboxílicos, ácidos carboxílicos insaturados, amoniaco (NH3), hidróxido de amonio, aminas primarias y secundarias; los ácidos carboxílico y sus derivados se seleccionan del grupo ácido ascórbico, ácido cítrico, ácidos carboxílicos alifáticos y aromáticos, como ácido benzoico, ácido fenilacético, pero no limitándose a estos; además de los siguientes ácidos dicarboxílicos: ácido etanodioico, ácido propanodioíco, ácido butanodioico, ácido pentanodioico, ácido hexanodioico, ácido heptanodioico, ácido octanodioico, ácido nonadioico, ácido decadioico, ácido butenodioico, ácido itálico, ácido 2,4-difenilciclobutan-1 ,3- dicarboxílico, ácido 3,4- difenilciclobutan-1 ,2-dicarboxílico, pero no limitándose a estos; también el acomplejante secundario se puede seleccionar de ácidos carboxílicos insaturados: acrílico, crotónico, isocrotónico, sórbico, palmitoleico, sapiénico, oleico, eláidico, vaccénico, linoleico, linoeláidico, ácido cítrico, ácido tartárico, ácido cinámico, y las aminas primarias y secundarias se seleccionan de: isopropilamina, butilamina, pentilamina, hexilamina, heptilamina, octilamina, sin limitarse a estos.
9.- El método secuencial para la construcción de nanopartículas (NPs) de cobre metálico, según las reivindicaciones anteriores, CARACTERIZADO porque en la etapa L) el antioxidante se selecciona entre ácidos carboxílicos y sus derivados como ácido ascórbico, ácido cítrico, monohidrato de hidracína y derivados, hidroxilamina y sus derivados, alcoholes monohídricos como metanol, etanol, aldehidos como formaldehido, formato de amonio, acetaldehído y propanoaldehido o sales de estos, hipofosfitos y agentes antioxidantes similares, sin limitarse a estos.
10.- Nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, CARACTERIZADO porque se obtienen con el método secuencial de las reivindicaciones 1 a 9.
11.- Uso de nanopartículas (NPs) de cobre metálico, para el revestimiento con nanopartículas más pequeñas del metal secundario, CARACTERIZADO porque se obtienen con el método secuencial de las reivindicaciones 1 a 9.
PCT/CL2018/000042 2017-12-29 2018-12-20 Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas mas pequeñas del metal secundario WO2019126884A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL3489-2017 2017-12-29
CL2017003489A CL2017003489A1 (es) 2017-12-29 2017-12-29 Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas más pequeñas del metal secundario

Publications (1)

Publication Number Publication Date
WO2019126884A1 true WO2019126884A1 (es) 2019-07-04

Family

ID=63046443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2018/000042 WO2019126884A1 (es) 2017-12-29 2018-12-20 Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas mas pequeñas del metal secundario

Country Status (2)

Country Link
CL (1) CL2017003489A1 (es)
WO (1) WO2019126884A1 (es)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110278497A1 (en) * 2010-05-11 2011-11-17 China Medical University Nanometal dispersion and method for preparing the same
US20120091401A1 (en) * 2010-10-14 2012-04-19 Toshiba Tec Kabushiki Kaisha Metal nanoparticle dispersion
US8597397B2 (en) * 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles
EP2810714A1 (en) * 2012-05-11 2014-12-10 LG Chem, Ltd. Method for preparing core-shell particle supported with carrier, and core-shell particle supported with carrier prepared thereby
US9221044B2 (en) * 2012-06-13 2015-12-29 Uniwersytet Warszawski Flow system method for preparing substantially pure nanoparticles, nanoparticles obtained by this method and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8597397B2 (en) * 2005-01-14 2013-12-03 Cabot Corporation Production of metal nanoparticles
US20110278497A1 (en) * 2010-05-11 2011-11-17 China Medical University Nanometal dispersion and method for preparing the same
US20120091401A1 (en) * 2010-10-14 2012-04-19 Toshiba Tec Kabushiki Kaisha Metal nanoparticle dispersion
EP2810714A1 (en) * 2012-05-11 2014-12-10 LG Chem, Ltd. Method for preparing core-shell particle supported with carrier, and core-shell particle supported with carrier prepared thereby
US9221044B2 (en) * 2012-06-13 2015-12-29 Uniwersytet Warszawski Flow system method for preparing substantially pure nanoparticles, nanoparticles obtained by this method and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NADAGOUDA, M.N ET AL.: "A Greener Synthesis of Core (Fe, Cu)-Shell (Au, Pt, Pd, and Ag) Nanocrystals Using Aqueous Vitamin C", CRYST. GROWTH DES., vol. 7, no. 12, 2007, pages 2582 - 2587, XP055622736 *
ZHOU, G ET AL.: "Aqueous Synthesis of Copper Nanocubes and Bimetallic Copper/Palladium Core-Shell Nanostructures", LANGMUIR, vol. 22, no. 13, 2006, pages 5900 - 5903, XP055622737 *

Also Published As

Publication number Publication date
CL2017003489A1 (es) 2018-05-25

Similar Documents

Publication Publication Date Title
Carotenuto et al. A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices
TWI801423B (zh) 具有抗菌.抗黴性之光觸媒.合金微粒子分散液、其製造方法,及表面具有光觸媒.合金薄膜之構件
US10201916B2 (en) Gas dispersion manufacture of nanoparticulates, and nanoparticulate-containing products and processing thereof
US9951240B2 (en) Nanoparticle-based ink formulations
US20150166810A1 (en) Metal Nanoparticle Synthesis and Conductive Ink Formulation
JP2017524829A (ja) 安定剤を含まない金属ナノ粒子合成およびそれから合成される金属ナノ粒子の使用
EP3484644A1 (en) Method of producing metallic nano particle colloidal dispersions
JP2012527401A (ja) 銅亜鉛スズカルコゲナイドナノ粒子
JP2011511885A (ja) 貴金属ナノ粒子分散液の製造方法および前記の分散液からかかるナノ粒子を単離する方法
Dai et al. Self-reducible Cu nanoparticles for conductive inks
Fu et al. Preparation of colloidal solutions of thin platinum nanowires
KR102632793B1 (ko) 은 나노입자를 기초로 한 잉크
WO2019126884A1 (es) Método secuencial para la construcción de nanopartículas de cobre metálico y su posterior decoración o revestimiento con nanopartículas mas pequeñas del metal secundario
Jha et al. Solution phase synthesis and intense pulsed light sintering and reduction of a copper oxide ink with an encapsulating nickel oxide barrier
Adekoya et al. Synthesis and characterization of optically active fractal seed mediated silver nickel bimetallic nanoparticles
JP2013040374A (ja) 金属ナノ粒子分散液、金属ナノ粒子凝集体、金属ナノ粒子分散体及びそれらの製造方法
Adekoya et al. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol
WO2019126882A1 (es) MÉTODO BIMETÁLICO PARA LA CONSTRUCCIÓN DE NANOPARTÍCULAS (NPs) DE COBRE METÁLICO, PARA EL REVESTIMIENTO CON NANOPARTÍCULAS MAS PEQUEÑAS DEL METAL SECUNDARIO
KR100768004B1 (ko) 금속 나노 입자의 제조방법
KR20160090861A (ko) 은 나노입자의 분산물
JP5825213B2 (ja) 金属ナノ粒子分散液の製造方法及び金属ナノ粒子/層状鉱物複合体の製造方法
CN105764697A (zh) 基于银纳米粒子的油墨
TWI735535B (zh) 基於(半)導性奈米粒子之墨水調配物
TW202030279A (zh) 基於銀奈米粒子的墨水
WO2012152740A2 (en) Synthesis of nanoparticles comprising oxidation sensitive metals with tuned particle size and high oxidation stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894851

Country of ref document: EP

Kind code of ref document: A1