WO2019124928A1 - 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법 - Google Patents

내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법 Download PDF

Info

Publication number
WO2019124928A1
WO2019124928A1 PCT/KR2018/016110 KR2018016110W WO2019124928A1 WO 2019124928 A1 WO2019124928 A1 WO 2019124928A1 KR 2018016110 W KR2018016110 W KR 2018016110W WO 2019124928 A1 WO2019124928 A1 WO 2019124928A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
polyethylene terephthalate
flame
weight
parts
Prior art date
Application number
PCT/KR2018/016110
Other languages
English (en)
French (fr)
Inventor
박규태
김해리
김태영
신종욱
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Priority to CN201880081852.4A priority Critical patent/CN111492010A/zh
Publication of WO2019124928A1 publication Critical patent/WO2019124928A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K3/2279Oxides; Hydroxides of metals of antimony
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches

Definitions

  • the present invention relates to a flame retardant polyethylene terephthalate resin composition having improved impact resistance and a method of manufacturing the flame retardant polyethylene terephthalate resin composition. More particularly, the present invention relates to a flame retardant polyethylene terephthalate resin composition having improved impact resistance for electrical and electronic products and a method for producing the same.
  • Thermoplastic resins are produced in large quantities because they are lightweight, strong in strength, excellent in water resistance, chemical resistance and electrical insulation, and easy to be molded thereon.
  • Polyalkylene terephthalates especially polybutylene terephthalate (PBT) and polyethylene terephthalate (PET), are thermoplastic polyester resins having excellent electrical properties widely used as insulators for wrapping electric wires and other electronic components.
  • polyethylene terephthalate has been extensively used in many fields such as clothing, interior, padding, nonwoven fabric and industrial materials due to excellent mechanical properties and easy processability.
  • polyethylene terephthalate is flammable, various additives and methods for imparting flame retardancy to conventionally-used flame retardants have been studied for application to various uses as described above.
  • a flame retardant using a styrene-based resin has good processability and mechanical strength and is used mainly as a casing for electrical and electronic products.
  • the styrene-based resin itself has no resistance to flame, and when the flame is ignited by an external ignition factor, the resin acts as energy that helps combustion, and continuously diffuses the fire.
  • Most commercialized flame retardant resins are prepared by the addition type flame retarding method in which a flame retardant containing halogen or phosphorus, which is an inert element, is added during compounding, and an addition type flame retardant method in which a flame retardant is added to impart styrene- It is prepared by adding one or more components selected from a halogen-containing organic compound and an antimony-containing inorganic compound to the resin.
  • various brominated aromatic compounds are known flame retardants for thermoplastic resins. Brominated polystyrene is accepted as a commercially important flame retardant for use in various thermoplastic resins.
  • the flame retardancy is very good, but the overall physical properties are seriously degraded. Further, there is a problem that thermal stability is lowered. Therefore, in the production of the flame retardant resin, it is very important to maintain the excellent flame retardancy while minimizing the physical properties and incidental effects.
  • an object of the present invention is to provide a flame retardant polyethylene terephthalate resin composition having improved impact strength as compared with a conventional reinforced flame retardant polyester composition, and a method for producing the same.
  • the present invention provides a resin composition
  • a resin composition comprising: a polyethylene terephthalate resin; And a flame retardant, wherein the content of the flame retardant relative to 100 parts by weight of the polyethylene terephthalate resin is 15 to 45 parts by weight, the flame retardant is prepared by preliminarily melting and mixing the brominated polystyrene and the polyester, Based on the weight of the flame-retardant polyethylene terephthalate resin composition.
  • the present invention also relates to a method for producing a flame retardant, comprising the steps of: preparing a flame retardant by previously melt-kneading brominated polystyrene and polyester; And melting and mixing the flame retardant and polyethylene terephthalate.
  • the present invention also provides a method for producing a flame retardant polyethylene terephthalate resin.
  • the flame retardant polyethylene terephthalate resin composition having improved impact resistance according to the present invention and the method for producing the same can produce a resin for flame retardant polyethylene terephthalate having an improved impact strength.
  • the present invention relates to a flame retarded polyethylene terephthalate (PET) composition
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • styrene-based flame retardant a flame retardant aid
  • filler a filler and an additive.
  • the polyethylene terephthalate (PET) is a crystalline thermoplastic resin widely used for fibers, films, bottles and the like, and it is also used as engineering plastic (GF-PET) according to glass fiber.
  • the reinforced engineering plastics have heat resistance, chemical resistance, electrical characteristics and weather resistance and are used in the fields of electric and electronic, automobile and vehicle. It has excellent heat resistance, strength and rigidity, and is free from stress cracks.
  • the polyethylene terephthalate has an intrinsic viscosity of 0.3 to 0.9 cm 3 / g, preferably an intrinsic viscosity of 0.4 to 0.8 cm 3 / g. If the intrinsic viscosity is less than 0.3 cm < 3 > / g, the mechanical strength such as tensile strength, bending strength and impact strength is low and there is a high possibility of breakage after molding. When the intrinsic viscosity exceeds 0.8 cm & Kneading with an additive such as a reinforcing agent and a flame retardant is difficult during extrusion, flowability at the time of injection is low, and problems such as non-molding may occur.
  • the intrinsic viscosity was UFIT, UVS-basic equipment, and Ubbelohde, 1B type viscometer was used for viscosity.
  • the test samples were dissolved in a solvent ortho-chlorophenol and measured according to the ISO 1628 test method.
  • the flame retardant is a halogenated styrene type flame retardant.
  • the halogen includes fluorine (F), bromine (Br), chlorine (Cl), and iodine (I).
  • fluorine (F) the bonding force is so strong that it can not generate radicals.
  • the iodine (I) is not suitable as a flame retardant used at high temperature because its bonding force is very weak and decomposes easily at low temperatures. Therefore, bromine (Br) and chlorine (Cl) are mainly used as flame retardants, and bromine flame retardants having excellent cost effectiveness are mainly used.
  • Such a bromine-based flame retardant has a merit that a sufficient flame retardant effect can be obtained even when a very small amount of the flame retardant is added compared with an inorganic material, and thus it is widely used in electric and electronic products which require high impact strength.
  • brominated flame retardant examples include brominated polystyrene, brominated polycarbonate, decabromodiphenyl oxide, decabromodiphenyl ethane, brominated epoxy, and compounds thereof.
  • Brominated polystyrene is one of the polymer resins used for the purpose of improving the flame retardancy of polyester.
  • the flame retardant is 15 to 45 parts by weight, preferably 15 to 40 parts by weight, more preferably 20 to 35 parts by weight, based on 100 parts by weight of the polyethylene terephthalate resin.
  • the content of the flame retardant is less than 15 parts by weight, It may be difficult to achieve UL94 standard V-0 rating. If it exceeds 45 parts by weight, mechanical properties such as tensile strength, flexural strength and impact strength may be lowered.
  • the bromine content of the polystyrene is 60 to 75%, preferably 64 to 70%. If the bromine content is less than 60%, the flame retardancy may be lowered and it may be difficult to achieve the UL94 standard V-0 rating. The higher the bromine content, the better the flame retardant content can be reduced.
  • the molecular weight of the brominated polystyrene is preferably 10,000 to 100,000.
  • a flame retardant mixed with polystyrene bromide and polyester may be used.
  • the polyester may be selected from the group consisting of polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), glycol modified polyethylene terephthalate (PETG), glycol modified polycyclohexyl (PCTG), and compounds thereof, and is preferably polyethylene terephthalate (PET) or polybutylene terephthalate (PBT).
  • PTT has difficulty in supplying and supplying raw materials, and it is difficult to mix PTT because of high price.
  • the polyester mixed with the flame retardant is 2 to 10 parts by weight, preferably 3 to 7 parts by weight, based on 100 parts by weight of the flame retardant.
  • the flame retardant auxiliary agent has a role and function of improving the flame retardancy by assisting the bromine flame retardant agent in the flame retardant composition for polyethylene terephthalate (PET).
  • the flame retardant aid may be selected from the group consisting of antimony compounds, antimony trioxide, sodium antimonite, and compounds thereof.
  • the content of the flame-retardant auxiliary may be selected from the group consisting of polyethylene terephthalate resin Is 3 to 12 parts by weight, preferably 5 to 10 parts by weight, based on 100 parts by weight. If the content of the flame-retardant aid is less than 3 parts by weight, the flame retardancy may deteriorate and it may be difficult to achieve the UL94 standard V-0 rating. If the content is more than 12 parts by weight, the mechanical properties such as tensile strength, bending strength, .
  • the filler improves mechanical strength such as tensile elastic modulus, flexural modulus and the like and improves thermal stability in a flame retardant composition for PET.
  • the filler is selected from the group consisting of glass fiber, wollastonite, calcium silicate, montmorillonite, layered silicate nanoclay, Mica, talc and compounds thereof,
  • the content of the filler relative to 100 parts by weight of the polyethylene terephthalate resin is 20 parts by weight to 150 parts by weight, preferably 15 to 100 parts by weight. If the content of the filler is less than 20 parts by weight, the required mechanical strength may be insufficient and the required physical properties may be insufficient. If the filler content is more than 150 parts by weight, the kneadability during compounding may be insufficient, , Surface defects, and the like.
  • the flame retardant composition for PET may further include an additive.
  • the additive may include a chain extender, an impact modifier, a nucleating agent, a crystallization promoter, a hydrolysis inhibitor Hydrolysis additives, Anti-oxidants, Carboxylic acid scavengers, Transesterification inhibitors, Gloss enhancers, Alloying agents, Processing agents a stabilizer, a lubricant, an anti-drip agent and a compound thereof.
  • the content of the additive is preferably 3 parts by weight to 20 parts by weight per 100 parts by weight of polyethylene terephthalate, 5 to 15 parts by weight. If the amount of the additive is less than 3 parts by weight, the mechanical strength may be lowered due to oxidation due to oxidation during processing. If the additive is more than 20 parts by weight, The drop in strength, especially impact strength, can be reduced.
  • the above flame retardant is a product obtained by previously mixing brominated polystyrene and polyester, or a mixture of brominated polystyrene and polyester is used.
  • the polyester mixed with the flame retardant is preferably polyethylene terephthalate or polybutylene terephthalate in an amount of 2 to 10 parts by weight, preferably 3 to 7 parts by weight, based on 100 parts by weight of the flame retardant.
  • a flame retardant composition for PET can be prepared by a compounding process in which 3 to 15 kinds of raw materials including the polyethylene terephthalate, the brominated polystyrene and a polyester mixed with a flame retardant, a filler, a flame retardant aid and additives are put in an extruder and melt- have.
  • the compatibility of the polyester resin (polyethylene terephthalate, PET) and the flame retardant was improved due to the increase of the dispersibility during the processing of the polyester, and the impact strength to the 3.2 mm test piece according to ASTM D256 was 70 J / m, and it was confirmed that the impact strength was improved by about 15 to 37% with respect to 100 parts by weight of the conventional composition for reinforced flame retardant PET.
  • flame retardant A is SAYTEX-621 of Albermale, and SAYTEX-621 is a product which melts and mixes about 2 to 10% of polyester in the production of flame retardant.
  • Table 1 The physical properties according to the examples are measured and reported in the following Table 1.
  • the physical properties according to the examples are measured and reported in the following Table 1.
  • the 13.0% flame retardant granule is composed of 0.65% of PBT resin and 12.35% of flame retardant B, and the flame retardant B is a general brominated polystyrene flame retardant, FR-803P of Chempia.
  • the physical properties according to the examples are measured and reported in the following Table 1.
  • pellets were produced by melting and kneading in the same manner as in Example 6, except that 0.65% of PET was used instead of 0.65% of PBT.
  • the physical properties according to the examples are measured and reported in the following Table 1.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 PET resin (unit:% by weight) 52.5 48.75 45.00 63.75 33.75 48.8 48.8 PBT resin (unit: wt%) - - - - - 0.65 - PET resin (unit:% by weight) - - - - - 0.65 Glass fiber (unit: wt%) 30
  • 30 15 45
  • Flame retardant A unit: wt%) 10.0 13.0 16.0 13.0 13.0 - -
  • Flame retardant B (unit: wt%) - - - - - 12.35 12.35 Flame Retarding Adduct (Unit: wt%) 2.5 3.25 4.0 3.25 3.25 3.2 3.2
  • Other additives (% by weight) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Br content % 6.46 8.40 10.34 8.40 8.40 8.46 8.46 Impact strength (J / m) 3.2 mm 7
  • the physical properties according to comparative examples are measured and reported in Table 2 below.
  • the flame retardant auxiliary agent and the other additives were added in the same manner as in Comparative Example 1, in the same manner as in Comparative Example 1, except that the flame retardant agent was added in an amount of about 200 to 200% by weight, as in Comparative Example 1, 48.8% of polyethylene terephthalate (PET), 0.65% of polybutylene terephthalate (PBT)
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • the physical properties according to comparative examples are measured and reported in Table 2 below.
  • the flame retardant C is a general brominated polystyrene flame retardant, SAYTEX 3010 from Albermale.
  • SAYTEX 3010 a general brominated polystyrene flame retardant
  • Examples 1 to 3 flame retardants and flame-retardant auxiliaries were used in the same amounts as in Examples 1 to 3, and when these were compared, it was found that the use of the flame retardant A improved the impact strength.
  • Examples 4 to 5 are examples for securing the glass fiber content range. Specifically, when the glass fiber was adjusted at 15 to 45% by weight, the impact strength was 70.0 J / m, , It can be seen that the impact strength is improved by using the flame retardant A regardless of the content of the glass fiber.
  • Comparative Example 4 shows the difference between when (i) polybutylene terephthalate and flame retardant B are mixed beforehand and (ii) when they are mixed with other components at one time.
  • polybutylene terephthalate and polyethylene terephthalate were mixed with a flame retardant in advance to obtain an effect of improving the impact strength.
  • polycyclohexylene dimethylene terephthalate The above effect can not be obtained. This is because the polycyclohexylene dimethylene terephthalate has a high melting temperature and is not sufficiently mixed when premixed with the flame retardant.
  • Example 6 to 7 the absolute content of the flame retardant B is different from that of Comparative Example 2, but when the same type of flame retardant is used, the impact strength of Examples 6 to 7, The better. This shows that the use of a flame retardant and a polyester in advance is superior to the flame retardant in terms of impact strength.
  • Comparative Example 7 shows a higher effect than using an impact modifier in order to improve the impact strength by mixing the flame retardant with polyester in advance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

전기전자제품 및 부품에 사용되는 내충격성이 향상된 PET용 난연제 조성물 및 그 제조방법이 개시된다. 상기 폴리에틸렌 테레프탈레이트 수지 및 난연제를 포함하고, 상기 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대한 난연제의 함량이 15 내지 45 중량부이며, 상기 난연제는 브롬화 폴리스티렌에 폴리에스테르를 미리 용융 혼합하여 제조하며, 상기 폴리에스테르는 난연제 100 중량부에 대하여, 2 내지 10 중량부인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물을 포함한다.

Description

내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법
본 발명은 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 전기전자제품용 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법에 관한 것이다.
열가소성수지는 가볍고도 강도가 크고, 내수성, 내약품성, 전기절연성이 우수하고, 그 위에 성형가공이 용이하기 때문에, 다량으로 생산되고 있다. 폴리알킬렌 테레프탈레이트, 특히 폴리부틸렌 테레프탈레이트(PBT) 및 폴리에틸렌 테레프탈레이트(PET)는 전기전선 및 다른 전자 부품을 감싸는 절연체로 널리 사용되는, 우수한 전기적 특성을 갖는 열가소성 폴리에스테르수지이다.
그 중에서 폴리에틸렌테레프탈레이트는 뛰어난 역학 특성, 용이한 가공성으로 인해 의류, 인테리어, 패딩, 부직포, 산업용 자재 등의 여러 분야에서 광범위하게 사용되고 있다. 그렇지만, 폴리에틸렌테레프탈레이트는 이연성(이燃性)이어서 위와 같은 다양한 용도에 적용하기 위해 종래부터 난연성을 부여하기 위한 다양한 첨가제나 그 방법이 검토되어 왔다.
일반적으로 스티렌계 수지를 사용한 난연제는 가공성과 기계적 강도가 양호하여 주로 전기·전자제품의 외장재로 사용되고 있다. 그러나 상기 스티렌계 수지는 그 자체로 불꽃에 대한 저항성이 없고 외부의 점화요인에 의해 불꽃이 점화되면 수지 자체가 연소를 도와주는 에너지로 작용하여 지속적으로 불을 확산시키게 된다.
대부분의 상품화된 난연 수지는 컴파운딩 시 비활성 원소인 할로겐 또는 인 등을 함유한 난연제를 첨가하는 첨가형 난연화법에 의해 제조되고 있으며, 스티렌계 수지에 난연성을 부여하기 위해 난연제를 첨가하는 첨가형 난연화법은 주로 할로겐 함유 유기화합물과 안티몬함유 무기화합물 중에서 선택되는 하나 또는 그 이상의 성분을 수지에 첨가시켜 제조하게 된다. 그 중에서도 다양한 브롬화된 방향족 화합물이 열가소성 수지에 대한 공지된 난연제이다. 브롬화된 폴리스티렌은 다양한 열가소성 수지에 사용하기 위한 상업적으로 중요한 난연제로서 수용된다. 그런데, 난연성은 매우 우수한 반면 전반적인 물성에 심각한 저하를 일으키게 된다. 또한 열 안정성이 저하되는 문제가 있다. 따라서, 난연 수지를 제조하는데 있어서는 우수한 난연성을 유지하면서 물성 및 부수적인 영향을 최소화시키는 기술이 매우 중요하다.
따라서, 본 발명의 목적은 기존의 보강 난연 폴리에스테르(Polyester) 조성물 대비 충격강도가 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 폴리에틸렌 테레프탈레이트 수지; 및 난연제를 포함하고, 상기 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대한 난연제의 함량이 15 내지 45 중량부이며, 상기 난연제는 브롬화 폴리스티렌과 폴리에스테르를 미리 용융 혼합하여 제조하며, 상기 폴리에스테르의 함량는 난연제 100 중량부에 대하여 2 내지 10 중량부인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물을 제공한다.
또한 본 발명은 브롬화 폴리스티렌과 폴리에스테르를 미리 용융 혼합하여 난연제를 제조하는 단계; 및 상기 난연제와 폴리에틸렌 테레프탈레이트를 용융 혼합하는 단계를 포함하는 난연 폴리에틸렌 테레프탈레이트 수지 제조방법을 제공한다.
본 발명에 따른 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법은 충격 강도가 향상된 난연 폴리에틸렌 테레프탈레이트용 수지를 제조할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다. 이하에서, 특별한 언급이 없는 한, 단위 "%"는 "중량%"를 의미한다.
본 발명은 난연 PET 조성물로써, 폴리에틸렌 테레프탈레이트(PET), 스티렌계 난연제, 난연보조제, 충진제 및 첨가제를 포함하는 폴리에틸렌 테레프탈레이트(PET) 난연 조성물에 관한 것이다.
상기 폴리에틸렌 테레프탈레이트(PET)는 결정성 열가소성 수지로서 섬유, 필름, 병 등에 널리 쓰이고 있으며, 유리 섬유에 따라 강화(GF-PET) 엔지니어링 플라스틱으로도 쓰이고 있다. 상기 강화 엔지니어링 플라스틱은 내열성, 내약품성, 전기적 특성 및 내후성을 가지고 전기·전자분야, 자동차·차량 분야 등에 쓰이고 있다. 내열성, 강도나 강성이 우수하며, 스트레스 크랙에 대한 걱정이 없다.
상기 폴리에틸렌 테레프탈레이트는 0.3 내지 0.9 cm3/g의 고유 점도, 바람직하게는 0.4 내지 0.8 cm3/g의 고유 점도를 갖는다. 상기 고유 점도가 0.3 cm3/g 미만이면, 인장강도, 굴곡강도, 충격강도 등의 기계적 강도가 낮아 제품 성형 후 파손의 우려가 높고, 고유 점도가 0.8 cm3/g를 초과하면 점도가 높아, 컴파운딩 압출 시 보강제, 난연제 등의 첨가제와의 혼련이 어렵고, 사출시 흐름성이 낮아서 미성형 등의 문제가 발생할 수 있다. 상기 고유점도는 UFIT사, UVS-basic 장비이며, 점도관은 우베로드(Ubbelohde), 1B type 점도계를 사용하였다. 측정시료는 용매 오쏘-클로로페놀(ortho-Chlorophenol)에 충분히 용해하여, ISO 1628 시험법에 따라 측정하였다.
상기 난연제는 할로겐화 스티렌계 난연제로써, 상기 할로겐에는 불소(F), 브롬(Br), 염소(Cl), 요오드(I)가 있다. 상기 불소(F)의 경우에는 결합력이 매우 강해 라디칼을 생성하지 못하며, 상기 요오드(I)는 결합력이 매우 약해 저온에서도 쉽게 분해되기 때문에 고온에서 사용되는 난연제로는 적합하지 않다. 따라서, 난연제로써는 상기 브롬(Br)과 염소(Cl)가 주로 사용되며, 그 중에서도 비용대비 효과가 뛰어난 브롬계 난연제가 주로 사용되고 있다. 이와 같은 브롬계 난연제는 무기계에 비하여 매우 적은 양을 첨가해도 충분한 난연 효과를 얻을 수 있는 장점이 있어 내충격 강도가 요구되는 전기·전자 제품에 많이 사용되고 있다.
상기 브롬계 난연제로는 브롬화 폴리스티렌, 브롬화 폴리카보네이트(brominated polycarbonate), 데카브로모다이페닐옥사이드(decabromodiphenyl oxide), 데카브로모다이페닐에탄(decabromodiphenyl ethane), 브롬화 에폭시(brominated epoxy) 및 이들의 화합물을 포함하는 것인 난연제이며, 바람직하게는 브롬화 폴리스티렌이다, 상기 브롬화 폴리스티렌(Brominated Polystyrene)은 폴리에스테르(Polyester)의 난연성을 향상시키는 목적으로 사용되는 고분자 수지 중 하나이다.
상기 난연제는 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대하여, 15 내지 45 중량부, 바람직하게는 15 내지 40 중량부, 더욱 바람직하게는 20 내지 35 중량부이며, 난연제의 함량이 15 중량부 미만이면, 난연성이 저하되어 UL94기준 V-0 등급 달성이 어려울 수 있고, 45 중량부를 초과하면 인장강도, 굴곡강도, 충격강도 등 기계적물성이 낮아 질 수 있다. 또한, 상기 폴리 스티렌의 브롬 함량은 60 내지 75%, 바람직하게는 64 내지 70% 이다. 상기 브롬 함량이 60% 미만이면 난연성이 저하되어 UL94기준 V-0 등급 달성이 어려울 수 있고, 브롬함량이 높을수록 난연제 함량을 줄일 수 있어서 유리하지만, 제조상 75%를 초과하는 제품을 제조에 어려움이 있으며, 상기 브롬화 폴리 스티렌의 분자량은 10,000 내지 100,000인 것이 바람직하다.
또한, 본 발명에 사용되는 난연제는 브롬화 폴리스티렌에 폴리에스테르 (polyester)가 혼합된 난연제를 사용할 수 있다. 상기 폴리에스테르는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 글리콜 개질된 폴리에틸렌 테레프탈레이트(Glycol modified polyethylene terephthalate, PETG), 글리콜 개질된 폴리싸이클로헥실렌다이메틸렌 테레프탈레이트(Glycol modified polycyclohexylenedimethylene terephthalate, PCTG) 및 이들의 화합물로 이루어진 군으로부터 선택되는 것이며, 바람직하게는 폴리에틸렌 테레프탈레이트(PET) 또는 폴리부틸렌 테레프탈레이트(PBT)이다. 상기 폴리에스테르는 폴리에틸렌 테레프탈레이트(PET), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT)는 결정성 소재로써 녹는점이 각각 250, 225, 230 ℃ 이므로, 브롬화 폴리스티렌의 녹는점 240 ℃ 와 유사하고 혼합 공정의 가공온도가 유사하여 혼합이 유리하다. 다만, 폴리트리메틸렌 테레프탈레이트(PTT)는 원료 수급에 어려움이 있고, 가격이 높아 혼합하여 사용하기에 어려움이 있다.
상기 난연제에 혼합되는 폴리에스테르는 난연제 100 중량부에 대하여, 2 내지 10 중량부, 바람직하게는 3 내지 7 중량부이다.
상기 난연보조제는 폴리에틸렌 테레프탈레이트(PET)용 난연 조성물에서 브롬계 난연제를 보조하여 난연성을 향상시키는 역할 및 기능을 한다. 상기 난연보조제로는 안티몬 화합물(Antimony Compound)가 사용되고, 삼산화안티몬(Antimony trioxide), 소디움 안티모네이트(Sodium antimonite) 및 이들의 화합물로 이루어진 군으로부터 선택되며, 상기 난연보조제의 함량은 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대하여 3 내지 12 중량부, 바람직하게는 5 내지 10 중량부이다. 상기 난연보조제의 함량이 3 중량부 미만이면, 난연성이 저하되어 UL94기준 V-0 등급 달성이 어려울 수 있고, 12 중량부 를 초과하면 인장강도, 굴곡강도, 충격강도 등 기계적물성이 낮아 질 수 있다.
상기 충진제는 PET용 난연 조성물에서 인장탄성율, 굴곡탄성율 등 기계적 강도를 향상시키고, 열안정성을 향상시키는 역할 및 기능을 한다. 상기 충전제로는 유리섬유(Glass fiber), 울라스토나이트(Wollastonite, Calcium silicate), 몬모릴로나이트(Montmorillonite, Layered silicate nanoclay), 마이카(Mica), 탈크(Talc) 및 이들의 화합물로 이루어진 군으로부터 선택되며, 상기 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대한 충진제의 함량이 20 중량부 내지 150 중량부, 바람직하게는 15 내지 100 중량부이다. 상기 충전제의 함량이 20 중량부 미만이면, 기계적 강도 향상폭이 낮아 요구되는 물성에 부족할 수 있고, 150 중량부를 초과하면 컴파운딩 가공 중 혼련성이 부족하거나, 사출가공 중 흐름성이 부족하여 미성형, 표면불량 등의 문제를 일으킬 수 있다.
상기 PET용 난연 조성물은 첨가제를 더욱 포함할 수 있으며, 상기 첨가제는 체인증량제(Chain extender), 충격보강제(Impact modifier), 핵제(Nucleating agent), 결정화 가속제(Crystallization Promoter), 가수분해 억제제(Anti-hydrolysis additives), 산화방지제(Anti-oxidant), 카르복실산 흡수제(Carboxyl acid scavenger), 에스터교환반응 억제제(Transesterification inhibitor), 글로스 강화제(Gloss Enhancer), 상용화제(Alloying agent), 가공보조제(Processing stabilizer), 활제(Lubricant), 적하방지제(Anti-drip agent) 및 이들의 화합물로 이루어진 군으로부터 선택되며, 상기 첨가제의 함량은 폴리에틸렌 테레프탈레이트 100 중량부에 대하여, 3 중량부 내지 20 중량부, 바람직하게 5 내지 15 중량부이다. 상기 첨가제의 함량이 3 중량부 미만이면, 가공 중 산화에 의한 분자량 감소 이에 따른 기계적 강도 하락 문제가 발생할 수 있고, 20 중량부를 초과하면 가공 중 합침성이 부족하여 첨가제 자체가 결점으로 작용하여, 기계적 강도 하락, 특히 충격 강도가 하락할 수 있다.
본 발명에 따른 PET 난연 조성물의 제조방법을 포함한다. 우선, 상기 난연제는 브롬화 폴리스티렌과 폴리에스테르를 미리 혼합한 제품을 사용하거나, 브롬화 폴리스티렌과 폴리에스테르를 혼합하여 사용한다. 상기 난연제에 혼합되는 폴리에스테르는 바람직하게 폴리에틸렌 테레프탈레이트 또는 폴리부틸렌 테레프탈레이트이며, 난연제 100 중량부에 대하여, 2 내지 10 중량부, 바람직하게는 3 내지 7 중량부이다.
상기 폴리에틸렌 테레프탈레이트, 상기 브롬화 폴리스티렌과 폴리에스테르를 혼합한 난연제, 충진제, 난연보조제 및 첨가제를 포함한 3종 내지 15종의 원재료를 압출기에 넣고 용융 혼합하는 컴파운딩 공정으로 PET용 난연 조성물을 제조할 수 있다. 이로 인해, 폴리에스테르(Polyester)가 기본이 되는 수지(폴리에틸렌 테레프탈레이트, PET)와 난연제의 가공 중 분산성 상승에 의한 상용성이 좋아졌으며, ASTM D256에 의한 3.2mm 시험편에 대한 충격강도가 70 J/m이상으로 측정되었으며, 기존의 보강 난연 PET용 조성물 100 중량부에 대하여 충격강도가 약 15 내지 37 % 향상됨을 확인하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하나, 본 발명이 하기 실시예에 의하여 한정되는 것은 아니다.
[실시예 1] PET용 난연 조성물 제조
폴리에틸렌 테레프탈레이트(PET) 52.5%, 유리섬유 30%, 난연제 A 10.0%, 난연 보조제 2.5%, 기타 첨가제 5.0%를 약 200 ~ 270℃로 가열된 이축 혼련 압출기(Φ: 40㎜, L/D = 44)에 연속적으로 투입, 용융 및 혼련시켜 펠렛을 제조하였다. 이때, 난연제 A는 Albermale社의 SAYTEX-621이며, SAYTEX-621은 난연제 제조시 폴리에스테르(Polyester)를 약 2 내지 10% 용융 혼합하여 판매하는 제품이다. 하기 표 1에 실시예에 따른 물성을 측정하여 기재하였다.
[실시예 2 내지 5] PET용 난연 조성물 제조
하기 표 1의 조성물을 사용하여, 상기 실시예 1과 동일하게 약 200 ~ 270℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)를 사용하여 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 1에 실시예에 따른 물성을 측정하여 기재하였다.
[실시예 6] PET용 난연 조성물 제조
PBT 5.0 %와 난연제 B 95.0 %를 약 240 ~ 350 ℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)에 연속적으로 투입, 용융 및 혼련시켜 난연제 그래뉼(Granule)을 제조하였다. 이후 폴리에틸렌 테레프탈레이트 48.8%, 미리 제조된 난연제 그래뉼 13.0%, 유리섬유 30%, 난연보조제 3.2%, 첨가제 5%를 상기 실시예 1과 동일하게 약 200 ~ 270℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)를 사용하여 용융 및 혼련시켜 펠렛을 제조하였다. 상기 13.0%의 난연제 그래뉼은 PBT 수지 0.65% 및 난연제 B 12.35%로 구성되어 있으며, 상기 난연제 B는 일반적인 브롬화 폴리스티렌계 난연제로 켐피아社의 FR-803P이다. 하기 표 1에 실시예에 따른 물성을 측정하여 기재하였다.
[실시예 7] PET용 난연 조성물 제조
하기 표 1에 나타낸 바와 같이, PBT 0.65 % 대신 PET 0.65 %를 사용한 것을 제외하고는, 상기 실시예 6과 동일한 조건 및 방법으로 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 1에 실시예에 따른 물성을 측정하여 기재하였다.
구분 실시예1 실시예2 실시예3 실시예4 실시예5 실시예6 실시예7
PET 수지(단위: 중량%) 52.5 48.75 45.00 63.75 33.75 48.8 48.8
PBT 수지(단위: 중량%) - - - - - 0.65 -
PET 수지(단위: 중량%) - - - - - - 0.65
유리섬유(단위: 중량%) 30 30 30 15 45 30 30
난연제 A(단위: 중량%) 10.0 13.0 16.0 13.0 13.0 - -
난연제 B(단위: 중량%) - - - - - 12.35 12.35
난연 보조제(단위: 중량%) 2.5 3.25 4.0 3.25 3.25 3.2 3.2
기타 첨가제(단위: 중량%) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Br함량 % 6.46 8.40 10.34 8.40 8.40 8.46 8.46
충격강도(J/m) 3.2 mm 75.2 73.8 72.2 73.4 77.0 73.6 74.8
6.4 mm 56.5 54.9 53.6 53.9 57.7 55.4 56.3
인장강도 MPa 1420 1,390 1,380 1,120 1,716 1,380 1.407
굴곡강도 MPa 1,834 1,835 1,828 1,092 2,577 1,836 1,833
유동성 14.7 14.6 4.8 15.4 9.9 14.8 13.2
난연성 2.3 1.9 1.4 2.5 1.5 2.1 1.7
[비교예 1] PET용 난연 조성물 제조
폴리에틸렌 테레프탈레이트(PET) 52.5%, 유리섬유 30%, 난연제 B 10.0%, 난연 보조제 2.5%, 기타 첨가제 5.0%를 약 200 ~ 270℃로 가열된 이축 혼련 압출기(Φ: 40㎜, L/D = 44)에 연속적으로 투입, 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 2에 비교예에 따른 물성을 측정하여 기재하였다.
[비교예 2 내지 3] PET용 난연 조성물 제조
하기 표 2의 조성물을 사용하여, 상기 비교예 1과 동일하게 약 200 내지 270℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)를 사용하여 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 2에 비교예에 따른 물성을 측정하여 기재하였다.
[비교예 4] PET용 난연 조성물 제조
폴리에틸렌 테레프탈레이트(PET) 48.8%, 폴리부틸렌 테레프탈레이트(PBT) 0.65%, 유리섬유 30%, 난연제 B 12.35%, 난연 보조제 3.2%, 기타 첨가제 5.0%를 상기 비교예 1과 동일하게 약 200 내지 270℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)를 사용하여 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 2에 비교예에 따른 물성을 측정하여 기재하였다.
[비교예 5] PET용 난연 조성물 제조
폴리사이클로헥실렌다이메틸렌 테레프탈레이트(PCT) 5.0 %와 난연제 B 95.0 %를 약 240 ~ 350 ℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)에 연속적으로 투입, 용융 및 혼련시켜 난연제 그래뉼(Granule)을 제조하였다. 이후, 폴리에틸렌 테레프탈레이트(PET) 48.8%, 미리 제조된 난연제 그래뉼 13.0%, 유리섬유 30%, 난연 보조제 3.2%, 기타 첨가제 5.0%를 상기 비교예 1과 동일하게 약 200 내지 270℃로 가열된 이축혼련 압출기(Φ: 40㎜, L/D = 44)를 사용하여 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 2에 비교예에 따른 물성을 측정하여 기재하였다.
[비교예 6] PET용 난연 조성물 제조
폴리에틸렌 테레프탈레이트(PET) 48.8%, 유리섬유 30%, 난연제 C 13.0%, 난연 보조제 3.25%, 기타 첨가제 5.0%를 약 200 ~ 270℃로 가열된 이축 혼련 압출기(Φ: 40㎜, L/D = 44)에 연속적으로 투입, 용융 및 혼련시켜 펠렛을 제조하였다. 상기 난연제 C는 일반적인 브롬화 폴리스티렌계 난연제로 Albermale社의 SAYTEX3010이다. 하기 표 2에 비교예에 따른 물성을 측정하여 기재하였다.
[비교예 7] PET용 난연 조성물 제조
폴리에틸렌 테레프탈레이트(PET) 43.8%, 유리섬유 30%, 난연제 C 13.0%, 난연 보조제 3.25%, 충격보강제 5.0%, 기타 첨가제 5.0%를 약 200 ~ 270℃로 가열된 이축 혼련 압출기(Φ: 40㎜, L/D = 44)에 연속적으로 투입, 용융 및 혼련시켜 펠렛을 제조하였다. 하기 표 2에 비교예에 따른 물성을 측정하여 기재하였다.
구분 비교예1 비교예2 비교예3 비교예4 비교예5 비교예6 비교예7
PET 수지(단위: 중량%) 52.5 48.8 45.0 48.8 48.8 48.8 43.8
PBT 수지(단위: 중량%) - - - 0.65 - - -
PCT 수지(단위: 중량%) - - - - 0.65 - -
유리섬유(단위: 중량%) 30.0 30.0 30.0 30.0 30.0 30.0 30.0
난연제 A(단위: 중량%) - - - - - - -
난연제 B(단위: 중량%) 10.0 13.0 16.0 12.35 12.35 - -
난연제 C(단위: 중량%) - - - - - 13.0 13.0
난연 보조제(단위: 중량%) 2.50 3.25 4.00 3.2 3.2 3.25 3.25
충격 보강제(단위: 중량%) - - - - - - 5.0
기타 첨가제(단위: 중량%) 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Br함량 % 6.85 8.91 10.96 8.46 8.46 8.91 8.91
충격강도(J/m) 3.2 mm 66.4 64.7 62.8 65.2 64.4 61.3 66.7
6.4 mm 55.7 53.4 47.8 53.7 53.0 52.1 57.1
인장강도 MPa 1,420 1,390 1,380 1,392 1,375 1,339 1,384
굴곡강도 MPa 1,835 1,830 1,828 1,838 1,793 1,772 1,821
유동성 14.7 13.0 10.8 16.1 15.7 11.3 10.5
난연성 (sec) 2.5 2.0 1.3 2.7 1.9 2.3 3.0
상기 비교예 1 내지 3은 실시예 1 내지 3과 동량의 난연제, 난연보조제를 사용하였으며, 이를 비교하였을 때, 난연제 A를 사용한 것이 충격강도가 향상됨을 알 수 있다. 또한, 실시예 4 내지 5는 유리섬유의 함량 범위를 확보하기 위한 실시예이며, 구체적으로 15 내지 45 중량%에서 유리섬유를 조정하였을 때, 충격강도가 70.0 J/m임을 보여주지만, 비교예 2를 참고하면 유리섬유의 함량과는 상관없이 난연제 A를 사용한 것이 충격강도가 향상됨을 알 수 있다.
비교예 4는 실시예 6과 비교하면, (i) 폴리부틸렌 테레프탈레이트와 난연제 B를 미리 혼합하여 사용했을 때와 (ii) 이들이 다른 성분과 한번에 혼합되었을 때의 차이를 알 수 있다. 또한, 비교예 5와 실시예 6 내지 7을 비교하였을 때, 폴리부틸렌 테레프탈레이트와 폴리에틸렌 테레프탈레이트는 난연제와 미리 혼합하여 충격강도가 향상되는 효과를 얻을 수 있지만, 폴리사이클로헥실렌다이메틸렌 테레프탈레이트는 이와 같은 효과를 얻을 수 없다. 이는 폴리사이클로헥실렌다이메틸렌 테레프탈레이트의 용융온도가 높아서 난연제와 미리 혼합할 때, 충분한 혼합이 되지 않기 때문이다. 상기 실시예 6 내지 7은 비교예 2와 비교하면, 난연제 B의 절대 함량은 차이가 나지만, 동종의 난연제를 사용하였을 때, 폴리에스터로 일부 대체하여 미리 혼합한 실시예 6 내지 7의 충격강도가 더 우수한 것을 알 수 있다. 이는 난연제의 제품차이 보다는 난연제와 폴리에스터를 미리 혼합하여 사용하는 것이 충격강도 면에서 우수한 것을 보여준다.
또한, 비교예 7은 실시예 2 및 6 내지 7과 비교하여, 충격강도 향상을 위하여 충격보강제를 사용하는 것 보다는 난연제를 폴리에스터와 미리 혼합하여 사용하는 것이 좀 더 높은 효과를 나타내는 것을 보여준다.
따라서, 전체적으로 난연제 A를 사용하거나, 전체 컴파운딩 가공 전 미리 난연제와 폴리에스테르 일부를 혼합한 난연제를 사용한 경우에는 충격강도가 그렇지 않은 경우 대비 약 5 내지 25 % 향상된 것을 확인할 수 있었다.

Claims (9)

  1. 폴리에틸렌 테레프탈레이트 수지; 및
    난연제를 포함하고,
    상기 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대한 난연제의 함량이 15 내지 45 중량부이며,
    상기 난연제는 브롬화 폴리스티렌과 폴리에스테르를 미리 용융 혼합하여 제조하며, 상기 폴리에스테르의 함량는 난연제 100 중량부에 대하여 2 내지 10 중량부인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  2. 제1항에 있어서, 상기 브롬화 폴리스티렌의 브롬 함량은 60 내지 75 중량%인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  3. 제1항에 있어서, 상기 폴리에틸렌 테레프탈레이트 수지는 0.3 내지 0.9 cm3/g의 고유 점도를 가지며, 상기 폴리에스테르 수지는 0.3 내지 1.2 cm3/g의 고유 점도인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  4. 제1항에 있어서, 상기 폴리에스테르는 폴리에틸렌 테레프탈레이트 또는 폴리부틸렌 테레프탈레이트인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  5. 제1항에 있어서, ASTM D256에 의한 3.2mm 시험편에 대한 충격강도가 70 J/m이상인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  6. 제1항에 있어서, 안티몬 화합물, 삼산화안티몬, 소디움안티모네이트 및 이들의 화합물로 이루어진 군으로부터 선택되는 난연보조제 및 유리섬유(Glass fiber), 울라스토나이트(Wollastonite, Calcium silicate), 몬모릴로나이트(Montmorillonite, Layered silicate nanoclay), 마이카(Mica), 탈크(Talc) 및 이들의 화합물로 이루어진 군으로부터 선택되는 충진제를 더욱 포함하는 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  7. 제6항에 있어서, 상기 폴리에틸렌 테레프탈레이트 수지 100 중량부에 대하여, 충진제의 함량이 20 내지 150 중량부, 난연제의 함량은 15 내지 40 중량부, 난연 보조제의 함량은 3 내지 12 중량부인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 조성물.
  8. 브롬화 폴리스티렌과 폴리에스테르를 미리 용융 혼합하여 난연제를 제조하는 단계;
    상기 난연제와 폴리에틸렌 테레프탈레이트를 용융 혼합하는 단계를 포함하는 난연 폴리에틸렌 테레프탈레이트 수지 제조방법.
  9. 제8항에 있어서, 상기 폴리에스테르의 함량은 난연제 100 중량부에 대하여 2 내지 10 중량부인 것인, 난연 폴리에틸렌 테레프탈레이트 수지 제조방법.
PCT/KR2018/016110 2017-12-21 2018-12-18 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법 WO2019124928A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880081852.4A CN111492010A (zh) 2017-12-21 2018-12-18 耐冲击性提高的阻燃聚对苯二甲酸乙二醇酯树脂组合物及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170177509A KR102426463B1 (ko) 2017-12-21 2017-12-21 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 이를 이용한 제조방법
KR10-2017-0177509 2017-12-21

Publications (1)

Publication Number Publication Date
WO2019124928A1 true WO2019124928A1 (ko) 2019-06-27

Family

ID=66994871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/016110 WO2019124928A1 (ko) 2017-12-21 2018-12-18 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법

Country Status (4)

Country Link
KR (1) KR102426463B1 (ko)
CN (1) CN111492010A (ko)
TW (1) TW201934656A (ko)
WO (1) WO2019124928A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679933A (zh) * 2020-12-17 2021-04-20 浙江旭森非卤消烟阻燃剂有限公司 一种环保型阻燃透明聚酯材料
CN114213812A (zh) * 2021-11-15 2022-03-22 佛山市鑫塑新材料科技有限公司 Pet阻燃材料及其制备方法
CN114276657A (zh) * 2021-12-28 2022-04-05 苏州福田包装材料有限公司 一种pet抗静电聚醚型复合材料
CN117534945A (zh) * 2023-12-12 2024-02-09 中山市乐力隆工程塑料有限公司 一种多功能性工程塑料及其生产方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102349063B1 (ko) * 2021-02-01 2022-01-10 조익래 열 부착 pet 필름
JP2023049335A (ja) * 2021-09-29 2023-04-10 長瀬産業株式会社 ポリエステル系樹脂組成物
CN116864185A (zh) * 2023-06-25 2023-10-10 苏州宇盛电子有限公司 一种聚酯三层绝缘绞线的绝缘材料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316406A (ja) * 1994-05-24 1995-12-05 Kuraray Co Ltd 難燃性ポリエステル系樹脂組成物
JPH09227625A (ja) * 1995-12-21 1997-09-02 Tosoh Corp 難燃剤用臭素化ポリスチレン及びそれよりなる難燃性樹脂組成物
KR20150066384A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 폴리에스테르 수지 조성물
CN105385119A (zh) * 2015-11-24 2016-03-09 金发科技股份有限公司 一种玻纤增强阻燃pbt组合物及其制备方法
KR20170091116A (ko) * 2014-12-03 2017-08-08 에프알엑스 폴리머스, 인코포레이티드 난연성 열가소성 및 열경화성 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093673B (zh) * 2011-01-18 2012-10-31 南通市东方塑胶有限公司 具有抗热老化性能的聚酯及其生产方法
CN103467934B (zh) * 2013-09-03 2016-04-20 金发科技股份有限公司 一种阻燃聚酯组合物及其制备方法
US20170002195A1 (en) * 2014-03-10 2017-01-05 Sabic Global Technologies B.V. Flame retardant polyalkylene terephthalate composition
CN104559079A (zh) * 2014-06-20 2015-04-29 郑豪 一种纳米改性pet工程塑料及其制备方法
CN104927313B (zh) * 2015-06-05 2016-08-17 广东天保新材料有限责任公司 一种高强度高耐温阻燃玻纤增强pet材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316406A (ja) * 1994-05-24 1995-12-05 Kuraray Co Ltd 難燃性ポリエステル系樹脂組成物
JPH09227625A (ja) * 1995-12-21 1997-09-02 Tosoh Corp 難燃剤用臭素化ポリスチレン及びそれよりなる難燃性樹脂組成物
KR20150066384A (ko) * 2013-12-06 2015-06-16 주식회사 엘지화학 폴리에스테르 수지 조성물
KR20170091116A (ko) * 2014-12-03 2017-08-08 에프알엑스 폴리머스, 인코포레이티드 난연성 열가소성 및 열경화성 조성물
CN105385119A (zh) * 2015-11-24 2016-03-09 金发科技股份有限公司 一种玻纤增强阻燃pbt组合物及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112679933A (zh) * 2020-12-17 2021-04-20 浙江旭森非卤消烟阻燃剂有限公司 一种环保型阻燃透明聚酯材料
CN114213812A (zh) * 2021-11-15 2022-03-22 佛山市鑫塑新材料科技有限公司 Pet阻燃材料及其制备方法
CN114276657A (zh) * 2021-12-28 2022-04-05 苏州福田包装材料有限公司 一种pet抗静电聚醚型复合材料
CN117534945A (zh) * 2023-12-12 2024-02-09 中山市乐力隆工程塑料有限公司 一种多功能性工程塑料及其生产方法

Also Published As

Publication number Publication date
TW201934656A (zh) 2019-09-01
CN111492010A (zh) 2020-08-04
KR20190075703A (ko) 2019-07-01
KR102426463B1 (ko) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2019124928A1 (ko) 내충격성이 향상된 난연 폴리에틸렌 테레프탈레이트 수지 조성물 및 그 제조방법
CN102604377B (zh) 一种阻燃热塑性聚酰胺组合物
WO2013115538A1 (ko) 비할로겐 난연 고강성 폴리카보네이트 수지 조성물
CN102504500A (zh) Pet工程塑料、其制备方法和应用
WO2015088239A1 (ko) 할로겐계 난연 유리섬유 강화 폴리아미드 수지 조성물, 및 제조방법
EP0794191A1 (de) Salze von 1-Hydroxy-dihydrophospholoxiden und 1-Hydroxy-phospholanoxiden und ihre Verwendung als Flammschutzmittel
CA2095220A1 (en) Polyester molding composition having improved flame resistance
KR101790834B1 (ko) 폴리에틸렌 테레프탈레이트 난연수지 조성물 및 사출품
CN108219427B (zh) 生物级透明阻燃聚碳酸酯复合物及其制备方法
JPH0424383B2 (ko)
JP3951451B2 (ja) 耐トラッキング特性に優れた難燃性熱可塑性樹脂組成物
KR930001998B1 (ko) 난연성 폴리에스테르 수지조성물
JP2675578B2 (ja) 難燃性に優れたスチレン系樹脂組成物
KR100633786B1 (ko) 고함량의 난연제를 포함하는 난연성 폴리프로필렌컬러수지 조성물의 제조방법
KR100443269B1 (ko) 난연성 폴리올레핀계 수지 조성물
JPH03124761A (ja) 難燃性樹脂組成物
JP3051278B2 (ja) 難燃性樹脂組成物
JP3080724B2 (ja) 導電性ポリエステル樹脂組成物
JPS59206460A (ja) 難燃性ポリアミド樹脂組成物
JP2602967B2 (ja) 難燃性ポリエステル樹脂組成物
KR20160083643A (ko) 폴리에스터 수지 조성물 및 이를 이용한 플라스틱 성형체 제조
CN116082782A (zh) 一种耐候阻燃苯乙烯聚合物
JPS61254660A (ja) ポリアミド樹脂組成物
JP4034831B2 (ja) 耐トラッキング特性が改善された難燃性ポリエステル樹脂組成物
CN116120660A (zh) 一种高耐候阻燃增强聚丙烯复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890353

Country of ref document: EP

Kind code of ref document: A1