WO2019119783A1 - 汽油机用废气再循环***及控制方法 - Google Patents

汽油机用废气再循环***及控制方法 Download PDF

Info

Publication number
WO2019119783A1
WO2019119783A1 PCT/CN2018/095330 CN2018095330W WO2019119783A1 WO 2019119783 A1 WO2019119783 A1 WO 2019119783A1 CN 2018095330 W CN2018095330 W CN 2018095330W WO 2019119783 A1 WO2019119783 A1 WO 2019119783A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
pressure egr
egr
high pressure
low pressure
Prior art date
Application number
PCT/CN2018/095330
Other languages
English (en)
French (fr)
Inventor
陈泓
李钰怀
练海年
陈砚才
冶麟
张奇洲
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Priority to US16/311,811 priority Critical patent/US20190277225A1/en
Publication of WO2019119783A1 publication Critical patent/WO2019119783A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/19Means for improving the mixing of air and recirculated exhaust gases, e.g. venturis or multiple openings to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10091Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements
    • F02M35/10118Air intakes; Induction systems characterised by details of intake ducts: shapes; connections; arrangements with variable cross-sections of intake ducts along their length; Venturis; Diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details

Definitions

  • the invention relates to the technical field of automobile exhaust gas recirculation, in particular to an exhaust gas recirculation system and a control method for a gasoline engine.
  • Exhaust gas recirculation technology can cool the in-cylinder combustion process, reduce the maximum combustion temperature, limit the occurrence of knocking while improving the thermal efficiency of the gasoline engine, and effectively reduce nitrogen oxides (nitrogen). Oxides, NOx emissions.
  • the Variable Nozzle Turbo can control the exhaust back pressure by adjusting the nozzle ring opening degree, and the venturi can control the intake pressure in the intake pipe.
  • the combination of various technical means can effectively improve the exhaust gas recirculation rate, increase the amount of recirculated exhaust gas involved in combustion, and effectively reduce nitrogen oxide emissions.
  • this single high-pressure cold EGR cannot achieve high-pressure hot EGR cycle, and cannot improve the partial load of the gasoline engine. Economical.
  • a single high-pressure EGR system cannot achieve EGR when the gasoline engine is running at low speed and large load, and the economy and emissions of the gasoline engine cannot be improved.
  • the gasoline engine EGR system mostly adopts a separate high-pressure cold EGR or low-pressure cold EGR circulation system, which cannot meet the demand of different EGR cycles of different loads and working conditions of the gasoline engine, and limits the potential of the EGR cycle to improve the thermal efficiency and NOx emissions of the gasoline engine.
  • the present invention aims to provide an exhaust gas recirculation system and a control method for a gasoline engine, and adopt different EGR circulation modes under different loads and working conditions of the engine to meet the gasoline engine.
  • the invention provides an exhaust gas recirculation system for a gasoline engine, comprising an intake manifold connected in series, a turbocharger compressor, an intake intercooler, an intake manifold, a cylinder, an exhaust manifold, a turbocharger turbine And an exhaust manifold, the turbocharger turbine being coupled to the turbocharger compressor, the system further comprising:
  • a first exhaust gas return pipe a hot end of the first exhaust gas return pipe is connected to the exhaust manifold, and a cold end of the first exhaust gas return pipe is connected to the intake manifold, the first a high pressure EGR cooler and a high pressure EGR valve are arranged on the exhaust gas return pipe;
  • the high pressure EGR bypass pipe is connected in parallel with the first exhaust gas return pipe, and a high pressure EGR bypass valve is disposed on the high pressure EGR bypass pipe;
  • a second exhaust gas return pipe a hot end of the second exhaust gas return pipe is connected to the exhaust manifold, a cold end of the second exhaust gas return pipe is connected to the intake manifold, and the second exhaust gas is recirculated a low pressure EGR cooler, a low pressure EGR valve and a low pressure EGR pump are provided on the tube;
  • An EGR control unit that is electrically coupled to the high pressure EGR valve, the high pressure EGR bypass valve, the low pressure EGR valve, and the low pressure EGR pump, respectively.
  • a venturi is connected between the intake intercooler and the intake manifold, and a cold end of the first exhaust return pipe is connected to a throat of the venturi.
  • the intake end and the outlet end of the high-pressure EGR bypass pipe are respectively connected to the hot end and the cold end of the first exhaust gas return pipe.
  • turbocharger is a variable nozzle turbocharger, the turbocharger turbine being a variable section turbine, the turbocharger turbine being electrically coupled to the EGR control unit.
  • the present invention also provides a control method for the above-described exhaust gas recirculation system for a gasoline engine, the control method comprising:
  • the EGR control unit controls the high pressure EGR bypass valve to open when the engine is at a steady state operating condition lower than a preset load, and controls the high pressure EGR valve, the low pressure EGR valve, and the low pressure EGR pump to be closed a gasoline engine exhaust gas from the exhaust manifold to perform a high pressure hot EGR cycle through the high pressure EGR bypass pipe;
  • the EGR control unit controls the low pressure EGR valve and the low pressure EGR pump to open when the engine is in a steady state operating condition above a preset load, controlling the high pressure EGR valve and the high pressure EGR bypass valve to close a gasoline engine exhaust gas from the exhaust manifold through the second exhaust gas return pipe for a low pressure cold EGR cycle;
  • the EGR control unit controls the high pressure EGR valve, the low pressure EGR valve and the low pressure EGR pump to open when the engine is in a transient acceleration operating condition, and controls the high pressure EGR bypass valve to be closed, and the gasoline engine exhausts simultaneously
  • a high pressure cold EGR cycle is performed from the exhaust manifold via the first exhaust gas return pipe and a low pressure cold EGR cycle is performed from the exhaust manifold via the second exhaust gas return pipe.
  • control method further includes:
  • turbocharger is a variable nozzle turbocharger and the turbocharger turbine is a variable section turbine, then:
  • the EGR control unit controls the opening of the turbocharger turbine to a maximum when the engine is in a steady state operating condition below a preset load
  • the EGR control unit controls the opening degree of the turbocharger turbine to be less than a maximum opening degree when the engine is in a steady state operating condition above a preset load;
  • the EGR control unit controls the opening of the turbocharger turbine to be less than a maximum opening degree when the engine is in a transient acceleration operating condition.
  • the preset load is 25% of the full load of the gasoline engine.
  • the invention has the beneficial effects that the requirements of different operation modes of the exhaust gas recirculation of the gasoline engine under different operating loads and working conditions are satisfied, and the high pressure, low pressure, hot and cold EGR cycle or high and low pressure cold EGR can be adopted when the gasoline engine is operated under different loads.
  • the flexible control of the mixing cycle effectively improves the thermal efficiency of the gasoline engine operating in the full range of operating conditions and effectively reduces NOx emissions.
  • FIG. 1 is a schematic view showing the structure of an exhaust gas recirculation system for a gasoline engine in an embodiment of the present invention.
  • Fig. 2 is a logic diagram showing a control method of an exhaust gas recirculation system for a gasoline engine in an embodiment of the present invention.
  • an embodiment of the present invention provides an exhaust gas recirculation for a gasoline engine (Exhaust Gas Recirculation, EGR) system for a turbocharged engine, the turbocharger including a turbocharger compressor and a turbocharger turbine, the gasoline engine exhaust gas recirculation system including an intake manifold connected in series 1.
  • the exhaust manifold 9 is provided with a three-way catalyst 16, the system further comprising:
  • the first exhaust gas return pipe 10 the hot end 10a of the first exhaust gas return pipe 10 is connected to the exhaust manifold 8, and the cold end 10b of the first exhaust gas return pipe 10 is connected to the intake manifold 6, the first exhaust gas return pipe 10 is provided with a high pressure EGR cooler 12 and a high pressure EGR valve 13;
  • a high pressure EGR bypass pipe 14 is connected in parallel with the first exhaust gas return pipe 10, a high pressure EGR bypass pipe 14 is provided with a high pressure EGR bypass valve 15;
  • the second exhaust gas return pipe 20 the hot end 20a of the second exhaust gas return pipe 20 is connected to the exhaust manifold 9, the cold end 20b of the second exhaust gas return pipe 20 is connected to the intake manifold 1, and the second exhaust gas return pipe 20 is connected.
  • the EGR control unit 22 and the EGR control unit 22 are electrically connected to the high pressure EGR valve 13, the high pressure EGR bypass valve 15, the low pressure EGR valve 18, and the low pressure EGR pump 19, respectively.
  • the intake end and the outlet end of the high-pressure EGR bypass pipe 14 are respectively connected to the hot end 10a and the cold end 10b of the first exhaust gas return pipe.
  • the present invention is not limited thereto.
  • the intake end and the outlet end of the high pressure EGR bypass pipe 14 may also be connected to the exhaust manifold 9 and the intake manifold 6, respectively.
  • a venturi pipe 5 is connected between the intake intercooler 4 and the intake manifold 6, and an intake port of the venturi pipe 5 is connected to the intake manifold 1, and an air outlet of the venturi 5 is
  • the intake manifold 6 is connected, the cold end 10b of the first exhaust gas return pipe 10 is connected to the throat of the venturi pipe 5, and the venturi pipe 5 can adjust the pressure at the throat to achieve an increase in the EGR rate.
  • the turbocharger of this embodiment is a Variable Nozzle Turbo (VNT), which is a variable section turbine, the turbocharger turbine 3 and EGR control
  • the unit 22 is electrically coupled to control the opening of the guide vanes of the turbocharger turbine 3 via the EGR control unit 22 to control the flow and flow rate of gas flowing through the blades of the turbocharger turbine 3.
  • VNT Variable Nozzle Turbo
  • the exhaust of the hot end exhaust gas return pipe 10 does not pass through the high pressure EGR cooler 12, directly passes through the high pressure EGR bypass pipe 14, and is controlled by the high pressure EGR bypass valve 15 from the venturi 5
  • the fresh air of the intake manifold 1 enters the intake manifold 6 together;
  • the exhaust gas after the three-way catalyst 16 flows into the low pressure EGR intercooler 17 through the second exhaust gas return pipe 20, and enters the turbine increase under the joint control of the low pressure EGR valve 18 and the low pressure EGR pump 19. Intake manifold 1 in front of compressor compressor 2.
  • the front exhaust pressure of the turbocharger of the gasoline engine and the intake pressure of the venturi 5 throat can be increased to some extent without significantly affecting the intake pressure of the gasoline engine.
  • a turbocharger turbine 3 with variable cross section can increase the pressure in front of the turbocharger turbine 3, and the two combine to form a variable turbocharger system with a venturi exhaust gas recirculation system (Variable Nozzle Turbo+venturi-Exhaust Gas Recirculation, VNT+vEGR).
  • the operating states of the high pressure EGR valve 13, the high pressure EGR bypass valve 15, the low pressure EGR valve 18, and the low pressure EGR pump 19 can be controlled by the EGR control unit 22 to achieve different The EGR cycle mode; the opening of the turbocharger turbine is controlled by the EGR control unit 22, thereby improving thermal efficiency and optimizing NOx emissions.
  • the embodiment of the present invention further provides a control method for an exhaust gas recirculation system for a gasoline engine, which is used for controlling the exhaust gas recirculation system for a gasoline engine as described above, and the control method includes:
  • the EGR control unit 22 controls the high-pressure EGR bypass valve 15 to open, and controls the high-pressure EGR valve 13, the low-pressure EGR valve 18, and the low-pressure EGR pump 19 to be closed, and the gasoline engine exhausts from The exhaust manifold 8 performs a high pressure hot EGR cycle via the high pressure EGR bypass pipe 14;
  • the EGR control unit 22 controls the low pressure EGR valve 18 and the low pressure EGR pump 19 to open, and controls the high pressure EGR valve 13 and the high pressure EGR bypass valve 15 to be closed, and the gasoline engine exhausts from The exhaust manifold 9 performs a low pressure cold EGR cycle via the second exhaust gas return pipe 20;
  • the EGR control unit 22 controls the high pressure EGR valve 13, the low pressure EGR valve 18, and the low pressure EGR pump 19 to open, controls the high pressure EGR bypass valve 15 to close, and the gasoline engine exhausts simultaneously from the exhaust manifold. 8 performs a high pressure cold EGR cycle via the first exhaust gas return pipe 10 and a low pressure cold EGR cycle from the exhaust manifold 9 via the second exhaust gas return pipe 20.
  • control method further includes:
  • the high pressure hot EGR cycle can increase the temperature in the cylinder, which is advantageous for fuel atomization in the cylinder 7. Thereby improving thermal efficiency and reducing NOx emissions.
  • the high pressure hot EGR cycle is performed, the high pressure EGR bypass valve 15 is opened, the high pressure EGR valve 13, the low pressure EGR valve 18, and the low pressure EGR pump 19 are closed, and a part of the exhaust gas discharged from the exhaust manifold 8 passes through the first exhaust gas return pipe 10.
  • the hot end 10a, the high pressure EGR bypass pipe 14, the high pressure EGR bypass valve 15, the cold end 10b of the first exhaust gas return pipe 10, and the venturi pipe 5 are circulated to the intake manifold 6; the other part of the exhaust gas passes through the exhaust manifold 9 and The three-way catalyst 16 is discharged.
  • the low pressure cold EGR cycle can reduce the temperature in the cylinder 7, thereby improving the thermal efficiency and the engine life, and reducing the NOx emissions.
  • the high pressure EGR valve 13 and the high pressure EGR bypass valve 15 are closed, the low pressure EGR valve 18 and the low pressure EGR pump 19 are opened, and a part of the exhaust gas discharged from the exhaust manifold 8 is passed through the second exhaust gas return pipe 20.
  • the hot end 20a, the low pressure EGR cooler 17, the low pressure EGR valve 18, the low pressure EGR pump 19, and the cold end 20b of the second exhaust gas return pipe 20 flow into the intake manifold 1; the other portion of the exhaust gas passes through the exhaust manifold 9 and the three-way catalyst 16 discharge.
  • the high pressure EGR bypass valve 15 is closed, the high pressure EGR valve 13, the low pressure EGR valve 18 and the low pressure EGR pump 19 are opened, so that the first part of the exhaust gas discharged from the exhaust manifold 8 passes through The hot end 10a of the exhaust gas return pipe 10, the high pressure EGR cooler 12, the high pressure EGR valve 13 and the cold end 10b of the first exhaust gas return pipe 10 and the venturi pipe 5 flow into the intake manifold 6; the second portion passes through the second exhaust gas The hot end 20a of the return pipe 20, the low pressure EGR cooler 17, the low pressure EGR valve 18, the low pressure EGR pump 19, and the cold end 20b of the second exhaust gas return pipe 20 flow into the intake manifold 1; the third portion of the exhaust gas passes through the exhaust manifold 9 and The three-way catalyst 16 is discharged.
  • the EGR control unit 22 controls the opening degree of the turbocharger turbine 3 to be maximized
  • the EGR control unit 22 controls the opening degree of the turbocharger turbine 3 to be less than the maximum opening degree when the engine is in a steady state operating condition above a preset load;
  • the EGR control unit 22 controls the opening of the turbocharger turbine 3 to be less than the maximum opening.
  • the preset load may be 25%, but is not limited thereto, and other preset loades may be selected according to the operating characteristics of the engine.
  • the engine load refers to the ratio of the power of the engine at a certain speed and the maximum power that can be emitted at the same speed.
  • the opening degree of the guide vane of the turbocharger turbine 3 can affect the air flow speed of the guide turbine blade.
  • the nozzle ring cross-sectional area is reduced, the turbine speed is increased, and the supercharging pressure is increased to ensure a low speed.
  • the cross-sectional area increases the supercharger speed, thereby increasing the boost pressure and the intake air amount to meet the intake requirements during transient operation.
  • the control method of the gasoline engine exhaust gas recirculation system provided by the embodiment can make the gasoline engine adopt different EGR circulation modes under different loads and working conditions, and realize the low pressure cold EGR and high pressure cold EGR hybrid cycle to realize the optimization of the EGR rate. And the EGR responsiveness is improved, thereby achieving the purpose of improving thermal efficiency and optimizing NOx emissions.
  • the control method of the gasoline engine exhaust gas recirculation system provided by the embodiment can make the gasoline engine adopt different EGR circulation modes under different loads and working conditions, and realize the low pressure cold EGR and high pressure cold EGR hybrid cycle to realize the optimization of the EGR rate. And the EGR responsiveness is improved, thereby achieving the purpose of improving thermal efficiency and optimizing NOx emissions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)

Abstract

一种汽油机用废气再循环***及控制方法,包括第一废气回流管(10)、高压EGR旁通管(14)、第二废气回流管(20)和EGR控制单元(22);第一废气回流管(10)的热端(10a)与排气歧管(8)相连接,第一废气回流管(10)的冷端(10b)与进气歧管(6)相连接,第一废气回流管(10)上设有高压EGR冷却器(12)和高压EGR阀(13);高压EGR旁通管(14)与第一废气回流管(10)并联,高压EGR旁通管(14)上设有高压EGR旁通阀(15);第二废气回流管(20)的热端(20a)与排气总管(9)相连接,第二废气回流管(20)的冷端(20b)与进气总管(1)相连接,第二废气回流管(20)上设有低压EGR冷却器(17)、低压EGR阀(18)和低压EGR泵(19);EGR控制单元(22)分别与高压EGR阀(13)、高压EGR旁通阀(15)、低压EGR阀(18)和低压EGR泵(19)电信号连接。在发动机的不同负荷下采用不同的EGR循环方式,满足汽油机在不同负荷及工况对不同EGR循环的需求。

Description

汽油机用废气再循环***及控制方法 技术领域
本发明涉及汽车废气再循环技术领域,特别是涉及一种汽油机用废气再循环***及控制方法。
背景技术
在现有发动机燃烧过程的控制技术中,汽油机动力性和经济性的提升会受到爆震的限制,且汽油机燃烧过程中会产生氮氧化物的排放。废气再循环技术(Exhaust Gas Recirculation, EGR)可以对缸内燃烧过程进行冷却,降低最高燃烧温度,限制爆震发生的同时提升汽油机热效率,并有效降低氮氧化物(nitrogen oxides, NOx)排放。
技术问题
可变式喷嘴涡轮增压器(Variable Nozzle Turbo, VNT)可以通过喷嘴环开度的大小调节实现排气背压的控制,同时在进气管中采用文丘里管可以控制进气的压力,这两种技术手段相结合可以有效提升废气再循环率,增大参与燃烧的回流废气量,能够有效降低氮氧化物排放,但这种单一的高压冷EGR无法实现高压热EGR循环,无法改善汽油机部分负荷的经济性。同时,单一的高压EGR***无法在汽油机低速大负荷运行时实现EGR,不能实现汽油机经济性和排放的改善。
目前汽油机EGR***多采用单独的高压冷EGR或低压冷EGR循环***,无法满足汽油机不同负荷及工况对不同EGR循环的需求,限制了EGR循环改善汽油机热效率和NOx排放的潜力。
技术解决方案
为了克服现有技术中存在的缺点和不足,本发明的目的在于提供一种汽油机用废气再循环***及控制方法,在发动机的不同负荷及工况下采用不同的EGR循环方式,以满足汽油机在不同负荷及工况对不同EGR循环的需求。
本发明提供一种汽油机用废气再循环***,包括依次连接的进气总管、涡轮增压器压气机、进气中冷器、进气歧管、气缸、排气歧管、涡轮增压器涡轮机和排气总管,所述涡轮增压器涡轮机与所述涡轮增压器压气机连接,所述***还包括:
第一废气回流管,所述第一废气回流管的热端与所述排气歧管相连接,所述第一废气回流管的冷端与所述进气歧管相连接,所述第一废气回流管上设有高压EGR冷却器和高压EGR阀;
高压EGR旁通管,所述高压EGR旁通管与所述第一废气回流管并联,所述高压EGR旁通管上设有高压EGR旁通阀;
第二废气回流管,所述第二废气回流管的热端与所述排气总管相连接,所述第二废气回流管的冷端与所述进气总管相连接,所述第二废气回流管上设有低压EGR冷却器、低压EGR阀和低压EGR泵;
EGR控制单元,所述EGR控制单元分别与所述高压EGR阀、所述高压EGR旁通阀、所述低压EGR阀和所述低压EGR泵电信号连接。
进一步地,所述进气中冷器和所述进气歧管之间连接有文丘里管,所述第一废气回流管的冷端与所述文丘里管的喉口相连接。
进一步地,所述高压EGR旁通管的进气端与出气端分别与所述第一废气回流管的热端及冷端连接。
进一步地,所述涡轮增压器为可变式喷嘴涡轮增压器,所述涡轮增压器涡轮机为可变截面涡轮机,所述涡轮增压器涡轮机与所述EGR控制单元电信号连接。
本发明还提供一种上述的汽油机用废气再循环***的控制方法,所述控制方法包括:
当发动机处于低于预设负荷的稳态运行工况时,所述EGR控制单元控制所述高压EGR旁通阀打开,控制所述高压EGR阀、所述低压EGR阀和所述低压EGR泵关闭,汽油机排气从所述排气歧管经所述高压EGR旁通管进行高压热EGR循环;
当发动机处于高于预设负荷的稳态运行工况时,所述EGR控制单元控制所述低压EGR阀和所述低压EGR泵打开,控制所述高压EGR阀和所述高压EGR旁通阀关闭,汽油机排气从所述排气总管经所述第二废气回流管进行低压冷EGR循环;
当发动机处于瞬态加速运行工况时,所述EGR控制单元控制所述高压EGR阀、所述低压EGR阀和所述低压EGR泵打开,控制所述高压EGR旁通阀关闭,汽油机排气同时从所述排气歧管经所述第一废气回流管进行高压冷EGR循环和从所述排气总管经所述第二废气回流管进行低压冷EGR循环。
进一步地,所述控制方法还包括:
获取发动机转速信号和发动机扭矩信号;
根据所述发动机转速信号和所述发动机扭矩信号,判断发动机是处于低于预设负荷的稳态运行工况、高于预设负荷的稳态运行工况还是瞬态加速运行工况。
进一步地,若所述涡轮增压器为可变式喷嘴涡轮增压器,所述涡轮增压器涡轮机为可变截面涡轮机,则:
当发动机处于低于预设负荷的稳态运行工况时,所述EGR控制单元控制所述涡轮增压器涡轮机的开度达到最大;
当发动机处于高于预设负荷的稳态运行工况时,所述EGR控制单元控制所述涡轮增压器涡轮机的开度小于最大开度;
当发动机处于瞬态加速运行工况时,所述EGR控制单元控制所述涡轮增压器涡轮机的开度小于最大开度。
进一步地,所述预设负荷为汽油机满负荷的25%。
有益效果
本发明有益效果在于:满足了汽油机在不同运行负荷及工况对废气再循环不同运行方式的要求,实现了汽油机以不同负荷运行时,能够采用高压、低压、冷热EGR循环或高低压冷EGR混合循环的灵活控制,有效提升了汽油机在全工况范围内运行的热效率,并有效降低NOx排放。
附图说明
图1是本发明实施例中汽油机用废气再循环***的结构示意图。
图2是本发明实施例中汽油机用废气再循环***的控制方法的逻辑图。
本发明的实施方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明详细说明如下。
如图1所示,本发明实施例提供一种汽油机用废气再循环(Exhaust Gas Recirculation, EGR)***,适用于配备涡轮增压器的发动机,涡轮增压器包括涡轮增压器压气机和涡轮增压器涡轮机,所述汽油机用废气再循环***包括依次连接的进气总管1、涡轮增压器压气机2、进气中冷器4、进气歧管6、气缸7、排气歧管8、涡轮增压器涡轮机3和排气总管9,涡轮增压器涡轮机3与涡轮增压器压气机2连接,排气总管9上设有三元催化器16,该***还包括:
第一废气回流管10,第一废气回流管10的热端10a与排气歧管8相连接,第一废气回流管10的冷端10b与进气歧管6相连接,第一废气回流管10上设有高压EGR冷却器12和高压EGR阀13;
高压EGR旁通管14,高压EGR旁通管14与第一废气回流管10并联,高压EGR旁通管14上设有高压EGR旁通阀15;
第二废气回流管20,第二废气回流管20的热端20a与排气总管9相连接,第二废气回流管20的冷端20b与进气总管1相连接,第二废气回流管20上设有低压EGR冷却器17、低压EGR阀18和低压EGR泵19;
EGR控制单元22,EGR控制单元22分别与高压EGR阀13、高压EGR旁通阀15、低压EGR阀18和低压EGR泵19电信号连接。
进一步地,本实施例中,高压EGR旁通管14的进气端与出气端分别与第一废气回流管的热端10a及冷端10b连接。但本发明不限于此,在其它实施例中,高压EGR旁通管14的进气端与出气端也可以分别与排气歧管9和进气歧管6相连接。
在本实施例中,进气中冷器4和进气歧管6之间连接有文丘里管5,文丘里管5的进气口与进气总管1连接,文丘里管5的出气口与进气歧管6相连接,第一废气回流管10的冷端10b与文丘里管5的喉口相连接,文丘里管5可以调节喉口处的压力,实现EGR率的提高。
本实施例的涡轮增压器为可变式喷嘴涡轮增压器(Variable Nozzle Turbo, VNT),所述涡轮增压器涡轮机3为可变截面涡轮机,所述涡轮增压器涡轮机3与EGR控制单元22电信号连接,可以通过EGR控制单元22控制涡轮增压器涡轮机3的导流叶片的开度,从而控制流过涡轮增压器涡轮机3叶片的气体的流量和流速。
在实现高压冷EGR循环时,汽油机废气从排气歧管8经第一废气回流管10和高压EGR冷却器12后,废气在高压EGR阀13的控制下,从文丘里管5与进气总管1的新鲜空气一同进入进气歧管6。
在实现高压热EGR循环时,热端废气回流管10的废气不通过高压EGR冷却器12,直接通过高压EGR旁通管14,并在高压EGR旁通阀15的控制下从文丘里管5与进气总管1的新鲜空气一同进入进气歧管6;
在实现低压冷EGR循环时,三元催化器16后的废气经第二废气回流管20流入低压EGR中冷器17,并在低压EGR阀18和低压EGR泵19的共同控制下,进入涡轮增压器压气机2前的进气总管1。
本实施例中,由于采用文丘里管5,可以在不明显影响汽油机进气压力的情况下,一定程度上增大汽油机涡轮增压器前排气压力与文丘里管5喉口进气压力的差值;采用截面可变的涡轮增压器涡轮机3可以一定程度提升涡轮增压器涡轮机3前的压力,二者相结合形成带文丘里管废气再循环***的可变涡轮增压***(Variable Nozzle Turbo+venturi-Exhaust Gas Recirculation, VNT+vEGR)。
本实施例的汽油机在以不同的负荷及工况运行时,可通过EGR控制单元22控制高压EGR阀13、高压EGR旁通阀15、低压EGR阀18和低压EGR泵19的运行状态,实现不同的EGR循环方式;通过EGR控制单元22控制涡轮增压器涡轮机的开度,进而提升热效率和优化NOx排放。
本发明实施例还提供一种汽油机用废气再循环***的控制方法,用于控制如上所述的汽油机用废气再循环***,所述控制方法包括:
当发动机处于低于预设负荷的稳态运行工况时,EGR控制单元22控制高压EGR旁通阀15打开,控制高压EGR阀13、低压EGR阀18和低压EGR泵19关闭,汽油机排气从排气歧管8经高压EGR旁通管14进行高压热EGR循环;
当发动机处于高于预设负荷的稳态运行工况时,EGR控制单元22控制低压EGR阀18和低压EGR泵19打开,控制高压EGR阀13和高压EGR旁通阀15关闭,汽油机排气从排气总管9经第二废气回流管20进行低压冷EGR循环;
当发动机处于瞬态加速运行工况时,EGR控制单元22控制高压EGR阀13、低压EGR阀18和低压EGR泵19打开,控制高压EGR旁通阀15关闭,汽油机排气同时从排气歧管8经第一废气回流管10进行高压冷EGR循环和从排气总管9经第二废气回流管20进行低压冷EGR循环。
进一步地,所述控制方法还包括:
获取发动机转速信号和发动机扭矩信号;
根据所述发动机转速信号和所述发动机扭矩信号判断判断发动机是处于低于预设负荷的稳态运行工况、高于预设负荷的稳态运行工况还是瞬态加速运行工况。
由于发动机以低负荷稳态运行时,气缸7内的进气量较少,气缸7内的温度较低,此时进行高压热EGR循环可以提高缸内温度,利于气缸7内的燃油雾化,进而提高热效率,降低NOx排放。在进行高压热EGR循环时,打开高压EGR旁通阀15,关闭高压EGR阀13、低压EGR阀18和低压EGR泵19,使排气歧管8排出的废气一部分经第一废气回流管10的热端10a、高压EGR旁通管14、高压EGR旁通阀15、第一废气回流管10的冷端10b和文丘里管5循环至进气歧管6;另一部分废气经排气总管9和三元催化器16排出。
由于发动机以高负荷稳态运行时,气缸7内的温度较高,容易发生爆震,此时进行低压冷EGR循环,可以降低气缸7内的温度,进而提高热效率以及提升发动机寿命,降低NOx排放。在进行低压冷EGR循环时,关闭高压EGR阀13和高压EGR旁通阀15,打开低压EGR阀18和低压EGR泵19,使排气歧管8排出的废气一部分经第二废气回流管20的热端20a、低压EGR冷却器17、低压EGR阀18、低压EGR泵19和第二废气回流管20的冷端20b流入进气总管1;另一部分废气经排气总管9和三元催化器16排出。
由于发动机以瞬态加速工况运行时,需要提高发动机转速,只采用低压EGR冷循环会由于管路过长,导致响应时间慢,扭矩不足;只采用高压EGR冷循环会导致气缸内的进气量不足,此时进行高压EGR冷循环和低压冷EGR混合循环可以解决上述问题并提高热效率,降低NOx排放。在进行低压冷EGR和高压冷EGR混合循环时,关闭高压EGR旁通阀15,打开高压EGR阀13、低压EGR阀18和低压EGR泵19,使得排气歧管8排出的废气第一部分经第一废气回流管10的热端10a、高压EGR冷却器12、高压EGR阀13和第一废气回流管10的冷端10b和文丘里管5流入进气歧管6;第二部分经第二废气回流管20的热端20a、低压EGR冷却器17、低压EGR阀18、低压EGR泵19和第二废气回流管20的冷端20b流入进气总管1;第三部分废气经排气总管9和三元催化器16排出。
进一步地,当发动机处于低于预设负荷的稳态运行工况时,EGR控制单元22控制涡轮增压器涡轮机3的开度达到最大;
当发动机处于高于预设负荷的稳态运行工况时,EGR控制单元22控制涡轮增压器涡轮机3的开度小于最大开度;
当发动机处于瞬态加速运行工况时,EGR控制单元22控制涡轮增压器涡轮机3的开度小于最大开度。
本实施例中,所述预设负荷可以为25%,但不限于此,根据发动机的运行特性,也可以选择其他比例的预设负荷。
可以理解地,发动机负荷是指发动机在某一转速下,当时发动机发出的功率与同一转速下所可能发出的最大功率之比。
本实施例中涡轮增压器涡轮机3的导流叶片的开度能够影响导向涡轮叶片的气流速度,发动机低速运转时,喷嘴环截面积减小,涡轮速度上升,增压压力增加,保证了低转速时的增压压力和进气量;发动机高速运转时,喷嘴环截面积增大,涡轮转速下降,防止增压器超速;发动机加速时,为了提高增压器的响应速度,可减小喷嘴环截面积,提高增压器转速,从而提高增压压力和进气量,满足瞬态工作时的进气要求。
本实施例提供的汽油机用废气再循环***的控制方法,可以使汽油机在不同的负荷及工况采用不同的EGR循环方式,并实现低压冷EGR和高压冷EGR混合循环,实现了EGR率的优化和EGR响应性的提升,进而达到提升热效率和优化NOx排放的目的。
上述实施方式只是本发明的实施例,不是用来限制本发明的实施与权利范围,凡依据本发明专利所申请的保护范围中所述的内容做出的等效变化和修饰,均应包括在本发明的专利保护范围内。
工业实用性
本实施例提供的汽油机用废气再循环***的控制方法,可以使汽油机在不同的负荷及工况采用不同的EGR循环方式,并实现低压冷EGR和高压冷EGR混合循环,实现了EGR率的优化和EGR响应性的提升,进而达到提升热效率和优化NOx排放的目的。

Claims (8)

  1. 一种汽油机用废气再循环***,包括依次连接的进气总管(1)、涡轮增压器压气机(2)、进气中冷器(4)、进气歧管(6)、气缸(7)、排气歧管(8)、涡轮增压器涡轮机(3)和排气总管(9),所述涡轮增压器涡轮机(3)与所述涡轮增压器压气机(2)连接,其特征在于,所述***还包括:
    第一废气回流管(10),所述第一废气回流管(10)的热端(10a)与所述排气歧管(8)相连接,所述第一废气回流管(10)的冷端(10b)与所述进气歧管(6)相连接,所述第一废气回流管(10)上设有高压EGR冷却器(12)和高压EGR阀(13);
    高压EGR旁通管(14),所述高压EGR旁通管(14)与所述第一废气回流管(10)并联,所述高压EGR旁通管(14)上设有高压EGR旁通阀(15);
    第二废气回流管(20),所述第二废气回流管(20)的热端(20a)与所述排气总管(9)相连接,所述第二废气回流管(20)的冷端(20b)与所述进气总管(1)相连接,所述第二废气回流管(20)上设有低压EGR冷却器(17)、低压EGR阀(18)和低压EGR泵(19);
    EGR控制单元(22),所述EGR控制单元(22)分别与所述高压EGR阀(13)、所述高压EGR旁通阀(15)、所述低压EGR阀(18)和所述低压EGR泵(19)电信号连接。
  2. 如权利要求1所述的汽油机用废气再循环***,其特征在于,所述进气中冷器(4)和所述进气歧管(6)之间连接有文丘里管(5),所述第一废气回流管(10)的冷端(10b)与所述文丘里管(5)的喉口相连接。
  3. 如权利要求1或2所述的汽油机用废气再循环***,其特征在于,所述高压EGR旁通管(14)的进气端与出气端分别与所述第一废气回流管的热端(10a)及冷端(10b)连接。
  4. 如权利要求2所述的汽油机用废气再循环***,其特征在于,所述涡轮增压器为可变式喷嘴涡轮增压器,所述涡轮增压器涡轮机(3)为可变截面涡轮机,所述涡轮增压器涡轮机(3)与所述EGR控制单元(22)电信号连接。
  5. 一种如权利要求1至4任一项所述的汽油机用废气再循环***的控制方法,其特征在于,所述控制方法包括:
    当发动机处于低于预设负荷的稳态运行工况时,所述EGR控制单元(22)控制所述高压EGR旁通阀(15)打开,控制所述高压EGR阀(13)、所述低压EGR阀(18)和所述低压EGR泵(19)关闭,汽油机排气从所述排气歧管(8)经所述高压EGR旁通管(14)进行高压热EGR循环;
    当发动机处于高于预设负荷的稳态运行工况时,所述EGR控制单元(22)控制所述低压EGR阀(18)和所述低压EGR泵(19)打开,控制所述高压EGR阀(13)和所述高压EGR旁通阀(15)关闭,汽油机排气从所述排气总管(9)经所述第二废气回流管(20)进行低压冷EGR循环;
    当发动机处于瞬态加速运行工况时,所述EGR控制单元(22)控制所述高压EGR阀(13)、所述低压EGR阀(18)和所述低压EGR泵(19)打开,控制所述高压EGR旁通阀(15)关闭,汽油机排气同时从所述排气歧管(8)经所述第一废气回流管(10)进行高压冷EGR循环和从所述排气总管(9)经所述第二废气回流管(20)进行低压冷EGR循环。
  6. 如权利要求5所述的控制方法,其特征在于,所述控制方法还包括:
    获取发动机转速信号和发动机扭矩信号;
    根据所述发动机转速信号和所述发动机扭矩信号,判断发动机是处于低于预设负荷的稳态运行工况、高于预设负荷的稳态运行工况还是瞬态加速运行工况。
  7. 如权利要求5所述的控制方法,其特征在于,若所述涡轮增压器为可变式喷嘴涡轮增压器,所述涡轮增压器涡轮机(3)为可变截面涡轮机,则:
    当发动机处于低于预设负荷的稳态运行工况时,所述EGR控制单元(22)控制所述涡轮增压器涡轮机(3)的开度达到最大;
    当发动机处于高于预设负荷的稳态运行工况时,所述EGR控制单元(22)控制所述涡轮增压器涡轮机(3)的开度小于最大开度;
    当发动机处于瞬态加速运行工况时,所述EGR控制单元(22)控制所述涡轮增压器涡轮机(3)的开度小于最大开度。
  8. 如权利要求5所述的控制方法,其特征在于,所述预设负荷为汽油机满负荷的25%。
PCT/CN2018/095330 2017-12-20 2018-07-11 汽油机用废气再循环***及控制方法 WO2019119783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/311,811 US20190277225A1 (en) 2017-12-20 2018-07-11 Exhaust gas recirculation system for gasoline engine and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711383752.0A CN108131221B (zh) 2017-12-20 2017-12-20 汽油机用废气再循环***及控制方法
CN201711383752.0 2017-12-20

Publications (1)

Publication Number Publication Date
WO2019119783A1 true WO2019119783A1 (zh) 2019-06-27

Family

ID=62390815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095330 WO2019119783A1 (zh) 2017-12-20 2018-07-11 汽油机用废气再循环***及控制方法

Country Status (3)

Country Link
US (1) US20190277225A1 (zh)
CN (1) CN108131221B (zh)
WO (1) WO2019119783A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985248A (zh) * 2019-12-27 2020-04-10 郑州日产汽车有限公司 增压发动机进气***
CN114753946A (zh) * 2022-04-01 2022-07-15 东风柳州汽车有限公司 一种用于增压汽油机的废气再循环***及车辆

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391250B2 (en) * 2013-07-23 2022-07-19 Mahindra & Mahindra Ltd. Naturally aspirated common rail diesel engine meeting ultra low PM emission by passive exhaust after treatment
CN108131221B (zh) * 2017-12-20 2020-06-02 广州汽车集团股份有限公司 汽油机用废气再循环***及控制方法
CN108757155B (zh) * 2018-06-27 2020-01-14 福州大学 一种基于文丘里管的涡轮增压***及其工作方法
CN109653905B (zh) * 2018-12-29 2021-01-05 天津大学 配有可变喉口直径文丘里管的船机egr***及使用方法
CN111828206A (zh) * 2019-04-18 2020-10-27 上海汽车集团股份有限公司 一种单级增压式柴油发动机
CN112343740B (zh) * 2019-08-09 2024-03-26 广州汽车集团股份有限公司 一种用于稀薄燃烧的增压装置及发动机***
CN112211759A (zh) * 2020-10-14 2021-01-12 哈尔滨工程大学 一种气体机爆震抑制装置及其抑制方法
US11454180B1 (en) 2021-06-17 2022-09-27 Cummins Inc. Systems and methods for exhaust gas recirculation
CN113969851A (zh) * 2021-09-28 2022-01-25 东风商用车有限公司 一种egr率驱动能力提升***及控制方法
CN115467764A (zh) * 2022-09-20 2022-12-13 潍柴动力股份有限公司 一种废气再循环***、控制方法及车辆
CN116220933B (zh) * 2023-05-10 2023-08-18 潍柴动力股份有限公司 一种egr泵控制方法、装置、车辆及存储介质
CN117780522B (zh) * 2024-02-27 2024-06-18 潍柴动力股份有限公司 一种氢气发动机控制方法、装置、车辆及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202181956U (zh) * 2009-12-23 2012-04-04 福特环球技术公司 涡轮增压内燃发动机的***
CN104196617A (zh) * 2014-07-31 2014-12-10 长城汽车股份有限公司 全可变气门增压柴油机及其控制方法
CN204386776U (zh) * 2015-01-15 2015-06-10 吉林大学 二级增压柴油机实现废气再循环的可调文丘里管装置
CN105829689A (zh) * 2013-12-20 2016-08-03 丰田自动车株式会社 内燃机的排气净化装置
US20160281652A1 (en) * 2013-12-20 2016-09-29 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
CN108131221A (zh) * 2017-12-20 2018-06-08 广州汽车集团股份有限公司 汽油机用废气再循环***及控制方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9421145U1 (de) * 1994-04-28 1995-05-04 Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh, 88045 Friedrichshafen Dieselbrennkraftmaschine mit in einer Abgasrückführleitung angeordnetem Wärmetauscher für die Abgaskühlung
US5617726A (en) * 1995-03-31 1997-04-08 Cummins Engine Company, Inc. Cooled exhaust gas recirculation system with load and ambient bypasses
FR2840024B1 (fr) * 2002-05-22 2006-06-23 Peugeot Citroen Automobiles Sa Systeme d'alimentation en gaz d'un moteur diesel de vehicule automobile
DE102004061028B4 (de) * 2004-12-18 2014-10-23 Pierburg Gmbh Abgasrückführungssystem
DE102006009153A1 (de) * 2006-02-24 2007-08-30 Mahle International Gmbh Abgasrückführeinrichtung
US20100154412A1 (en) * 2008-12-23 2010-06-24 Cummins Inc. Apparatus and method for providing thermal management of a system
JP4730447B2 (ja) * 2009-02-18 2011-07-20 株式会社デンソー 低圧egr装置
KR101652340B1 (ko) * 2009-03-18 2016-08-30 보르그워너 인코퍼레이티드 외부 egr 혼합의 노크 반응식 조정
JP4935866B2 (ja) * 2009-07-31 2012-05-23 株式会社デンソー 低圧egr装置
DE102011088763A1 (de) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung eines Modellierungswerts für eine physikalische Größe in einem Motorsystem mit einem Verbrennungsmotor
US9169794B2 (en) * 2012-12-10 2015-10-27 Caterpillar Inc. Temperature-controlled exhaust gas recirculation system and method for dual fuel engine
DE112014000854T5 (de) * 2013-03-15 2015-11-12 Borgwarner Inc. Niederdruck-Abgasrezirkulationsmodul
JP6102661B2 (ja) * 2013-09-30 2017-03-29 マツダ株式会社 エンジンの排気ガス還流制御装置
JP6090089B2 (ja) * 2013-09-30 2017-03-08 マツダ株式会社 エンジンの排気ガス還流制御装置
US9249746B2 (en) * 2014-06-04 2016-02-02 Cummins Inc. System and method for engine control using pre-chamber ignition
WO2016073588A1 (en) * 2014-11-04 2016-05-12 Cummins Inc. Systems, methods, and apparatus for operation of dual fuel engines

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202181956U (zh) * 2009-12-23 2012-04-04 福特环球技术公司 涡轮增压内燃发动机的***
CN105829689A (zh) * 2013-12-20 2016-08-03 丰田自动车株式会社 内燃机的排气净化装置
US20160281652A1 (en) * 2013-12-20 2016-09-29 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
CN104196617A (zh) * 2014-07-31 2014-12-10 长城汽车股份有限公司 全可变气门增压柴油机及其控制方法
CN204386776U (zh) * 2015-01-15 2015-06-10 吉林大学 二级增压柴油机实现废气再循环的可调文丘里管装置
CN108131221A (zh) * 2017-12-20 2018-06-08 广州汽车集团股份有限公司 汽油机用废气再循环***及控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110985248A (zh) * 2019-12-27 2020-04-10 郑州日产汽车有限公司 增压发动机进气***
CN114753946A (zh) * 2022-04-01 2022-07-15 东风柳州汽车有限公司 一种用于增压汽油机的废气再循环***及车辆

Also Published As

Publication number Publication date
CN108131221B (zh) 2020-06-02
CN108131221A (zh) 2018-06-08
US20190277225A1 (en) 2019-09-12

Similar Documents

Publication Publication Date Title
WO2019119783A1 (zh) 汽油机用废气再循环***及控制方法
CN107905920B (zh) 一种基于进气成分控制降低增压柴油机排放的装置和方法
CN204386776U (zh) 二级增压柴油机实现废气再循环的可调文丘里管装置
CN203560009U (zh) 两级增压发动机废气再循环***
JP5444996B2 (ja) 内燃機関及びその制御方法
CN201747481U (zh) 一种egr***控制装置
CN110566341B (zh) 一种混联式电动增压***的控制方法
CN104791148A (zh) 一种实现大egr率的低压egr引入装置及低压egr引入方法
CN105840355A (zh) 内燃机全工况egr率可调的二级增压***及其控制方法
KR101683495B1 (ko) 터보차저를 갖는 엔진 시스템
CN210343538U (zh) 一种基于两级涡轮增压器的中压废气再循环***
CN106870214B (zh) 一种双流道涡轮增压器
CN112211757A (zh) 一种增压柴油机egr率柔性可调的***及调整方法
CN209604167U (zh) 带废气旁通的egr废气再循环***
CN103541835A (zh) 一种带冷却排气再循环技术的涡轮增压发动机
CN116838505A (zh) 一种混动增压发动机的egr***及控制方法
CN203655418U (zh) 一种用于船用中速柴油机的egr***
CN113482806B (zh) 一种两级增压发动机egr双循环冷却***及汽车
CN113700549B (zh) 一种增压发动机进排气管理***的控制方法
CN210343537U (zh) 一种基于两级涡轮增压器的高压废气中压侧引入***
CN210343490U (zh) 一种基于两级涡轮增压器的高压废气低压侧引入***
CN210343536U (zh) 一种基于两级涡轮增压器的中压废气低压侧引入***
KR20110019116A (ko) 볼텍스튜브를 이용한 배기가스재순환시스템
KR101526390B1 (ko) 엔진 시스템
CN106677934B (zh) 一种egr与进气耦合涡轮增压***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18890783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18890783

Country of ref document: EP

Kind code of ref document: A1