WO2019119460A1 - Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote - Google Patents

Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote Download PDF

Info

Publication number
WO2019119460A1
WO2019119460A1 PCT/CN2017/118140 CN2017118140W WO2019119460A1 WO 2019119460 A1 WO2019119460 A1 WO 2019119460A1 CN 2017118140 W CN2017118140 W CN 2017118140W WO 2019119460 A1 WO2019119460 A1 WO 2019119460A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
nitrogen
furazan
derivative
doped
Prior art date
Application number
PCT/CN2017/118140
Other languages
English (en)
Chinese (zh)
Inventor
卓海涛
陈少军
朱佳平
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2017/118140 priority Critical patent/WO2019119460A1/fr
Publication of WO2019119460A1 publication Critical patent/WO2019119460A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment

Definitions

  • the invention belongs to the technical field of material preparation, and in particular relates to a method for preparing nitrogen-doped graphene as a nitrogen source.
  • Graphene (G) is a two-dimensional honeycomb lattice material formed by the close combination of planar single-layer carbon atoms. It has a thickness of about 0.35 nm and is the world's thinnest two-dimensional material.
  • Graphene has many unique properties, such as: tensile strength up to 130GPa; carrier mobility up to 15000-25000 cm 2 /Vs (square centimeters per volt second), can exceed 10 times the silicon wafer; thermal conductivity Up to 5000 W/mK (watt per watt thermal conductivity), which is three times that of diamond; it also has room temperature quantum Hall effect and room temperature ferromagnetism. Due to these unique properties, graphene electrons pass through without any resistance, generate less heat, and have high electrical conductivity. Therefore, graphene is the most excellent material with known conductivity.
  • the invention provides a preparation method of nitrogen-doped graphene as a nitrogen source, and aims to solve the problem that the graphene material is not easily compounded with other materials, resulting in limited application range.
  • the invention provides a method for preparing nitrogen-doped graphene as a nitrogen source, which comprises:
  • the mass ratio of graphene to furfuran derivatives is 1:6-10, and the furazan derivatives are diaminofurazan (DAF), diamino azofuran (DAAzF) and 3-amino At least one of -4-nitrofurazan (ANF) or the like;
  • DAF diaminofurazan
  • DAAzF diamino azofuran
  • NAF 3-amino At least one of -4-nitrofurazan
  • the graphene-coated furazan derivative eutectic is ground into a powder and heated to 500-800 ° C for 3 to 5 hours to obtain nitrogen-doped graphene.
  • the method for preparing nitrogen-doped graphene as a nitrogen source uses a furazan derivative to react with graphene to obtain a graphene material having a high nitrogen doping content.
  • the graphene is uniformly coated on the surface of the furazan derivative crystal, and the surface properties of the furazan derivative crystal are completely maintained, so that no additives such as an adhesive are needed, and the finally obtained nitrogen-doped graphite
  • the olefinic material is easily compounded with other materials, expanding the range of application of graphene.
  • FIG. 1 is a flow chart showing a method for preparing a nitrogen-doped graphene using a furfuran derivative as a nitrogen source according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the physical flow of a method for preparing nitrogen-doped graphene using a furfuran derivative as a nitrogen source according to an embodiment of the present invention
  • Example 3 is a scanning electron microscope test chart of nitrogen-doped graphene prepared in Example 1 of the present invention.
  • Example 4 is a X-ray photoelectron spectroscopy test chart of nitrogen-doped graphene prepared in Example 1 of the present invention
  • Example 5 is a N1s X-ray photoelectron spectroscopy test chart of the nitrogen-doped graphene prepared in Example 1 of the present invention
  • Fig. 6 is a X-ray photoelectron spectroscopy test chart of C1s of nitrogen-doped graphene prepared in Example 1 of the present invention.
  • FIG. 1 is a flow chart of a method for preparing nitrogen-doped graphene as a nitrogen source according to an embodiment of the present invention, the method comprising:
  • Step 101 Dispersing graphene in water to obtain an aqueous graphene solution.
  • the number of layers of the graphene is 1-3 layers.
  • Step 102 adding a furfural derivative to the aqueous graphene solution, heating and stirring at 50 to 70 ° C for 30 to 60 minutes, cooling to 20 to 40 ° C, and drying at a constant temperature to obtain a graphene-coated furazan derivative. Eutectic.
  • the mass ratio of graphene to furazan derivative is 1:6-10; and the furazan derivative is diaminofurazan (DAF), diamino azofuran (DAAzF) and 3-amino- At least one of 4-nitrofurazan (ANF) and the like.
  • the furfuran derivative has a nitrogen content of 43 to 58 wt%.
  • DAF is a nitrogen heterocyclic compound having a nitrogen content of 56%.
  • Step 103 Grinding the graphene-coated furazan derivative eutectic into a powder, heating to 500-800 ° C, and maintaining the temperature for 3-5 h to obtain nitrogen-doped graphene.
  • the method for preparing nitrogen-doped graphene as a nitrogen source uses a furazan derivative to react with graphene to obtain a graphene material having a high nitrogen doping content.
  • the graphene is uniformly coated on the surface of the furazan derivative crystal, and the surface properties of the furazan derivative crystal are completely maintained, so that no additives such as an adhesive are needed, and the finally obtained nitrogen-doped graphite
  • the olefinic material is easily compounded with other materials, greatly expanding the application range of graphene.
  • the nitrogen-doped graphene material prepared by the method opens the band gap, adjusts the conductivity type, changes the electronic structure, improves the free carrier density, improves the conductivity and stability, and introduces the nitrogen-containing
  • the functional group increases the active site of the surface-adsorbed metal particles and enhances the interaction between the metal particles and the graphene, thereby expanding the application of graphene.
  • step S101 the graphene is added to the deionized water, stirred for 30 to 90 minutes, and ultrasonically shaken for 30 to 60 minutes, wherein the mass ratio of the graphene to the deionized water is 1:20 to 30, and the graphene aqueous solution is The concentration is 1 to 5 mg/mL, and the number of layers of graphene is 1 to 3 layers, preferably a single layer, and the chip diameter is 0.2 to 100 ⁇ m.
  • the graphene is placed in a beaker containing ionized water, and the graphene and the ionized water are magnetically stirred at a preset rotation speed.
  • the beaker After magnetic stirring, the beaker is placed in an ultrasonic disperser, and the ultrasonic disperser is used.
  • the magnetically stirred solution was subjected to ultrasonic shaking treatment to obtain an aqueous graphene solution (aqueous solution of graphene oxide).
  • the magnetic stirring can be carried out for 30 ⁇ 90min according to the different rotation speed, and the ultrasonic shaking treatment time is 30 ⁇ 60min.
  • step S102 the furfural derivative is added to a beaker containing an aqueous solution of graphene, and then the beaker is placed on a heating table with stirring, heated (heating temperature is 50-70 ° C) and stirred for 30-60 min. , to obtain a dispersion; when the dispersion is cooled to 20 to 40 ° C, the beaker containing the dispersion is placed in an ultrasonic disperser, and a heating device is placed above the ultrasonic disperser, and the dispersion is performed by an ultrasonic disperser.
  • the ultrasonic vibration treatment is performed, and the dispersion liquid is subjected to constant temperature drying treatment by using a heating device (or the constant temperature drying treatment is performed on the dispersion liquid by a constant temperature drying oven) to finally obtain a graphene-coated furazan derivative eutectic.
  • the constant temperature drying treatment time is 48 h
  • the preferred constant temperature is 25 ° C
  • the mass ratio of graphene to furfural derivative in the graphene aqueous solution is 1:1 to 10, preferably 1:6 to 10, more It is preferably 1:8.
  • the heating temperature of the graphene-coated furazan derivative eutectic is 500-700 ° C, preferably 600 ° C, and the heating time is 3-6 h, preferably 4 h, and the nitrogen content is obtained. 5.16% nitrogen-doped graphene.
  • 0.1 g of graphene with a diameter of 0.2 ⁇ m was added to 25 ml of deionized water, magnetically stirred at 600 r/min for 60 minutes, then placed in an ultrasonic disperser, and ultrasonically shaken for 60 minutes. 4 mg/ml graphene solution.
  • the DAF eutectic was ground into a powder, heated in a tube furnace to 600 ° C, and kept for 4 h to obtain nitrogen-doped graphene having a nitrogen content of 5.16%.
  • FIG. 3 a scanning electron microscope schematic of nitrogen-doped graphene prepared by using DAF as a nitrogen source is shown. It can be seen from Fig. 3 that among the nitrogen-doped graphene obtained by the experiment, graphene is uniformly coated on the surface of the DAF crystal, and the surface properties of the DAF crystal are completely maintained without using an auxiliary agent such as an adhesive.
  • X-ray photoelectron spectroscopy test chart of nitrogen-doped graphene prepared by using DAF as a nitrogen source compared with pure graphene, it can be seen that the binding energy shows a sharp peak at 398-403 eV, indicating that DAF as a nitrogen source can effectively combine DAF with graphene to obtain nitrogen-doped graphene. It can be explained that DAF is a nitrogen source for preparing nitrogen-doped graphene.
  • FIG. 5 a schematic diagram of N1s XPS of nitrogen-doped graphene prepared by using DAF as a nitrogen source is shown.
  • graphene nitrogen (N) plays a key role in expanding the application of graphene.
  • three types of bonding are usually formed in the crystal lattice of carbon atoms: pyridin N, pyrrolic N, and graphitic N.
  • Graphene nitrogen doping has the following advantages: (1) opening the band gap and adjusting the conductivity type, changing its electronic structure; (2) increasing the free carrier density, thereby improving its conductivity and stability; (3) introducing The nitrogen functional group can increase the active site of the metal particles adsorbed on the surface thereof, thereby enhancing the interaction between the metal particles and the graphene. Therefore, NG is widely used in the fields of lithium ion batteries, lithium air batteries and supercapacitor electrode materials, and fuel cell redox catalysts. As can be seen from Fig.
  • FIG. 6 an X-ray photoelectron spectroscopy test chart of C1s of nitrogen-doped graphene prepared by using DAF as a nitrogen source is shown.
  • 0.1 g of graphene with a diameter of 0.5 ⁇ m was added to 25 ml of deionized water, magnetically stirred at 600 r/min for 70 minutes, then placed in an ultrasonic disperser, and ultrasonically shaken for 40 minutes. 4 mg/ml graphene solution.
  • the DAAzF eutectic was ground into a powder, heated in a tube furnace to 700 ° C, and kept for 5 h to obtain nitrogen-doped graphene having a nitrogen content of 6.12%.
  • 0.1 g of graphene with a diameter of 1.0 ⁇ m was added to 25 ml of deionized water, magnetically stirred at 600 r/min for 50 minutes, then placed in an ultrasonic disperser, and ultrasonically shaken for 40 minutes. 4 mg/ml graphene solution.
  • the ANF eutectic was ground into a powder, heated in a tube furnace to 800 ° C, and kept for 5 h to obtain nitrogen-doped graphene having a nitrogen content of 7.15%.

Abstract

L'invention concerne un procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote. Le procédé consiste à disperser le graphène dans de l'eau pour obtenir une solution aqueuse de graphène; ajouter des dérivés de furazane à la solution aqueuse de graphène, chauffer et agiter à une température de 50 à 70 °C pendant 30 à 60 min, refroidir entre 20 et 40 °C, et sécher à une température constante pour obtenir un cristal eutectique dérivé du furazane revêtu de graphène; broyer le cristal eutectique dérivé du furazane revêtu de graphène pour obtenir une poudre, et chauffer la poudre entre 500 et 800 °C et maintenir à température constante pendant 3 à 5 h pour obtenir du graphène dopé à l'azote. La surface du cristal de dérivé de furazane est uniformément revêtue du graphène dans le graphène dopé à l'azote sans utiliser un auxiliaire tel qu'un adhésif de sorte que la qualité de surface du cristal de dérivé de furazane est totalement maintenue.
PCT/CN2017/118140 2017-12-23 2017-12-23 Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote WO2019119460A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118140 WO2019119460A1 (fr) 2017-12-23 2017-12-23 Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/118140 WO2019119460A1 (fr) 2017-12-23 2017-12-23 Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote

Publications (1)

Publication Number Publication Date
WO2019119460A1 true WO2019119460A1 (fr) 2019-06-27

Family

ID=66992999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/118140 WO2019119460A1 (fr) 2017-12-23 2017-12-23 Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote

Country Status (1)

Country Link
WO (1) WO2019119460A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062836A1 (fr) * 2020-09-27 2022-03-31 东莞理工学院 Méthode de synthèse de graphène dopé à l'azote à dominante d'azote pyrrolique et graphène dopé à l'azote à dominante d'azote pyrrolique préparé par la méthode

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120572A (zh) * 2011-01-24 2011-07-13 南京大学 一种氮掺杂石墨烯的制备方法
CN102718206A (zh) * 2011-03-29 2012-10-10 中国科学院大连化学物理研究所 一种宏量制备氮掺杂石墨烯的方法
CN103265023A (zh) * 2013-06-07 2013-08-28 新疆师范大学 一种氮掺杂石墨烯的制备方法
CN103274393A (zh) * 2013-05-24 2013-09-04 中国科学院苏州纳米技术与纳米仿生研究所 一种氮掺杂石墨烯的制备方法及氮掺杂石墨烯
CN104229781A (zh) * 2014-09-09 2014-12-24 东莞市翔丰华电池材料有限公司 一种制备高掺氮量氮掺杂石墨烯的方法
CN104860312A (zh) * 2015-05-27 2015-08-26 上海理工大学 氮掺杂褶皱石墨烯的制备方法
CN108101037A (zh) * 2017-12-23 2018-06-01 深圳大学 一种基于二氨基偶氮呋咱的氮掺杂石墨烯材料的制备方法
CN108101038A (zh) * 2017-12-23 2018-06-01 深圳大学 一种呋咱类衍生物作为氮源的氮掺杂石墨烯的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102120572A (zh) * 2011-01-24 2011-07-13 南京大学 一种氮掺杂石墨烯的制备方法
CN102718206A (zh) * 2011-03-29 2012-10-10 中国科学院大连化学物理研究所 一种宏量制备氮掺杂石墨烯的方法
CN103274393A (zh) * 2013-05-24 2013-09-04 中国科学院苏州纳米技术与纳米仿生研究所 一种氮掺杂石墨烯的制备方法及氮掺杂石墨烯
CN103265023A (zh) * 2013-06-07 2013-08-28 新疆师范大学 一种氮掺杂石墨烯的制备方法
CN104229781A (zh) * 2014-09-09 2014-12-24 东莞市翔丰华电池材料有限公司 一种制备高掺氮量氮掺杂石墨烯的方法
CN104860312A (zh) * 2015-05-27 2015-08-26 上海理工大学 氮掺杂褶皱石墨烯的制备方法
CN108101037A (zh) * 2017-12-23 2018-06-01 深圳大学 一种基于二氨基偶氮呋咱的氮掺杂石墨烯材料的制备方法
CN108101038A (zh) * 2017-12-23 2018-06-01 深圳大学 一种呋咱类衍生物作为氮源的氮掺杂石墨烯的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG MING ET AL.: "Development of Furazan energic materials", vol. 12, 31 December 2004 (2004-12-31), pages 73 - 78 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022062836A1 (fr) * 2020-09-27 2022-03-31 东莞理工学院 Méthode de synthèse de graphène dopé à l'azote à dominante d'azote pyrrolique et graphène dopé à l'azote à dominante d'azote pyrrolique préparé par la méthode

Similar Documents

Publication Publication Date Title
CN108101037B (zh) 一种基于二氨基偶氮呋咱的氮掺杂石墨烯材料的制备方法
EP3435451A1 (fr) Procédé de préparation de matériau composite d'électrode négative pour batterie lithium ion
WO2018177175A1 (fr) Électrode de batterie, son procédé de préparation et batterie
Min et al. The synthesis of poly (p-phenylenediamine) microstructures without oxidant and their effective adsorption of lead ions
WO2015014121A1 (fr) Matériau actif d'électrode négative de batterie rechargeable au lithium-ion et son procédé de préparation, plaque d'électrode négative de batterie rechargeable au lithium-ion et batterie rechargeable au lithium-ion
JP2018506818A (ja) シリコン系負極活物質及びその製造方法
CN103787328A (zh) 一种改性石墨烯的制备方法
CN104860308A (zh) 一种应用燃烧合成法制备掺氮石墨烯的方法
CN104103821B (zh) 硅碳负极材料的制备方法
CN107732245B (zh) 一种用于锂电池的硬碳/石墨烯复合负极材料的制备方法
CN108101038B (zh) 一种呋咱类衍生物作为氮源的氮掺杂石墨烯的制备方法
CN107732174B (zh) 一种锂离子电池碳包覆LiFEPO4/CNTs复合正极材料的制备方法
CN107416783B (zh) 一种钝化黑磷纳米材料的方法
WO2015014120A1 (fr) Matériau actif d'électrode négative pour batterie rechargeable au lithium-ion et son procédé de préparation, plaque d'électrode négative de batterie rechargeable au lithium-ion et batterie rechargeable au lithium-ion
Yun et al. Strongly Surface‐Bonded MoO2@ Carbon Nanocomposites by Nitrogen‐Doping with Outstanding Capability for Fast and Stable Li Storage
US20230395775A1 (en) Positive electrode material, preparation method therefor and use thereof
CN108615860A (zh) 氮掺杂石墨烯/硅三维锂离子负极复合材料及其制备方法
CN107565103A (zh) 一种多孔硅/石墨烯复合材料及其制备方法和用途
CN109148886A (zh) 粘结剂及其制备方法、锂离子电池负极片
KR20230169874A (ko) 실리콘-탄소 복합재, 이의 제조 방법 및 이차 배터리
WO2019119460A1 (fr) Procédé de préparation de graphène dopé à l'azote à partir de dérivés de furazane comme source d'azote
Wang et al. Carbon coating of Li 4 Ti 5 O 12-TiO 2 anode by using cetyl trimethyl ammonium bromide as dispersant and phenolic resin as carbon precursor
KR102002600B1 (ko) 치환 보론 그래핀 제조방법
KR102040075B1 (ko) 그래핀 산화물 복합체, 그래핀 복합체 및 이의 제조방법.
KR102600789B1 (ko) 실리콘-그래핀 복합 음극재 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17935190

Country of ref document: EP

Kind code of ref document: A1