WO2019117414A1 - Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device - Google Patents

Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device Download PDF

Info

Publication number
WO2019117414A1
WO2019117414A1 PCT/KR2018/008077 KR2018008077W WO2019117414A1 WO 2019117414 A1 WO2019117414 A1 WO 2019117414A1 KR 2018008077 W KR2018008077 W KR 2018008077W WO 2019117414 A1 WO2019117414 A1 WO 2019117414A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
corrosion resistance
semiconductor
coating
manufacturing apparatus
Prior art date
Application number
PCT/KR2018/008077
Other languages
French (fr)
Korean (ko)
Inventor
유현철
정채종
고현철
Original Assignee
(주)코미코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)코미코 filed Critical (주)코미코
Priority to CN201880072917.9A priority Critical patent/CN111344836A/en
Priority to US16/765,093 priority patent/US20200354850A1/en
Priority to SG11202003710SA priority patent/SG11202003710SA/en
Publication of WO2019117414A1 publication Critical patent/WO2019117414A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/08Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing inorganic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • C25D11/10Anodisation of aluminium or alloys based thereon characterised by the electrolytes used containing organic acids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Definitions

  • the present invention relates to a method of forming an anodized film having excellent corrosion resistance and insulation characteristics on the surface of an aluminum or aluminum alloy member and an aluminum or aluminum alloy member formed with the anodized film produced by the method, And an inner member for a semiconductor or display manufacturing apparatus coated with an anodic oxide coating produced by the method.
  • Vacuum plasma equipment is widely used in the field of semiconductor devices or other ultrafine shape implementations.
  • Examples of using vacuum plasma equipment include plasma enhanced chemical vapor deposition (PECVD) equipment for forming a vapor deposition layer by chemical vapor deposition using plasma on a substrate, sputtering equipment for forming a vapor deposition layer by a physical method, And dry etching equipment for etching with a desired pattern.
  • PECVD plasma enhanced chemical vapor deposition
  • sputtering equipment for forming a vapor deposition layer by a physical method
  • dry etching equipment for etching with a desired pattern.
  • etching or ultrafine shape of a semiconductor device is realized by using a high-temperature plasma.
  • a high temperature plasma is generated inside the vacuum plasma apparatus, so that the chamber and the internal parts thereof are damaged, and specific elements and contaminating particles are generated from the surface of the chamber and its parts, and the inside of the chamber is likely to be contaminated.
  • a reaction gas used in a semiconductor manufacturing apparatus a corrosive gas including halogen elements such as Cl, F, Br, and O, N, H, S, C and the like is introduced, Corrosion resistance against the gases is required, and halogen plasma is also generated during the process of the semiconductor or liquid crystal manufacturing apparatus, so that plasma resistance is also required.
  • halogen elements such as Cl, F, Br, and O, N, H, S, C and the like
  • aluminum is mainly used as a material used for semiconductor equipment because of its conductivity, ease of manufacture, and availability at a reasonable price.
  • aluminum readily reacts with halogens such as chlorine, fluorine and bromine to produce AlCl 3 , Al 2 Cl 6 , AlF 3 or AlBr 3 .
  • the aluminum-fluorine compound may be peeled from the surface of the processing device component, causing corrosion of the component itself, and may serve as a source of fine particles of the processing chamber (and parts manufactured in the chamber).
  • a preferred means of protecting the aluminum surface in a semiconductor device is an anodic alumina coating process, which is an electrolytic oxidation process to form an integral coating of aluminum oxide, which is relatively porous on the aluminum surface.
  • anodic oxide film As a method for forming the anodic oxide film, a method of controlling the electrolyte at the time of forming the anodic oxide film at a low temperature or a method of electrolytically electrolyzing at a high current density is adopted.
  • a method of controlling the electrolyte at the time of forming the anodic oxide film at a low temperature or a method of electrolytically electrolyzing at a high current density is adopted.
  • Japanese Patent Publication No. 4660760 (Jan. 14, 2011) proposes a method of forming an anodic oxide film of high hardness by using an alcohol-added sulfuric acid-based electrolytic solution have.
  • the prior art has a problem in that the control of the concentration change of the alcohol in the electrolytic solution by the anodizing treatment becomes troublesome.
  • Korean Patent Registration No. 10-0664900 (April 04, 2007) proposes a method in which an anodic oxidation surface treatment is carried out using an electrolyte solution in which sulfuric acid is slightly added with sulfuric acid.
  • the prior art is anodizing treatment conditions for obtaining an oxide film thickness of 50 ⁇ to 60 ⁇ in a semiconductor manufacturing apparatus, in order to form a film having a desired thickness, a large amount of defects And corrosion resistance is deteriorated.
  • the main object of the present invention is to provide a method of manufacturing an anodized aluminum or aluminum alloy member and a surface-treated semiconductor device which are excellent in corrosion resistance and insulation properties against gases used in a semiconductor manufacturing process.
  • the present invention provides a method for forming an oxide film of an aluminum-containing member of a semiconductor or display manufacturing apparatus, the method comprising the steps of: a) mixing sulfuric acid, Lt; / RTI > And b) forming an anodic oxide coating on the surface of the aluminum or aluminum alloy member using the electrolyte solution prepared in the step a), wherein the anodic oxide coating is formed on the surface of the aluminum or aluminum alloy member .
  • the content of sulfuric acid, oxalic acid, and tartaric acid may be 9 to 11: 2.5 to 3.5: 0.3 to 0.7 in terms of weight ratio.
  • the concentration of the electrolytic solution may be 1 wt% to 10 wt%.
  • the applied current is 0.8 A / dm 2 To 1.7 A / dm < 2 >
  • the temperature of the electrolytic solution may be from 8 [deg.] C to 22 [deg.] C.
  • the anodized film thickness may be 50 [mu] m to 60 [mu] m.
  • the present invention provides an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus manufactured by the method of forming an oxide film of a member including aluminum in the semiconductor or display manufacturing apparatus.
  • the present invention provides a member comprising aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxidation coating having a hardness of 370 Hv to 425 Hv and a withstand voltage of 1500 V to 2000 V, which may have corrosion resistance of 120 minutes or more.
  • the present invention can provide a member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxide coating having a hardness of 370 Hv to 425 Hv and a corrosion resistance of 120 minutes or more, as well as a member having an withstand voltage of 1500 V to 2000 V , And an aluminum-containing member of a semiconductor or display manufacturing apparatus coated with an anodic oxide coating having a corrosion resistance of 120 minutes or more.
  • the method of forming an anodic oxide coating having excellent corrosion resistance and insulation properties on the surface of aluminum or aluminum alloy member according to the present invention has an effect of forming a coating thickness of 50 ⁇ or more without defect in the anodic oxidation coating layer.
  • FIG. 1 is a sectional view showing a schematic structure in which an anodic oxidation coating is formed on the surface of an aluminum or aluminum alloy member.
  • Example 2 is an SEM image of Example 3 and Comparative Example 7, wherein (a) is an image obtained by measuring the cross-section of the oxide film of Comparative Example 7, and (b) is an image obtained by measuring the cross section of the oxide film of Example 3 .
  • the present invention relates to a method for producing an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus, in which an anodic oxide coating is formed on the surface thereof, comprising the steps of: a) preparing an electrolytic solution by mixing sulfuric acid, And b) forming an anodic oxide coating on the surface of the aluminum or aluminum alloy member using the electrolyte prepared in the step a).
  • an electrolyte solution containing sulfuric acid, oxalic acid, and tartaric acid is used. This is compared with a conventional sulfuric acid bath using a mixed bath containing sulfuric acid, An anodic oxide film of 50 ⁇ ⁇ or more can be formed even if a low applied current is used. By using an applied current lower than that of the sulfuric acid bath, internal defects of the anodic oxide film are not generated and corrosion resistance can be increased.
  • a water bath using a mixed bath containing aqua regia, tartaric acid, organic matters, and the like has a high corrosion resistance by forming a film which does not cause defects in the anodic oxidation film by applying a low applied current. Resulting in low hardness and insulation properties.
  • a coating layer having a thickness of 50 ⁇ or more can be formed, which is superior in corrosion resistance, hardness, and insulation characteristics to the conventional anodic oxidation film formation method.
  • the aluminum or aluminum alloy member formed with the anodized coating according to the present invention forms an anodic oxide coating by mixing sulfuric acid, anhydrous acid, and tartaric acid at a predetermined ratio, so that a coating layer having a thickness of 50 ⁇ or more is formed using a low applied current
  • the corrosion resistance of the coating layer is improved to prolong the service life of the product, and since the insulation property is excellent, the occurrence rate of the arcing phenomenon of the semiconductor device or the display manufacturing apparatus connected to the high voltage power supply unit can be reduced.
  • the content of sulfuric acid, sulfuric acid, and tartaric acid may be 9 to 11: 2.5 to 3.5: 0.3 to 0.7 in the step a), and the concentration of the electrolyte may be 1 to 10 wt% .
  • the applied current is 0.8 A / dm 2
  • the electrolytic solution may be 8 °C to 22 °C.
  • the applied current is 0.8 A / dm 2
  • the hardness, withstand voltage and corrosion resistance of the coating layer are lowered, and when it exceeds 1.7 A / dm 2 , the withstand voltage and corrosion resistance of the coating layer may be lowered.
  • the withstand voltage and corrosion resistance of the coating layer may be deteriorated.
  • the thickness of the anodized film may be 50 ⁇ or more, more preferably 50 ⁇ to 60 ⁇ .
  • FIG. 1 is a sectional view showing a schematic structure in which an anodic oxidation coating is formed on the surface of an aluminum or aluminum alloy member.
  • the barrier layer 6 having no pores 3 is formed first.
  • the porous layer 5 having the pores 3 grows.
  • the uppermost porous layer interface 2 which is in contact with the electrolyte solution 1, And the growth structure of the pores 3 and the cells 7 of the porous layer 5 due to the growth and erosion in accordance with the composition of the electrolyte, the temperature, and the applied current in the barrier layer 6 and the barrier layer 6.
  • the present invention provides an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus manufactured by a method of manufacturing an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus in which the anodized film is formed on the surface thereof.
  • a member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodized coating having a hardness of 370 Hv to 425 Hv and a withstand voltage of 1500 V to 2000 V The corrosion resistance of the member may be 120 minutes or more.
  • the anodic oxidation coating having a hardness of 370 Hv to 425 Hv and a corrosion resistance of 120 minutes or more can be coated on a member of a semiconductor or display manufacturing apparatus and can be coated with anodic oxidation having an withstand voltage of 1500 V to 2000 V and a corrosion resistance of 120 minutes or more
  • the coating may be coated on a member of a semiconductor or display manufacturing apparatus.
  • an anodized film is formed on the surface of the aluminum alloy according to the present invention.
  • the electrolyte solution (solvent: DI Water) having a concentration of 5 wt% in which the weight ratio of sulfuric acid (95% sulfuric acid), water (100%
  • Anodic oxidation treatment was carried out at 20 ° C and an applied current of 1 A / dm 2 to obtain an anodic oxide film.
  • aluminum was used as a positive electrode and lead was used as a negative electrode (-).
  • Example 2 The anodic oxidation coatings of Examples 2 to 8 were obtained in the same manner as in Example 1 except that the weight ratio of the electrolytic solution and the anodization treatment time were the same, Lt; / RTI >
  • the anodic oxidation coatings of Comparative Examples 1 to 8 were obtained in the same manner as in Example 1 except that the weight ratio of the electrolytic solution and the anodic oxidation treatment time were the same, Lt; / RTI >
  • the physical property analyzer was an external current type thickness gauge (Positector 6000, Defelsko), a Vickers hardness meter (HM 810-124K, Mitutoyo), and an electric strength meter (HIPOT TESTER 19052, Chroma).
  • a PVC pipe having a diameter of 2 mm was attached to a specimen using a sealant, diluted to 5 wt% with hydrochloric acid, and put into a 2 ml flask. The time of occurrence was measured.
  • Comparing Comparative Examples 1 to 8 it was found that when the sulfuric acid content was increased, the hardness was good, but the withstand voltage and corrosion resistance characteristics were deteriorated. When the sulfuric acid content was smaller than the weight ratio of the present invention, But it was confirmed that the withstand voltage and corrosion resistance characteristics were slightly lowered.
  • the weight ratio of sulfuric acid, water, and tartaric acid in the electrolytic solution for forming the anodic oxide coating is preferably 9 to 11: 2.5 to 3.5: 0.3 to 0.7, and the thickness of the coating layer of 50 ⁇ or more and the appropriate hardness, withstand voltage and corrosion resistance It is confirmed that an anodic oxide film having a high dielectric constant can be obtained.
  • Example 2 is an SEM image of Example 3 and Comparative Example 7, wherein (a) is an image obtained by measuring the cross-section of the oxide film of Comparative Example 7, and (b) is a cross section of the oxide film of Example 3 Image.
  • (a) shows the formation of an anodic oxide film under the same conditions as those of the conventional sulfuric acid method, and it was confirmed that a large number of defects were present. In (b), it was confirmed that there was almost no defect.

Abstract

The present invention relates to a method for forming, on the surface of aluminum or an aluminum alloy member, an anodized film having excellent corrosion resistance and insulation characteristics, and an aluminum or aluminum alloy member having an anodized film manufactured by the method and, more specifically to: a method for forming a high hardness anodized film without internal defects in an anodized coating layer and forming an anodized film having excellent corrosion resistance and insulation characteristics; and a semiconductor coated with an anodized film manufactured by the same method, or an inner member for a display manufacturing device.

Description

내부식성 및 절연특성이 우수한 양극산화된 알루미늄 또는 알루미늄 합금 부재의 제조방법 및 표면처리된 반도체 장치A method of manufacturing an anodized aluminum or aluminum alloy member excellent in corrosion resistance and insulation characteristics, and a surface-treated semiconductor device
본 발명은 알루미늄 혹은 알루미늄 합금 부재의 표면에 내부식성 및 절연특성이 우수한 양극산화피막을 형성하는 방법 및 이 방법으로 제조된 양극산화 피막이 형성된 알루미늄 또는 알루미늄 합금 부재에 관한 것으로, 보다 상세하게는 양극산화 코팅층의 내부결함이 없이 고경도의 산화 피막이 형성되고, 내부식성 및 절연특성이 우수한 양극산화 피막의 형성 방법 및 이 방법으로 제조된 양극산화 피막이 코팅된 반도체 또는 디스플레이 제조 장치용 내부재에 관한 것이다.The present invention relates to a method of forming an anodized film having excellent corrosion resistance and insulation characteristics on the surface of an aluminum or aluminum alloy member and an aluminum or aluminum alloy member formed with the anodized film produced by the method, And an inner member for a semiconductor or display manufacturing apparatus coated with an anodic oxide coating produced by the method. [0003] 2. Description of the Related Art [0004]
반도체 소자 또는 기타 초미세 형상 구현을 위한 공정 분야에서 진공 플라즈마 장비가 널리 사용되고 있다. 진공 플라즈마 장비가 사용되는 예로서 기판 위에 플라즈마를 이용한 화학적 증착법으로 증착막을 형성하는 PECVD(plasma enhanced chemical vapor deposition) 장비, 물리적인 방법으로 증착막을 형성하는 스퍼터링 장비 그리고 기판 또는 기판 위의 코팅된 물질을 원하는 패턴으로 식각하기 위한 건식 식각 장비 등이 있으며, 진공 플라즈마 장비는 고온의 플라즈마를 이용하여 반도체 소자의 식각 또는 초미세 형상을 구현하게 된다. Vacuum plasma equipment is widely used in the field of semiconductor devices or other ultrafine shape implementations. Examples of using vacuum plasma equipment include plasma enhanced chemical vapor deposition (PECVD) equipment for forming a vapor deposition layer by chemical vapor deposition using plasma on a substrate, sputtering equipment for forming a vapor deposition layer by a physical method, And dry etching equipment for etching with a desired pattern. In vacuum plasma equipment, etching or ultrafine shape of a semiconductor device is realized by using a high-temperature plasma.
따라서 진공 플라즈마 장비의 내부에서는 고온의 플라즈마가 발생하므로 챔버 및 그 내부 부품이 손상되며, 챔버 및 그 부품의 표면으로부터 특정 원소 및 오염 입자가 발생하여 챔버 내부를 오염시킬 가능성이 크다.Therefore, a high temperature plasma is generated inside the vacuum plasma apparatus, so that the chamber and the internal parts thereof are damaged, and specific elements and contaminating particles are generated from the surface of the chamber and its parts, and the inside of the chamber is likely to be contaminated.
한편, 반도체 제조 장치에 사용되는 반응 가스로써, Cl, F, Br 등의 할로겐 원소나 O, N, H, S, C 등의 원소를 포함하는 부식성의 가스가 도입되기 때문에 챔버 혹은 챔버 내의 부재들은 상기 가스들에 대한 내부식성이 요구되며, 반도체나 액정 제조 장치의 공정 중에는 할로겐계의 플라즈마도 발생하기 때문에 내플라즈마성 또한 요구된다.On the other hand, as a reaction gas used in a semiconductor manufacturing apparatus, a corrosive gas including halogen elements such as Cl, F, Br, and O, N, H, S, C and the like is introduced, Corrosion resistance against the gases is required, and halogen plasma is also generated during the process of the semiconductor or liquid crystal manufacturing apparatus, so that plasma resistance is also required.
뿐만 아니라, 반도체 에칭 공정 등 일부 챔버 내의 일부 부재들 중 고전압 전원부와 연결되어 절연특성이 취약할 경우 아킹이 발생되기 때문에 우수한 비전도성 또한 요구된다.In addition, since some of the members in some chambers, such as a semiconductor etching process, are connected to the high voltage power source and the insulation characteristics are weak, arcing is generated, so that excellent nonconductivity is also required.
한편, 반도체 장비에 사용되는 재료로는 전도성, 제조의 용이성 및 합리적인 가격에서의 이용가능성 때문에 알루미늄이 주로 사용되고 있다.On the other hand, aluminum is mainly used as a material used for semiconductor equipment because of its conductivity, ease of manufacture, and availability at a reasonable price.
그러나 알루미늄은 염소, 불소 및 브롬과 같은 할로겐과 쉽게 반응하여 AlCl3, Al2Cl6, AlF3 또는 AlBr3를 생성한다. 알루미늄-불소 화합물은 처리 장치 부품의 표면으로부터 박리되어 부품 자체의 부식을 유발할 수 있으며, 처리 챔버(및 챔버내에 제조된 부품)의 미립자 오염원 역할을 할 수 있다. However, aluminum readily reacts with halogens such as chlorine, fluorine and bromine to produce AlCl 3 , Al 2 Cl 6 , AlF 3 or AlBr 3 . The aluminum-fluorine compound may be peeled from the surface of the processing device component, causing corrosion of the component itself, and may serve as a source of fine particles of the processing chamber (and parts manufactured in the chamber).
또한, 알루미늄과 염소를 함유한 많은 화합물, 알루미늄과 브롬을 함유한 많은 화합물은 휘발성이 있으며, 반도체 처리 조건하에서 가스를 생성하고, 이들 가스는 알루미늄 기판을 떠나게 된다. 이로 인해 구조내에 공간이 형성되고, 상기 공간은 구조를 불안정하게 만들며 완전성에 문제가 있는 표면을 생성한다.In addition, many compounds containing aluminum and chlorine, many compounds containing aluminum and bromine, are volatile and generate gas under semiconductor processing conditions, leaving these gases off the aluminum substrate. This creates a space in the structure, which makes the structure unstable and creates a surface that is problematic in its integrity.
따라서 반도체 장치내에서 알루미늄 표면을 보호하는 바람직한 수단으로는 양극산화 알루미나 코팅방법이 있으며, 양극산화 처리법은 알루미늄 표면에 상대적으로 다공성인 알루미늄 산화물로 이루어진 일체형 코팅을 형성하는 전해 산화 공정이다. Thus, a preferred means of protecting the aluminum surface in a semiconductor device is an anodic alumina coating process, which is an electrolytic oxidation process to form an integral coating of aluminum oxide, which is relatively porous on the aluminum surface.
양극산화 피막을 형성하는 방법으로는, 양극산화 피막을 형성할 때의 전해액을 저온으로 제어하는 방법이나, 고전류 밀도로 전해(電解)하는 방법이 채용되어 있지만, 이들 방법으로 양극산화 피막을 형성하면, 양극산화 피막의 크랙의 발생을 증가시키는 방향이 되고, 또한 이들 방법에는 고에너지가 필요한 문제도 있었다.As a method for forming the anodic oxide film, a method of controlling the electrolyte at the time of forming the anodic oxide film at a low temperature or a method of electrolytically electrolyzing at a high current density is adopted. However, when the anodic oxide film is formed by these methods , An increase in the occurrence of cracks in the anodic oxidation film, and also there is a problem that high energy is required for these methods.
양극산화 피막을 형성하는 방법의 종래기술로는, 일본등록특허공보 제4660760호(2011.01.14.)에서는 알코올을 첨가한 황산계 전해액을 이용하여 고경질의 양극산화 피막을 형성하는 방법이 제안되어 있다. 그러나 상기 선행문헌은 양극산화 처리에 의한 전해액 중의 알코올의 농도 변화의 관리가 번잡해지는 문제가 있었다.As a conventional technique for forming an anodic oxide film, Japanese Patent Publication No. 4660760 (Jan. 14, 2011) proposes a method of forming an anodic oxide film of high hardness by using an alcohol-added sulfuric acid-based electrolytic solution have. However, the prior art has a problem in that the control of the concentration change of the alcohol in the electrolytic solution by the anodizing treatment becomes troublesome.
또한, 한국등록특허공보 제10-0664900호(2007.01.04.)에서는 황산에 수산을 소량 첨가한 전해액을 이용하여 양극산화 표면처리를 진행하는 방법이 제안되어 있다. 그러나 상기 선행문헌은 반도체 제조장치에 50 ㎛ ~ 60 ㎛의 산화 피막 두께를 얻기 위한 양극산화 처리 조건이지만, 원하는 두께의 피막을 형성하기 위해서는 높은 인가 전류를 가해야 하기 때문에 코팅층 내에 다수의 결함이 발생되고, 내부식성을 저하시키는 문제가 있었다. In addition, Korean Patent Registration No. 10-0664900 (April 04, 2007) proposes a method in which an anodic oxidation surface treatment is carried out using an electrolyte solution in which sulfuric acid is slightly added with sulfuric acid. However, since the prior art is anodizing treatment conditions for obtaining an oxide film thickness of 50 탆 to 60 탆 in a semiconductor manufacturing apparatus, in order to form a film having a desired thickness, a large amount of defects And corrosion resistance is deteriorated.
따라서, 상기와 같은 기술개발에도 불구하고, 반도체 장치의 내부식성 및 절연특성을 향상시킬 수 있는 알루미늄 또는 알루미늄 합금 소재 반도체 장치의 표면처리 방법 개발의 필요성이 지속적으로 요구되고 있는 실정이다.Therefore, there is a continuing need to develop a surface treatment method of an aluminum or aluminum alloy semiconductor device capable of improving corrosion resistance and insulation characteristics of the semiconductor device, despite the above-described technology development.
본 발명의 주된 목적은 반도체 제조 공정 중에 사용되는 가스들에 대한 내부식성 및 절연특성이 우수한, 양극산화된 알루미늄 또는 알루미늄 합금 부재의 제조방법 및 표면처리된 반도체 장치를 제공하는데 있다.The main object of the present invention is to provide a method of manufacturing an anodized aluminum or aluminum alloy member and a surface-treated semiconductor device which are excellent in corrosion resistance and insulation properties against gases used in a semiconductor manufacturing process.
상기와 같은 목적을 달성하기 위하여, 본 발명은 양극산화 피막이 그 표면상에 형성된, 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법으로서, a) 황산, 수산 및 주석산을 혼합하여 전해액을 제조하는 단계; 및 b) 상기 a) 단계에서 제조된 전해액을 이용하여 알루미늄 혹은 알루미늄 합금 부재 표면에 양극산화피막을 형성하는 단계를 포함하는 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법을 제공한다.In order to achieve the above object, the present invention provides a method for forming an oxide film of an aluminum-containing member of a semiconductor or display manufacturing apparatus, the method comprising the steps of: a) mixing sulfuric acid, Lt; / RTI > And b) forming an anodic oxide coating on the surface of the aluminum or aluminum alloy member using the electrolyte solution prepared in the step a), wherein the anodic oxide coating is formed on the surface of the aluminum or aluminum alloy member .
일 실시예에 따라, 상기 a) 단계에서 상기 황산, 수산 및 주석산의 함량은 중량비로서, 9 ~ 11 : 2.5 ~ 3.5 : 0.3 ~ 0.7일 수 있다. According to one embodiment, in step a), the content of sulfuric acid, oxalic acid, and tartaric acid may be 9 to 11: 2.5 to 3.5: 0.3 to 0.7 in terms of weight ratio.
또한, 일 실시예에 따라, 상기 전해액의 농도는 1 wt% 내지 10 wt%일 수 있다.Also, according to one embodiment, the concentration of the electrolytic solution may be 1 wt% to 10 wt%.
또한, 일 실시예에 따라, 상기 b) 단계에서 양극산화피막을 형성시 인가전류는 0.8 A/dm2 내지 1.7 A/dm2이고, 전해액의 온도는 8 ℃ 내지 22 ℃일 수 있다.In addition, according to one embodiment, when the anodic oxide film is formed in the step b), the applied current is 0.8 A / dm 2 To 1.7 A / dm < 2 >, and the temperature of the electrolytic solution may be from 8 [deg.] C to 22 [deg.] C.
또한, 일 실시예에 따라, 상기 양극산화피막 두께는 50 ㎛ 내지 60 ㎛일 수 있다.Further, according to one embodiment, the anodized film thickness may be 50 [mu] m to 60 [mu] m.
한편, 본 발명은 상기 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법으로 제조된 반도체 또는 디스플레이 제조 장치의 알루미늄 혹은 알루미늄 합금 부재를 제공한다.Meanwhile, the present invention provides an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus manufactured by the method of forming an oxide film of a member including aluminum in the semiconductor or display manufacturing apparatus.
본 발명은 경도가 370 Hv ~ 425 Hv, 내전압이 1500 V ~ 2000 V인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재를 제공하며, 이는 내부식성이 120분 이상일 수 있다.The present invention provides a member comprising aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxidation coating having a hardness of 370 Hv to 425 Hv and a withstand voltage of 1500 V to 2000 V, which may have corrosion resistance of 120 minutes or more.
또한, 본 발명은 경도가 370 Hv ~ 425 Hv, 내부식성이 120분 이상인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재를 제공할 수 있을 뿐만 아니라, 내전압이 1500 V ~ 2000 V, 내부식성이 120분 이상인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재를 제공할 수도 있다.In addition, the present invention can provide a member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxide coating having a hardness of 370 Hv to 425 Hv and a corrosion resistance of 120 minutes or more, as well as a member having an withstand voltage of 1500 V to 2000 V , And an aluminum-containing member of a semiconductor or display manufacturing apparatus coated with an anodic oxide coating having a corrosion resistance of 120 minutes or more.
본 발명에 따른 알루미늄 혹은 알루미늄 합금 부재의 표면에 내부식성 및 절연특성이 우수한 양극산화피막을 형성하는 방법은 양극산화 코팅층 내부결함이 없이 50 ㎛ 이상의 코팅 두께를 형성할 수 있는 효과가 있다.The method of forming an anodic oxide coating having excellent corrosion resistance and insulation properties on the surface of aluminum or aluminum alloy member according to the present invention has an effect of forming a coating thickness of 50 탆 or more without defect in the anodic oxidation coating layer.
또한, 반도체 제조 장치에 사용되는 가스들에 대한 내부식성이 우수하며, 반도체 제조 장치 챔버 내의 고전압에 대한 절연특성이 우수한 효과가 있다. In addition, it has an excellent corrosion resistance against gases used in a semiconductor manufacturing apparatus, and has an excellent insulating property against a high voltage in a semiconductor manufacturing apparatus chamber.
도 1은 알루미늄 또는 알루미늄 합금 부재 표면에 양극산화 피막이 형성되는 개략적인 구조를 나타내는 단면도이다.1 is a sectional view showing a schematic structure in which an anodic oxidation coating is formed on the surface of an aluminum or aluminum alloy member.
도 2는 실시예 3 및 비교예 7의 SEM 이미지로, (a)는 비교예 7의 산화피막이 형성된 단면을 측정한 이미지이고, (b)는 실시예 3의 산화피막이 형성된 단면을 측정한 이미지이다.2 is an SEM image of Example 3 and Comparative Example 7, wherein (a) is an image obtained by measuring the cross-section of the oxide film of Comparative Example 7, and (b) is an image obtained by measuring the cross section of the oxide film of Example 3 .
[부호의 설명][Description of Symbols]
1: 전해액 4: 기재 7: 셀1: electrolyte 4: substrate 7: cell
2: 다공질층 계면 5: 다공질층2: Porous layer interface 5: Porous layer
3: 기공 6: 배리어층3: pore 6: barrier layer
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when an element is referred to as "including " an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.
본 발명은 양극산화 피막이 그 표면상에 형성된, 반도체 또는 디스플레이 제조 장치의 알루미늄 혹은 알루미늄 합금 부재의 제조방법에 관한 것으로, a) 황산, 수산 및 주석산을 혼합하여 전해액을 제조하는 단계; 및 b) 상기 a) 단계에서 제조된 전해액을 이용하여 알루미늄 혹은 알루미늄 합금 부재 표면에 양극산화피막을 형성하는 단계를 포함하는 것을 기술적 특징으로 한다.The present invention relates to a method for producing an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus, in which an anodic oxide coating is formed on the surface thereof, comprising the steps of: a) preparing an electrolytic solution by mixing sulfuric acid, And b) forming an anodic oxide coating on the surface of the aluminum or aluminum alloy member using the electrolyte prepared in the step a).
본 발명에 따른 양극산화 피막이 형성된 알루미늄 혹은 알루미늄 합금 부재를 제조하기 위해서는 황산, 수산 및 주석산을 혼합한 전해액을 사용하며, 이는 종래의 황산, 수산, 유기물 등이 첨가된 혼합욕을 이용한 황산욕에 비해 낮은 인가전류를 사용해도 50 ㎛ 이상의 양극산화 피막을 형성할 수 있고, 상기 황산욕에 비해 낮은 인가전류를 사용함으로써 양극산화 피막의 내부결함이 발생하지 않아 내부식성을 높일 수 있다. In order to produce an aluminum or aluminum alloy member having an anodic oxidation coating according to the present invention, an electrolyte solution containing sulfuric acid, oxalic acid, and tartaric acid is used. This is compared with a conventional sulfuric acid bath using a mixed bath containing sulfuric acid, An anodic oxide film of 50 占 퐉 or more can be formed even if a low applied current is used. By using an applied current lower than that of the sulfuric acid bath, internal defects of the anodic oxide film are not generated and corrosion resistance can be increased.
또한, 수산, 주석산, 유기물 등이 첨가된 혼합욕을 이용한 수산욕은 황산욕과 달리 낮은 인가 전류를 가해 양극산화 피막 내부의 결함이 발생되지 않는 피막을 형성하여 높은 내부식성을 갖지만, 낮은 두께로 인해 경도 및 절연특성이 낮다. 반면에, 본 발명에서는 낮은 인가 전류를 사용하지만 50 ㎛ 이상의 두께의 코팅층을 형성할 수 있어, 종래의 양극산화 피막 형성방법에 비해 내부식성, 경도, 절연특성 등이 우수한 효과를 가진다.In addition, unlike sulfuric acid baths, a water bath using a mixed bath containing aqua regia, tartaric acid, organic matters, and the like has a high corrosion resistance by forming a film which does not cause defects in the anodic oxidation film by applying a low applied current. Resulting in low hardness and insulation properties. On the other hand, in the present invention, although a low applied current is used, a coating layer having a thickness of 50 탆 or more can be formed, which is superior in corrosion resistance, hardness, and insulation characteristics to the conventional anodic oxidation film formation method.
따라서, 본 발명에 따른 양극산화 피막이 형성된 알루미늄 혹은 알루미늄 합금 부재는 황산, 수산, 주석산을 소정의 비율로 혼합하여 양극산화 피막을 형성하기 때문에 낮은 인가전류를 사용하여 50 ㎛ 이상의 두께의 코팅층을 형성하며, 상기 코팅층의 내부식성이 향상되어 제품 사용 수명이 연장될 수 있고, 절연특성이 우수하기 때문에 고전압 전원부에 연결되는 반도체 장치 또는 디스플레이 제조장치의 아킹 현상의 발생율을 줄일 수 있다.Therefore, the aluminum or aluminum alloy member formed with the anodized coating according to the present invention forms an anodic oxide coating by mixing sulfuric acid, anhydrous acid, and tartaric acid at a predetermined ratio, so that a coating layer having a thickness of 50 탆 or more is formed using a low applied current The corrosion resistance of the coating layer is improved to prolong the service life of the product, and since the insulation property is excellent, the occurrence rate of the arcing phenomenon of the semiconductor device or the display manufacturing apparatus connected to the high voltage power supply unit can be reduced.
또한, 일 실시예에 따라 상기 a) 단계에서 상기 황산, 수산 및 주석산의 함량은 중량비로서, 9 ~ 11 : 2.5 ~ 3.5 : 0.3 ~ 0.7이며, 상기 전해액의 농도는 1 내지 10 wt%일 수 있다.According to an embodiment, the content of sulfuric acid, sulfuric acid, and tartaric acid may be 9 to 11: 2.5 to 3.5: 0.3 to 0.7 in the step a), and the concentration of the electrolyte may be 1 to 10 wt% .
여기서 황산, 수산 및 주석산이 상기 비율과 상이할 경우, 저전류에서 내식성 및 내전압 특성이 우수한 50 ㎛ 이상의 양극산화 피막을 코팅하기 어렵다. When the sulfuric acid, the sulfuric acid, and the tartaric acid are different from the above ratios, it is difficult to coat an anodic oxidation film of 50 탆 or more, which is excellent in corrosion resistance and withstand voltage characteristics at low current.
황산의 함량이 상기 비율에 비해 많을 경우 50 ㎛ 이상 코팅하기 위해서는 고전류 및 낮은 전해액 온도가 필요하나 내부식성 특성이 저하될 수 있으며, 수산 및 주석산의 함량이 상기 비율에 비해 많을 경우 또한 저전류에서 50 ㎛ 이상의 양극산화 피막의 코팅이 어렵고, 내부식성이 우수한 코팅은 가능하나 내전압 및 경도가 저하될 수 있다.When the content of sulfuric acid is higher than the above ratio, coating of 50 탆 or more requires a high current and a low electrolyte temperature, but corrosion resistance may be degraded. When the content of the acid and tartaric acid is larger than the above ratio, It is difficult to coat an anodic oxide film with a thickness of 탆 or more and a coating excellent in corrosion resistance is possible, but withstand voltage and hardness may be lowered.
한편, 상기 b) 단계에서 양극산화피막을 형성시 인가전류는 0.8 A/dm2 내지 1.7 A/dm2이 바람직하고, 전해액의 온도는 8 ℃ 내지 22 ℃일 수 있다.On the other hand, in the step b), when the anodized film is formed, the applied current is 0.8 A / dm 2 To 1.7 A / dm 2 is preferred temperature, and the electrolytic solution may be 8 ℃ to 22 ℃.
여기서, 인가전류가 0.8 A/dm2 미만인 경우에는 50 ㎛ 이상의 코팅 두께 형성이 어렵고, 코팅층의 경도, 내전압 및 내부식성이 저하되고, 1.7 A/dm2를 초과한 경우에는 코팅층의 내전압 및 내부식성이 저하될 수 있다.Here, when the applied current is 0.8 A / dm 2 , It is difficult to form a coating thickness of 50 탆 or more, and the hardness, withstand voltage and corrosion resistance of the coating layer are lowered, and when it exceeds 1.7 A / dm 2 , the withstand voltage and corrosion resistance of the coating layer may be lowered.
또한, 전해액의 온도가 8 ℃ 내지 22 ℃를 벗어난 경우에는 코팅층의 내전압 및 내부식성이 저하되는 문제가 발생할 수 있다. Further, when the temperature of the electrolytic solution is out of the range of 8 캜 to 22 캜, the withstand voltage and corrosion resistance of the coating layer may be deteriorated.
또한, 본 발명의 일 실시예에 따라 상기 양극산화피막 두께는 50 ㎛ 이상일 수 있으며, 더욱 바람직하게는 50 ㎛ 내지 60 ㎛일 수 있다. According to an embodiment of the present invention, the thickness of the anodized film may be 50 탆 or more, more preferably 50 탆 to 60 탆.
본 발명에 따른 알루미늄 또는 알루미늄 합금 부재의 표면에 양극산화 피막이 형성되는 구조는 도 1을 통해 보다 자세히 살펴볼 수 있다.The structure in which the anodic oxidation coating is formed on the surface of the aluminum or aluminum alloy member according to the present invention can be examined in detail with reference to FIG.
도 1은 알루미늄 또는 알루미늄 합금 부재 표면에 양극산화 피막이 형성되는 개략적인 구조를 나타내는 단면도이다.1 is a sectional view showing a schematic structure in which an anodic oxidation coating is formed on the surface of an aluminum or aluminum alloy member.
알루미늄 또는 알루미늄 합금 부재(4)를 전해액(1)에 침지하여 전류를 인가하면, 가장 먼저 기공(3)이 없는 배리어(Barrier)층(6)이 형성된다. 배리어층(6)이 형성된 부재(4)에 지속적으로 전류를 인가하면 기공(3)이 있는 다공질층(5)이 성장을 하게 되며, 이때 전해액(1)과 접해있는 최상부 다공질층계면(2)과 배리어층(6)에서 전해액의 조성, 온도, 인가전류에 따라 성장 및 침식에 의한 다공질층(5)의 기공(3) 및 셀(7)의 성장구조의 요인이 된다.When the aluminum or aluminum alloy member 4 is immersed in the electrolytic solution 1 and current is applied, the barrier layer 6 having no pores 3 is formed first. When the current is continuously applied to the member 4 having the barrier layer 6 formed thereon, the porous layer 5 having the pores 3 grows. At this time, the uppermost porous layer interface 2, which is in contact with the electrolyte solution 1, And the growth structure of the pores 3 and the cells 7 of the porous layer 5 due to the growth and erosion in accordance with the composition of the electrolyte, the temperature, and the applied current in the barrier layer 6 and the barrier layer 6.
따라서, 본 발명은 종래기술에서 발생되는 문제점을 황산, 수산 및 주석산이 소정의 비율로 혼합된 전해액에서 산화 피막의 기공(3) 및 셀(7)을 결함 없이 성장시켜 반도체 또는 디스플레이 제조 장치의 우수한 내부식성 및 절연특성을 갖는 양극산화 피막을 제공할 수 있다.Accordingly, it is an object of the present invention to provide a method for manufacturing a semiconductor or a display device by growing the pores 3 of the oxide film and the cell 7 without defects in an electrolytic solution obtained by mixing sulfuric acid, It is possible to provide an anodized film having corrosion resistance and insulation properties.
또한, 본 발명은 상기 양극산화 피막이 그 표면상에 형성된, 반도체 또는 디스플레이 제조 장치의 알루미늄 혹은 알루미늄 합금 부재의 제조방법으로 제조된 반도체 또는 디스플레이 제조 장치의 알루미늄 혹은 알루미늄 합금 부재를 제공한다.Further, the present invention provides an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus manufactured by a method of manufacturing an aluminum or aluminum alloy member of a semiconductor or display manufacturing apparatus in which the anodized film is formed on the surface thereof.
더불어, 본 발명에 의해서, 경도가 370 Hv ~ 425 Hv, 내전압이 1500 V ~ 2000 V인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재를 제조할 수 있으며, 이때 알루미늄이 포함된 부재의 내부식성이 120분 이상일 수도 있다.In addition, according to the present invention, it is possible to produce a member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodized coating having a hardness of 370 Hv to 425 Hv and a withstand voltage of 1500 V to 2000 V, The corrosion resistance of the member may be 120 minutes or more.
또한, 경도가 370 Hv ~ 425 Hv, 내부식성이 120분 이상인 양극산화피막이 반도체 또는 디스플레이 제조 장치의 부재에 코팅될 수 있을 뿐만 아니라, 내전압이 1500 V ~ 2000 V, 내부식성이 120분 이상인 양극산화피막이 반도체 또는 디스플레이 제조 장치의 부재에 코팅될 수도 있다.The anodic oxidation coating having a hardness of 370 Hv to 425 Hv and a corrosion resistance of 120 minutes or more can be coated on a member of a semiconductor or display manufacturing apparatus and can be coated with anodic oxidation having an withstand voltage of 1500 V to 2000 V and a corrosion resistance of 120 minutes or more The coating may be coated on a member of a semiconductor or display manufacturing apparatus.
이하, 본 발명을 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples. It should be noted, however, that the following examples are illustrative of the invention and are not intended to limit the scope of the invention.
[[ 실시예Example ] ]
실시예는 본 발명에 따른 알루미늄 합금 표면에 양극 산화 피막을 형성한 것이다.In the embodiment, an anodized film is formed on the surface of the aluminum alloy according to the present invention.
<실시예 1> &Lt; Example 1 >
먼저, 알루미늄 합금(Al6061) 시편을 크기 세로 50 mm × 가로 50 mm × 높이 5 mm로 절단하여 준비한 다음, 그 시편의 표면을 폴리싱(polishing)하여 일정한 표면 거칠기를 형성한다. 이때 폴리싱은 스카치브라이트(#400)를 이용하였지만, 공지된 다른 기술을 이용할 수도 있다. 스카치브라이트 처리시 시편의 표면거칠기를 Ra=0.28㎛ ~ 0.64 ㎛로 조절하였다.First, the aluminum alloy (Al6061) specimen is prepared by cutting the specimen to a size of 50 mm in length × 50 mm in width × 5 mm in height. Then, the surface of the specimen is polished to form a constant surface roughness. At this time, the polishing is performed using Scotch-Brite (# 400), but other known techniques may be used. The surface roughness of the specimen was adjusted to Ra = 0.28 mu m to 0.64 mu m during the Scotch-Brite treatment.
그 다음, 황산(95 % 황산), 수산(100 % 수산) 및 주석산(99 % 주석산)의 중량비를 10 : 3 : 0.5의 비율로 혼합한 농도 5 wt%의 전해액(용매: DI Water)에서 온도 20 ℃, 인가전류를 1 A/dm2로 양극산화처리를 행하여 양극 산화 피막을 얻었으며, 이때 알루미늄을 양극(+), 납을 음극(-)으로 하였다.Then, the electrolyte solution (solvent: DI Water) having a concentration of 5 wt% in which the weight ratio of sulfuric acid (95% sulfuric acid), water (100% Anodic oxidation treatment was carried out at 20 ° C and an applied current of 1 A / dm 2 to obtain an anodic oxide film. At this time, aluminum was used as a positive electrode and lead was used as a negative electrode (-).
<실시예 2 내지 실시예 8> &Lt; Examples 2 to 8 >
실시예 2 내지 실시예 8의 양극 산화 피막은 전해액의 중량비 및 양극산화처리 공정시간을 제외한 나머지 조건은 동일하게 하여 상기 실시예 1과 동일한 방법을 통해 얻었으며, 양극 산화 피막 생성 조건은 하기 표 1에 기재한 바와 같다.The anodic oxidation coatings of Examples 2 to 8 were obtained in the same manner as in Example 1 except that the weight ratio of the electrolytic solution and the anodization treatment time were the same, Lt; / RTI &gt;
<비교예 1 내지 비교예 8>&Lt; Comparative Examples 1 to 8 >
비교예 1 내지 비교예 8의 양극 산화 피막은 전해액의 중량비 및 양극산화처리 공정시간을 제외한 나머지 조건은 동일하게 하여 상기 실시예 1과 동일한 방법을 통해 얻었으며, 양극 산화 피막 생성 조건은 하기 표 1에 기재한 바와 같다.The anodic oxidation coatings of Comparative Examples 1 to 8 were obtained in the same manner as in Example 1 except that the weight ratio of the electrolytic solution and the anodic oxidation treatment time were the same, Lt; / RTI &gt;
[실험예 1] [Experimental Example 1]
실시예 1 내지 실시예 8, 비교예 1 내지 비교예 8의 양극 산화 피막의 물성을 확인하기 위해 아래와 같은 조건에서 물성 분석을 수행하였다. 물성 분석 장비는 외전류 방식의 두께 측정기(Positector 6000, Defelsko), 비커스 경도계(HM 810-124K, Mitutoyo), 내전압 측정기(HIPOT TESTER 19052, Chroma)를 사용하였다. In order to confirm the physical properties of the anodic oxidation coatings of Examples 1 to 8 and Comparative Examples 1 to 8, physical property analysis was carried out under the following conditions. The physical property analyzer was an external current type thickness gauge (Positector 6000, Defelsko), a Vickers hardness meter (HM 810-124K, Mitutoyo), and an electric strength meter (HIPOT TESTER 19052, Chroma).
또한, 내식성 테스트는 염산 버블테스트(bubble test)를 진행하였으며, 상기 염산 버블테스트는 직경 2 mm의 PVC 파이프를 실란트를 사용하여 시편에 부착하여 염산 5 wt%로 희석하여 2 ml를 넣어 최초로 버블이 발생하는 시간을 측정하였다.In the hydrochloric acid bubble test, a PVC pipe having a diameter of 2 mm was attached to a specimen using a sealant, diluted to 5 wt% with hydrochloric acid, and put into a 2 ml flask. The time of occurrence was measured.
상기 실시예 1 내지 실시예 8, 비교예 1 내지 비교예 8의 양극산화 조건 및 물성 분석 결과는 하기 표 1 및 도 2에 나타내었다.The results of the anodic oxidation conditions and the physical properties of Examples 1 to 8 and Comparative Examples 1 to 8 are shown in Table 1 and FIG.
전해액 비율Electrolyte ratio 코팅두께(㎛)Coating Thickness (탆) 측정값Measures 공정시간(분)Process time (minutes)
황산Sulfuric acid 수산Fishery 주석산Tartaric acid 경도(Hv)Hardness (Hv) 내전압(V)Withstanding voltage (V) 내부식성(분)Corrosion resistance (minute)
실시예 1Example 1 1010 33 0.50.5 3030 421421 828828 120 이상120 or more 8080
실시예 2Example 2 1010 33 0.50.5 4545 396396 19151915 120 이상120 or more 120120
실시예 3Example 3 1010 33 0.50.5 5555 393393 23982398 120 이상120 or more 150150
실시예 4Example 4 1010 33 0.50.5 6060 387387 25102510 120 이상120 or more 180180
실시예 5Example 5 1111 2.72.7 0.50.5 5555 412412 21222122 120 이상120 or more 150150
실시예 6Example 6 1111 3.23.2 0.50.5 5555 386386 18741874 120 이상120 or more 150150
실시예 7Example 7 99 2.72.7 0.50.5 5555 388388 22362236 120 이상120 or more 150150
실시예 8Example 8 99 3.23.2 0.50.5 5555 379379 17551755 120 이상120 or more 150150
비교예 1Comparative Example 1 55 33 0.50.5 3030 364364 750750 120 이상120 or more 8080
비교예 2Comparative Example 2 1515 33 0.50.5 5555 401401 14231423 2020 150150
비교예 3Comparative Example 3 1010 1.51.5 0.50.5 5555 417417 13891389 5050 150150
비교예 4Comparative Example 4 1010 4.54.5 0.50.5 4040 361361 19451945 120 이상120 or more 120120
비교예 5Comparative Example 5 1010 33 1One 3535 394394 16031603 120 이상120 or more 8080
비교예 6Comparative Example 6 1010 33 0.10.1 5555 377377 14321432 7575 150150
비교예 7Comparative Example 7 1010 1One -- 5555 428428 10291029 1616 8080
비교예 8Comparative Example 8 -- 99 1One 3030 357357 735735 120 이상120 or more 8080
상기 실시예 1 내지 실시예 8 및 비교예 1 내지 비교예 8의 물성 분석 실험 결과, 실시예 1 내지 실시예 4는 황산, 수산, 주석산의 중량비를 10 : 3 : 0.5로 고정하고 공정시간을 달리한 경우로, 공정시간을 150분으로 진행한 경우에 50 ㎛ 이상의 코팅두께를 얻으며, 경도, 내전압 및 내부식성이 우수한 것을 확인하였다. As a result of the physical property analysis tests of Examples 1 to 8 and Comparative Examples 1 to 8, it was confirmed that the weight ratios of sulfuric acid, water, and tartaric acid in Examples 1 to 4 were fixed at 10: 3: 0.5, As a result, it was confirmed that when the process time was increased to 150 minutes, a coating thickness of 50 μm or more was obtained, and that the coating film had excellent hardness, withstand voltage and corrosion resistance.
반면에 공정시간이 150분 미만인 경우에는 경도가 높고, 내부식성도 좋으나, 원하는 코팅두께를 얻을 수 없었고, 내전압도 저하되는 것을 알 수 있었다. 공정시간이 150분이 초과되는 경우에는 두꺼운 코팅 두께를 얻을 수 있으나, 150분 진행한 시편과 경도, 내전압 및 내부식성은 유사한 것을 알 수 있었다. On the other hand, when the process time is less than 150 minutes, the hardness is high and the corrosion resistance is good, but the desired coating thickness can not be obtained and the withstand voltage is also lowered. When the process time exceeded 150 minutes, a thick coating thickness could be obtained, but it was found that the hardness, withstand voltage and corrosion resistance were similar to the specimen which proceeded for 150 minutes.
또한, 비교예 1 내지 비교예 8을 비교하면, 황산의 함량이 증가하면 경도는 좋으나, 내전압 및 내부식성 특성이 저하되는 것을 알 수 있었으며, 황산의 함량이 본 발명의 중량비에 비해 적을 경우, 경도는 유사하나 내전압 및 내부식성 특성이 소폭 저하되는 것을 확인하였다.Comparing Comparative Examples 1 to 8, it was found that when the sulfuric acid content was increased, the hardness was good, but the withstand voltage and corrosion resistance characteristics were deteriorated. When the sulfuric acid content was smaller than the weight ratio of the present invention, But it was confirmed that the withstand voltage and corrosion resistance characteristics were slightly lowered.
또한 수산의 함량이 적어지는 경우에는 내부식성이 저하되는 것을 확인하였으며, 반면에 수산 및 주석산의 함량이 본 발명의 중량비에 비해 많을 경우, 내부식성이 좋아지나, 상대적으로 황산의 함량이 감소하기 때문에 경도가 저하되는 것을 확인하였다.On the other hand, when the content of the oxalic acid and the tartaric acid is larger than the weight ratio of the present invention, the corrosion resistance is improved, but the content of the sulfuric acid is relatively decreased And the hardness was lowered.
따라서, 양극 산화 피막을 형성하기 위한 전해액의 황산, 수산 및 주석산의 중량비는 9 ~ 11 : 2.5 ~ 3.5 : 0.3 ~ 0.7인 것이 바람직하고, 50 ㎛ 이상의 코팅층 두께와, 적절한 경도, 내전압 및 내부식성을 가질 수 있는 양극산화 피막을 얻을 수 있는 것을 확인하였다.Therefore, the weight ratio of sulfuric acid, water, and tartaric acid in the electrolytic solution for forming the anodic oxide coating is preferably 9 to 11: 2.5 to 3.5: 0.3 to 0.7, and the thickness of the coating layer of 50 탆 or more and the appropriate hardness, withstand voltage and corrosion resistance It is confirmed that an anodic oxide film having a high dielectric constant can be obtained.
또한, 도 2는 실시예 3 및 비교예 7의 SEM 이미지로, (a)는 비교예 7의 산화피막이 형성된 단면을 측정한 이미지이고, (b)는 실시예 3의 산화피막이 형성된 단면을 측정한 이미지이다. (a)는 기존의 황산법과 동일한 조건으로 양극산화 피막을 형성하며, 결함이 다수 존재하는 것을 확인하였고, (b)에서는 결함이 거의 존재하지 않는 것을 확인하였다. 2 is an SEM image of Example 3 and Comparative Example 7, wherein (a) is an image obtained by measuring the cross-section of the oxide film of Comparative Example 7, and (b) is a cross section of the oxide film of Example 3 Image. (a) shows the formation of an anodic oxide film under the same conditions as those of the conventional sulfuric acid method, and it was confirmed that a large number of defects were present. In (b), it was confirmed that there was almost no defect.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 도면에 예시된 것에 한정되는 것은 아니며, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments, It will be apparent that the scope is not limited. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

Claims (10)

  1. 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법에 있어서,A method of forming an oxide film of a member including aluminum in a semiconductor or display manufacturing apparatus,
    a) 황산, 수산 및 주석산을 혼합하여 전해액을 제조하는 단계; 및a) preparing electrolytic solution by mixing sulfuric acid, water, and tartaric acid; And
    b) 상기 a) 단계에서 제조된 전해액을 이용하여 알루미늄 혹은 알루미늄 합금 부재 표면에 양극산화피막을 형성하는 단계를 포함하는, 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법. b) forming an anodic oxide coating on the surface of the aluminum or aluminum alloy member using the electrolyte prepared in step a).
  2. 제1항에 있어서, The method according to claim 1,
    상기 a) 단계에서 상기 황산, 수산 및 주석산의 함량은 중량비로서, 9 ~ 11 : 2.5 ~ 3.5 : 0.3 ~ 0.7인 것을 특징으로 하는 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법.Wherein the content of sulfuric acid, oxalic acid, and tartaric acid in the step (a) is in the range of 9 to 11: 2.5 to 3.5: 0.3 to 0.7 in weight ratio.
  3. 제1항에 있어서, The method according to claim 1,
    상기 전해액의 농도는 1 wt% 내지 10 wt%인 것을 특징으로 하는 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법.Wherein the concentration of the electrolytic solution is 1 wt% to 10 wt%.
  4. 제1항에 있어서, The method according to claim 1,
    상기 b) 단계에서 양극산화피막을 형성시 인가전류는 0.8 A/dm2 내지 1.7 A/dm2이고, 전해액의 온도는 8 ℃ 내지 22 ℃인 것을 특징으로 하는 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법.When the anodic oxide film is formed in the step b), the applied current is 0.8 A / dm 2 To 1.7 A / dm &lt; 2 &gt;, and the temperature of the electrolytic solution is from 8 [deg.] C to 22 [deg.] C.
  5. 제1항에 있어서, The method according to claim 1,
    상기 양극산화피막 두께는 50 ㎛ 내지 60 ㎛인 것을 특징으로 하는 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재의 산화피막 형성방법.Wherein the anodic oxide film thickness is 50 占 퐉 to 60 占 퐉.
  6. 제1항 내지 제5항 중 어느 한 항에 기재된 방법으로 양극산화피막이 그 표면에 형성된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재.A member comprising aluminum of a semiconductor or display manufacturing apparatus in which an anodized coating is formed on its surface by the method according to any one of claims 1 to 5.
  7. 경도가 370 Hv ~ 425 Hv, 내전압이 1500 V ~ 2000 V인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재.A member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxidation coating having a hardness of 370 Hv to 425 Hv and a withstand voltage of 1500 V to 2000 V.
  8. 제7항에 있어서,8. The method of claim 7,
    내부식성이 120분 이상인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재.A member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxide coating having corrosion resistance of 120 minutes or longer.
  9. 경도가 370 Hv ~ 425 Hv, 내부식성이 120분 이상인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재.A member comprising aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxide coating having a hardness of 370 Hv to 425 Hv and a corrosion resistance of 120 minutes or more.
  10. 내전압이 1500 V ~ 2000 V, 내부식성이 120분 이상인 양극산화피막이 코팅된 반도체 또는 디스플레이 제조 장치의 알루미늄이 포함된 부재.A member including aluminum of a semiconductor or display manufacturing apparatus coated with an anodic oxidation coating having a withstand voltage of 1500 V to 2000 V and a corrosion resistance of 120 minutes or more.
PCT/KR2018/008077 2017-12-11 2018-07-17 Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device WO2019117414A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880072917.9A CN111344836A (en) 2017-12-11 2018-07-17 Method for producing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation properties, and surface-treated semiconductor device
US16/765,093 US20200354850A1 (en) 2017-12-11 2018-07-17 Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device
SG11202003710SA SG11202003710SA (en) 2017-12-11 2018-07-17 Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0169126 2017-12-11
KR1020170169126A KR102443973B1 (en) 2017-12-11 2017-12-11 Anodized Al or Al alloy member having good decay resistance and insulation property and the method for manufacturing the member

Publications (1)

Publication Number Publication Date
WO2019117414A1 true WO2019117414A1 (en) 2019-06-20

Family

ID=66820368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/008077 WO2019117414A1 (en) 2017-12-11 2018-07-17 Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device

Country Status (6)

Country Link
US (1) US20200354850A1 (en)
KR (1) KR102443973B1 (en)
CN (1) CN111344836A (en)
SG (1) SG11202003710SA (en)
TW (1) TWI772489B (en)
WO (1) WO2019117414A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210100372A (en) * 2020-02-06 2021-08-17 (주)포인트엔지니어링 Anodic oxidation structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820744B1 (en) * 2007-09-05 2008-04-11 (주)제이스 Method of coating metallic material
JP4796464B2 (en) * 2005-11-17 2011-10-19 株式会社神戸製鋼所 Aluminum alloy member with excellent corrosion resistance
JP2013084954A (en) * 2011-09-30 2013-05-09 Fujifilm Corp Light emitting device
KR101592147B1 (en) * 2015-08-19 2016-02-04 이대석 A method manufacturing an oxide layer of an aluminium substrate
JP5992208B2 (en) * 2012-05-30 2016-09-14 富士フイルム株式会社 Method for manufacturing thermoelectric conversion element

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081817A (en) * 1983-10-13 1985-05-09 松下電器産業株式会社 Method of producing anode foil for aluminum electrolytic condenser
JP4194143B2 (en) * 1998-10-09 2008-12-10 株式会社神戸製鋼所 Aluminum alloy material with excellent gas and plasma corrosion resistance
KR100664900B1 (en) 2004-07-15 2007-01-04 주식회사 코미코 ANODIZED Al OR Al ALLOY MEMBER HAVING GOOD THERMAL CRACKING-RESISTANCE AND THE METHOD FOR MANUFACTURING THE MEMBER
JP4660760B2 (en) 2005-06-02 2011-03-30 国立大学法人広島大学 Method for forming anodized film of aluminum and / or aluminum alloy and anodized film formed by the method
JP4824430B2 (en) * 2006-02-28 2011-11-30 富士フイルム株式会社 Method for producing nanostructure
FR2922899B1 (en) * 2007-10-26 2010-11-26 Univ Toulouse METHOD FOR MANUFACTURING POROUS STRUCTURE ORDERED FROM AN ALUMINUM SUBSTRATE
CN102330138B (en) * 2011-09-14 2014-04-23 湖南大学 Preparation of aluminum or aluminum alloy dual-layer anodic oxide film and preparation of multi-color coloring film thereof
WO2014024868A1 (en) * 2012-08-06 2014-02-13 三菱レイヨン株式会社 Method for manufacturing mold, molded body having fine protrusions and recesseses on surface, and method for manufacturing same
KR20150092948A (en) * 2014-02-06 2015-08-17 인 경 황 Surface treatment method of aluminum-diecasting material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796464B2 (en) * 2005-11-17 2011-10-19 株式会社神戸製鋼所 Aluminum alloy member with excellent corrosion resistance
KR100820744B1 (en) * 2007-09-05 2008-04-11 (주)제이스 Method of coating metallic material
JP2013084954A (en) * 2011-09-30 2013-05-09 Fujifilm Corp Light emitting device
JP5992208B2 (en) * 2012-05-30 2016-09-14 富士フイルム株式会社 Method for manufacturing thermoelectric conversion element
KR101592147B1 (en) * 2015-08-19 2016-02-04 이대석 A method manufacturing an oxide layer of an aluminium substrate

Also Published As

Publication number Publication date
TW201928125A (en) 2019-07-16
TWI772489B (en) 2022-08-01
KR102443973B1 (en) 2022-09-16
US20200354850A1 (en) 2020-11-12
SG11202003710SA (en) 2020-05-28
CN111344836A (en) 2020-06-26
KR20190068893A (en) 2019-06-19

Similar Documents

Publication Publication Date Title
US20120132532A1 (en) Aluminum-plated components of semiconductor material processing apparatuses and methods of manufacturing the components
US5925228A (en) Electrophoretically active sol-gel processes to backfill, seal, and/or densify porous, flawed, and/or cracked coatings on electrically conductive material
JP2831488B2 (en) Method for forming a corrosion-resistant protective film on an aluminum substrate
WO2011040679A1 (en) High field anodizing apparatus
TWI248991B (en) Aluminum alloy member superior in corrosion resistance and plasma resistance
WO2018088642A1 (en) Electrolytic copper foil for secondary battery and method for producing same
KR20040108772A (en) Halogen-resistant, anodized aluminum for use in semiconductor processing apparatus
WO2019004589A1 (en) Aluminum nitride sintered body and member for semiconductor manufacuting apparatus comprising same
KR20120021616A (en) Surface treatment method of mother metal
WO2020141714A1 (en) Method for manufacturing aluminum alloy anodized film having superhydrophobic surface
CN86101886A (en) On non-conductor, make metal structure
WO2019117414A1 (en) Method for manufacturing anodized aluminum or aluminum alloy member having excellent corrosion resistance and insulation characteristics, and surface-treated semiconductor device
WO2021029645A1 (en) Method for manufacturing aluminum anodized film having pillar-on-pore structure by using phosphoric acid
KR20140059153A (en) Palladium plated aluminum component of a plasma processing chamber and method of manufacture thereof
WO2018128527A1 (en) Semiconductor reactor and method for forming coating layer on metal base material for semiconductor reactor
WO2011162431A1 (en) Separator plate for a fuel cell and a production method therefor
WO2018084448A2 (en) Mother plate, method for manufacturing mother plate, method for manufacturing mask, and oled pixel deposition method
WO2018088646A1 (en) Electrolytic copper foil for secondary battery and method for producing same
WO2017171282A1 (en) Metal parts and method for manufacturing same and process chamber provided with metal parts
KR100664900B1 (en) ANODIZED Al OR Al ALLOY MEMBER HAVING GOOD THERMAL CRACKING-RESISTANCE AND THE METHOD FOR MANUFACTURING THE MEMBER
KR102468324B1 (en) Method for manufacturing Anodized Coating Layer on Aluminium Member and Aluminium Member for Semiconductor Manufaturing Device by the Same
WO2012053774A2 (en) Method for performing an antistatic treatment on a surface of a work stage, and work stage to the surface of which an antistatic treatment is applied according to the method
KR20220062697A (en) Manufacturing method of aluminum alloy member with excellent corrosion resistance and insulating properties, and semiconductor device with surface treatment
WO2021125410A1 (en) Surface-treated copper foil, method for producing same, and negative electrode for secondary battery including same
JP5452034B2 (en) Surface treatment member for semiconductor manufacturing apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888040

Country of ref document: EP

Kind code of ref document: A1