WO2019100949A1 - 一种制备碳纳米管的方法及装置及制备的碳纳米管 - Google Patents

一种制备碳纳米管的方法及装置及制备的碳纳米管 Download PDF

Info

Publication number
WO2019100949A1
WO2019100949A1 PCT/CN2018/114661 CN2018114661W WO2019100949A1 WO 2019100949 A1 WO2019100949 A1 WO 2019100949A1 CN 2018114661 W CN2018114661 W CN 2018114661W WO 2019100949 A1 WO2019100949 A1 WO 2019100949A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
carbon nanotubes
carbon
stage
iron
Prior art date
Application number
PCT/CN2018/114661
Other languages
English (en)
French (fr)
Inventor
李上奎
王兵
李博
李显信
邹海平
朱敏峰
Original Assignee
江西悦安超细金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西悦安超细金属有限公司 filed Critical 江西悦安超细金属有限公司
Priority to US16/763,205 priority Critical patent/US11608268B2/en
Priority to EP18880959.4A priority patent/EP3715323A4/en
Publication of WO2019100949A1 publication Critical patent/WO2019100949A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/23
    • B01J35/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/086Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1872Details of the fluidised bed reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes

Definitions

  • the present disclosure relates to the technical field of carbon nanotubes preparation, and in particular to a method and device for preparing carbon nanotubes and carbon nanotubes prepared.
  • Carbon nanotubes also known as bucky tubes, are one-dimensional quantum materials with a special structure (radial size is nanometer-scale, axial dimension is on the order of micrometers, and both ends of the tube are substantially sealed).
  • the carbon nanotubes are mainly composed of a plurality of coaxial tubes of a plurality of layers of carbon atoms arranged in a hexagonal shape. The layer is maintained at a fixed distance between the layers, about 0.34 nm, and generally has a diameter of 2 to 20 nm.
  • carbon nanotubes are not only lightweight, but also have a perfect hexagonal structure with many abnormal mechanical, electrical and chemical properties.
  • the existing catalyst for preparing carbon nanotubes is usually supported on aluminum oxide by using iron or molybdenum, or supported on aluminum oxide or magnesium oxide by using iron, nickel or copper, or directly using iron, nickel, etc. Metal alloy powder.
  • the performance of carbon nanotubes prepared by using these catalysts is general, and the purification of carbon nanotubes prepared by using these catalysts mostly undergoes acid washing and water washing processes, and there is a certain environmental pollution in this process.
  • An object of the present disclosure includes providing a method of preparing carbon nanotubes, which aims to improve the general problems of the properties of carbon nanotubes prepared by the prior art.
  • the method for preparing carbon nanotubes provided by the present disclosure, the preparation steps of the method include:
  • the ferric pentoxide and the nickel tetracarbonyl are decomposed into a multi-stage series fluidized bed to obtain a nano-iron-nickel composite catalyst having a particle diameter of 1 to 10 nm, and the generated carbon monoxide is discharged;
  • the ratio of the mass of the carbon in the carbon source to the mass of the catalyst is 5-7:3 to 5, and the reaction is carried out under the condition of heating at 600-800 °C.
  • the composite carbon nanotubes are formed.
  • the mass percentage of carbon in the composite carbon nanotubes is 50% to 70%, and the mass percentage of the catalyst is 30% to 50%.
  • a mixture of the iron pentacarbonyl and the nickel tetracarbonyl is added to the fluidized bed, and the fluidized bed heating temperature is controlled to be 225 to 315 °C.
  • the mass ratio of the iron pentacarbonyl to the nickel tetracarbonyl is 370 to 392: 163 to 178.
  • the gas-solid mixture generated in the multi-stage series fluidized bed is separated by a gas-solid separator to obtain composite carbon nanotubes.
  • the method further comprises purifying the composite carbon nanotube separated by a gas-solid separator, and the purifying step comprises:
  • the composite carbon nanotubes are placed in a carbon monoxide atmosphere at a pressure of 150-200 atm and a temperature of 38-55 ° C to synthesize nickel tetracarbonyl to remove the metal nickel in the composite carbon nanotubes to obtain secondary carbon nanotubes;
  • the secondary carbon nanotubes are placed in a pressure of 150-200 atm, at a temperature of 190-250 ° C and have a carbon monoxide atmosphere to form iron pentacarbonyl to remove metallic iron in the secondary carbon nanotubes to obtain high-purity carbon nanometers. tube.
  • the multi-stage series fluidized bed is placed in an electromagnetic field.
  • the carbon source comprises a hydrocarbon gas.
  • the apparatus for preparing carbon nanotubes is configured to implement the above method for preparing carbon nanotubes, comprising a multi-stage series fluidized bed, wherein the multi-stage series fluidized bed comprises a first-stage fluidized bed in series, two a fluidized bed and a three-stage fluidized bed, the secondary fluidized bed being at least one; the primary fluidized bed comprising a first heating section disposed on the first fluidized bed portion and disposed in the a second heating section of a lower portion of the primary fluidized bed, the first heating section being configured to provide a temperature for decomposing a mixture of iron pentacarbonyl and nickel tetracarbonyl, the second heating section being configured to provide a growth temperature of the carbon nanotubes;
  • An upper portion of the first fluidized bed is provided with a carbon dioxide discharge port, a bottom of the first fluidized bed is provided with an air inlet, and an upper portion of the three-stage fluidized bed is provided with a product discharge port, and the product discharge port There is a gas-solid
  • the apparatus for preparing carbon nanotubes is configured to implement the above method for preparing carbon nanotubes, comprising a multi-stage series fluidized bed, and the multi-stage series fluidized bed comprises a first-stage fluidized bed and three stages in series.
  • the fluidized bed the first fluidized bed comprises a first heating section disposed on the first fluidized bed portion and a second heating section disposed in a lower portion of the first fluidized bed, the first heating section being configured to provide decomposition of iron pentacarbonyl and The temperature of the mixture of nickel tetracarbonyl, the second heating section is configured to provide the growth temperature of the carbon nanotubes, the upper part of the first fluidized bed is provided with a carbon dioxide discharge port, and the bottom of the first fluidized bed is provided with an air inlet, the third stage The upper part of the fluidized bed is provided with a product discharge port, and the product discharge port is connected with a gas-solid separator.
  • a lower portion of the primary fluidized bed is provided with a current sharing device, and the current sharing device is located above the air inlet.
  • the flow equalizing device includes a sieve plate provided with a plurality of through holes.
  • a magnetic field generating device is further included, the magnetic field generating device includes a first magnetic pole and one second magnetic pole, the first magnetic pole is located at one end of the multi-stage series fluidized bed, and the second magnetic pole is located at the other end of the multi-stage series fluidized bed.
  • first magnetic pole and the second magnetic pole each have an elongated structure, and the first magnetic pole and the second magnetic pole extend along the length direction of the fluidized bed.
  • each of the fluidized beds is connected by a connecting pipe, and an upper portion of the upper fluidized bed communicates with a lower portion of the fluidized bed of the lower stage, and the first fluidized bed
  • the connected connecting pipe is a first connecting pipe, and the first connecting pipe is connected to the first fluidized bed at the first heating section, and the carbon monoxide discharging port is disposed at a position of the first connecting pipe close to the first fluidized bed.
  • the outer wrap of the first heating section and/or the second heating section is provided with an insulating layer.
  • a circulation pipe is arranged in communication between the first fluidized bed and the third-stage fluidized bed; one end of the circulation pipe is connected with the product discharge port of the three-stage fluidized bed, and the other end of the circulation pipe and the first fluidized bed are The air inlet is connected.
  • the top of the primary fluidized bed is provided with a charging device configured to allow a mixture or carbon source of iron pentacarbonyl and nickel tetracarbonyl to enter the primary fluidized bed.
  • the method for preparing carbon nanotubes obtained by the above design uses carbon pentacarbonyl and nickel tetracarbonyl to enter the reaction device, and grows in the carbon nanotubes.
  • Pre-decomposition to form a nano-sized uniform-sized iron-nickel alloy as a catalyst can make the quality of the prepared carbon nanotubes good; and rationally control the reaction time, adjust the ratio of carbon in the catalyst to the carbon source, and make the carbon and carbon in the composite carbon nanotubes.
  • the iron-nickel alloy has a superior mass ratio, which not only makes the obtained composite carbon nanotube have high magnetization and large coercive force, but also enables the composite carbon nanotube to react with carbon monoxide easily at this ratio to remove the iron-nickel contained therein.
  • the alloy produces recyclable carbonyl iron and nickel carbonyl. This process does not require pickling or high temperature removal, can reduce production costs, and is more environmentally friendly.
  • the apparatus for preparing carbon nanotubes obtained by the above design by the above design can be used to implement the method provided by the present disclosure because of reasonable arrangement of the units, thereby producing carbon nanotubes with superior performance.
  • the device adopts a setting manner in which a plurality of fluidized beds can be connected in series, so that the device can adjust the number of fluidized beds according to actual production requirements of the production.
  • the carbon nanotubes prepared by the method for preparing carbon nanotubes described above have excellent performance.
  • FIG. 1 is a schematic structural view of an apparatus for preparing carbon nanotubes according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view of the first fluidized bed of Figure 1;
  • FIG. 3 is a schematic structural view of another apparatus for preparing carbon nanotubes according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural view of still another apparatus for preparing carbon nanotubes according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of the feeding device of Figure 3.
  • FIG. 6 is a schematic structural view of an apparatus for preparing carbon nanotubes according to an embodiment of the present disclosure
  • FIG. 7 is a structural view of a carbon nanotube provided by an embodiment of the present disclosure under scanning electron microscope observation;
  • FIG. 8 is a structural diagram of carbon nanotubes provided by an embodiment of the present disclosure under transmission electron microscope observation.
  • Icon 100 - device for preparing carbon nanotubes; 110 - first fluidized bed; 111 - first heating section; 112 - second heating section; 113 - carbon monoxide discharge port; 114 - air inlet; 115 - current sharing device 130-three-stage fluidized bed; 131-product discharge port; 140-gas-solid separator; 151-first magnetic pole; 152-second magnetic pole; 161-first connecting tube; 200-device for preparing carbon nanotubes; 210-first fluidized bed; 214-air inlet; 217-inert gas inlet pipe; 218-first valve; 219-second valve; 230-three-stage fluidized bed; 231-product discharge port; Discharge tube; 238-third valve; 240-gas-solid separator; 251-cycle tube; 300-device for preparing carbon nanotubes; 310-first fluidized bed; 361-first connecting tube; 362-second connection Tube; 320-secondary fluidized bed; 330-three-stage fluidized bed; 370
  • a method and an apparatus for preparing carbon nanotubes are specifically described below for embodiments of the present disclosure.
  • a method for preparing carbon nanotubes comprising:
  • iron pentacarbonyl and nickel tetracarbonyl are introduced into the first fluidized bed from the top of the fluidized bed, and iron, nickel and carbon monoxide are decomposed under the high temperature condition of the upper part of the first fluidized bed, and after the reaction is completed, the carbon monoxide is discharged.
  • the carbon monoxide is discharged by vacuum pumping to extract carbon monoxide.
  • the method for preparing carbon nanotubes provided by the present disclosure is to prepare carbon nanotubes by using an iron-nickel alloy as a catalyst, and the raw material is directly added to the reaction device by using iron pentacarbonyl and nickel tetracarbonyl.
  • the present catalyst is due to iron pentacarbonyl and tetracarbonyl.
  • the iron powder and the nickel powder obtained by the decomposition of nickel are both nano-sized and uniform in particle size, and the performance of the carbon nanotubes prepared by the catalyst is good.
  • the decomposition temperature of the iron pentacarbonyl and nickel tetracarbonyl in the first-stage fluidized bed is controlled to be 225 to 315 °C. At this temperature, iron pentacarbonyl and nickel tetracarbonyl can be decomposed into iron, nickel and carbon monoxide.
  • the mass ratio of the added iron pentacarbonyl to the nickel tetracarbonyl is 370 to 392: 163 to 178.
  • the arrangement is such that the mass ratio of the iron-nickel alloy powder obtained by decomposing the iron pentacarbonyl and the nickel tetracarbonyl as the catalyst is a higher quality ratio, and the magnetization of the unpurified composite carbon nanotubes prepared under the mass ratio conditions Higher strength and greater coercivity.
  • an inert gas is introduced into the multi-stage series fluidized bed to enable the catalyst to follow the flow of the inert gas into each fluidized bed; Into the gas carbon source, in the process, the inert gas is always introduced into the multi-stage fluidized bed.
  • the carbon source to be added may be a hydrocarbon gas.
  • the hydrocarbon gas may be added together with the inert gas from the bottom end of the primary fluidized bed, wherein the inert gas may be at least one selected from the group consisting of nitrogen and argon.
  • the hydrocarbon gas may be methane.
  • the reaction time of the control device is 40 to 90 minutes at a temperature of 600 to 800 ° C.
  • the mass percentage of carbon in the carbon nanotubes can account for 50% to 70%, and the mass percentage of the catalyst accounts for 30% to 50%, and almost no one of the carbon source or the catalyst remains, and the reaction is completed.
  • the gas-solid mixture is then passed to the next unit.
  • the percentage of the mass percentage of the catalyst is maintained at 30% to 50%, which not only makes the system
  • the obtained composite carbon nanotubes have high conductivity, good magnetization and coercive force, and also facilitate the reaction of iron and nickel in the composite carbon nanotubes with carbon monoxide in the subsequent purification process to form iron pentoxide. And nickel tetracarbonyl is removed.
  • the content of the catalyst in the carbon nanotubes should not be too much, and too much will result in greatly reduced performance of the carbon nanotubes after purification; likewise, the content of the catalyst in the carbon nanotubes cannot be too low, and too low is difficult to participate. The reaction of carbon monoxide.
  • the gas-solid mixture formed in the multi-stage series fluidized bed is separated by a gas-solid separator to obtain a composite carbon nanotube, and the composite carbon nanotube is purified.
  • the gas-solid mixture is introduced into the gas-solid separator to separate the gas from the solid, and the gas is recovered, and the solid carbon nano-composite
  • the tube is subjected to a purification operation of removing iron and removing nickel.
  • the composite carbon nanotubes are placed in a high-pressure environment filled with carbon monoxide, and the temperature of the high-pressure environment is controlled to be between 38 and 55 ° C, so that carbon monoxide reacts with nickel in the composite carbon nanotubes to form a liquid nickel tetracarbonyl, which is subsequently formed.
  • the solid-liquid separation operation is carried out to recover nickel tetracarbonyl therein to obtain iron-containing carbon nanotubes.
  • the iron-containing carbon nanotubes are placed in a high-pressure environment filled with carbon monoxide, and the temperature of the high-pressure environment is controlled to be between 190 and 250 ° C, so that carbon monoxide reacts with iron in the carbon nanotubes to form a pentacarbonyl iron liquid, which is subsequently generated.
  • the solid-liquid separation operation is carried out to recover the iron pentacarbonyl therein to obtain purified carbon nanotubes.
  • the above two-step purification step can also be carried out in an exchange sequence.
  • the specific purification steps are as follows: First, the composite carbon nanotubes are placed in a high-pressure environment filled with carbon monoxide, and the temperature of the high-pressure environment is controlled at 190 to 250 ° C.
  • the above high pressure environment refers to an environment in which the pressure is 150 to 200 atm.
  • the post-purification of existing carbon nanotubes is usually treated by pickling or high-temperature evaporation to treat impurities contained therein, but pickling or high-temperature evaporation is costly, and pickling also produces pickling waste.
  • pickling or high-temperature evaporation is costly, and pickling also produces pickling waste.
  • the carbon nanotubes are again used for preparation.
  • the recycling of intermediate materials in the preparation of carbon nanotubes reduces waste of resources.
  • this purification method also improves the disadvantages of high cost and serious environmental pollution in the traditional pickling and high-temperature evaporation methods, and is more environmentally friendly.
  • the multi-stage series fluidized bed can be placed in an electromagnetic field.
  • the catalysts in each fluidized bed are arranged in the direction of the magnetic induction line, so that the carbon nanotubes also grow in the direction of the magnetic induction line, so that the finally produced carbon
  • the shape of the nanotubes is more regular and the performance is better.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing nickel in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 38 ° C and having carbon monoxide; and then removing the composite carbon nanometer in a high-pressure environment having an ambient temperature of 190 ° C and having carbon monoxide.
  • the iron in the tube is used to finally obtain the purified carbon nanotubes.
  • Such an arrangement reduces the operating temperature of each stage of the fluidized bed, thereby reducing the amount of heat radiated to the outside during the preparation of the carbon nanotubes.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing nickel in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 55 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 250 ° C and having carbon monoxide. Iron in the nanotubes to finally obtain purified carbon nanotubes.
  • the reaction time is greatly shortened, so that the carbon nanotubes can be obtained in a short time, and the preparation efficiency of the carbon nanotubes is improved.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing nickel in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 55 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 250 ° C and having carbon monoxide. Iron in the nanotubes to finally obtain purified carbon nanotubes.
  • a pentacarbonyl iron and a nickel tetracarbonyl having a mass ratio of 375:168 are weighed, and a carbon source having a mass ratio of carbon to pentacarbonyl iron and nickel tetracarbonyl nickel of 5 to 7:3 to 5 is prepared; a mixture of carbonyl iron and nickel tetracarbonyl is added to a first-stage fluidized bed in a multi-stage series fluidized bed, and heated to decomposition at 270 ° C to obtain a catalyst; then, carbon monoxide is extracted and fed to a multi-stage fluidized bed.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing nickel in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 40 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 210 ° C and having carbon monoxide. Iron in the nanotubes to finally obtain purified carbon nanotubes.
  • a pentacarbonyl iron and a nickel tetracarbonyl having a mass ratio of 385:171 are weighed, and a carbon source having a mass ratio of carbon to pentacarbonyl iron and nickel tetracarbonyl nickel of 5 to 7:3 to 5 is prepared; a mixture of carbonyl iron and nickel tetracarbonyl is added to a first-stage fluidized bed in a multi-stage series fluidized bed, and heated to decomposition at 250 ° C to obtain a catalyst; then, carbon monoxide is extracted and fed to a multi-stage fluidized bed.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing nickel in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 43 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 220 ° C and having carbon monoxide. Iron in the nanotubes to finally obtain purified carbon nanotubes.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing nickel in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 45 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 240 ° C and having carbon monoxide. Iron in the nanotubes to finally obtain purified carbon nanotubes.
  • the inert gas under the action of the inert gas, distributes the catalyst to each fluidized bed, and maintains the temperature of each stage of the fluidized bed at 600 ° C for 90 min.
  • the above operations are all carried out under conditions of a magnetic field.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing iron in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 190 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 38 ° C and having carbon monoxide. Nickel in the nanotubes to finally obtain purified carbon nanotubes.
  • Such an arrangement reduces the operating temperature of each stage of the fluidized bed, thereby reducing the amount of heat radiated to the outside during the preparation of the carbon nanotubes.
  • a pentacarbonyl iron and a nickel tetracarbonyl having a mass ratio of 390:178 are weighed, and a carbon source having a mass ratio of carbon to pentacarbonyl iron and nickel tetracarbonyl of 5 to 7:3 to 5 is prepared; a mixture of iron and nickel tetracarbonyl is added to a first-stage fluidized bed in a multi-stage series fluidized bed, and heated to decomposition at 315 ° C to obtain a catalyst; then, carbon monoxide is extracted and introduced into a multi-stage fluidized bed.
  • the inert gas is distributed to each fluidized bed under the action of an inert gas, and each stage of the fluidized bed is maintained at a temperature of 800 ° C for 40 minutes.
  • the above operations are all carried out under conditions of a magnetic field.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing iron in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 250 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 55 ° C and having carbon monoxide. Nickel in the nanotubes to finally obtain purified carbon nanotubes.
  • the reaction time is greatly shortened, so that the carbon nanotubes can be obtained in a short time, and the preparation efficiency of the carbon nanotubes is improved.
  • a pentacarbonyl iron and a nickel tetracarbonyl having a mass ratio of 390:178 are weighed, and a carbon source having a mass ratio of carbon to pentacarbonyl iron and nickel tetracarbonyl of 5 to 7:3 to 5 is prepared; a mixture of iron and nickel tetracarbonyl is added to a first-stage fluidized bed in a multi-stage series fluidized bed, and heated to decomposition at 315 ° C to obtain a catalyst; then, carbon monoxide is extracted and introduced into a multi-stage fluidized bed.
  • the inert gas is distributed to each fluidized bed under the action of an inert gas, and each stage of the fluidized bed is maintained at a temperature of 700 ° C for 50 minutes.
  • the above operations are all carried out under conditions of a magnetic field.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing iron in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 250 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 55 ° C and having carbon monoxide. Nickel in the nanotubes to finally obtain purified carbon nanotubes.
  • a pentacarbonyl iron and a nickel tetracarbonyl having a mass ratio of 375:168 are weighed, and a carbon source having a mass ratio of carbon to pentacarbonyl iron and nickel tetracarbonyl of 5 to 7:3 to 5 is prepared; a mixture of iron and nickel tetracarbonyl is added to a first-stage fluidized bed in a multi-stage series fluidized bed, and heated to decomposition at 270 ° C to obtain a catalyst; then, carbon monoxide is extracted and introduced into a multi-stage fluidized bed.
  • the inert gas under the action of the inert gas, distributes the catalyst to each fluidized bed, and maintains the fluidized bed of each stage at a temperature of 750 ° C for 60 min.
  • the above operations are all carried out under conditions of a magnetic field.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing iron in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 210 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 40 ° C and having carbon monoxide. Nickel in the nanotubes to finally obtain purified carbon nanotubes.
  • the inert gas under the action of the inert gas, distributes the catalyst to each fluidized bed, and maintains the temperature of each stage of the fluidized bed at 650 ° C for 80 min.
  • the above operations are all carried out under conditions of a magnetic field.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing iron in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 220 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 43 ° C and having carbon monoxide. Nickel in the nanotubes to finally obtain purified carbon nanotubes.
  • the inert gas is distributed to each fluidized bed under the action of an inert gas, and each stage of the fluidized bed is maintained at a temperature of 630 ° C for 70 minutes.
  • the above operations are all carried out under conditions of a magnetic field.
  • the ratio of the carbon content in the finally formed carbon nanotubes to the mass of the catalyst is 5-7:3 to 5
  • it is passed through a gas-solid separator for gas-solid separation, and the obtained solid composite carbon nanotubes are purified.
  • the specific steps of the purification include: first, removing iron in the composite carbon nanotubes in a high-pressure environment having an ambient temperature of 240 ° C and having carbon monoxide; and then removing the composite carbon in a high-pressure environment having an ambient temperature of 45 ° C and having carbon monoxide. Nickel in the nanotubes to finally obtain purified carbon nanotubes.
  • an embodiment of the present disclosure further provides an apparatus 100 for preparing carbon nanotubes, comprising a multi-stage series fluidized bed, the multi-stage series fluidized bed comprising a first-stage fluidized bed 110 and three stages arranged in series Fluidized bed 130.
  • the first fluidized bed 110 includes a first heating section 111 disposed at an upper portion of the primary fluidized bed 110 and a second heating section 112 disposed at a lower portion of the primary fluidized bed 110, first The heating section 111 is for providing a temperature for decomposing a mixture of iron pentacarbonyl and nickel tetracarbonyl, and the second heating section 112 is for providing a growth temperature of the carbon nanotubes. Further, a carbon oxide discharge port 113 is provided in the upper portion of the primary fluidized bed 110, so that carbon monoxide generated after decomposition of the pentacarbonyl iron and the nickel tetracarbonyl can be discharged from the carbon monoxide discharge port 113.
  • An intake port 114 is further disposed at the bottom of the first-stage fluidized bed 110, and a product discharge port 131 is disposed at an upper portion of the third-stage fluidized bed 130, wherein the product discharge port 131 is connected with the gas-solid separator 140 to
  • the gas-solid mixture in the series-connected fluidized bed enters the gas-solids separator 140 from the product discharge port 131 for gas-solid separation, and the separated solids are discharged from the product outlet on the right side.
  • the structure of the three-stage fluidized bed 130 is similar to that of a conventional fluidized bed, and a heating device is also disposed on the outer wall of the three-stage fluidized bed 130.
  • the carbon monoxide generated in the multi-stage fluidized bed can be floated by virtue of its density lower than that of the air, and is collected at the carbon monoxide discharge port 113. And then pumped away by the vacuum pump.
  • Such an arrangement increases the exhaust efficiency of carbon monoxide so that the carbon monoxide generated by the reaction can be discharged in time.
  • the apparatus for preparing carbon nanotubes may further include a purification device.
  • the purification device is in communication with the carbon monoxide discharge port 113, wherein the purification device is for converting carbon monoxide discharged from the carbon monoxide discharge port 113 into a gas such as carbon dioxide which can be discharged to the outside. This arrangement reduces the environmental pollution caused by the direct discharge of carbon monoxide into the external environment and reduces the physical damage to the test personnel.
  • the gas-solid separator 140 is a cyclone separator.
  • the lower portion of the primary fluidized bed 110 may be provided with a flow equalizing device 115 .
  • the current sharing device 115 is disposed above the air inlet 114 .
  • the flow equalizing device 115 the gas entering through the air inlet 114 can be dispersed in all directions under the action of the current sharing device 115, thereby ensuring the distribution of gas entering the gas through the air inlet 114 in the entire multi-stage series fluidized bed. Uniformity.
  • the flow equalizer 115 can be a screen having a plurality of through holes.
  • the apparatus 100 for preparing carbon nanotubes may further include a magnetic field generating device.
  • the magnetic field generating device includes a first magnetic pole 151 and a second magnetic pole 152, wherein the first magnetic pole 151 is disposed at one end of the first fluidized bed 110 away from the three-stage fluidized bed 130 (the first fluidized bed in FIG. 1)
  • the left magnetic pole 152 is disposed at one end of the three-stage fluidized bed 130 away from the first fluidized bed 110 (on the right side of the first fluidized bed 110 in FIG. 1), and the first magnetic pole 151 and the first The two magnetic poles 152 are magnetically different.
  • a magnetic field is formed between the first magnetic pole 151 and the second magnetic pole 152 so that the catalysts in each fluidized bed can be aligned in the direction of the magnetic line, thereby
  • the growth direction of the carbon nanotubes is consistent with the direction of the magnetic induction line, which not only ensures that the shape of the prepared carbon nanotubes is more regular, but also improves the performance of the produced carbon nanotubes.
  • the first fluidized bed 110 and the third-stage fluidized bed 130 may be connected through the first connecting pipe 161 , wherein the first connecting pipe 161 has one end at the first heating section 111 and one level.
  • the fluidized bed 110 is in communication with the other end communicating with the bottom of the tertiary fluidized bed 130, and the carbon monoxide discharge port 113 is disposed at a position where the first connecting pipe 161 is adjacent to the primary fluidized bed 110.
  • the carbon monoxide discharge port 113 By disposing the carbon monoxide discharge port 113 on the first connecting pipe 161, the discharge of carbon monoxide from the primary fluidized bed 110 and the discharge of the gas-solid mixture from the primary fluidized bed 110 share the same outlet (the carbon monoxide discharge port 113). It is not necessary to additionally provide an exhaust port for the primary fluidized bed 110, thereby reducing the installation cost of the primary fluidized bed 110.
  • the apparatus 100 for preparing carbon nanotubes may further include a valve (not shown) disposed on the first connecting pipe 161, wherein the valve is used to control the discharge of carbon monoxide, or to control one.
  • the fluidized bed 110 is connected to the next fluidized bed.
  • the apparatus 100 for preparing carbon nanotubes is used for preparing carbon nanotubes by transferring iron pentacarbonyl and nickel tetracarbonyl from the top of the primary fluidized bed 110 into the primary fluidized bed 110 at the first heating.
  • the segment 111 is decomposed by heating to decompose to obtain a catalyst formed of iron and a nickel alloy, and carbon monoxide gas; then, the carbon monoxide generated by the above decomposition is discharged from the carbon monoxide discharge port 113; after the carbon monoxide is discharged, the inert gas is introduced from the gas inlet 114.
  • the catalyst In the first fluidized bed 110, under the action of inert gas, the catalyst is distributed in each fluidized bed, and the carbon source is added from the top or bottom of the first fluidized bed 110 to the device 100 for preparing carbon nanotubes;
  • the heating device of the second heating section 112 and the outer wall of the tertiary fluidized bed 130 starts to work, and at this time, the magnetic field generating device starts to work, so that the carbon nanotubes gradually grow in the fluidized bed; after the reaction is completed, there will be more
  • the gas-solid mixture in the fluidized bed is passed through a gas-solid separator 140 for separation to obtain composite carbon nanotubes, and the carbon nanotubes prepared above are discharged by the product discharge port 131.
  • the first magnetic pole 151 and the second magnetic pole 152 may both have an elongated structure, and the first magnetic pole 151 and the second magnetic pole 152 extend in the vertical direction.
  • Such an arrangement increases the range of the magnetic field generated between the first magnetic pole 151 and the second magnetic pole 152, thereby increasing the growth range of the carbon nanotubes in the multi-stage fluidized bed according to the direction of the magnetic field, further improving the growth of the carbon nanotubes.
  • the uniformity increases the range of the magnetic field generated between the first magnetic pole 151 and the second magnetic pole 152, thereby increasing the growth range of the carbon nanotubes in the multi-stage fluidized bed according to the direction of the magnetic field, further improving the growth of the carbon nanotubes. The uniformity.
  • the upper ends of the first magnetic pole 151 and the second magnetic pole 152 extend above the multi-stage fluidized bed, and the lower ends of the first magnetic pole 151 and the second magnetic pole 152 extend below the multi-stage fluidized bed.
  • the outer portions of the first heating section 111 and the second heating section 112 may also wrap the insulation layer. Such an arrangement reduces heat conduction and heat exchange between the internal environment of the primary fluidized bed 110 and the external environment, thereby reducing heat loss and ensuring the sufficiency and reliability of the catalytic reaction in the primary fluidized bed 110.
  • the embodiment of the present disclosure further provides an apparatus 200 for preparing carbon nanotubes, and the implementation principle and the technical effects produced are the same as those of the apparatus 100 for preparing carbon nanotubes described above, which are briefly described, and thus are not described again. The difference is as follows.
  • the air inlet 214 of the primary fluidized bed 210 and the product discharge port 231 of the tertiary fluidized bed 230 are communicated through the circulation pipe 251.
  • Such an arrangement enables the reaction of the primary fluidized bed 210 to the tertiary fluidized bed 230 to be recycled to the primary fluidized bed 210 through the circulation pipe 251 during the preparation of the carbon nanotubes, thereby not only reducing
  • the number of series of fluidized beds makes the carbon nanotube-forming apparatus 200 more compact and integrated, and also allows the inert gas discharged through the three-stage fluidized bed 230 to flow back to the primary fluidized bed 210.
  • the recycling is carried out, thereby effectively reducing the flow rate of the inert gas that is introduced into the entire device in the later stage, and saving the production cost of the carbon nanotubes.
  • an inert gas inlet pipe 217 is connected to one end of the circulation pipe 251 near the intake port 214, and at the same time, the circulation pipe 251 can also be provided for controlling the inert gas to enter the first-stage fluidized bed.
  • the first valve 218 of 210 wherein the first valve 218 is located between the inert gas inlet tube 217 and the inlet port 214.
  • a second valve 219 for blocking or connecting the product discharge port 231 and the intake port 214 may also be disposed on the circulation pipe 251.
  • the gas-solid separator 240 is connected to the three-stage fluidized bed 230 through the product discharge pipe 232, and the product discharge pipe is connected.
  • 232 is connected to the circulation pipe 251, and a third valve 238 is disposed at a position of the product discharge pipe 232 near the gas-solid separator 240.
  • the apparatus for preparing carbon nanotubes 200 is used to prepare the carbon nanotubes, and the first valve 218 and the second valve 219 are opened, and the third valve 238 is closed. At this time, the entire device is in a circulating working state, that is, one The gas in the fluidized bed 210 can flow into the tertiary fluidized bed 230, and the gas in the tertiary fluidized bed 230 can again flow back to the primary fluidized bed via the recycle line 251.
  • the second valve 219 is closed, the reflux of the three-stage fluidized bed 230 to the primary fluidized bed 210 is shut off, and at the same time, the third valve 238 is opened to pass the gas-solid mixture in the multi-stage fluidized bed into the gas-solid. Gas-solid separation is carried out in the separator 240 to obtain composite carbon nanotubes, and the carbon nanotubes prepared above are discharged by using a product discharge port.
  • the embodiment of the present disclosure further provides an apparatus 300 for preparing carbon nanotubes.
  • the implementation principle and the technical effects produced are the same as those of the apparatus 200 for preparing carbon nanotubes described above, which are briefly described, and thus are not described again. The difference is as follows.
  • the apparatus 300 for preparing carbon nanotubes includes a first-stage fluidized bed 310, a secondary fluidized bed 320, and a tertiary fluidized bed 330, and a first-stage fluidized bed.
  • 310 and the secondary fluidized bed 320 are connected by a first connecting pipe 361
  • the secondary fluidized bed 320 and the tertiary fluidized bed 330 are connected by a second connecting pipe 362.
  • a feeding device 370 is disposed at the top of the primary fluidized bed 310.
  • the feeding device 370 is provided with a rotary feeder 371, a rotary feeder. 371 includes a plurality of blades disposed in parallel with the horizontal direction.
  • the secondary fluidized bed 320 between the primary fluidized bed 310 and the tertiary fluidized bed 330, the internal capacity of the multi-stage fluidized bed is effectively increased, thereby improving the carbon prepared at the same time.
  • the number of nanotubes increases the production efficiency of the device 300 for preparing carbon nanotubes.
  • the feeding device 370 may be funnel shaped. Such an arrangement provides a certain guiding effect on the material entering from above the charging device 370 so that the material can be reliably fed into the primary fluidized bed 310.
  • the embodiment of the present disclosure further provides a device 400 for preparing carbon nanotubes, and the implementation principle and the technical effects produced are the same as the device 200 for preparing carbon nanotubes described above, which are briefly described, and thus are not described again. The difference is as follows.
  • the apparatus for preparing carbon nanotubes 400 may include a first purification device 480 and a second purification device 490 .
  • the first purification device 480 is coupled to the gas-solid separator 440
  • the second purification device 490 is coupled to the first purification device 480.
  • the first purification device 480 is configured to remove nickel in the composite carbon nanotubes, and react the nickel with carbon monoxide to form a liquid nickel tetracarbonyl, thereby, under the action of the solid-liquid separation device provided in the first purification device 480, the nickel tetracarbonyl
  • the second purification device 490 is configured to remove iron in the composite carbon nanotubes, and react the iron with carbon monoxide to form liquid pentacarbonyl iron, so that under the action of the solid-liquid separation device disposed in the second purification device 490, The carbonyl iron is removed.
  • the carbon monoxide discharge port connected to the primary fluidized bed may be connected to the first purification device 480 and the second purification device 490.
  • the catalytic reaction product carbon monoxide discharged through the carbon monoxide discharge port can participate in the purification reaction of the carbon nanotubes to remove the impurities iron and nickel in the carbon nanotubes.
  • This arrangement not only realizes the reuse of the product carbon monoxide, but also reduces the waste of resources, and also achieves the purification treatment of carbon monoxide to a certain extent, thereby reducing the environmental pollution caused by the direct discharge of carbon monoxide from the carbon monoxide discharge port to the outside. phenomenon.
  • the method for preparing carbon nanotubes uses iron pentacarbonyl and nickel tetracarbonyl to enter a reaction device, and decomposes to form a nano-sized uniform-sized iron-nickel alloy as a catalyst before carbon nanotube growth, thereby
  • the prepared carbon nanotubes are of better quality.
  • adjusting the ratio of the catalyst to the carbon in the carbon source, the carbon and the iron-nickel alloy in the obtained composite carbon nanotube have a superior mass ratio, and the magnetization of the obtained composite carbon nanotube is not only improved.
  • High, coercive force can also make the composite carbon nanotubes easy to react with carbon monoxide to remove the iron-nickel alloy impurities contained therein, thereby producing recyclable carbonyl iron and nickel carbonyl, which greatly reduces the waste gas. Emissions, more environmentally friendly, and lower production costs.
  • the apparatus for preparing carbon nanotubes provided by the present disclosure can be used to implement the method for preparing carbon nanotubes according to the present disclosure, since the units are properly arranged, thereby producing carbon nanotubes with superior performance.
  • the device adopts a setting manner in which a plurality of fluidized beds can be connected in series, so that the device can adjust the number of fluidized beds according to actual production requirements of the production.
  • the product obtained by the above preparation method may be the above carbon nanotubes, or may be a carbonaceous product such as graphene or carbon fiber.
  • the embodiments of the present disclosure also provide a carbon nanotube prepared by the above method for preparing carbon nanotubes.
  • the carbon nanotubes are excellent in performance.
  • the carbon nanotubes observed under a scanning electron microscope are a large number of wound nano-scale fibers, and there are no obvious impurities such as amorphous carbon, carbon fibers, and catalyst particles.
  • the results observed under transmission electron microscopy show that the carbon nanotubes prepared by the above method synthesize high-purity multi-walled carbon nanotubes with an outer diameter of between 3 and 25 nm, with an average outer diameter.
  • the diameter was 14.6 nm and the average inner diameter was 12.5 nm.
  • the method and device for preparing carbon nanotubes and carbon nanotubes provided by the present disclosure make the prepared carbon nanotubes have better quality and higher coercive force. Moreover, in the preparation process of carbon nanotubes, the waste discharge is reduced, the environment is more environmentally friendly, and the production cost is lower.

Abstract

一种制备碳纳米管的方法、装置及制备得到的碳纳米管,方法包括:将五羰基铁和四羰基镍加入多级串联流化床中分解后得催化剂,并排出产生的一氧化碳;向多级串联流化床中加入碳源以及通入惰性气体,碳源中碳的质量与催化剂的质量之比为5~7:3~5,在600~800℃加热的条件下反应40~90min。提供碳纳米管的装置用于实施上述制备方法以及利用上述制备碳纳米管的方法制备得到的碳纳米管。

Description

一种制备碳纳米管的方法及装置及制备的碳纳米管
相关申请的交叉引用
本申请要求于2017年11月22日提交中国专利局的申请号为201711174048.4、名称为“一种制备碳纳米管的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及碳纳米管的制备技术领域,具体而言,涉及一种制备碳纳米管的方法及装置及制备的碳纳米管。
背景技术
碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。碳纳米管作为一维纳米材料,不仅重量轻,而且六边形结构连接完美,具有许多异常的力学、电学和化学性能。目前,现有的制备碳纳米管的催化剂通常是采用铁、钼负载在三氧化二铝上,或者采用铁、镍、铜负载在三氧化二铝或氧化镁上,或者直接采用铁、镍等金属合金粉体。但是采用这些催化剂制得的碳纳米管性能一般,且采用这些催化剂制得的碳纳米管后期的纯化大多会经历酸洗和水洗过程,在此过程存在着一定的环境污染。
发明内容
本公开的目的包括,提供一种制备碳纳米管的方法,旨在改善现有技术制备的碳纳米管性能一般的问题。
本公开提供的制备碳纳米管的方法,其制备步骤包括:
将五羰基铁和四羰基镍加入多级串联流化床中分解后得粒径为1~10nm的纳米铁镍复合催化剂,并排出产生的一氧化碳;
向多级串联流化床中加入碳源以及通入惰性气体,碳源中碳的质量与催化剂的质量之比为5~7:3~5,在600~800℃加热的条件下反应40~90min,生成复合碳纳米管,复合碳纳米管中碳的质量百分含量为50%~70%,催化剂质量百分含量为30%~50%。
进一步地,所述五羰基铁和所述四羰基镍的混合物加入所述流化床中,并控制所述流化床加热温度为225~315℃。
进一步地,所述五羰基铁和所述四羰基镍的质量之比为370~392:163~178。
进一步地,在所述多级串联流化床中反应完成后,通过气固分离器对所述多级串联流化床中生成的气固混合物进行分离以得到复合碳纳米管。
进一步地,还包括对经气固分离器分离得到的所述复合碳纳米管进行纯化,纯化 步骤包括:
在压力150~200atm、温度38~55℃条件下将所述复合碳纳米管置于一氧化碳气氛中合成四羰基镍,以除去所述复合碳纳米管中的金属镍得次级碳纳米管;
将所述次级碳纳米管置于压力150~200atm、温度190~250℃且具有一氧化碳的环境下去生成五羰基铁,以除去所述次级碳纳米管中的金属铁,得高纯度碳纳米管。
进一步地,所述多级串联流化床置于电磁场中。
进一步地,所述碳源包括烃类气体。
本公开的目的还包括,提供一种制备碳纳米管的装置,以提高所制备的碳纳米管的产量。
本公开提供的制备碳纳米管的装置,配置成实施上述制备碳纳米管的方法,包括多级串联的流化床,所述多级串联的硫化床包括依次串联的一级流化床、二级流化床和三级流化床,所述二级流化床至少为一个;所述一级流化床包括设置于所述一级流化床上部的第一加热段和设置于所述一级流化床下部的第二加热段,所述第一加热段配置成提供分解五羰基铁和四羰基镍的混合物的温度,所述第二加热段配置成提供碳纳米管的生长温度;所述一级流化床的上部设置有一氧化碳排出口,所述一级流化床的底部设置有进气口,所述三级流化床的上部设置有产物排出口,所述产物排出口连通有气固分离器。
本公开的目的还包括,提供一种制备碳纳米管的装置,以提高所制备的碳纳米管的性能。
本公开提供的制备碳纳米管的装置,配置成实施上述制备碳纳米管的方法,包括多级串联的流化床,多级串联的流化床包括依次串联的一级流化床和三级流化床,一级流化床包括设置于一级流化床上部的第一加热段和设置于一级流化床下部的第二加热段,第一加热段配置成提供分解五羰基铁和四羰基镍的混合物的温度,第二加热段配置成提供碳纳米管的生长温度,一级流化床的上部设置有一氧化碳排出口,一级流化床的底部设置有进气口,三级流化床的上部设置有产物排出口,产物排出口连通有气固分离器。
进一步地,一级流化床的下部均设置有均流装置,均流装置位于进气口的上方。
进一步地,均流装置包括设置有多个通孔的筛板。
进一步地,还包括磁场发生装置,磁场发生装置包括第一磁极和第二磁极,第一磁极位于多级串联的流化床的一端,第二磁极位于多级串联的流化床的另一端。
进一步地,第一磁极和第二磁极均呈长条形结构,且第一磁极和第二磁极沿流化床的长度方向延伸设置。
进一步地,在本公开较佳的实施例中,每个流化床之间通过连接管连通,上一级流化 床的上部与下一级流化床的下部连通,与一级流化床连通的连接管为第一连接管,第一连接管在第一加热段处与一级流化床连通,一氧化碳排出口设置于第一连接管靠近一级流化床的位置。
进一步地,第一加热段和/或第二加热段的外部包裹设置有保温层。
进一步地,一级流化床与三级流化床之间连通设置有循环管;循环管的一端与三级流化床的产物排出口连通,循环管的另一端与一级流化床的进气口连通。
进一步地,一级流化床的顶部设置有加料装置,加料装置配置成使五羰基铁和四羰基镍的混合物或碳源进入至一级流化床中。
本公开的目的还包括,提供一种碳纳米管,利用上述制备碳纳米管的方法进行制备。
本公开的有益效果是:本公开通过上述设计得到的制备碳纳米管的方法,由于本公开提供的制备碳纳米管的方法采用五羰基铁和四羰基镍进入反应装置内,在碳纳米管生长前分解生成纳米级粒度均匀的铁镍合金作为催化剂,能够使得制得碳纳米管品质好;而合理控制反应时间,调整催化剂与碳源中碳的比例使得制得的复合碳纳米管中碳和铁镍合金具有较优的质量比,不仅使得制得的复合碳纳米管磁化强度高,矫顽力大,还能够使得在该比例下复合碳纳米管易于与一氧化碳反应除去其中所含的铁镍合金生成能够重复利用的羰基铁和羰基镍,该过程不需要酸洗除杂或高温除杂,能够降低生产成本,且更环境友好。
本公开通过上述设计得到的制备碳纳米管的装置,由于各单元设置合理,能够被用于实施本公开提供的方法,从而制得较优性能的碳纳米管。该装置由于采用可串联多个流化床的设置方式,从而使得该装置可根据生产实际生产需求进行流化床数量的调整。
本公开利用上述制备碳纳米管的方法制备的碳纳米管,性能优异。
附图说明
为了更清楚地说明本公开实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本公开实施例提供的一种制备碳纳米管的装置的结构示意图;
图2是图1中一级流化床的剖视图;
图3是本公开实施例提供的另一种制备碳纳米管的装置的结构示意图;
图4是本公开实施例提供的再一种制备碳纳米管的装置的结构示意图;
图5是图3中进料装置的剖视图;
图6是本公开实施例提供的还一种制备碳纳米管的装置的结构示意图;
图7是本公开实施例提供的碳纳米管在扫描电镜观测下的结构图;
图8是本公开实施例提供的碳纳米管在透射电镜观测下的结构图。
图标:100-制备碳纳米管的装置;110-一级流化床;111-第一加热段;112-第二加热段;113-一氧化碳排出口;114-进气口;115-均流装置;130-三级流化床;131-产物排出口;140-气固分离器;151-第一磁极;152-第二磁极;161-第一连接管;200-制备碳纳米管的装置;210-一级流化床;214-进气口;217-惰性气体进入管;218-第一阀门;219-第二阀门;230-三级流化床;231-产物排出口;232-产物排出管;238-第三阀门;240-气固分离器;251-循环管;300-制备碳纳米管的装置;310-一级流化床;361-第一连接管;362-第二连接管;320-二级流化床;330-三级流化床;370-加料装置;371-旋转进料器;372-进料口;400-制备碳纳米管的装置;440-气固分离器;480-第一纯化装置;490-第二纯化装置。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本公开实施例提供一种制备碳纳米管的方法及装置进行具体说明。
一种制备碳纳米管的方法,其制备步骤包括:
S1、将五羰基铁和四羰基镍加入多级串联流化床中分解后得催化剂,并排出产生的一氧化碳。
具体地,将五羰基铁和四羰基镍从流化床的顶端加入一级流化床中,在一级流化床的上部高温条件下分解生成铁、镍以及一氧化碳,反应完成后,排出一氧化碳,排出一氧化碳可采用真空泵抽真空的方式抽出一氧化碳。本公开所提供的制备碳纳米管的方法是以铁镍合金为催化剂制备碳纳米管,而原料选用五羰基铁和四羰基镍直接加入反应装置中现制催化剂,是由于五羰基铁和四羰基镍分解得到的铁粉和镍粉均为纳米级,粒度均匀,作为催化剂催化制得的碳纳米管的性能好。
通过设置真空泵,以将反应得到的一氧化碳排出,不仅提高了一氧化碳的排出效率,而且还减少了流化床中的一氧化碳残留,使得所制备的碳纳米管的纯度更高。
优选地,控制一级流化床内,五羰基铁和四羰基镍的分解温度为225~315℃。在此温度下五羰基铁和四羰基镍能够分解为铁、镍和一氧化碳。
优选地,加入的五羰基铁和四羰基镍的质量之比为370~392:163~178。这样的设置,使得五羰基铁和四羰基镍分解后得到的铁镍合金粉作为催化剂的质量比为较优质量比,在此质量比条件下制得的未被纯化的复合碳纳米管的磁化强度更高,且矫顽力更大。
S2、向多级串联流化床中加入碳源以及通入惰性气体,碳源中碳的质量与催化剂的质 量之比为5~7:3~5,在600~800℃加热的条件下反应40~90min,使生成的碳纳米管中碳的质量百分含量为50%~70%,催化剂质量百分含量为30%~50%后通入下一单元。
具体地,待一级流化床中的一氧化碳被排出后,向多级串联流化床中通入惰性气体,以使催化剂能够跟随惰性气体的流动而进入至各个流化床中;然后,通入气体碳源,在此过程中,惰性气体一直向多级流化床通入。
具体地,加入的碳源可以是烃类气体。并且,在制备碳纳米管的过程中,烃类气体与惰性气体可以一起从一级流化床的底端加入,其中,惰性气体可以选用氮气和氩气中的至少一种。
优选地,烃类气体可以为甲烷。
通过将加入的碳源中碳的质量与催化剂的质量之比保持在5~7:3~5,使得在600~800℃的温度条件下,通过控制装置的反应时间在40~90min而最终得到的碳纳米管中碳的质量百分含量能够占比50%~70%,催化剂质量百分含量占比30%~50%,而几乎不使碳源或催化剂中的任意一者剩余,反应完成后将气固混合物通入下一单元。
本公开中,通过将制得的碳纳米管中碳的质量百分含量占比保持在50%~70%,而将催化剂的质量百分含量占比保持在30%~50%,不仅使得制得的复合碳纳米管的导电性达到较高水平,且磁化强度好、矫顽力大,而且,还便于复合碳纳米管中的铁和镍在后续纯化处理过程中与一氧化碳反应生成五羰基铁和四羰基镍被除去。此外,催化剂在碳纳米管中的含量不能过多,过多则会导致碳纳米管纯化后性能大大降低;同样的,催化剂在碳纳米管中的含量也不能过低,过低则难以参与与一氧化碳的反应。
S3、在多级串联流化床中反应完成后通过气固分离器对多级串联流化床中生成的气固混合物进行分离得到复合碳纳米管,对复合碳纳米管进行纯化。
具体地,待在多级串联流化床中反应完成后,将气固混合物通入气固分离器中,以将气体与固体分离开,对其中的气体进行回收,而对固体的复合碳纳米管进行除铁除镍的纯化操作。
首先,将复合碳纳米管置于充斥一氧化碳的高压环境中,控制高压环境的温度在38~55℃之间,使一氧化碳与复合碳纳米管中的镍反应生成液态的四羰基镍,随后对生成物进行固液分离操作以回收其中的四羰基镍,从而得到含有铁的碳纳米管。
然后,将含有铁的碳纳米管置于充斥一氧化碳的高压环境中,控制高压环境的温度在190~250℃之间,使一氧化碳与碳纳米管中的铁反应生成五羰基铁液体,随后对生成物进行固液分离操作以回收其中的五羰基铁,从而得到纯化后的碳纳米管。
需要说明的是,上述两步纯化步骤也可以交换顺序进行,具体的纯化步骤为:首先,将复合碳纳米管置于充斥一氧化碳的高压环境中,并控制高压环境的温度在190~250℃之 间,使一氧化碳与碳纳米管中的铁反应生成五羰基铁液体,随后对生成物进行固液分离操作以回收其中的五羰基铁,从而得到含有镍的碳纳米管;然后,将上述含有镍的碳纳米管置于充斥一氧化碳的高压环境中,控制高压环境的温度在38~55℃之间,使一氧化碳与碳纳米管中的镍反应生成液态的四羰基镍,随后对生成物进行固液分离操作以回收其中的四羰基镍,从而得到纯化的碳纳米管。
此外,还需要说明的是,上述高压环境是指压力在150~200atm时的环境。
现有的碳纳米管的后期纯化通常是酸洗或高温蒸发的方式处理其所含杂质,但是酸洗或高温蒸发成本高,并且酸洗还会产生酸洗废液。通过将复合碳纳米管中的铁和镍与一氧化碳反应生成四羰基镍和五羰基铁,并对反应生成的四羰基镍和五羰基铁进行回收,以再次用于碳纳米管的制备,实现了碳纳米管制备过程中中间物质的循环利用,从而减少了资源的浪费。而且,这种纯化方式,还很好地改善了传统酸洗及高温蒸发方式存在的成本高及环境污染严重的弊端,更加环保。
进一步地,多级串联流化床可以置于电磁场中。当多级串联流化床置于磁场中时,每个流化床中的催化剂则沿磁感线方向排列,使得碳纳米管也沿着磁感线的方向生长,从而使得最终制得的碳纳米管的形状更规则,性能更好。
以下结合具体实施例对本公开提供的一种制备碳纳米管的方法进行具体说明。
实施例1
首先,称取质量比为370:163的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在225℃下加热至分解以得到催化剂;然后,抽去一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为600℃反应90min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为38℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍;然后,在环境温度为190℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁,以最终得到纯化后的碳纳米管。
这样的设置,降低了每一级流化床的工作温度,从而减少了在制备碳纳米管时向外界所辐射的热量。
实施例2
首先,称取质量比为390:178的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联 流化床中的一级流化床中,并在315℃下加热至分解以得到催化剂;然后,抽去一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为800℃反应40min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为55℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍;然后,再在环境温度为250℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁,以最终得到纯化后的碳纳米管。
通过将每一级流化床的温度保持在800℃进行反应,大大缩短了催化反应的时间,使得在短时间内便可得到碳纳米管,提高了碳纳米管的制备效率。
实施例3
首先,称取质量比为390:178的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在315℃下加热至分解以得到催化剂;然后,抽去一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为700℃反应50min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为55℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍;然后,再在环境温度为250℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁,以最终得到纯化后的碳纳米管。
通过使每一级流化床保持在700℃反应50min,实现了反应温度与反应时间之间的均衡,在既保证碳纳米管制备效率的同时,还降低了各级流化床向外界所辐射的热量。
实施例4
首先,称取质量比为375:168的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在270℃下加热至分解以得到催化剂;然后,抽去一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为750℃反应60min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为40℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍;然后,再在环 境温度为210℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁,以最终得到纯化后的碳纳米管。
实施例5
首先,称取质量比为385:171的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在250℃下加热至分解以得到催化剂;然后,抽去一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为650℃反应80min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为43℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍;然后,再在环境温度为220℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁,以最终得到纯化后的碳纳米管。
实施例6
首先,称取质量比为390:175的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在300℃下加热至分解得到催化剂;然后,抽去一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为630℃反应70min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为45℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍;然后,再在环境温度为240℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁,以最终得到纯化后的碳纳米管。
实施例7
首先称取质量比为370:163的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在225℃下加热至分解以得到催化剂;然后,抽取一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为600℃反应90min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先, 在环境温度为190℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁;然后,再在环境温度为38℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍,以最终得到纯化后的碳纳米管。
这样的设置,降低了每一级流化床的工作温度,从而减少了在制备碳纳米管时向外界所辐射的热量。
实施例8
首先称取质量比为390:178的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在315℃下加热至分解以得到催化剂;然后,抽取一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为800℃反应40min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为250℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁;然后,再在环境温度为55℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍,以最终得到纯化后的碳纳米管。
通过将每一级流化床的温度保持在800℃进行反应,大大缩短了催化反应的时间,使得在短时间内便可得到碳纳米管,提高了碳纳米管的制备效率。
实施例9
首先称取质量比为390:178的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在315℃下加热至分解以得到催化剂;然后,抽取一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为700℃反应50min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为250℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁;然后,再在环境温度为55℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍,以最终得到纯化后的碳纳米管。
通过使每一级流化床保持在700℃反应50min,实现了反应温度与反应时间之间的均衡,在既保证碳纳米管制备效率的同时,还降低了各级流化床向外界所辐射的热量。
实施例10
首先称取质量比为375:168的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在270℃下加热至分解以得到催化剂;然后,抽取一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为750℃反应60min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为210℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁;然后,再在环境温度为40℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍,以最终得到纯化后的碳纳米管。
实施例11
首先称取质量比为385:171的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在250℃下加热至分解以得到催化剂;然后,抽取一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为650℃反应80min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为220℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁;然后,再在环境温度为43℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍,以最终得到纯化后的碳纳米管。
实施例12
首先称取质量比为390:175的五羰基铁和四羰基镍,以及准备所含碳质量与五羰基铁和四羰基镍的质量比为5~7:3~5的碳源;将五羰基铁和四羰基镍的混合物加入多级串联流化床中的一级流化床中,并在300℃下加热至分解以得到催化剂;然后,抽取一氧化碳,并向多级流化床中通入惰性气体,在惰性气体的流动作用下,使催化剂分布至各个流化床中,并使每一级流化床保持温度为630℃反应70min。上述操作均在具有磁场的条件下进行。
使最终生成的碳纳米管中碳含量与催化剂的质量之比为5~7:3~5后,将其通入气固分离器进行气固分离,并对得到的固体复合碳纳米管进行纯化,纯化的具体步骤包括:首先,在环境温度为240℃且具有一氧化碳的高压环境中除去复合碳纳米管中的铁;然后,再在环境温度为45℃且具有一氧化碳的高压环境中除去复合碳纳米管中的镍,以最终得到纯化后的碳纳米管。
此外,本公开实施例还提供了一种制备碳纳米管的装置100,其包括多级串联的流化床,多级串联的流化床包括串联设置的的一级流化床110和三级流化床130。
如图1和图2所示,一级流化床110包括设置于一级流化床110上部的第一加热段111和设置于一级流化床110下部的第二加热段112,第一加热段111用于提供分解五羰基铁和四羰基镍的混合物的温度,第二加热段112用于提供碳纳米管的生长温度。并且,在一级流化床110的上部还设置有一氧化碳排出口113,使得五羰基铁和四羰基镍分解后产生的一氧化碳能够从一氧化碳排出口113排出。在一级流化床110的底部还设置有进气口114,在三级流化床130的上部设置有产物排出口131,其中,产物排出口131连通有气固分离器140,以使多级串联的流化床中的气固混合物从产物排出口131进入气固分离器140中进行气固分离,并将分离后的固体从右侧的产物出口排出。具体地,三级流化床130的结构与普通流化床的结构相似,并且,在三级流化床130的外壁还设置有加热装置。
本实施例中,通过将一氧化碳排出口113设置在一级流化床110的上部,使得多级流化床中产生的一氧化碳能够依靠其密度小于空气的优势而上浮,并聚集在一氧化碳排出口113处,进而被真空泵抽走。这样的设置,提高了一氧化碳的排气效率,使得反应生成的一氧化碳能够被及时地排出。
此外,本实施例中,该制备碳纳米管的装置还可以包括净化装置。具体地,净化装置与一氧化碳排出口113相连通,其中,净化装置用于将由一氧化碳排出口113排出的一氧化碳转换为可向外界排放的二氧化碳等气体。这样的设置,降低了因一氧化碳直接排出至外界环境中而导致的环境污染现象,并降低了对试验人员造成的身体伤害。
优选地,本实施例中,气固分离器140为旋风分离器。
请继续参照图2,本实施例中,一级流化床110的下部可以设置均流装置115,具体地,均流装置115设置于进气口114的上方。通过设置均流装置115,使得经进气口114进入的气体能够在均流装置115的作用下向各个方向分散,从而保证了经进气口114进入气体在整个多级串联流化床中分布的均匀性。
均流装置115可以是具有多个通孔的筛板。
请继续参照图1,本实施例中,制备碳纳米管的装置100还可以包括磁场发生装置。具体地,该磁场发生装置包括第一磁极151和第二磁极152,其中,第一磁极151设置于一级流化床110远离三级流化床130的一端(图1中一级流化床110的左侧),第二磁极152设置于三级流化床130远离一级流化床110的一端(图1中一级流化床110的右侧),并且,第一磁极151与第二磁极152磁性相异。
该制备碳纳米管的装置100的工作过程中,在第一磁极151与第二磁极152之间形成磁场,以使每个流化床中的催化剂均能够按照磁感线的方向排列,从而使得碳纳米管的生 长方向与磁感线的方向一致,不仅保证了所制得的碳纳米管的形状更加规整,而且还提高了所制得的碳纳米管的性能。
请继续参照图1,一级流化床110与三级流化床130之间可以通过第一连接管161连通,其中,第一连接管161的一端在第一加热段111的位置与一级流化床110连通,另一端与三级流化床130的底部连通,并且,一氧化碳排出口113设置于第一连接管161靠近一级流化床110的位置处。
通过将一氧化碳排出口113设置在第一连接管161上,实现了一氧化碳从一级流化床110的排出与气固混合物从一级流化床110的排出共用同一出口(一氧化碳排出口113),使得一级流化床110不必再额外设置排气口,从而降低了一级流化床110的设置成本。
此外,本实施例中,该制备碳纳米管的装置100还可以包括设置在第一连接管161上的阀门(图中未示出),其中,该阀门用于控制一氧化碳的排出,或者控制一级流化床110与下一级流化床的通断。
该制备碳纳米管的装置100用于制备碳纳米管的工作过程为:将五羰基铁和四羰基镍从一级流化床110的顶部通入一级流化床110中,在第一加热段111的加热作用下分解,分解得到由铁、镍合金形成的催化剂以及一氧化碳气体;然后,上述分解产生的一氧化碳从一氧化碳排出口113排出;一氧化碳排出后,将惰性气体从进气口114通入一级流化床110内,在惰性气体的流动作用下,使催化剂分布于各个流化床,将碳源从一级流化床110的顶部或底部加入至制备碳纳米管的装置100中;与此同时,第二加热段112和三级流化床130外壁的加热装置开始工作,且此时磁场发生装置开始工作,使得碳纳米管逐渐在流化床中生长;反应完成后,将多级流化床中的气固混合物通入气固分离器140中进行分离,得到复合碳纳米管,并利用产物排出口131将上述制备完成的碳纳米管排出。
请继续参照图1,本实施例中,第一磁极151与第二磁极152可以均呈长条形结构,并且,第一磁极151与第二磁极152在竖直方向延伸。这样的设置,增加了第一磁极151与第二磁极152之间所产生的磁场范围,从而增加了碳纳米管在多级流化床中按照磁场方向的生长范围,进一步提高了碳纳米管生长的整齐度。
优选地,第一磁极151和第二磁极152的上端延伸至多级流化床的上方,第一磁极151和第二磁极152的下端延伸至多级流化床的下方。本实施例中,第一加热段111和第二加热段112的外部还可以包裹保温层。这样的设置,减少了一级流化床110内部环境与外界环境的热传导及热交换,从而减少了热量的流失,保证了一级流化床110中催化反应的充分性及可靠性。
如图3所示,本公开实施例还提供了一种制备碳纳米管的装置200,其实现原理及产生的技术效果与上述制备碳纳米管的装置100相同,为简要描述,故不再赘述,其不同之处 在于如下所述。
请继续参照图3,该制备碳纳米管的装置200中,一级流化床210的进气口214与三级流化床230的产物排出口231通过循环管251连通。这样的设置,使得在碳纳米管的制备过程中,可以是一级流化床210到三级流化床230再通过循环管251循环至一级流化床210这个路径进行反应,不仅减少了流化床的串联个数,使得该制备碳纳米管的装置200更加小型化和集成化,而且,还使得经三级流化床230排出的惰性气体能够流回至一级流化床210中进行循环利用,从而有效地减少了后期通入整个装置的惰性气体的流量,节约了碳纳米管的生产成本。
请继续参照图3,本实施例中,循环管251上靠近进气口214的一端连接有惰性气体进入管217,同时,循环管251上还可以设置用于控制惰性气体进入一级流化床210中的第一阀门218,其中,第一阀门218位于惰性气体进入管217和进气口214之间。循环管251上还可以设置用于阻断或连通产物排出口231与进气口214的第二阀门219,气固分离器240与三级流化床230通过产物排出管232连通,产物排出管232与循环管251连接,产物排出管232靠近气固分离器240的位置设置有第三阀门238。
该制备碳纳米管的装置200用于制备碳纳米管的工作过程中,打开第一阀门218和第二阀门219,关闭第三阀门238,此时整个装置处于循环工作状态,也就是说,一级流化床210中的气体能够流动至三级流化床230中,三级流化床230中的气体又能够经循环管251流回至一级流化床中。当反应完成,关闭第二阀门219,切断三级流化床230向一级流化床210的回流,同时,打开第三阀门238,将多级流化床中的气固混合物通入气固分离器240内进行气固分离,得到复合碳纳米管,并利用产物排出口将上述制备完成的碳纳米管排出。
如图4所示,本公开实施例还提供了一种制备碳纳米管的装置300,其实现原理及产生的技术效果与上述制备碳纳米管的装置200相同,为简要描述,故不再赘述,其不同之处在于如下所述。
请继续参照图4,本实施例提供的制备碳纳米管的装置300,包括依次串联的一级流化床310,一个二级流化床320和三级流化床330,一级流化床310和二级流化床320之间通过第一连接管361连接,二级流化床320和三级流化床330之间通过第二连接管362连接。
请继续参照图4,并结合图5,本实施例中,在一级流化床310的顶部设置有加料装置370,具体地,加料装置370内设置有旋转进料器371,旋转进料器371包括多个与水平方向平行设置的叶片。通过设置旋转进料器371,使得在通过加料装置370向一级流化床310中加入五羰基铁和四羰基镍的混合物或碳源时,上述物料能够较为均匀地进入一级流化床310中,从而保证了碳纳米管制备的一致性。
此外,通过在一级流化床310与三级流化床330之间设置二级流化床320,有效地增加了多级流化床的内部容量,从而提高了同等时间下所制备的碳纳米管数量,提高了该制备碳纳米管的装置300的生产效率。
需要说明的是,可以是上述在一级流化床310和三级流化床330之间设置一个二级流化床320的形式,但不仅仅局限于此,还可以采用其他设置形式,如在一级流化床310与三级流化床330之间设置两个或多个二级流化床320,以进一步增加同等时间下碳纳米管的制备量。故其只要是通过设置一定数量的二级流化床320,能够实现碳纳米管制备量的增长即可,本实施例并不对二级流化床320的具体设置数量进行限制。
请继续参照图4和图5,本实施例中,加料装置370可以为漏斗形。这样的设置,对自加料装置370上方进入的物料起到了一定的引导作用,使得物料能够被可靠地送入至一级流化床310中。
如图6所示,本公开实施例还提供了一种制备碳纳米管的装置400,其实现原理及产生的技术效果与上述制备碳纳米管的装置200相同,为简要描述,故不再赘述,其不同之处在于如下所述。
请继续参照图6,本实施例中,该制备碳纳米管的装置400可以包括第一纯化装置480和第二纯化装置490。具体地,第一纯化装置480与气固分离器440连接,第二纯化装置490与第一纯化装置480连接。第一纯化装置480用于去除复合碳纳米管中的镍,使得镍与一氧化碳反应生成液态的四羰基镍,从而在第一纯化装置480中设置的固液分离装置的作用下,将四羰基镍除去;第二纯化装置490用于去除复合碳纳米管中的铁,使得铁与一氧化碳反应生成液态的五羰基铁,从而在第二纯化装置490中设置的固液分离装置的作用下,将五羰基铁除去。
本实施例中,与一级流化床相连通的一氧化碳排出口可以与第一纯化装置480及第二纯化装置490相连。该制备碳纳米管的装置400工作时,经一氧化碳排出口排出的催化反应生成物一氧化碳能够参与至碳纳米管的纯化反应,以将将碳纳米管中的杂质铁和镍除去。这样的设置,不仅实现了产物一氧化碳的再次利用,减少了资源的浪费,而且还在一定程度实现了对一氧化碳的净化处理,从而减少了因一氧化碳自一氧化碳排出口直接排出至外界而导致的环境污染现象。
综上所述,由于本公开提供的制备碳纳米管的方法采用五羰基铁和四羰基镍进入反应装置内,在碳纳米管生长前分解生成纳米级粒度均匀的铁镍合金作为催化剂,从而使得所制备的碳纳米管品质更好。并且,通过合理控制反应时间,调整催化剂与碳源中碳的比例使得制得的复合碳纳米管中碳和铁镍合金具有较优的质量比,不仅使得制得的复合碳纳米管磁化强度更高,矫顽力更大,还能够使得复合碳纳米管易于与一氧化碳反应而除去其中 所含的铁镍合金杂质,从而生成能够重复利用的羰基铁和羰基镍,该过程大大减少了废气物的排放,更为环保,且生产成本更低。
本公开提供的制备碳纳米管的装置,由于各单元设置合理,能够被用于实施本公开提供制备碳纳米管的方法,从而制得较优性能的碳纳米管。该装置由于采用可串联多个流化床的设置方式,从而使得该装置可根据生产实际生产需求进行流化床数量的调整。
此外,还需要说明的是,本实施例中,经过上述制备方法制得的产品可以是上述碳纳米管,还可以是石墨烯和碳纤维等含碳产品。
本公开实施例还提供了一种碳纳米管,该碳纳米管利用上述制备碳纳米管的方法进行制备。该碳纳米管的性能优异。
如图7所示,在扫描电镜(SEM)下观测到的碳纳米管为大量缠绕的纳米级纤维状物,无明显可见的无定型碳、碳纤维、催化剂颗粒等不纯物。
如图8所示,在透射电镜(TEM)下观测到的结果显示,经过上述方法制备的碳纳米管合成了高纯度的多壁碳纳米管,其外径在3-25nm之间,平均外径为14.6nm,平均内径为12.5nm。
以上所述仅为本公开的优选实施方式而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供的一种制备碳纳米管的方法及装置及碳纳米管,使得所制备的碳纳米管品质更好、矫顽力更大。而且,其在碳纳米管的制备过程中,减少了废弃物的排放,更为环保,且生产成本更低。

Claims (18)

  1. 一种制备碳纳米管的方法,其特征在于,其制备步骤包括:
    将五羰基铁和四羰基镍加入多级串联流化床中分解后得粒径为1~10nm的纳米铁镍复合催化剂,并排出产生的一氧化碳;
    向所述多级串联流化床中加入碳源以及通入惰性气体,所述碳源中碳的质量与所述催化剂的质量之比为5~7:3~5,在600~800℃加热的条件下反应40~90min,生成复合碳纳米管,所述复合碳纳米管中碳的质量百分含量为50%~70%,所述催化剂质量百分含量为30%~50%。
  2. 根据权利要求1所述的制备碳纳米管的方法,其特征在于,所述五羰基铁和所述四羰基镍的混合物加入所述流化床中,并控制所述流化床加热温度为225~315℃。
  3. 根据权利要求1或2所述的制备碳纳米管的方法,其特征在于,所述五羰基铁和所述四羰基镍的质量之比为370~392:163~178。
  4. 根据权利要求1-3任一项所述的制备碳纳米管的方法,其特征在于,在所述多级串联流化床中反应完成后,通过气固分离器对所述多级串联流化床中生成的气固混合物进行分离以得到复合碳纳米管。
  5. 根据权利要求4所述的制备碳纳米管的方法,其特征在于,还包括对经气固分离器分离得到的所述复合碳纳米管进行纯化,纯化步骤包括:
    在压力150~200atm、温度38~55℃条件下将所述复合碳纳米管置于一氧化碳气氛中合成四羰基镍,以除去所述复合碳纳米管中的金属镍得次级碳纳米管;
    将所述次级碳纳米管置于压力150~200atm、温度190~250℃且具有一氧化碳的环境下去生成五羰基铁,以除去所述次级碳纳米管中的金属铁,得高纯度碳纳米管。
  6. 根据权利要求1-5任一项所述的制备碳纳米管的方法,其特征在于,所述多级串联流化床置于电磁场中。
  7. 根据权利要求1-5任一项所述的制备碳纳米管的方法,其特征在于,所述碳源包括烃类气体。
  8. 一种制备碳纳米管的装置,其特征在于,配置成实施权利要求1-7任一项所述的制备碳纳米管的方法,包括多级串联的流化床,所述多级串联的硫化床包括依次串联的一级流化床、二级流化床和三级流化床,所述二级流化床至少为一个;所述一级流化床包括设置于所述一级流化床上部的第一加热段和设置于所述一级流化床下部的第二加热段,所述第一加热段配置成提供分解五羰基铁和四羰基镍的混合物的温度,所述第二加热段配置成提供碳纳米管的生长温度;所述一级流化床的上部设置有一氧化碳排出口,所述一级流化床的底部设置有进气口,所述三级流化床的上部设置有产物 排出口,所述产物排出口连通有气固分离器。
  9. 一种制备碳纳米管的装置,其特征在于,配置成实施如权利要求1-7任一项所述的方法,包括多级串联的流化床,所述多级串联的流化床包括依次串联的一级流化床和三级流化床,所述一级流化床包括设置于所述一级流化床上部的第一加热段和设置于所述一级流化床下部的第二加热段,所述第一加热段配置成提供分解五羰基铁和四羰基镍的混合物的温度,所述第二加热段配置成提供碳纳米管的生长温度,所述一级流化床的上部设置有一氧化碳排出口,所述一级流化床的底部设置有进气口,所述三级流化床的上部设置有产物排出口,所述产物排出口连通有气固分离器。
  10. 根据权利要求8或9所述的制备碳纳米管的装置,其特征在于,所述一级流化床的下部设置有均流装置,所述均流装置位于所述进气口的上方。
  11. 根据权利要求10所述的制备碳纳米管的装置,其特征在于,所述均流装置包括设置有多个通孔的筛板。
  12. 根据权利要求8或9所述的制备碳纳米管的装置,其特征在于,还包括磁场发生装置,所述磁场发生装置包括第一磁极和第二磁极,所述第一磁极位于多级串联的所述流化床的一端,所述第二磁极位于多级串联的所述流化床的另一端。
  13. 根据权利要求12所述的制备碳纳米管的装置,其特征在于,所述第一磁极和所述第二磁极均呈长条形结构,且所述第一磁极和所述第二磁极沿所述流化床的长度方向延伸设置。
  14. 根据权利要求8或9所述的制备碳纳米管的装置,其特征在于,每个流化床之间通过连接管连通,上一级所述流化床的上部与下一级所述流化床的下部连通,与所述一级流化床连通的所述连接管为第一连接管,所述第一连接管在所述第一加热段处与所述一级流化床连通,所述一氧化碳排出口设置于所述第一连接管靠近所述一级流化床的位置。
  15. 根据权利要求8或9所述的制备碳纳米管的装置,其特征在于,所述第一加热段和/或所述第二加热段的外部包裹设置有保温层。
  16. 根据权利要求8或9所述的制备碳纳米管的装置,其特征在于,所述一级流化床与所述三级流化床之间连通设置有循环管;所述循环管的一端与所述三级流化床的产物排出口连通,所述循环管的另一端与所述一级流化床的进气口连通。
  17. 根据权利要求8或9所述的制备碳纳米管的装置,其特征在于,所述一级流化床的顶部设置有加料装置,所述加料装置配置成使五羰基铁和四羰基镍的混合物或碳源进入至所述一级流化床中。
  18. 一种碳纳米管,其特征在于,利用权利要求1-7任一项所述的制备碳纳米管的 方法进行制备。
PCT/CN2018/114661 2017-11-22 2018-11-08 一种制备碳纳米管的方法及装置及制备的碳纳米管 WO2019100949A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/763,205 US11608268B2 (en) 2017-11-22 2018-11-08 Method and device for preparing carbon nanotube and carbon nanotube prepared thereby
EP18880959.4A EP3715323A4 (en) 2017-11-22 2018-11-08 PROCESS AND DEVICE FOR THE PREPARATION OF CARBON NANOTUBES AND CARBON NANOTUBES THUS PREPARED

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711174048.4A CN107720725A (zh) 2017-11-22 2017-11-22 一种制备碳纳米管的方法及装置
CN201711174048.4 2017-11-22

Publications (1)

Publication Number Publication Date
WO2019100949A1 true WO2019100949A1 (zh) 2019-05-31

Family

ID=61218031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114661 WO2019100949A1 (zh) 2017-11-22 2018-11-08 一种制备碳纳米管的方法及装置及制备的碳纳米管

Country Status (4)

Country Link
US (1) US11608268B2 (zh)
EP (1) EP3715323A4 (zh)
CN (1) CN107720725A (zh)
WO (1) WO2019100949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902963A (zh) * 2023-09-13 2023-10-20 江西悦安新材料股份有限公司 一种以五羰基铁液为原料的碳纳米管及其制备工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107720725A (zh) 2017-11-22 2018-02-23 江西悦安超细金属有限公司 一种制备碳纳米管的方法及装置
AU2021226734B2 (en) * 2020-02-24 2023-12-21 Nanocomp Technologies, Inc. Iron removal from carbon nanotubes and metal catalyst recycle
CN112290341A (zh) * 2020-10-20 2021-01-29 南通德晋昌光电科技有限公司 一种汇流条的环保型加工方法
CN113336283B (zh) * 2021-05-31 2022-07-12 清华大学 将含氰有机废液转化为氮掺杂碳纳米材料的装置及方法
CN114471384B (zh) * 2021-12-31 2023-10-27 佛山市格瑞芬新能源有限公司 提高碳纳米管生产效率的流化床反应***和碳纳米管生产方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043858A1 (en) * 2002-11-14 2004-05-27 Cambridge University Technical Services Limited Method for producing carbon nanotubes and/or nanofibres
CN1673073A (zh) * 2005-03-11 2005-09-28 北京大学 一种合成单壁碳纳米管的方法
CN107720725A (zh) * 2017-11-22 2018-02-23 江西悦安超细金属有限公司 一种制备碳纳米管的方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3800740A (en) 1972-12-14 1974-04-02 Int Nickel Co Apparatus for decomposition of metal carbonyls
FR2378846A1 (fr) 1977-01-31 1978-08-25 Inst Francais Du Petrole Procede catalytique de reformage ou de production d'hydrocarbures aromatiques
US6692717B1 (en) * 1999-09-17 2004-02-17 William Marsh Rice University Catalytic growth of single-wall carbon nanotubes from metal particles
US20020102193A1 (en) 2001-01-31 2002-08-01 William Marsh Rice University Process utilizing two zones for making single-wall carbon nanotubes
FR2826646B1 (fr) 2001-06-28 2004-05-21 Toulouse Inst Nat Polytech Procede de fabrication selective de nanotubes de carbone ordonne en lit fluidise
CN1485271A (zh) * 2002-09-24 2004-03-31 中国科学院成都有机化学研究所 一种去除碳纳米管中钴、镍或(和)铁的方法
CN101049927B (zh) * 2007-04-18 2010-11-10 清华大学 连续化生产碳纳米管的方法及装置
KR100933028B1 (ko) 2007-09-28 2009-12-21 세메스 주식회사 탄소나노튜브 제조 설비 및 이를 이용한 탄소나노튜브의제조 방법
CN101734641A (zh) * 2008-11-14 2010-06-16 华北电力大学 热解合成碳纳米管加热器及合成方法
CN105271164B (zh) * 2014-07-17 2019-08-20 山东大展纳米材料有限公司 一种连续化制备碳纳米管的装置及方法
CN104779371A (zh) * 2015-03-31 2015-07-15 天津大学 一种具有高电化学性能氮掺杂碳纳米管薄膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004043858A1 (en) * 2002-11-14 2004-05-27 Cambridge University Technical Services Limited Method for producing carbon nanotubes and/or nanofibres
CN1673073A (zh) * 2005-03-11 2005-09-28 北京大学 一种合成单壁碳纳米管的方法
CN107720725A (zh) * 2017-11-22 2018-02-23 江西悦安超细金属有限公司 一种制备碳纳米管的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3715323A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116902963A (zh) * 2023-09-13 2023-10-20 江西悦安新材料股份有限公司 一种以五羰基铁液为原料的碳纳米管及其制备工艺
CN116902963B (zh) * 2023-09-13 2023-11-21 江西悦安新材料股份有限公司 一种以五羰基铁液为原料的碳纳米管及其制备工艺

Also Published As

Publication number Publication date
EP3715323A1 (en) 2020-09-30
US20210070614A1 (en) 2021-03-11
US11608268B2 (en) 2023-03-21
EP3715323A4 (en) 2021-01-13
CN107720725A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019100949A1 (zh) 一种制备碳纳米管的方法及装置及制备的碳纳米管
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
KR101330230B1 (ko) 고밀도로 나노입자가 결정화되어 있는 그래핀―나노 융합체
Delpeux et al. High yield of pure multiwalled carbon nanotubes from the catalytic decomposition of acetylene on in situ formed cobalt nanoparticles
CN101665249B (zh) 一种在片状材料表面制备小直径碳纳米管阵列的方法
KR101717277B1 (ko) 그래핀 제조 방법
WO2012088697A1 (zh) 石墨烯衍生物-碳纳米管复合材料及其制备方法
WO2022062446A1 (zh) 一种单壁碳纳米管的连续制备***及制备方法
CN103754878B (zh) 一种碳化硅颗粒表面原位自生碳纳米管的方法
CN113860287B (zh) 一种等离子体电弧法制备单壁碳纳米管的***和方法
KR20220129012A (ko) 탄소 나노튜브와 수소의 제조 방법 및 장치
CN110182788A (zh) 一种高收率制备碳纳米管的装置及方法
WO2022089671A1 (zh) 复合型纳米碳材料的制备方法及复合型纳米材料
CN104386668B (zh) 一种镍纳米催化制备螺旋碳纳米材料的方法
CN111924828B (zh) 阵列型碳纳米管及其制备方法
JP5716155B2 (ja) ナノカーボン製造用粉末及び金属内包フラーレンの生成方法
Wang et al. Continuous preparation of structure-controlled carbon nanoparticle via arc plasma and the reinforcement of polymeric composites
CN113443617A (zh) 一种连续式碳纳米管的纯化装置及工艺
Wu et al. Formation mechanism of carbon-encapsulated iron nanorods in a co-carbonization process
An et al. Transformation of singlewalled carbon nanotubes to multiwalled carbon nanotubes and onion-like structures by nitric acid treatment
WO2022178916A1 (zh) 一种以醇类溶剂为碳源的碳纳米管及其制备方法
CN102990075A (zh) 一种制备碳包铁纳米粒子的方法
CN111115617A (zh) 一种高纯中空碳纳米洋葱的规模化制备方法
Zhang et al. Few walled carbon nanotube production in large-scale by nano-agglomerate fluidized-bed process
Bamoharram et al. Synthesis of carbon nanotubes via catalytic chemical vapor deposition method and their modification with Preyssler anion,[NaP5W30O110] 14

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18880959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018880959

Country of ref document: EP

Effective date: 20200622