WO2019098215A1 - 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法 - Google Patents

長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法 Download PDF

Info

Publication number
WO2019098215A1
WO2019098215A1 PCT/JP2018/042074 JP2018042074W WO2019098215A1 WO 2019098215 A1 WO2019098215 A1 WO 2019098215A1 JP 2018042074 W JP2018042074 W JP 2018042074W WO 2019098215 A1 WO2019098215 A1 WO 2019098215A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
long
film
layer
base material
Prior art date
Application number
PCT/JP2018/042074
Other languages
English (en)
French (fr)
Inventor
賢謙 前田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019554240A priority Critical patent/JPWO2019098215A1/ja
Publication of WO2019098215A1 publication Critical patent/WO2019098215A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a liquid crystal film, a long polarizing plate, an image display device, and a method of manufacturing a long liquid crystal film.
  • a liquid crystal film having a liquid crystal layer formed using a polymerizable liquid crystal compound is used as a retardation film or a high function film.
  • a liquid crystal film for example, an alignment layer is provided on a support, and a composition containing a polymerizable liquid crystal compound is coated on the alignment layer, and the polymerizable liquid crystal compound aligned by the alignment control force of the alignment layer By polymerizing to fix the orientation state.
  • Patent Document 1 describes that a layer in which a liquid crystal compound is given a predetermined orientation is formed to form an optically anisotropic layer.
  • a liquid crystal display apparatus As a display apparatus to which a liquid crystal film is applied, a liquid crystal display apparatus and an organic electroluminescent display apparatus are mentioned, for example.
  • a liquid crystal display apparatus and an organic electroluminescent display apparatus are mentioned, for example.
  • high definition and high dynamic range are continuously performed, pixel pitch is finer, white luminance is higher, and black display performance is continuously demanded.
  • Patent Document 3 in a heat treatment method of a coated film in which a coating film formed by applying a coating solution to a traveling long support is heat-treated, hot air is applied to the coating film surface of the traveling long support By blowing hot air on at least one side upstream or downstream of the same surface that has been blown, thereby generating an air flow along the running direction of the long support, and
  • the heat treatment method of the coating film which makes the wind velocity of the width direction 1 m / s or less is described. It is described that the heat processing nonuniformity does not generate
  • Patent Document 4 includes a step of applying a coating solution containing a liquid crystalline compound on a transparent belt-shaped film on which an alignment film layer is formed, drying the applied layer, and curing the dried applied layer.
  • the steps from drying to a solid content concentration in the coating layer of 80% or more to completion of curing of the coating layer are the steps of:
  • the manufacturing method of the optical compensation film which makes the wind speed of the dry wind component of the width direction 0.7 m / s or less is described. It is described that by this, the disorder of the alignment state of the liquid crystal compound due to the drying wind is suppressed to reduce the deviation and the variation of the slow axis.
  • JP-A-8-94838 Japanese Patent Laid-Open No. 2000-86786 JP 2001-314799 A JP 2008-224968 A
  • the object of the present invention is to solve the above-mentioned problems of the prior art, to reduce the in-plane unevenness of the front color when incorporated in a display device, and to provide a long liquid crystal film with small individual differences in front color. It is providing a polarizing plate, an image display apparatus, and the manufacturing method of a long liquid crystal film.
  • the present invention is as follows.
  • a long liquid crystal film comprising at least a long base material and a long liquid crystal layer having in-plane retardation
  • the long base material has a plurality of strip-like thickness unevenness regions extending in the width direction in the longitudinal direction
  • the liquid crystal layer has a band-like in-plane retardation unevenness area extending in the width direction of the long base material at the position of the thickness unevenness area in the plane direction
  • a long liquid crystal film characterized in that the retardation inclination ⁇ Re of the in-plane retardation unevenness region is in the range of 0.002 to 0.018 (nm / mm).
  • the film thickness gradient ⁇ T of the elongated substrate is in the range of 0.005 to 0.025 ( ⁇ m / mm) within the strip-shaped uneven thickness region extending in the width direction of the elongated substrate [ The long liquid crystal film as described in 1].
  • a method for producing a long liquid crystal film wherein a long liquid crystal layer is provided on a long base material, Preparing a long base roll having a plurality of streaky uneven thickness regions extending in the width direction in the longitudinal direction; While feeding the long base material from the long base material roll and conveying it in the longitudinal direction, sequentially An orientation step of applying an orientation regulating force to a long substrate in a long shape, A step of applying the polymerizable liquid crystal composition in the form of a long on the region of the long substrate to which the alignment control force is applied, After a coating liquid layer formed by coating is subjected to alignment treatment, it is cured to fix the alignment state, and a liquid crystal layer forming step of forming a liquid crystal layer, And winding the long liquid crystal film, in which the liquid crystal layer and the long base material are laminated, in a roll.
  • a means for adjusting the thickness of the coating liquid layer laminated on the long base material to a constant level is taken, and the variation of the thickness of the liquid crystal layer is made within ⁇ 2% of the average thickness.
  • a long liquid crystal film, a long polarizing plate, an image display device, and the like with less in-plane unevenness of front color when incorporated into a display device and small individual differences in front color. It is possible to provide a method of manufacturing a liquid crystal film.
  • a numerical range represented using “to” means a range including the numerical values described before and after it as the lower limit value and the upper limit value.
  • “orthogonal” and “parallel” in terms of angles shall mean the range of strict angles ⁇ 10 °, and “identical” and “different” in angles may be whether the difference is less than 5 ° It can be judged on the basis of
  • “visible light” refers to 380 to 780 nm.
  • the measurement wavelength is 550 nm unless otherwise specified.
  • the “slow axis” means the direction in which the refractive index is maximum in the plane.
  • the slow axis of retardation film the slow axis of the whole retardation film is intended.
  • the long liquid crystal film of the present invention is A long liquid crystal film comprising at least a long base material and a long liquid crystal layer having in-plane retardation,
  • the long base material has a plurality of strip-like thickness unevenness regions extending in the width direction in the longitudinal direction
  • the liquid crystal layer has a band-like in-plane retardation unevenness area extending in the width direction of the long base material at the position of the thickness unevenness area,
  • the film thickness gradient ⁇ T of the long substrate in the band-like thickness unevenness area extending in the width direction of the long substrate is 0.005 to 0. It is in the range of 025 ( ⁇ m / mm).
  • the long liquid crystal film of the present invention preferably includes a long light alignment layer between the long base material and the long liquid crystal layer.
  • the long liquid crystal film will be described in detail below.
  • FIG. 1 is a cross-sectional view schematically showing a long liquid crystal film of the present invention.
  • FIG. 1 is a cross-sectional view in the direction perpendicular to the longitudinal direction of the long liquid crystal film.
  • FIG. 2 is a perspective view schematically showing a long liquid crystal film of the present invention. The illustration of the alignment layer 2 is omitted in FIG.
  • the long liquid crystal film 10 shown in FIG. 1 has a long base 1 (a long base, hereinafter, also simply referred to as a base) 1, a long alignment layer 2, and a long liquid crystal layer 3 It has the structure laminated
  • a base 1 a long base, hereinafter, also simply referred to as a base
  • a long liquid crystal layer 3 It has the structure laminated
  • the elongate base material 1 is wider than the alignment layer 2
  • the liquid crystal layer 3 is generally provided narrower than the alignment layer 2.
  • the liquid crystal layer 3 may be wider than the alignment layer 2 and may be narrower than the long base material 1.
  • the direction in which the long liquid crystal film extends is taken as the longitudinal direction
  • the direction orthogonal to the longitudinal direction is taken as the width direction.
  • the elongated liquid crystal film of the present invention has a strip-shaped uneven thickness region 5 in which the elongated substrate 1 extends in the width direction, and the liquid crystal layer 3 extends in the width direction at the position of the uneven thickness region in the surface direction.
  • the above-mentioned range of the phase difference inclination ⁇ Re means that the variation of the phase difference in the plane is gentle.
  • liquid crystal films are conventionally produced in large areas and cut out according to the size of individual display devices, but there are individual differences in frontal color even when cut out from the same liquid crystal film .
  • a small electronic device such as a smartphone
  • the front color taste unevenness occurs in the screen because the liquid crystal film has a variation in retardation in the plane.
  • a liquid crystal film is produced by forming a liquid crystal layer on a long base material by roll-to-roll.
  • the thickness of the long base material fluctuates in the longitudinal direction due to its manufacturing process, and thickness unevenness is present. Therefore, the thickness of the liquid crystal layer formed on the elongated base also varies in the longitudinal direction due to the uneven thickness of the elongated base.
  • the in-plane retardation of the liquid crystal layer is determined by the refractive index anisotropy ⁇ n of the liquid crystal material and the orientation and the film thickness of the liquid crystal layer. Therefore, the in-plane retardation Re of the liquid crystal layer fluctuates due to the fluctuation of the thickness of the liquid crystal layer. As a result, in the display device having a liquid crystal film, front color unevenness occurs in the screen.
  • the retardation inclination ⁇ Re of the in-plane retardation unevenness region 6 is in the range of 0.002 to 0.018 (nm / mm), that is, in the plane. It makes the fluctuation of the phase difference smooth.
  • the display device having the liquid crystal film cut out from the long liquid crystal film 10 of the present invention it is possible to suppress the occurrence of color change due to front color unevenness in the screen.
  • the fluctuation of the retardation in the plane smooth it is possible to suppress the individual difference in the frontal color unevenness when a plurality of liquid crystal films are cut out from the long liquid crystal film.
  • the in-plane retardation unevenness area 6 is defined as an area having a difference of 0.2 nm or more from the average value of the in-plane retardation (Re (550)) of the liquid crystal layer 3.
  • the average value of the in-plane retardation is obtained by measuring the in-plane retardation of the liquid crystal film cut out by 1 m in the longitudinal direction of the long base material at 500 points every 2 mm and taking the average value.
  • the maximum value of the in-plane retardation variation is the maximum retardation value in the linear region extending in the longitudinal direction of the long base material in the region where the average value of the in-plane retardation is measured, and the average It is the difference with the value.
  • the length in the longitudinal direction of the in-plane retardation unevenness region a value obtained by averaging five points in the width direction with respect to one in-plane retardation unevenness region is used.
  • the retardation slope ⁇ Re is preferably 0.002 to 0.015 (nm / mm) from the viewpoint of suppressing generation of in-plane front color unevenness and suppressing individual differences in front color.
  • 0.002 to 0.0010 (nm / mm) is more preferable.
  • region 5 of the elongate base material 1 defines it as an area
  • the position of the average thickness is indicated by an alternate long and short dash line Lave.
  • region which has a difference of 0.1 micrometer or more in thickness with respect to average thickness is shown by hatching.
  • An area indicated by hatching is the uneven thickness area 5.
  • the elongated base material has a plurality of thickness unevenness regions in the longitudinal direction, and each thickness unevenness region extends in the width direction.
  • Average thickness measures the thickness of the elongate base material of the liquid-crystal film cut out by 1 m in the longitudinal direction of an elongate base material 500 points every 2 mm, and makes it the average value.
  • the in-plane retardation unevenness region 6 is generated due to the fluctuation of the thickness of the liquid crystal layer 3. Therefore, as shown in FIG. 2, in the plane direction, the position of the in-plane retardation unevenness region 6 and the position of the thickness unevenness region 5 substantially coincide with each other.
  • the length in the longitudinal direction of the in-plane retardation unevenness area 6 and the length in the longitudinal direction of the thickness unevenness area 5 do not necessarily coincide with each other.
  • the film thickness gradient ⁇ T of the elongated base material 1 in the band-like thickness unevenness region 5 extending in the width direction of the elongated base material 1 is in the range of 0.005 to 0.025 ( ⁇ m / mm). And the range of 0.010 to 0.020 ( ⁇ m / mm) is more preferable, and the range of 0.010 to 0.015 ( ⁇ m / mm) is more preferable.
  • the maximum value of the substrate film thickness difference as used herein means the maximum film thickness in the linear region extending in the longitudinal direction of the long substrate in the region where the average value of the thickness of the long substrate is measured, and the average value It is the difference with the film thickness. Further, the length in the longitudinal direction of the uneven thickness region is a value obtained by averaging five points in the width direction with respect to one uneven thickness region.
  • the film thickness gradient ⁇ T in the above range, that is, by making the variation of the thickness of the long base material smooth, the variation of the thickness of the liquid crystal layer 3 is suppressed and the variation of the in-plane retardation of the liquid crystal layer 3 is smooth.
  • the phase difference slope ⁇ Re can be reduced.
  • the lower limit value of the film thickness gradient ⁇ T is a range in which a long base material can be continuously manufactured with industrially appropriate manufacturing efficiency and cost. Therefore, by setting ⁇ T in the above range, a long base material is industrially easily available, and the in-plane retardation of the liquid crystal layer 3 is small, which is preferable.
  • the long liquid crystal film of the present invention can have an in-plane retardation of at least 10 nm or more of Re (550).
  • Re (550) is in the range of 100 nm to 250 nm, and in this range, it can be used as various optical compensation films or wave plates. More preferably, Re (550) is in the range of 120 nm to 160 nm, and in this range, it can be used as a ⁇ / 4 wavelength plate.
  • the in-plane retardation of the long liquid crystal film it is preferable that the in-plane retardation at each wavelength satisfy the following relationship.
  • the long base 1 is a member to be a support of the liquid crystal layer 3 and is a long film-like member.
  • the long base material 1 is preferably transparent.
  • the linear light transmittance of the visible light region is preferably 80% or more.
  • the elongate base material 1 is an optically isotropic transparent film material from the viewpoint of the optical design of the whole liquid crystal film, and the optical orientation suitability mentioned later.
  • examples of the long base material 1 include a cellulose acylate film, an acrylic film, a polycarbonate film, a cycloolefin film, a polyethylene terephthalate film, and a transparent film material made of glass.
  • the long base material 1 is preferably a resin film such as a cellulose acylate film, an acrylic film, a polycarbonate film, a cycloolefin film, or a polyethylene terephthalate film.
  • a cellulose acylate film can be used as a long base material used in the present invention. It is preferably used in that it has both transparency and strength, and can easily control adhesion or peelability with each layer.
  • a film containing a cellulose acylate resin and, if necessary, an additive may be used as the cellulose acylate film.
  • the cellulose acylate film can be produced by solution film formation, and may be produced using melt film formation.
  • the cellulose acylate resin triacetyl cellulose, diacetyl cellulose, and cellulose in which a part of acetyl group is substituted by higher acyl group, aromatic acyl group, alkoxy group or substituted alkoxy group can be used.
  • the degree of substitution of the cellulose to hydroxyl groups is not particularly limited, but in order to provide appropriate moisture permeability and hygroscopicity, the degree of acyl substitution of the cellulose to hydroxyl groups is 2.00 to 3.00 Is preferred. Furthermore, the degree of substitution is preferably 2.30 to 2.98, more preferably 2.70 to 2.96, and still more preferably 2.80 to 2.94.
  • JP-A-6439, JP-A-2016-164668, and JP-A-2017-106975 can be used.
  • polyester additive which has a repeating unit represented by the following general formula is mentioned.
  • X may be an alkylene group having 2 to 20 carbon atoms which may have a substituent, a polyoxyalkylene group, an alkenylene group, a phenylene group, a naphthylene group or a heterocyclic aromatic group.
  • the alkylene group in the said alkylene group, an alkenylene group, and a polyoxyalkylene group may have alicyclic structure.
  • Y may be an alkylene group having 2 to 20 carbon atoms which may have a substituent, a polyoxyalkylene group, an alkenylene group, a phenylene group, a naphthylene group or a heterocyclic aromatic group.
  • alkylene group in the said alkylene group, an alkenylene group, and a polyoxyalkylene group may have alicyclic structure.
  • These divalent linking groups may contain molecules other than carbon such as oxygen atom and nitrogen atom. Examples of the substituent mentioned above include an alkyl group, an alkoxy group, a hydroxyl group, an alkoxy substituted alkyl group and a carboxyl group.
  • X represents a non-cyclic divalent linking group having 2 to 10 carbon atoms, in that it is excellent in retardation properties and elastic modulus of the film, and Y is 3 It is preferable to represent a C3-C12 linking group containing an alicyclic structure of a 6-membered ring.
  • the alicyclic structure is a 3- to 6-membered ring, preferably a 5- to 6-membered ring, and specifically, a cyclopropylene group, a 1,2-cyclobutylene group, a 1,3-cyclobutylene group, a 1,2- Examples thereof include a cyclopentylene group, a 1,3-cyclopentylene group, a 1,2-cyclohexylene group, a 1,3-cyclohexylene group, and a 1,4-cyclohexylene group.
  • the hydrogen atom at the hydroxyl end of the polyester additive having a repeating unit represented by the above general formula (1) is substituted with an acyl group derived from a monocarboxylic acid (hereinafter also referred to as a monocarboxylic acid residue) It is preferable (hereinafter, also referred to as a hydrogen atom at a hydroxyl end is sealed).
  • a monocarboxylic acid residue a monocarboxylic acid residue
  • both ends of the polyester are monocarboxylic acid residues.
  • a residue is a partial structure of the said polyester, and represents the partial structure which has the characteristic of the monomer which has formed the said polyester.
  • the monocarboxylic acid residue formed from the monocarboxylic acid R-COOH is R-CO-.
  • R an alkyl group having 1 to 10 carbon atoms which may have a substituent, an alicyclic alkyl group and an aromatic group can be mentioned.
  • the aliphatic monocarboxylic acid residue is preferably an aliphatic monocarboxylic acid residue, more preferably an aliphatic monocarboxylic acid residue having 2 to 10 carbon atoms, and an aliphatic monocarboxylic acid residue having 2 to 3 carbon atoms It is more preferably a group, and particularly preferably an aliphatic monocarboxylic acid residue having 2 carbon atoms.
  • the hydroxyl value of the polyester is 10 mg KOH / g or less from the viewpoint of improving the polarizer durability, more preferably 5 mg KOH / g or less, and particularly preferably 0 mg KOH / g.
  • the number average molecular weight (Mw) of the polyester may be 500 to 3,000, and more preferably 700 to 2,000. It is excellent in compatibility as it is this range, and a stable film with little volatilization of additives at the time of film production and use can be obtained.
  • a compound (sugar ester) in which at least one substitutable group (for example, a hydroxyl group, a carboxyl group) in the sugar skeleton structure and at least one kind of substituent are esterified Compounds) can be used. More specifically, a hydroxyl group of a compound (M) having 1 to 12 of at least one pyranose structure or furanose structure, or a compound (D) in which at least one furanose structure or pyranose structure is bound A sugar ester compound obtained by alkylating all or part of OH groups simply or preferably is preferably used.
  • Examples of the compound (M) include glucose, galactose, mannose, fructose, xylose or arabinose, preferably glucose and fructose, more preferably glucose.
  • Examples of the compound (D) include lactose, sucrose, nystose, 1F-fructosyl nistose, stachyose, maltitol, lactitol, lactulose, cellulose, cellulose, cellotriose, maltotriose, raffinose, and kestose.
  • genthiobiose genthiotriose
  • genthiotetraose genthiotetraose
  • xylotriose galactosyl sucrose and the like
  • glucose sucrose and lactose are preferred.
  • an aliphatic monocarboxylic acid a monocarboxylic acid having an alicyclic structure, or an aromatic monocarboxylic acid for alkylating all or part of OH groups in the compound (M) and the compound (D) .
  • monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, benzoic acid and cyclohexanecarboxylic acid. Two or more of these monocarboxylic acids may be used in combination.
  • plasticizers such as acrylic acid, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polysulfate, polysulfate, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, polystyrene foam, poly
  • each of R 11 , R 13 and R 15 independently represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or 2 to 20 carbon atoms Represents an alkenyl group or an aromatic group having 6 to 20 carbon atoms.
  • Such compounds can be used, for example, those described in International Publication WO 2014/112575.
  • the cellulose acylate film used in the present invention can be produced using the method described in Japan Institute of Invention and Innovation Technical Publication No. 2001-1745 (Invention Association). These cellulose acylate films can be obtained by uniaxially or biaxially stretching as required, and preferably those stretched in the transverse direction can be used. Moreover, it can also be extended in an oblique direction.
  • the draw ratio in one direction can be 1.02 to 1.50 times, preferably 1.05 times to 1.30 times.
  • the glass transition temperature can be 140 to 200 ° C., more preferably 160 to 190 ° C., and particularly preferably 170 to 185 ° C. Within this range, the resistance to thermal deflection is more excellent, and physical property control by the stretching process is easy.
  • the glass transition temperature can be determined as a peak value of tan ⁇ by a dynamic viscoelasticity measuring apparatus.
  • the film-like long body used as the long base material 1 is normally manufactured continuously by melt film forming or solution film forming. Of course, it is desirable that the film thickness be uniform, but in practice various oscillation factors (machine vibration of the apparatus, mechanical vibration of the apparatus, etc. in each manufacturing process such as extrusion or casting, cooling, drying, blowing, conveying mechanism, rolling and stretching) Due to air pressure vibration, etc., film thickness unevenness more than a certain level is present. Specifically, as described above, the elongated base material 1 has a plurality of uneven thickness regions 5 extending in the width direction in the longitudinal direction.
  • Such a thickness unevenness region 5 is long due to fluctuation of the discharge amount of the resin melt or resin solution at the time of extrusion or casting, roundness of various transport rolls, misalignment of alignment, drying wind at the time of drying, etc. A plurality appears in the longitudinal direction of the substrate. Therefore, the conventional film has such unevenness in film thickness to some extent. Typically, the thickness varies in a wavelike manner.
  • the film thickness gradient ⁇ T in the thickness unevenness region 5 extending in the width direction of the elongated base material 1 satisfies 0.005 to 0.025 ( ⁇ m / mm).
  • the variation in thickness of the liquid crystal layer 3 formed on the long base material 1 can be suppressed to reduce the retardation inclination ⁇ Re of the liquid crystal layer 3.
  • the viscosity of a resin melt or a resin solution (hereinafter collectively referred to as a resin solution) at the time of extrusion or casting is reduced when manufacturing the long base material 1 It is preferable to adjust the length of the bead until the cast (or extruded) resin solution reaches the support to promote leveling, and the strength of the bead against disturbance.
  • the bead portion until the cast resin solution reaches the support can be made shorter by attracting it from the upstream side in the traveling direction of the support by the suction device, thereby making it possible to resist against disturbance.
  • the suction pressure to the bead is preferably ⁇ 1000 Pa ⁇ the suction pressure to the bead ⁇ 200 Pa, more preferably ⁇ 900 Pa ⁇ the suction pressure to the bead ⁇ 300 Pa, and ⁇ 800 Pa ⁇ the suction pressure to the bead More preferably, it is ⁇ 350 Pa.
  • the bead can be made more resistant to disturbance also by the increase in dope viscosity.
  • it is achieved by use of a high viscosity solvent, dope temperature down, dope solid concentration up.
  • is the vibrational viscosity (unit: Pa ⁇ s) of the viscosity of the resin solution discharged from the discharge device measured at 25 ° C. and 1 Hz.
  • the viscosity of the resin solution discharged from the discharge device is more preferably 30 Pa ⁇ s ⁇ ⁇ 200 Pa ⁇ s, still more preferably 40 Pa ⁇ s ⁇ 200 Pa ⁇ s, and 40 Pa ⁇ s ⁇ ⁇ 100 Pa S is particularly preferred.
  • the solid content concentration in the resin melt or resin solution during extrusion or casting be 25% or less, and the viscosity be 50 Pa ⁇ s or less.
  • the solid content concentration in the resin solution is more preferably 10% or more and 23% or less, and still more preferably 12% or more and 20% or less.
  • the viscosity is more preferably 1 Pa ⁇ s or more and 40 Pa ⁇ s or less, and still more preferably 3 Pa ⁇ s or more and 20 Pa ⁇ s or less.
  • the method of strengthening the bead against disturbance and the method of promoting the leveling by lowering the viscosity are contradictory, it is preferable to promote the leveling by slow drying.
  • thickness nonuniformity can be reduced by airless drying or the like.
  • the long substrate 1 preferably has an in-plane retardation Re (550) of 10 nm or less, more preferably 5 nm or less, from the viewpoint of suppressing the influence of film thickness unevenness on the whole liquid crystal film. It is further preferred that Further, from the viewpoint of suppressing the optical influence in the oblique direction, the thickness direction retardation Rth (550) of the elongated base material 1 is preferably in the range of -20 to 20 nm, and in the range of -10 to 10 nm Is more preferable, and the range of -5 to 5 nm is more preferable.
  • Rth is in this range, it becomes difficult to optically detect the film thickness unevenness of the long base material immediately before the application of the coating liquid for forming the liquid crystal layer and to feed it back to the coating apparatus. Even if it is such an optically isotropic long base material, a long liquid crystal film with little unevenness can be obtained without any problem. The details will be described later.
  • the thickness of the elongated substrate 1 is not particularly limited, but is preferably 10 ⁇ m to 60 ⁇ m, more preferably 15 ⁇ m to 50 ⁇ m, and still more preferably 15 ⁇ m to 45 ⁇ m.
  • the length of the elongated base material 1 is preferably 100 m to 10000 m, more preferably 250 m to 7000 m, and still more preferably 1000 m to 6000 m.
  • the width is preferably 400 to 3000 mm, more preferably 500 to 2500 mm, and still more preferably 600 to 1750 mm. Within this range, it is possible to improve the economy in the roll-to-roll process, and to manufacture a long liquid crystal film excellent in the uniformity in the longitudinal direction and the lateral direction.
  • the alignment layer 2 is a layer which is formed on the long base material 1 and aligns the liquid crystal compound of the liquid crystal layer 3 formed on the alignment layer 2 by the alignment regulating force.
  • the alignment layer 2 can apply various configurations capable of aligning the liquid crystal compound to be the liquid crystal layer 3. For example, a rubbed film of a layer containing an organic compound such as a polymer or the like, an oblique deposition film of an inorganic compound, a film having a microgroove, or an organic compound such as ⁇ -trichosanic acid, dioctadecyl methyl ammonium chloride or methyl stearylate The film etc.
  • the alignment layer one formed by rubbing the surface of a layer (polymer layer) containing an organic compound such as a polymer can be preferably used.
  • the rubbing treatment is carried out by rubbing the surface of the polymer layer with paper or cloth several times in a certain direction (preferably the longitudinal direction of the support).
  • the polymer used to form the alignment layer include polyimide, polyvinyl alcohol, modified polyvinyl alcohol described in paragraph Nos. [0071] to [0095] of Japanese Patent No. 3907735, and polymerization described in JP-A-9-152509. It is preferable to use a polymer having a functional group.
  • photo alignment layer which is an alignment layer, by irradiating a light alignment material with polarized light or non-polarized light as the alignment layer. It is preferable to apply an alignment regulating force to the photoalignment layer by the step of irradiating polarized light from the vertical direction or the oblique direction or the step of irradiating non-polarized light from the oblique direction.
  • photoalignment layer it is possible to align the polymerizable liquid crystal compound described later with excellent symmetry. From the viewpoint of suppressing foreign matter defects and obtaining a long liquid crystal film without unevenness, it is preferable to use a photoalignment film which can impart an alignment control force without contact.
  • the photoalignment layer may be formed by irradiating the ultraviolet light by the linearly polarized light after forming the material layer to be the photoalignment layer on the long base material 1 by coating and drying the coating liquid to be the photoalignment layer. it can.
  • the material to be the photoalignment layer various materials to which a photoalignment method can be applied can be applied.
  • a photodimerization type material particularly a compound containing a cinnamic acid derivative can be used.
  • photoisomerization materials such as an azo compound, can also be used suitably.
  • Examples of the photoalignment material used for the photoalignment layer include, for example, JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, and JP-2007-. No. 121721, JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, Patent Nos. 3883848, and No.
  • Patent Document 1 JP-A-10-506420, JP-A-2003-505561, WO 2010/150748, JP-A 2013-177561, JP-A 2014-12823, and compounds capable of photodimerization
  • cinnamate compounds, chalcone compounds and coumarin compounds can be mentioned.
  • Particularly preferred examples include azo compounds, photocrosslinkable polyimides, polyamides, esters, cinnamate compounds and chalcone compounds.
  • the thickness of the alignment layer is not particularly limited as long as the alignment function can be exhibited, but is preferably 0.01 to 5 ⁇ m, more preferably 0.05 to 2 ⁇ m, and further preferably 0.1 to 0.5 ⁇ m. It is further preferred that Within this range, an excellent alignment regulation force can be exhibited, and the effect of suppressing foreign matter defects is high.
  • the long base material 1 and the alignment layer 2 may be separately provided as layers performing the respective functions, or the long base material 1 doubles as the alignment layer 2, that is, the long base material surface controls the alignment. You may take a mode that has power. Moreover, when the long base material 1 and the alignment layer 2 are provided separately, the long base material 1 and the alignment layer 2 may be provided in contact with each other, or the long base material 1 and the alignment layer 2 may be provided. A functional layer may be interposed between the two.
  • the long base material 1 is subjected to the above-described processing such as rubbing or polarized light irradiation on the surface of the long base material 1 as means for directly applying the alignment regulating force without providing the alignment layer 2 on the surface of the long base material 1.
  • the above-mentioned functional layer that can be interposed between the long base material 1 and the alignment layer 2 include a barrier layer, an impact relaxation layer, an easily peelable layer, and an easily adhesive layer.
  • the liquid crystal layer 3 is a long layer formed on the long base 1 (alignment layer 2) using a composition containing a liquid crystal compound.
  • the liquid crystal layer 3 is formed by curing in a state in which a liquid crystal compound to be the liquid crystal layer 3 is aligned by the alignment regulating force of the alignment layer 2. Therefore, the liquid crystal layer 3 has optical characteristics according to the alignment state of the liquid crystal compound.
  • the liquid crystal layer 3 can have an in-plane retardation of at least Re (550) of 10 nm or more.
  • Re (550) is in the range of 100 nm to 250 nm, and in this range, it can be used as various optical compensation films or wave plates. More preferably, Re (550) is in the range of 120 nm to 160 nm, and in this range, it can be used as a ⁇ / 4 wavelength plate.
  • the ground phase axis make 45 ° with the longitudinal direction of the long base material 1.
  • the refractive index anisotropy ⁇ n of the liquid crystal layer 3 is preferably in the range of 0.03 to 0.20, and more preferably in the range of 0.05 to 0.15. Within this range, it is more difficult to visually recognize retardation unevenness, and it is possible to obtain a desired high retardation with a thin liquid crystal layer.
  • the thickness of the liquid crystal layer 3 can be appropriately set according to the refractive index anisotropy and the target retardation value, but is typically in the range of 0.5 ⁇ m to 7 ⁇ m, and more preferably 0.7 to 5 ⁇ m, More preferably, it is in the range of 1.0 to 3.0 ⁇ m.
  • the in-plane retardation at each wavelength satisfy the relationship of Re (450) ⁇ Re (550) ⁇ Re (650).
  • Re (450) ⁇ Re (550) ⁇ Re (650) When this relationship is satisfied, uniform polarization conversion over a wide band is possible, and good performance with little tinting can be exhibited when used as various optical compensation films or wavelength plates.
  • the liquid crystal layer 3 has a strip-like in-plane retardation unevenness region 6 extending in the width direction, and the retardation inclination ⁇ Re of the in-plane retardation unevenness region is 0
  • the range is from 002 to 0.018 (nm / mm).
  • the liquid crystal layer 3 is formed by applying a coating solution to be the liquid crystal layer 3 to the long base material 1 with a coating head such as a die, drying it, and then irradiating it with ultraviolet rays to cure it.
  • a coating solution to be the liquid crystal layer 3 to the long base material 1 with a coating head such as a die
  • the amount of the coating liquid supplied from the coating device to the long base 1 fluctuates due to the uneven thickness region 5 extended in the width direction of the long base 1. Therefore, the thickness of the liquid crystal layer 3 also varies in the longitudinal direction. Since the in-plane retardation of the liquid crystal layer 3 correlates with the thickness of the liquid crystal layer 3, the in-plane retardation of the liquid crystal layer 3 is caused by the fluctuation of the thickness of the liquid crystal layer 3. Unevenness occurs.
  • the liquid crystal layer 3 has a plurality of streak-like in-plane retardation unevenness regions 6 extending in the width direction corresponding to the thickness unevenness regions 5 of the elongated base 1 in the longitudinal direction.
  • the unevenness is eliminated to such an extent that the unevenness is not visible in the state of the liquid crystal film due to the leveling property of the coating liquid itself.
  • thickness unevenness extending in the width direction can not be resolved only by the leveling property of the liquid because it occurs simultaneously in the width direction at the time of long coating, and can be visually observed because it extends long in one direction. It is easy to remain in
  • the liquid crystal layer 3 is formed of a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound exhibiting optical anisotropy.
  • the polymerizable liquid crystal composition exhibits liquid crystallinity and can contain, in addition to the polymerizable liquid crystal compound having a polymerizable functional group in the molecule, other polymerizable compounds, an alignment stabilizer, a polymerization initiator, a solvent and the like. .
  • the polymerizable liquid crystal compound contained in the polymerizable liquid crystal composition has refractive index anisotropy, and has a function of imparting a desired retardation by arranging regularly by the alignment regulating force of the alignment layer 2 .
  • the polymerizable liquid crystal compound include materials exhibiting a liquid crystal phase such as a nematic phase and a smectic phase.
  • polymerizable liquid crystal molecules having various structures such as a rod-like liquid crystal compound and a discotic liquid crystal compound can be used.
  • the compounds described in JP-A-2015-200877 can be used. From the viewpoint of adjusting the phase transition temperature and suppressing the crystallization of the polymerizable liquid crystal compound to obtain a liquid crystal film having a more excellent surface shape, a plurality of different polymerizable liquid crystal compounds can be mixed and used.
  • the polymerizable compound contained in the polymerizable liquid crystal composition can preferably have a non-liquid crystalline polyfunctional polymerizable compound.
  • non-liquid crystalline polyfunctional polymerizable compounds include ester compounds of known polyhydric alcohols and (meth) acrylic acid. The addition of these compounds increases the fluidity of the polymerizable liquid crystal composition to promote leveling, so that the liquid crystal layer 3 with less variation in retardation can be obtained.
  • the wet heat durability of the liquid crystal layer 3 can be improved, and the scratch resistance and the film strength can be enhanced.
  • An alignment stabilizer can be added to the polymerizable liquid crystal composition.
  • various disturbance factors are suppressed, the alignment of the liquid crystal compound is stabilized, and it is possible to obtain the liquid crystal layer 3 with less phase difference unevenness.
  • the alignment of the liquid crystal layer can be adjusted to any alignment such as horizontal alignment, vertical alignment, hybrid alignment, and cholesteric alignment. From the viewpoint of achieving both orientation stabilization and leveling, an acrylic polymer having a fluoroaliphatic side chain is particularly preferable (paragraphs 0022 to 0063 of JP-A-2008-257205, and paragraph 0017 of JP-A-2006-91732). Can be added).
  • the polymerizable liquid crystal composition can contain a polymerization initiator.
  • Various polymerization initiators can be selected according to the polymerizable group of the polymerizable liquid crystal compound.
  • the polymerizable liquid crystal compound is a (meth) acrylate compound
  • the polymerization initiator is a radical polymerization initiator.
  • various well-known polymerization initiators can be used. In order to achieve uniform orientation, it is preferable that the stability with time of the coating solution and the deep-part curability of the coating film be excellent, and from that viewpoint the oxime ester compound (US Pat. No.
  • JP-A-2001-233842 and acyl phosphine oxide compounds are preferably used.
  • solvent Various known solvents can be used as the solvent.
  • the solvent is preferably selected in consideration of the solubility of the polymerizable liquid crystal compound and the other components, the wettability to the long base of the coating solution, the surface tension, the viscosity, and the volatilization. By appropriately selecting the solvent, it is possible to form a coating film excellent in leveling property and uniform without unevenness, and it is possible to obtain the liquid crystal layer 3 in which the retardation unevenness is suppressed.
  • the amount of solvent in the polymerizable liquid crystalline composition is preferably between 50% by mass and 90% by mass, and more preferably in the range of 60 to 85% by mass, with respect to the total amount of the composition. When it is in this range, by exhibiting excellent leveling properties and having an appropriate viscosity, it becomes difficult to be disturbed by external factors, and it is possible to effectively suppress the film thickness fluctuation due to the film thickness unevenness of the long base material. .
  • the alignment layer 2 and the liquid crystal layer 3 are formed on the long base material 1, but the invention is not limited thereto.
  • the long substrate 1 may be a peelable support, and the liquid crystal layer 3 or a laminate of the alignment layer 2 and the liquid crystal layer 3 may be peelable from the long substrate 1. Alternatively, it may be configured to be peelable between the alignment layer 2 and the liquid crystal layer 3.
  • the liquid crystal layer 3 or a laminate of the alignment layer 2 and the liquid crystal layer 3 can be peeled off from the long base 1 and transferred to another member for use.
  • a film having an optical characteristic that is not appropriate when used as the long liquid crystal film 10 is also used as the long base material.
  • a release layer may be provided on the surface of the long base material 1, and a release layer may be provided on the alignment layer 2.
  • the long liquid crystal layer thus obtained can be transferred to a linear polarizing plate or the like to be used as various optical components, particularly preferably a circularly polarizing plate.
  • the method for producing a long liquid crystal film of the present invention is A method for producing a long liquid crystal film, wherein a long liquid crystal layer is provided on a long base material, Preparing a long base roll having a plurality of streaky uneven thickness regions extending in the width direction in the longitudinal direction; While feeding the long base material from the long base material roll and conveying it in the longitudinal direction, sequentially An orientation step of applying an orientation regulating force to a long substrate in a long shape, A step of applying the polymerizable liquid crystal composition in the form of a long on the region of the long substrate to which the alignment control force is applied, After a coating liquid layer formed by coating is subjected to alignment treatment, it is cured to fix the alignment state, and a liquid crystal layer forming step of forming a liquid crystal layer, Winding a long liquid crystal film in which a liquid crystal layer and a long base material are laminated in a roll shape; In the coating step, a means for adjusting the thickness of the coating
  • FIG. 3 is the figure which represented typically the manufacturing apparatus which enforces the manufacturing method of the elongate liquid crystal film of this invention.
  • the manufacturing apparatus 30 illustrated in FIG. 3 includes a rotating shaft 60, an application unit 32, a heating unit 33, a light source 34, a backup roll 38, an application unit 35, a heating unit 36, a light source 37, and a winding shaft And 62.
  • the manufacturing apparatus 30 forms the photoalignment layer 2 and the liquid crystal layer in order while transporting the long base material 1 in the longitudinal direction along a predetermined transport path.
  • the rotating shaft 60 is for loading a base material roll 31 in which the long base material 1 is wound.
  • the winding shaft 62 is a winding shaft of a known long object for winding the long base material 1 after the formation of the light alignment layer 2 and the liquid crystal layer 3.
  • the backup roll 38 is a backup roll that supports the long base material 1 from the back side during the formation (light irradiation) of the light alignment layer 2.
  • the application part 32 is a site
  • the application portion 35 is a portion for applying a coating liquid to be the liquid crystal layer 3 on the photoalignment layer 2 formed on the long base material 1.
  • a coating method capable of coating the photoalignment layer 2 and the liquid crystal layer 3 to a desired thickness may be used, respectively. Therefore, all known coating methods such as die coating method, dip coating method, air knife coating method, curtain coating method, roller coating method, wire bar coating method, gravure coating method and slide coating method can be used.
  • the coating solution can be applied without contact, so the surface of the long substrate 1 is not damaged, and the formation of the beads is excellent in embedding properties such as irregularities on the surface of the long substrate 1, etc. Is preferably used.
  • the heating portion 33 and the heating portion 36 are portions for heating and drying the coating liquid layer to be the photo alignment layer 2 applied on the long base 1 or the coating liquid layer to be the liquid crystal layer 3. .
  • the drying method by the heating unit 33 and the heating unit 36 is not limited, and the coating liquid layer or the coating liquid layer may be dried to remove the organic solvent or the like so that crosslinking can be performed, All known drying means are available. As an example, heat drying by a heater, heat drying by warm air, etc. are exemplified.
  • the light source 34 and the light source 37 respectively irradiate the ultraviolet rays or visible light to the coating liquid layer or the coating liquid layer after drying to crosslink organic compounds such as monomers contained in the coating liquid layer and the coating liquid layer. It is cured to form the photoalignment layer 2 or the liquid crystal layer 3.
  • the wavelength of the light emitted by the light source may be set according to the material contained in the coating liquid, the material contained in the coating liquid, and the like.
  • the light source is not limited as long as it can emit light of the set wavelength, and a known light source used in a liquid crystal film manufacturing apparatus can be appropriately used.
  • the manufacturing apparatus 30 transports a long substrate such as a transport roller, a guide member that regulates the position of the long substrate 1 in the width direction, various sensors, etc. May have various members provided in known devices for forming
  • a base material roll 31 is formed by winding a long base material having a plurality of streaky uneven thickness regions extending in the width direction along the longitudinal direction and having an in-plane retardation Re of 5 nm or less.
  • the base material roll 31 is set on the rotating shaft 60, and the long base material 1 is pulled out from the base material roll 31 and passed through a predetermined transport path from the rotating shaft 60 to the winding shaft 62.
  • the coating liquid used as the photo-alignment layer 2 prepared beforehand is supplied to the application part 32.
  • the coating solution to be the liquid crystal layer 3 prepared in advance is supplied to the coating unit 35.
  • the feeding of the long base material 1 from the base material roll 31 and the winding of the long base material 1 on which the liquid crystal layer 3 is formed on the winding shaft 62 are performed in synchronization with each other. While conveying the material 1 in the longitudinal direction along a predetermined conveyance path, formation of the photoalignment layer 2 (alignment step) and formation of the liquid crystal layer 3 (coating step, liquid crystal layer formation step) are continuously performed.
  • the photo alignment layer 2 is formed as an alignment step. Specifically, the coating unit 32 disposed in the middle of the transport route of the long base 1 coats the long base 1 with the coating liquid to be the photoalignment layer 2. Next, the heating unit 33 disposed on the downstream side of the application unit 32 heats and dries the coating liquid layer to be the coated light alignment layer 2. Next, the light source 34 disposed downstream of the heating unit 33 irradiates linearly polarized ultraviolet light to cure the coating liquid layer, thereby forming the photoalignment layer 2. At this time, the exposure from the light source 34 uses the backup roll 38 to prevent the web from vibrating.
  • the coating unit 35 disposed on the downstream side of the light source 34 coats the coating liquid to be the liquid crystal layer 3 on the long base material 1 (photoalignment layer 2).
  • the heating unit 36 disposed on the downstream side of the coating unit 35 heats and dries the coating liquid layer to be the coated liquid crystal layer 3. If necessary, heating or cooling may be further performed to promote the alignment of the liquid crystal compound contained in the polymerizable liquid crystal composition or to adjust the alignment state.
  • the coating liquid to be the liquid crystal layer 3 to the long base material means for adjusting the thickness of the coating liquid layer to a constant value is taken.
  • the thickness unevenness of the long base material the thickness unevenness of the liquid crystal layer generated in the coating process is caused due to the mechanical vibration and the air pressure vibration of the coating device. Therefore, in addition to the thickness nonuniformity reduction of a support body, the thickness nonuniformity of a liquid crystal layer can be reduced by measures with respect to the cause derived from a coating process.
  • a means for adjusting the thickness of the coating liquid layer is taken constant, and the variation of the thickness of the liquid crystal layer is made within the range of ⁇ 2% with respect to the average thickness.
  • the variation in thickness of the liquid crystal layer is preferably in the range of ⁇ 1%, more preferably in the range of ⁇ 0.5%, and still more preferably in the range of ⁇ 0.3%.
  • the average thickness of the liquid crystal layer is obtained by measuring the thickness of the liquid crystal layer of the liquid crystal film cut out by 1 m in the longitudinal direction of the long base at 500 points every 2 mm and taking the average value. Further, the difference (ratio) between the thickness at each point and the average thickness is taken as the variation.
  • the thickness of the liquid crystal layer is measured at a lens magnification of 25 times using an interference film thickness measurement apparatus (FE3000 manufactured by Otsuka Electronics Co., Ltd.).
  • the refractive index of each of the substrate, alignment film, and liquid crystal layer at 400 nm to 800 nm is calculated by the base analysis method, and fitting is performed at the wavelength of 400 nm to 800 nm by the optimization method using the calculated refractive index. calculate.
  • the unit of film thickness is [nm].
  • the die coating method when used as the coating method performed by the coating unit 35, a minute clearance is provided between the die and the photo alignment layer so that the die does not contact the photo alignment layer.
  • the portion of the coating solution (bead) until reaching the alignment layer is susceptible to vibration and the like.
  • the bead is likely to be disturbed also when the stripe-like thickness unevenness region extended in the width direction of the elongated base material 1 passes the position of the die. Therefore, for example, the amount of clearance is adjusted to shorten the bead, the air pressure in the space before and after the flow of the coating liquid is adjusted in the clearance portion, that is, the air pressure is drawn to suck the bead from the upstream side in the transport direction.
  • the bead By taking measures such as adjusting and shortening the bead, it is possible to form a coating liquid layer having a uniform thickness and no unevenness regardless of the shape of the long base material 1. It is also preferable to make the bead more resistant to disturbance by lowering the temperature of the coating chamber or adding a high viscosity solvent to the coating liquid to increase the viscosity of the coating liquid. For example, the viscosity of the coating solution can be increased by adding cyclopentanone as a high viscosity solvent.
  • the light source 37 disposed on the downstream side of the heating unit 36 irradiates ultraviolet light, and the liquid crystal compound is cured in a state of being aligned by the alignment regulating force of the photoalignment layer 2 to form the liquid crystal layer 3.
  • the irradiation of the ultraviolet light by the light source 37 is performed from the side of the coating liquid layer to be the liquid crystal layer 3, whereby the liquid crystal layer 3 can be formed by efficiently irradiating the ultraviolet light onto the coating liquid layer.
  • the atmosphere may be replaced with nitrogen.
  • the long base 1 on which the light alignment layer 2 and the liquid crystal layer 3 are formed that is, the long liquid crystal film 10 is wound around the winding shaft 62.
  • the wound liquid crystal film roll 39 is subjected to the next step as required.
  • the photoalignment layer 2 and the liquid crystal layer 3 are continuously formed in one transport path, but the invention is not limited thereto.
  • the photoalignment layer 2 and the liquid crystal layer It is good also as composition formed with a manufacturing device different from 3, respectively.
  • the long liquid crystal film of the present invention can be used as an optical component (for example, a polarizing plate) which can be used for various display devices by combining it with a linear polarizer.
  • bonding can be performed using various adhesives.
  • an adhesive agent an ultraviolet curable resin, a thermosetting resin, a pressure sensitive adhesive agent etc. can be illustrated, for example.
  • the long polarizing plate of the present invention includes the above-described long liquid crystal film and a long linear polarizer.
  • FIG. 4 is a schematic view showing an example of the long polarizing plate of the present invention.
  • the long polarizing plate 20 shown in FIG. 4 has a long liquid crystal film 10 and a linear polarizer 21 laminated on the long base 1 side of the long liquid crystal film 10.
  • the long polarizing plate 20 can be configured by laminating the long liquid crystal film of the present invention and the long linear polarizer.
  • the in-plane retardation of the long liquid crystal film of the present invention is preferably in the range of 120 to 160 nm, and more preferably in the range of 130 to 150 nm.
  • the slow axis of the long liquid crystal film of the present invention is disposed at 45 ° to the transmission axis of the linear polarizing plate.
  • a long linear polarizer 21 having a slow axis of the long liquid crystal film of the present invention at 45 ° to the transport direction and having a transmission axis in the width direction, or a long straight having the transmission axis in the transport direction By laminating with the polarizer 21, a long circularly polarizing plate can be configured.
  • the linear polarizer 21 is configured by sandwiching an optical functional layer having a function as a linear polarizer by a pair of base materials.
  • the substrate is a transparent film made of TAC (triacetyl cellulose), an acrylic resin such as methyl poly (meth) acrylate, a copolymer thereof, a crosslinked polymer resin such as an epoxy compound, a (meth) acrylate compound, cycloolefin Resin, resin such as polycarbonate resin, glass, etc. can be applied.
  • TAC triacetyl cellulose
  • an acrylic resin such as methyl poly (meth) acrylate, a copolymer thereof
  • a crosslinked polymer resin such as an epoxy compound, a (meth) acrylate compound, cycloolefin Resin, resin such as polycarbonate resin, glass, etc.
  • the long base material of the long liquid crystal film of the present invention may be used as a base material, and the optical function layer, the long base material 1, the light alignment layer
  • the optical functional layer is typically produced by adsorbing and orienting iodine compound molecules to a film material of polyvinyl alcohol (PVA), but in addition, a film using an organic dichroic dye instead of the iodine compound molecules, organic A layer in which a dichroic dye is blended in a liquid crystal composition and oriented, a layer in which a liquid crystalline organic dichroic dye is oriented, or the like may be used.
  • Various well-known adhesives mentioned above can be used as an adhesion layer (not shown) concerning lamination.
  • FIG. 5 shows a laminating apparatus for manufacturing the long polarizing plate 20 by laminating the long liquid crystal film 10 and the long linear polarizer 21.
  • the laminating apparatus 40 shown in FIG. 5 is a known laminating apparatus for laminating two long film-like materials.
  • the laminating apparatus 40 includes a rotating shaft 64 loaded with a liquid crystal film roll 39, a winding shaft 66 for winding the produced long polarizing plate 20, and a polarizer roll obtained by winding a long linear polarizer 21. 42, a take-up shaft 70 for winding the release film 41 removed from the linear polarizer 21, a release roll 43 for releasing the release film 41 from the linear polarizer 21, and a linear polarizer 21. And a pressure roll 45 for pressing the long liquid crystal film 10.
  • the long liquid crystal film 10 is pulled out from the liquid crystal film roll 39 loaded on the rotating shaft 64, and is passed through a transport path leading to the winding shaft 66.
  • the polarizer roll 42 loaded on the rotating shaft 68 is formed by winding the long linear polarizer 21 in which the adhesive layer 22 and the peeling film 41 made of PET (polyethylene terephthalate) film are laminated in a roll shape. It is a thing. The laminate is pulled out of the polarizer roll 42, and the peeling film 41 is peeled off at the position of the peeling roll 43. The release film 41 is passed through the winding shaft 70.
  • the laminate of the linear polarizer 21 and the adhesive layer 22 is laminated on the long liquid crystal film 10 at the position of the pressure roll 45 and is passed through a transport path leading to the winding shaft 66.
  • the laminating apparatus 40 synchronizes the rotating shaft 64, the winding shaft 66, the rotating shaft 68, the winding shaft 70, the peeling roller 43, and the pressure roller 45 with the transport of the linear polarizer 21 and the long liquid crystal film 10. And rotate.
  • the laminating apparatus 40 peels off the peeling film 41 by the peeling roll 43 while pulling out the laminated body of the linear polarizer 21, the adhesive layer 22 and the peeling film 41 from the polarizer roll 42, and takes up the peeling film 41 peeled off. Roll into rolls.
  • the release film 41 is laminated with the linear polarizer 21 and the adhesive layer 22 formed, and then pressure is applied by the pressure roll 45.
  • a laminate of the film 10, the adhesive layer 22, and the linear polarizer 21 (that is, the long polarizing plate 20) is manufactured.
  • the long polarizing plate 20 is wound in a roll shape on a winding shaft 66.
  • the long polarizing plate 20 is cut into a desired size to be a sheet-like polarizing plate, and is applied to an image display device or the like. Moreover, you may arrange
  • the long polarizing plate may further include a positive C plate having a thickness direction retardation (Rth (550)) at a wavelength of 550 nm of ⁇ 150 to ⁇ 50 nm.
  • the retardation (Rth (550)) in the thickness direction at a wavelength of 550 nm of the positive C plate is -150 to -50 nm, preferably -130 to -70 nm, and more preferably -120 to -80 nm.
  • the thickness of the positive C plate is not particularly limited, but is preferably 0.5 to 10 ⁇ m and more preferably 0.5 to 5 ⁇ m from the viewpoint of thinning.
  • the said thickness intends average thickness, measures the thickness of arbitrary five points of positive C plate, and carries out the arithmetic mean of them.
  • the material constituting the positive C plate is not particularly limited, but preferably contains a liquid crystal compound.
  • the definition of the liquid crystal compound is as described above.
  • the positive C plate is preferably a layer formed by fixing a liquid crystal compound having a polymerizable group (a rod-like liquid crystal compound or a disc-like liquid crystal compound) by polymerization or the like. No longer needs to exhibit liquid crystallinity.
  • the long liquid crystal film of the present invention is applicable not only to a circularly polarizing plate but also to various optical parts.
  • it is a polarizing plate with an optical compensation layer of a liquid crystal display device, a polarization sunglasses, a brightness enhancement plate, a decorative film, a viewing angle limiting film, a light control film, and the like.
  • the optical characteristics and the average slow axis direction of the elongated liquid crystal film of the present invention can be variously changed according to the application without departing from the spirit of the present invention.
  • the image display apparatus of the present invention is an image display apparatus including a polarizing plate cut out from the long polarizing plate. By appropriately cutting the long polarizing plate and mounting it on the display device, an image display device excellent in display quality can be configured.
  • FIG. 6 is a cross-sectional view schematically showing an example of the image display device of the present invention.
  • the anti-reflection film 52 cut out from the long polarizing plate 20 is disposed on the panel surface (viewer side surface) of the image display panel 51.
  • the anti-reflection film 52 prevents internally reflected light as a circularly polarizing plate.
  • the image display panel 51 is, for example, an organic EL panel, and displays a desired color image.
  • the image display panel 51 is not limited to the organic EL panel, and various image display panels such as a liquid crystal display panel can be widely applied.
  • the antireflective film 52 is typically attached to the panel surface of the image display panel 51 by the adhesive layer 53 and held.
  • the antireflection film 52 is configured by integrally laminating a linear polarizing plate 21 and a long liquid crystal film 10 having the characteristics of a ⁇ / 4 wavelength plate by an adhesive layer 22.
  • As the adhesive layer 53 a known adhesive can be used similarly to the adhesive layer 22.
  • the manufacturing method of the long liquid crystal film of this invention, a long polarizing plate, an image display apparatus, and a long liquid crystal film was demonstrated in detail, this invention is not limited to the said embodiment.
  • Various improvements and modifications may be made without departing from the scope of the invention.
  • the same concept can be applied as a method of suppressing retardation unevenness in a liquid crystal film having retardation in the thickness direction and polarization degree unevenness of a polarizer using orientation of dichroic compound molecules. That is, the in-plane retardation unevenness in the present invention can be appropriately read as thickness direction retardation unevenness or polarization degree unevenness. It will be appreciated by those skilled in the art if the intention of the present specification is understood as to how to design and achieve the various means described in the present invention with respect to the limit of practically allowable unevenness. It is possible.
  • the core layer cellulose acylate dope and the outer layer cellulose acylate dope are filtered with a filter paper having an average pore diameter of 34 ⁇ m and a sintered metal filter having an average pore diameter of 10 ⁇ m, and then the core layer cellulose acylate dope and outer layer cellulose acylate dope on both sides thereof And 3 layers were cast simultaneously from a casting port on a 20 ° C. metal band (band casting machine).
  • the bead portion was sucked from the upstream side at a suction pressure of -600 Pa.
  • the solid content concentration of the core layer cellulose acylate dope at the time of casting is 17.3%.
  • the formed film (film) is peeled off from the metal band at a solvent content of about 20% by mass, and both ends in the width direction of the film are fixed with a tenter clip, and the draw ratio in the lateral direction is 1.1 times And dried while stretching. Thereafter, it was further dried by conveying between the rolls of the heat treatment apparatus, and was wound up to prepare a long cellulose acylate film 1 having a thickness of 40 ⁇ m.
  • the core layer of the film had a thickness of 36 ⁇ m, and the outer layers disposed on both sides of the core layer had a thickness of 2 ⁇ m.
  • the in-plane retardation of the obtained cellulose acylate film 1 was 0 nm.
  • the variation in thickness was measured by sampling at arbitrary five places of 1 m length in the longitudinal direction of the cellulose acylate film.
  • the thickness was measured using an electric micrometer K402B / KG3001A manufactured by Anritsu.
  • the average value of the maximum film thickness fluctuation (the average thickness and the maximum value of the substrate film thickness difference in the region) in the uneven thickness region was 0.7 ⁇ m, and the average length of the uneven thickness region was 60 mm. Therefore, the film thickness slope ⁇ T was 0.012.
  • Example 1 [Production of long liquid crystal film] Using a production apparatus as shown in FIG. 3, the following composition 1 for photoalignment film was continuously applied by a bar coater on the surface on one side of the produced cellulose acylate film 1. After application, the solvent was removed by drying for 1 minute in a heating zone at 120 ° C. to form a 0.3 ⁇ m thick photoisomerization composition layer. Subsequently, while being wound on the mirror-treated back-up roll, a photo alignment film is formed by irradiating polarized ultraviolet light (10 mJ / cm 2 , using a super high pressure mercury lamp) so that the polarization axis forms an angle of 45 ° in the longitudinal direction. did.
  • polarized ultraviolet light (10 mJ / cm 2 , using a super high pressure mercury lamp
  • reaction solution was allowed to cool to room temperature, and 30 parts by mass of 2-butanone was added and diluted to obtain a polymer solution of about 20% by mass.
  • the resulting polymer solution is poured into a large excess of methanol to precipitate the polymer, and the collected precipitate is separated by filtration, washed with a large amount of methanol and then air-dried at 50 ° C. for 12 hours, A polymer Ap3 having a photoalignable group was obtained.
  • composition 1 for forming an optically anisotropic layer prepared in advance was coated by a die coater on the photoalignment film formed in a long shape, to form a liquid crystal layer (uncured).
  • the air flow around the die was adjusted to stabilize the coating bead.
  • the temperature of the coating chamber was 23 ° C.
  • the proportion of cyclopentanone in the coating solution was 28%.
  • Liquid crystal 1 ⁇ Liquid crystal compound L-3 42.00 parts by mass Liquid crystal compound L-4 42.00 parts by mass Polymerizable compound A-1 16.00 parts by mass Polymerization initiator S-1 (oxime type) 0.50 parts by mass, leveling agent (the following compound G-1) 0.20 parts by mass, Hysorb MTEM (manufactured by Toho Chemical Industry Co., Ltd.) 2.00 parts by mass, NK ester A-200 (manufactured by Shin-Nakamura Chemical Co., Ltd.) 1.00 parts by mass ⁇ methyl ethyl ketone 305.9 parts by mass ⁇ cyclopentanone 118.9 parts by mass--------------------------------------- ⁇ The group adjacent to the acryloyloxy group of the following liquid crystal compounds L-3 and L-4 represents a propylene group (a group in which a methyl group is substituted with an ethylene group), and the following liquid crystal compounds L-3 and L
  • the formed liquid crystal layer (uncured) was once heated to 110 ° C. in a heating zone, and then cooled to 75 ° C. to stabilize the alignment. Thereafter, the temperature is maintained at 75 ° C., and the alignment is fixed by ultraviolet irradiation (500 mJ / cm 2 , using an ultra-high pressure mercury lamp) in a nitrogen atmosphere (oxygen concentration 100 ppm) to obtain a liquid crystal layer (optical anisotropic layer 2.3 ⁇ m thick) ) Was wound on a winding shaft to produce a long liquid crystal film.
  • ultraviolet irradiation 500 mJ / cm 2 , using an ultra-high pressure mercury lamp
  • oxygen concentration 100 ppm oxygen concentration 100 ppm
  • the average in-plane retardation Re (550) of the obtained long liquid crystal film satisfies Re (450) / Re (550) ⁇ 1.0 and 1.0 ⁇ Re (650) / Re (550) at 140 nm.
  • the average slow axis was 45 ° to the longitudinal direction.
  • the film thickness non-uniform area is detected by measuring the film thickness of a portion of the obtained long liquid crystal film where the liquid crystal layer is not coated by using a laser displacement meter and marked, and the phase difference change around the marked area is
  • the in-plane retardation unevenness area was detected by continuously measuring in the transport direction.
  • the maximum value of the phase difference fluctuation in the phase difference unevenness area and the length of the in-plane phase difference unevenness area are quantified, the maximum value of the phase difference fluctuation is 0.6 nm, and the length of the in-plane phase difference unevenness area The length was 70 mm. Therefore, the retardation slope ⁇ Re was 0.009.
  • Examples 2 to 6, Comparative Examples 1 to 3 A long liquid crystal film was produced in the same manner as in Example 1 except that the type of the long base, the temperature of the coating chamber, and the ratio of cyclopentanone in the coating liquid were changed as shown in Table 2.
  • Table 2 When the maximum value of the retardation variation of the obtained long liquid crystal film and the length of the in-plane retardation variation region are quantified, the maximum value of the retardation variation, the length of the in-plane retardation variation region, the retardation inclination ⁇ Re Is as shown in Table 2.
  • the surface of the long liquid crystal film on the liquid crystal layer side was subjected to corona treatment, and an alignment film coating solution (B) having the following composition was continuously applied using a # 14 wire bar. Thereafter, the long liquid crystal film coated with the alignment film coating solution (B) was dried with warm air at 60 ° C. for 60 seconds and further with warm air at 100 ° C. for 120 seconds to form an alignment film.
  • An optically anisotropic layer coating solution (C) containing a rod-like liquid crystal compound having the following composition was continuously coated on the produced alignment film with a # 5.0 wire bar.
  • the film transport speed (V) was 26 m / min.
  • the film coated with the optically anisotropic layer coating solution (C) was heated with a hot air of 60 ° C. for 60 seconds. Thereafter, the obtained film was subjected to UV (ultraviolet light) irradiation at 60 ° C. to fix the alignment of the rod-like liquid crystal compound, thereby producing a positive C plate.
  • the thickness of the positive C plate was 0.7 ⁇ m, and Rth (550) was -70 nm.
  • a commercially available cellulose acylate film "TD 40 UC" (manufactured by Fujifilm Corporation) is prepared, and the cellulose acylate film is immersed in an aqueous solution of sodium hydroxide at 55 ° C. at 1.5 mol / liter, and then cellulose acylate is produced.
  • the sodium hydroxide on the system film was thoroughly washed away with water.
  • the obtained cellulose acylate film was immersed in a dilute sulfuric acid aqueous solution at 35 ° C. for 1 minute at 0.005 mol / liter, and then immersed in water to wash away the dilute sulfuric acid aqueous solution sufficiently. Thereafter, the obtained cellulose acylate film was sufficiently dried at 120 ° C. to prepare a polarizer protective film.
  • the long liquid crystal film having the positive C plate was saponified.
  • the polarizer protective film prepared above is bonded to one side of the linear polarizer prepared above, and the other side is saponified with the long liquid crystal film so that the long substrate side is in contact with the linear polarizer. It stuck together with a system adhesive.
  • a long polarizing plate having a linear polarizer, a long liquid crystal film, and a positive C plate was produced.
  • This long polarizing plate is a circularly polarizing plate.
  • Example and comparative example The display device produced ten each for each Example and comparative example was observed under a fluorescent lamp, and the individual difference of the front color tone of the display within the same Example and comparative example was evaluated by the following criteria.
  • the in-plane unevenness of the cut out liquid crystal film and the long liquid crystal film of the present invention having a retardation inclination ⁇ Re in the range of 0.002 to 0.018 (nm / mm) are compared with the comparative example. It turns out that individual differences are small. Further, it is understood from the comparison of Examples 1 to 6 that the retardation slope ⁇ Re is more preferably 0.015 (nm / mm) or less. Further, from Table 1 and Table 2, it is preferable that the film thickness gradient ⁇ T of the long base material is 0.025 ( ⁇ m / mm) or less, and more preferably 0.020 ( ⁇ m / mm) or less I understand.
  • the maximum value of the retardation variation is preferably 1.2 nm or less, and more preferably 0.9 nm or less.
  • a coating liquid to be a liquid crystal layer it can be seen that when applying a solution, it can be produced by suppressing the variation in the thickness of the coating solution layer by various methods.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

表示装置に組み込んだ際の面内における正面色味の面内ムラが少なく、また、正面色味の個体差の小さい液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法を提供する。 長尺基材と、面内位相差を有する長尺状の液晶層とを少なくとも含む長尺液晶フィルムであって、長尺基材は、その幅方向に延在する帯状の厚みムラ領域を長手方向にわたり複数有しており、液晶層は、面方向における厚みムラ領域の位置に、長尺基材の幅方向に延在する帯状の面内位相差ムラ領域を有しており、面内位相差ムラ領域の位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲である。

Description

長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法
 本発明は、液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法に関する。
 従来、重合性液晶化合物を用いて形成した液晶層を有する液晶フィルムが位相差フィルムや高機能フィルムとして利用されている。このような液晶フィルムは、例えば、支持体上に配向層を設け、この配向層の上に重合性液晶化合物を含む組成物を塗布して、配向層の配向規制力によって整列した重合性液晶化合物を重合させて配向状態を固定することで作製される。その際、重合性液晶化合物の配向状態を調整することで、所望の光学特性を備える液晶層を有する液晶フィルムを得ることができる。
 例えば、特許文献1には、液晶化合物に一定の配向を付与した層を形成し光学異方性層とすることが記載されている。
 また、欠陥の少ない液晶フィルムを得るために、特許文献2に記載されるように、従来用いられてきたラビング配向層に代えて光配向層を用いることが提案されている。光配向層を用いる場合には、配向層に配向規制力を付与するプロセスを非接触で行うことができる。そのため、ラビングに伴う異物に起因するムラおよび欠陥を抑えることができる。
 ところで、液晶フィルムが適用される表示装置として、例えば液晶表示装置や有機EL表示装置が挙げられる。これらの表示装置は高精細化、ハイダイナミックレンジ化が絶え間なく行われ、画素ピッチはより細かく、白輝度はより高く、黒表示性能はより黒くという要求が絶えず行われている。
 こうした表示装置の高性能化に伴い、液晶フィルムにおいて異物による欠陥の他に、種々の要因によって発生する位相差ムラが及ぼす表示装置の表示品質への影響が無視できないものとなりつつある。そのため、液晶フィルムの位相差ムラを抑制する方法が種々提案されている。
 例えば、特許文献3には、走行する長尺状支持体に塗布液を塗布して形成された塗布膜を熱処理する塗布膜の熱処理方法において、走行する長尺状支持体の塗布膜面に熱風を吹き付け、吹き付けた同じ面の上流側又は下流側の少なくとも一方側で熱風を排出することにより、長尺状支持体の走行方向に沿った気流を発生させると共に、気流の長尺状支持体の幅方向の風速を1m/秒以下にする塗布膜の熱処理方法が記載されている。これによって、塗布膜の熱処理において熱処理ムラが発生せず、液晶層の配向軸ズレ(バラツキ)を防止できることが記載されている。
 また、特許文献4には、配向膜層が形成された透明な帯状フィルム上に液晶性化合物を含む塗布液を塗布した後、塗布層を乾燥させ、乾燥させた塗布層を硬化させる工程を備えた光学補償フィルムの製造方法において、塗布層中の固形分濃度が80%以上となるまで乾燥させた後から塗布層の硬化が終了するまでの工程は、帯状フィルムの塗布層近傍における帯状フィルムの幅方向の乾燥風成分の風速を0.7m/秒以下にする光学補償フィルムの製造方法が記載されている。これにより、乾燥風による液晶化合物の配列状態の乱れを抑制して遅相軸のズレやばらつきを低減することが記載されている。
特開平8-94838号公報 特開2000-86786号公報 特開2001-314799号公報 特開2008-224968号公報
 ところで、本発明者らの検討によれば、特に、スマートフォン等の小型の電子機器の場合には、ユーザーと表示装置との距離がより近くなるため、画面内における正面色味の面内ムラが視認されやすくなってしまうという問題があることがわかった。
 また、従来、液晶フィルムは、大面積で作製されて個々の表示装置の大きさに合わせて切り出して用いられているが、同一の液晶フィルムから切り出した場合でも、正面色味の個体差がある。特に、スマートフォン等の小型の電子機器の場合には、その個体差が認識されやすいという問題があった。
 本発明の課題は、上記従来技術の問題点を解消し、表示装置に組み込んだ際の正面色味の面内ムラが少なく、また、正面色味の個体差の小さい長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法を提供することにある。
 発明者らは、上述した課題の解決に取り組んだ結果、下記の構成よって上記課題を解決できることを見出した。すなわち、本発明は以下のとおりである。
〔1〕 長尺基材と、面内位相差を有する長尺状の液晶層とを少なくとも含む長尺液晶フィルムであって、
 長尺基材は、その幅方向に延在する帯状の厚みムラ領域を長手方向にわたり複数有しており、
 液晶層は、面方向における厚みムラ領域の位置に、長尺基材の幅方向に延在する帯状の面内位相差ムラ領域を有しており、
 面内位相差ムラ領域の位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲であることを特徴とする長尺液晶フィルム。
〔2〕 長尺基材の幅方向に延在する帯状の厚みムラ領域内における、長尺基材の膜厚傾斜ΔTが0.005~0.025(μm/mm)の範囲である、〔1〕に記載の長尺液晶フィルム。
〔3〕 長尺基材と、長尺状の液晶層との間に長尺状の光配向層を含む、〔1〕または〔2〕に記載の長尺液晶フィルム。
〔4〕 液晶層が、光配向層と液晶層との間、もしくは、長尺基材と光配向層との間で剥離可能に設けられた、〔3〕に記載の長尺液晶フィルム。
〔5〕 液晶層がλ/4波長板であり、その遅相軸が長尺基材の長手方向に対して45°をなしている、〔1〕から〔4〕のいずれかに記載の長尺液晶フィルム。
〔6〕 液晶層が、下記式を満たす、〔1〕から〔5〕のいずれかに記載の長尺液晶フィルム。
  Re(450)<Re(550)<Re(650)
  0.03<Δn(550)<0.20
〔7〕 長尺基材の面内位相差Reが5nm以下である〔1〕~〔6〕のいずれかに記載の長尺液晶フィルム。
〔8〕 〔1〕から〔7〕のいずれかに記載の長尺液晶フィルムと、
 長尺液晶フィルムに積層される長尺状直線偏光子とを有する長尺偏光板。
〔9〕 〔8〕に記載の長尺偏光板から切り出された偏光板を含む、画像表示装置。
〔10〕 長尺基材上に長尺状の液晶層を設けた長尺液晶フィルムの製造方法であって、
 幅方向に延在する筋状の厚みムラ領域を長手方向にわたり複数有している長尺基材ロールを準備する準備工程、
 長尺基材ロールから長尺基材を送り出し長手方向に搬送しつつ順次行う、
 長尺基材に、長尺状に配向規制力を付与する配向工程、
 長尺基材の、配向規制力が付与された領域に重合性液晶組成物を長尺状に塗布する塗布工程、
 塗布により形成された塗布液層を配向処理した後、硬化して配向状態を固定し、液晶層を形成する液晶層形成工程、および、
 液晶層と長尺基材とが積層された前記長尺液晶フィルムをロール状に巻き取る巻取り工程、を含み、
 塗布工程において、長尺基材上に積層される塗布液層の厚みを一定に調整する手段を講じて、液晶層の厚みのばらつきを平均厚みに対して±2%の範囲内としたことを特徴とする、長尺液晶フィルムの製造方法。
〔11〕 長尺基材の面内位相差Reが5nm以下である〔10〕に記載の長尺液晶フィルムの製造方法。
 本発明によれば、表示装置に組み込んだ際の正面色味の面内ムラが少なく、また、正面色味の個体差が小さい長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法を提供することができる。
本発明の長尺液晶フィルムを模式的に示す断面図である。 本発明の長尺液晶フィルムを模式的に示す斜視図である。 本発明の長尺液晶フィルムの製造方法を実施する製造装置の一例の模式図である。 本発明の液晶フィルムを有する長尺偏光板を模式的に示す断面図である。 本発明の長尺偏光板を製造する製造装置の一例である。 本発明の画像表示装置の一例を模式的に示す断面図である。
 以下、本発明の実施の形態を挙げて詳細に説明する。なお、本明細書において「~」を用いて表される数値範囲は、その前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、角度について「直交」および「平行」とは、厳密な角度±10°の範囲を意味するものとし、角度について「同一」および「異なる」は、その差が5°未満であるか否かを基準に判断できる。
 また、本明細書では、「可視光」とは、380~780nmのことをいう。また、本明細書では、測定波長について特に付記がない場合は、測定波長は550nmである。
 次に、本明細書で用いられる用語について説明する。
<遅相軸>
 本明細書において、「遅相軸」とは、面内において屈折率が最大となる方向を意味する。なお、位相差フィルムの遅相軸という場合は、位相差フィルム全体の遅相軸を意図する。
<Re(λ)、Rth(λ)>
 面内レターデーションおよび厚み方向のレターデーションの値は、AxoScan OPMF-1(オプトサイエンス社製)を用い、測定波長の光を用いて測定した値をいう。
 具体的には、AxoScan OPMF-1にて、平均屈折率((Nx+Ny+Nz)/3)と膜厚(d(μm))を入力することにより、
 遅相軸方向(°)
 Re(λ)=R0(λ)
 Rth(λ)=((nx+ny)/2-nz)×d
が算出される。
 なお、R0(λ)は、AxoScan OPMF-1で算出される数値として表示されるものであるが、Re(λ)を意味している。
〔長尺液晶フィルム〕
 本発明の長尺液晶フィルムは、
 長尺基材と、面内位相差を有する長尺状の液晶層とを少なくとも含む長尺液晶フィルムであって、
 長尺基材は、その幅方向に延在する帯状の厚みムラ領域を長手方向にわたり複数有しており、
 液晶層は、厚みムラ領域の位置に、長尺基材の幅方向に延在する帯状の面内位相差ムラ領域を有しており、
 面内位相差ムラ領域の位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲である長尺液晶フィルムである。
 また、本発明の長尺液晶フィルムは、好ましい構成として、長尺基材の幅方向に延在する帯状の厚みムラ領域内における、長尺基材の膜厚傾斜ΔTが0.005~0.025(μm/mm)の範囲である。
 また、本発明の長尺液晶フィルムは、好ましい構成として、長尺基材と、長尺状の液晶層との間に長尺状の光配向層を含む。
 この長尺液晶フィルムについて、以下詳細に説明する。なお、後述する位相差値や厚み等の物性値については、通常その後の使用に供する部分(典型的には幅方向に対して幅手方向の中央領域)におけるものとする。
 図1は、本発明の長尺液晶フィルムを模式的に示す断面図である。図1は長尺液晶フィルムの長手方向に垂直な方向の断面図である。図2は本発明の長尺液晶フィルムを模式的に示す斜視図である。図2において、配向層2の図示は省略している。
 図1に示す長尺液晶フィルム10は、長尺状の基材(長尺基材、以下、単に基材とも称する)1と、長尺状の配向層2、長尺状の液晶層3がこの順に積層された構成を有する。
 なお、図1においては、長尺基材1、配向層2、液晶層3は等幅に描画されているが、実際の製造上は、長尺基材1は配向層2より幅広であり、液晶層3は配向層2より幅狭に設けるのが一般的である。ただし、必要に応じ、液晶層3が配向層2より幅広であり、長尺基材1よりは幅狭であるように設けてもよい。
 なお、以下の説明において、長尺液晶フィルムが延在する方向を長手方向とし、長手方向に直交する方向を幅方向とする。
 ここで、本発明の長尺液晶フィルムは、長尺基材1が幅方向に延在する帯状の厚みムラ領域5を有し、液晶層3が面方向における厚みムラ領域の位置に幅方向に延在する帯状の面内位相差ムラ領域6を有し、面内位相差ムラ領域の位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲である。
 位相差傾斜ΔReの上記範囲は、面内における位相差の変動がなだらかであることを意味する。
 前述のとおり、スマートフォン等の小型の電子機器の場合には、ユーザーと表示装置との距離がより近くなるため、画面内における正面色味ムラが視認されやすくなってしまうという問題があることがわかった。
 また、従来、液晶フィルムは、大面積で作製されて個々の表示装置の大きさに合わせて切り出して用いられているが、同一の液晶フィルムから切り出した場合でも、正面色味の個体差がある。特に、スマートフォン等の小型の電子機器の場合には、その個体差が認識されやすいという問題があった。
 本発明者らの検討によると、液晶フィルムがその面内における位相差の変動を有するために、表示装置としてみた際に、画面内に正面色味ムラが生じることがわかった。
 一般に、液晶フィルムは、ロールトゥロールによって、長尺基材の上に液晶層を形成して作製される。本発明者らの検討によれば、長尺基材は、その製造工程に起因して、長手方向に厚みが変動しており、厚みムラを有することがわかった。そのため、長尺基材の上に形成される液晶層の厚みも、長尺基材の厚みムラに起因して長手方向に変動する。周知のとおり、液晶層の面内位相差は、液晶材料の屈折率異方性Δnと配向性、および、液晶層の膜厚によってその値が決まる。従って、液晶層の厚みの変動に起因して、液晶層の面内位相差Reが変動する。これによって、液晶フィルムを有する表示装置において、画面内に正面色味ムラが生じる。
 これに対して、本発明の長尺液晶フィルム10は、面内位相差ムラ領域6の位相差傾斜ΔReを0.002~0.018(nm/mm)の範囲とする、すなわち、面内における位相差の変動をなだらかにするものである。これにより、本発明の長尺液晶フィルム10から切り出した液晶フィルムを有する表示装置において、画面内に正面色味ムラによる色味変化が生じることを抑制できる。
 また、面内における位相差の変動をなだらかにすることにより、長尺液晶フィルムから複数の液晶フィルムを切り出した場合の正面色味ムラの個体差を抑制できる。
 ここで、面内位相差ムラ領域6とは、液晶層3の面内位相差(Re(550))の平均値より0.2nm以上差を有している領域として定める。面内位相差の平均値は、長尺基材の長手方向に1m分切り出した液晶フィルムの面内位相差を2mmおきに500点測定してその平均値とする。
 位相差傾斜ΔReは、
  ΔRe=(面内位相差変動量の最大値[nm])÷(面内位相差ムラ領域の長手方向の長さの平均[mm])
により求められる。
 ここでいう面内位相差変動量の最大値とは、面内位相差の平均値を測定した領域において長尺基材の長手方向に延在する直線状領域での最大位相差値と、平均値との差である。
 また、面内位相差ムラ領域の長手方向の長さは、1つの面内位相差ムラ領域に関して幅方向に5点をとって平均した値を用いる。
 表示装置において、面内の正面色味ムラが生じることを抑制できる、正面色味の個体差を抑制できる等の観点から位相差傾斜ΔReは、0.002~0.015(nm/mm)が好ましく、0.002~0.0010(nm/mm)がより好ましい。
 このように位相差傾斜ΔReが小さい液晶層の形成方法については後に詳述する。
 また、長尺基材1の厚みムラ領域5とは、その厚みが平均厚みと0.1μm以上差を有している領域として定める。図2において、平均厚みの位置を一点鎖線Laveで示す。また、平均厚みに対して0.1μm以上厚みに差がある領域をハッチングで示す。ハッチングで示した領域が厚みムラ領域5である。図2に示すように、長尺基材は長手方向に厚みムラ領域を複数有しており、各厚みムラ領域は幅方向に延在している。
 平均厚みは、長尺基材の長手方向に1m分切り出した液晶フィルムの長尺基材の厚みを2mmおきに500点測定してその平均値とする。
 前述のとおり、面内位相差ムラ領域6は、液晶層3の厚みの変動に起因して生じる。従って、図2に示すように、面方向において、面内位相差ムラ領域6の位置と、厚みムラ領域5の位置とは略一致している。なお、面内位相差ムラ領域6の長手方向の長さと、厚みムラ領域5の長手方向の長さとは必ずしも一致しない。
 ここで、長尺基材1の幅方向に延在する帯状の厚みムラ領域5内における、長尺基材1の膜厚傾斜ΔTが0.005~0.025(μm/mm)の範囲であることが好ましく、0.010~0.020(μm/mm)の範囲であることがより好ましく、0.010~0.015(μm/mm)の範囲であることがさらに好ましい。
 膜厚傾斜ΔTは、
  ΔT=(平均厚さと領域内の基材膜厚差の最大値[μm])÷(厚みムラ領域の長手方向長さの平均[mm])
により求められる。
 ここでいう基材膜厚差の最大値とは、長尺基材の厚みの平均値を測定した領域において長尺基材の長手方向に延在する直線状領域での最大膜厚と、平均膜厚との差である。
 また、厚みムラ領域の長手方向の長さは、1つの厚みムラ領域に関して幅方向に5点をとって平均した値を用いる。
 膜厚傾斜ΔTを上記範囲とする、すなわち、長尺基材の厚みの変動をなだらかにすることで、液晶層3の厚みの変動を抑制して液晶層3の面内位相差の変動をなだらかにすることができる。すなわち、位相差傾斜ΔReを小さくすることができる。
 また、膜厚傾斜ΔTの下限値は、工業上適切な製造効率とコストで連続的に長尺基材を製造可能な範囲である。したがって、ΔTを上記範囲とすることで、長尺基材が工業的に入手容易であり、かつ、液晶層3の面内位相差への影響が小さく、好ましい。
 本発明の長尺液晶フィルムは、少なくともRe(550)が10nm以上の面内位相差を有することができる。好ましくは、Re(550)が100nm~250nmの範囲であり、この範囲であると種々の光学補償フィルムや波長板として利用することができる。より好ましくは、Re(550)が120nm~160nmの範囲であり、この範囲であると、λ/4波長板として利用することができる。
 また、長尺液晶フィルムの面内位相差について、各波長での面内位相差が次の関係を満たしていることが好ましい。
  0.6<Re(450)/Re(550)<1.0
  1.0<Re(650)/Re(550)<1.2
 この関係を満たしていると、広帯域にわたり均一な偏光変換が可能であり、種々の光学補償フィルムや波長板として用いる際に色味付きの少ない良好な性能を発揮することができる。
 <長尺基材>
 長尺基材1は、液晶層3の支持体となる部材であり、長尺のフィルム状部材である。
 長尺基材1は、透明であるのが好ましい。具体的には、可視光領域の直線光透過率が80%以上であるのが好ましい。
 また、長尺基材1は、液晶フィルム全体の光学設計や後述する光配向適性の観点から光学的に等方性な透明フィルム材であることが好ましい。
 以上の観点から、長尺基材1としては、セルロースアシレートフィルム、アクリルフィルム、ポリカーボネートフィルム、シクロオレフィンフィルム、ポリエチレンテレフタレートフィルム、硝子による透明フィルム材等が挙げられる。強度と柔軟性を兼ね備える観点から、長尺基材1は、セルロースアシレートフィルム、アクリルフィルム、ポリカーボネートフィルム、シクロオレフィンフィルム、ポリエチレンテレフタレートフィルム等の樹脂フィルムであることが好ましい。
(セルロースアシレートフィルム)
 本発明に用いる長尺基材として、セルロースアシレートフィルムを用いることができる。透明性と強度を兼ね備え、各層との密着性あるいは易剥離性を容易に制御できる点で好ましく用いられる。セルロースアシレートフィルムとしては、セルロースアシレート樹脂を含み、さらに必要に応じて添加剤を含むフィルムを用いることができる。セルロースアシレートフィルムは、溶液製膜により作製することができ、また、溶融製膜を用いて作製してもよい。
 セルロースアシレート樹脂としては、トリアセチルセルロース、ジアセチルセルロース、および、アセチル基の一部を高級アシル基や芳香族アシル基、アルコキシ基、置換アルコキシ基で置換したセルロースを用いることができる。セルロースアシレートにおいて、セルロースの水酸基への置換度については特に限定されないが、適度な透湿性や吸湿性を付与するため、セルロースの水酸基へのアシル置換度が2.00~3.00であることが好ましい。更には置換度が2.30~2.98であることが好ましく、2.70~2.96であることがより好ましく、2.80~2.94であることが更に好ましい。
 添加剤としては、例えば特開2005-154764号公報、特開2013-228720号公報、特開2014-81619号公報、特開2014-178519号公報、特開2015-227956号公報、特開2016-6439号公報、特開2016-164668号公報、特開2017-106975号公報に記載の各種添加剤を用いることができる。
 添加剤の好ましい一例として、下記一般式で表される繰り返し単位を有するポリエステル添加剤が挙げられる。
一般式(1)
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、X、Yは2価の連結基を表す。)
 Xとしては、置換基を有していてもよい炭素数2~20のアルキレン基、ポリオキシアルキレン基、アルケニレン基、フェニレン基、ナフチレン基、複素環芳香族基であることができる。なお、上記アルキレン基、アルケニレン基、および、ポリオキシアルキレン基中のアルキレン基は、脂環構造を有していてもよい。
 Yとしては、置換基を有していてもよい炭素数2~20のアルキレン基、ポリオキシアルキレン基、アルケニレン基、フェニレン基、ナフチレン基、複素環芳香族基であることができる。なお、上記アルキレン基、アルケニレン基、および、ポリオキシアルキレン基中のアルキレン基は、脂環構造を有していてもよい。
 これらの2価の連結基中に酸素原子、窒素原子などの炭素以外の分子を含んでもよい。上述した置換基としては、アルキル基、アルコキシ基、水酸基、アルコキシ置換アルキル基、カルボキシル基などが挙げられる。
 上述した一般式(1)で表される繰り返し単位として、位相差特性とフィルムの弾性率に優れる点で、Xは炭素数2~10の非環状の2価の連結基を表し、Yは3~6員環の脂環構造を含む炭素数3~12の連結基を表すものであることが好ましい。脂環構造は、3~6員環であり、5~6員環が好ましく、具体的には、シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,3-シクロペンチレン基、1,2-シクロへキシレン基、1,3-シクロへキシレン基、1,4-シクロへキシレン基などが挙げられる。
 上記記一般式(1)で表される繰り返し単位を有するポリエステル添加剤の水酸基末端の水素原子は、モノカルボン酸由来のアシル基(以下、モノカルボン酸残基とも言う)で置換されていてもよい(以下、水酸基末端の水素原子が封止されているとも言う)。このとき、上記ポリエステルの両末端はモノカルボン酸残基となっている。末端を疎水性官能基で保護することにより、添加剤の凝集力が抑えられてフィルムへの相溶性や化合物の取扱性が良好となり、また温湿度安定性、偏光板の偏光子耐久性に優れたフィルムを得ることができる。
 ここで、残基とは、上記ポリエステルの部分構造で、上記ポリエステルを形成している単量体の特徴を有する部分構造を表す。例えばモノカルボン酸R-COOHより形成されるモノカルボン酸残基はR-CO-である。Rとしては、置換基を有していてもよい炭素数1~10のアルキル基、脂環アルキル基、芳香族基が挙げられる。好ましくは脂肪族モノカルボン酸残基であり、モノカルボン酸残基が炭素数2~10の脂肪族モノカルボン酸残基であることがより好ましく、炭素数2~3の脂肪族モノカルボン酸残基であることがさらに好ましく、炭素数2の脂肪族モノカルボン酸残基であることが特に好ましい。
 上記ポリエステルの水酸基価が10mgKOH/g以下であることが偏光子耐久性を改善する観点から好ましく、5mgKOH/g以下であることがより好ましく、0mgKOH/gであることが特に好ましい。また、上記ポリエステルの数平均分子量(Mw)は500~3000であることができ、700~2000がより好ましい。この範囲であると相溶性にすぐれ、かつ、フィルム製造時や使用時の添加剤の揮散が少なく安定したフィルムを得ることができる。
 また、添加剤の好ましい別の一例として、糖骨格構造中の置換可能な基(例えば、水酸基、カルボキシル基)の少なくとも1つと、少なくとも1種の置換基とがエステル結合されている化合物(糖エステル化合物)を用いることができる。より具体的には、ピラノース構造又はフラノース構造の少なくとも1種を1~12個有する化合物(M)、もしくは、フラノース構造もしくはピラノース構造の少なくとも1種を2個結合した化合物(D)の水酸基(以下、単にOH基という)の全てもしくは一部をアルキルエステル化した糖エステル化合物が好ましく用いられる。
 化合物(M)の例としては、グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノースが挙げられ、好ましくはグルコース、フルクトースであり、より好ましくはグルコースである。化合物(D)の例としては、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノース、および、ケストースが挙げられる。このほか、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。中でも、グルコース、スクロース、ラクトースが好ましい。
 化合物(M)及び化合物(D)中のOH基の全てもしくは一部をアルキルエステル化するために脂肪族モノカルボン酸、脂環構造を有するモノカルボン酸、芳香族モノカルボン酸を用いることが好ましい。こうしたモノカルボン酸として、酢酸、プロピオン酸、酪酸、イソ酪酸、安息香酸、シクロヘキサンカルボン酸などが挙げられる。これらモノカルボン酸を2種類以上併用してもよい。
 その他の添加剤として、可塑剤、紫外線吸収剤、架橋剤、マット剤(無機微粒子)、酸化防止剤、ラジカルスカベンジャー等を加えてもよい。後述するように本発明の位相差フィルムの基材に偏光板保護フィルムを兼ねさせて偏光板を構成する場合においては、偏光子の耐久性を向上させる作用を付与する観点で、さらに下記一般式で表される化合物を含むことが好ましい。
一般式(2)
Figure JPOXMLDOC01-appb-C000002
(一般式(2)中、R11、R13及びR15は、各々独立に、水素原子、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数2~20のアルケニル基または炭素数6~20の芳香族基を表す。)
 こうした化合物は、例えば国際公開公報WO2014/112575号公報に記載のものを使用することができる。
 本発明で用いられるセルロースアシレートフィルムは、発明協会公開技報(公技番号2001-1745、発明協会)に記載の方法を用いて作製できる。
 これらのセルロースアシレートフィルムは、必要に応じ一軸、または二軸に延伸処理して得ることができ、好ましくは幅手方向に延伸したものを用いることができる。また、斜め方向に延伸したものであることもできる。一方向への延伸倍率としては1.02~1.50倍であることができ、1.05倍~1.30倍であることが好ましい。
 セルロースアシレートフィルムにおいては、ガラス転移温度が140~200℃であることができ、160~190℃であることがより好ましく、170~185℃であることが特に好ましい。この範囲であると、熱たわみへの耐性がより優れたものとなり、また、延伸処理による物性制御が容易である。ガラス転移温度は、動的粘弾性測定装置により、そのtanδのピーク値として求めることができる。
 長尺基材1となるフィルム状の長尺体は、通常、溶融製膜もしくは溶液製膜により連続的に製造される。当然、膜厚が均一であることが望ましいが、実際には、押出しまたは流延、冷却、乾燥、送風、搬送機構、圧延および延伸等の各製造工程における各種揺動要因(装置の機械振動、空気圧振動など)により一定以上の膜厚ムラを有している。
 具体的には前述のとおり、長尺基材1は、幅方向に延在する厚みムラ領域5を長手方向に複数有している。このような厚みムラ領域5は、押出しまたは流延時の樹脂溶融体または樹脂溶液の吐出量の変動、各種搬送ロールの真円度、アラインメントのずれ、乾燥時の乾燥風等に起因して長尺基材の長手方向にわたり複数現れる。したがって、従来のフィルムは多少なりともこうした膜厚ムラを有している。典型的には、波状に厚みが変動している。
 本発明においては、好ましくは、長尺基材1の幅方向に延在する厚みムラ領域5における膜厚傾斜ΔTが0.005~0.025(μm/mm)を満たす構成とすることで、長尺基材1上に形成される液晶層3の厚みの変動を抑制して液晶層3の位相差傾斜ΔReを小さくすることができる。
 膜厚傾斜ΔTを上記範囲とするために、長尺基材1を製造する際に、押出しまたは流延時の樹脂溶融体または樹脂溶液(以下、まとめて樹脂溶液とする)の粘度を低くしてレベリングを促進する、流延(または押出し)された樹脂溶液が支持体に到達するまでのビードの長さ、ビードの外乱に対する強さを調整することが好ましい。
 具体的には、流延(または押出し)時の樹脂溶液のビードの長さ、ビードの外乱に対する強さを調整する場合には、流延された樹脂溶液が支持体に到達するまでのビード部分に対して、支持体の走行方向の上流側から吸引装置によって吸引することでビードを短くすることで外乱に対して強くすることができる。
 ビードへの吸引圧力は、-1000Pa<ビードへの吸引圧力<-200Paであるのが好ましく、-900Pa<ビードへの吸引圧力<-300Paであることがより好ましく、-800Pa<ビードへの吸引圧力<-350Paであることがさらに好ましい。
 また、ドープ粘度アップによってもビードを外乱に対して強くすることができる。例えば、高粘溶剤の使用、ドープ温度ダウン、ドープ固形分濃度アップによって達成される。
 吐出装置から吐出する樹脂溶液の粘度をηとすると、η>25Pa・sを満たすのが好ましい。
 なお、ηは吐出装置から吐出する樹脂溶液の粘度を、樹脂溶液の25℃、1Hzで測定した振動粘度(単位:Pa・s)である。
 吐出装置から吐出する樹脂溶液の粘度は、30Pa・s<η<200Pa・sを満たすのがより好ましく、40Pa・s<η<200Pa・sであることがさらに好ましく、40Pa・s<η<100Pa・sであることが特に好ましい。
 また、粘度を低くしてレベリングを促進する場合には、押出しまたは流延時の樹脂溶融体または樹脂溶液中の固形分濃度を25%以下として粘度を50Pa・s以下とするのが好ましい。
 樹脂溶液中の固形分濃度は、10%以上23%以下とするのがより好ましく、12%以上20%以下とするのがさらに好ましい。また、粘度は、1Pa・s以上40Pa・s以下とするのがより好ましく、3Pa・s以上20Pa・s以下とするのがさらに好ましい。
 ここで、ビードを外乱に対して強くする方法と、粘度を低くしてレベリングを促進する方法とは、相反するため、徐乾によりレベリング促進させるのが良い。例えば、無風乾燥などで厚みムラを低減することができる。
 長尺基材1は、膜厚ムラによる液晶フィルム全体への影響を抑える観点から、面内位相差Re(550)が10nm以下であることが好ましく、5nm以下であることがより好ましく、3nm以下であることがさらに好ましい。
 また、斜視方向の光学的影響を抑える観点から、長尺基材1の厚み方向位相差Rth(550)は、-20~20nmの範囲であることが好ましく、-10~10nmの範囲であることがより好ましく、-5~5nmの範囲であることがさらに好ましい。ここで、Rthがこの範囲であると、液晶層を形成する塗布液の塗布直前に光学的に長尺基材の膜厚ムラを検出し塗布装置へフィードバックすることが困難となるが、本発明はこうした光学的に等方的な長尺基材であっても問題なくムラの少ない長尺液晶フィルムを得ることができる。その詳細は後述する。
 長尺基材1の厚みは特に限定はないが、10μm~60μmが好ましく、15μm~50μmがより好ましく、15μm~45μmがさらに好ましい。
 また、長尺基材1の長さは、100m~10000mであることが好ましく、250m~7000mがより好ましく、1000m~6000mがさらに好ましい。また、幅は400~3000mmであることが好ましく、500~2500mmがより好ましく、600~1750mmであることがさらに好ましい。この範囲であると、ロールトゥロールプロセスにおける経済性を高め、かつ、長手方向、幅手方向の均一性にすぐれた長尺液晶フィルムを製造することができる。
 <配向層>
 配向層2は、長尺基材1の上に形成され、その配向規制力により、配向層2の上に形成される液晶層3の液晶化合物を配向させるための層である。
 配向層2は、液晶層3となる液晶化合物を配向させることが可能な各種の構成を適用することができる。例として、ポリマー等の有機化合物を含む層のラビング処理膜や無機化合物の斜方蒸着膜、マイクログルーブを有する膜、あるいはω-トリコサン酸やジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチルの如き有機化合物のラングミュア・ブロジェット法によるLB(Langmuir-Blodgett)膜を累積させた膜などが挙げられる。さらに光の照射で配向機能が生じる配向膜なども挙げられる。
 配向層として、ポリマーなどの有機化合物を含む層(ポリマー層)の表面をラビング処理して形成されたものを好ましく用いることができる。ラビング処理は、ポリマー層の表面を紙や布で一定方向(好ましくは支持体の長手方向)に数回こすることにより実施される。配向層の形成に使用するポリマーとしては、ポリイミド、ポリビニルアルコール、特許第3907735号公報の段落番号[0071]~[0095]に記載の変性ポリビニルアルコール、特開平9-152509号公報に記載された重合性基を有するポリマー等を用いることが好ましい。
 また、配向層として、光配向性の素材に偏光または非偏光を照射して配向層とした、いわゆる光配向層(光配向膜)を用いることも好ましい態様である。光配向層には、垂直方向または斜め方向から偏光照射する工程、または、斜め方向から非偏光照射する工程により配向規制力を付与することが好ましい。光配向層を利用することで、後述する重合性液晶化合物を優れた対称性で配向させることが可能である。
 異物欠陥を抑制しムラのない長尺液晶フィルムを得る観点から、非接触で配向規制力を付与できる光配向膜が好ましい。
 光配向層は、光配向層となる塗工液の塗工、乾燥により、光配向層となる材料層を長尺基材1上に形成した後、直線偏光による紫外線の照射により形成することができる。なおこの光配向層となる材料は、光配向の手法を適用可能な各種の材料を適用することができ、好ましい実施形態として、例えば光二量化型の材料、特に桂皮酸誘導体を含む化合物が使用できる。また、アゾ化合物等の光異性化材料も好適に用いることができる。
 光配向層に用いられる光配向材料としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、特許第4162850号に記載の光架橋性ポリイミド、ポリアミド、またはエステル、特開平9-118717号公報、特表平10-506420号公報、特表2003-505561号公報、国際公開第2010/150748号、特開2013-177561号公報、特開2014-12823号公報に記載の光二量化可能な化合物、特にシンナメート化合物、カルコン化合物、クマリン化合物が挙げられる。特に好ましい例としては、アゾ化合物、光架橋性ポリイミド、ポリアミド、エステル、シンナメート化合物、カルコン化合物が挙げられる。
 配向層の厚さは、配向機能を発揮することができれば特に限定されないが、0.01~5μmであることが好ましく、0.05~2μmであることがより好ましく、0.1~0.5μmであることがさらに好ましい。この範囲であると優れた配向規制力が発揮でき異物欠陥を抑制する効果が高い。
 長尺基材1および配向層2は、それぞれの機能を果たす層として別々に設けられていてもよいし、長尺基材1が配向層2を兼ねる、すなわち、長尺基材表面が配向規制力を有している様態をとってもよい。また、長尺基材1と配向層2とが別々に設けられている場合は、長尺基材1と配向層2とが接して設けられてもよいし、長尺基材1と配向層2との間に機能層を介在させてもよい。長尺基材1表面に配向層2を設けることなく直接に配向規制力を付与する手段として、長尺基材1表面に上述したラビングや偏光照射等の処理を施す、長尺基材1を延伸して長尺基材1を構成する高分子を一定方向に配向させるといった手法をとることができる。長尺基材1と配向層2との間に介在させうる上述の機能層として、バリア層、衝撃緩和層、易剥離層、易接着層等が挙げられる。
 <液晶層>
 液晶層3は、液晶化合物を含む組成物を用いて長尺基材1(配向層2)上に形成された長尺状の層である。
 液晶層3は、配向層2の配向規制力によって、液晶層3となる液晶化合物が配向させた状態で硬化させて形成される。そのため、液晶層3は、液晶化合物の配向状態に応じた光学特性を有する。
 液晶層3は、少なくともRe(550)が10nm以上の面内位相差を有することができる。好ましくは、Re(550)が100nm~250nmの範囲であり、この範囲であると種々の光学補償フィルムや波長板として利用することができる。より好ましくは、Re(550)が120nm~160nmの範囲であり、この範囲であると、λ/4波長板として利用することができる。
 液晶層3がλ/4波長板の場合には、その地相軸が長尺基材1の長手方向に対して45°をなしているのが好ましい。
 液晶層3の屈折率異方性Δnは、0.03~0.20の範囲が好ましく、0.05~0.15の範囲がより好ましい。この範囲であると、位相差ムラがより視認されにくく、かつ、薄い液晶層で目的とする高い位相差を得ることが可能である。また、液晶層3の厚みは屈折率異方性および目的とする位相差値により適宜設定されうるが、典型的には0.5μm~7μmの範囲であり、より好ましくは0.7~5μm、さらに好ましくは1.0~3.0μmの範囲である。
 液晶層3の面内位相差Reについて、各波長での面内位相差が、Re(450)<Re(550)<Re(650)の関係を満たしていることが好ましい。
 この関係を満たしていると、広帯域にわたり均一な偏光変換が可能であり、種々の光学補償フィルムや波長板として用いる際に色味付きの少ない良好な性能を発揮することができる。
 ここで、前述のとおり、本発明において、液晶層3は、幅方向に延在する帯状の面内位相差ムラ領域6を有しており、面内位相差ムラ領域の位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲である。
 液晶層3は、ダイ等の塗工ヘッドにより液晶層3となる塗布液を長尺基材1に塗布した後、乾燥し、その後、紫外線を照射して硬化させて形成される。塗布の際、塗布装置から長尺基材1に供給される塗布液の量が、長尺基材1が有する幅方向に延在した厚みムラ領域5に起因して変動する。そのため、液晶層3の厚みにも長手方向に変動が生じる。液晶層3の面内位相差は、液晶層3の厚みに相関するため、液晶層3の厚みの変動に起因して、すなわち、長尺基材1の厚みムラに起因して、位相差のムラが生じる。具体的には、長尺基材1の厚みムラ領域5に対応して、液晶層3は、幅方向に延在する筋状の面内位相差ムラ領域6を長手方向にわたり複数有するものとなる。
 ここで、従来注目されていた基材の小さく局所的な厚みムラであれば、塗布液自体が有するレベリング性によって液晶フィルムの状態ではムラが目視不可能なほどにムラが解消される。しかしながら、このような幅方向に延在した厚みムラは長尺塗布時に幅方向で同時に起こるために液のレベリング性だけで解消することができず、しかも一方向に長く延在するために目視可能な状態で残りやすい。
 これに対して、本発明は、液晶層の面内位相差ムラ領域の位相差傾斜ΔReを0.002~0.018(nm/mm)の範囲とすることで、長尺液晶フィルム10から切り出した液晶フィルムを有する表示装置において、画面内に正面色味ムラが生じることを抑制できる。また、面内における位相差の変動をなだらかにすることにより、長尺液晶フィルムから複数の液晶フィルムを切り出した場合の正面色味の個体差を抑制できる。
 位相差傾斜ΔReを上記範囲とするために、液晶層3を形成する際に、長尺基材上に付与される塗布液の量を長尺基材の厚みムラに関わらず安定化する種々の対策を行う。具体的な方法については後に詳述する。
 <<重合性液晶組成物>>
 液晶層3は、光学異方性を発現する重合性液晶化合物を含む重合性液晶組成物から形成される。重合性液晶組成物は、液晶性を示し、分子内に重合性官能基を有する重合性液晶化合物のほか、その他の重合性化合物、配向安定剤、重合開始剤、溶媒等を含有させることができる。
 (重合性液晶化合物)
 重合性液晶組成物に含まれる重合性液晶化合物は、屈折率異方性を有し、配向層2の配向規制力により規則的に配列することにより、所望の位相差性を付与する機能を有する。重合性液晶化合物として、例えば、ネマチック相、スメクチック相等の液晶相を示す材料が挙げられる。また、棒状液晶化合物、円盤状液晶化合物など、種々の構造を有する重合性液晶分子を用いることができる。
 本実施形態において用いられる重合性液晶化合物として、特開平8-50206号公報、特開2007-2220号公報、特開2010-244038号公報、特開2008-19240号公報、特開2013-166879号公報、特開2014-78036号公報、特開2014-198813号公報、特開2011-6360号公報、特開2011-6361号公報、特開2011-207765号公報、特開2008-273925号公報、特開2015-200877 号公報に記載された化合物等を使用することができる。相転移温度の調整や重合性液晶化合物の結晶化抑制を行ってより面状に優れた液晶フィルムを得る観点から、複数の異なる重合性液晶化合物を混合して用いることができる。
 (その他の重合性化合物)
 重合性液晶組成物に含まれる重合性化合物としては、好ましくは、非液晶性の多官能重合性化合物を有することができる。こうした非液晶性多官能重合性化合物として、公知の多価アルコール類と(メタ)アクリル酸のエステル化合物類を挙げることができる。これらの化合物の添加により重合性液晶組成物の流動性が増してレベリングが促進されるため、より位相差ムラの少ない液晶層3を得ることができる。加えて、その重合性官能基数を調整することにより液晶層3の湿熱耐久性の向上や、耐傷性や膜強度を高めることもできる。
 (配向安定剤)
 重合性液晶組成物には、配向安定剤を加えることができる。配向安定剤の添加により、種々のかく乱要因が抑制されて液晶性化合物の配向が安定化され位相差ムラの少ない液晶層3を得ることができる。また、配向安定剤の構造を適切に選ぶことにより、液晶層の配向を水平配向、垂直配向、ハイブリッド配向、コレステリック配向等の任意の配向に調整できる。配向安定化とレベリングの両立の観点から、特に好ましくは、フルオロ脂肪族を側鎖に有するアクリル重合体(特開2008-257205号公報の段落0022~0063、特開2006-91732号公報の段落0017~0124に記載)を添加することができる。
 (重合開始剤)
 重合性液晶組成物には、重合開始剤を含むことができる。重合性液晶化合物の重合性基にあわせて、種々の重合開始剤を選定することができる。好ましくは重合性液晶化合物が(メタ)アクリレート化合物であり、重合開始剤はラジカル重合開始剤である。こうした重合開始剤として、周知の各種重合開始剤を使用することができる。均一な配向を実現するためには、塗布液の経時安定性と、塗布膜の深部硬化性とに優れていることが好ましく、その観点でオキシムエステル化合物(米国特許第4,255,513号明細書、特開2001-233842号公報)やアシルフォスフィンオキシド化合物(特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載等)が好適に用いられる。
 (溶媒)
 溶媒としては種々の公知の溶媒を用いることができる。溶媒の選定にあたっては、重合性液晶化合物やその他の成分の溶解性と、塗布液の長尺基材に対する濡れ性、表面張力、粘度、および揮散性とを鑑みて選定することが好ましい。適切に溶媒を選定することにより、レベリング性に優れ均一でムラの無い塗布膜が形成でき、位相差ムラが抑制された液晶層3を得ることができる。
 重合性液晶性組成物中の溶媒量は、組成物全量に対して50質量%から90質量%の間であることが好ましく、60~85質量%の範囲がさらに好ましい。この範囲であると、優れたレベリング性を示しかつ適度な粘度を有することで外的要因のかく乱を受けにくくなり、長尺基材の膜厚ムラに起因する膜厚変動を効果的に抑制できる。
 図1に示す長尺液晶フィルムでは、長尺基材1の上に、配向層2および液晶層3が形成される構成としたがこれに限定はされない。
 長尺基材1を易剥離性支持体として液晶層3、または配向層2と液晶層3との積層体を長尺基材1から剥離可能な構成としてもよい。あるいは、配向層2と液晶層3との間で剥離可能な構成としてもよい。液晶層3、または配向層2と液晶層3との積層体を長尺基材1から剥離して、他の部材に転写して用いることができる。
 このような構成の場合には、長尺基材1は剥離して除去されることから、長尺液晶フィルム10として用いる際には適切でない光学特性を有するフィルムも長尺基材として利用することが可能である。具体的には、面内位相差が500nm以上の高レターデーションフィルムの長尺体、もしくは、光散乱性の高い基材、光吸収性の高い基材等を用いることが可能である。こうしたフィルムも、光学的(例えば面内位相差および透過率など)によりその膜厚変動を塗布前に検出して塗布装置にフィードバックすることは困難である場合が多いが、本発明によればこうしたフィルムでも問題なく使用に供することができ、かつ高品質の液晶層を得ることができる。
 また、液晶層3(および配向層2)を剥離可能に形成するために、長尺基材1の表面に剥離層を設けてもよく、配向層2の上に剥離層を設けてもよい。
 こうして得られた長尺状の液晶層は、直線偏光板等に転写されて種々の光学部品、特に好ましくは円偏光板として利用することができる。
〔長尺液晶フィルムの製造方法〕
 本発明の長尺液晶フィルムの製造方法は、
 長尺基材上に長尺状の液晶層を設けた長尺液晶フィルムの製造方法であって、
 幅方向に延在する筋状の厚みムラ領域を長手方向にわたり複数有している長尺基材ロールを準備する準備工程、
 長尺基材ロールから長尺基材を送り出し長手方向に搬送しつつ順次行う、
 長尺基材に、長尺状に配向規制力を付与する配向工程、
 長尺基材の、配向規制力が付与された領域に重合性液晶組成物を長尺状に塗布する塗布工程、
 塗布により形成された塗布液層を配向処理した後、硬化して配向状態を固定し、液晶層を形成する液晶層形成工程、および、
 液晶層と長尺基材とが積層された長尺液晶フィルムをロール状に巻き取る巻取り工程、を含み、
 塗布工程において、長尺基材上に積層される塗布液層の厚みを一定に調整する手段を講じて、厚みのばらつきを平均厚みに対して±2%の範囲内とした長尺液晶フィルムの製造方法である。
 図3は、本発明の長尺液晶フィルムの製造方法を実施する製造装置を模式的に表した図である。
 図3に示す製造装置30は、回転軸60と、塗布部32と、加熱部33と、光源34と、バックアップロール38と、塗布部35と、加熱部36と、光源37と、巻取り軸62とを有する。
 この製造装置30は、長尺基材1を長手方向に所定の搬送経路で搬送しつつ、光配向層2および液晶層を順に形成するものである。
 回転軸60は、長尺基材1を巻回した基材ロール31を装填するものである。また、巻取り軸62は、光配向層2および液晶層3形成後の長尺基材1を巻き取る、公知の長尺物の巻取り軸である。バックアップロール38は、光配向層2の形成(光照射)の際に長尺基材1を裏面側から支持するバックアップロールである。
 塗布部32は、光配向層2となる塗工液を長尺基材1上に塗工(塗布)する部位である。また、塗布部35は、液晶層3となる塗布液を長尺基材1上に形成された光配向層2の上に塗布する部位である。
 塗布部32および塗布部35における塗布方法としては限定はなく、それぞれ光配向層2および液晶層3を所望の厚みに塗布可能な塗布方法を用いればよい。したがって、ダイコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、スライドコート法等の公知の塗布方法が、全て利用可能である。
 中でも、非接触で塗布液を塗布できるので長尺基材1の表面を損傷しない、ビードの形成により長尺基材1の表面の凹凸等の包埋性に優れる、等の理由で、ダイコート法は、好適に利用される。
 加熱部33および加熱部36はそれぞれ、長尺基材1上に塗布された光配向層2となる塗工液層、または、液晶層3となる塗布液層を加熱して乾燥する部位である。
 加熱部33および加熱部36による乾燥方法には、限定はなく、塗工液層または塗布液層を乾燥して有機溶剤の除去等を行って、架橋が可能な状態にできるものであれば、公知の乾燥手段が全て利用可能である。一例として、ヒータによる加熱乾燥、温風による加熱乾燥等が例示される。
 光源34および光源37はそれぞれ、乾燥後の塗工液層または塗布液層に紫外線あるいは可視光などを照射して、塗工液層、塗布液層に含まれるモノマーなどの有機化合物を架橋して硬化し、光配向層2または液晶層3とするものである。
 光源が照射する光の波長は塗工液に含まれる材料、塗布液に含まれる材料等に応じて設定すればよい。光源としては設定した波長の光を照射可能なものであれば限定はなく、液晶フィルムの製造装置で用いられる公知の光源が適宜利用可能である。
 なお、製造装置30は、図示した部材以外にも、搬送ローラ、長尺基材1の幅方向の位置を規制するガイド部材、各種のセンサ等、長尺な基材を搬送しつつ、液晶層を形成する公知の装置に設けられる各種の部材を有していてもよい。
 次に、図3に示した製造装置30で実施される本発明の長尺液晶フィルムの製造方法の各工程について説明する。
 まず、準備工程として、幅方向に延在する筋状の厚みムラ領域を長手方向にわたり複数有しており、面内位相差Reが5nm以下である長尺基材を巻き回した基材ロール31を準備する。
 基材ロール31を回転軸60にセットし、基材ロール31から長尺基材1を引き出して回転軸60から巻取り軸62に至る所定の搬送経路に通される。
 また、予め準備した、光配向層2となる塗工液を塗布部32に供給する。同様に、予め準備した、液晶層3となる塗布液を塗布部35に供給する。
 製造装置30において、基材ロール31からの長尺基材1の送り出しと、巻取り軸62における液晶層3形成済みの長尺基材1の巻取りとを同期して行って、長尺基材1を所定の搬送経路で長手方向に搬送しつつ、光配向層2の形成(配向工程)、液晶層3の形成(塗布工程、液晶層形成工程)を連続的に行なう。
 製造装置30においては、配向工程として光配向層2が形成される。
 具体的には、長尺基材1の搬送経路の途中に配置された塗布部32が、光配向層2となる塗工液を長尺基材1に塗工する。次に、塗布部32の下流側に配置された加熱部33が、塗工された光配向層2となる塗工液層を加熱、乾燥する。次に、加熱部33の下流側に配置された光源34が、直線偏光した紫外線を照射して塗工液層を硬化させ、これにより光配向層2を形成する。この際、光源34からの露光はバックアップロール38を用いてウェブが振動しないようにされている。
 次に、塗布工程として、光源34の下流側に配置された塗布部35が、液晶層3となる塗布液を長尺基材1(光配向層2)の上に塗布する。
 次に、液晶層形成工程として、塗布部35の下流側に配置された加熱部36が、塗布された液晶層3となる塗布液層を加熱、乾燥する。必要に応じ、さらに加熱や冷却を行って、重合性液晶性組成物に含まれる液晶化合物の配向を促進したり、配向状態を調整したりすることができる。
 ここで、液晶層3となる塗布液を長尺基材1に塗布する塗布工程において、塗布液層の厚みを一定に調整する手段を講じる。
 塗布工程で発生する液晶層の厚みムラは、長尺基材の厚みムラに加えて、塗布装置の機械振動、空気圧振動に起因して発生する。そのため、液晶層の厚みムラは、支持体の厚みムラ低減に加えて、塗布工程由来の原因に対して対策することで、低減させることができる。
 塗布工程において、塗布液層の厚みを一定に調整する手段を講じて、液晶層の厚みのばらつきを平均厚みに対して±2%の範囲内とする。これによって、面内位相差ムラ領域の位相差傾斜ΔReを0.002~0.018(nm/mm)の範囲とすることができる。
 液晶層の厚みのばらつきは±1%の範囲内であるのが好ましく、±0.5%の範囲内であるのがより好ましく、±0.3%の範囲内であるのがさらに好ましい。
 液晶層の平均厚みは、長尺基材の長手方向に1m分切り出した液晶フィルムの液晶層の厚みを2mmおきに500点測定してその平均値とする。また、この各点での厚みと平均厚みとの差(割合)をばらつきとする。
 (液晶層の厚み)
 液晶層の厚みは、干渉膜厚測定装置(大塚電子社製FE3000)を用い、レンズ倍率25倍にて反射率測定を行う。基材、配向膜、液晶層それぞれの波長400nm~800nmの屈折率を基盤解析法にて算出し、算出した屈折率を用いて最適化法により波長400nm~800nmにてフィッティングを行い、膜厚を算出する。膜厚の単位は[nm]である。
 例えば、塗布部35が実施する塗布方法として、ダイコート法を用いる場合には、ダイが光配向層に接触しないよう光配向層との間に微小なクリアランスが設けられており、ダイから吐出され光配向層に到達するまでの部分の塗布液(ビード)は振動等の影響を受けやすい。また、長尺基材1が有する幅方向に延在した筋状の厚みムラ領域がダイの位置を通過する際にもビードが乱されやすい。したがって、例えばクリアランスの量を調整してビードを短くする、クリアランス部において塗布液の流れの前後にある空間の気圧を調整して、すなわち、搬送方向の上流側からビードを吸引するように気圧を調整してビードを短くする等の手段を講じることにより、長尺基材1の形状に関わらず常に厚みが均一でムラの無い塗布液層が形成できる。
 また、塗布室温度を下げたり、塗布液に高粘度溶剤を添加して塗布液の粘度を高くすることで、ビードを外乱に対して強くする方法も好適である。例えば、高粘度溶剤としてシクロペンタノンを添加することで塗布液を高粘度にすることができる。
 なお、前述のとおり、光配向層となる塗工液、および、液晶層となる塗布液の塗布にあっては、ダイによる塗工に限らず、種々の手法を広く適用することができる。したがって、塗布方法に応じて適切な対策を行うことで、塗工液および塗布液が長尺基材に付与される量が一定になるよう調整して同様の効果を得ることができる。例えば、バーコート法あるいはグラビアコート法を用いる場合には、長尺基材の筋状の膜厚変動によりコーターが微振動することを機構により抑制する等の施策が実施しうる。
 さらに、加熱部36の下流側に配置された光源37が紫外線を照射し、光配向層2の配向規制力により液晶化合物を配向させた状態で硬化させ、液晶層3を形成する。ここで、光源37による紫外線の照射においては、液晶層3となる塗布液層の側から実行され、これにより塗布液層に効率良く紫外線を照射して液晶層3を形成することができる。紫外線の照射にあたっては、窒素で雰囲気を置換しても良い。
 次に、巻取り工程として、光配向層2および液晶層3が形成された長尺基材1、すなわち、長尺液晶フィルム10は、巻取り軸62に巻き取られる。
 巻き取られた液晶フィルムロール39は、必要に応じて次の工程に供される。
 なお、図3に示す例では、光配向層2と液晶層3とを1回の搬送経路中で連続的に形成する構成としたが、これに限定はされず、光配向層2と液晶層3とは別の製造装置でそれぞれ形成される構成としてもよい。
〔光学部品〕
 本発明の長尺液晶フィルムは、直線偏光子と組み合わせることにより、各種表示装置に用いることができる光学部品(例えば、偏光板)として利用することができる。組合せにおいては各種の接着剤を利用して貼合することができる。このような接着剤としては、例えば紫外線硬化性樹脂、熱硬化性樹脂、感圧性接着剤等を例示することができる。
 <長尺偏光板>
 本発明の長尺偏光板は、上述した長尺液晶フィルムと、長尺状の直線偏光子とを有する。
 図4は、本発明の長尺偏光板の一例を示す模式図である。
 図4に示す長尺偏光板20は、長尺液晶フィルム10と、長尺液晶フィルム10の長尺基材1側に積層される直線偏光子21とを有する。
 このように、本発明の長尺液晶フィルムと長尺状の直線偏光子とを積層することにより、長尺偏光板20を構成することができる。例えば、長尺偏光板20を円偏光板として構成する場合、本発明の長尺液晶フィルムの面内位相差は120~160nmの範囲が好ましく、130~150nmの範囲がより好ましい。また、本発明の長尺液晶フィルムの遅相軸を、直線偏光板の透過軸と45°となるよう配置する。本発明の長尺液晶フィルムの遅相軸を、搬送方向に対して45°とし、幅方向に透過軸を有する長尺状直線偏光子21、もしくは、搬送方向に透過軸を有する長尺状直線偏光子21と積層することで長尺状の円偏光板を構成することができる。
 (直線偏光子)
 直線偏光子21は、直線偏光子としての機能を担う光学機能層を1対の基材により挟持して構成される。ここで基材は、TAC(トリアセチルセルロース)による透明フィルム、ポリ(メタ)アクリル酸メチル、その共重合体等のアクリル樹脂、エポキシ化合物、(メタ)アクリレート化合物等の架橋重合体樹脂、シクロオレフィン樹脂、ポリカーボネート樹脂等の樹脂、硝子等を適用することができる。本発明の長尺液晶フィルムの長尺基材を係る基材として使用し、光学機能層、長尺基材1、光配向層2、液晶層3の順に積層されるようにしても良い。光学機能層は、典型的にはポリビニルアルコール(PVA)によるフィルム材にヨウ素化合物分子を吸着配向させて作製されるが、その他にヨウ素化合物分子に代えて有機二色性色素を用いたフィルム、有機二色性色素を液晶組成物中に配合して配向させた層、液晶性有機二色性色素を配向させた層などを用いてもよい。積層に係る接着層(図示せず)としては先述した各種公知の接着剤を利用することができる。
 図5は、長尺液晶フィルム10と長尺状の直線偏光子21とを積層して長尺偏光板20を作製するための積層装置である。
 図5に示す積層装置40は、2枚の長尺状のフィルム状物を積層する公知の積層装置である。
 積層装置40は、液晶フィルムロール39が装填される回転軸64と、作製した長尺偏光板20を巻き取る巻取り軸66と、長尺状の直線偏光子21を巻き回してなる偏光子ロール42が装填される回転軸68と、直線偏光子21から剥離された剥離フィルム41を巻き取る巻取り軸70と、直線偏光子21から剥離フィルム41を剥離する剥離ロール43と、直線偏光子21と長尺液晶フィルム10とを加圧する加圧ロール45とを有する。
 積層装置40において、回転軸64に装填された液晶フィルムロール39から長尺液晶フィルム10を引き出し、巻取り軸66に至る搬送経路に通される。また、回転軸68に装填された偏光子ロール42は、接着層22、PET(ポリエチレンテレフタレート)フィルムからなる剥離フィルム41が積層された長尺状の直線偏光子21をロール状に巻き回されたものである。この積層体は偏光子ロール42から引き出され、剥離ロール43の位置で剥離フィルム41が剥離される。剥離フィルム41は、巻取り軸70に通される。一方、直線偏光子21および接着層22の積層体は、加圧ロール45の位置で長尺液晶フィルム10に積層されて巻取り軸66に至る搬送経路に通される。
 積層装置40は、回転軸64、巻取り軸66、回転軸68、巻取り軸70、剥離ロール43、および、加圧ロール45を、直線偏光子21および長尺液晶フィルム10の搬送に同期して回転させる。積層装置40は、偏光子ロール42から直線偏光子21、接着層22、剥離フィルム41の積層体を引き出しながら、剥離ロール43により剥離フィルム41を剥離し、剥離した剥離フィルム41を巻取り軸70にロール状に巻き取る。また、液晶フィルムロール39から長尺液晶フィルム10を引き出しながら、剥離フィルム41を剥離してなる直線偏光子21、接着層22と積層した後、加圧ロール45により加圧し、これにより長尺液晶フィルム10、接着層22、直線偏光子21の積層体(すなわち長尺偏光板20)を作製する。長尺偏光板20は巻取り軸66においてロール状に巻き取られる。
 長尺偏光板20は、所望のサイズに切断されて枚葉状の偏光板とされ、画像表示装置等へ適用される。また、長尺偏光板20、または、切り出した偏光板に、粘着層、セパレータフィルム等を適宜配置してもよい。
 また、図5に示す例では、別に作製された長尺液晶フィルムに直線偏光子を積層する構成としたが、これに限定はされず、長尺液晶フィルムの製造と直線偏光子の積層とを同一の搬送経路中で連続的に行う構成としてもよい。
 長尺偏光板は、さらに、波長550nmにおける厚み方向のレターデーション(Rth(550))が-150~-50nmであるポジティブCプレートを含んでいてもよい。ポジティブCプレートを含むことにより、表示装置の反射率および反射色味をより抑制することができる。
 ポジティブCプレートの波長550nmにおける厚み方向のレターデーション(Rth(550))は、-150~-50nmであり、-130~-70nmが好ましく、-120~-80nmがより好ましい。
 ポジティブCプレートの厚みは、特に制限されないが、薄型化の点から、0.5~10μmが好ましく、0.5~5μmがより好ましい。
 なお、上記厚みは平均厚みを意図し、ポジティブCプレートの任意の5点の厚みを測定し、それらを算術平均したものである。
 ポジティブCプレートを構成する材料は特に制限されないが、液晶化合物を含むことが好ましい。液晶化合物の定義は、上述の通りである。なかでも、ポジティブCプレートは、重合性基を有する液晶化合物(棒状液晶化合物または円盤状液晶化合物)が重合等によって固定されて形成された層であることが好ましく、この場合、層となった後はもはや液晶性を示す必要はない。
 (その他の光学部品)
 本発明の長尺状液晶フィルムは、円偏光板に限らず、種々の光学部品に応用することができる。例えば、液晶表示装置の光学補償層付偏光板や、偏光サングラス、輝度向上板、加飾フィルム、視野角制限フィルム、調光フィルム等である。本発明の長尺状液晶フィルムの光学特性や平均遅相軸方向は、本発明の趣旨を逸脱しない範囲で、用途に合わせて種々に変更することが可能である。
〔画像表示装置〕
 本発明の画像表示装置は、上記長尺偏光板から切り出された偏光板を含む画像表示装置である。長尺偏光板を適宜裁断して表示装置に実装することにより、表示品質に優れた画像表示装置を構成することができる。
 図6は、本発明の画像表示装置の一例を模式的に示す断面図である。図6に示す画像表示装置50は、画像表示パネル51のパネル面(視聴者側面)に、長尺偏光板20から切り出した反射防止フィルム52が配置される。反射防止フィルム52は、円偏光板として内部反射光を防止する。
 ここで画像表示パネル51は、例えば有機ELパネルであり、所望のカラー画像を表示する。なお画像表示パネル51は、有機ELパネルに限らず、液晶表示パネル等、種々の画像表示パネルを広く適用することができる。
 反射防止フィルム52は、典型的には、接着層53により画像表示パネル51のパネル面に貼り付けられて保持される。反射防止フィルム52は、直線偏光板21、λ/4波長板の特性を有する長尺液晶フィルム10を、接着層22により積層一体化して構成される。接着層53としては、接着層22と同様に公知の接着剤を用いることができる。
 以上、本発明の長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法について詳細に説明したが、本発明は上記実施形態に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良および変更を行ってもよい。
 例えば、厚さ方向位相差を有する液晶フィルムにおける位相差ムラや、二色性化合物分子の配向を用いた偏光子の偏光度ムラを抑制する方法として同様の概念を適用することができる。すなわち、本発明における面内位相差ムラを、適宜厚さ方向位相差ムラあるいは偏光度ムラに読み替えることができる。実際に許容され得るムラの限度に対して、本発明で述べた各種手段をどのように設計すればその達成を見るかは、本明細書の意図するところを理解すれば当業者において十分に想起しうるものである。
 以下、実施例を以って発明を詳細に説明する。
〔セルロースアシレートフィルム1の作製〕
(コア層セルロースアシレートドープの作製)
 下記の組成物をミキシングタンクに投入し、攪拌して、各成分を溶解し、コア層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
コア層セルロースアシレートドープ
─────────────────────────────────
・アセチル置換度2.88のセルロースアセテート    100質量部
・特開2015-227955号公報の実施例に
 記載されたポリエステル化合物B            12質量部
・下記の化合物F                     2質量部
・メチレンクロライド(第1溶媒)           500質量部
・メタノール(第2溶剤)                75質量部
─────────────────────────────────
Figure JPOXMLDOC01-appb-C000003
(外層セルロースアシレートドープの作製)
 上記のコア層セルロースアシレートドープ90質量部に下記のマット剤溶液を10質量部加え、外層セルロースアシレートドープとして用いるセルロースアセテート溶液を調製した。
─────────────────────────────────
マット剤溶液
─────────────────────────────────
・平均粒子サイズ20nmのシリカ粒子
(AEROSIL R972、日本アエロジル(株)製)    2質量部
・メチレンクロライド(第1溶媒)            76質量部
・メタノール(第2溶剤)                11質量部
・上記のコア層セルロースアシレートドープ         1質量部
─────────────────────────────────
(セルロースアシレートフィルム1の製膜)
 上記コア層セルロースアシレートドープと上記外層セルロースアシレートドープを平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した後、上記コア層セルロースアシレートドープとその両側に外層セルロースアシレートドープとを3層同時に流延口から20℃の金属バンド上に流延した(バンド流延機)。
 ここで、流延時にビード部分を上流側から-600Paの吸引圧力で吸引した。
 また、流延時の、上記コア層セルロースアシレートドープの固形分濃度は、17.3%である。
 流延後、形成された膜(フィルム)を溶剤含有率略20質量%の状態で金属バンドから剥ぎ取り、フィルムの幅方向の両端をテンタークリップで固定し、横方向に延伸倍率1.1倍で延伸しつつ乾燥した。その後、熱処理装置のロール間を搬送することによりさらに乾燥し、これを巻き取って厚み40μmの長尺状のセルロースアシレートフィルム1を作製した。フィルムのコア層は厚み36μm、コア層の両側に配置された外層はそれぞれ厚み2μmであった。得られたセルロースアシレートフィルム1の面内レターデーションは0nmであった。
 セルロースアシレートフィルムの長手方向に1m長ずつ任意に5か所サンプリングして厚みの変動を測定した。厚みの測定は電気マイクロメータ K402B/KG3001A アンリツ社製を用いて行った。その結果、平均して1m長の間に6箇所の厚みムラ領域が見られた。厚みムラ領域における最大膜厚変動(平均厚さと領域内の基材膜厚差の最大値)の平均値は0.7μmであり、厚みムラ領域の長さの平均値は60mmであった。したがって、膜厚傾斜ΔTは0.012であった。
(セルロースアシレートフィルム2~4の製膜)
 セルロースアシレートフィルム1の製膜において、流延条件を表1に示すとおりに調整した以外はセルロースアシレートフィルム1と同様にして長尺状のセルロースアシレートフィルム2~4を作製した。得られたセルロースアシレートフィルムの面内レターデーションはいずれも0nmであった。
 セルロースアシレートフィルムをロールから引き出して長手方向に1m長ずつ任意に5か所サンプリングして幅手方向の厚みの変動を測定した。その結果、5か所を平均して1m長の間に6箇所から7箇所の厚みムラ領域が見られた。最大膜厚変動(平均厚さと領域内の基材膜厚差の最大値)の平均値、および、厚みムラ領域の長さの平均値は、表1に示すとおりであった。
Figure JPOXMLDOC01-appb-T000004
[実施例1]
〔長尺液晶フィルムの作製〕
 図3に示すような製造装置を用いて、作製したセルロースアシレートフィルム1の片側の面に、下記の光配向膜用組成物1をバーコーターで連続的に塗布した。塗布後、120℃の加熱ゾーンにて1分間乾燥して溶剤を除去し、厚さ0.3μmの光異性化組成物層を形成した。続けて、鏡面処理バックアプロールに巻きかけながら、長手方向に偏光軸が45°の角度を成すように偏光紫外線照射(10mJ/cm2、超高圧水銀ランプ使用)することで、光配向膜を形成した。
─────────────────────────────────
光学配向膜用組成物1
─────────────────────────────────
・下記の重合体Ap3                  10質量部
・下記のノムコートTAB(日清オイリオ(株)製)  1.52質量部
・多官能エポキシ化合物(エポリードGT401、ダイセル社製)
                          12.2質量部
・熱酸発生剤(サンエイドSI-60、三新化学工業(株)製)
                          0.55質量部
・酢酸ブチル                     300質量部
―――――――――――――――――――――――――――――――――
<重合体Ap3の合成>
 Langmuir,32(36),9245-9253,(2016年)に記載された方法に従い、2-ヒドロキシエチルメタクリレート(HEMA)(東京化成試薬)と下記桂皮酸クロリド誘導体を用いて、以下に示すモノマーm-1を合成した。
 桂皮酸クロリド誘導体
Figure JPOXMLDOC01-appb-C000005
 モノマーm-1
Figure JPOXMLDOC01-appb-C000006
 冷却管、温度計、および撹拌機を備えたフラスコに、溶媒として2-ブタノン5質量部を仕込み、フラスコ内に窒素を5mL/min流しながら、水浴加熱により還流させた。ここに、モノマーm-1を5質量部、3,4-エポキシシクロヘキシルメチルメタクリレート(サイクロマーM100、ダイセル社製)5質量部、重合開始剤として2,2’-アゾビス(イソブチロニトリル)を1質量部と、溶媒として2-ブタノン5質量部を混合した溶液を、3時間かけて滴下し、さらに3時間還流状態を維持したまま撹拌した。反応終了後、室温まで放冷し、2-ブタノン30質量部を加えて希釈することで約20質量%の重合体溶液を得た。得られた重合体溶液を大過剰のメタノール中へ投入して重合体を沈殿させ、回収した沈殿物をろ別し、大量のメタノールで洗浄した後、50℃において12時間送風乾燥することにより、光配向性基を有する重合体Ap3を得た。
重合体Ap3
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008

ノムコートTAB
 引き続き、長尺状に形成された光配向膜上に、予め調製した下記の光学異方性層形成用組成物1をダイコーターで塗布し、液晶層(未硬化)を形成した。この際、塗布ビードが安定するようダイ周辺の気流の調整を行った。
 また、塗布室の温度は23℃とした。また、塗布液中のシクロペンタノンの比率は28%であった。
―――――――――――――――――――――――――――――――――
光学異方性層用塗布液(液晶1)
―――――――――――――――――――――――――――――――――
・下記液晶性化合物L-3             42.00質量部
・下記液晶性化合物L-4             42.00質量部
・下記重合性化合物A-1             16.00質量部
・下記重合開始剤S-1(オキシム型)        0.50質量部
・レベリング剤(下記化合物G-1)         0.20質量部
・ハイソルブMTEM(東邦化学工業社製)      2.00質量部
・NKエステルA-200(新中村化学工業社製)   1.00質量部
・メチルエチルケトン               305.9質量部
・シクロペンタノン                118.9質量部
―――――――――――――――――――――――――――――――――
 なお、下記液晶性化合物L-3およびL-4のアクリロイルオキシ基に隣接する基は、プロピレン基(メチル基がエチレン基に置換した基)を表し、下記液晶性化合物L-3およびL-4は、メチル基の位置が異なる位置異性体の混合物を表す。
液晶化合物 L-3
Figure JPOXMLDOC01-appb-C000009
液晶化合物 L-4
Figure JPOXMLDOC01-appb-C000010
重合性化合物 A-1
Figure JPOXMLDOC01-appb-C000011
重合開始剤 S-1
Figure JPOXMLDOC01-appb-C000012
化合物 G-1
Figure JPOXMLDOC01-appb-C000013
 形成した液晶層(未硬化)を加熱ゾーンにていったん110℃まで加熱した後、75℃に冷却させて配向を安定化させた。
 その後、75℃に保ち、窒素雰囲気下(酸素濃度100ppm)で紫外線照射(500mJ/cm2、超高圧水銀ランプ使用)によって配向を固定化し、厚さ2.3μmの液晶層(光学異方性層)を形成し、これを巻取り軸に巻き取って、長尺液晶フィルムを作製した。
 得られた長尺液晶フィルムの平均面内レターデーションRe(550)は140nmでRe(450)/Re(550)<1.0かつ1.0<Re(650)/Re(550)を満たしており、平均遅相軸方向は長手方向に対して45°であった。
 得られた長尺液晶フィルムの、液晶層が塗られていない部分をレーザー変位計で膜厚を計測することにより膜厚ムラ領域を検出してマーキングし、マーキングされた領域周辺の位相差変化を搬送方向に連続的に測定して、面内位相差ムラ領域を検出した。また、位相差ムラ領域内の位相差変動の最大値と面内位相差ムラ領域の長さとを定量しところ、位相差変動の最大値は0.6nmであり、面内位相差ムラ領域の長さは70mmであった。したがって、位相差傾斜ΔReは0.009であった。
[実施例2~6、比較例1~3]
 長尺基材の種類、塗布室の温度、塗布液中のシクロペンタノンの比率を表2に示すように変更した以外は実施例1と同様にして長尺液晶フィルムを作製した。
 得られた長尺液晶フィルムの位相差変動の最大値と面内位相差ムラ領域の長さとを定量しところ、位相差変動の最大値、面内位相差ムラ領域の長さ、位相差傾斜ΔReは表2に示すとおりであった。
[評価]
 作製した長尺液晶フィルムから切り出した液晶フィルムのばらつき(個体差)を評価するため、切り出した液晶フィルムを表示装置に組み込んで、表示される画像のばらつきを観察した。
〔表示装置の作製〕
 <ポジティブCプレートの形成>
 作製した長尺液晶フィルム上にポジティブCプレートを形成した。
 (配向膜の形成)
 長尺液晶フィルムの液晶層側の面にコロナ処理を施し、下記組成の配向膜塗布液(B)を#14のワイヤーバーで連続的に塗布した。その後、配向膜塗布液(B)が塗布された長尺液晶フィルムを60℃の温風で60秒、更に100℃の温風で120秒乾燥して、配向膜を形成した。
配向膜塗布液(B)の組成
――――――――――――――――――――――――――――――――
下記変性ポリビニルアルコール-2           10質量部
水                         371質量部
メタノール                     119質量部
グルタルアルデヒド(架橋剤)            0.5質量部
クエン酸エステル(三協化学(株)製 AS3)  0.175質量部
光重合開始剤(イルガキュア2959、チバ・ジャパン製)2.0質量部
――――――――――――――――――――――――――――――――
変性ポリビニルアルコール-2
Figure JPOXMLDOC01-appb-C000014
 下記の組成の棒状液晶化合物を含む光学異方性層塗布液(C)を、上記作製した配向膜上に#5.0のワイヤーバーで連続的に塗布した。フィルムの搬送速度(V)は26m/minとした。塗布液の溶媒の乾燥および棒状液晶化合物の配向熟成のために、光学異方性層塗布液(C)が塗布されたフィルムを60℃の温風で60秒間加熱した。その後、得られたフィルムを60℃にてUV(紫外線)照射を行い、棒状液晶化合物の配向を固定化して、ポジティブCプレートを作製した。
 ポジティブCプレートの厚みは0.7μmであり、Rth(550)は、-70nmであった。
光学異方性層塗布液(C)の組成
―――――――――――――――――――――――――――――――――
・棒状液晶化合物-1                  80質量部
・棒状液晶化合物-2                  20質量部
・光重合開始剤(イルガキュアー907、チバ・ジャパン社製)3質量部
・増感剤(カヤキュアーDETX、日本化薬(株)製)    1質量部
・含フッ素化合物(FP-2)             0.3質量部
・配向膜界面配向剤-1               0.55質量部
・メチルエチルケトン                 193質量部
―――――――――――――――――――――――――――――――――
棒状液晶化合物-1
Figure JPOXMLDOC01-appb-C000015
棒状液晶化合物-2
Figure JPOXMLDOC01-appb-C000016
含フッ素化合物(FP-2)
Figure JPOXMLDOC01-appb-C000017
 <長尺偏光板の作製>
 (直線偏光子および偏光子保護フィルムの作製)
 厚さ80μmのポリビニルアルコール(PVA)フィルムを、ヨウ素濃度0.05質量%のヨウ素水溶液中に30℃で60秒浸漬して染色した。次いで、染色したPVAフィルムをホウ酸濃度4質量%濃度のホウ酸水溶液中に60秒浸漬している間に元の長さの5倍に縦延伸した後、得られたフィルムを50℃で4分間乾燥させて、厚さ20μmの偏光子を得た。
 市販のセルロースアシレート系フィルム「TD40UC」(富士フイルム社製)を準備し、1.5モル/リットルで55℃の水酸化ナトリウム水溶液中にセルロースアシレート系フィルムを浸漬し、その後、セルロースアシレート系フィルム上の水酸化ナトリウムを水で十分に洗い流した。その後、得られたセルロースアシレート系フィルムを0.005モル/リットルで35℃の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。その後、得られたセルロースアシレート系フィルムを120℃で十分に乾燥させ、偏光子保護フィルムを作製した。
 (直線偏光子と長尺液晶フィルムの積層)
 上記ポジティブCプレートを有する長尺液晶フィルムをケン化処理した。
 上記で作製した直線偏光子の片面に、上記で作製した偏光子保護フィルムを貼り合わせ、他方の面にケン化処理した長尺液晶フィルムを長尺基材側が直線偏光子と接するようにポリビニルアルコール系接着剤で貼り合わせた。これにより、直線偏光子と、長尺液晶フィルムと、ポジティブCプレートとを有する長尺偏光板を作製した。この長尺偏光板は、円偏光板である。
 <表示装置の作製>
 上記作製した長尺偏光板から、長手方向および幅方向に位置が重複しないように、6インチサイズの円偏光板を10枚切り抜いた。
 切り抜いた円偏光板をそれぞれ、有機ELパネル搭載のSAMSUNG社製GALAXY SIIを分解し、円偏光板を剥離して、ポジティブCプレート側がパネル側となるようSK2057(総研化学社製)を介して貼合し、それぞれに対応する表示装置を作製した。
 <個体差の評価>
 各実施例、比較例ごとに10個作製した表示装置を蛍光灯下で観察して、同一実施例、比較例内の表示装置の正面色味の個体差を以下の基準で評価した。
 A:個体差が認識できない。
 B:わずかな個体差が確認できるが実用上問題がない。
 C:個体差は認識でき、実用上問題が発生する。
 D:個体差が明らかに確認できる。
 <面内ムラの評価>
 各実施例、比較例ごとに表示装置を蛍光灯下で観察を行って、面内で正面色味ムラが認識されるかどうかを評価し、その結果を下記のように判断した。
 A:面内ムラが認識できない。
 B:わずかな面内ムラが確認できるが実用上問題がない。
 C:面内ムラは認識でき、実用上問題が発生する。
 D:面内ムラが明らかに確認できる。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000018
 表2の結果から、位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲である本発明の長尺液晶フィルムは比較例に比べて、切り出した液晶フィルムの面内ムラおよび個体差が小さいことがわかる。
 また、実施例1~6の対比から、位相差傾斜ΔReは0.015(nm/mm)以下がより好ましいことがわかる。
 また、表1および表2から、長尺基材の膜厚傾斜ΔTが0.025(μm/mm)以下であることが好ましく、0.020(μm/mm)以下であることがより好ましいことがわかる。
 また、表2から、位相差変動の最大値は1.2nm以下であることが好ましく、0.9nm以下であることがより好ましいことがわかる。
 また、位相差傾斜ΔReの小さい長尺液晶フィルムは、膜厚傾斜ΔTが小さい(0.005~0.025(μm/mm))長尺基材を用いること、および、液晶層となる塗布液を塗布する際に種々の方法によって塗布液層の厚みのばらつきを抑制することで作製できることがわかる。
 1 長尺基材
 2 配向層
 3 液晶層
 10 長尺液晶フィルム
 20 偏光板
 21 直線偏光子
 22 接着層
 30 長尺液晶フィルムの製造装置
 31 基材ロール
 32、35 塗布部
 33、36 加熱部
 34、37 光源
 38 バックアップロール
 39 液晶フィルムロール
 40 積層装置
 41 剥離フィルム
 42 偏光子ロール
 43 剥離ロール
 44 剥離フィルムロール
 45 加圧ロール
 46 偏光板ロール
 50 画像表示装置
 51 画像表示パネル
 52 反射防止フィルム
 53 接着層
 60、64、68 回転軸
 62、66、70 巻取り軸
 

Claims (11)

  1.  長尺基材と、面内位相差を有する長尺状の液晶層とを少なくとも含む長尺液晶フィルムであって、
     前記長尺基材は、その幅方向に延在する帯状の厚みムラ領域を長手方向にわたり複数有しており、
     液晶層は、面方向における前記厚みムラ領域の位置に、前記長尺基材の幅方向に延在する帯状の面内位相差ムラ領域を有しており、
     前記面内位相差ムラ領域の位相差傾斜ΔReが0.002~0.018(nm/mm)の範囲であることを特徴とする長尺液晶フィルム。
  2.  前記長尺基材の幅方向に延在する帯状の厚みムラ領域内における、前記長尺基材の膜厚傾斜ΔTが0.005~0.025(μm/mm)の範囲である、請求項1に記載の長尺液晶フィルム。
  3.  前記長尺基材と、前記長尺状の液晶層との間に長尺状の光配向層を含む、請求項1または2に記載の長尺液晶フィルム。
  4.  前記液晶層が、前記光配向層と前記液晶層との間、もしくは、前記長尺基材と前記光配向層との間で剥離可能に設けられた、請求項3に記載の長尺液晶フィルム。
  5.  前記液晶層がλ/4波長板であり、その遅相軸が前記長尺基材の長手方向に対して45°をなしている、請求項1から4のいずれか一項に記載の長尺液晶フィルム。
  6.  前記液晶層が、下記式を満たす、請求項1から5のいずれか一項に記載の長尺液晶フィルム。
      Re(450)<Re(550)<Re(650)
      0.03<Δn(550)<0.20
  7.  前記長尺基材の面内位相差Reが5nm以下である請求項1~6のいずれか一項に記載の長尺液晶フィルム。
  8.  請求項1から7のいずれか一項に記載の長尺液晶フィルムと、
     前記長尺液晶フィルムに積層される長尺状直線偏光子とを有する長尺偏光板。
  9.  請求項8に記載の長尺偏光板から切り出された偏光板を含む、画像表示装置。
  10.  長尺基材上に長尺状の液晶層を設けた長尺液晶フィルムの製造方法であって、
     幅方向に延在する筋状の厚みムラ領域を長手方向にわたり複数有している長尺基材ロールを準備する準備工程、
     前記長尺基材ロールから前記長尺基材を送り出し長手方向に搬送しつつ順次行う、
     前記長尺基材に、長尺状に配向規制力を付与する配向工程、
     前記長尺基材の、配向規制力が付与された領域に重合性液晶組成物を長尺状に塗布する塗布工程、
     塗布により形成された塗布液層を配向処理した後、硬化して配向状態を固定し、前記液晶層を形成する液晶層形成工程、および、
     前記液晶層と前記長尺基材とが積層された前記長尺液晶フィルムをロール状に巻き取る巻取り工程、を含み、
     前記塗布工程において、前記長尺基材上に積層される前記塗布液層の厚みを一定に調整する手段を講じて、前記液晶層の厚みのばらつきを平均厚みに対して±2%の範囲内としたことを特徴とする、長尺液晶フィルムの製造方法。
  11.  前記長尺基材の面内位相差Reが5nm以下である請求項10に記載の長尺液晶フィルムの製造方法。
PCT/JP2018/042074 2017-11-15 2018-11-14 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法 WO2019098215A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554240A JPWO2019098215A1 (ja) 2017-11-15 2018-11-14 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017220094 2017-11-15
JP2017-220094 2017-11-15
JP2018133122 2018-07-13
JP2018-133122 2018-07-13

Publications (1)

Publication Number Publication Date
WO2019098215A1 true WO2019098215A1 (ja) 2019-05-23

Family

ID=66539463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042074 WO2019098215A1 (ja) 2017-11-15 2018-11-14 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法

Country Status (2)

Country Link
JP (1) JPWO2019098215A1 (ja)
WO (1) WO2019098215A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181807A (ja) * 2019-04-25 2020-11-05 恵和株式会社 指紋認証装置を備えたoledディスプレイ用の保護フィルム

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179125A (ja) * 1995-12-26 1997-07-11 Fuji Photo Film Co Ltd 配向膜付支持体、それを用いた光学補償シート、カラー液晶表示装置
JPH11316378A (ja) * 1997-12-25 1999-11-16 Fuji Photo Film Co Ltd 液晶表示装置および楕円偏光板
JP2002236216A (ja) * 2000-07-21 2002-08-23 Konica Corp 光学補償フィルム、それを用いた偏光板及び液晶表示装置
JP2004155921A (ja) * 2002-11-07 2004-06-03 Nitto Denko Corp 被膜シートの製造方法、被膜シート、光学素子、画像表示装置および塗工装置
JP2004261791A (ja) * 2002-10-22 2004-09-24 Nitto Denko Corp 被膜シートの製造方法、光学機能層、光学補償板、偏光板、光学素子および画像表示装置
JP2007203630A (ja) * 2006-02-02 2007-08-16 Fujifilm Corp セルロースアシレートフィルム及びその製造方法
JP2007284571A (ja) * 2006-04-17 2007-11-01 Fujifilm Corp セルロースエステルペレット、セルロースエステルフィルム、偏光板、位相差板および液晶表示装置
JP2008055890A (ja) * 2006-06-06 2008-03-13 Fujifilm Corp 熱可塑性樹脂フィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2008080577A (ja) * 2006-09-26 2008-04-10 Fujifilm Corp セルロース樹脂フィルムの製造方法及び装置、並びに光学用セルロール樹脂フィルム
KR20090110082A (ko) * 2008-04-17 2009-10-21 에스케이에너지 주식회사 광폭 캐스팅 벨트, 광폭 필름의 제조방법 및 광폭 필름
JP2017122776A (ja) * 2016-01-05 2017-07-13 富士フイルム株式会社 画像表示機能付きミラーおよびハーフミラー

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013225150A (ja) * 2013-07-08 2013-10-31 Fujifilm Corp 光学フィルム、その製造方法、偏光板および液晶表示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09179125A (ja) * 1995-12-26 1997-07-11 Fuji Photo Film Co Ltd 配向膜付支持体、それを用いた光学補償シート、カラー液晶表示装置
JPH11316378A (ja) * 1997-12-25 1999-11-16 Fuji Photo Film Co Ltd 液晶表示装置および楕円偏光板
JP2002236216A (ja) * 2000-07-21 2002-08-23 Konica Corp 光学補償フィルム、それを用いた偏光板及び液晶表示装置
JP2004261791A (ja) * 2002-10-22 2004-09-24 Nitto Denko Corp 被膜シートの製造方法、光学機能層、光学補償板、偏光板、光学素子および画像表示装置
JP2004155921A (ja) * 2002-11-07 2004-06-03 Nitto Denko Corp 被膜シートの製造方法、被膜シート、光学素子、画像表示装置および塗工装置
JP2007203630A (ja) * 2006-02-02 2007-08-16 Fujifilm Corp セルロースアシレートフィルム及びその製造方法
JP2007284571A (ja) * 2006-04-17 2007-11-01 Fujifilm Corp セルロースエステルペレット、セルロースエステルフィルム、偏光板、位相差板および液晶表示装置
JP2008055890A (ja) * 2006-06-06 2008-03-13 Fujifilm Corp 熱可塑性樹脂フィルムおよびその製造方法、並びに、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
JP2008080577A (ja) * 2006-09-26 2008-04-10 Fujifilm Corp セルロース樹脂フィルムの製造方法及び装置、並びに光学用セルロール樹脂フィルム
KR20090110082A (ko) * 2008-04-17 2009-10-21 에스케이에너지 주식회사 광폭 캐스팅 벨트, 광폭 필름의 제조방법 및 광폭 필름
JP2017122776A (ja) * 2016-01-05 2017-07-13 富士フイルム株式会社 画像表示機能付きミラーおよびハーフミラー

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181807A (ja) * 2019-04-25 2020-11-05 恵和株式会社 指紋認証装置を備えたoledディスプレイ用の保護フィルム
JP7438766B2 (ja) 2019-04-25 2024-02-27 恵和株式会社 指紋認証装置を備えたoledディスプレイ用の保護フィルム

Also Published As

Publication number Publication date
JPWO2019098215A1 (ja) 2020-12-24

Similar Documents

Publication Publication Date Title
CN110799868B (zh) 液晶薄膜、光学层叠体、圆偏振片、有机电致发光显示装置
KR102443875B1 (ko) 위상차 필름, 위상차 필름의 제조 방법, 적층체, 조성물, 편광판 및 액정 표시 장치
JP4849454B2 (ja) 楕円偏光板およびそれを用いた画像表示装置
CN107209310B (zh) 多层膜、其用途以及制造方法
JP2004046194A (ja) 光学補償子の製造方法
US20110058127A1 (en) Optical compensation sheet, polarizing plate, liquid crystal display and method of manufacturing optical compensation sheet
JP2007148098A (ja) 光学フィルムの製造方法、光学フィルム、および画像表示装置
JP7282189B2 (ja) 光学異方性層、光学フィルム、偏光板および画像表示装置
JP7335900B2 (ja) 偏光板、液晶表示装置、有機電界発光装置
WO2010110090A1 (ja) 光学フィルム、偏光板、および液晶表示装置
JP2004046195A (ja) 光学補償子の製造方法
KR102513064B1 (ko) 장척 위상차 필름, 장척 적층체, 화상 표시 장치
US20160139314A1 (en) Retardation film, method for manufacturing retardation film, polarizing plate and image display device which use retardation film, and 3d image display system using image display device
JP6711283B2 (ja) 複層フィルム、並びに、複層フィルム、光学異方性積層体、円偏光板、及び有機エレクトロルミネッセンス表示装置の、製造方法
WO2019098215A1 (ja) 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法
WO2019103143A1 (ja) 長尺液晶フィルム、長尺偏光板、画像表示装置、および、長尺液晶フィルムの製造方法
JP2008209652A (ja) 楕円偏光板の製造方法
JP2017111394A (ja) 光学フィルムの製造方法
WO2019022121A1 (ja) 積層体、積層体の製造方法および画像表示装置
JP2009276533A (ja) 光学フィルム
CN112639553B (zh) 液晶膜、偏振片、圆偏振片及图像显示装置
JP6561449B2 (ja) 偏光子付き位相差フィルムの製造方法、及び位相差フィルムの評価方法
WO2018164045A1 (ja) 有機エレクトロルミネッセンス表示装置、位相差フィルム、円偏光板
WO2023163119A1 (ja) 反射防止フィルムおよび有機エレクトロルミネッセンス表示装置
JP2008209651A (ja) 楕円偏光板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18877863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019554240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18877863

Country of ref document: EP

Kind code of ref document: A1