WO2019093524A1 - 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法 - Google Patents

表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法 Download PDF

Info

Publication number
WO2019093524A1
WO2019093524A1 PCT/JP2018/042016 JP2018042016W WO2019093524A1 WO 2019093524 A1 WO2019093524 A1 WO 2019093524A1 JP 2018042016 W JP2018042016 W JP 2018042016W WO 2019093524 A1 WO2019093524 A1 WO 2019093524A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
absorbing fine
fine particle
dispersion
fine particles
Prior art date
Application number
PCT/JP2018/042016
Other languages
English (en)
French (fr)
Inventor
裕史 常松
長南 武
英昭 福山
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201880073419.6A priority Critical patent/CN111373011B/zh
Priority to KR1020207008059A priority patent/KR102263303B1/ko
Priority to EP18875199.4A priority patent/EP3712223B1/en
Priority to IL274587A priority patent/IL274587B/en
Priority to JP2019552427A priority patent/JP6769562B2/ja
Priority to BR112020009258-4A priority patent/BR112020009258B1/pt
Priority to MYPI2020002330A priority patent/MY184955A/en
Priority to MX2020004746A priority patent/MX2020004746A/es
Priority to AU2018365930A priority patent/AU2018365930B2/en
Priority to US16/763,635 priority patent/US11208563B2/en
Publication of WO2019093524A1 publication Critical patent/WO2019093524A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/527Cyclic esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/24Liquid filters
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2258Oxides; Hydroxides of metals of tungsten

Definitions

  • the present invention is an infrared-absorbing fine particle which transmits light in the visible light region and absorbs light in the infrared light region, wherein the surface of the fine particle is coated with a predetermined coating film, and the surface-treated infrared-absorbing fine particle
  • the present invention relates to a surface-treated infrared-absorbing fine particle powder containing surface-treated infrared-absorbing fine particles, an infrared-absorbing fine particle dispersion using the surface-treated infrared-absorbing fine particles, an infrared-absorbing fine particle dispersion, and methods for producing them.
  • the light shielding member for example, as a light shielding member used for a window material etc., inorganic pigments such as carbon black and titanium black having absorption characteristics from visible light region to near infrared region, and only visible light region Further, a light shielding film containing a black pigment containing an organic pigment such as aniline black having strong absorption characteristics, and a half mirror type light shielding member on which a metal such as aluminum is vapor-deposited are proposed.
  • Patent Document 1 at least one selected from the group consisting of a group IIIa, a group IVa, a group Vb, a group VIb and a group VIIb of the periodic table as a first layer on the transparent glass substrate from the substrate side.
  • a composite tungsten oxide film containing metal ions is provided, a transparent dielectric film is provided as a second layer on the first layer, and a group IIIa, IVa, Vb of the periodic table is provided on the second layer as a third layer.
  • a composite tungsten oxide film containing at least one metal ion selected from the group consisting of group VIb and group VIIb, and the refractive index of the transparent dielectric film of the second layer being the first layer and the first layer By lowering the refractive index of the composite tungsten oxide film of the third layer, it is possible to preferably use an infrared ray shielding material which can be suitably used in a portion where high visible light transmittance and good infrared ray shielding performance are required. Vinegar has been proposed.
  • Patent Document 2 a first dielectric film is provided as a first layer on a transparent glass substrate from the substrate side by the same method as Patent Document 1, and tungsten oxide is provided as a second layer on the first layer.
  • An infrared blocking glass has been proposed in which a film is provided and a second dielectric film is provided as a third layer on the second layer.
  • Patent Document 3 a composite tungsten oxide film containing the same metal element as in Patent Document 1 is provided as a first layer from the substrate side on a transparent substrate by the same method as in Patent Document 1, and the first layer A heat ray blocking glass having a transparent dielectric film provided thereon as a second layer has been proposed.
  • Patent Document 4 tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), niobium pentoxide (Nb 2 O 5 ), tantalum pentoxide containing an additive element such as hydrogen, lithium, sodium or potassium, etc.
  • a metal oxide film selected from one or more of (Ta 2 O 5 ), vanadium pentoxide (V 2 O 5 ) and vanadium dioxide (VO 2 ) is coated by a CVD method or a spray method and is thermally heated at about 250 ° C.
  • a solar control glass sheet having a solar light shielding property formed by being decomposed has been proposed.
  • Patent Document 5 proposes a solar light-modulating light insulation material using tungsten oxide obtained by hydrolyzing tungstic acid, and adding an organic polymer having a specific structure of polyvinyl pyrrolidone to the tungsten oxide. ing.
  • the solar light is irradiated with sunlight, the ultraviolet light in the light is absorbed by tungsten oxide to generate excited electrons and holes, and the amount of appearance of pentavalent tungsten is remarkable with a small amount of ultraviolet light.
  • the color reaction is accelerated to increase, and the color density increases accordingly.
  • pentavalent tungsten is extremely rapidly oxidized to hexavalent to accelerate the decoloring reaction.
  • the coloration and decoloring reaction to sunlight is fast, an absorption peak appears at a wavelength of 1250 nm in the near-infrared region at the time of coloring, and it is possible to block the near-infrared light of sunlight It has been proposed that a thermal insulation material be obtained.
  • Patent Document 6 the present inventors dissolve tungsten hexachloride in alcohol and evaporate the medium as it is or heat it to reflux, then evaporate the medium and then heat it at 100 ° C to 500 ° C. It has been disclosed to obtain a tungsten oxide fine particle powder comprising tungsten trioxide or its hydrate or a mixture of both. The present inventors have also disclosed that an electrochromic device can be obtained by using the tungsten oxide fine particles, that the optical characteristics of the film can be changed when a multilayer laminate is formed and protons are introduced into the film.
  • Patent Document 7 uses ammonium meta-tungstate and various water-soluble metal salts as raw materials, heats the dried product of the mixed aqueous solution at a heating temperature of about 300 to 700 ° C., and is inactive to this heating MxWO 3 (M; metal element such as alkali, alkaline earth, rare earth, etc.) by supplying hydrogen gas added with gas (additional amount: about 50 vol% or more) or steam (additional amount: about 15 vol% or less)
  • MxWO 3 M
  • a method has been proposed for producing various tungsten bronzes represented by ⁇ x ⁇ 1).
  • methods for producing various tungsten bronze-coated composites by performing the same operation on a support are proposed, and use as an electrode catalyst material for fuel cells and the like is proposed.
  • the inventors of the present invention are directed to an infrared shielding material fine particle dispersion in which infrared shielding material fine particles are dispersed in a medium, and excellent optical properties, conductivity and manufacturing method of the infrared shielding material fine particle dispersion in Patent Document 8. Disclosed. Among other things, the infrared shielding properties were superior to conventional shielding materials.
  • the infrared shielding material fine particle is a fine particle of tungsten oxide represented by a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), and / or a general formula MxWyOz (Where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au) , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be , Hf, Os, Bi, I, W is tungsten, O is oxygen, 0.001 ⁇ x / y ⁇ 1, 2.2 ⁇ z / y ⁇ 3.0) Particles of the complex tungsten oxide represented by Particle diameter
  • JP-A-8-59300 Unexamined-Japanese-Patent No. 8-12378 Japanese Patent Application Laid-Open No. 8-283044 Japanese Patent Laid-Open No. 2000-119045 JP-A-9-127559 JP 2003-121884 JP-A-8-73223 WO 2005/37932 International Publication No. 2010/55570
  • a solid resin is a polymer medium that is solid at room temperature, and includes polymer media other than those three-dimensionally cross-linked (sometimes referred to as "matrix resin" in the present invention).
  • Patent Document 9 a tungsten oxide represented by the general formula WyOz or / and a general formula as infrared shielding fine particles having excellent water resistance and excellent infrared shielding properties.
  • the infrared absorbing material is basically used outdoors because of its nature, and high weatherability is often required. And, as market demand increases year by year, further improvement of water resistance and moisture and heat resistance is required for the infrared shielding fine particles disclosed in Patent Document 9.
  • the present invention has been made under the above-mentioned circumstances, and the subject of the present invention is a surface-treated infrared-absorbing fine particle having excellent moisture-heat resistance and excellent infrared-absorbing characteristics, and the surface-treated infrared-absorbing fine particle A surface-treated infrared-absorbing fine particle powder, an infrared-absorbing fine particle dispersion liquid and an infrared-absorbing fine particle dispersion using the surface-treated infrared-absorbing fine particle, and a method for producing them.
  • the present inventors set the tungsten oxide microparticles and / or composite tungsten oxide microparticles having excellent optical properties as infrared absorbing microparticles, and the heat and humidity resistance and chemical stability of the infrared absorbing microparticles.
  • the individual infrared ray absorbing of the individual It was considered important to coat the surface of the particles.
  • the present inventors have further studied, and have conceived metal chelate compounds and metal cyclic oligomer compounds as compounds forming the coating film, which are excellent in affinity in the above-mentioned infrared absorbing fine particles. And, as a result of further research, hydrolysis products of these compounds or polymers of the hydrolysis products, which are formed when the metal chelate compound and the metal cyclic oligomer compound are hydrolyzed, are individual infrared absorptions. It was conceived to be a compound that adsorbs uniformly on the surface of fine particles and forms a strong coating film.
  • the surface of tungsten oxide fine particles and / or composite tungsten oxide fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a metal Infrared absorbing fine particles coated with a coating film containing one or more selected from a hydrolysis product of a cyclic oligomer compound (in the present invention, it may be described as “surface-treated infrared absorbing fine particles”). The idea is to And, it has been found that the surface-treated infrared-absorbing fine particles have excellent moisture and heat resistance.
  • the surface-treated infrared-absorbing fine particles, the surface-treated infrared-absorbing fine particle powder containing the surface-treated infrared-absorbing fine particles, and the infrared-absorbing fine particle dispersion prepared by dispersing the surface-treated infrared-absorbing fine particles in an appropriate medium It has been found that the fine absorbent particle dispersion and the like are excellent in heat and humidity resistance and have excellent infrared absorption characteristics, and the present invention has been made.
  • the surface of the infrared absorbing particles is 1 type selected from hydrolysis products of metal chelate compounds, polymers of hydrolysis products of metal chelate compounds, products of hydrolysis of metal cyclic oligomer compounds, polymers of hydrolysis products of metal cyclic oligomer compounds.
  • the surface-treated infrared-absorbing fine particles are coated with a coating film including the above.
  • the second invention is It is a surface-treated infrared-absorbing fine particle according to the first invention, wherein the film thickness of the coating film is 0.5 nm or more.
  • the third invention is The surface treatment according to the first or second invention, wherein the metal chelate compound or the metal cyclic oligomer compound contains one or more metal elements selected from Al, Zr, Ti, Si and Zn. Infrared absorbing fine particles.
  • the fourth invention is The metal chelate compound or the metal cyclic oligomer compound according to any one of the first to third inventions characterized in having at least one selected from an ether bond, an ester bond, an alkoxy group and an acetyl group. Surface-treated infrared absorbing fine particles.
  • the fifth invention is The infrared absorbing fine particles have a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), or / and a general formula MxWyOz (where M is H, He, Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In , Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I, Yb W is tungsten, O is oxygen, and infrared absorbing fine particles represented by 0.001 ⁇ x / y ⁇ 1, 2.0 ⁇ z / y ⁇ 3.0)
  • the sixth invention is A surface-treated infrared-absorbing fine particle powder comprising the surface-treated infrared-absorbing fine particle according to any of the first to fifth inventions.
  • the seventh invention is It is a surface-treated infrared-absorbing fine particle powder according to the sixth invention, wherein the carbon concentration is 0.2% by mass or more and 5.0% by mass or less.
  • the eighth invention is A surface-treated infrared-absorbing fine particle according to any one of the first to fifth inventions is dispersed in a predetermined liquid medium.
  • the ninth invention is The infrared light according to the eighth invention, wherein the liquid medium is at least one liquid medium selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, and water. It is an absorbing particle dispersion.
  • the tenth invention is A surface-treated infrared-absorbing fine particle according to any one of the first to fifth inventions is dispersed in a predetermined solid resin, and the dispersion is an infrared-absorbing fine particle dispersion.
  • the eleventh invention is The solid resin is at least one resin selected from fluorocarbon resin, PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, and polyimide resin. It is an infrared rays absorption particulate dispersion given in the 10th invention.
  • the twelfth invention is The infrared-absorbing fine particle dispersion according to the eighth or ninth invention, which is a dried solidified product of the infrared-absorbing fine particle dispersion according to the eighth invention.
  • the thirteenth invention is Mixing infrared radiation-absorbing fine particles and water, and performing dispersion treatment to obtain a dispersion for forming a coating film using water as a medium; Adding the metal chelate compound and / or the metal cyclic oligomer compound while stirring the dispersion for forming a coating film using the water as a medium; The stirring is continued even after the addition, and the surface of the infrared absorbing fine particles is treated with a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, Coating with at least one selected from polymers of hydrolysis products of metal cyclic oligomer compounds, and obtaining an infrare
  • the fourteenth invention is Mixing the infrared absorbing fine particles and the organic solvent and performing dispersion treatment to obtain a dispersion for forming a coating film using the organic solvent as a medium; Adding the metal chelate compound or / and the metal cyclic oligomer compound and water simultaneously and in parallel while stirring the dispersion for forming a coating film using the organic solvent as a medium; The stirring is continued even after the addition, and the surface of the infrared absorbing fine particles is treated with a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, Coating with at least one selected from polymers of hydrolysis products of metal cyclic oligomer compounds, and obtaining an organic solvent dispersion liquid of infrared absorbing fine particles; surface-treated infrared absorbing fine particles It is a manufacturing method.
  • the fifteenth invention is The surface according to the thirteenth or fourteenth invention, wherein the metal chelate compound or / and the metal cyclic oligomer compound contain one or more kinds of metal elements selected from Al, Zr, Ti, Si and Zn. It is a manufacturing method of processing infrared rays absorption particulates.
  • the sixteenth invention is The infrared absorbing fine particles have a general formula WyOz (wherein W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999), or / and a general formula MxWyOz (where M is H, He, Alkali metals, alkaline earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In , Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, Mo, Ta, Re, Be, Hf, Os, Bi, I, Yb W is tungsten, O is oxygen, and infrared absorbing fine particles represented by 0.001 ⁇ x / y ⁇ 1, 2.0 ⁇ z / y ⁇ 3.0) Described in any of the thirteenth to fifteen
  • the seventeenth invention is The dispersion for forming a coating film using water as a medium according to the thirteenth, fifteenth, or sixteenth invention, or the coating film using the organic solvent according to any of the fourteenth to sixteenth inventions as a medium Removing the medium from the dispersion liquid for formation to obtain a surface-treated infrared-absorbing fine particle powder containing surface-treated infrared-absorbing fine particles, which is a method for producing a surface-treated infrared-absorbing fine particle powder.
  • the eighteenth invention is The method for producing surface-treated infrared-absorbing fine particle powder according to the seventeenth invention, wherein the carbon concentration contained in the surface-treated infrared-absorbing fine particle powder is 0.2% by mass to 5.0% by mass. It is.
  • the nineteenth invention is A process of adding the surface-treated infrared-absorbing fine particle powder according to the seventeenth or eighteenth invention to a predetermined medium, and dispersing the mixture.
  • the twentieth invention is The dispersion for forming a coating film using water as a medium according to the thirteenth, fifteenth, or sixteenth invention, or the coating film using the organic solvent according to any of the fourteenth to sixteenth inventions as a medium And a step of replacing the medium of the forming dispersion with a predetermined medium, and a method of producing the infrared-absorbing fine particle dispersion.
  • the twenty-first invention is The dispersion for forming a coating film using water as a medium according to the thirteenth, fifteenth, or sixteenth invention, or the coating film using the organic solvent according to any of the fourteenth to sixteenth inventions as a medium
  • a dispersion for forming a coating film, which uses the organic solvent according to any one of the inventions 14 to 16 as a medium, is used as a dispersion of infrared absorbing fine particles, which is a method for producing an infrared absorbing fine particle dispersion.
  • the twenty-second invention is An infrared-absorbing fine particle dispersion obtained by the method for producing an infrared-absorbing fine particle dispersion according to any one of the nineteenth to twenty-first inventions is coated on a predetermined substrate and dried to obtain an infrared-absorbing fine particle dispersion. It is a manufacturing method of the infrared rays absorption fine particle dispersion characterized by having a process to obtain.
  • the twenty-third invention is A surface-treated infrared-absorbing fine particle powder obtained by the method of producing a surface-treated infrared-absorbing fine particle powder according to the seventeenth or eighteenth invention, or a method of manufacturing the infrared-absorbing fine particle dispersion according to any of the nineteenth to twenty-first inventions
  • an infrared-absorbing fine particle dispersion having high moisture and heat resistance and excellent infrared absorption characteristics can be produced.
  • FIG. 7 is a 300,000 times transmission electron micrograph of the surface-treated infrared-absorbing fine particles according to Example 1.
  • the surface of the tungsten oxide fine particles and / or the composite tungsten oxide fine particles, which are infrared-absorbing fine particles is a hydrolysis product of a metal chelate compound or a hydrolysis product of a metal chelate compound
  • coating films to impart moisture and heat resistance to infrared absorbing fine particles, hydrolysis product of metal chelate compound, polymer of hydrolysis product of metal chelate compound, metal cyclic oligomer compound to the surface of the fine particle.
  • the coating film formed using at least one selected from the hydrolysis products of and the polymers of the hydrolysis products of metal cyclic oligomer compounds may be simply referred to as "coating films”.
  • Infrared absorbing fine particles Generally, it is known that a material containing free electrons shows a reflection and absorption response to electromagnetic waves around a region of sunlight with a wavelength of 200 nm to 2600 nm by plasma vibration. It is known that when the powder of such a substance is made into particles smaller than the wavelength of light, geometric scattering in the visible light region (wavelength 380 nm to 780 nm) is reduced and transparency in the visible light region is obtained. In the present invention, “transparency” is used in the meaning of "little scattering and high transparency to light in the visible light region".
  • tungsten oxide does not have effective free electrons, so it has low absorption and reflection characteristics in the infrared region, and is not effective as infrared absorbing fine particles.
  • WO 3 having oxygen deficiency and a composite tungsten oxide obtained by adding a positive element such as Na to WO 3 are conductive materials and known to have free electrons. Then, analysis of single crystals or the like of materials having these free electrons suggests that free electrons respond to light in the infrared region.
  • the present inventors have found that in a specific part of the composition range of tungsten and oxygen, there is a particularly effective range as infrared absorbing fine particles, and it is transparent in the visible light region and tungsten oxide having absorption in the infrared region. It was thought to be fine particles and composite tungsten oxide fine particles.
  • the tungsten oxide particles and / or the composite tungsten oxide particles which are infrared absorbing particles according to the present invention (1) tungsten oxide particles, (2) composite tungsten oxide particles, (3) tungsten oxide particles And composite tungsten oxide fine particles will be described in this order.
  • Tungsten oxide fine particles Tungsten oxide fine particles according to the present invention have a tungsten oxide represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.2 ⁇ z / y ⁇ 2.999) Fine particles of
  • the composition range of tungsten and oxygen is such that the composition ratio of oxygen to tungsten is less than 3 and the infrared absorbing fine particles are described as WyOz. It is preferable that 2 ⁇ z / y ⁇ 2.999. If the value of the z / y is 2.2 or more, it is possible to avoid the appearance of the crystal phase of WO 2 other than the purpose in the tungsten oxide, and the chemical stability as a material. As it is possible to obtain effective infrared absorbing fine particles. On the other hand, if the value of z / y is 2.999 or less, the required amount of free electrons is generated, resulting in efficient infrared-absorbing fine particles.
  • the value of x / y indicating the amount of addition of the element M will be described. If the value of x / y is greater than 0.001, a sufficient amount of free electrons are generated in the composite tungsten oxide, and the desired infrared absorption effect can be obtained. Then, as the addition amount of the element M is larger, the supply amount of free electrons increases and the infrared absorption efficiency also increases, but the effect is also saturated when the value of x / y is about 1. In addition, it is preferable that the value of x / y is smaller than 1 because generation of an impurity phase in the infrared absorbing fine particles can be avoided.
  • the element M is H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au , Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be It is preferable that it is one or more types selected from Hf, Os, Bi, I, and Yb.
  • the element M is an alkali metal, an alkaline earth metal, a rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir , Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti It is more preferable that it is one or more types of elements selected from among Nb, V, Mo, Ta, and Re. And, from the viewpoint of improving the optical characteristics as infrared absorbing fine particles and weatherability, the element M is more preferably an alkaline earth metal element, a transition metal element, a 4B group element and a 5B group element.
  • FIG. 1 is a schematic plan view of this hexagonal crystal structure.
  • a hexagonal air gap is formed by collecting six octahedrons formed of WO 6 units indicated by reference numeral 11, and the element M indicated by reference numeral 12 is disposed in the space to form one piece.
  • a unit is formed, and a large number of units of one unit are assembled to form a hexagonal crystal structure.
  • the composite tungsten oxide fine particles include the unit structure described with reference to FIG.
  • the composite tungsten oxide fine particles may be crystalline or amorphous.
  • the present invention is not limited to the above-described elements.
  • the addition amount of the additional element M is preferably 0.2 or more and 0.5 or less, more preferably 0 in the value of x / y. .33.
  • the value of x / y is 0.33, it is considered that the above-described element M is disposed in all of the hexagonal voids.
  • tetragonal and cubic complex tungsten oxides other than hexagonal crystals are also effective as infrared absorbing fine particles.
  • the absorption position in the infrared region tends to change, and the absorption position tends to move to the long wavelength side in the order of cubic crystal ⁇ tetragonal crystal ⁇ hexagonal crystal.
  • it is hexagonal, tetragonal and cubic in order of less absorption in the visible light region. Therefore, it is preferable to use a hexagonal composite tungsten oxide for applications that transmit light in the more visible light region and shield light in the more infrared region.
  • the tendency of the optical characteristics described here is a rough tendency, and changes with the type of the additive element, the addition amount, and the oxygen amount, and the present invention is not limited to this.
  • Tungsten Oxide Fine Particles and Composite Tungsten Oxide Fine Particles The infrared absorbing fine particles containing tungsten oxide fine particles or composite tungsten oxide fine particles according to the present invention largely absorb light in the near infrared region, particularly around a wavelength of 1000 nm. Therefore, there are many things that the transmission color tone becomes from blue to green.
  • the dispersed particle diameter of the tungsten oxide fine particles or the composite tungsten oxide fine particles in the infrared absorbing fine particles can be respectively selected depending on the purpose of use.
  • a particle diameter of 800 nm or less it is preferable to have a particle diameter of 800 nm or less. This is because particles smaller than 800 nm do not completely block light by scattering, and can maintain visibility in the visible light region and at the same time, can efficiently maintain transparency.
  • the dispersed particle size is preferably 200 nm or less, preferably 100 nm or less.
  • the reason for this is that if the dispersed particle size of the particles is small, scattering of light in the visible light region with a wavelength of 400 nm to 780 nm due to geometric or Mie scattering is reduced, resulting in an infrared absorbing film like frosted glass, It is possible to avoid losing clear transparency. That is, when the dispersed particle size is 200 nm or less, the geometric scattering or Mie scattering is reduced to be a Rayleigh scattering region.
  • the scattered light is reduced in proportion to the sixth power of the particle diameter, so that the scattering is reduced as the dispersed particle diameter is reduced, and the transparency is improved. Further, when the dispersed particle size is 100 nm or less, the scattered light is extremely reduced, which is preferable. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is smaller, and industrial production is easy if the dispersed particle size is 1 nm or more.
  • the haze value of the infrared-absorbing fine particle dispersion in which the infrared-absorbing fine particles according to the present invention are dispersed in a medium has a visible light transmittance of 85% or less and a haze of 30% or less be able to. If the haze is more than 30%, it looks like frosted glass and sharp transparency can not be obtained.
  • the dispersed particle diameter of the infrared absorbing fine particles can be measured using ELS-8000 or the like manufactured by Otsuka Electronics Co., Ltd. based on the dynamic light scattering method.
  • the so-called "Magnellie phase” having a composition ratio represented by 2.45 z z / y 2.99 2.999 is chemically stable, and in the infrared region.
  • the absorption characteristics are also good, they are preferable as infrared absorbing fine particles.
  • the crystallite diameter of the infrared absorbing fine particles is preferably 1 nm to 200 nm, more preferably 1 nm to 100 nm, and still more preferably 10 nm to 70 nm, from the viewpoint of exhibiting excellent infrared absorption characteristics.
  • X-ray diffraction pattern For measurement of the crystallite diameter, measurement of an X-ray diffraction pattern by powder X-ray diffraction method ( ⁇ -2 ⁇ method) and analysis by Rietveld method are used.
  • the measurement of the X-ray diffraction pattern can be performed, for example, using a powder X-ray diffractometer "X'Pert-PRO / MPD" manufactured by Spectrum S Corporation PANalytical.
  • the surface treating agent used for surface coating of infrared absorbing fine particles is a polymerization product of a metal chelate compound and a polymerization product of a metal chelate compound hydrolysis product And at least one selected from the group consisting of hydrolysis products of metal cyclic oligomer compounds and polymers of hydrolysis products of metal cyclic oligomer compounds.
  • the metal chelate compound and the metal cyclic oligomer compound are at least one selected from an ether bond, an ester bond, an alkoxy group, and an acetyl group from the viewpoint of being preferably a metal alkoxide, metal acetylacetonate and metal carboxylate. It is preferable to have
  • (1) metal chelate compound, (2) metal cyclic oligomer compound, (3) hydrolysis product and polymer of metal chelate compound or metal cyclic oligomer compound, (4) The addition amount of the surface treatment agent will be described in order.
  • the metal chelate compound used in the present invention is preferably one or more selected from Al-based, Zr-based, Ti-based, Si-based, and Zn-based chelate compounds containing an alkoxy group. .
  • aluminum alcoholates such as aluminum ethylate, aluminum isopropylate, aluminum sec-butylate, mono-sec-butoxyaluminum diisopropylate or the like, or polymers thereof, ethylacetoacetate aluminum diisopropylate, aluminum tris (Ethyl acetoacetate), octyl acetoacetate aluminum diisopropyl plate, stearyl acetoaluminum diisopropiolate, aluminum monoacetylacetonate bis (ethylacetoacetate), aluminum tris (acetylacetonate), etc. can be exemplified.
  • These compounds dissolve aluminum alcoholate in aprotic solvents, petroleum solvents, hydrocarbon solvents, ester solvents, ketone solvents, ether solvents, amide solvents, etc., and Diketones, ⁇ -ketoesters, monohydric or polyhydric alcohols, fatty acids and the like are added, and the mixture is heated under reflux to be an alkoxy group-containing aluminum chelate compound obtained by a substitution reaction of a ligand.
  • Zirconium-based chelate compounds such as zirconium ethylate, zirconium alcoholate such as zirconium butyrate or polymers thereof, zirconium tributoxystearate, zirconium tetraacetylacetonate, zirconium tributoxyacetylacetonate, zirconium dibutoxybis (acetyl) Examples include acetonate), zirconium tributoxyethylacetoacetate, zirconium butoxyacetylacetonate bis (ethylacetoacetate) and the like.
  • titanium-based chelate compounds include titanium alcoholates such as methyl titanate, ethyl titanate, isopropyl titanate, butyl titanate and 2-ethylhexyl titanate, and polymers thereof, titanium acetylacetonate, titanium tetraacetylacetonate, titanium octylene glycolate And titanium ethyl acetoacetate, titanium lactate, titanium triethanol aminate, and the like.
  • a tetrafunctional silane compound represented by the general formula: Si (OR) 4 (wherein R is the same or different monovalent hydrocarbon group having 1 to 6 carbon atoms) or a hydrolysis thereof The product can be used.
  • Specific examples of the tetrafunctional silane compound include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like.
  • silane monomer or an oligomer in which a part or the whole of the alkoxy group of these alkoxysilane monomers is hydrolyzed to give a silanol (Si-OH) group, and a polymer self-condensed through a hydrolysis reaction Is also possible.
  • a part or the whole of an alkoxy group is hydrolyzed to give a silanol
  • examples thereof include silane monomers converted to (Si-OH) groups, oligomers of 4- to 5-mers, and polymers (silicone resins) having a weight average molecular weight (Mw) of about 800 to 8000.
  • the alkoxysilyl group (Si-OR) in the alkoxysilane monomer is not all hydrolyzed into silanol (Si-OH) in the course of the hydrolysis reaction.
  • Examples of zinc-based chelate compounds include zinc salts of organic carboxylic acids such as zinc octylate, zinc laurate and zinc stearate, zinc acetylacetonate chelates, benzoylacetone zinc chelates, dibenzoylmethane zinc chelates, ethyl acetoacetate zinc chelates, etc. It can be preferably exemplified.
  • the metal cyclic oligomer compound according to the present invention is preferably at least one selected from Al-, Zr-, Ti-, Si-, and Zn-based cyclic oligomer compounds.
  • cyclic aluminum oligomer compounds such as cyclic aluminum oxide octylate can be preferably exemplified.
  • the type and concentration of the organic solvent are generally present even if water necessary and sufficient for the stoichiometric composition is present in the system.
  • the alkoxy group, ether bond or ester bond of the metal chelate compound or metal cyclic oligomer compound to be the starting material is hydrolyzed. Therefore, depending on the conditions of the surface coating method described later, even after hydrolysis, it may be in an amorphous state in which carbon C is incorporated in its molecule.
  • the coating film may contain an undecomposed metal chelate compound or / and a metal cyclic oligomer compound, but there is no particular problem if it is a trace amount.
  • the addition amount of the metal chelate compound and the metal cyclic oligomer compound described above is 0.1 parts by mass or more and 1000 parts by mass or less in terms of metal element with respect to 100 parts by mass of infrared absorbing fine particles. Is preferred. More preferably, it is in the range of 1 part by mass or more and 500 parts by mass or less. More preferably, it is in the range of 10 parts by mass or more and 150 parts by mass or less.
  • the metal chelate compound or the metal cyclic oligomer compound is 0.1 parts by mass or more, the hydrolysis product of those compounds and the polymer of the hydrolysis product cover the surface of the infrared absorbing fine particles The heat and humidity resistance is improved.
  • the amount of the metal chelate compound or the metal cyclic oligomer compound is 1000 parts by mass or less, it can be avoided that the adsorption amount with respect to the infrared absorbing fine particles becomes excessive. Further, the improvement of the heat and moisture resistance by the surface coating is not saturated, and the improvement of the coating effect can be expected.
  • the addition amount of the metal chelate compound or the metal cyclic oligomer compound is preferably 1000 parts by mass or less also from the industrial viewpoint.
  • the surface of the infrared absorbing fine particle is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, a hydrolysis product of a metal cyclic oligomer compound It is coated with a coating film containing one or more selected from polymers.
  • tungsten oxide or / and composite tungsten oxide which is infrared absorbing fine particles is finely pulverized in advance, It is preferable to disperse in a medium and keep it in a monodispersed state. Then, it is important to secure the dispersed state in the pulverization and dispersion treatment steps and to prevent the fine particles from aggregating each other.
  • the surface treatment agent according to the present invention when added by subjecting the dispersion for forming a coating film according to the present invention to a pulverization / dispersion treatment, the surface treatment agent is applied to each infrared absorbing fine particle.
  • the product of hydrolysis and the polymer of the product of hydrolysis can be uniformly and strongly coated.
  • the grinding * dispersion processing method using apparatuses such as a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, is mentioned, for example.
  • a medium stirring mill such as a bead mill, a ball mill, a sand mill, a paint shaker, etc.
  • medium media such as beads, balls, and Ottawa sand. It is preferable from that.
  • the hydrolysis reaction of the surface treatment agent necessarily precedes the polymerization reaction of the generated hydrolysis product.
  • the carbon C remaining amount in the surface treatment agent molecule present in the coating film can be reduced as compared with the case where water is not used as the medium.
  • a high-density coating film could be formed by reducing the amount of carbon C remaining in the surface treatment agent molecules present in the coating film.
  • dispersion liquid for forming a coating film using water as a medium a metal chelate compound, a metal cyclic oligomer compound, a hydrolysis product thereof, and a polymer of the hydrolysis product are metal immediately after the start of the addition. It may be decomposed into ions, but in such a case, the decomposition of the metal ion soot is completed when it becomes a saturated aqueous solution.
  • the dispersion concentration of the tungsten oxide and / or the composite tungsten oxide in the dispersion for forming a coating film is 0.01% by mass to 80% by mass in the dispersion for forming a coating film using the water as a medium.
  • the dispersion concentration is in this range, the pH can be 8 or less, and the infrared absorbing fine particles according to the present invention maintain the dispersion by electrostatic repulsion.
  • the surface of all infrared absorbing fine particles is a hydrolysis product of a metal chelate compound, a polymer of a hydrolysis product of a metal chelate compound, a hydrolysis product of a metal cyclic oligomer compound, and a hydrolysis of a metal cyclic oligomer compound It is considered that the surface-treated infrared-absorbing fine particles according to the present invention are formed by being coated with a coating film containing one or more selected from polymer of the product.
  • the film thickness of the coating film of the surface treatment infrared rays absorption microparticle which concerns on this invention is 0.5 nm or more. This is because if the film thickness of the coating film is 0.5 nm or more, it is considered that the surface-treated infrared-absorbing fine particles exhibit sufficient wet heat resistance and chemical stability. On the other hand, it is considered that the film thickness of the coating film is preferably 100 nm or less from the viewpoint that the surface-treated infrared-absorbing fine particles secure predetermined optical properties. The film thickness is preferably 0.5 nm or more and 20 nm or less, more preferably 1 nm or more and 10 nm or less. The film thickness of the coating film can be measured by a transmission electron microscope, and a portion without the lattice of the infrared absorbing fine particles (arrangement of atoms in the crystal) corresponds to the coating film.
  • the surface treatment agent according to the present invention and the pure water are dropped in parallel while stirring and mixing the dispersion for forming a coating film using an organic solvent as a medium.
  • the medium temperature that affects the reaction rate, and the dropping rate of the surface treatment agent and the pure water are appropriately controlled.
  • an organic solvent what is necessary is just a solvent which melt
  • the surface-treated infrared-absorbing fine particles according to the present invention obtained in the step of preparing the dispersion for forming a coating film described above are an infrared-absorbing fine particle dispersion or As a raw material of an infrared rays absorption base material, it can be used in the state disperse
  • the dispersion for forming a coating film or the surface-treated infrared absorbing fine particle according to the purpose of obtaining the powder of the surface-treated infrared absorbing fine particle from the dispersion for forming a coating film, the purpose of drying the obtained surface-treated infrared absorbing fine particle powder, etc. It is possible to heat treat the powder.
  • the heat treatment temperature does not exceed the temperature at which the surface-treated infrared-absorbing fine particles strongly aggregate to form strong aggregates. This is because the surface-treated infrared-absorbing fine particle according to the present invention is required to have transparency in many cases from the use thereof in the infrared-absorbing fine particle dispersion and the infrared-absorbing base material to be finally used.
  • an infrared-absorbing fine particle dispersion or an infrared-absorbing substrate is produced by using an aggregate as the infrared-absorbing material, one having a high haze (haze) will be obtained.
  • heat treatment is carried out above the temperature at which strong aggregates are formed, the strong aggregates are crushed dry or / and wet in order to ensure the transparency of the infrared absorbing fine particle dispersion or the infrared absorbing substrate. Will be redispersed.
  • the coating film on the surface of the surface-treated infrared-absorbing fine particles may be scratched, and in some cases, part of the coating film may be exfoliated, and the surface of the fine particles may be exposed during the disintegration and redispersion. Conceivable.
  • the surface-treated infrared-absorbing fine particles according to the present invention do not require heat treatment after the treatment after mixing and stirring, and thus do not cause strong aggregation, and thus dispersion treatment for breaking up strong aggregation is It is unnecessary or it can be done in a short time.
  • the coating film of the surface-treated infrared-absorbing fine particles according to the present invention remains coated with the individual infrared-absorbing fine particles without being damaged.
  • the infrared rays absorption fine particle dispersion and infrared rays absorption base material which are manufactured using the surface treatment infrared rays absorption microparticles show moisture heat resistance superior to those obtained by the conventional method.
  • a high density coating film can be formed by reducing the amount of carbon C remaining in the surface treatment agent molecules present in the coating film.
  • the carbon concentration to be contained is preferably 0.2% by mass or more and 5.0% by mass or less. More preferably, it is 0.5 mass% or more and 3.0 mass% or less.
  • the infrared absorbing fine particle dispersion according to the present invention is one in which the surface-treated infrared absorbing fine particle according to the present invention is dispersed in a liquid medium.
  • a liquid medium one or more liquid mediums selected from organic solvents, fats and oils, liquid plasticizers, compounds polymerized by curing, water, and the like can be used.
  • the infrared absorbing fine particle dispersion according to the present invention (i) production method, (ii) organic solvent used, (iii) oil used, (iv) liquid plasticizer used, (v) polymerizing by curing used The compound to be used, (vi) the dispersant to be used, and (vii) the method of using the infrared-absorbing fine particle dispersion will be described in this order.
  • the above-mentioned dispersion for forming a coating film is heated, dried, or under the condition that strong aggregation of the surface treated infrared absorbing fine particles can be avoided.
  • it is dried by vacuum flow drying at room temperature, spray drying or the like to obtain a surface-treated infrared-absorbing fine particle powder according to the present invention.
  • the surface-treated infrared-absorbing fine particle powder may be added to the liquid medium described above and re-dispersed.
  • the dispersion for forming a coating film is separated into the surface-treated infrared absorbing fine particles and the medium, and the medium of the dispersion for forming a coating film is replaced with the medium of the infrared-absorbing fine particle dispersion (so-called solvent substitution). It is also preferable to produce an infrared absorbing fine particle dispersion.
  • the medium of the coating film-forming dispersion and the medium of the infrared absorbing fine particle dispersion are made to correspond in advance, and the coating film-forming dispersion after surface treatment is used as it is as the infrared absorbing fine particle dispersion. Is also a preferred configuration.
  • Alcohols, ketones, hydrocarbons, glycols, water systems, etc. can be used.
  • alcohol solvents such as methanol, ethanol, 1-propanol, isopropanol, butanol, pentanol, benzyl alcohol and diacetone alcohol
  • Ketone solvents such as acetone, methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, cyclohexanone and isophorone
  • Ester solvents such as 3-methyl-methoxy-propionate
  • Glycol derivatives such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol methyl ether acetate, propylene glycol monomethyl ether, ethylene glycol isopropyl ether, propylene glycol monomethyl ether,
  • organic solvents particularly, dimethyl ketone, methyl ethyl ketone, methyl isobutyl ketone, toluene, propylene glycol monomethyl ether acetate, n-butyl acetate and the like can be preferably used.
  • Fats and oils used as fats and oils used for the infrared rays absorption fine particle dispersion concerning the present invention vegetable fats and oils or vegetable origin fats and oils are preferred.
  • vegetable oils include dry oils such as linseed oil, sunflower oil, soy sauce and eno oil, sesame oil, cottonseed oil, rapeseed oil, semi-dry oil such as soybean oil, rice bran oil and poppy seed oil, olive oil, palm oil, palm oil and dehydrated castor oil Non-drying oil, etc. can be used.
  • fatty acid monoesters obtained by direct ester reaction of fatty acid of vegetable oil and monoalcohol, ethers, etc. can be used.
  • commercially available petroleum solvents can also be used as fats and oils.
  • Isopar (registered trademark) E, Exol (registered trademark) Hexane, Hexane, E, D30, D40, D60, D80, D95, D110, D130 (all manufactured by Exxon Mobil), etc. are used. I can do it.
  • liquid plasticizer used for the infrared absorbing fine particle dispersion for example, a plasticizer which is a compound of a monohydric alcohol and an organic acid ester, a polyhydric alcohol organic acid ester compound It is possible to use ester-based plasticizers, phosphoric acid-based plasticizers such as organic phosphoric acid-based plasticizers, and the like. In addition, what is liquid at all at room temperature is preferable. Among them, plasticizers which are ester compounds synthesized from polyhydric alcohols and fatty acids can be preferably used.
  • the ester compound synthesized from the polyhydric alcohol and the fatty acid is not particularly limited, and examples thereof include glycols such as triethylene glycol, tetraethylene glycol and tripropylene glycol, butyric acid, isobutyric acid, caproic acid and 2-ethyl butyric acid Using glycol-based ester compounds, etc. obtained by reaction with monobasic organic acids such as heptyl acid, n-octyl acid, 2-ethylhexyl acid, pelargonic acid (n-nonyl acid), decyl acid and the like It can.
  • ester compounds of tetraethylene glycol and tripropylene glycol with the monobasic organic compounds and the like can also be mentioned.
  • fatty acid esters of triethylene glycol such as triethylene glycol dihexanate, triethylene glycol di-2-ethyl butyrate, triethylene glycol di-octanate, triethylene glycol di-2-ethyl hexanonate, etc. It can be used. Furthermore, fatty acid esters of triethylene glycol can also be preferably used.
  • (V) Compound which is polymerized by curing which is used is a monomer or oligomer which forms a polymer by polymerization etc. is there. Specifically, a methyl methacrylate monomer, an acrylate monomer, a styrene resin monomer, etc. can be used.
  • liquid media described above can be used in combination of two or more. Furthermore, if necessary, an acid or an alkali may be added to these liquid media to adjust the pH.
  • (Vi) Dispersant used in the dispersion liquid of the infrared absorbing fine particle according to the present invention in order to further improve the dispersion stability of the surface treated infrared absorbing fine particle and to avoid the coarsening of the dispersed particle diameter due to reaggregation, various kinds The addition of dispersants, surfactants, coupling agents, etc. is also preferred.
  • the said dispersing agent, a coupling agent, and surfactant can be selected according to a use, it is what has an amine-containing group, a hydroxyl group, a carboxyl group, a sulfo group, or an epoxy group as a functional group. preferable.
  • These functional groups are adsorbed on the surface of the surface-treated infrared absorbing fine particle to prevent aggregation and have an effect of uniformly dispersing. Polymeric dispersants having any of these functional groups in the molecule are more preferred.
  • an acrylic-styrene copolymer based dispersant having a functional group is also mentioned as a preferred dispersant.
  • acrylic-styrene copolymer-based dispersants having a carboxyl group as a functional group and acrylic dispersants having an amine-containing group as a functional group are mentioned as more preferable examples.
  • the dispersant having a functional group containing an amine is preferably one having a molecular weight of Mw 2000 to 200,000 and an amine value of 5 to 100 mg KOH / g.
  • a dispersant having a carboxyl group one having a molecular weight of Mw 2000 to 200,000 and an acid value of 1 to 50 mg KOH / g is preferable.
  • SOLSPERSE registered trademark
  • 3000 5000, 9000, 11200, 12000, 13000, 13240, 13650, 13940, 16000, 17000, 18000, 20000 by Nippon Lubrisol Corporation.
  • Addispur (registered trademark) (same as the following) PB-711, PB-821, PB-822, etc .; Company-made Disparon (registered trademark) 1751N, 1831, 1850, 1860, 1934, DA-400N, DA-703-50, DA-325, DA-375, DA-550, DA-705, DA-725 , DA-1401, DA-7301, DN-900, NS-5210, NVI-8514L, etc .; Alphon (registered trademark) manufactured by Toagosei Co., Ltd.
  • the infrared absorbing fine particle dispersion according to the present invention manufactured as described above is applied to the surface of a suitable substrate, and a dispersion film is formed there to obtain infrared absorption. It can be used as a base material. That is, the dispersion film is a kind of the dried and solidified material of the infrared absorbing fine particle dispersion.
  • the infrared absorbing fine particle dispersion can be dried and pulverized to obtain a powdery infrared absorbing fine particle dispersion according to the present invention (sometimes referred to as "dispersed powder" in the present invention). .
  • the said dispersed powder is 1 type of the dry solidified thing of an infrared rays absorption microparticle dispersion liquid.
  • the dispersed powder is a powdery dispersion in which surface-treated infrared-absorbing fine particles are dispersed in a solid medium (dispersant etc.), and is distinguished from the above-mentioned surface-treated infrared-absorbing fine particle powder. Since the dispersed powder contains a dispersant, it is possible to easily re-disperse the surface-treated infrared-absorbing fine particles in the medium by mixing with a suitable medium.
  • the dispersed powder can be used as a raw material for adding surface-treated infrared absorbing fine particles to an infrared absorbing product in a dispersed state. That is, the dispersed powder in which the surface-treated infrared absorbing fine particles according to the present invention are dispersed in a solid medium may be dispersed again in a liquid medium and used as a dispersion for an infrared absorbing product, which will be described later. As such, the dispersed powder may be kneaded into a resin and used.
  • the infrared absorbing fine particle dispersion in which the surface-treated infrared absorbing fine particles according to the present invention are mixed and dispersed in a liquid medium is used for various applications utilizing photothermal conversion.
  • surface-treated infrared-absorbing fine particles are added to uncured thermosetting resin, or after surface-treated infrared-absorbing fine particles according to the present invention are dispersed in an appropriate solvent, uncured thermosetting resin is added.
  • a curable ink composition can be obtained.
  • the curable ink composition is provided on a predetermined base material, and when cured by being irradiated with an infrared ray such as an infrared ray, the curable ink composition has excellent adhesion to the base material.
  • the curable ink composition is applied in a predetermined amount, irradiated with an electromagnetic wave such as infrared rays to be cured, piled up, and then formed into a three-dimensional object.
  • Curing ink composition most suitable for
  • the infrared absorbing fine particle dispersion according to the present invention is one in which the surface-treated infrared absorbing fine particles according to the present invention are dispersed in a solid medium.
  • solid media such as resin and glass, can be used as the said solid media.
  • the infrared absorbing fine particle dispersion according to the present invention will be described in the order of (i) production method and (ii) moisture and heat resistance.
  • the surface-treated infrared-absorbing fine particles according to the present invention are kneaded into a resin, they are mixed by heating and mixing at a temperature (about 200 to 300 ° C.) around the melting point of the resin.
  • a temperature about 200 to 300 ° C.
  • it can be formed by an extrusion molding method, an inflation molding method, a solution casting method, a casting method or the like.
  • the thickness of the film or board at this time may be appropriately set according to the purpose of use, and the amount of filler to the resin (that is, the amount of the surface treated infrared absorbing fine particles according to the present invention) Depending on the optical properties and mechanical properties, but generally 50% by weight or less based on the resin is preferable. When the amount of the filler with respect to the resin is 50% by mass or less, fine particles in the solid resin can avoid granulation, so that good transparency can be maintained. In addition, the amount of surface-treated infrared-absorbing fine particles according to the present invention can be controlled, which is advantageous in cost.
  • the infrared absorbing fine particle dispersion in which the surface treated infrared absorbing fine particles according to the present invention are dispersed in a solid medium can be used even in a state of being further pulverized into powder.
  • the surface-treated infrared-absorbing fine particles according to the present invention are already sufficiently dispersed in the solid medium. Therefore, the powdery infrared-absorbing fine particle dispersion is dissolved as a so-called master batch in an appropriate liquid medium or kneaded with resin pellets or the like to easily produce a liquid or solid infrared-absorbing fine particle dispersion. You can do it.
  • the resin used as the matrix of the film or board mentioned above is not specifically limited, It can select according to a use.
  • a low cost, highly transparent and versatile resin PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, polyimide resin, etc. can be used.
  • a fluorine resin can also be used in consideration of the weather resistance.
  • the infrared-absorbing fine particle dispersion according to the present invention is exposed when the dispersion having a visible light transmittance of about 80% is exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days.
  • the amount of change in visible light transmittance before and after is 2.0% or less, and has excellent heat and humidity resistance.
  • the infrared-absorbing base material according to the present invention is one in which a dispersion film containing surface-treated infrared-absorbing fine particles according to the present invention is formed on the surface of a predetermined base material.
  • a dispersion film containing the surface-treated infrared absorbing fine particles according to the present invention is formed on a predetermined substrate surface.
  • the infrared absorbing substrate according to the present invention is excellent in moisture heat resistance and chemical stability, and infrared It can be suitably used as an absorbent material.
  • the infrared absorbing base material according to the present invention will be described in the order of (i) production method and (ii) moisture and heat resistance.
  • a liquid medium such as an organic solvent such as alcohol or water, a resin binder, and optionally a dispersant
  • the liquid medium may be removed or hardened to obtain an infrared ray absorbing base material in which the infrared absorbing fine particle dispersion is directly laminated on the base material surface.
  • the resin binder component can be selected according to the application, and examples thereof include an ultraviolet curable resin, a thermosetting resin, a room temperature curing resin, a thermoplastic resin, and the like.
  • the infrared absorbing fine particle dispersion containing no resin binder component may be laminated on the surface of the substrate, and after the lamination, the infrared absorbing fine particle dispersion containing a binder medium is contained in the liquid medium. It may be applied on the layer of
  • liquid infrared absorption in which the surface-treated infrared-absorbing fine particles are dispersed in one or more liquid media selected from organic solvents, organic solvents in which resin is dissolved, organic solvents in which resin is dispersed, and water.
  • An infrared-absorbing substrate obtained by applying the fine particle dispersion to the surface of the substrate and solidifying the obtained coating film by an appropriate method may be mentioned.
  • the infrared rays absorption base material which apply
  • a liquid infrared-absorbing fine particle dispersion obtained by mixing an infrared-absorbing fine particle dispersion in which surface-treated infrared-absorbing fine particles are dispersed in a powdery solid medium in a predetermined medium is applied to the substrate surface.
  • an infrared-absorbing substrate obtained by curing the coating film by an appropriate method there may also be mentioned an infrared-absorbing substrate obtained by curing the coating film by an appropriate method.
  • an infrared-absorbing substrate obtained by applying an infrared-absorbing fine particle dispersion obtained by mixing two or more of the various liquid infrared-absorbing fine particle dispersions onto the surface of the substrate and solidifying the obtained coating film by an appropriate method is also mentioned.
  • the material of the substrate described above is not particularly limited as long as it is a transparent body, but glass, a resin board, a resin sheet, and a resin film are preferably used.
  • the resin used for the resin board, the resin sheet, and the resin film is not particularly limited as long as it does not cause a defect in the surface condition and the durability of the required board, sheet, and film.
  • polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate, cellulose-based polymers such as diacetyl cellulose and triacetyl cellulose, polycarbonate-based polymers, acrylic polymers such as polymethyl methacrylate, and polystyrenes such as polystyrene and acrylonitrile-styrene copolymer -Based polymer, polyethylene, polypropylene, polyolefin having cyclic or norbornene structure, olefin-based polymer such as ethylene-propylene copolymer, vinyl chloride-based polymer, amide-based polymer such as aromatic polyamide, imide-based polymer, sulfone-based polymer, poly Ether sulfone polymer, polyether ether ketone polymer, polyphenylene sulfide polymer, vinyl alcohol poly -, Vinylidene chloride polymers, vinyl butyral polymers, arylate polymers, polyoxymethylene
  • polyester-based biaxially oriented films such as polyethylene terephthalate, polybutylene terephthalate or polyethylene-2,6-naphthalate are preferable in view of mechanical properties, optical properties, heat resistance and economy.
  • the polyester-based biaxially oriented film may be a copolyester-based.
  • the infrared-absorbing fine particle dispersion or the infrared-absorbing article such as a film or a board which is an infrared-absorbing substrate according to the present invention And excellent in chemical stability. Therefore, for example, in various buildings and vehicles, these infrared absorbing articles are intended to shield light in the infrared region while sufficiently incorporating visible light, and to suppress the temperature rise in the room while maintaining the brightness. It can be suitably used as a window material, etc., which is used in a PDP (plasma display panel), etc., and which filters infrared rays emitted forward from the PDP.
  • PDP plasma display panel
  • the surface treated infrared absorbing fine particles according to the present invention have absorption in the infrared region, when the printing surface containing the surface treated infrared absorbing fine particles is irradiated with an infrared laser, it absorbs infrared rays having a specific wavelength. Therefore, the forgery prevention printed matter obtained by printing the forgery prevention ink containing the surface-treated infrared absorbing fine particles on one side or both sides of the printing substrate is irradiated with an infrared ray having a specific wavelength, and its reflection or transmission is read. The authenticity of the printed matter can be determined from the difference in the amount of reflection or the amount of transmission.
  • the said forgery prevention printed matter is an example of the infrared rays absorption particulate dispersion concerning the present invention.
  • the infrared absorbing fine particle dispersion according to the present invention and the binder component are mixed to produce an ink, the ink is applied on a substrate, the applied ink is dried, and then the dried ink is cured.
  • the light-to-heat conversion layer can be formed.
  • the light-to-heat conversion layer can generate heat only at a desired place with high accuracy by irradiation of electromagnetic waves such as infrared rays, and can be applied to a wide range of fields such as electronics, medicine, agriculture, machinery, etc. It is.
  • the said photothermal conversion layer is an example of the infrared rays absorption particulate dispersion concerning the present invention.
  • the surface-treated infrared-absorbing fine particles according to the present invention are dispersed in an appropriate medium, and the dispersion is contained in the surface and / or the inside of the fiber to obtain an infrared-absorbing fiber.
  • the infrared rays absorption fiber absorbs near infrared rays etc. from sunlight etc. efficiently by containing surface treatment infrared rays absorption microparticles, and becomes an infrared rays absorption fiber excellent in heat retention, and at the same time light in the visible light range Since it transmits, it becomes an infrared absorbing fiber excellent in design.
  • the said infrared rays absorption fiber is an example of the infrared rays absorption particulate dispersion concerning the present invention.
  • the film-like or board-like infrared-absorbing fine particle dispersion according to the present invention can be applied to a material used for a roof or an outer wall material of an agricultural and horticultural house. And while allowing visible light to pass through and securing the light necessary for photosynthesis of plants in the house for agriculture and horticulture, heat insulation is achieved by efficiently absorbing light such as near-infrared light contained in other sunlight. It can be used as a heat insulation material for agricultural and horticultural facilities with the property.
  • the said heat insulation material for agricultural and horticultural facilities is an example of the infrared rays absorption particulate dispersion concerning the present invention.
  • the dispersed particle diameter of the fine particles in the dispersion in Examples and Comparative Examples is indicated by an average value measured by a particle size measurement device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on the dynamic light scattering method.
  • the crystallite diameter is measured by powder X-ray diffraction method ( ⁇ -2 ⁇ method) using a powder X-ray diffractometer (X'Pert-PRO / MPD manufactured by Spectris Co., Ltd. PANalytical), using Rietveld method. Calculated.
  • the film thickness of the coating film of the surface-treated infrared-absorbing fine particles is determined by using a 300,000-fold photographic data obtained by using a transmission electron microscope (HF-2200 manufactured by Hitachi, Ltd.) where there is no plaid of the infrared-absorbing fine particles It was read as a coated film.
  • the optical properties of the infrared absorbing sheet were measured using a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.), and the visible light transmittance and the solar radiation transmittance were calculated according to JIS R3106.
  • the haze value of the infrared ray absorbing sheet was measured using a haze meter (HM-150 manufactured by Murakami Color Co., Ltd.), and calculated according to JIS K7105.
  • the infrared ray absorbing sheet having a visible light transmittance of about 80% is exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days. And, for example, in the case of hexagonal cesium tungsten bronze, it is judged that the change in solar radiation transmittance is 2.0% or less before and after the exposure is considered to be good in heat and moisture resistance, and the change is more than 2.0% It was judged that heat and humidity resistance was insufficient.
  • the optical characteristic value (visible light transmittance, haze value) of the infrared rays absorption sheet is a value including the optical characteristic value of the resin sheet which is a base material.
  • a mixed solution obtained by mixing 25% by mass and 75% by mass of pure water is loaded into a paint shaker containing 0.3 mm ⁇ ZrO 2 beads, pulverized and dispersed for 10 hours, Cs according to Example 1
  • a dispersion of 0.33 WO z fine particles was obtained.
  • the dispersed particle size of the Cs 0.33 WO z fine particles in the obtained dispersion was measured to be 100 nm.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical.
  • the background was measured using pure water, and the solvent refractive index was 1.33.
  • the crystallite diameter was measured to be 32 nm.
  • the obtained dispersion of Cs 0.33 WO z fine particles and pure water are mixed to obtain a dispersion A for forming a coating film according to Example 1 in which the concentration of Cs 0.33 WO z fine particles is 2% by mass.
  • the obtained coating film-forming dispersion A 890 g was placed in a beaker, and while being vigorously stirred by a bladed stirrer, 360 g of a surface treating agent diluted solution was added dropwise over 3 hours. After dropwise addition of the surface treatment agent dilution liquid a, stirring was further performed at a temperature of 20 ° C. for 24 hours to prepare a ripening liquid according to Example 1. Next, the medium was evaporated from the ripening solution by vacuum flow drying to obtain a powder (surface-treated infrared-absorbing fine particle powder) including the surface-treated infrared-absorbing fine particles according to Example 1.
  • Example 1 8% by mass of the surface-treated infrared-absorbing fine particle powder according to Example 1 was mixed with 24% by mass of the polyacrylate dispersant and 68% by mass of toluene.
  • the obtained mixed solution was loaded on a paint shaker containing 0.3 mm ⁇ ZrO 2 beads, ground and dispersed for 1 hour, and an infrared-absorbing fine particle dispersion liquid according to Example 1 was obtained.
  • the medium was evaporated from the infrared absorbing fine particle dispersion by vacuum flow drying to obtain an infrared absorbing fine particle dispersed powder according to Example 1.
  • the infrared ray absorbing fine particle dispersed powder according to Example 1 and the polycarbonate resin were dry blended so that the visible light transmittance of the infrared ray absorbing sheet to be obtained later becomes around 80% (in this example, the concentration of the surface treated infrared ray absorbing fine particles Were blended to give 0.06 wt%).
  • the obtained blend was kneaded at 290 ° C. using a twin-screw extruder, extruded from a T-die, and made into a sheet material of 0.75 mm thickness by a calender roll method, to obtain an infrared-absorbing sheet according to Example 1 .
  • the infrared absorbing sheet is an example of the infrared absorbing particle dispersion according to the present invention.
  • the visible light transmittance was 79.6%
  • the solar radiation transmittance was 48.6%
  • the haze was 0.9%.
  • the obtained infrared absorption sheet according to Example 1 was exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days, and the optical characteristics were measured.
  • the visible light transmittance was 80.2%, and the solar radiation transmittance was 49.5 %, The haze was 0.9%. It was found that the change in visible light transmittance due to exposure to a moist heat atmosphere was 0.6%, the change in solar radiation transmittance was as small as 0.9%, and the haze did not change.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 2 and 3 Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle according to Examples 2 and 3 by performing the same operation as in Example 1 except that the amount of surface treatment agent dilution liquid a and the dropping addition time thereof are changed The dispersion, the infrared ray absorbing fine particle dispersed powder, and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 4 The ripening solution according to Example 1 was allowed to stand for 1 hour to separate the surface-treated infrared-absorbing fine particles from the medium by solid-liquid separation. Then, only the medium which is the supernatant was removed to obtain an infrared absorbing fine particle slurry. Isopropyl alcohol was added to the obtained infrared-absorbing fine particle slurry and stirred for 1 hour, and then allowed to stand for 1 hour, and solid-liquid separation of the surface-treated infrared-absorbing fine particles and the medium was performed again. Next, only the supernatant medium was removed to obtain an infrared absorbing fine particle slurry again.
  • Example 4 An infrared-absorbing fine particle dispersed powder and an infrared-absorbing sheet according to Example 4 are obtained by performing the same operation as in Example 1 except that the infrared-absorbing fine particle dispersion according to Example 4 is used, Example 1 The same evaluation was performed. The manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3. Note * 1 in Table 1 indicates that the surface-treated infrared-absorbing fine particles and the medium were separated into solid and liquid.
  • Example 5 A surface treatment agent diluted solution b according to Example 5 was obtained by mixing 2.4% by mass of zirconium tributoxyacetylacetonate and 97.6% by mass of isopropyl alcohol.
  • the surface-treated infrared-absorbing fine particle powder and the infrared-absorbing fine particle dispersion according to Example 5 are operated in the same manner as in Example 1 except that the surface treatment agent dilution liquid b is used instead of the surface treatment agent dilution liquid a.
  • a liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 6 2.6 mass% of diisopropoxytitanium bisethylacetoacetate and 97.4 mass% of isopropyl alcohol were mixed to obtain a surface treatment agent diluted solution c according to Example 6.
  • the surface-treated infrared-absorbing fine particle powder and the infrared-absorbing fine particle dispersion according to Example 6 are operated in the same manner as in Example 1 except that the surface treatment agent dilution liquid c is used instead of the surface treatment agent dilution liquid a.
  • a liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 7 Surface-treated infrared-absorbing fine particle powder and infrared-absorbing fine particle dispersion according to Example 7 by performing the same operation as in Example 1 except that polymethyl methacrylate resin is used instead of polycarbonate resin as the solid resin
  • the infrared ray absorbing fine particle dispersed powder and the infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • a dispersion B for forming a coating film was prepared by mixing a dispersion of Na 0.33 WO z fine particles according to Example 8 with isopropyl alcohol and having a concentration of infrared absorbing fine particles (cubic sodium tungsten bronze fine particles) of 2%. Obtained.
  • the obtained dispersion B for forming a coating film B is placed in a beaker, and while the solution is vigorously stirred by a bladed stirrer, 360 g of a surface treatment agent diluent a and 100 g of pure water as a diluent d are paralleled over 3 hours It was added dropwise. After the dropwise addition, the mixture was stirred for 24 hours at a temperature of 20 ° C. to prepare a ripening solution according to Example 8. Next, the medium was evaporated from the ripening solution by vacuum flow drying to obtain a surface-treated infrared-absorbing fine particle powder according to Example 8.
  • the infrared ray according to Example 8 is carried out in the same manner as in Example 1 except that the surface-treated infrared absorption fine particle powder according to Example 8 is used instead of the surface-treated infrared absorption fine particle powder according to Example 1.
  • An absorbing particle dispersion, an infrared absorbing particle dispersion powder, and an infrared absorbing sheet were obtained, and the same evaluation as in Example 1 was performed.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Note * 2 in Table 1 indicates that the diluent d is pure water
  • Note * 5 indicates that the dropping amount of a is 360 g
  • the dropping amount of d is 100 g
  • Note * 7 indicates , A, d are shown to be dropped in parallel.
  • the dispersed particle size and the crystallite size of the infrared absorbing fine particles are measured in the same manner as in Example 1 except that tungsten bronze powder (Example 10) or W 18 O 49 (Example 11) of the magneli phase is used. Furthermore, dispersions C to E for forming a coating film were obtained.
  • the surface-treated infrared rays according to Examples 9 to 11 are carried out in the same manner as in Example 1 except that the dispersions C to E for forming a coating film are used instead of the dispersion A for forming a coating film.
  • Absorbent fine particle powder, infrared ray absorbing fine particle dispersion, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • the mixed solution thus obtained is loaded on a paint shaker containing 0.3 mm ⁇ ZrO 2 beads and subjected to a grinding and dispersing treatment for 6 hours (Example 12) or 4 hours (Example 13).
  • a dispersion of such Cs 0.33 WO z fine particles was obtained.
  • the dispersed particle sizes of the Cs 0.33 WO z fine particles in the obtained dispersions according to Examples 12 and 13 were 140 nm and 120 nm, respectively.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical.
  • the background was measured using pure water, and the solvent refractive index was 1.33.
  • the crystallite sizes of the Cs 0.33 WO z fine particles according to Examples 12 and 13 were measured, and were 50 nm and 42 nm, respectively.
  • the surface treatment according to Examples 12 and 13 is carried out in the same manner as in Example 2 except that the coating film-forming dispersions F and G are used instead of the coating film-forming dispersion A.
  • An infrared-absorbing fine particle powder, an infrared-absorbing fine particle dispersion, an infrared-absorbing fine particle dispersed powder, and an infrared-absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 14 By using 309 g of tetraethoxysilane as the surface treatment agent e, using the surface treatment agent e instead of the surface treatment agent dilution liquid a, and not adding isopropyl alcohol, the same operation as in Example 1 is performed, The surface-treated infrared-absorbing fine particle powder, the infrared-absorbing fine particle dispersion, the infrared-absorbing fine particle dispersed powder, and the infrared-absorbing sheet according to Example 14 were obtained and evaluated in the same manner as in Example 1. The manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 15 A surface treatment agent diluted solution f according to Example 15 was obtained by mixing 4.4% by mass of zinc acetylacetonate and 95.6% by mass of isopropyl alcohol.
  • the surface-treated infrared-absorbing fine particle powder and the infrared-absorbing fine particle dispersion according to Example 15 are carried out in the same manner as in Example 1 except that the surface treatment agent dilution liquid f is used instead of the surface treatment agent dilution liquid a.
  • a liquid, infrared ray absorbing fine particle dispersed powder, and an infrared ray absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Example 16 The medium was evaporated from the aging solution according to Example 1 by spray drying instead of vacuum flow drying to obtain a powder (surface treated infrared absorption fine particle powder) containing surface-treated infrared-absorbing fine particles according to Example 16. The same operation as in Example 1 was carried out except for that, to obtain an infrared-absorbing fine particle dispersion, an infrared-absorbing fine particle dispersed powder, and an infrared-absorbing sheet according to Example 16, and the same evaluation as in Example 1 was carried out. The manufacturing conditions are shown in Table 1 and the evaluation results are shown in Table 3.
  • Comparative Example 1 7% by mass of hexagonal cesium tungsten bronze powder, 24% by mass of polyacrylate dispersant and 69% by mass of toluene were mixed, and the obtained mixture was loaded on a paint shaker containing 0.3 mm ⁇ ZrO 2 beads for 4 hours.
  • the dispersion was subjected to pulverization / dispersion treatment to obtain a coating film-forming dispersion H according to Comparative Example 1.
  • the diameter of the dispersed particles of the infrared absorbing fine particles in the obtained coating film-forming dispersion liquid H was 100 nm.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical.
  • the background was measured using toluene, and the solvent refractive index was 1.50.
  • the crystallite diameter was measured to be 32 nm.
  • the infrared absorbing fine particle dispersion liquid according to Comparative Example 1 was used as it is without adding a surface treatment agent to the coating film formation dispersion H.
  • the medium was evaporated from the infrared-absorbing fine particle dispersion liquid according to Comparative Example 1 by vacuum flow drying to obtain an infrared-absorbing fine particle dispersion powder according to Comparative Example 1.
  • the infrared-absorbing fine particle dispersed powder according to Comparative Example 1 and the polycarbonate resin were dry-blended so that the concentration of the infrared-absorbing fine particles was 0.075 wt%.
  • the obtained blend was kneaded at 290 ° C. using a twin-screw extruder, extruded from a T-die, and made into a sheet material of 0.75 mm thickness by a calendar roll method, to obtain an infrared ray absorbing sheet according to Comparative Example 1 .
  • the obtained infrared absorption sheet according to Comparative Example 1 was exposed to a moist heat atmosphere at 85 ° C. and 90% for 9 days, and the optical characteristics were measured.
  • the visible light transmittance was 81.2% and the solar radiation transmittance was 52.6 %,
  • the haze was 1.2%.
  • the change in visible light transmittance due to exposure to a moist heat atmosphere was 2.0%, and the change in solar radiation transmittance was 4.2%, which was found to be large compared to the examples.
  • the rate of change of the haze was 0.2%.
  • the production conditions are shown in Table 2 and the evaluation results are shown in Table 4.
  • Comparative Example 2 An infrared-absorbing fine particle dispersion, infrared-absorbing fine particle dispersed powder according to Comparative Example 2 by performing the same operation as Comparative Example 1 except that polymethyl methacrylate resin is used instead of polycarbonate resin as the solid resin An infrared absorption sheet was obtained, and the same evaluation as in Example 1 was performed. The production conditions are shown in Table 2 and the evaluation results are shown in Table 4.
  • the dispersed particle size of the Cs 0.33 WO z fine particles in the obtained dispersion was measured to be 100 nm.
  • the particle refractive index was set to 1.81, and the particle shape was non-spherical.
  • the background was measured using isopropyl alcohol, and the solvent refractive index was 1.38.
  • the crystallite diameter was measured to be 32 nm.
  • Dispersion liquid for forming a coating film wherein the dispersion of Cs 0.33 WO z fine particles according to Comparative Example 7 and isopropyl alcohol are mixed, and the concentration of the infrared light absorbing fine particles (hexagonal cesium tungsten bronze fine particles) is 3.5% I got 21 g of aluminum ethyl acetoacetate diisopropylate was added to the obtained coating film forming dispersion I 733 g, mixed and stirred, and then dispersed using an ultrasonic homogenizer.
  • the dispersion-treated product was placed in a beaker, and 100 g of pure water was added dropwise as a diluent d over 1 hour while vigorously stirring with a bladed stirrer. Furthermore, 140 g of tetraethoxysilane was added dropwise over 2 hours as a surface treatment agent e 'while stirring, and then stirring was performed at 20 ° C for 15 hours, and this solution was heated and aged at 70 ° C for 2 hours. Next, the medium was evaporated from the ripening solution by vacuum flow drying, and heat treated at a temperature of 200 ° C. for 1 hour in a nitrogen atmosphere to obtain a surface-treated infrared-absorbing fine particle powder of Comparative Example 7.
  • the infrared absorption according to Comparative Example 7 is performed by the same operation as in Example 1 except that the infrared absorption fine particle dispersion according to Comparative Example 7 is used instead of the infrared absorption fine particle dispersion according to Example 1.
  • the fine particle dispersed powder and the infrared absorbing sheet were obtained, and the same evaluation as in Example 1 was carried out.
  • the production conditions are shown in Table 2 and the evaluation results are shown in Table 4.
  • Note * 3 in Table 2 indicates that Diluent d is pure water
  • Note * 4 indicates that 21 g of aluminum ethyl acetoacetate diisopropylate was added prior to the addition of water / tetraethoxysilane.
  • Note * 6 indicates that the dropping amount of water is 100 g, that of tetraethoxysilane is 140 g, and note * 8 indicates that the dropping time of water is 1 h and the dropping time of tetraethoxysilane is 2 h Is shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Glanulating (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

耐湿熱性に優れ、且つ、優れた赤外線吸収特性を有する表面処理赤外線吸収微粒子、当該表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液および赤外線吸収微粒子分散体、および、それらの製造方法を提供することである。赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されている表面処理赤外線吸収微粒子を提供する。

Description

表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法
 本発明は、可視光領域の光は透過し、赤外線領域の光は吸収する赤外線吸収微粒子であって、当該微粒子の表面を所定の被覆膜で被覆したものである表面処理赤外線吸収微粒子、当該表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法に関する。
 近年、赤外線吸収体の需要が急増しており、赤外線吸収体に関する特許が多く提案されている。これらの提案を機能的観点から俯瞰すると、例えば、各種建築物や車両の窓材等の分野において、可視光線を十分に取り入れながら近赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的としたもの、PDP(プラズマディスプレイパネル)から前方に放射される赤外線が、コードレスフォンや家電機器のリモコンに誤動作を引き起こしたり、伝送系光通信に悪影響を及ぼしたりすることを防止することを目的としたもの、等がある。
 また、遮光部材の観点からは、例えば、窓材等に使用される遮光部材として、可視光領域から近赤外線領域に吸収特性があるカーボンブラック、チタンブラック等の無機顔料、および、可視光領域のみに強い吸収特性のあるアニリンブラック等の有機顔料等を含む黒色系顔料を含有する遮光フィルム、アルミ等の金属を蒸着したハーフミラータイプの遮光部材が提案されている。
 例えば、特許文献1では、透明なガラス基板上に、基板側より第1層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設け、当該第2層上に第3層として周期律表のIIIa族、IVa族、Vb族、VIb族およびVIIb族から成る群から選ばれた少なくとも1種の金属イオンを含有する複合酸化タングステン膜を設け、且つ前記第2層の透明誘電体膜の屈折率を前記第1層および前記第3層の複合酸化タングステン膜の屈折率よりも低くすることにより、高い可視光透過率および良好な赤外線遮断性能が要求される部位に好適に使用することができる赤外線遮断ガラスが提案されている。
 また、特許文献2では特許文献1と同様の方法で、透明なガラス基板上へ、基板側より第1層として第1の誘電体膜を設け、当該第1層上に第2層として酸化タングステン膜を設け、当該第2層上に第3層として第2の誘電体膜を設けた赤外線遮断ガラスが提案されている。
 また、特許文献3では特許文献1と同様な方法で、透明な基板上へ、基板側より第1層として特許文献1と同様の金属元素を含有する複合酸化タングステン膜を設け、当該第1層上に第2層として透明誘電体膜を設けた熱線遮断ガラスが提案されている。
 また、特許文献4では、水素、リチウム、ナトリウムまたはカリウム等の添加元素を含有する三酸化タングステン(WO)、三酸化モリブデン(MoO)、五酸化ニオブ(Nb)、五酸化タンタル(Ta)、五酸化バナジウム(V)および二酸化バナジウム(VO)の1種以上から選択される金属酸化物膜が、CVD法またはスプレー法で被覆され250℃程度で熱分解して形成された太陽光遮蔽特性を有する太陽光制御ガラスシートが提案されている。
 また、特許文献5には、タングステン酸を加水分解して得られた酸化タングステンを用い、当該酸化タングステンに、ポリビニルピロリドンという特定の構造の有機ポリマーを添加した太陽光可変調光断熱材料が提案されている。当該太陽光可変調光断熱材料へ太陽光が照射されると、光線中の紫外線が酸化タングステンに吸収されて励起電子とホールとが発生し、少量の紫外線量により5価タングステンの出現量が著しく増加して着色反応が速くなり、これに伴って着色濃度が高くなる。他方、光を遮断することによって、5価タングステンが極めて速やかに6価に酸化されて消色反応が速くなる。当該着色/消色特性を用い、太陽光に対する着色および消色反応が速く、着色時に近赤外域の波長1250nmに吸収ピークが現れ、太陽光の近赤外線を遮断することができる太陽光可変調光断熱材料が得られることが提案されている。
 一方、本発明者等は特許文献6において、六塩化タングステンをアルコールに溶解し、そのまま媒質を蒸発させるか、または加熱還流した後、媒質を蒸発させ、その後100℃~500℃で加熱することにより、三酸化タングステンまたはその水和物または両者の混合物からなる酸化タングステン微粒子粉末を得ることを開示した。そして、当該酸化タングステン微粒子を用いてエレクトロクロミック素子が得られること、多層の積層体を構成し膜中にプロトンを導入したときに当該膜の光学特性を変化させることができること、等を開示した。
 また、特許文献7には、メタ型タングステン酸アンモニウムと水溶性の各種金属塩とを原料とし、その混合水溶液の乾固物を約300~700℃の加熱温度で加熱し、この加熱に不活性ガス(添加量;約50vol%以上)または水蒸気(添加量;約15vol%以下)を添加した水素ガスを供給することにより、MxWO(M;アルカリ、アルカリ土類、希土類などの金属元素、0<x<1)で表される種々のタングステンブロンズを作製する方法が提案されている。また、同様の操作を支持体上で行わせ、種々のタングステンブロンズ被覆複合体を製造する方法が提案され、燃料電池等の電極触媒材料として用いることが提案されている。
 そして、本発明者等は特許文献8において、赤外線遮蔽材料微粒子が媒質中に分散してなる赤外線遮蔽材料微粒子分散体、当該赤外線遮蔽材料微粒子分散体の優れた光学特性、導電性、製造方法について開示した。中でも、赤外線遮蔽特性は従来の遮蔽材料よりも卓越したものであった。当該赤外線遮蔽材料微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、Iのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.2≦z/y≦3.0)で表記される複合タングステン酸化物の微粒子であって、当該赤外線遮蔽材料微粒子の粒子直径が1nm以上800nm以下である。
特開平8-59300号公報 特開平8-12378号公報 特開平8-283044号公報 特開2000-119045号公報 特開平9-127559号公報 特開2003-121884号公報 特開平8-73223号公報 国際公開第2005/37932号 国際公開第2010/55570号
 本発明者らの検討によると、前記タングステン酸化物微粒子、または/および、複合タングステン酸化物微粒子を含む光学部材(フィルム、樹脂シート等)においては、使用状況や方法により、空気中の水蒸気や水が当該光学部材に含まれる固体状樹脂中へ徐々に浸透することを知見した。そして、水蒸気や水が固体状樹脂中へ徐々に浸透すると、前記タングステン酸化物微粒子の表面が分解し、波長200~2600nmの光の透過率が経時的に上昇してしまい、前記光学部材の赤外線吸収性能が徐々に低下するという問題を知見した。固体状樹脂とは、室温で固体の高分子媒質のことであり、三次元架橋したもの以外の高分子媒質も含む(本発明において「マトリクス樹脂」と記載する場合もある。)。
 上述の状況の下、本発明者等は特許文献9において、耐水性に優れ、且つ、優れた赤外線遮蔽特性を有する赤外線遮蔽微粒子として、一般式WyOzで表記されるタングステン酸化物または/および一般式MxWyOzで表記される複合タングステン酸化物微粒子であって、当該微粒子の平均一次粒径が1nm以上、800nm以下であり、当該微粒子表面が4官能性シラン化合物もしくはその部分加水分解生成物、または/および、有機金属化合物で被覆されている赤外線遮蔽微粒子とその製造方法とを開示した。
 しかしながら、赤外線吸収材料は、その特質から基本的には屋外で使用され、高い耐候性が要求される場合が多い。そして、市場での要求が年々高まっていくにつれて、特許文献9で開示した赤外線遮蔽微粒子に対しても、耐水性や耐湿熱性の更なる改善が求められるようになった。
 本発明は上述の状況の下になされたものであり、その課題とするところは、耐湿熱性に優れ、且つ、優れた赤外線吸収特性を有する表面処理赤外線吸収微粒子、当該表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液および赤外線吸収微粒子分散体、および、それらの製造方法を提供することである。
 本発明者等は、上述の課題の解決の為、優れた光学的特性を有する前記タングステン酸化物微粒子または/および複合タングステン酸化物微粒子を赤外線吸収微粒子とし、当該赤外線吸収微粒子の耐湿熱性および化学安定性を向上させることを可能にする構成について研究を行った。その結果、当該赤外線吸収微粒子表面との親和性に優れ、且つ、個々の当該赤外線吸収微粒子表面に対して均一に吸着し、強固な被覆膜を形成する化合物を用いて、当該個々の赤外線吸収微粒子の表面を被覆することが肝要なことに想到した。
 本発明者等はさらに研究を続け、上述した赤外線吸収微粒子において親和性に優れ、被覆膜を形成する化合物として、金属キレート化合物や金属環状オリゴマー化合物に想到した。そして、さらなる研究の結果、当該金属キレート化合物や金属環状オリゴマー化合物が加水分解したときに生成する、これらの化合物の加水分解生成物、または、当該加水分解生成物の重合物が、個々の赤外線吸収微粒子表面に対して均一に吸着し、且つ、強固な被覆膜を形成する化合物であることに想到した。
 即ち、タングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されている赤外線吸収微粒子(本発明において「表面処理赤外線吸収微粒子」と記載する場合がある。)に想到したものである。そして、当該表面処理赤外線吸収微粒子は、優れた耐湿熱性を有していることを知見した。
 さらに、当該表面処理赤外線吸収微粒子や、当該表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子が適宜な媒質中に分散した赤外線吸収微粒子分散液を用いて製造した赤外線吸収微粒子分散体等が、耐湿熱性に優れ、且つ、優れた赤外線吸収特性を有することを知見し、本発明に至った。
 即ち、上述の課題を解決する為の第1の発明は、
 赤外線吸収微粒子の表面が、
 金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されていることを特徴とする表面処理赤外線吸収微粒子である。
 第2の発明は、
 前記被覆膜の膜厚が0.5nm以上であることを特徴とする第1の発明に記載の表面処理赤外線吸収微粒子である。
 第3の発明は、
 前記金属キレート化合物または前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする第1または第2の発明に記載の表面処理赤外線吸収微粒子である。
 第4の発明は、
 前記金属キレート化合物または前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする第1から第3の発明のいずれかに記載の表面処理赤外線吸収微粒子である。
 第5の発明は、
 前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、第1から第4の発明いずれかに記載の表面処理赤外線吸収微粒子である。
 第6の発明は、
 第1から第5の発明のいずれかに記載の表面処理赤外線吸収微粒子を含むことを特徴とする表面処理赤外線吸収微粒子粉末である。
 第7の発明は、
 炭素濃度が、0.2質量%以上5.0質量%以下であることを特徴とする第6の発明に記載の表面処理赤外線吸収微粒子粉末である。
 第8の発明は、
 第1から第5の発明のいずれかに記載の表面処理赤外線吸収微粒子が、所定の液体媒質中に分散していることを特徴とする赤外線吸収微粒子分散液である。
 第9の発明は、
 前記液体媒質が、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水、から選択される1種以上の液体媒質であることを特徴とする第8の発明に記載の赤外線吸収微粒子分散液である。
 第10の発明は、
 第1から第5の発明のいずれかに記載の表面処理赤外線吸収微粒子が、所定の固体状樹脂中に分散していることを特徴とする赤外線吸収微粒子分散体である。
 第11の発明は、
 前記固体状樹脂が、フッ素樹脂、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、から選択される1種以上の樹脂であることを特徴とする第10の発明に記載の赤外線吸収微粒子分散体である。
 第12の発明は、
 第8または第9の発明に記載の赤外線吸収微粒子分散液の乾燥固化物であることを特徴とする赤外線吸収微粒子分散体である。
 第13の発明は、
 赤外線吸収微粒子と水とを混合し、分散処理を行って水を媒質とする被覆膜形成用分散液を得る工程と、
 前記水を媒質とする被覆膜形成用分散液を撹拌しながら、金属キレート化合物または/および金属環状オリゴマー化合物を添加する工程と、
 前記添加後も前記攪拌を継続して、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆し、赤外線吸収微粒子分散液を得る工程と、を有することを特徴とする表面処理赤外線吸収微粒子の製造方法である。
 第14の発明は、
 赤外線吸収微粒子と有機溶剤とを混合し、分散処理を行って有機溶剤を媒質とする被覆膜形成用分散液を得る工程と、
 前記有機溶剤を媒質とする被覆膜形成用分散液を撹拌しながら、金属キレート化合物または/および金属環状オリゴマー化合物と、水とを、同時に並行して添加する工程と、
 前記添加後も前記攪拌を継続して、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆し、赤外線吸収微粒子の有機溶剤分散液を得る工程と、を有することを特徴とする表面処理赤外線吸収微粒子の製造方法である。
 第15の発明は、
 前記金属キレート化合物または/および金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする第13または第14の発明に記載の表面処理赤外線吸収微粒子の製造方法である。
 第16の発明は、
 前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、第13から第15の発明のいずれかに記載の表面処理赤外線吸収微粒子の製造方法である。
 第17の発明は、
 第13、第15または第16の発明に記載の水を媒質とする被覆膜形成用分散液、または、第14から第16の発明のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液から媒質を除去して、表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末を得る工程、を有することを特徴とする表面処理赤外線吸収微粒子粉末の製造方法である。
 第18の発明は、
 前記表面処理赤外線吸収微粒子粉末に含まれる炭素濃度が、0.2質量%以上5.0質量%以下であることを特徴とする、第17の発明に記載の表面処理赤外線吸収微粒子粉末の製造方法である。
 第19の発明は、
 第17または第18の発明に記載の表面処理赤外線吸収微粒子粉末を所定の媒質に加え、分散させる工程、を有することを特徴とする赤外線吸収微粒子分散液の製造方法である。
 第20の発明は、
 第13、第15または第16の発明に記載の水を媒質とする被覆膜形成用分散液、または、第14から第16の発明のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液の媒質を、所定の媒質に溶媒置換する工程、を有することを特徴とする赤外線吸収微粒子分散液の製造方法である。
 第21の発明は、
 第13、第15または第16の発明に記載の水を媒質とする被覆膜形成用分散液、または、第14から第16の発明のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液の媒質を、予め、所定の媒質としておくことにより、得られた第13、第15または第16の発明に記載の水を媒質とする被覆膜形成用分散液、または、第14から第16の発明のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液を、赤外線吸収微粒子分散液とすることを特徴とする赤外線吸収微粒子分散液の製造方法である。
 第22の発明は、
 第19から第21の発明のいずれかに記載の赤外線吸収微粒子分散液の製造方法で得られた赤外線吸収微粒子分散液を、所定の基材上に塗布して乾燥し、赤外線吸収微粒子分散体を得る工程を有することを特徴とする赤外線吸収微粒子分散体の製造方法である。
 第23の発明は、
 第17または第18の発明に記載の表面処理赤外線吸収微粒子粉末の製造方法で得られた表面処理赤外線吸収微粒子粉末、第19から第21の発明のいずれかに記載の赤外線吸収微粒子分散液の製造方法で得られた赤外線吸収微粒子分散液、のいずれかを、所定の固体状樹脂中に分散させる工程を有することを特徴とする赤外線吸収微粒子分散体の製造方法である。
 本発明に係る表面処理赤外線吸収微粒子を用いることで、高い耐湿熱性を有し、優れた赤外線吸収特性を有する赤外線吸収微粒子分散体を製造することが出来る。
六方晶の結晶構造を有する複合タングステン酸化物における結晶構造の模式的な平面図である。 実施例1に係る表面処理赤外線吸収微粒子の30万倍の透過型電子顕微鏡写真である。
 本発明に係る表面処理赤外線吸収微粒子は、赤外線吸収微粒子であるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されている表面処理赤外線吸収微粒子である。
 以下、本発明を、[1]赤外線吸収微粒子、[2]赤外線吸収微粒子の表面被覆に用いる表面処理剤、[3]赤外線吸収微粒子の表面被覆方法、[4]表面処理赤外線吸収微粒子を用いて得られる赤外線吸収微粒子分散体、赤外線吸収基材、並びに物品、の順で詳細に説明する。
 尚、本発明において、「赤外線吸収微粒子へ耐湿熱性を付与する為に、当該微粒子の表面へ、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を用いて形成した被覆膜」を、単に「被覆膜」と記載する場合がある。
[1]赤外線吸収微粒子
 一般に、自由電子を含む材料は、プラズマ振動によって波長200nmから2600nmの太陽光線の領域周辺の電磁波に反射吸収応答を示すことが知られている。このような物質の粉末を、光の波長より小さい粒子にすると、可視光領域(波長380nmから780nm)の幾何学散乱が低減されて可視光領域の透明性が得られることが知られている。
 尚、本発明において「透明性」とは、「可視光領域の光に対して散乱が少なく透過性が高い。」という意味で用いている。
 一般に、タングステン酸化物(WO)中には有効な自由電子が存在しない為、赤外線領域の吸収反射特性が少なく、赤外線吸収微粒子としては有効ではない。
 一方、酸素欠損を持つWOや、WOにNa等の陽性元素を添加した複合タングステン酸化物は、導電性材料であり、自由電子を持つ材料であることが知られている。そして、これらの自由電子を持つ材料の単結晶等の分析により、赤外線領域の光に対する自由電子の応答が示唆されている。
 本発明者等は、当該タングステンと酸素との組成範囲の特定部分において、赤外線吸収微粒子として特に有効な範囲があることを見出し、可視光領域においては透明で、赤外線領域においては吸収を持つタングステン酸化物微粒子、複合タングステン酸化物微粒子に想到した。
 ここで、本発明に係る赤外線吸収微粒子であるタングステン酸化物微粒子または/および複合タングステン酸化物微粒子について、(1)タングステン酸化物微粒子、(2)複合タングステン酸化物微粒子、(3)タングステン酸化物微粒子および複合タングステン酸化物微粒子、の順で説明する。
(1)タングステン酸化物微粒子
 本発明に係るタングステン酸化物微粒子は、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)で表記されるタングステン酸化物の微粒子である。
 一般式WyOzで表記されるタングステン酸化物において、当該タングステンと酸素との組成範囲は、タングステンに対する酸素の組成比が3よりも少なく、さらには、当該赤外線吸収微粒子をWyOzと記載したとき、2.2≦z/y≦2.999であることが好ましい。
 当該z/yの値が2.2以上であれば、当該タングステン酸化物中に目的以外であるWOの結晶相が現れるのを回避することが出来ると伴に、材料としての化学的安定性を得ることが出来るので有効な赤外線吸収微粒子となる。一方、当該z/yの値が2.999以下であれば、必要とされる量の自由電子が生成され効率よい赤外線吸収微粒子となる。
(2)複合タングステン酸化物微粒子
 上述したWOへ、後述する元素Mを添加し複合タングステン酸化物とすることで、当該WO中に自由電子が生成され、特に近赤外線領域に自由電子由来の強い吸収特性が発現し、1000nm付近の近赤外線吸収微粒子として有効となる。
 即ち、当該WOに対し、酸素量の制御と、自由電子を生成する元素Mの添加とを併用することで、より効率の良い赤外線吸収微粒子を得ることが出来る。この酸素量の制御と、自由電子を生成する元素Mの添加とを併用した赤外線吸収微粒子の一般式をMxWyOz(但し、Mは、前記M元素、Wはタングステン、Oは酸素)と記載したとき、0.001≦x/y≦1、2.0≦z/y≦3の関係を満たす赤外線吸収微粒子が望ましい。
 まず、元素Mの添加量を示すx/yの値について説明する。
 x/yの値が0.001より大きければ、複合タングステン酸化物において十分な量の自由電子が生成され目的とする赤外線吸収効果を得ることが出来る。そして、元素Mの添加量が多いほど、自由電子の供給量が増加し、赤外線吸収効率も上昇するが、x/yの値が1程度で当該効果も飽和する。また、x/yの値が1より小さければ、当該赤外線吸収微粒子中に不純物相が生成されるのを回避できるので好ましい。
 また、元素Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上であることが好ましい。
 ここで、元素Mを添加された当該MxWyOzにおける安定性の観点から、元素Mは、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reのうちのうちから選択される1種類以上の元素であることがより好ましい。そして、赤外線吸収微粒子としての光学特性、耐候性を向上させる観点から、元素Mは、アルカリ土類金属元素、遷移金属元素、4B族元素、5B族元素に属するものであることがさらに好ましい。
 次に、酸素量の制御を示すz/yの値について説明する。z/yの値については、MxWyOzで表記される複合タングステン酸化物においても、上述したWyOzで表記されるタングステン酸化物と同様の機構が働くことに加え、z/y=3.0や2.0≦z/y≦2.2においても、上述した元素Mの添加量による自由電子の供給がある。この為、2.0≦z/y≦3.0が好ましく、より好ましくは2.2≦z/y≦3.0、さらに好ましくは2.45≦z/y≦3.0である。
 さらに、当該複合タングステン酸化物微粒子が六方晶の結晶構造を有する場合、当該微粒子の可視光領域の透過が向上し、赤外領域の吸収が向上する。この六方晶の結晶構造の模式的な平面図である図1を参照しながら説明する。
 図1において、符号11で示すWO単位にて形成される8面体が6個集合して六角形の空隙が構成され、当該空隙中に、符号12で示す元素Mが配置して1箇の単位を構成し、この1箇の単位が多数集合して六方晶の結晶構造を構成する。
 そして、可視光領域における光の透過を向上させ、赤外領域における光の吸収を向上させる効果を得る為には、複合タングステン酸化物微粒子中に、図1を用いて説明した単位構造が含まれていれば良く、当該複合タングステン酸化物微粒子が結晶質であっても非晶質であっても構わない。
 この六角形の空隙に元素Mの陽イオンが添加されて存在するとき、可視光領域における光の透過が向上し、赤外領域における光の吸収が向上する。ここで一般的には、イオン半径の大きな元素Mを添加したとき当該六方晶が形成され易い。具体的には、Cs、K、Rb、Tl、In、Ba、Li、Ca、Sr、Fe、Snを添加したとき六方晶が形成され易い。勿論これら以外の元素でも、WO単位で形成される六角形の空隙に上述した元素Mが存在すれば良く、上述の元素に限定される訳ではない。
 六方晶の結晶構造を有する複合タングステン酸化物微粒子が均一な結晶構造を有するとき、添加元素Mの添加量は、x/yの値で0.2以上0.5以下が好ましく、更に好ましくは0.33である。x/yの値が0.33となることで、上述した元素Mが六角形の空隙の全てに配置されると考えられる。
 また、六方晶以外であって、正方晶、立方晶の複合タングステン酸化物も赤外線吸収微粒子として有効である。結晶構造によって、赤外線領域の吸収位置が変化する傾向があり、立方晶<正方晶<六方晶の順に、吸収位置が長波長側に移動する傾向がある。また、それに付随して可視光線領域の吸収が少ないのは、六方晶、正方晶、立方晶の順である。従って、より可視光領域の光を透過し、より赤外線領域の光を遮蔽する用途には、六方晶の複合タングステン酸化物を用いることが好ましい。ただし、ここで述べた光学特性の傾向は、あくまで大まかな傾向であり、添加元素の種類や、添加量、酸素量によって変化するものであり、本発明がこれに限定されるわけではない。
(3)タングステン酸化物微粒子および複合タングステン酸化物微粒子
 本発明に係る、タングステン酸化物微粒子や複合タングステン酸化物微粒子を含有する赤外線吸収微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調は青色系から緑色系となる物が多い。
 また、当該赤外線吸収微粒子中におけるタングステン酸化物微粒子や複合タングステン酸化物微粒子の分散粒子径は、その使用目的によって、各々選定することができる。
 まず、透明性を保持したい応用に使用する場合は、800nm以下の粒子径を有していることが好ましい。これは、800nmよりも小さい粒子は、散乱により光を完全に遮蔽することが無く、可視光線領域の視認性を保持し、同時に効率良く透明性を保持することができるからである。特に可視光領域の透明性を重視する場合は、さらに粒子による散乱を考慮することが好ましい。
 この粒子による散乱の低減を重視するとき、分散粒子径は200nm以下、好ましくは100nm以下が良い。この理由は、粒子の分散粒子径が小さければ、幾何学散乱もしくはミー散乱による、波長400nm~780nmの可視光線領域の光の散乱が低減される結果、赤外線吸収膜が曇りガラスのようになり、鮮明な透明性が得られなくなるのを回避できる。即ち、分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に比例して低減するため、分散粒子径の減少に伴い散乱が低減し透明性が向上するからである。
 さらに分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上あれば工業的な製造は容易である。
 上記分散粒子径を800nm以下とすることにより、本発明に係る赤外線吸収微粒子を媒質中に分散させた赤外線吸収微粒子分散体のヘイズ値は、可視光透過率85%以下でヘイズ30%以下とすることができる。ヘイズが30%よりも大きい値であると、曇りガラスのようになり、鮮明な透明性が得られない。
 尚、赤外線吸収微粒子の分散粒子径は、動的光散乱法を原理とした大塚電子株式会社製ELS-8000等を用いて測定することができる。
 また、タングステン酸化物微粒子や複合タングステン酸化物微粒子において、2.45≦z/y≦2.999で表される組成比を有する、所謂「マグネリ相」は化学的に安定であり、赤外線領域の吸収特性も良いので、赤外線吸収微粒子として好ましい。
 また、優れた赤外線吸収特性を発揮させる観点から、赤外線吸収微粒子の結晶子径は1nm以上200nm以下であることが好ましく、より好ましくは1nm以上100nm以下、さらに好ましくは10nm以上70nm以下である。結晶子径の測定には、粉末X線回折法(θ―2θ法)によるX線回折パターンの測定と、リートベルト法による解析を用いる。X線回折パターンの測定には、例えばスペクトリス株式会社PANalytical製の粉末X線回折装置「X’Pert-PRO/MPD」などを用いて行うことができる。
[2]赤外線吸収微粒子の表面被覆に用いる表面処理剤
 本発明に係る赤外線吸収微粒子の表面被覆に用いる表面処理剤は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上である。
 そして、当該金属キレート化合物、金属環状オリゴマー化合物は、金属アルコキシド、金属アセチルアセトネート、金属カルボキシレートであることが好ましい観点から、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することが好ましい。
 ここで、本発明に係る表面処理剤について、(1)金属キレート化合物、(2)金属環状オリゴマー化合物、(3)金属キレート化合物や金属環状オリゴマー化合物の加水分解生成物および重合物、(4)表面処理剤の添加量、の順で説明する。
(1)金属キレート化合物
 本発明に用いる金属キレート化合物は、アルコキシ基を含有するAl系、Zr系、Ti系、Si系、Zn系のキレート化合物から選ばれる一種又は二種以上であることが好ましい。
 アルミニウム系のキレート化合物としては、アルミニウムエチレート、アルミニウムイソプロピレート、アルミニウムsec-ブチレート、モノ-sec-ブトキシアルミニウムジイソプロピレートなどのアルミニウムアルコレートまたはこれら重合物、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、オクチルアセトアセテートアルミニウムジイソプロプレート、ステアリルアセトアルミニウムジイソプロピレート、アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)、アルミニウムトリス(アセチルアセトネート)等、を例示することが出来る。
 これらの化合物は、アルミニウムアルコレートを非プロトン性溶媒や、石油系溶剤、炭化水素系溶剤、エステル系溶剤、ケトン系溶剤、エーテル系溶剤、アミド系溶剤等に溶解し、この溶液に、β-ジケトン、β-ケトエステル、一価または多価アルコール、脂肪酸等を加えて、加熱還流し、リガンドの置換反応により得られた、アルコキシ基含有のアルミニウムキレート化合物である。
 ジルコニア系のキレート化合物としては、ジルコニウムエチレート、ジルコニウムブチレートなどのジルコニウムアルコレートまたはこれら重合物、ジルコニウムトリブトキシステアレート、ジルコニウムテトラアセチルアセトネート、ジルコニウムトリブトキシアセチルアセトネート、ジルコニウムジブトキシビス(アセチルアセトネート)、ジルコニウムトリブトキシエチルアセトアセテート、ジルコニウムブトキシアセチルアセトネートビス(エチルアセトアセテート)等、を例示することが出来る。
 チタン系のキレート化合物としては、メチルチタネート、エチルチタネート、イソプロピルチタネート、ブチルチタネート、2-エチルヘキシルチタネートなどのチタンアルコレートやこれら重合物、チタンアセチルアセトネート、チタンテトラアセチルアセトネート、チタンオクチレングリコレート、チタンエチルアセトアセテート、チタンラクテート、チタントリエタノールアミネート等、を例示することが出来る。
 シリコン系のキレート化合物としては、一般式:Si(OR)(但し、Rは同一または異種の炭素原子数1~6の一価炭化水素基)で示される4官能性シラン化合物またはその加水分解生成物を用いることが出来る。4官能性シラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられる。さらに、これらアルコキシシランモノマーのアルコキシ基の一部あるいは全量が加水分解し、シラノール(Si-OH)基となったシランモノマー(あるいはオリゴマー)、および、加水分解反応を経て自己縮合した重合体の適用も可能である。
 また、4官能性シラン化合物の加水分解生成物(4官能性シラン化合物の中間体全体を指示する適宜な術語が存在しない。)としては、アルコキシ基の一部あるいは全量が加水分解して、シラノール(Si-OH)基となったシランモノマー、4~5量体のオリゴマー、および、重量平均分子量(Mw)が800~8000程度の重合体(シリコーンレジン)が挙げられる。尚、アルコキシシランモノマー中のアルコキシシリル基(Si-OR)は、加水分解反応の過程において、その全てが加水分解してシラノール(Si-OH)になるわけではない。
 亜鉛系のキレート化合物としては、オクチル酸亜鉛、ラウリン酸亜鉛、ステアリン酸亜鉛などの有機カルボン酸亜鉛塩、アセチルアセトン亜鉛キレート、ベンゾイルアセトン亜鉛キレート、ジベンゾイルメタン亜鉛キレート、アセト酢酸エチル亜鉛キレート等、を好ましく例示することが出来る。
(2)金属環状オリゴマー化合物
 本発明に係る金属環状オリゴマー化合物としては、Al系、Zr系、Ti系、Si系、Zn系の環状オリゴマー化合物から選ばれる1種以上であることが好ましい。中でも、環状アルミニウムオキサイドオクチレート等、の環状アルミニウムオリゴマー化合物を好ましく例示することができる。
(3)金属キレート化合物や金属環状オリゴマー化合物の加水分解生成物および重合物
 本発明では、上述した金属キレート化合物や金属環状オリゴマー化合物における、アルコキシ基、エーテル結合、エステル結合の全量が加水分解し、ヒドロキシル基やカルボキシル基となった加水分解生成物、一部が加水分解した部分加水分解生成物、または/および、当該加水分解反応を経て自己縮合した重合物を、本発明に係る赤外線吸収微粒子の表面に被覆して被覆膜とし、本発明に係る表面処理赤外線吸収微粒子を得るものである。
 即ち、本発明における加水分解生成物は、部分加水分解生成物を含む概念である。
 但し、例えば、アルコール等の有機溶剤が介在するような反応系においては、一般的に化学量論組成上、必要十分な水が系内に存在していたとしても、当該有機溶剤の種類や濃度により、出発物質となる金属キレート化合物や金属環状オリゴマー化合物のアルコキシ基やエーテル結合やエステル結合の全てが加水分解するわけではない。従って、後述する表面被覆方法の条件によっては、加水分解後にもその分子内に炭素Cを取り込んだアモルファス状態になることがある。
 その結果、被覆膜には、未分解の金属キレート化合物または/および金属環状オリゴマー化合物が含有される場合があるが、微量であれば特に問題は無い。
(4)表面処理剤の添加量
 上述した金属キレート化合物や金属環状オリゴマー化合物の添加量は、赤外線吸収微粒子100質量部に対して、金属元素換算で0.1質量部以上、1000質量部以下であることが好適である。より好ましくは、1質量部以上、500質量部以下の範囲である。さらに好ましくは、10質量部以上、150質量部以下の範囲である。
 これは、金属キレート化合物または金属環状オリゴマー化合物が0.1質量部以上あれば、それらの化合物の加水分解生成物や、当該加水分解生成物の重合物が、赤外線吸収微粒子の表面を被覆する効果が発揮され耐湿熱性向上の効果が得られる。
 また、金属キレート化合物または金属環状オリゴマー化合物が1000質量部以下であれば、赤外線吸収微粒子に対する吸着量が過剰になることを回避出来る。また、表面被覆による耐湿熱性の向上が飽和せず、被覆効果の向上が望める。
 さらに、金属キレート化合物または金属環状オリゴマー化合物が1000質量部以下であることで、赤外線吸収微粒子に対する吸着量が過剰になり、媒質除去時に当該金属キレート化合物または金属環状オリゴマー化合物の加水分解生成物や、当該加水分解生成物の重合物を介して微粒子同士が造粒し易くなることを回避出来るからである。当該望まれない微粒子同士の造粒回避によって、良好な透明性を担保することが出来る。
 加えて、金属キレート化合物または金属環状オリゴマー化合物の過剰による、添加量および処理時間の増加による生産コスト増加も回避出来る。よって工業的な観点からも金属キレート化合物や金属環状オリゴマー化合物の添加量は、1000質量部以下とすることが好ましい。
[3]表面被覆方法
 本発明に係る赤外線吸収微粒子の表面被覆方法においては、まず、赤外線吸収微粒子を適宜な媒質中に分散させた被覆膜形成用の赤外線吸収微粒子分散液(本発明において「被覆膜形成用分散液」と記載する場合がある。)を調製する。そして、調製された被覆膜形成用分散液中へ表面処理剤を添加して混合攪拌を行う。すると、赤外線吸収微粒子の表面が、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆される。
 ここで、本発明に係る表面被覆方法について、(1)被覆膜形成用分散液の調製、(2)水を媒質とする被覆膜形成用分散液の調製、(3)添加水量を調整した被覆膜形成用分散液の調製、(4)被覆膜形成用分散液における混合攪拌後の処理、の順で説明する。
(1)被覆膜形成用分散液の調製
 本発明に係る被覆膜形成用分散液においては、赤外線吸収微粒子であるタングステン酸化物または/および複合タングステン酸化物を予め細かく粉砕して、適宜な媒質中に分散させ、単分散の状態にしておくことが好ましい。そして、この粉砕、分散処理工程中において分散状態を担保し、微粒子同士を凝集させないことが肝要である。これは、赤外線吸収微粒子の表面処理の過程において、当該微粒子が凝集を起こし、当該微粒子が凝集体の状態で表面被覆され、ひいては、後述する赤外線吸収微粒子分散体中においても当該凝集体が残存し、後述する赤外線吸収微粒子分散体や赤外線吸収基材の透明性が低下する事態を回避する為である。
 従って、本発明に係る被覆膜形成用分散液に対して粉砕・分散処理を行うことにより、本発明に係る表面処理剤を添加した際、個々の赤外線吸収微粒子に対して、当該表面処理剤の加水分解生成物、当該加水分解生成物の重合物を、均一且つ強固に被覆することが出来る。
 当該粉砕・分散処理の具体的方法としては、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどの装置を用いた粉砕・分散処理方法が挙げられる。その中でも、ビーズ、ボール、オタワサンドといった媒体メディアを用いた、ビーズミル、ボールミル、サンドミル、ペイントシェーカー等の媒体攪拌ミルで粉砕、分散処理を行うことは、所望の分散粒子径への到達時間が短いことから好ましい。
(2)水を媒質とする被覆膜形成用分散液の調製
 本発明者らは、上述した被覆膜形成用分散液の調製において、水を媒質とする被覆膜形成用分散液を攪拌混合しながら、ここへ、本発明に係る表面処理剤を添加し、さらに、添加された金属キレート化合物、金属環状オリゴマー化合物の加水分解反応を即座に完了させるのが好ましいことを知見した。本発明において「水を媒質とする被覆膜形成用分散液」と記載する場合がある。
 これは、添加した本発明に係る表面処理剤の反応順序が影響していると考えられる。即ち、水を媒質とする被覆膜形成用分散液中においては、表面処理剤の加水分解反応が必ず先立ち、その後に、生成した加水分解生成物の重合反応が起こる。この結果、水を媒質としない場合に比較して、被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することが出来るからであると考えられる。当該被覆膜中に存在する表面処理剤分子内の炭素C残存量を低減することで、高密度な被覆膜を形成することが出来たと考えている。
 尚、上述した水を媒質とする被覆膜形成用分散液中において、金属キレート化合物、金属環状オリゴマー化合物、これらの加水分解生成物、当該加水分解生成物の重合物は、添加開始直後は金属イオンにまで分解されることもあるが、その場合、飽和水溶液となったところで、当該金属イオン迄の分解は終了する。
 一方、当該水を媒質とする被覆膜形成用分散液中において、被覆膜形成用分散液中におけるタングステン酸化物または/および複合タングステン酸化物の分散濃度が0.01質量%以上80質量%以下とすることが好ましい。分散濃度がこの範囲であれば、pHを8以下とすることができ、本発明に係る赤外線吸収微粒子は静電反発によって分散を保っている。
 その結果、全ての赤外線吸収微粒子の表面は、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆され、本発明に係る表面処理赤外線吸収微粒子が生成すると考えられる。
 本発明に係る表面処理赤外線吸収微粒子の被覆膜の膜厚は0.5nm以上あることが好ましい。これは、当該被覆膜の膜厚が0.5nm以上あれば、当該表面処理赤外線吸収微粒子が十分な耐湿熱性および化学安定性を発揮すると考えられるからである。一方、当該表面処理赤外線吸収微粒子が所定の光学的特性を担保する観点から、当該被覆膜の膜厚は100nm以下であることが好ましいと考えられる。また、膜厚は0.5nm以上20nm以下であることが好ましく、さらに好ましくは1nm以上10nm以下である。
 被覆膜の膜厚は、透過型電子顕微鏡で測定することができ、赤外線吸収微粒子の格子縞(結晶中の原子の並び)のないところが被覆膜に相当する。
(3)添加水量を調整した被覆膜形成用分散液の調製
 上述した水を媒質とする被覆膜形成用分散液の調製法の変形例として、被覆膜形成用分散液の媒質として有機溶剤を用い、添加水量を適宜な値に調整しながら上述した反応順序を実現する方法もある。本発明において「有機溶剤を媒質とする被覆膜形成用分散液」と記載する場合がある。
 当該調製方法は、後工程の都合により被覆膜形成用分散液中に含まれる水分量を低減したい場合にも便宜である。
 具体的には、有機溶剤を媒質とする被覆膜形成用分散液を攪拌混合しながら、本発明に係る表面処理剤と純水とを並行滴下するものである。このとき、反応速度に影響する媒質温度や、表面処理剤と純水との滴下速度を適宜に制御する。尚、有機溶剤としては、アルコール系、ケトン系、グリコール系等、の室温で水に溶解する溶剤であれば良く、種々のものを選択することが可能である。
(4)被覆膜形成用分散液における混合攪拌後の処理
 上述した被覆膜形成用分散液の調製工程にて得られた本発明に係る表面処理赤外線吸収微粒子は、赤外線吸収微粒子分散体や赤外線吸収基材の原料として、微粒子状態、液体媒質または固体媒質に分散された状態で用いることが出来る。
 即ち、生成した表面処理赤外線吸収微粒子は、さらに加熱処理を施して被覆膜の密度や化学的安定性を高めるといった操作は必要ない。当該加熱処理をせずとも既に所望の耐湿熱性を得られる程、当該被覆膜の密度や密着性は十分に高まっているからである。
 尤も、被覆膜形成用分散液から表面処理赤外線吸収微粒子の粉末を得る目的、得られた表面処理赤外線吸収微粒子粉末を乾燥する目的、等により被覆膜形成用分散液や表面処理赤外線吸収微粒子粉末を加熱処理することは可能である。しかし、この場合、加熱処理温度が、表面処理赤外線吸収微粒子が強く凝集して強凝集体を形成する温度を超えないように留意する。
 これは、本発明に係る表面処理赤外線吸収微粒子には、最終的に用いられる赤外線吸収微粒子分散体や赤外線吸収基材において、それらの用途から、多くの場合は透明性が求められる為である。赤外線吸収材料として凝集体を用いて、赤外線吸収微粒子分散体や赤外線吸収基材を作製すると、曇り度(ヘイズ)の高いものが得られてしまうこととなる。もし強凝集体を形成する温度を超えて加熱処理した場合、赤外線吸収微粒子分散体や赤外線吸収基材の透明性を確保する為には、当該強凝集体を乾式または/および湿式で解砕して再分散させることとなる。しかし、当該解砕して再分散させる際、表面処理赤外線吸収微粒子の表面にある被覆膜が傷付き、場合によっては一部の被覆膜が剥離し、当該微粒子の表面が露出することも考えられる。
 以上、説明したように、本発明に係る表面処理赤外線吸収微粒子は、混合攪拌後の処理の後に加熱処理を必要としないので強凝集を起こさず、従って強凝集を解砕する為の分散処理が不要、または短時間で済む。この結果、本発明に係る表面処理赤外線吸収微粒子の被覆膜は傷付くことなく、個々の赤外線吸収微粒子を被覆したままとなる。そして、当該表面処理赤外線吸収微粒子を用いて製造される赤外線吸収微粒子分散体や赤外線吸収基材は、従来の方法で得られるものよりも、優れた耐湿熱性を示すと考えられる。
 また、上述したように、被覆膜中に存在する表面処理剤分子内の炭素Cの残存量を低減することで、高密度な被覆膜を形成することが出来る。この観点から、表面処理赤外線吸収微粒子からなる表面処理赤外線吸収微粒子粉末において、含有される炭素濃度は0.2質量%以上5.0質量%以下であることが好ましい。より好ましくは、0.5質量%以上3.0質量%以下である。
[4]本発明に係る表面処理赤外線吸収微粒子を用いて得られる赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、赤外線吸収基材、並びに物品
 以下、本発明に係る表面処理赤外線吸収微粒子を用いて得られる赤外線吸収微粒子分散体、赤外線吸収基材、並びに物品について、(1)赤外線吸収微粒子分散液、(2)赤外線吸収微粒子分散体、(3)赤外線吸収基材、(4)赤外線吸収微粒子分散体や赤外線吸収基材を用いた物品、の順に説明する。
(1)赤外線吸収微粒子分散液
 本発明に係る赤外線吸収微粒子分散液は、本発明に係る表面処理赤外線吸収微粒子が液体媒質中に分散しているものである。当該液体媒質としては、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水、から選択される1種以上の液体媒質を用いることが出来る。
 本発明に係る赤外線吸収微粒子分散液について(i)製造方法、(ii)使用する有機溶剤、(iii)使用する油脂、(iv)使用する液状可塑剤、(v)使用する硬化により高分子化される化合物、(vi)使用する分散剤、(vii)赤外線吸収微粒子分散液の使用方法、の順に説明する。
 (i)製造方法
 本発明に係る赤外線吸収微粒子分散液を製造するには、上述した被覆膜形成用分散液を、表面処理赤外線吸収微粒子の強凝集を回避出来る条件での加熱、乾燥、または、例えば室温下における真空流動乾燥、噴霧乾燥等によって乾燥し、本発明に係る表面処理赤外線吸収微粒子粉末を得る。そして、当該表面処理赤外線吸収微粒子粉末を、上述した液体媒質中に添加して再分散させればよい。また、被覆膜形成用分散液を、表面処理赤外線吸収微粒子と媒質とに分離し、被覆膜形成用分散液の媒質を赤外線吸収微粒子分散液の媒質へ置き換え(所謂、溶媒置換)て、赤外線吸収微粒子分散液を製造することも好ましい構成である。
 真空流動乾燥による処理では、減圧雰囲気下で乾燥と解砕の処理を同時に行うため、乾燥速度が速い上に表面処理赤外線吸収微粒子の凝集を回避出来る。また、減圧雰囲気下での乾燥のため、比較的低温でも揮発成分を除去することができ、残存する揮発成分量も限りなく少なくすることができる。また、噴霧乾燥による処理では、揮発成分の表面力に起因する二次凝集が発生しにくく、解砕処理を施さずとも比較的二次凝集していない表面処理赤外線吸収微粒子が得られる。
 一方、予め、被覆膜形成用分散液の媒質と、赤外線吸収微粒子分散液の媒質とを一致させておき、表面処理後の被覆膜形成用分散液を、そのまま赤外線吸収微粒子分散液とすることも好ましい構成である。
 (ii)使用する有機溶剤
 本発明に係る赤外線吸収微粒子分散液に使用する有機溶剤としては、アルコール系、ケトン系、炭化水素系、グリコール系、水系、等を使用することが出来る。
 具体的には、メタノール、エタノール、1-プロパノール、イソプロパノール、ブタノール、ペンタノール、ベンジルアルコール、ジアセトンアルコールなどのアルコール系溶剤;
 アセトン、メチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンなどのケトン系溶剤;
 3-メチル-メトキシ-プロピオネートなどのエステル系溶剤;
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールイソプロピルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテートなどのグリコール誘導体;
 フォルムアミド、N-メチルフォルムアミド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドンなどのアミド類;
 トルエン、キシレンなどの芳香族炭化水素類;
 エチレンクロライド、クロルベンゼン、等を使用することが出来る。
 そして、これらの有機溶剤中でも、特に、ジメチルケトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸n-ブチル、等を好ましく使用することが出来る。
 (iii)使用する油脂
 本発明に係る赤外線吸収微粒子分散液に使用する油脂としては、植物油脂または植物由来油脂が好ましい。
 植物油としては、アマニ油、ヒマワリ油、桐油、エノ油等の乾性油、ゴマ油、綿実油、菜種油、大豆油、米糠油、ケシ油等の半乾性油、オリーブ油、ヤシ油、パーム油、脱水ヒマシ油等の不乾性油、等を使用することが出来る。
 植物油由来の化合物としては、植物油の脂肪酸とモノアルコールを直接エステル反応させた脂肪酸モノエステル、エーテル類、等を使用することが出来る。
 また、市販の石油系溶剤も油脂として用いることが出来る。
 市販の石油系溶剤として、アイソパー(登録商標)E、エクソール(登録商標)Hexane、Heptane、E、D30、D40、D60、D80、D95、D110、D130(以上、エクソンモービル製)、等を使用することが出来る。
 (iv)使用する液状可塑剤
 本発明に係る赤外線吸収微粒子分散液に使用する液状可塑剤としては、例えば、一価アルコールと有機酸エステルとの化合物である可塑剤、多価アルコール有機酸エステル化合物等のエステル系である可塑剤、有機リン酸系可塑剤等のリン酸系である可塑剤、等を使用することが出来る。尚、いずれも室温で液状であるものが好ましい。
 なかでも、多価アルコールと脂肪酸から合成されたエステル化合物である可塑剤を好ましく使用することが出来る。当該多価アルコールと脂肪酸とから合成されたエステル化合物は特に限定されないが、例えば、トリエチレングリコール、テトラエチレングリコール、トリプロピレングリコール等のグリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の一塩基性有機酸との反応によって得られた、グリコール系エステル化合物、等を使用することが出来る。
 また、テトラエチレングリコール、トリプロピレングリコールと、前記一塩基性有機とのエステル化合物等も挙げられる。
 なかでも、トリエチレングリコールジヘキサネート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-オクタネート、トリエチレングリコールジ-2-エチルヘキサノネート等のトリエチレングリコールの脂肪酸エステル、等を使用することが出来る。さらに、トリエチレングリコールの脂肪酸エステルも好ましく使用することが出来る。
 (v)使用する硬化により高分子化される化合物
 本発明に係る赤外線吸収微粒子分散液に使用する、硬化により高分子化される化合物は、重合等により高分子を形成する単量体やオリゴマーである。
 具体的には、メチルメタクリレート単量体、アクレリート単量体、スチレン樹脂単量体、等を使用することが出来る。
 以上、説明した液状媒質は、2種以上を組み合わせて用いることが出来る。さらに、必要に応じて、これらの液状媒質へ酸やアルカリを添加してpH調整してもよい。
 (vi)使用する分散剤
 本発明に係る赤外線吸収微粒子分散液中において、表面処理赤外線吸収微粒子の分散安定性を一層向上させ、再凝集による分散粒子径の粗大化を回避する為に、各種の分散剤、界面活性剤、カップリング剤などの添加も好ましい。
 当該分散剤、カップリング剤、界面活性剤は用途に合わせて選定可能であるが、アミンを含有する基、水酸基、カルボキシル基、スルホ基、または、エポキシ基を官能基として有するものであることが好ましい。これらの官能基は、表面処理赤外線吸収微粒子の表面に吸着して凝集を防ぎ、均一に分散させる効果を持つ。これらの官能基のいずれかを分子中にもつ高分子系分散剤は、さらに好ましい。
 また、官能基を有するアクリル-スチレン共重合体系分散剤も好ましい分散剤として挙げられる。中でも、カルボキシル基を官能基として有するアクリル-スチレン共重合体系分散剤、アミンを含有する基を官能基として有するアクリル系分散剤が、より好ましい例として挙げられる。官能基にアミンを含有する基を有する分散剤は、分子量Mw2000~200000、アミン価5~100mgKOH/gのものが好ましい。また、カルボキシル基を有する分散剤では、分子量Mw2000~200000、酸価1~50mgKOH/gのものが好ましい。
 市販の分散剤における好ましい具体例としては、日本ルーブリゾール社製SOLSPERSE(登録商標)(以下同じ)3000、5000、9000、11200、12000、13000、13240、13650、13940、16000、17000、18000、20000、21000、24000SC、24000GR、26000、27000、28000、31845、32000、32500、32550、32600、33000、33500、34750、35100、35200、36600、37500、38500、39000、41000、41090、53095、55000、56000、71000、76500、J180、J200、M387等;SOLPLUS(登録商標)(以下同じ)D510、D520、D530、D540、DP310、K500、L300、L400、R700等;ビックケミー・ジャパン社製Disperbyk(登録商標)(以下同じ)-101、102、103、106、107、108、109、110、111、112、116、130、140、142、145、154、161、162、163、164、165、166、167、168、170、171、174、180、181、182、183、184、185、190、191、192、2000、2001、2009、2020、2025、2050、2070、2095、2096、2150、2151、2152、2155、2163、2164、Anti-Terra(登録商標)(以下同じ)-U、203、204等;BYK(登録商標)(以下同じ)-P104、P104S、P105、P9050、P9051、P9060、P9065、P9080、051、052、053、054、055、057、063、065、066N、067A、077、088、141、220S、300、302、306、307、310、315、320、322、323、325、330、331、333、337、340、345、346、347、348、350、354、355、358N、361N、370、375、377、378、380N、381、392、410、425、430、1752、4510、6919、9076、9077、W909、W935、W940、W961、W966、W969、W972、W980、W985、W995、W996、W9010、Dynwet800、Siclean3700、UV3500、UV3510、UV3570等;エフカアディティブズ社製EFKA(登録商標)(以下同じ)2020、2025、3030、3031、3236、4008、4009、4010、4015、4020、4046、4047、4050、4055、4060、4080、4300、4310、4320、4330、4340、4400、4401、4402、4403、4500、5066、5220、6220、6225、6230、6700、6780、6782、7462、8503等;BASFジャパン社製JONCRYL(登録商標)(以下同じ)67、678、586、611、680、682、690、819、-JDX5050等;大塚化学社製TERPLUS(登録商標)(以下同じ)MD1000、D1180、D1130等;味の素ファインテクノ社製アジスパー(登録商標)(以下同じ)PB-711、PB-821、PB-822等;楠本化成社製ディスパロン(登録商標)(以下同じ)1751N、1831、1850、1860、1934、DA-400N、DA-703-50、DA-325、DA-375、DA-550、DA-705、DA-725、DA-1401、DA-7301、DN-900、NS-5210、NVI-8514L等;東亞合成社製アルフォン(登録商標)(以下同じ)UH-2170、UC-3000、UC-3910、UC-3920、UF-5022、UG-4010、UG-4035、UG-4040、UG-4070、レゼダ(登録商標)(以下同じ)GS-1015、GP-301、GP-301S等;三菱化学社製ダイヤナール(登録商標)(以下同じ)BR-50、BR-52、BR-60、BR-73、BR-77、BR80、BR-83、BR85、BR87、BR88、BR-90、BR-96、BR102、BR-113、BR116等が挙げられる。
 (vii)赤外線吸収微粒子分散液の使用方法
 上述のようにして製造された本発明に係る赤外線吸収微粒子分散液は、適宜な基材の表面に塗布し、ここに分散膜を形成して赤外線吸収基材として利用することが出来る。つまり、当該分散膜は、赤外線吸収微粒子分散液の乾燥固化物の一種である。
 また、当該赤外線吸収微粒子分散液を乾燥し、粉砕処理して、本発明に係る粉末状の赤外線吸収微粒子分散体(本発明において「分散粉」と記載する場合もある。)とすることが出来る。つまり、当該分散粉は、赤外線吸収微粒子分散液の乾燥固化物の一種である。当該分散粉は表面処理赤外線吸収微粒子が固体媒質中(分散剤等)に分散された粉末状の分散体であり、上述の表面処理赤外線吸収微粒子粉末とは区別する。当該分散粉は分散剤を含んでいるため、適宜な媒質と混合することで表面処理赤外線吸収微粒子を媒質中へ容易に再分散させることが可能である。
 当該分散粉は、赤外線吸収製品へ表面処理赤外線吸収微粒子を分散状態で添加する原料として用いることが出来る。即ち、本発明に係る表面処理赤外線吸収微粒子が固体媒質中に分散された当該分散粉を、再度、液体媒質中に分散させ、赤外線吸収製品用の分散液として使用しても良いし、後述するように当該分散粉を樹脂中に練り込んで使用しても良い。
 一方、本発明に係る表面処理赤外線吸収微粒子を液状の媒質に混合・分散させた赤外線吸収微粒子分散液は、光熱変換を利用した様々な用途に用いられる。
 例えば、表面処理赤外線吸収微粒子を未硬化の熱硬化性樹脂へ添加する、または、本発明に係る表面処理赤外線吸収微粒子を適宜な溶媒中に分散した後、未硬化の熱硬化性樹脂を添加することにより、硬化型インク組成物を得ることが出来る。当該硬化型インク組成物は、所定の基材上に設けられ、赤外線などの赤外線を照射されて硬化した際、当該基材への密着性に優れたものである。そして、当該硬化型インク組成物は、従来のインクとしての用途に加え、所定量を塗布し、ここへ赤外線などの電磁波を照射して硬化させて積み上げ、後3次元物体を造形する光造形法に最適な硬化型インク組成物となる。
(2)赤外線吸収微粒子分散体
 本発明に係る赤外線吸収微粒子分散体は、本発明に係る表面処理赤外線吸収微粒子が固体媒質中に分散しているものである。尚、当該固体媒質としては、樹脂、ガラス、等の固体媒質を用いることが出来る。
 本発明に係る赤外線吸収微粒子分散体について(i)製造方法、(ii)耐湿熱性、の順に説明する。
 (i)製造方法
 本発明に係る表面処理赤外線吸収微粒子を樹脂に練り込み、フィルムやボードに成形する場合、当該表面処理赤外線吸収微粒子を直接樹脂に練り込むことが可能である。また、前記赤外線吸収微粒子分散液と樹脂とを混合すること、または、当該表面処理赤外線吸収微粒子が固体媒質に分散された粉末状の分散体を液体媒質に添加しかつ樹脂と混合することも可能である。
 固体媒質として樹脂を用いた場合、例えば、厚さ0.1μm~50mmのフィルムまたはボードを構成する形態であってもよい。
 一般的に、本発明に係る表面処理赤外線吸収微粒子を樹脂に練り込むとき、樹脂の融点付近の温度(200~300℃前後)で加熱混合して練り込むこととなる。
 この場合、さらに、当該表面処理赤外線吸収微粒子を樹脂に混合してペレット化し、当該ペレットを各方式でフィルムやボードを形成することも可能である。例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法等により形成可能である。この時のフィルムやボードの厚さは、使用目的によって適宜設定すればよく、樹脂に対するフィラー量(すなわち、本発明に係る表面処理赤外線吸収微粒子の配合量)は、基材の厚さや必要とされる光学特性、機械特性に応じて可変であるが、一般的に樹脂に対して50質量%以下が好ましい。
 樹脂に対するフィラー量が50質量%以下であれば、固体状樹脂中での微粒子同士が造粒を回避出来るので、良好な透明性を保つことが出来る。また、本発明に係る表面処理赤外線吸収微粒子の使用量も制御出来るのでコスト的にも有利である。
 一方、本発明に係る表面処理赤外線吸収微粒子を固体媒質に分散させた赤外線吸収微粒子分散体を、さらに粉砕し粉末とした状態でも利用することが出来る。当該構成を採る場合、粉末状の赤外線吸収微粒子分散体において、既に、本発明に係る表面処理赤外線吸収微粒子が固体媒質中で十分に分散している。従って、当該粉末状の赤外線吸収微粒子分散体を所謂マスターバッチとして、適宜な液体媒質に溶解させたり、樹脂ペレット等と混練することで、容易に、液状または固形状の赤外線吸収微粒子分散体を製造することが出来る。
  また、上述したフィルムやボードのマトリクスとなる樹脂は、特に限定されるものではなく用途に合わせて選択可能である。低コストで透明性が高く汎用性の広い樹脂として、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、等の使用することが出来る。また、耐候性を考慮してフッ素樹脂を使用することも出来る。
 (ii)耐湿熱性
 本発明に係る赤外線吸収微粒子分散体は、可視光透過率80%前後に設定した当該分散体を、85℃90%の湿熱雰囲気中に9日間暴露を行ったとき、当該暴露前後における可視光透過率の変化量が2.0%以下であり、優れた耐湿熱性を有している。
(3)赤外線吸収基材
 本発明に係る赤外線吸収基材は、所定の基材表面に、本発明に係る表面処理赤外線吸収微粒子を含有する分散膜が形成されているものである。
 所定の基材表面に、本発明に係る表面処理赤外線吸収微粒子を含有する分散膜が形成されていることにより、本発明に係る赤外線吸収基材は、耐湿熱性および化学安定性に優れ、且つ赤外線吸収材料として好適に利用出来るものである。
 本発明に係る赤外線吸収基材について(i)製造方法、(ii)耐湿熱性、の順に説明する。
 (i)製造方法
 例えば、本発明に係る表面処理赤外線吸収微粒子を、アルコール等の有機溶剤や水等の液体媒質と、樹脂バインダーと、所望により分散剤とを混合した赤外線吸収微粒子分散液を、適宜な基材表面に塗布した後、液体媒質を除去したり、硬化させたりすることで、赤外線吸収微粒子分散体が基材表面に直接積層された赤外線吸収基材を得ることが出来る。
 前記樹脂バインダー成分は用途に合わせて選択可能であり、紫外線硬化樹脂、熱硬化樹脂、常温硬化樹脂、熱可塑樹脂、等が挙げられる。一方、樹脂バインダー成分を含まない赤外線吸収微粒子分散液を、基材表面に赤外線吸収微粒子分散体を積層しても良いし、当該積層の後に、バインダー成分を含む液体媒質を当該赤外線吸収微粒子分散体の層上に塗布することとしても良い。
 具体的には、有機溶剤、樹脂を溶解させた有機溶剤、樹脂を分散させた有機溶剤、水、から選ばれる1種以上の液体媒質に表面処理赤外線吸収微粒子が分散している液状の赤外線吸収微粒子分散体を基材表面に塗布し、得られた塗布膜を適宜な方法で固めた赤外線吸収基材が挙げられる。また、樹脂バインダー成分を含む液状の赤外線吸収微粒子分散体を基材表面に塗布し、得られた塗布膜を適宜な方法で固めた赤外線吸収基材が挙げられる。さらに、粉末状である固体媒質中に表面処理赤外線吸収微粒子が分散している赤外線吸収微粒子分散体を所定媒質に混合した液状の赤外線吸収微粒子分散体を、基材表面に塗布し、得られた塗布膜を適宜な方法で固めた赤外線吸収基材も挙げられる。勿論、当該各種の液状の赤外線吸収微粒子分散液の2種以上を混合した赤外線吸収微粒子分散液を基材表面に塗布し、得られた塗布膜を適宜な方法で固めた赤外線吸収基材も挙げられる。
 上述した基材の材質は、透明体であれば特に限定されないが、ガラス、樹脂ボード、樹脂シート、樹脂フィルムが好ましく用いられる。
 樹脂ボード、樹脂シート、樹脂フィルムに用いる樹脂としては、必要とするボード、シート、フィルムの表面状態や耐久性に不具合を生じないものであれば特に制限はない。例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、芳香族ポリアミド等のアミド系ポリマー、イミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや、さらにこれらの二元系、三元系各種共重合体、グラフト共重合体、ブレンド物等の透明ポリマーからなるボード、シート、フィルムが挙げられる。特に、ポリエチレンテレフタレート、ポリブチレンテレフタレートあるいはポリエチレン-2,6-ナフタレート等のポリエステル系2軸配向フィルムが、機械的特性、光学特性、耐熱性および経済性の点より好適である。当該ポリエステル系2軸配向フィルムは共重合ポリエステル系であっても良い。
 (ii)耐湿熱性
 上記赤外線吸収基材においては、可視光透過率80%に設定した当該赤外線吸収基材へ、85℃90%の湿熱雰囲気中に9日間暴露を行ったとき、当該暴露前後における可視光透過率の変化量が2.0%以下であり、優れた耐湿熱性を有している。
(4)赤外線吸収微粒子分散体や赤外線吸収基材を用いた物品
 上述したように、本発明に係る赤外線吸収微粒子分散体や赤外線吸収基材であるフィルムやボード等の赤外線吸収物品は、耐湿熱性および化学安定性に優れている。
 そこで、これらの赤外線吸収物品は、例えば、各種建築物や車両において、可視光線を十分に取り入れながら赤外領域の光を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制することを目的とした窓材等、PDP(プラズマディスプレイパネル)に使用され、当該PDPから前方に放射される赤外線を遮蔽するフィルター等、に好適に使用することができる。
 また、本発明に係る表面処理赤外線吸収微粒子は赤外線領域に吸収を有する為、当該表面処理赤外線吸収微粒子を含む印刷面へ赤外線レーザーを照射したとき、特定の波長を有する赤外線を吸収する。従って、この表面処理赤外線吸収微粒子を含む偽造防止インクを被印刷基材の片面又は両面に印刷して得た偽造防止用印刷物は、特定波長を有する赤外線を照射し、その反射若しくは透過を読み取ることによって、反射量又は透過量の違いから、印刷物の真贋を判定することが出来る。当該偽造防止用印刷物は、本発明に係る赤外線吸収微粒子分散体の一例である。
 また、本発明に係る赤外線吸収微粒子分散液とバインダー成分とを混合してインクを製造し、当該インクを基材上に塗布し、塗布したインクを乾燥させた後、乾燥させたインクを硬化させることにより光熱変換層を形成することが出来る。当該光熱変換層は、赤外線などの電磁波レーザーの照射により、高い位置の精度をもって所望の箇所のみで発熱させることが可能であり、エレクトロニクス、医療、農業、機械、等の広い範囲に分野において適用可能である。例えば、有機エレクトロルミネッセンス素子をレーザー転写法で形成する際に用いるドナーシートや、感熱式プリンタ用の感熱紙や熱転写プリンタ用のインクリボンとして好適に用いることが出来る。当該光熱変換層は本発明に係る赤外線吸収微粒子分散体の一例である。
 また、本発明に係る表面処理赤外線吸収微粒子を適宜な媒体中に分散させて、当該分散物を繊維の表面および/または内部に含有させることにより、赤外線吸収繊維が得られる。当該構成を有することで、赤外線吸収繊維は、表面処理赤外線吸収微粒子の含有により太陽光などからの近赤外線等を効率良く吸収し、保温性に優れた赤外線吸収繊維となり、同時に可視光領域の光は透過させるので意匠性に優れた赤外線吸収繊維となる。その結果、保温性を必要とする防寒用衣料、スポーツ用衣料、ストッキング、カーテン等の繊維製品やその他産業用繊維製品等の種々の用途に使用することが出来る。当該赤外線吸収繊維は本発明に係る赤外線吸収微粒子分散体の一例である。
 また、本発明に係るフィルム状またはボード状の赤外線吸収微粒子分散体を、農園芸用ハウスの屋根や外壁材等に用いられる資材に応用することが出来る。そして、可視光を透過して農園芸用ハウス内の植物の光合成に必要な光を確保しながら、それ以外の太陽光に含まれる近赤外光等の光を効率よく吸収することにより、断熱性を備えた農園芸施設用断熱資材として使用することが出来る。当該農園芸施設用断熱資材は、本発明に係る赤外線吸収微粒子分散体の一例である。
 以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
 実施例および比較例における分散液中の微粒子の分散粒子径は、動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS-8000)により測定した平均値をもって示した。また、結晶子径は、粉末X線回折装置(スペクトリス株式会社PANalytical製X’Pert-PRO/MPD)を用いて粉末X線回折法(θ―2θ法)により測定し、リートベルト法を用いて算出した。
 表面処理赤外線吸収微粒子の被覆膜の膜厚は、透過型電子顕微鏡(日立製作所株式会社社製 HF-2200)を用いて得た30万倍の写真データより赤外線吸収微粒子の格子縞のないところを被覆膜として読み取った。
 赤外線吸収シートの光学特性は、分光光度計(日立製作所株式会社製 U-4100)を用いて測定し、可視光透過率と日射透過率とはJISR3106に従って算出した。当該赤外線吸収シートのヘイズ値は、ヘイズメーター(村上色彩株式会社製 HM-150)を用いて測定し、JISK7105に従って算出した。
 赤外線吸収シートの耐湿熱性の評価方法は、可視光透過率80%前後の当該赤外線吸収シートを85℃90%の湿熱雰囲気中に9日間暴露する。そして、例えば六方晶セシウムタングステンブロンズの場合は、当該暴露前後における日射透過率の変化量が2.0%以下のものを耐湿熱性が良好と判断し、変化量が2.0%を超えるものは耐湿熱性が不足と判断した。
 尚、ここでいう赤外線吸収シートの光学特性値(可視光透過率、ヘイズ値)は、基材である樹脂シートの光学特性値を含む値である。
[実施例1]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ(Cs0.33WO、2.0≦z≦3.0)粉末CWO(登録商標)(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合して得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し10時間粉砕・分散処理し、実施例1に係るCs0.33WO微粒子の分散液を得た。得られた分散液中のCs0.33WO微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは純水を用いて測定し、溶媒屈折率は1.33とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。得られたCs0.33WO微粒子の分散液と純水を混合し、Cs0.33WO微粒子の濃度が2質量%である実施例1に係る被覆膜形成用分散液Aを得た。
 一方、アルミニウム系のキレート化合物としてアルミニウムエチルアセトアセテートジイソプロピレート2.5質量%と、イソプロピルアルコール(IPA)97.5質量%とを混合して表面処理剤希釈液aを得た。
 得られた被覆膜形成用分散液A890gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、ここへ表面処理剤希釈液a360gを3時間かけて滴下添加した。当該表面処理剤希釈液aの滴下添加後、さらに温度20℃で24時間の攪拌を行い、実施例1に係る熟成液を作製した。次いで、真空流動乾燥により、当該熟成液から媒質を蒸発させて実施例1に係る表面処理赤外線吸収微粒子を含む粉末(表面処理赤外線吸収微粒子粉末)を得た。
 ここで、実施例1に係る表面処理赤外線吸収微粒子の被覆膜の膜厚を、透過型電子顕微鏡により測定したところ2nmであることが判明した。尚、実施例1に係る表面処理赤外線吸収微粒子の30万倍の透過型電子顕微鏡写真を図2に示す。
 実施例1に係る表面処理赤外線吸収微粒子粉末8質量%とポリアクリレート系分散剤24質量%とトルエン68質量%とを混合した。得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、1時間粉砕・分散処理し、実施例1に係る赤外線吸収微粒子分散液を得た。次いで、この赤外線吸収微粒子分散液から真空流動乾燥により媒質を蒸発させ、実施例1に係る赤外線吸収微粒子分散粉を得た。
 実施例1に係る赤外線吸収微粒子分散粉とポリカーボネート樹脂とを、後に得られる赤外線吸収シートの可視光透過率が80%前後になるようにドライブレンドした(この例では、表面処理赤外線吸収微粒子の濃度が0.06wt%となるようにブレンドされた)。得られたブレンド物を、二軸押出機を用いて290℃で混練し、Tダイより押出して、カレンダーロール法により0.75mm厚のシート材とし、実施例1に係る赤外線吸収シートを得た。尚、赤外線吸収シートは本発明に係る赤外線吸収微粒子分散体の一例である。
 得られた実施例1に係る赤外線吸収シートの光学特性を測定したところ、可視光透過率が79.6%、日射透過率が48.6%、ヘイズは0.9%であった。
 得られた実施例1に係る赤外線吸収シートを85℃90%の湿熱雰囲気中に9日間暴露後、光学特性を測定したところ、可視光透過率が80.2%、日射透過率が49.5%、ヘイズは0.9%であった。湿熱雰囲気暴露による可視光透過率の変化量は0.6%、日射透過率の変化量は0.9%とどちらも小さく、また、ヘイズは変化しないことが分かった。当該製造条件を表1、評価結果を表3に示す。
[実施例2、3]
 表面処理剤希釈液aの量とその滴下添加時間とを変更したこと以外は、実施例1と同様の操作をすることで、実施例2および3に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例4]
 実施例1に係る熟成液を、1時間静置させ、表面処理赤外線吸収微粒子と媒質とを固液分離させた。次いで、上澄みである媒質のみを除去して赤外線吸収微粒子スラリーを得た。得られた赤外線吸収微粒子スラリーにイソプロピルアルコールを添加して1時間攪拌させた後、1時間静置させ、再び表面処理赤外線吸収微粒子と媒質とを固液分離させた。次いで、上澄みである媒質のみを除去し、再び赤外線吸収微粒子スラリーを得た。
 再び得られた赤外線吸収微粒子スラリー16質量%とポリアクリレート系分散剤24質量%とトルエン60質量%とを混合攪拌させた後、超音波ホモジナイザーを用いて分散処理し、実施例4に係る赤外線吸収微粒子分散液を得た。
 実施例4に係る赤外線吸収微粒子分散液を用いたこと以外は、実施例1と同様の操作をすることで、実施例4に係る赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。尚、表1における注*1は、表面処理赤外線吸収微粒子と媒質とを固液分離したことを示している。
[実施例5]
 ジルコニウムトリブトキシアセチルアセトネート2.4質量%とイソプロピルアルコール97.6質量%とを混合して実施例5に係る表面処理剤希釈液bを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液bを用いたこと以外は、実施例1と同様の操作をすることで、実施例5に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例6]
 ジイソプロポキシチタンビスエチルアセトアセテート2.6質量%とイソプロピルアルコール97.4質量%とを混合して実施例6に係る表面処理剤希釈液cを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液cを用いたこと以外は、実施例1と同様の操作をすることで、実施例6に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例7]
 固体状樹脂としてポリカーボネート樹脂の代わりにポリメタクリル酸メチル樹脂を用いたこと以外は、実施例1と同様の操作をすることで、実施例7に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例8]
 Na/W(モル比)=0.33の立方晶ナトリウムタングステンブロンズ粉末(住友金属鉱山株式会社製)25質量%とイソプロピルアルコール75質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填して10時間粉砕・分散処理し、実施例8に係るNa0.33WO微粒子の分散液を得た。得られた分散液中のNa0.33WO微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはイソプロピルアルコールを用いて測定し、溶媒屈折率は1.38とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。
 実施例8に係るNa0.33WO微粒子の分散液とイソプロピルアルコールとを混合し、赤外線吸収微粒子(立方晶ナトリウムタングステンブロンズ微粒子)の濃度が2%である被覆膜形成用分散液Bを得た。得られた被覆膜形成用分散液B520gをビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら、表面処理剤希釈液a360gと、希釈剤dとして純水100gとを、3時間かけて並行滴下添加した。滴下添加後、温度20℃で24時間の攪拌を行い、実施例8に係る熟成液を作製した。次いで、この熟成液から真空流動乾燥により媒質を蒸発させ、実施例8に係る表面処理赤外線吸収微粒子粉末を得た。
 実施例1に係る表面処理赤外線吸収微粒子粉末の代わりに実施例8に係る表面処理赤外線吸収微粒子粉末を用いたこと以外は、実施例1と同様の操作をすることで、実施例8に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。尚、表1における注*2は、希釈剤dが純水であることを示し、注*5は、aの滴下量は360g、dの滴下量は100gであることを示し、注*7は、a、dを並行滴下することを示している。
[実施例9~11]
 六方晶セシウムタングステンブロンズ粉末の代わりに、K/W(モル比)=0.33の六方晶カリウムタングステンブロンズ粉末(実施例9)や、Rb/W(モル比)=0.33の六方晶ルビジウムタングステンブロンズ粉末(実施例10)や、マグネリ相のW1849(実施例11)を用いた以外は、実施例1と同様にして赤外線吸収微粒子の分散粒子径および結晶子径を測定し、更に被覆膜形成用分散液C~Eを得た。
 被覆膜形成用分散液Aの代わりに被覆膜形成用分散液C~Eを用いたこと以外は、実施例1と同様の操作をすることで、実施例9~11に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例12、13]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ(Cs0.33WO)粉末(住友金属鉱山株式会社製YM-01)25質量%と純水75質量%とを混合して得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し6時間(実施例12)または4時間(実施例13)の粉砕・分散処理を行い、実施例12、13に係るCs0.33WO微粒子の分散液を得た。
 得られた実施例12、13に係る分散液中のCs0.33WO微粒子の分散粒子径を測定したところ、それぞれ140nm、120nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドは純水を用いて測定し、溶媒屈折率は1.33とした。
 また、得られた分散液の溶媒を除去したあと、実施例12、13に係るCs0.33WO微粒子の結晶子径を測定したところ、それぞれ50nm、42nmであった。
 得られた実施例12、13に係るCs0.33WO微粒子の分散液と純水とを混合し、Cs0.33WO微粒子の濃度が2質量%である実施例12、13に係る被覆膜形成用分散液F、Gを得た。
 被覆膜形成用分散液Aの代わりに、被覆膜形成用分散液F、Gを用いたこと以外は、実施例2と同様の操作をすることで、実施例12、13に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例14]
 テトラエトキシシラン309gを表面処理剤eとし、表面処理剤希釈液aの代わりに表面処理剤eを用い、イソプロピルアルコールを添加しなかったこと以外は、実施例1と同様の操作をすることで、実施例14に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例15]
 亜鉛アセチルアセトナート4.4質量%とイソプロピルアルコール95.6質量%とを混合して実施例15に係る表面処理剤希釈液fを得た。表面処理剤希釈液aの代わりに表面処理剤希釈液fを用いたこと以外は、実施例1と同様の操作をすることで、実施例15に係る表面処理赤外線吸収微粒子粉末、赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[実施例16]
 真空流動乾燥の代わりに噴霧乾燥によって、実施例1に係る熟成液から媒質を蒸発させて実施例16に係る表面処理赤外線吸収微粒子を含む粉末(表面処理赤外線吸収微粒子粉末)を得た。それ以外は実施例1と同様の操作をすることで、実施例16に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表1、評価結果を表3に示す。
[比較例1]
 六方晶セシウムタングステンブロンズ粉末7質量%とポリアクリレート系分散剤24質量%とトルエン69質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し4時間粉砕・分散処理し、比較例1に係る被覆膜形成用分散液Hを得た。得られた被覆膜形成用分散液H中の赤外線吸収微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはトルエンを用いて測定し、溶媒屈折率は1.50とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。
 次いで、この被覆膜形成用分散液Hへ表面処理剤を加えることなく、このまま比較例1に係る赤外線吸収微粒子分散液とした。当該比較例1に係る赤外線吸収微粒子分散液から真空流動乾燥により媒質を蒸発させ、比較例1に係る赤外線吸収微粒子分散粉を得た。
 比較例1に係る赤外線吸収微粒子分散粉とポリカーボネート樹脂を、赤外線吸収微粒子の濃度が0.075wt%になるようにドライブレンドした。得られたブレンド物を、二軸押出機を用いて290℃で混練し、Tダイより押出して、カレンダーロール法により0.75mm厚のシート材とし、比較例1に係る赤外線吸収シートを得た。
 得られた比較例1に係る赤外線吸収シートの光学特性を測定したところ、可視光透過率が79.2%、日射透過率が48.4%、ヘイズは1.0%であった。
 得られた比較例1に係る赤外線吸収シートを85℃90%の湿熱雰囲気中に9日間暴露後、光学特性を測定したところ、可視光透過率が81.2%、日射透過率が52.6%、ヘイズは1.2%であった。湿熱雰囲気暴露による可視光透過率の変化量は2.0%、日射透過率の変化量は4.2%となり、実施例と比較して大きいことが分かった。また、ヘイズの変化の割合は0.2%であった。当該製造条件を表2、評価結果を表4に示す。
[比較例2]
 固体状樹脂としてポリカーボネート樹脂の代わりにポリメタクリル酸メチル樹脂を用いたこと以外は、比較例1と同様の操作をすることで、比較例2に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表2、評価結果を表4に示す。
[比較例3~6]
 六方晶セシウムタングステンブロンズ粉末の代わりに、Na/W(モル比)=0.33の立方晶ナトリウムタングステンブロンズ粉末(比較例3)や、K/W(モル比)=0.33の六方晶カリウムタングステンブロンズ粉末(比較例4)や、Rb/W(モル比)=0.33の六方晶ルビジウムタングステンブロンズ粉末(比較例5)や、マグネリ相のW1849(比較例6)を用いたこと以外は、比較例1と同様の操作をすることで、比較例3~6に係る赤外線吸収微粒子分散液、赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表2、評価結果を表4に示す。
[比較例7]
 Cs/W(モル比)=0.33の六方晶セシウムタングステンブロンズ粉末13質量%とイソプロピルアルコール87質量%とを混合し、得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し5時間粉砕・分散処理し、比較例7に係るCs0.33WO微粒子の分散液を得た。得られた分散液中のCs0.33WO微粒子の分散粒子径を測定したところ、100nmであった。尚、粒径測定の設定として、粒子屈折率は1.81とし、粒子形状は非球形とした。また、バックグラウンドはイソプロピルアルコールを用いて測定し、溶媒屈折率は1.38とした。また、得られた分散液の溶媒を除去したあと、結晶子径を測定したところ32nmであった。
 比較例7に係るCs0.33WO微粒子の分散液とイソプロピルアルコールを混合し、赤外線吸収微粒子(六方晶セシウムタングステンブロンズ微粒子)の濃度が3.5%である被覆膜形成用分散液Iを得た。得られた被覆膜形成用分散液I733gに、アルミニウムエチルアセトアセテートジイソプロピレートを21g添加し、混合攪拌した後、超音波ホモジナイザーを用いて分散処理した。
 次いで、当該分散処理物をビーカーに入れ、羽根の付いた攪拌機によって強く攪拌しながら純水100gを希釈剤dとして1時間かけて滴下添加した。さらに、攪拌しながらテトラエトキシシラン140gを表面処理剤e’として2時間かけて滴下添加した後、20℃で15時間の攪拌を行い、この液を70℃で2時間加熱熟成した。次いで、この熟成液から真空流動乾燥により媒質を蒸発させ、さらに窒素雰囲気中において温度200℃で1時間加熱処理して、比較例7に係る表面処理赤外線吸収微粒子粉末を得た。
 比較例7に係る表面処理赤外線吸収微粒子粉末8質量%とポリアクリレート系分散剤24質量%とトルエン68質量%とを混合した。得られた混合液を、0.3mmφZrOビーズを入れたペイントシェーカーに装填し、5時間粉砕・分散処理し、比較例7に係る赤外線吸収微粒子分散液を得た。
 実施例1に係る赤外線吸収微粒子分散液の代わりに、比較例7に係る赤外線吸収微粒子分散液を用いたこと以外は、実施例1と同様の操作をすることで、比較例7に係る赤外線吸収微粒子分散粉、赤外線吸収シートを得て、実施例1と同様の評価を実施した。当該製造条件を表2、評価結果を表4に示す。尚、表2における注*3は、希釈剤dが純水であることを示し、注*4は、水/テトラエトキシシラン添加前に、アルミニウムエチルアセトアセテートジイソプロピレートを21g添加したことを示し、注*6は、水の滴下量は100g、テトラエトキシシランの滴下量は140gであることを示し、注*8は、水の滴下時間が1h、テトラエトキシシランの滴下時間が2hであることを示している。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
 

Claims (23)

  1.  赤外線吸収微粒子の表面が、
     金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上を含む被覆膜で被覆されていることを特徴とする表面処理赤外線吸収微粒子。
  2.  前記被覆膜の膜厚が0.5nm以上であることを特徴とする請求項1に記載の表面処理赤外線吸収微粒子。
  3.  前記金属キレート化合物または前記金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする請求項1または2に記載の表面処理赤外線吸収微粒子。
  4.  前記金属キレート化合物または前記金属環状オリゴマー化合物が、エーテル結合、エステル結合、アルコキシ基、アセチル基から選択される1種以上を有することを特徴とする請求項1から3のいずれかに記載の表面処理赤外線吸収微粒子。
  5.  前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、請求項1から4のいずれかに記載の表面処理赤外線吸収微粒子。
  6.  請求項1から5のいずれかに記載の表面処理赤外線吸収微粒子を含むことを特徴とする表面処理赤外線吸収微粒子粉末。
  7.  炭素濃度が、0.2質量%以上5.0質量%以下であることを特徴とする請求項6に記載の表面処理赤外線吸収微粒子粉末。
  8.  請求項1から5のいずれかに記載の表面処理赤外線吸収微粒子が、所定の液体媒質中に分散していることを特徴とする赤外線吸収微粒子分散液。
  9.  前記液体媒質が、有機溶剤、油脂、液状可塑剤、硬化により高分子化される化合物、水、から選択される1種以上の液体媒質であることを特徴とする請求項8に記載の赤外線吸収微粒子分散液。
  10.  請求項1から5のいずれかに記載の表面処理赤外線吸収微粒子が、所定の固体状樹脂中に分散していることを特徴とする赤外線吸収微粒子分散体。
  11.  前記固体状樹脂が、フッ素樹脂、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂、から選択される1種以上の樹脂であることを特徴とする請求項10に記載の赤外線吸収微粒子分散体。
  12.  請求項8または9に記載の赤外線吸収微粒子分散液の乾燥固化物であることを特徴とする赤外線吸収微粒子分散体。
  13.  赤外線吸収微粒子と水とを混合し分散処理を行って、水を媒質とする被覆膜形成用分散液を得る工程と、
     前記水を媒質とする被覆膜形成用分散液を撹拌しながら、金属キレート化合物または/および金属環状オリゴマー化合物を添加する工程と、
     前記添加後も前記攪拌を継続して、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆し、赤外線吸収微粒子分散液を得る工程と、を有することを特徴とする表面処理赤外線吸収微粒子の製造方法。
  14.  赤外線吸収微粒子と有機溶剤とを混合し分散処理を行って、有機溶剤を媒質とする被覆膜形成用分散液を得る工程と、
     前記有機溶剤を媒質とする被覆膜形成用分散液を撹拌しながら、金属キレート化合物または/および金属環状オリゴマー化合物と、水とを、同時に並行して添加する工程と、
     前記添加後も前記攪拌を継続して、前記赤外線吸収微粒子の表面を、金属キレート化合物の加水分解生成物、金属キレート化合物の加水分解生成物の重合物、金属環状オリゴマー化合物の加水分解生成物、金属環状オリゴマー化合物の加水分解生成物の重合物、から選択される1種以上で被覆し、赤外線吸収微粒子の有機溶剤分散液を得る工程と、を有することを特徴とする表面処理赤外線吸収微粒子の製造方法。
  15.  前記金属キレート化合物または/および金属環状オリゴマー化合物が、Al、Zr、Ti、Si、Znから選択される1種類以上の金属元素を含むことを特徴とする請求項13または14に記載の表面処理赤外線吸収微粒子の製造方法。
  16.  前記赤外線吸収微粒子が、一般式WyOz(但し、Wはタングステン、Oは酸素、2.2≦z/y≦2.999)、または/および、一般式MxWyOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Re、Be、Hf、Os、Bi、I、Ybのうちから選択される1種類以上の元素、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0≦z/y≦3.0)で表記される赤外線吸収微粒子であることを特徴とする、請求項13から15のいずれかに記載の表面処理赤外線吸収微粒子の製造方法。
  17.  請求項13、15または16に記載の水を媒質とする被覆膜形成用分散液、または、請求項14から16のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液から媒質を除去して、表面処理赤外線吸収微粒子を含む表面処理赤外線吸収微粒子粉末を得る工程、を有することを特徴とする表面処理赤外線吸収微粒子粉末の製造方法。
  18.  前記表面処理赤外線吸収微粒子粉末に含まれる炭素濃度が、0.2質量%以上5.0質量%以下であることを特徴とする、請求項17に記載の表面処理赤外線吸収微粒子粉末の製造方法。
  19.  請求項17または18に記載の表面処理赤外線吸収微粒子粉末を所定の媒質に加え、分散させる工程、を有することを特徴とする赤外線吸収微粒子分散液の製造方法。
  20.  請求項13、15または16に記載の水を媒質とする被覆膜形成用分散液、または、請求項14から16のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液の媒質を、所定の媒質に溶媒置換する工程、を有することを特徴とする赤外線吸収微粒子分散液の製造方法。
  21.  請求項13、15または16に記載の水を媒質とする被覆膜形成用分散液、または、請求項14から16のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液の媒質を、予め、所定の媒質としておくことにより、得られた請求項13、15または16に記載の水を媒質とする被覆膜形成用分散液、または、請求項14から16のいずれかに記載の有機溶剤を媒質とする被覆膜形成用分散液を、赤外線吸収微粒子分散液とすることを特徴とする赤外線吸収微粒子分散液の製造方法。
  22.  請求項19から21のいずれかに記載の赤外線吸収微粒子分散液の製造方法で得られた赤外線吸収微粒子分散液を、所定の基材上に塗布して乾燥し、赤外線吸収微粒子分散体を得る工程を有することを特徴とする赤外線吸収微粒子分散体の製造方法。
  23.  請求項17または18に記載の表面処理赤外線吸収微粒子粉末の製造方法で得られた表面処理赤外線吸収微粒子粉末、請求項19から21のいずれかに記載の赤外線吸収微粒子分散液の製造方法で得られた赤外線吸収微粒子分散液、のいずれかを、所定の固体状樹脂中に分散させる工程を有することを特徴とする赤外線吸収微粒子分散体の製造方法。
     
PCT/JP2018/042016 2017-11-13 2018-11-13 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法 WO2019093524A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201880073419.6A CN111373011B (zh) 2017-11-13 2018-11-13 表面处理的红外线吸收微粒、其粉末、其分散液、其分散体和它们的制造方法
KR1020207008059A KR102263303B1 (ko) 2017-11-13 2018-11-13 표면 처리 적외선 흡수 미립자, 표면 처리 적외선 흡수 미립자 분말, 당해 표면 처리 적외선 흡수 미립자를 사용한 적외선 흡수 미립자 분산액, 적외선 흡수 미립자 분산체 및 그들의 제조 방법
EP18875199.4A EP3712223B1 (en) 2017-11-13 2018-11-13 Surface-treated infrared-absorbing fine particles, surface-treated infrared-absorbing fine particle powder, infrared-absorbing fine particle dispersion in which said surface-treated infrared-absorbing fine particles are used, infrared-absorbing fine particle dispersoid, and methods for producing these
IL274587A IL274587B (en) 2017-11-13 2018-11-13 Infrared absorbing particles that have undergone surface treatment, infrared absorbing powder that has undergone surface treatment, dispersion liquid containing the infrared absorbing particles that have undergone surface treatment, dispersion product containing infrared absorbing particles and production method
JP2019552427A JP6769562B2 (ja) 2017-11-13 2018-11-13 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法
BR112020009258-4A BR112020009258B1 (pt) 2017-11-13 2018-11-13 Partículas finas absorventes de infravermelho, pó de partículas finas,líquido de dispersão de partículas finas, corpo de dispersão de partículas finas,e, métodos para produzir partículas finas absorventes de infravermelho, pó departículas finas, líquido de dispersão de partículas finas e corpo de dispersão departículas finas
MYPI2020002330A MY184955A (en) 2017-11-13 2018-11-13 Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body and method for producing them
MX2020004746A MX2020004746A (es) 2017-11-13 2018-11-13 Particulas finas de absorcion de infrarrojos tratadas en superficie, polvo de particulas finas de absorcion de infrarrojos tratadas en superficie, particulas finas de absorcion de infrarrojos de dispersion en el cual se usan las particulas finas absorbentes de infrarrojos tratadas en superficie, cuerpo de dispersion de particulas finas absorbentes de infrarrojos y metodo para producirlos.
AU2018365930A AU2018365930B2 (en) 2017-11-13 2018-11-13 Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body and method for producing them
US16/763,635 US11208563B2 (en) 2017-11-13 2018-11-13 Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine powder, infrared absorbing fine particle dispersion liquid using the surface-treated infrared absorbing fine particles, infrared absorbing fine particle dispersion body and method for producing them

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-218520 2017-11-13
JP2017218520 2017-11-13

Publications (1)

Publication Number Publication Date
WO2019093524A1 true WO2019093524A1 (ja) 2019-05-16

Family

ID=66438512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042016 WO2019093524A1 (ja) 2017-11-13 2018-11-13 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法

Country Status (12)

Country Link
US (1) US11208563B2 (ja)
EP (1) EP3712223B1 (ja)
JP (1) JP6769562B2 (ja)
KR (1) KR102263303B1 (ja)
CN (1) CN111373011B (ja)
AU (1) AU2018365930B2 (ja)
BR (1) BR112020009258B1 (ja)
IL (1) IL274587B (ja)
MX (2) MX2020004746A (ja)
MY (1) MY184955A (ja)
TW (1) TWI722334B (ja)
WO (1) WO2019093524A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021067842A (ja) * 2019-10-24 2021-04-30 住友金属鉱山株式会社 近赤外線遮蔽材料の製造方法
US20210214273A1 (en) * 2018-05-11 2021-07-15 Sumitomo Metal Mining Co., Ltd. Surface-treated infrared absorbing fine particle dispersion liquid and infrared absorbing transparent substrate
JP2021116212A (ja) * 2020-01-28 2021-08-10 住友金属鉱山株式会社 赤外線吸収微粒子粉末、赤外線吸収微粒子粉末分散液、赤外線吸収微粒子分散体、および、それらの製造方法
WO2022085730A1 (ja) 2020-10-23 2022-04-28 住友金属鉱山株式会社 表面処理赤外線吸収微粒子およびその製造方法、赤外線吸収微粒子分散液、並びに赤外線吸収微粒子分散体
WO2022270303A1 (ja) 2021-06-22 2022-12-29 住友金属鉱山株式会社 赤外線吸収複合微粒子、赤外線吸収微粒子分散液、および、赤外線吸収微粒子分散体

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL272223B2 (en) * 2017-07-24 2024-01-01 Sumitomo Metal Mining Co Dispersion powder containing INFA red absorbent particles, dispersion liquid containing dispersion powder containing INFA red absorbent particles, ink containing dispersion powder containing INFA red absorbent particles, anti-counterfeiting ink, and anti-counterfeiting printed material
JP7292586B2 (ja) * 2019-01-21 2023-06-19 住友金属鉱山株式会社 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、および、赤外線吸収基材
KR102036253B1 (ko) * 2019-04-22 2019-10-24 황태경 비방사성 안정 동위원소를 이용한 친환경 열 차폐 필름 및 그 제조방법
US11352699B2 (en) * 2019-05-23 2022-06-07 University Of Connecticut Tungsten bronze thin films and method of making the same
TW202044934A (zh) * 2019-05-24 2020-12-01 華碩電腦股份有限公司 印刷電路板與具有此印刷電路板之主機板
US20230358614A1 (en) 2020-07-08 2023-11-09 Lg Energy Solution, Ltd. System for measuring shutdown temperature and meltdown temperature of separator
JP2022101126A (ja) * 2020-12-24 2022-07-06 共同印刷株式会社 タングステン系赤外線吸収性顔料分散液、染色液、繊維製品、及び繊維製品の処理方法
CN114685761A (zh) * 2020-12-31 2022-07-01 洛阳尖端技术研究院 硅钼共改性环氧树脂、吸波涂料和吸波蜂窝及其制备方法和应用
CN113265116A (zh) * 2021-06-08 2021-08-17 青岛海尔新材料研发有限公司 一种纳米吸收近红外光的复合材料
WO2023021837A1 (ja) 2021-08-20 2023-02-23 住友金属鉱山株式会社 防カビ性エマルション塗料、防カビ性微粒子分散体および防カビ性微粒子分散体付き物品
GB2613776A (en) * 2021-12-01 2023-06-21 Inovink Ltd Compositions and method and uses relating thereto

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JPH0873223A (ja) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
JP2000119045A (ja) 1998-10-13 2000-04-25 Glaverbel Sa 太陽光制御被覆ガラス
JP2003121884A (ja) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd エレクトロクロミック特性を示す酸化タングステン微粒子の製造方法、その微粒子を含む塗布液及びエレクトロクロミック素子
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2008291109A (ja) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材
WO2010055570A1 (ja) 2008-11-13 2010-05-20 住友金属鉱山株式会社 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826126B2 (ja) * 2005-04-20 2011-11-30 住友金属鉱山株式会社 日射遮蔽膜形成用塗布液および日射遮蔽膜ならびに日射遮蔽機能を有する基材
JP2008194563A (ja) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd 日射遮蔽膜および波長選択型遮蔽膜
WO2009020207A1 (ja) * 2007-08-09 2009-02-12 Dai Nippon Printing Co., Ltd. 近赤外線吸収性組成物、及び近赤外線吸収フィルタ
JP5497480B2 (ja) * 2010-02-26 2014-05-21 旭化成イーマテリアルズ株式会社 遮熱組成物、太陽電池用部材及び太陽電池
JP5423636B2 (ja) * 2010-10-04 2014-02-19 住友金属鉱山株式会社 複合タングステン酸化物微粒子分散ポリカーボネート樹脂マスターバッチの製造方法、当該マスターバッチの製造方法により得られた複合タングステン酸化物微粒子分散ポリカーボネート樹脂マスターバッチ、および、当該マスターバッチを用いて得られた成形体並びに積層体
JP5305050B2 (ja) 2011-04-14 2013-10-02 住友金属鉱山株式会社 熱線遮蔽微粒子含有組成物の製造方法および熱線遮蔽微粒子含有組成物、当該熱線遮蔽微粒子含有組成物を用いた熱線遮蔽膜および当該熱線遮蔽膜を用いた熱線遮蔽合わせ透明基材
JP2013064093A (ja) 2011-09-20 2013-04-11 Nagase Chemtex Corp 赤外線吸収コーティング剤組成物
EP2873709A4 (en) * 2012-07-11 2016-01-27 Sumitomo Metal Mining Co METHOD FOR PRODUCING A HEAT RADIATION DISPERSION, HEAT RADIATION DISPERSING AND HEAT RADIATION SCREENS OF THE BODY
JP6309088B2 (ja) * 2014-05-08 2018-04-11 富士フイルム株式会社 窓用断熱フィルム、窓用断熱ガラス、建築材料、窓、建築物および乗物
CN106457747B (zh) * 2014-05-30 2019-11-05 富士胶片株式会社 窗户用隔热薄膜、窗户用隔热材料及窗户
JP6607396B2 (ja) * 2016-03-01 2019-11-20 住友金属鉱山株式会社 近赤外線吸収性粘着剤組成物とその製造方法、および、近赤外線吸収性粘着フィルム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812378A (ja) 1994-06-30 1996-01-16 Nissan Motor Co Ltd 熱線遮断ガラス及びその製造方法
JPH0859300A (ja) 1994-08-25 1996-03-05 Nissan Motor Co Ltd 熱線遮断ガラス
JPH0873223A (ja) 1994-09-08 1996-03-19 Agency Of Ind Science & Technol タングステンブロンズおよびその被覆複合体の製造方法
JPH08283044A (ja) 1995-04-11 1996-10-29 Asahi Glass Co Ltd 熱線遮断ガラス
JPH09127559A (ja) 1995-10-27 1997-05-16 Teiji Haniyu 太陽光可変調光断熱材料
JP2000119045A (ja) 1998-10-13 2000-04-25 Glaverbel Sa 太陽光制御被覆ガラス
JP2003121884A (ja) 2001-10-17 2003-04-23 Sumitomo Metal Mining Co Ltd エレクトロクロミック特性を示す酸化タングステン微粒子の製造方法、その微粒子を含む塗布液及びエレクトロクロミック素子
WO2005037932A1 (ja) 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. 赤外線遮蔽材料微粒子分散体、赤外線遮蔽体、及び赤外線遮蔽材料微粒子の製造方法、並びに赤外線遮蔽材料微粒子
JP2008291109A (ja) * 2007-05-24 2008-12-04 Sumitomo Metal Mining Co Ltd 赤外線遮蔽微粒子およびその製造方法、赤外線遮蔽微粒子分散体、赤外線遮蔽体、ならびに赤外線遮蔽基材
WO2010055570A1 (ja) 2008-11-13 2010-05-20 住友金属鉱山株式会社 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712223A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210214273A1 (en) * 2018-05-11 2021-07-15 Sumitomo Metal Mining Co., Ltd. Surface-treated infrared absorbing fine particle dispersion liquid and infrared absorbing transparent substrate
US11987520B2 (en) * 2018-05-11 2024-05-21 Sumitomo Metal Mining Co., Ltd. Surface-treated infrared absorbing fine particle dispersion liquid and infrared absorbing transparent substrate
JP2021067842A (ja) * 2019-10-24 2021-04-30 住友金属鉱山株式会社 近赤外線遮蔽材料の製造方法
JP7318483B2 (ja) 2019-10-24 2023-08-01 住友金属鉱山株式会社 近赤外線遮蔽材料の製造方法
JP2021116212A (ja) * 2020-01-28 2021-08-10 住友金属鉱山株式会社 赤外線吸収微粒子粉末、赤外線吸収微粒子粉末分散液、赤外線吸収微粒子分散体、および、それらの製造方法
WO2022085730A1 (ja) 2020-10-23 2022-04-28 住友金属鉱山株式会社 表面処理赤外線吸収微粒子およびその製造方法、赤外線吸収微粒子分散液、並びに赤外線吸収微粒子分散体
KR20230092871A (ko) 2020-10-23 2023-06-26 스미토모 긴조쿠 고잔 가부시키가이샤 표면 처리 적외선 흡수 미립자 및 그 제조 방법, 적외선 흡수 미립자 분산액, 그리고 적외선 흡수 미립자 분산체
WO2022270303A1 (ja) 2021-06-22 2022-12-29 住友金属鉱山株式会社 赤外線吸収複合微粒子、赤外線吸収微粒子分散液、および、赤外線吸収微粒子分散体

Also Published As

Publication number Publication date
BR112020009258A2 (pt) 2020-10-20
JP6769562B2 (ja) 2020-10-14
JPWO2019093524A1 (ja) 2020-10-01
AU2018365930B2 (en) 2021-10-28
MY184955A (en) 2021-04-30
AU2018365930A1 (en) 2020-06-18
KR20200084323A (ko) 2020-07-10
CN111373011B (zh) 2023-04-21
EP3712223A4 (en) 2021-07-21
EP3712223A1 (en) 2020-09-23
TW201922622A (zh) 2019-06-16
IL274587A (en) 2020-06-30
CN111373011A (zh) 2020-07-03
MX2021008815A (es) 2021-08-24
KR102263303B1 (ko) 2021-06-14
US11208563B2 (en) 2021-12-28
TWI722334B (zh) 2021-03-21
IL274587B (en) 2022-08-01
BR112020009258B1 (pt) 2021-02-23
US20210047518A1 (en) 2021-02-18
MX2020004746A (es) 2020-08-20
EP3712223B1 (en) 2022-10-26

Similar Documents

Publication Publication Date Title
WO2019093524A1 (ja) 表面処理赤外線吸収微粒子、表面処理赤外線吸収微粒子粉末、当該表面処理赤外線吸収微粒子を用いた赤外線吸収微粒子分散液、赤外線吸収微粒子分散体およびそれらの製造方法
WO2010055570A1 (ja) 赤外線遮蔽微粒子及びその製造方法、並びにそれを用いた赤外線遮蔽微粒子分散体、赤外線遮蔽基材
TWI824074B (zh) 表面處理紅外線吸收微粒子粉末、使用該表面處理紅外線吸收微粒子之紅外線吸收微粒子分散液、紅外線吸收微粒子分散體及紅外線吸收基材
JP6769563B2 (ja) 赤外線吸収微粒子分散液、赤外線吸収微粒子分散体、およびそれらの製造方法
JP7342861B2 (ja) 表面処理赤外線吸収微粒子分散液および赤外線吸収透明基材
JP7338237B2 (ja) 赤外線吸収ランプおよび赤外線吸収ランプカバー
WO2022270303A1 (ja) 赤外線吸収複合微粒子、赤外線吸収微粒子分散液、および、赤外線吸収微粒子分散体
EP4234495A1 (en) Surface-treated infrared-absorbing microparticles and method for producing same, infrared-absorbing microparticle disperse solution, and infrared-absorbing microparticle dispersion
JP2021116212A (ja) 赤外線吸収微粒子粉末、赤外線吸収微粒子粉末分散液、赤外線吸収微粒子分散体、および、それらの製造方法
JP2021008377A (ja) 表面処理赤外線吸収微粒子粉末、表面処理赤外線吸収微粒子分散液、表面処理赤外線吸収微粒子分散体、および、表面処理赤外線吸収微粒子粉末の製造方法
JP2020168848A (ja) 光吸収透明基材、光吸収粒子分散体、および光吸収合わせ透明基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18875199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019552427

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018365930

Country of ref document: AU

Date of ref document: 20181113

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018875199

Country of ref document: EP

Effective date: 20200615

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020009258

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020009258

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200511