WO2019088221A1 - 炭化ケイ素単結晶の製造方法 - Google Patents

炭化ケイ素単結晶の製造方法 Download PDF

Info

Publication number
WO2019088221A1
WO2019088221A1 PCT/JP2018/040681 JP2018040681W WO2019088221A1 WO 2019088221 A1 WO2019088221 A1 WO 2019088221A1 JP 2018040681 W JP2018040681 W JP 2018040681W WO 2019088221 A1 WO2019088221 A1 WO 2019088221A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
silicon carbide
single crystal
carbide single
less
Prior art date
Application number
PCT/JP2018/040681
Other languages
English (en)
French (fr)
Inventor
和人 熊谷
智典 梅崎
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to CN202210348418.6A priority Critical patent/CN114703542A/zh
Priority to CN201880071163.5A priority patent/CN111315923B/zh
Priority to EP18871998.3A priority patent/EP3690085A4/en
Priority to US16/758,572 priority patent/US11643748B2/en
Priority to KR1020207015373A priority patent/KR102543044B1/ko
Publication of WO2019088221A1 publication Critical patent/WO2019088221A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/02Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux
    • C30B19/04Liquid-phase epitaxial-layer growth using molten solvents, e.g. flux the solvent being a component of the crystal composition
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/36Single-crystal growth by pulling from a melt, e.g. Czochralski method characterised by the seed, e.g. its crystallographic orientation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/12Liquid-phase epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/167Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table further characterised by the doping material

Definitions

  • the present invention relates to a method for producing high quality silicon carbide single crystal by liquid phase growth method suitable as a material for wide gap semiconductor devices.
  • Silicon carbide has a large band gap and dielectric breakdown voltage compared to silicon (Si) widely used as a material for electronic devices, and is expected as a substrate material for power devices beyond devices using Si substrates Be done.
  • the SiC substrate is obtained by being cut out of a SiC single crystal ingot.
  • a method of manufacturing a SiC ingot a method of growing crystals of SiC crystals in a vapor phase (vapor phase growth method) and a method of growing SiC crystals in a liquid phase (liquid phase growth method) are known.
  • the liquid phase growth method is expected to obtain a high quality SiC single crystal with a small defect density because the crystal growth is performed in a state close to thermal equilibrium as compared with the vapor phase growth method.
  • SiC silicon carbide
  • it is essential to improve the quality of the SiC single crystal that is the device material in order to improve the reliability of the devices.
  • SiC crystal production by liquid phase growth it is required to obtain a SiC single crystal having a smooth surface without a trench.
  • a TSSG Topic Seeded Solution Growth
  • a seed crystal is attached to a holding shaft with an adhesive, contacted from above with a solution containing carbon and silicon, and crystals are grown on the lower surface of the seed crystal.
  • the TSSG method is capable of lengthening and enlarging the diameter of the crystal by pulling up the holding axis, and is expected to be able to suppress the uneven growth in the growth plane by rotating the holding axis.
  • a seed crystal also referred to as an on substrate
  • a (000-1) plane also referred to as a (000-1) on-axis plane or just plane
  • the crystal growth on the on-substrate is less likely to cause trenches and surface roughness compared to the off-substrate (a substrate whose front surface is inclined from the (000-1) surface.
  • the inclination angle is called the off-angle).
  • the crystalline polymorph of SiC is a phenomenon that can take many crystal structures in which the stacking mode of atoms differs only in the axial direction while having the stoichiometrically the same composition, and as a crystalline polymorph of SiC 3C type, 4H type, 6H type, 15R type, etc. are known.
  • C is cubic
  • H is hexagonal
  • R is a rhombohedral structure
  • the number indicates the number of regular tetrahedral structure layers included in one cycle in the stacking direction.
  • 4H-SiC represents a SiC crystal having a 4H-type crystal polymorph.
  • a substrate material of a power device a substrate consisting of one crystal system in which crystal systems do not exist is preferable.
  • Non-Patent Document 1 As a result of evaluating the morphology in the case of crystal growth on various planes of 4H-SiC single crystal in Non-Patent Document 1, it is found from the (000-1) plane that a long time growth using a solution to which Al is added It has been reported that the (110-1) plane inclined at 1 ° has the smoothest surface, and the (110-2) plane inclined at 62 ° from the (000-1) plane also has a good surface. (Non-Patent Document 1).
  • Non-Patent Document 2 describes a crystal growth method using co-doping of aluminum and nitrogen.
  • Aluminum is known to be effective for polymorphic stabilization and morphology stabilization of growth crystals when added to the raw material solution.
  • the conductivity type of the substrate can be changed by adjusting the amounts of aluminum and nitrogen to be added.
  • Patent Document 1 4H-SiC seed crystal whose plane orientation is unknown is made to melt back at a temperature higher than the temperature in the meltback after meltback in a melt in which C is unsaturated.
  • a method of dissolving and removing a defect generation layer during melt back to grow a SiC single crystal with reduced defect density is disclosed.
  • a substrate obtained by co-doping tends to have a higher resistance value than a substrate obtained by mono-doping.
  • aluminum was not added at all in (000-1) plane growth, generation of heteropolymorphism and deterioration of morphology due to trench formation could not be prevented.
  • the present invention solves the above-mentioned problems, and in the growth of a SiC single crystal by the TSSG method, a 4H-SiC single crystal having a good morphology while preventing mixing of different polymorphic forms regardless of the presence or absence of doping.
  • the aim is to get
  • the inventors of the present invention conducted intensive studies on the influence of the off angle on the grown crystal in the SiC single crystal production method in the TSSG method. As a result, when the off angle is 60 to 68 °, different types of heterogeneity occur during 4H-SiC single crystal growth. It has been found that it is difficult for the shape to be mixed, and in that case, the surface of the seed crystal is smoothed by the melt back method and then the crystal is grown to obtain a grown crystal having a good morphology, leading to the present invention. .
  • the invention of the present application relates to a meltback step of contacting a seed crystal of 4H-type silicon carbide with a raw material solution containing silicon and carbon and having an unsaturated carbon concentration, and dissolving a part of the seed crystal; And a crystal growth step of growing a 4H silicon carbide single crystal, wherein the growth surface of the seed crystal is 60 ° or more in the ⁇ 1-100> direction from either the (0001) plane or the (000-1) plane.
  • a method for producing a silicon carbide single crystal characterized in that the surface is inclined at an angle of 68 ° or less.
  • the present invention in the growth of a SiC single crystal by the TSSG method, it is possible to obtain a 4H-SiC single crystal having a good morphology while preventing the mixing of heteropolymorphs regardless of the presence or absence of doping.
  • summary of the crystal growth apparatus 1 concerning this invention The schematic diagram of the cross section of the seed crystal 9 which has an off angle. Sectional drawing of the crystal growth apparatus 1 in crystal growth process. The schematic diagram of the cross section of the growth crystal 15 which has an off angle. The microscope picture of the cross section of the seed crystal concerning Example 1, and a grown crystal.
  • ⁇ 1 in the notation such as the (000-1) plane is originally described as “ ⁇ 1” where a horizontal line is attached to the top of a number.
  • FIG. 1 is a view showing an outline of a crystal growth apparatus 1 for carrying out the method for producing a SiC single crystal of the present invention.
  • the crystal growth apparatus 1 has a raw material solution 5 containing silicon and carbon inside the crucible 3, and the seed crystal pulling shaft 7 holds the seed crystal 9.
  • the raw material solution 5 is heated by the heater 12 provided around the crucible 3.
  • the lower surface of the seed crystal 9 is a growth surface on which the raw material solution 5 contacts and the silicon carbide single crystal grows, and as shown in FIG. 2, the growth surface of the seed crystal 9 is (0001) plane or (000-1 2.) A surface inclined at least 60 ° and not more than 68 ° in the ⁇ 1-100> direction from one of the surfaces.
  • meltback is carried out in which the seed crystal 9 of silicon carbide is brought into contact with the raw material solution 5 containing silicon and carbon and having an unsaturated carbon concentration to dissolve a part of the seed crystal 9 And a crystal growing step of growing a grown crystal of silicon carbide single crystal on seed crystal 9.
  • the seed crystal 9 is dissolved.
  • the surface of the seed crystal 9 is not roughened, and the lower surface of the seed crystal 9 is smoothed.
  • the time for immersing the seed crystal 9 is adjusted to a time in which only a part of the seed crystal 9 is dissolved in consideration of the dissolution rate.
  • the raw material solution 5 is brought into a supersaturated state in the vicinity of the seed crystal 9 to grow a silicon carbide single crystal on the seed crystal 9.
  • the method for performing the melt back process is not particularly limited, but when the crucible 3 is made of graphite and carbon is supplied from the crucible 3 to the raw material solution 5, the seed crystal is brought into contact with the raw material solution 5 at temperature T1 during heating.
  • the dissolution of carbon from the crucible is slow, and the carbon concentration of the raw material solution is always unsaturated during heating, so when the seed crystal is brought into contact, the carbon is dissolved from the crucible and the SiC is dissolved from the seed crystal at the same time. Do.
  • temperature T1 in the meltback process of the raw material solution 5 is 1420 degrees or more and 2100 degrees C or less, and is 1500 degrees C or more and 2000 degrees C or less.
  • the temperature T2 in the crystal growth step is preferably 5 ° C. or more higher than T1, more preferably 50 ° C. or more, and still more preferably 100 ° C. or more.
  • the crucible 3 is not made of graphite, the amount of carbon source at the time of preparation is reduced, the meltback process is carried out with the raw material solution 5 in an unsaturated state, and then the carbon source is supplied to the raw material solution 5 It is also possible to carry out the crystal growth step by increasing the carbon concentration.
  • the morphology is improved in the subsequent crystal growth step. This is because the lower surface of the seed crystal 9 is smoothed, so that the atmosphere gas trapped at the time of immersion in the solvent and the air bubbles generated from the solvent can easily come out of the lower surface of the seed crystal 9 and the formation of a trench can be suppressed. Morphology seems to improve.
  • the crucible 3 is preferably a graphite crucible made of graphite capable of supplying carbon to the raw material solution 5, but if hydrocarbon gas or a solid carbon source can be added, quartz other than graphite crucible, alumina, titania, hafnia, A crucible such as zirconia can be used. In order to make the temperature distribution of the raw material solution 5 more uniform, the crucible 3 may be rotated.
  • the raw material solution 5 is heated by a heater 12 provided around the crucible 3 and kept in a molten state.
  • the temperature T2 of the raw material solution 5 is preferably 1600 ° C. or more and 2100 ° C. or less.
  • a silicon source of the raw material solution 5 metal silicon, a silicon alloy, a silicon compound, etc. can be used.
  • a carbon source of the raw material solution a solid carbon source such as graphite, glassy carbon, or SiC, or a hydrocarbon gas such as methane, ethane, propane, or acetylene can be used.
  • the raw material solution 5 is not particularly limited as long as it is a solution containing silicon and carbon used for crystal growth of SiC, but it is preferable to use a solution in which carbon is dissolved in a Si solvent to which an additive element is added.
  • a silicon alloy or a silicon compound used as a silicon source of the raw material solution silicon, Ti, Cr, Sc, Ni, Al, Co, Mn, Ge, As, P, N, B, Dy, Y, Nb, An alloy or compound of at least one additive element selected from Nd, Fe, V, Cu, Sn, Ga, Cu, and In can be used.
  • a Si—Cr alloy system containing 10 mol% or more and 60 mol% or less of Cr in view of high carbon solubility, small vapor pressure and chemical stability.
  • the Cr content of the Si-Cr alloy solvent is more preferably 15 mol% or more and 50 mol% or less, and still more preferably 20 mol% or more and 40 mol% or less.
  • a group III element such as B, Al, Ga, or In, or a group V element such as N, P, As, or Sb
  • the growth crystal can be changed to p-type or n-type, or the electrical characteristics can be controlled.
  • SiC when the total concentration of group III elements (acceptors) contained in SiC is higher than the total concentration of group V elements (donors), SiC is a p-type semiconductor, and the total concentration of group V elements is III. If it is higher than the total concentration of group elements, SiC will be an n-type semiconductor.
  • the present manufacturing method a grown crystal having good morphology is obtained regardless of the presence or absence of doping, so the amount of added aluminum which is known to be effective for polymorphic stabilization and morphology stabilization of the grown crystal is reduced. be able to.
  • the addition amount of aluminum to the raw material solution 5 is preferably 3 mol% or less of the raw material solution, and more preferably 1 mol% or less. In the present manufacturing method, it is not necessary to add aluminum to the raw material solution.
  • the material of the seed crystal pulling shaft 7 is not particularly limited, but is made of a material containing carbon as a main component, such as graphite.
  • the seed crystal 9 is fixed to the tip of the seed crystal pulling shaft 7 with a carbon-containing adhesive or the like. During the growth, the seed crystal pulling shaft 7 slowly pulls the seed crystal 9 upward to grow the SiC single crystal and obtain the grown crystal 10 as shown in FIG.
  • the diameter of the SiC single crystal obtained by growing may be about the same as the diameter of the seed crystal 9, but it is preferable to grow the crystal so that the diameter of the growing crystal is larger than the diameter of the seed crystal 9.
  • the angle for expanding the diameter of the grown crystal is preferably 35 ° to 90 °, more preferably 60 ° to 90 °, and still more preferably 78 ° to 90 °.
  • the seed crystal 9 can use 4H-SiC.
  • the lower limit of the thickness of the seed crystal 9 is not particularly limited, but is usually 0.1 mm or more. With respect to the upper limit, if the seed crystal 9 is excessively thick, it is economically inefficient and therefore, is 10 mm or less.
  • Seed crystal 9 is formed by being cut at an angle of 60 ° or more and 68 ° or less in the ⁇ 1-100> direction from either one of the (0001) plane or the (000-1) plane.
  • An angle with either (0001) plane or (000-1) plane is called an off angle.
  • the off angle of the seed crystal 9 is preferably 60 ° or more and 68 ° or less, more preferably 63 ° or more and 68 ° or less, and still more preferably 63 ° or more and 64 ° or less.
  • the reason why the angle of 60 ° or more and 68 ° or less is preferable is assumed to be due to the difference in surface atomic structure, though it is not always clear.
  • the maximum rotational speed of the seed crystal 9 is preferably 10 rpm or more and 300 rpm or less, and more preferably 20 rpm or more and 200 rpm or less.
  • the rotation of the seed crystal 9 is a rotation that periodically repeats forward rotation and reverse rotation, and the period is preferably 10 seconds to 5 minutes, more preferably 15 seconds to 3 minutes, and 30 More preferably, seconds or more and 2 minutes and 30 seconds or less.
  • the seed crystal growth apparatus 1 is preferably in an inert gas atmosphere such as helium or argon. Further, in order to obtain a grown crystal of an n-type semiconductor, nitrogen may be contained in 0.01% by volume or more and 3.0% by volume or less.
  • the raw material solution 5 in contact with at least the crystal growth surface of the seed crystal 9 needs to be in a supersaturated state.
  • a method of obtaining a supersaturated state of SiC an evaporation method in which the solution is evaporated to be in a supersaturated state, a cooling method in which a seed crystal substrate is immersed in a saturated concentration SiC solution and then brought into a supersaturated state by supercooling, It is possible to immerse the seed crystal substrate therein, and to use a temperature difference method in which the SiC crystal is crystallized at a low temperature portion.
  • the seed crystal pulling shaft 7 is a seed crystal because only the vicinity of the seed crystal 9 is in a supersaturated state by controlling the heating of the raw material solution 5 or cooling by the seed crystal 9.
  • the seed crystal pulling shaft 7 By pulling up 9 while rotating at a position in contact with the liquid surface of the raw material solution 5, crystals of SiC precipitate on the crystal growth surface of the seed crystal 9.
  • the diameter of the grown crystal 15 is substantially the same as the diameter of the seed crystal 9.
  • the off angle of the lower surface (front surface) of the grown crystal 15 coincides with the off angle of the lower surface (growth surface) of the seed crystal 9, and it is less than 1 from either the (0001) plane or the (000-1) plane. It is a surface inclined at an angle of 60 ° to 68 °, preferably 63 ° to 68 °, more preferably 63 ° to 64 ° in the -100> direction.
  • the thickness of the grown crystal 15 is preferably 100 ⁇ m or more, preferably 1 mm or more, and more preferably 50 mm or more, depending on the growth rate and the time of the crystal growth step. If the grown crystal 15 is thick, a large amount of SiC substrate can be obtained by one crystal growth.
  • the time for the crystal growth step depends on the thickness and growth rate required for the growth crystal 15, but usually it is often 1 hour or more, and may be 4 hours or more.
  • the grown crystal 15 is separated from the seed crystal pulling shaft 7 to form a SiC single crystal ingot.
  • seed crystal 9 is cut from a SiC single crystal ingot.
  • the crystal growth direction of the SiC single crystal ingot coincides with the long axis direction of the SiC single crystal ingot.
  • the SiC single crystal ingot usually has a circular cross section. On the other hand, it may be a polygonal prism whose cross section is a polygon such as a hexagon.
  • the SiC single crystal ingot is cut at 60 ° or more and 68 ° or less, preferably 63 ° or more and 68 ° or less, in the ⁇ 1-100> direction from either (0001) or (000-1) face.
  • a 4H silicon carbide single crystal wafer can be obtained by cutting it into a thin plate so as to have a surface inclined at 63 ° or more and 64 ° or less. The cut surface may be parallel to the growth surface of the growth crystal 15 or may be oblique.
  • the front surface (ingot cut surface) of the 4H silicon carbide single crystal wafer according to the embodiment of the present invention is the ⁇ 1-100> direction from either the (0001) surface or the (000-1) surface.
  • the surface is inclined at an angle of 60 ° to 68 °, preferably 63 ° to 68 °, and more preferably 63 ° to 64 °.
  • the thickness of the wafer is preferably 100 ⁇ m or more, and more preferably 200 ⁇ m or more.
  • the diameter of the wafer is preferably 10 mm or more, more preferably 50 mm or more, and still more preferably 100 mm or more.
  • the concentration of aluminum contained in the ingot or wafer of SiC single crystal is preferably 1 ⁇ 10 19 / cm 3 or less, and preferably 5 ⁇ 10 18 / cm 3 or less.
  • concentration of aluminum derived from the raw material and inevitably mixed is 1 ⁇ 10 17 pieces / cm 3 or less.
  • the aluminum concentration in the SiC single crystal is 1 ⁇ 10 12 pieces / cm 3 or more, due to the limit of the refining technology and the like.
  • the concentration of aluminum in the SiC single crystal is preferably 1 ⁇ 10 17 pieces / cm 3 or more, more preferably 5 ⁇ 10 17 pieces / cm 3 or more preferable.
  • the concentration of an element such as aluminum or nitrogen contained in the SiC single crystal can be measured by a secondary ion mass spectrometer or the like.
  • a 4H-type silicon carbide single crystal As a 4H-type silicon carbide single crystal according to an embodiment of the present invention, a p-type semiconductor in which the concentration of acceptors such as Al is 1 ⁇ 10 17 / cm 3 or more and 1 ⁇ 10 19 / cm 3 or less And the like, and includes an n-type semiconductor in which the concentration of the donor is 1 ⁇ 10 17 / cm 3 or more and the concentration of the donor is higher than the concentration of the acceptor.
  • a high purity semi-insulation in which both the total concentration of donors (eg B, Al, Ga and In) and the total concentration of acceptors (eg N, P, As and Sb) are 1 ⁇ 10 17 pieces / cm 3 or less Silicon carbide is included.
  • grown crystals having good morphology can be obtained regardless of the presence or absence of doping.
  • the SiC single crystal obtained by the manufacturing method of the present invention is made of only 4H-SiC, and the resistance value is smaller than that of the crystal obtained by co-doping.
  • it is suitable as a substrate material for power devices.
  • Example 1 A 4H—SiC single crystal ingot was cut out into a plane 10 mm long ⁇ 10 mm wide ⁇ 1 mm thick with a plane inclined at 63 ° in the [1-100] direction from the (000-1) plane to obtain a seed crystal. It fixed to the pulling shaft made from carbon by making a cutting surface the lower end, and it hold
  • a mixed melt of silicon and chromium (chromium 20 mol%) was prepared in a graphite crucible placed at the center of the furnace and heating was started. The atmosphere gas was helium and nitrogen was added at 0.4% by volume. In order to smooth the growth surface, when the melt reached 1764 ° C.
  • the seed crystal was brought into contact with the melt to dissolve the convex portion on the lower surface of the seed crystal. Thereafter, the in-furnace temperature stabilized at the target temperature of 1920 ° C., whereby crystal growth proceeded from the lower end of the seed crystal.
  • the pulling shaft was rotated at 30 rpm in a forward and reverse direction for a period of 30 seconds. After 5 hours, the seed crystal was pulled out of the melt and the furnace was cooled.
  • FIG. 5 is an optical microscope image of the cross section of the crystal obtained in Example 1.
  • the lower white region is a seed crystal
  • the upper dark region is a growth layer (growth crystal).
  • the thickness of the growth layer was about 300 ⁇ m. From the Raman scattering spectrum measurement, it was confirmed that the entire growth layer was 4H type SiC single crystal. In addition, it can be seen that a growth layer (growth crystal) of a SiC single crystal having a favorable morphology is obtained with almost no trench and solvent inclusion in the growth layer.
  • Examples 2 to 7 are each inclined by 60 °, 61 °, 62 °, 64 °, 65 °, 68 ° in the [1-100] direction from the (000-1) plane using a 4H-SiC single crystal ingot Crystal growth was carried out in the same manner as in Example 1 except that the cut surface was cut out.
  • Comparative Examples 1 and 2 Using a 4H-SiC single crystal ingot to cut out a plane inclined by 62 ° and 63 ° in the [1-100] direction from the (000-1) plane, and further, seed crystals after the melt is stabilized at 1920 ° C Crystal growth was performed in the same manner as in Example 1 except that the solution was brought into contact with the melt.
  • Example 4 is similar to Example 1 except that a plane inclined at 0 ° from the (000-1) plane in the [1-100] direction (that is, the (000-1) plane) is cut using a 4H-SiC single crystal ingot. Crystal growth was performed according to the procedure.
  • Comparative Example 4 After the melt reached 1920 ° C., crystal growth was performed in the same manner as in Comparative Example 3 except that the seed crystal was brought into contact with the melt.
  • Example 1 to 7 in which the meltback step was carried out by bringing the seed crystal into contact with the melt in a state in which the carbon concentration is unsaturated in the middle of the temperature rise, the tilt angle of the seed crystal is 60 ° to 68 °. Even doping did not generate heteropolymorphism and resulted in an area without trenches.
  • the inclination angles are 63 ° and 64 °, growth layers with particularly good morphology were obtained.
  • the microscope picture of the cross section of the growth layer (growing crystal) obtained in Example 1 is shown in FIG. In the grown crystal obtained in Example 1, a region without a trench was obtained over the entire surface, and the morphology was good.
  • the meltback step was not performed It occurred and the morphology was bad.
  • the meltback step was not performed, so the atmosphere gas trapped on the lower surface of the seed crystal during the solvent immersion and the gas generated from the solvent remain as bubbles on the lower surface of the seed crystal 9, so the bubbles grow It is considered that a trench is formed due to being taken into the crystal or the crystal growth rate of the bubble portion is slowed, and the morphology is bad.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

TSSG法による4H-SiC単結晶の育成において、ドーピングの有無によらず異種多形の混入を防ぎながら、良好なモフォロジーを持つ4H-SiC単結晶を得ること。 本発明者らはTSSG法におけるSiC単結晶製造法において、オフ角が育成結晶に与える影響を鋭意検討した結果、オフ角を60~68°とした場合、4H-SiC単結晶育成時に、異種多形が混入しにくいこと、その際に、メルトバック法により種結晶表面の平滑化を行ってから結晶育成することで、良好なモフォロジーをもつ育成結晶が得られることを見出した。

Description

炭化ケイ素単結晶の製造方法
 本発明は、ワイドギャップ半導体デバイス用材料として好適な、高品質の炭化ケイ素単結晶の液相成長法による製造方法に関する。
 炭化ケイ素(SiC)は電子デバイスなどの材料として幅広く用いられているシリコン(Si)と比較して、バンドギャップ・絶縁破壊電圧が大きく、Si基板を用いたデバイスを超えるパワーデバイスの基板材料として期待される。SiC基板はSiC単結晶のインゴットから切り出されて得られる。SiCインゴットの製造方法として、SiC結晶を気相中で結晶成長させる方法(気相成長法)と、SiC結晶を液相中で成長させる方法(液相成長法)が知られている。液相成長法は気相成長法と比較して、熱平衡に近い状態で結晶成長を行う為、欠陥密度が小さな高品質SiC単結晶が得られると期待されている。
 SiCをパワーデバイス向けの基板材料として普及させる為には、デバイスの信頼性向上のため、デバイス材料となるSiC単結晶の高品質化が必須である。液相成長法でのSiC結晶製造において、トレンチのない平滑な表面を持つSiC単結晶を得ることが求められている。
 液相成長法では、種結晶を保持軸に接着剤で貼り付け、上方から炭素と珪素を含む溶液に接触させ、種結晶下面に結晶を成長させるTSSG(Top Seeded Solution Growth)法が報告されている。TSSG法は保持軸の引き上げによる結晶の長尺化・大口径化が可能であり、また保持軸を回転させることによって成長面内における成長むらを抑制できることが期待されている。
 TSSG法において、(000-1)面((000-1)on-axis面や、ジャスト面とも呼ばれる)にて切り出した種結晶(オン基板とも呼ぶ。)を溶液に接触し、(000-1)面に結晶を成長させることが広く行われていた。オン基板上への結晶育成は、オフ基板(おもて面が(000-1)面から傾斜している基板。その傾斜角度をオフ角と呼ぶ。)と比べてトレンチや表面荒れが生じにくく、良好なモフォロジーを持つ育成結晶を得ることができる特徴がある。
 一方で、SiCの結晶多形とは、化学量論的には同じ組成でありながら、原子の積層様式が軸方向にのみ異なる多くの結晶構造を取り得る現象であり、SiCの結晶多形としては、3C型、4H型、6H型、15R型などが知られている。ここで、Cは立方晶、Hは六方晶、Rは菱面体構造、数字は積層方向の一周期中に含まれる正四面体構造層の数を表す。4H-SiCとは、4H型の結晶多形を持つSiC結晶を表す。パワーデバイスの基板材料としては、結晶系が混在しない、一つの結晶系からなる基板が好ましい。
 4H-SiCのオン基板に結晶を成長させる場合、前述の通り良好なモフォロジーが得られるが、4H-SiC以外に異種多形が生成しやすいという問題点があった。
 非特許文献1には、4H-SiC単結晶の様々な面で結晶成長させた場合のモフォロジーを評価した結果、Alを添加した溶液を用いた長時間成長において、(000-1)面から75.1°傾いた(-110-1)面が最も滑らかな表面を持ち、(000-1)面から62°傾いた(-110-2)面も良好な表面を持つことが報告されている(非特許文献1)。
 非特許文献2には、アルミニウムと窒素のコドープを利用した結晶育成方法が記載されている。アルミニウムは原料溶液に添加すると育成結晶の多形安定化及びモフォロジー安定化に効果があることが知られている。コドープ条件では添加するアルミニウムと窒素の量を調整することで基板の伝導型を変化させることができる。
 また、特許文献1には、面方位が不明な4H-SiC種結晶を、Cが未飽和状態の融液中でメルトバックさせた後、メルトバック中の温度以上の温度で結晶成長させることで、欠陥発生層をメルトバック中に溶解除去し、欠陥密度を低減したSiC単結晶を成長させる方法が開示されている。
国際公開第2011/007458号
Takeshi Mitani、他4名、「Morphological stability of 4H-SiC crystals in solution growth on {0001} and {110m} surfaces」、Journal of Crystal Growth、2017年6月、Volume 468、p. 883-888 Takeshi Mitani、他7名、「4H-SiC Growth from Si-Cr-C Solution under Al and N Co-doping Conditions」、Materials Science Forum、2015年6月、Volumes 821-823、p. 9-13
 しかしながら、コドープで得られた基板はモノドープで得られた基板と比べて抵抗値が高くなる傾向がある。また、(000-1)面成長においてアルミニウムを全く添加していない場合は、異種多形の発生や、トレンチ生成によるモフォロジーの悪化を防げなかった。
 即ち、ドーピングによる伝導型の制御において、多形安定化及びモフォロジー安定化のために複数のドーパントを用いる場合が多く、結果的に結晶の電気特性の劣化を引き起こす場合が多かった。そのため、ドーピングに頼らずとも異種多形の発生とモフォロジーの悪化を抑制できれば、過剰な量と種類のドーピングによる結晶の電気特性の変化などを防ぐことができると考えられる。
 本発明は、上記の課題を解決するものであり、TSSG法によるSiC単結晶の育成において、ドーピングの有無によらず、異種多形の混入を防ぎながら、良好なモフォロジーを持つ4H-SiC単結晶を得ることを目的とする。
 本発明者らはTSSG法におけるSiC単結晶製造法において、オフ角が育成結晶に与える影響を鋭意検討した結果、オフ角を60~68°とした場合、4H-SiC単結晶育成時に、異種多形が混入しにくいこと、その際に、メルトバック法により種結晶表面の平滑化を行ってから結晶育成することで、良好なモフォロジーをもつ育成結晶が得られることを見出し、本発明に至った。
 本願の発明は、ケイ素及び炭素を含み、炭素濃度が未飽和の原料溶液に、4H型炭化ケイ素の種結晶を接触させ、前記種結晶の一部を溶解するメルトバック工程と、前記種結晶に4H型炭化ケイ素単結晶を成長させる結晶育成工程とを含み、前記種結晶の成長面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下の角度で傾斜した面であること特徴とする炭化ケイ素単結晶の製造方法である。
 本発明により、TSSG法によるSiC単結晶の育成において、ドーピングの有無によらず、異種多形の混入を防ぎながら、良好なモフォロジーを持つ4H-SiC単結晶を得ることができる。
本発明にかかる結晶育成装置1の概要を示す図。 オフ角を有する種結晶9の断面の模式図。 結晶育成工程中の結晶育成装置1の断面図。 オフ角を有する育成結晶15の断面の模式図。 実施例1にかかる種結晶、育成結晶の断面の顕微鏡写真。
 本明細書において、(000-1)面などの表記における「-1」は、本来、数字の上に横線を付して表記するところを、「-1」と表記したものである。
 本発明の実施形態を、図面を用いて説明する。
 図1は、本発明のSiC単結晶の製造方法を実施する結晶育成装置1の概要を示す図である。結晶育成装置1は、るつぼ3の内部にケイ素と炭素を含む原料溶液5を有し、種結晶引上げ軸7は、種結晶9を保持する。るつぼ3の周囲に設けられた加熱器12により、原料溶液5は加熱される。
 種結晶9の下面が、原料溶液5と接触し、炭化ケイ素単結晶が成長する成長面であり、図2に示すように、種結晶9の成長面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下傾斜した面である。
 本発明の炭化ケイ素単結晶の製造方法では、ケイ素及び炭素を含み、炭素濃度が未飽和の原料溶液5に、炭化ケイ素の種結晶9を接触させ、種結晶9の一部を溶解するメルトバック工程と、種結晶9に炭化ケイ素単結晶の育成結晶を成長させる結晶育成工程と、を含む。
 メルトバック工程では、原料溶液5の炭素濃度が未飽和であるため、種結晶9が溶解する。メルトバック工程において、種結晶9の表面の凹凸がなくなり、種結晶9の下面が平滑化する。なお、メルトバック工程において種結晶9の全部が溶解することを防ぐため、種結晶9を浸漬する時間は、溶解速度を考慮して種結晶9の一部のみが溶解する時間に調整する。
 その後、結晶育成工程では、種結晶9近傍で原料溶液5を過飽和状態とすることで、種結晶9に炭化ケイ素単結晶を成長させる。
 メルトバック工程を行う方法は特に限定されないが、るつぼ3が黒鉛製で、るつぼ3から原料溶液5に炭素が供給される場合は、昇温途中の温度T1の原料溶液5に種結晶を接触させる方法が考えられる。るつぼからの炭素の溶解が遅く、昇温途中では原料溶液の炭素濃度は常に未飽和の状態であるため、種結晶を接触させると、るつぼから炭素が溶解するのと同時に種結晶からSiCが溶解する。その後、温度T1から温度T2に昇温して一定時間保持して安定させることで、るつぼから炭素が十分に溶解し、原料溶液中の炭素濃度が飽和するため、温度T2にて種結晶に炭化ケイ素単結晶を成長させる結晶育成工程を行う。原料溶液5のメルトバック工程での温度T1が1420°以上2100℃以下であり、1500℃以上2000℃以下であることが好ましい。また、結晶育成工程での温度T2がT1より5℃以上高いことが好ましく、50℃以上高いことがより好ましく、100℃以上高いことが更に好ましい。
 他には、るつぼ3が黒鉛製以外の場合は、仕込み時の炭素源の量を減らし、原料溶液5が未飽和の状態でメルトバック工程を行い、その後に原料溶液5に炭素源を供給して、炭素濃度を上げて結晶育成工程を行うことも可能である。
 メルトバック工程において、種結晶9の下面が平滑化するため、その後の結晶育成工程において、モフォロジーが良好になる。これは、種結晶9の下面が平滑化することにより、溶媒浸漬時にトラップされる雰囲気ガスや、溶媒中から生成した気泡が、種結晶9の下面から抜け出しやすくなり、トレンチの形成が抑制でき、モフォロジーが改善するものと思われる。
 るつぼ3としては、原料溶液5に炭素を供給可能なグラファイト製の黒鉛るつぼが好ましいが、炭化水素ガスや固体の炭素源を添加可能であれば、黒鉛るつぼ以外の石英、アルミナ、チタニア、ハフニア、ジルコニアなどのるつぼを使用可能である。なお、原料溶液5の温度分布をより均一にするために、るつぼ3を回転させてもよい。
 原料溶液5は、るつぼ3の周囲に設けられた加熱器12により加熱され、溶融状態が保たれる。結晶育成工程において、原料溶液5の温度T2が1600℃以上2100℃以下であることが好ましい。
 原料溶液5のシリコン源としては、金属シリコン、シリコン合金、シリコン化合物などを用いることができる。また、原料溶液の炭素源としては、黒鉛、グラッシーカーボン、SiCなどの固体の炭素源や、メタン、エタン、プロパン、アセチレンなどの炭化水素ガスなどを用いることができる。
 原料溶液5は、SiCの結晶成長に用いられるケイ素と炭素を含む溶液であれば特に限定されないが、添加元素を加えたSi溶媒に、炭素が溶解している溶液を用いることが好ましい。原料溶液のシリコン源として使用されるシリコン合金又はシリコン化合物としては、シリコンと、Ti、Cr、Sc、Ni、Al、Co、Mn、Ge、As、P、N、B、Dy、Y、Nb、Nd、Fe、V、Cu、Sn、Ga、Cu、Inから選ばれる少なくとも一種の添加元素の合金又は化合物を使用できる。特に、炭素溶解度が大きく、蒸気圧が小さく、化学的に安定している点で、Crを10モル%以上60モル%以下含むSi-Cr合金系を溶媒として用いることが好ましい。Si-Cr合金系溶媒のCr含量は、15モル%以上50モル%以下であることがより好ましく、20モル%以上40モル%以下であることがさらに好ましい。また、B、Al、Ga、In等のIII族元素、N、P、As、Sb等のV族元素をSi溶媒又は雰囲気ガスに加えることで、育成結晶に添加元素をドーピングすることができ、育成結晶をp型やn型に変更することや、電気特性を制御することができる。即ち、SiCに含まれるIII族元素(アクセプタ)の合計の濃度が、V族元素(ドナー)の合計の濃度より高い場合は、SiCはp型半導体となり、V族元素の合計の濃度が、III族元素の合計の濃度より高い場合は、SiCはn型半導体となる。
 本製造方法では、ドーピングの有無によらず良好なモフォロジーをもつ育成結晶が得られるため、育成結晶の多形安定化及びモフォロジー安定化に効果があることが知られているアルミニウムの添加量を減らすことができる。具体的には、原料溶液5へのアルミニウムの添加量は原料溶液の3モル%以下であることが好ましく、1モル%以下であることがより好ましい。本製造方法では、原料溶液にアルミニウムを添加しなくてもよい。
 種結晶引上げ軸7の材質は、特に限定されないが、炭素を主成分とする材料、例えば黒鉛などにより形成される。種結晶9は、種結晶引上げ軸7の先端に、炭素を含んだ接着剤などで固定される。種結晶引上げ軸部7は、育成中に種結晶9をゆっくりと上方に引き上げ、SiC単結晶を成長させ、図3に示されるように育成結晶10を得る。
 成長して得られるSiC単結晶の直径は、種結晶9の直径と同程度でもよいが、成長結晶の直径は、種結晶9よりも直径が大きくなるように結晶成長させることが好ましい。成長結晶の直径を拡大させる角度(図3の拡張角度11)は、好ましくは35°~90°であり、より好ましくは60°~90°、さらに好ましくは78°~90°である。種結晶9の側面に原料溶液を濡れ上がらせ、メニスカスを形成することにより、種結晶9の直径よりも成長結晶の直径を拡大させることができる。具体的には、種結晶周囲の溶液温度を低下させ、炭素過飽和度を増大させることで種結晶側面方向への成長速度が増大し、結晶径を拡大させることができる。
 種結晶9は、4H-SiCを用いることができる。種結晶9の厚さの下限は特に限定はされないが、通常は0.1mm以上である。また上限に関して、種結晶9が過度に厚いと経済的に効率が悪いため、10mm以下とする。
 種結晶9は(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下傾斜して切断されて形成されており、種結晶9の切断面と(0001)面又は(000-1)面のいずれか一方との角度をオフ角と呼ぶ。種結晶9のオフ角が、60°以上68°以下であることが好ましく、63°以上68°以下であることがより好ましく、63°以上64°以下であることが更に好ましい。60°以上68°以下であることが好ましい理由は、必ずしも明らかではないが、表面原子構造の違いに起因するものと推測している。
 結晶成長中に、種結晶9を、原料溶液5の液面と平行な面で回転させることが好ましい。種結晶9の最大回転速度は10rpm以上300rpm以下が好ましく、20rpm以上200rpm以下がより好ましい。また、種結晶9の回転は、周期的に正回転と逆回転を繰り返す回転であることが好ましく、その周期は、10秒以上5分以下が好ましく、15秒以上3分以下がより好ましく、30秒以上2分30秒以下が更に好ましい。周期的に回転方向を入れ替えることで、結晶成長を行う際の種結晶の成長表面における原料溶液の流れを制御することができる。
 メルトバック工程及び結晶育成工程において、種結晶育成装置1は、ヘリウム、アルゴン等の不活性ガス雰囲気であることが好ましい。また、n型半導体の育成結晶を得るために窒素を0.01体積%以上3.0体積%以下含んでも良い。
 結晶育成工程において、少なくとも種結晶9の結晶成長面に接触する原料溶液5は、過飽和状態になっている必要がある。SiCの過飽和状態を得る方法としては、溶液を蒸発させ過飽和状態とする蒸発法、飽和濃度のSiC溶液に種結晶基板を浸漬後、過冷却によって過飽和状態とする冷却法、温度勾配を有するSiC溶液中に種結晶基板を浸漬し、低温部でSiC結晶を晶出させる温度差法などが可能である。
 温度差法を用いる場合は、原料溶液5の加熱を制御するか、種結晶9により冷却するなどして、種結晶9の近辺のみが過飽和状態になるため、種結晶引上げ軸7は、種結晶9を原料溶液5の液面に接触する位置で回転しながら引き上げることで、種結晶9の結晶成長面にはSiCの結晶が析出する。
 冷却法や蒸発法を用いる場合は、原料溶液5の全体が過飽和となるため、種結晶9を原料溶液5の内部に浸漬した状態で、結晶成長をすることが可能である。
 図4に示すように、結晶育成工程にて、種結晶9の下面(成長面)に、原料溶液5から、炭素とケイ素が析出し、4H-SiCからなる育成結晶15が形成される。図4に示される態様では、育成結晶15の直径は、種結晶9の直径と同程度である。育成結晶15の下面(おもて面)のオフ角は、種結晶9の下面(成長面)のオフ角と一致し、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下、好ましくは63°以上68°以下、より好ましくは63°以上64°以下傾斜した面である。
 育成結晶15の厚さは、成長速度や結晶育成工程の時間によるが、100μm以上であることが好ましく、1mm以上であることが好ましく、50mm以上であることがより好ましい。育成結晶15が厚ければ、一度の結晶育成にて多量のSiC基板を得ることができる。
 結晶育成工程の時間としては、育成結晶15に必要な厚さと成長速度によるが、通常は1時間以上であることが多く、4時間以上であってもよい。
 育成結晶15は、種結晶引上げ軸7から切り離され、SiC単結晶インゴットとなる。通常は、種結晶9はSiC単結晶インゴットから切断される。SiC単結晶インゴットの結晶成長方向は、SiC単結晶インゴットの長軸方向と一致する。なお、SiC単結晶インゴットは、通常は断面が円形である。一方で断面が六角形などの多角形である多角柱であってもよい。
 SiC単結晶インゴットを、切断面が(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下、好ましくは63°以上68°以下、より好ましくは63°以上64°以下傾斜した面となるように薄板状に切り出すことで4H型炭化ケイ素単結晶ウエハを得ることができる。切断面は、育成結晶15の成長面と並行であってもよいし、斜めであってもよい。
 すなわち、本発明の実施形態に係る4H型炭化ケイ素単結晶ウエハのおもて面(インゴッド切断面)は、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下、好ましくは63°以上68°以下、より好ましくは63°以上64°以下傾斜した面である。また、ウエハの厚さは100μm以上であることが好ましく、200μm以上であることがより好ましい。ウエハの直径は10mm以上であることが好ましく、50mm以上であることがより好ましく、100mm以上であることがさらに好ましい。
 また、SiC単結晶のインゴット又はウエハに含まれるアルミニウムの濃度は1×1019個/cm3以下であることが好ましく、5×1018個/cm3以下であることが好ましい。但し、アルミニウムを原料溶液に添加しない場合、原料に由来して不可避的に混入するアルミニウムの濃度は1×1017個/cm3以下である。なお、精製技術の限界などから、SiC単結晶中のアルミニウム濃度は1×1012個/cm3以上である。
 また、アルミニウムを、p型半導体を得るためのドーパントとして添加する場合、SiC単結晶中のアルミニウムの濃度は1×1017個/cm3以上が好ましく、5×1017個/cm3以上がより好ましい。なお、SiC単結晶中に含まれるアルミニウムや窒素などの元素の濃度は、二次イオン質量分析計などで測定することができる。
 例えば、本発明の実施形態に係る4H型炭化ケイ素単結晶として、Alなどのアクセプタの濃度が1×1017個/cm3以上1×1019個/cm3以下であるp型半導体や、Nなどのドナーの濃度が1×1017個/cm3以上であり、かつ、ドナーの濃度がアクセプタの濃度より高いn型半導体が挙げられる。他に、ドナー(例えばB、Al、Ga及びIn)の合計濃度とアクセプタ(例えばN、P、As及びSb)の合計濃度のいずれも1×1017個/cm3以下である高純度半絶縁性の炭化ケイ素が挙げられる。
 本発明の製造方法では、ドーピングの有無によらず良好なモフォロジーをもつ育成結晶が得られる。
 本発明の製造方法で得られたSiC単結晶は4H-SiCのみからなり、かつコドープで得られた結晶と比べて抵抗値が小さくなるため、そこから切り出されたウエハは、電子デバイスの材料、特にパワーデバイスの基板材料として好適である。
[実施例1]
 4H-SiC単結晶インゴットを、(000-1)面から[1-100]方向に63°傾斜した面を縦10mm×横10mm×厚み1mmに切り出し、種結晶を得た。切り出し面を下端としてカーボン製の引上げ軸に固定して抵抗加熱炉上部に保持した。炉内中央に設置した黒鉛坩堝にシリコン、クロムの混合融液(クロム20モル%)を準備し昇温を開始した。雰囲気ガスはヘリウムで、窒素を0.4体積%添加した。成長面を平滑化するため、昇温途中に融液が1764℃に達した時点で種結晶を融液に接触させ、種結晶下面の凸部を溶解させた。その後、炉内温度が目的温度の1920℃で安定することで種結晶下端から結晶成長が進行した。成長中は引上げ軸を30rpmで正逆方向に30秒周期で回転させた。5時間後、種結晶を融液から引き上げ、炉内を冷却した。
 種結晶を引上げ軸から切り離したのちワイヤソーを用いて[11-20]方向と垂直にスライスした。切断面を鏡面研磨したのちラマン顕微鏡及び光学顕微鏡を用いて分析した。図5は、実施例1で得られた結晶の断面の光学顕微鏡像である。下側の白い領域が種結晶で、その上の色の濃い領域が成長層(育成結晶)である。成長層の厚さは約300μmであった。ラマン散乱スペクトル測定から成長層全体が4H型SiC単結晶であることを確認した。また、成長層にトレンチ及び溶媒インクルージョンが殆ど無く、良好なモフォロジーを持つSiC単結晶の成長層(育成結晶)が得られたことがわかる。
[実施例2~7]
 実施例2~7は、それぞれ、4H-SiC単結晶インゴットを用いて(000-1)面から[1-100]方向に60°、61°、62°、64°、65°、68°傾斜した面を切り出すことを除いて実施例1と同様の手順で結晶育成を行った。
[比較例1、2]
 4H-SiC単結晶インゴットを用いて(000-1)面から[1-100]方向に62°、63°傾斜した面を切り出すこと、さらに、融液が1920℃で安定してから種結晶を融液に接触させることを除いて実施例1と同様の手順で結晶育成を行った。
[比較例3]
 4H-SiC単結晶インゴットを用いて(000-1)面から[1-100]方向に0°傾斜した面(即ち、(000-1)面)を切り出すことを除いて実施例1と同様の手順で結晶育成を行った。
[比較例4]
 融液が1920℃に到達してから種結晶を融液に接触させることを除いて比較例3と同様の手順で結晶育成を行った。
[モフォロジー評価]
 育成結晶のうちトレンチの無い領域の面積を、顕微鏡により観察した。
◎:成長層の面積の90%以上100%以下がトレンチの無い領域である。
○:成長層の面積の30%以上90%未満がトレンチの無い領域である。
△:成長層の面積の0%以上30%未満がトレンチの無い領域である。
[異種多形評価]
 育成結晶のうち異種多形の有無を、ラマン散乱スペクトル測定により観察した。
〇:成長層に4H以外の多形が含まれない。
×:成長層に4H以外の多形が含まれる。
Figure JPOXMLDOC01-appb-T000001
 種結晶の傾斜角度が60°以上68°以下で、昇温途中で炭素濃度が未飽和の状態の融液に種結晶を接触させてメルトバック工程を行った実施例1~7においては、窒素のみのドーピングでも異種多形の発生がなく、トレンチの無い領域が得られた。特に、傾斜角度が63°と64°である実施例1と4で、特にモフォロジーが良好な成長層が得られた。
 図5に、実施例1で得られた、成長層(育成結晶)の断面の顕微鏡写真を示す。実施例1で得られた育成結晶は、全面にトレンチの無い領域が得られ、モフォロジーが良好であった。
 一方、目標温度で安定した状態の、炭素濃度が飽和した融液に種結晶を接触させた、即ち、メルトバック工程を行わなかった比較例1と比較例2では、成長層の全面にトレンチが発生しており、モフォロジーが悪かった。これは、メルトバック工程を行わなかったため、溶媒浸漬時に種結晶の下面にトラップされた雰囲気ガスや、溶媒中から生成したガスが、種結晶9の下面の凹凸に気泡として残るため、気泡が育成結晶に取り込まれたり、気泡部分の結晶成長速度が遅くなったりして、トレンチが形成され、モフォロジーが悪かったと思われる。
 比較例3、4は、傾斜角度が0°、即ち、(000-1)面で切断した場合には、トレンチの無い領域が得られたが、6H-SiCや15R-SiCの異種多形が観測された。メルトバック工程を行った比較例3と、行わなかった比較例4では、特にトレンチの発生頻度に変化は無く、メルトバック工程のモフォロジーへの影響は観測されなかった。
 なお、実施例及び比較例において、窒素原子の濃度がアルミニウム原子の濃度よりも高いn型半導体の4H-SiCが得られた。雰囲気ガスに窒素ガスを添加しているため、得られた育成結晶の窒素原子の濃度は当然に1×1017個/cm3以上であり、原料溶液にアルミニウムを添加しなかったため、得られた育成結晶のアルミニウムの濃度は当然に1×1017個/cm3以下であると考えられる。
 実施例及び比較例においては、原料溶液にアルミニウムを添加していないが、アルミニウムは原料溶液に添加すると育成結晶の多形安定化及びモフォロジー安定化に効果があることが知られているため、原料溶液にアルミニウムを添加した場合でも、本発明による多形安定化及びモフォロジー安定化の効果は実施例及び比較例と同様に示されると考えられる。
 また、実施例及び比較例においては、雰囲気ガスに窒素ガスを添加しているが、非特許文献2などから、窒素原子は4H-SiCの育成結晶の多形を不安定化させることが知られており、雰囲気ガスに窒素ガスを含まない場合でも、本発明による多形安定化の効果は実施例及び比較例と同様に示されると考えられる。そのため、雰囲気ガスに窒素ガスを含まない場合でも、本発明により、異種多形の混入を防ぎながら、良好なモフォロジーを持つ4H-SiC単結晶を得ることができると考えられる。
 1  結晶育成装置
 3  るつぼ
 5  原料溶液
 7  種結晶引上げ軸
 9  種結晶
 10  育成結晶
 11  拡張角度
 12  加熱器
 15  育成結晶

Claims (16)

  1.  ケイ素及び炭素を含み、炭素濃度が未飽和の原料溶液に、4H型炭化ケイ素の種結晶を接触させ、前記種結晶の一部を溶解するメルトバック工程と、
     前記種結晶に4H型炭化ケイ素単結晶を成長させる結晶育成工程と、
    を含み、
     前記種結晶の成長面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下の角度で傾斜した面であることを特徴とする炭化ケイ素単結晶の製造方法。
  2.  前記種結晶の成長面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に63°以上64°以下の角度で傾斜した面であることを特徴とする請求項1に記載の炭化ケイ素単結晶の製造方法。
  3.  前記原料溶液中のアルミニウム濃度が3モル%以下であることを特徴とする請求項1又は2に記載の炭化ケイ素単結晶の製造方法。
  4.  前記原料溶液にアルミニウムが添加されておらず、
     前記メルトバック工程及び前記結晶育成工程が、窒素ガスを0.01体積%以上3.0体積%以下含む不活性ガス雰囲気で行われることを特徴とする請求項1~3のいずれか1項に記載の炭化ケイ素の単結晶の製造方法。
  5.  前記結晶育成工程を1時間以上行うことを特徴とする請求項1~4のいずれか1項に記載の炭化ケイ素単結晶の製造方法。
  6.  前記結晶育成工程において、前記種結晶を、前記原料溶液の液面と平行な面内で、周期的に正回転と逆回転を繰り返すように回転させることを特徴とする請求項1~5のいずれか1項に記載の炭化ケイ素単結晶の製造方法。
  7.  黒鉛るつぼ中で、ケイ素を含む原料溶液を加熱し、黒鉛るつぼから炭素を原料溶液に溶解させて、炭素濃度が未飽和のケイ素及び炭素を含む溶液を得る工程と、
     温度T1で炭素濃度が未飽和の前記溶液に、炭化ケイ素の種結晶を接触させ、前記種結晶の一部を溶解するメルトバック工程と、
     前記温度T1よりも高い温度T2において、前記種結晶に炭化ケイ素単結晶を成長させる結晶育成工程と、
    を含み、
     前記種結晶の成長面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下傾斜した面であることを特徴とする炭化ケイ素単結晶の製造方法。
  8.  前記メルトバック工程において、前記原料溶液の温度T1が1420℃以上2100℃以下であり、
     前記結晶育成工程における前記原料溶液の温度T2がT1よりも5℃以上高いことを特徴とする請求項7に記載の炭化ケイ素単結晶の製造方法。
  9.  おもて面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下傾斜した面であり、
     アルミニウム原子の濃度が1×1019個/cm3以下であることを特徴とする4H型炭化ケイ素単結晶ウエハ。
  10.  前記おもて面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に63°以上68°以下傾斜した面であること特徴とする請求項9に記載の4H型炭化ケイ素単結晶ウエハ。
  11.  前記4H型炭化ケイ素単結晶ウエハ中のアルミニウム原子の濃度が1×1017個/cm3以上であり、
     前記4H型炭化ケイ素単結晶ウエハがp型半導体であることを特徴とする請求項9又は10に記載の4H型炭化ケイ素単結晶ウエハ。
  12.  前記4H型炭化ケイ素単結晶ウエハ中の窒素原子の濃度が1×1017個/cm3以上であり、
     前記4H型炭化ケイ素単結晶ウエハがn型半導体であることを特徴とする請求項9又は10に記載の4H型炭化ケイ素単結晶ウエハ。
  13.  前記4H型炭化ケイ素単結晶ウエハ中のB、Al、Ga及びInの濃度の合計が1×1017個/cm3以下であり、
     前記4H型炭化ケイ素単結晶ウエハ中のN、P、As及びSbの濃度の合計が1×1017個/cm3以下であることを特徴とする請求項9又は10に記載の4H型炭化ケイ素単結晶ウエハ。
  14.  ウエハの厚さが100μm以上であることを特徴とする請求項9~13のいずれか1項に記載の4H型炭化ケイ素単結晶ウエハ。
  15.  4H型炭化ケイ素の種結晶上に、4H型炭化ケイ素の育成結晶を有し、
     前記育成結晶のおもて面が、(0001)面又は(000-1)面のいずれか一方から<1-100>方向に60°以上68°以下傾斜した面であり、
     前記育成結晶中のアルミニウム原子の濃度が1×1019個/cm3以下であることを特徴とする4H型炭化ケイ素単結晶。
  16.  前記育成結晶の厚さが100μm以上であることを特徴とする請求項15に記載の4H型炭化ケイ素単結晶。
PCT/JP2018/040681 2017-11-01 2018-11-01 炭化ケイ素単結晶の製造方法 WO2019088221A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202210348418.6A CN114703542A (zh) 2017-11-01 2018-11-01 碳化硅单晶的制造方法
CN201880071163.5A CN111315923B (zh) 2017-11-01 2018-11-01 碳化硅单晶的制造方法
EP18871998.3A EP3690085A4 (en) 2017-11-01 2018-11-01 PROCESS FOR THE PRODUCTION OF A SINGLE CRYSTAL OF SILICON CARBIDE
US16/758,572 US11643748B2 (en) 2017-11-01 2018-11-01 Silicon carbide single crystal
KR1020207015373A KR102543044B1 (ko) 2017-11-01 2018-11-01 탄화규소 단결정의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211680 2017-11-01
JP2017-211680 2017-11-01

Publications (1)

Publication Number Publication Date
WO2019088221A1 true WO2019088221A1 (ja) 2019-05-09

Family

ID=66332585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040681 WO2019088221A1 (ja) 2017-11-01 2018-11-01 炭化ケイ素単結晶の製造方法

Country Status (7)

Country Link
US (1) US11643748B2 (ja)
EP (1) EP3690085A4 (ja)
JP (1) JP7352058B2 (ja)
KR (1) KR102543044B1 (ja)
CN (2) CN114703542A (ja)
TW (1) TWI809003B (ja)
WO (1) WO2019088221A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI771781B (zh) * 2020-10-26 2022-07-21 國家中山科學研究院 一種正軸碳化矽單晶成長方法
CN114574944A (zh) * 2022-03-21 2022-06-03 北京晶格领域半导体有限公司 碳化硅单晶液相生长装置及方法
CN116516486B (zh) * 2023-07-03 2023-09-19 北京青禾晶元半导体科技有限责任公司 一种碳化硅晶体生长中抑制表面台阶粗化的方法
CN116926670B (zh) * 2023-07-12 2024-04-16 通威微电子有限公司 一种用液相法制备碳化硅的方法和制得的碳化硅

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119097A (ja) * 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法並びにSiC種結晶及びその製造方法
JP2003321298A (ja) * 2002-04-30 2003-11-11 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法,エピタキシャル膜付きSiCウエハ及びその製造方法,並びにSiC電子デバイス
JP2006225232A (ja) * 2005-02-21 2006-08-31 Nippon Steel Corp 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、および薄膜エピタキシャルウェハ
WO2007094155A1 (ja) * 2006-01-24 2007-08-23 Toyota Jidosha Kabushiki Kaisha SiC単結晶の製造方法
WO2011007458A1 (ja) * 2009-07-17 2011-01-20 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2014043369A (ja) * 2012-08-26 2014-03-13 Nagoya Univ SiC単結晶の製造方法およびSiC単結晶
JP2016056071A (ja) * 2014-09-11 2016-04-21 国立大学法人名古屋大学 炭化ケイ素の結晶の製造方法及び結晶製造装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7230274B2 (en) 2004-03-01 2007-06-12 Cree, Inc Reduction of carrot defects in silicon carbide epitaxy
JP4179331B2 (ja) * 2006-04-07 2008-11-12 トヨタ自動車株式会社 SiC単結晶の製造方法
EP2319963B1 (en) * 2008-08-29 2013-10-09 Nippon Steel & Sumitomo Metal Corporation Manufacturing method for silicon carbide monocrystals
JP2010192697A (ja) * 2009-02-18 2010-09-02 Sumitomo Electric Ind Ltd 炭化珪素基板および炭化珪素基板の製造方法
JP5355533B2 (ja) * 2010-11-09 2013-11-27 新日鐵住金株式会社 n型SiC単結晶の製造方法
WO2014034080A1 (ja) * 2012-08-26 2014-03-06 国立大学法人名古屋大学 3C-SiC単結晶およびその製造方法
JP6448419B2 (ja) * 2015-03-09 2019-01-09 昭和電工株式会社 炭化珪素単結晶エピタキシャルウェハの製造方法
JP2016172674A (ja) * 2015-03-18 2016-09-29 国立研究開発法人産業技術総合研究所 炭化珪素単結晶及びそれを用いた電力制御用デバイス基板
KR20220006071A (ko) * 2019-05-08 2022-01-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR20220006561A (ko) * 2019-05-10 2022-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
CN113906570A (zh) * 2019-06-12 2022-01-07 株式会社半导体能源研究所 金属氧化物以及包含金属氧化物的晶体管
CN114144894A (zh) * 2019-07-26 2022-03-04 株式会社半导体能源研究所 半导体装置
KR20220103040A (ko) * 2021-01-14 2022-07-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 패널, 정보 처리 장치, 및 표시 패널의 제조 방법
US20220251725A1 (en) * 2021-02-09 2022-08-11 National Chung Shan Institute Of Science And Technology Method of growing on-axis silicon carbide single crystal by regulating silicon carbide source material in size

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003119097A (ja) * 2001-10-12 2003-04-23 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法並びにSiC種結晶及びその製造方法
JP2003321298A (ja) * 2002-04-30 2003-11-11 Toyota Central Res & Dev Lab Inc SiC単結晶及びその製造方法,エピタキシャル膜付きSiCウエハ及びその製造方法,並びにSiC電子デバイス
JP2006225232A (ja) * 2005-02-21 2006-08-31 Nippon Steel Corp 炭化珪素単結晶の製造方法、炭化珪素単結晶インゴット、炭化珪素単結晶基板、炭化珪素エピタキシャルウェハ、および薄膜エピタキシャルウェハ
WO2007094155A1 (ja) * 2006-01-24 2007-08-23 Toyota Jidosha Kabushiki Kaisha SiC単結晶の製造方法
WO2011007458A1 (ja) * 2009-07-17 2011-01-20 トヨタ自動車株式会社 SiC単結晶の製造方法
JP2014043369A (ja) * 2012-08-26 2014-03-13 Nagoya Univ SiC単結晶の製造方法およびSiC単結晶
JP2016056071A (ja) * 2014-09-11 2016-04-21 国立大学法人名古屋大学 炭化ケイ素の結晶の製造方法及び結晶製造装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MITANI TAKESHI ET AL.: "Morphological stability of 4H-SiC crystals in solution growth on {0001} and {1-10m} surfaces", JOURNAL OF CRYSTAL GROWTH, vol. 468, 2017, pages 883 - 888, XP055612209 *
TAKESHI MITANI: "4H-SiC Growth from Si-Cr-C Solution under Al and N Co-doping Conditions", MATERIALS SCIENCE FORUM, vol. 821, no. 823, June 2015 (2015-06-01), pages 9 - 13
TAKESHI MITANI: "Morphological stability of 4H-SiC crystals in solution growth on {0001} and {110m} surfaces", JOURNAL OF CRYSTAL GROWTH, vol. 468, June 2017 (2017-06-01), pages 883 - 888, XP055612209, DOI: 10.1016/j.jcrysgro.2016.12.107

Also Published As

Publication number Publication date
EP3690085A1 (en) 2020-08-05
US11643748B2 (en) 2023-05-09
CN111315923A (zh) 2020-06-19
JP7352058B2 (ja) 2023-09-28
US20200347511A1 (en) 2020-11-05
TW201923169A (zh) 2019-06-16
EP3690085A4 (en) 2021-07-07
JP2019085328A (ja) 2019-06-06
KR102543044B1 (ko) 2023-06-14
CN114703542A (zh) 2022-07-05
KR20200077570A (ko) 2020-06-30
TWI809003B (zh) 2023-07-21
CN111315923B (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2019088221A1 (ja) 炭化ケイ素単結晶の製造方法
JP4419937B2 (ja) 炭化珪素単結晶の製造方法
JP5304793B2 (ja) 炭化珪素単結晶の製造方法
JP5483216B2 (ja) SiC単結晶およびその製造方法
US10087549B2 (en) Method for producing sic single crystal having low defects by solution process
WO2016039415A1 (ja) 炭化ケイ素の結晶の製造方法及び結晶製造装置
JP5218348B2 (ja) 炭化珪素単結晶の製造方法
JP5983772B2 (ja) n型SiC単結晶の製造方法
WO2006025420A1 (ja) 炭化珪素単結晶の製造方法
JP2004002173A (ja) 炭化珪素単結晶とその製造方法
WO2013157418A1 (ja) SiC単結晶及びその製造方法
JP2007261844A (ja) 炭化珪素単結晶の製造方法
JP4475091B2 (ja) 炭化珪素単結晶の製造方法
WO2015029649A1 (ja) n型SiC単結晶及びその製造方法
WO2014034080A1 (ja) 3C-SiC単結晶およびその製造方法
JP6845418B2 (ja) 炭化ケイ素単結晶ウェハ、インゴット及びその製造方法
JP2018177591A (ja) SiC単結晶の製造方法
JP5167947B2 (ja) 炭化珪素単結晶薄膜の製造方法
Soueidan et al. Nucleation of 3C–SiC on 6H–SiC from a liquid phase
WO2003087440A1 (fr) Monocristal de carbure de silicium et procede de fabrication correspondant
JP2006069861A (ja) 炭化珪素単結晶の製造方法
WO2017043215A1 (ja) SiC単結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018871998

Country of ref document: EP

Effective date: 20200427

ENP Entry into the national phase

Ref document number: 20207015373

Country of ref document: KR

Kind code of ref document: A