WO2019071725A1 - 顶栅自对准金属氧化物半导体tft及其制作方法 - Google Patents

顶栅自对准金属氧化物半导体tft及其制作方法 Download PDF

Info

Publication number
WO2019071725A1
WO2019071725A1 PCT/CN2017/111969 CN2017111969W WO2019071725A1 WO 2019071725 A1 WO2019071725 A1 WO 2019071725A1 CN 2017111969 W CN2017111969 W CN 2017111969W WO 2019071725 A1 WO2019071725 A1 WO 2019071725A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate
active layer
oxide semiconductor
light shielding
Prior art date
Application number
PCT/CN2017/111969
Other languages
English (en)
French (fr)
Inventor
周星宇
任章淳
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/736,132 priority Critical patent/US10403757B2/en
Publication of WO2019071725A1 publication Critical patent/WO2019071725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/4763Deposition of non-insulating, e.g. conductive -, resistive -, layers on insulating layers; After-treatment of these layers
    • H01L21/47635After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/461Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/465Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a top gate self-aligned metal oxide semiconductor TFT and a method of fabricating the same.
  • the flat panel display device has many advantages such as thin body, power saving, no radiation, and has been widely used.
  • the conventional flat panel display device mainly includes a liquid crystal display (LCD) and an organic light emitting display (OLED).
  • LCD display devices are widely used in various consumer electronics such as mobile phones, televisions, personal digital assistants, digital cameras, notebook computers, desktop computers, etc. due to their high image quality, power saving, thin body and wide application range. Products have become the mainstream in display devices.
  • the OLED display device is an active light-emitting display with self-illumination, high contrast, wide viewing angle (up to 170°), fast response, high luminous efficiency, low operating voltage (3 to 0V), ultra-thin (less than 2mm thickness), etc. It has better color display quality, wider viewing range and greater design flexibility.
  • TFTs Thin Film Transistors
  • Metal oxide semiconductor TFT technology is currently a popular technology.
  • Metal oxide semiconductors have high electron mobility (oxide semiconductor mobility > 10 cm 2 /Vs, a-Si mobility is only 0.5 to 0.8 cm 2 /Vs).
  • LTPS low temperature polysilicon
  • the metal oxide semiconductor TFT has a simple process and high compatibility with the a-Si TFT process, and can be applied to an LCD display device and an OLED display device, and is suitable for size and size. Display, with good application development prospects, is popular for current industry research.
  • the threshold voltage of the metal oxide semiconductor TFT is significantly negatively shifted after the metal oxide semiconductor is irradiated with light, and an improved method is under the active layer of the metal oxide semiconductor material.
  • the metal light shielding layer is disposed to eliminate the threshold drift of the TFT threshold voltage caused by the illumination, but the metal light shielding layer also has some bad effects, such as a floating gate effect, which refers to the fact that the metal light shielding layer corresponds to The source layer is disposed below, so it is equivalent to a bottom gate.
  • the metal light shielding layer is not connected to other charged structure layers in the TFT structure, it is susceptible to voltage on other charged structure layers. Therefore, various voltages are carried. Since the metal light shielding layer has a variable voltage, the threshold voltage of the TFT is constantly changing during operation, resulting in unstable operation of the TFT.
  • Another object of the present invention is to provide a top gate self-aligned metal oxide semiconductor TFT which does not generate a threshold voltage negative drift phenomenon and a floating gate effect, and has good operational stability.
  • the present invention provides a method of fabricating a top gate self-aligned metal oxide semiconductor TFT, comprising: providing a light shielding layer under the active layer, and connecting the light shielding layer to the source.
  • the method for fabricating the top gate self-aligned metal oxide semiconductor TFT further includes:
  • a buffer layer covering the light shielding layer is formed on the base substrate, and an active layer corresponding to the light shielding layer is formed on the buffer layer a layer, the material of the active layer is a metal oxide semiconductor material;
  • the gate insulating layer is etched by using the photoresist layer and the gate as a barrier layer, and only the portion corresponding to the underside of the gate remains, and the remaining portions are etched away, and the remaining gate insulating layer is located on the active layer and
  • the gate and the gate insulating layer define a channel region corresponding to the underlying gate insulating layer and a source contact region and a drain contact region respectively located on both sides of the channel region on the active layer.
  • the photoresist layer, the gate electrode and the gate insulating layer are used as a barrier layer, and the active layer is subjected to a conductor treatment to change the metal oxide semiconductor material of the source contact region and the drain contact region into a conductor, and the metal of the channel region
  • the oxide semiconductor material maintains semiconductor characteristics; after the conductor forming process is finished, the photoresist layer is stripped;
  • the source and the drain are electrically connected to the drain contact hole and the source contact region and the drain contact region of the active layer respectively through the source contact hole and the drain contact hole At the same time, the source is electrically connected through the signal via and the light shielding layer;
  • a passivation layer covering the source and the drain is formed on the interlayer insulating layer.
  • the method of conducting the conductor treatment on the active layer is plasma treatment, which reduces the oxygen element content in the metal oxide semiconductor material, and causes the resistivity of the metal oxide semiconductor material to decrease to become a conductor.
  • the plasma includes one or more of a helium plasma, an argon plasma, and an ammonia plasma.
  • the metal oxide semiconductor material includes one or more of indium gallium zinc oxide, indium zinc tin oxide, and indium gallium zinc tin oxide.
  • the present invention also provides a top gate self-aligned metal oxide semiconductor TFT comprising: an active layer, a light shielding layer disposed under the active layer, and a source connected to the light shielding layer.
  • the top gate self-aligned metal oxide semiconductor TFT further includes: a base substrate, a light shielding layer disposed on the base substrate, a buffer layer disposed on the base substrate and covering the light shielding layer, and An active layer over the buffer layer and corresponding to the light shielding layer, a gate insulating layer disposed on the active layer, a gate insulating layer, and the gate insulating layer An aligned gate, an interlayer insulating layer disposed on the buffer layer and covering the gate and the active layer, a source and a drain provided on the interlayer insulating layer, and a layer disposed on the layer a passivation layer on the insulating layer and covering the source and the drain;
  • the active layer includes a channel region corresponding to a lower portion of the gate insulating layer and a source contact region and a drain contact region respectively located at two sides of the channel region, and the material of the source contact region and the drain contact region is a conductive metal oxide semiconductor material, the material of the channel region being a metal oxide semiconductor material that maintains semiconductor characteristics;
  • the interlayer insulating layer is provided with a source contact hole and a drain contact hole respectively corresponding to the source contact region and the drain contact region, and the interlayer insulating layer and the buffer layer are disposed corresponding to the light shielding layer. Connected signal vias;
  • the source and the drain are electrically connected to the drain contact hole and the source contact region of the active layer and the drain contact region through the source contact hole and the drain, respectively, and the source is connected to the signal via and the light shielding layer. Sexual connection.
  • the metal oxide semiconductor material includes one or more of indium gallium zinc oxide, indium zinc tin oxide, and indium gallium zinc tin oxide.
  • the metal oxide semiconductor material is indium gallium zinc oxide
  • the present invention also provides a method of fabricating a top gate self-aligned metal oxide semiconductor TFT, providing a light shielding layer under the active layer, and connecting the light shielding layer to the source;
  • a buffer layer covering the light shielding layer is formed on the base substrate, and an active layer corresponding to the light shielding layer is formed on the buffer layer a layer, the material of the active layer is a metal oxide semiconductor material;
  • the gate insulating layer is etched by using the photoresist layer and the gate as a barrier layer, and only the portion corresponding to the underside of the gate remains, and the remaining portions are etched away, and the remaining gate insulating layer is located on the active layer and
  • the gate and the gate insulating layer define a channel region corresponding to the underlying gate insulating layer and a source contact region and a drain contact region respectively located on both sides of the channel region on the active layer.
  • the photoresist layer, the gate electrode and the gate insulating layer are used as a barrier layer, and the active layer is subjected to a conductor treatment to change the metal oxide semiconductor material of the source contact region and the drain contact region into a conductor, and the metal of the channel region
  • the oxide semiconductor material maintains semiconductor characteristics; after the conductor forming process is finished, the photoresist layer is stripped;
  • the source and the drain are electrically connected to the drain contact hole and the source contact region and the drain contact region of the active layer respectively through the source contact hole and the drain contact hole At the same time, the source is electrically connected through the signal via and the light shielding layer;
  • the method of conducting the conductor treatment on the active layer is plasma treatment, reducing the oxygen content in the metal oxide semiconductor material, causing the resistivity of the metal oxide semiconductor material to decrease and becoming a conductor;
  • the plasma comprises one or more of a helium plasma, an argon plasma, and an ammonia plasma;
  • the metal oxide semiconductor material includes one or more of indium gallium zinc oxide, indium zinc tin oxide, and indium gallium zinc tin oxide.
  • the invention has the beneficial effects that the method for fabricating the top gate self-aligned metal oxide semiconductor TFT of the present invention can protect the active layer from being irradiated with light by providing a light shielding layer under the active layer, thereby preventing the threshold voltage from being negatively drifted by the TFT. And, by connecting the light shielding layer to the source, a stable voltage is generated on the light shielding layer to avoid the floating gate effect, thereby effectively improving the operational stability of the TFT.
  • the top gate self-aligned metal oxide semiconductor TFT of the present invention is obtained by the above method, and does not generate a threshold voltage negative drift phenomenon and a floating gate effect, and has good working stability.
  • FIG. 1 is a flow chart showing a method of fabricating a top gate self-aligned metal oxide semiconductor TFT of the present invention
  • FIG. 2 to FIG. 4 are schematic diagrams showing the first step of the method for fabricating a top gate self-aligned metal oxide semiconductor TFT according to the present invention
  • FIG. 8 are schematic diagrams showing the second step of the method for fabricating the top gate self-aligned metal oxide semiconductor TFT of the present invention.
  • FIG. 10 are schematic diagrams showing a step 3 of a method for fabricating a top gate self-aligned metal oxide semiconductor TFT according to the present invention.
  • FIG. 12 are schematic diagrams showing a step 4 of a method for fabricating a top gate self-aligned metal oxide semiconductor TFT according to the present invention.
  • FIG. 13 is a schematic view showing a step 5 of a method for fabricating a top gate self-aligned metal oxide semiconductor TFT according to the present invention
  • FIG. 14 is a schematic view showing the step 6 of the method for fabricating the top gate self-aligned metal oxide semiconductor TFT of the present invention and the structure of the method for fabricating the top gate self-aligned metal oxide semiconductor TFT of the present invention.
  • the present invention provides a method for fabricating a top gate self-aligned metal oxide semiconductor TFT, comprising the following steps:
  • Step 1 as shown in FIG. 2, a base substrate 10 is provided, and a light shielding layer 20 is formed on the base substrate 10. As shown in FIG. 3, a cover layer of the light shielding layer 20 is formed on the base substrate 10.
  • the material of the active layer 40 is a metal oxide semiconductor material.
  • the substrate substrate 10 needs to be cleaned.
  • the light shielding layer 20 is obtained by depositing a metal layer on the base substrate 10 and etching and patterning.
  • the active layer 40 is obtained by depositing a metal oxide semiconductor material on the buffer layer 30 and etching and patterning.
  • an area of the light shielding layer 20 is larger than an area of the active layer 40, and an orthographic projection of the light shielding layer 20 on the substrate substrate 10 covers the positive layer of the active layer 40 on the substrate substrate 10. Projection, so that the light shielding layer 20 can completely cover the active layer 40, preventing the active layer 40 from being irradiated with light to cause a negative threshold voltage drop of the TFT, and improving the operational stability of the TFT.
  • the base substrate 10 is a glass substrate.
  • the thickness of the light shielding layer 20 is 500. -2000
  • the material of the light shielding layer 20 is a metal; preferably, the material of the light shielding layer 20 includes an alloy of one or more of molybdenum (Mo), aluminum (Al), copper (Cu), and titanium (Ti). .
  • the thickness of the buffer layer 30 is 1000. -5000
  • the buffer layer 30 is a silicon oxide (SiO x ) film, a silicon nitride (SiN x ) film, or a composite film in which a silicon oxide film and a silicon nitride film are alternately laminated.
  • the metal oxide semiconductor material includes one or more of indium gallium zinc oxide (IGZO), indium zinc tin oxide (IZTO), and indium gallium zinc tin oxide (IGZTO).
  • IGZO indium gallium zinc oxide
  • IZTO indium zinc tin oxide
  • IGZTO indium gallium zinc tin oxide
  • Step 2 as shown in FIG. 5, a gate insulating layer 50 covering the active layer 40 is formed on the buffer layer 30, and a gate metal layer 51 is deposited on the gate insulating layer 50;
  • a photoresist layer 52 is formed on the gate metal layer 51, and the photoresist layer 52 is patterned by a yellow light process, and the remaining photoresist layer 52 is on the gate metal.
  • a gate pattern is defined on layer 51;
  • the photoresist layer 52 as a barrier layer, the gate metal layer 51 is etched to obtain a gate 60 corresponding to the upper layer of the active layer 40;
  • the gate insulating layer 50 is etched by using the photoresist layer 52 and the gate electrode 60 as a barrier layer, and only the portion corresponding to the underside of the gate electrode 60 is left, and the remaining portions are etched and removed.
  • the gate insulating layer 50 is located on the active layer 40 and is vertically aligned with the gate 60.
  • the gate 60 and the gate insulating layer 50 define a channel region on the active layer 40 corresponding to the underlying gate insulating layer 50. 41 and a source contact region 42 and a drain contact region 43 respectively located on both sides of the channel region 41.
  • the thickness of the gate insulating layer 50 is 1000. -3000
  • the gate insulating layer 50 is a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a composite thin film formed by alternately laminating a silicon oxide thin film and a silicon nitride thin film.
  • the thickness of the gate 60 is 2000. -8000
  • the material of the gate 60 includes an alloy of one or more of molybdenum (Mo), aluminum (Al), copper (Cu), and titanium (Ti).
  • Step 3 as shown in FIG. 9, the photoresist layer 52, the gate electrode 60 and the gate insulating layer 50 are used as a barrier layer, and the active layer 40 is subjected to a conductor treatment to make the source contact region 42 and the drain contact region 43.
  • the metal oxide semiconductor material becomes a conductor, and the metal oxide semiconductor material of the channel region 41 maintains semiconductor characteristics; as shown in FIG. 10, after the conductor forming process is finished, the photoresist layer 52 is peeled off.
  • the method of conducting the conductor treatment on the active layer 40 is plasma treatment, which reduces the oxygen element content in the metal oxide semiconductor material, and reduces the resistivity of the metal oxide semiconductor material to become a conductor.
  • the plasma includes one or more of a helium plasma, an argon plasma, and an ammonia plasma.
  • the metal oxide semiconductor material is indium gallium zinc oxide (IGZO)
  • the present invention adopts a top gate self-aligned structure, and defines a channel region 41 corresponding to the underside of the gate insulating layer 50 on the active layer 40 by using the gate electrode 60 and the gate insulating layer 50, and is respectively located on both sides of the channel region 41.
  • the source contact region 42 and the drain contact region 43 are capable of protecting the channel region 41 of the active layer 40 from being conductorized during the electrification of the active layer 40. .
  • Step 4 as shown in FIG. 11, an interlayer insulating layer 70 covering the gate electrode 60 and the active layer 40 is formed on the buffer layer 30; as shown in FIG. 12, on the interlayer insulating layer 70.
  • Source contact holes 71 and drain contact holes 72 respectively corresponding to the source contact regions 42 and the drain contact regions 43 are formed, and are formed on the interlayer insulating layer 70 and the buffer layer 30 corresponding to the light shielding layer 20
  • the signal is connected to the via 73.
  • the interlayer insulating layer 70 has a thickness of 2000. -10000
  • the interlayer insulating layer 70 is a composite film formed by alternately laminating a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a silicon oxide thin film and a silicon nitride thin film.
  • the source contact hole 71, the drain contact hole 72, and the signal via hole 73 are formed in the same photolithography process.
  • Step 5 as shown in FIG. 13, a source 81 and a drain 82 are formed on the interlayer insulating layer 70, and the source 81 and the drain 82 pass through the source contact hole 71 and the drain contact hole 72, respectively.
  • the source contact region 42 of the active layer 40 is electrically connected to the drain contact region 43 while the source electrode 81 is electrically connected to the light shielding layer 20 through the signal via hole 73.
  • the thickness of the source 81 and the drain 82 is 2000. -8000
  • the material of the source 81 and the drain 82 includes an alloy of one or more of molybdenum (Mo), aluminum (Al), copper (Cu), and titanium (Ti).
  • the source 81 and the drain 82 are obtained by depositing a metal layer and performing pattern processing.
  • the present invention By connecting the light shielding layer 20 to the source electrode 81, the present invention generates a stable voltage on the light shielding layer 20, thereby avoiding the occurrence of a floating gate effect and ensuring the operational stability of the TFT.
  • Step 6 as shown in FIG. 14, a passivation layer 90 covering the source electrode 81 and the drain electrode 82 is formed on the interlayer insulating layer 70 to complete the fabrication of the top gate self-aligned metal oxide semiconductor TFT.
  • the passivation layer 90 has a thickness of 1000. -5000
  • the passivation layer 90 is a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a composite thin film formed by alternately laminating a silicon oxide thin film and a silicon nitride thin film.
  • the method for fabricating the top gate self-aligned metal oxide semiconductor TFT of the present invention can protect the active layer 40 from being irradiated with light by providing the light shielding layer 20 under the active layer 40, thereby preventing the TFT from generating a threshold voltage negative drift phenomenon; By connecting the light shielding layer 20 to the source electrode 81, a stable voltage is generated on the light shielding layer 20, thereby avoiding the occurrence of a floating gate effect, thereby effectively improving the operational stability of the TFT.
  • the present invention further provides a top gate self-aligned metal oxide semiconductor TFT, comprising: a substrate substrate 10 disposed on the lining a light shielding layer 20 on the base substrate 10, a buffer layer 30 disposed on the base substrate 10 and covering the light shielding layer 20, and an active layer disposed on the buffer layer 30 and corresponding to the light shielding layer 20 a layer 40, a gate insulating layer 50 disposed on the active layer 40, a gate 60 disposed on the gate insulating layer 50 and aligned with the gate insulating layer 50, and the buffer layer
  • the active layer 40 includes a channel region 41 corresponding to the underside of the gate insulating layer 50 and a source contact region 42 and a drain contact region 43 respectively located at two sides of the channel region 41, the source contact region 42 and
  • the material of the drain contact region 43 is a conductive metal oxide semiconductor material, and the material of the channel region 41 is a metal oxide semiconductor material that maintains semiconductor characteristics;
  • the interlayer insulating layer 70 is provided with a source contact hole 71 and a drain contact hole 72 corresponding to the source contact region 42 and the drain contact region 43 respectively.
  • the interlayer insulating layer 70 and the buffer layer 30 are disposed on the buffer layer 30.
  • a signal via hole 73 corresponding to the upper side of the light shielding layer 20;
  • the source electrode 81 and the drain electrode 82 are electrically connected to the drain contact hole 72 and the source contact region 42 of the active layer 40 through the source contact hole 71 and the drain contact hole 72, respectively, while the source electrode 81 passes through.
  • the signal via hole 73 and the light shielding layer 20 are electrically connected.
  • an area of the light shielding layer 20 is larger than an area of the active layer 40, and an orthographic projection of the light shielding layer 20 on the substrate substrate 10 covers the positive layer of the active layer 40 on the substrate substrate 10. projection.
  • the base substrate 10 is a glass substrate.
  • the thickness of the light shielding layer 20 is 500. -2000
  • the material of the light shielding layer 20 is a metal; preferably, the material of the light shielding layer 20 includes an alloy of one or more of molybdenum (Mo), aluminum (Al), copper (Cu), and titanium (Ti). .
  • the thickness of the buffer layer 30 is 1000. -5000
  • the buffer layer 30 is a composite film formed by alternately laminating a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a silicon oxide thin film and a silicon nitride thin film.
  • the metal oxide semiconductor material includes one or more of indium gallium zinc oxide (IGZO), indium zinc tin oxide (IZTO), and indium gallium zinc tin oxide (IGZTO).
  • IGZO indium gallium zinc oxide
  • IZTO indium zinc tin oxide
  • IGZTO indium gallium zinc tin oxide
  • the source contact region 42 of the active layer 40 and the indium gallium zinc oxide of the drain contact region 43 are indium gallium zinc oxide.
  • the thickness of the gate insulating layer 50 is 1000. -3000
  • the gate insulating layer 50 is a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a composite thin film formed by alternately laminating a silicon oxide thin film and a silicon nitride thin film.
  • the thickness of the gate 60 is 2000. -8000
  • the material of the gate 60 includes an alloy of one or more of molybdenum (Mo), aluminum (Al), copper (Cu), and titanium (Ti).
  • the interlayer insulating layer 70 has a thickness of 2000. -10000
  • the interlayer insulating layer 70 is a composite film formed by alternately laminating a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a silicon oxide thin film and a silicon nitride thin film.
  • the thickness of the source 81 and the drain 82 is 2000. -8000
  • the material of the source 81 and the drain 82 includes an alloy of one or more of molybdenum (Mo), aluminum (Al), copper (Cu), and titanium (Ti).
  • the passivation layer 90 has a thickness of 1000. -5000
  • the passivation layer 90 is a silicon oxide (SiO x ) thin film, a silicon nitride (SiN x ) thin film, or a composite thin film formed by alternately laminating a silicon oxide thin film and a silicon nitride thin film.
  • the top gate self-aligned metal oxide semiconductor TFT of the present invention can protect the active layer 40 from being irradiated with light by providing the light shielding layer 20 under the active layer 40, thereby preventing the TFT from generating a threshold voltage negative drift phenomenon;
  • the layer 20 is connected to the source 81 to generate a stable voltage on the light shielding layer 20 to avoid a floating gate effect, thereby effectively improving the operational stability of the TFT.
  • the present invention provides a top gate self-aligned metal oxide semiconductor TFT and a method of fabricating the same.
  • the method for fabricating the top gate self-aligned metal oxide semiconductor TFT of the present invention can protect the active layer from being irradiated with light by providing a light shielding layer under the active layer, thereby preventing the TFT from generating a threshold voltage negative drift phenomenon;
  • the layer is connected to the source to generate a stable voltage on the light shielding layer to avoid a floating gate effect, thereby effectively improving the working stability of the TFT.
  • the top gate self-aligned metal oxide semiconductor TFT of the present invention is obtained by the above method, and does not generate a threshold voltage negative drift phenomenon and a floating gate effect, and has good working stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种顶栅自对准金属氧化物半导体TFT及其制作方法,所述顶栅自对准金属氧化物半导体TFT的制作方法通过在有源层(40)下方设置遮光层(20),能够保护有源层(40)不被光线照射,避免TFT产生阈值电压负漂现象;并且,通过将遮光层(20)连接至源极(81),使所述遮光层(20)上产生稳定的电压,避免产生浮栅效应,从而有效提升TFT的工作稳定性。顶栅自对准金属氧化物半导体TFT采用上述方法制得,不会产生阈值电压负漂现象和浮栅效应,具有较好的工作稳定性。

Description

顶栅自对准金属氧化物半导体TFT及其制作方法 技术领域
本发明涉及显示技术领域,尤其涉及一种顶栅自对准金属氧化物半导体TFT及其制作方法。
背景技术
平板显示装置具有机身薄、省电、无辐射等众多优点,得到了广泛的应用。现有的平板显示装置主要包括液晶显示装置(Liquid Crystal Display,LCD)及有机电致发光显示装置(Organic Light Emitting Display,OLED)。
LCD显示装置因具有高画质、省电、机身薄及应用范围广等优点,而被广泛的应用于手机、电视、个人数字助理、数字相机、笔记本电脑、台式计算机等各种消费性电子产品,成为显示装置中的主流。
OLED显示装置是主动发光的显示器,具有自发光、高对比度、宽视角(达170°)、快速响应、高发光效率、低操作电压(3~0V)、超轻薄(厚度小于2mm)等优势,具有更优异的彩色显示画质、更宽广的观看范围和更大的设计灵活性。
薄膜晶体管(Thin Film Transistor,TFT)是平板显示装置的重要组成部分,可形成在玻璃基板或塑料基板上,通常作为开关装置和驱动装置用在诸如LCD显示装置与OLED显示装置中。
金属氧化物半导体TFT技术是当前的热门技术,金属氧化物半导体由于具有较高的电子迁移率(氧化物半导体迁移率>10cm2/Vs,a-Si迁移率仅为0.5~0.8cm2/Vs),而且与低温多晶硅(LTPS)相比,金属氧化物半导体TFT的制程简单,与a-Si TFT的制程相容性较高,可应用于LCD显示装置与OLED显示装置中,适用于大小尺寸显示,具有良好的应用发展前景,为当前业界研究热门。
由于金属氧化物半导体对光照比较敏感,因此金属氧化物半导体受到光线照射后,金属氧化物半导体TFT的阈值电压明显负移,现有一种改进的方法是在金属氧化物半导体材料的有源层下方设置金属遮光层,消除光照引起的TFT阈值电压负漂现象,但是金属遮光层也会产生一些不好的影响,例如浮栅效应,所述浮栅效应指的是:由于金属遮光层对应于有源层下方设置,因此其相当于一个底栅极存在,金属遮光层虽然在TFT结构中不与其它带电结构层相连,但是其容易受到其它带电结构层上的电压影响, 从而携带上各种电压,由于金属遮光层具有变化不定的电压,因此TFT在工作时其阈值电压会不断变化,导致TFT工作不稳定。
发明内容
本发明的目的在于提供一种顶栅自对准金属氧化物半导体TFT的制作方法,能够避免TFT产生阈值电压负漂现象和浮栅效应,有效提升TFT的工作稳定性。
本发明的目的还在于提供一种顶栅自对准金属氧化物半导体TFT,不会产生阈值电压负漂现象和浮栅效应,具有较好的工作稳定性。
为实现上述目的,本发明提供一种顶栅自对准金属氧化物半导体TFT的制作方法,包括:在有源层的下方设置遮光层,并且,将遮光层连接至源极。
所述顶栅自对准金属氧化物半导体TFT的制作方法还包括:
提供衬底基板,在所述衬底基板上形成遮光层,在所述衬底基板上形成覆盖所述遮光层的缓冲层,在所述缓冲层上形成对应于所述遮光层上方的有源层,所述有源层的材料为金属氧化物半导体材料;
在所述缓冲层上形成覆盖所述有源层的栅极绝缘层,在所述栅极绝缘层上沉积栅极金属层;
在所述栅极金属层上形成光阻层,利用黄光制程对所述光阻层进行图形化处理,保留下来的光阻层在所述栅极金属层上定义出栅极图案;
以所述光阻层为阻挡层,对所述栅极金属层进行蚀刻,得到对应于有源层上方的栅极;
以所述光阻层与栅极为阻挡层,对栅极绝缘层进行蚀刻,仅保留对应于栅极下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层位于有源层上并与栅极上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
以光阻层、栅极与栅极绝缘层为阻挡层,对有源层进行导体化处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;导体化制程结束后,剥离光阻层;
在所述缓冲层上形成覆盖所述栅极与有源层的层间绝缘层;在所述层间绝缘层上形成分别对应于源极接触区与漏极接触区上方的源极接触孔与漏极接触孔,同时在所述层间绝缘层与缓冲层上形成对应于遮光层上方的接信号过孔;
在所述层间绝缘层上形成源极与漏极,所述源极与漏极分别通过源极接触孔与漏极接触孔和有源层的源极接触区与漏极接触区电性连接,同时所述源极通过接信号过孔和遮光层电性连接;
在所述层间绝缘层上形成覆盖源极与漏极的钝化层。
对有源层进行导体化处理的方法为等离子体处理,降低金属氧化物半导体材料中的氧元素含量,使金属氧化物半导体材料的电阻率下降,变为导体。
所述等离子体包括氦气等离子体、氩气等离子体及氨气等离子体中的一种或多种。
所述遮光层的面积大于所述有源层的面积,且所述遮光层在衬底基板上的正投影覆盖所述有源层在衬底基板上的正投影;所述有源层的厚度为100
Figure PCTCN2017111969-appb-000001
-1000
Figure PCTCN2017111969-appb-000002
,所述金属氧化物半导体材料包括铟镓锌氧化物、铟锌锡氧化物、铟镓锌锡氧化物中的一种或多种。
所述金属氧化物半导体材料为铟镓锌氧化物时,对有源层的源极接触区与漏极接触区进行导体化处理后,所述有源层的源极接触区与漏极接触区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层的沟道区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
本发明还提供一种顶栅自对准金属氧化物半导体TFT,包括:有源层、设于所述有源层下方的遮光层、以及连接至遮光层的源极。
所述顶栅自对准金属氧化物半导体TFT还包括:衬底基板、设于所述衬底基板上的遮光层、设于所述衬底基板上且覆盖所述遮光层的缓冲层、设于所述缓冲层上且对应于所述遮光层上方的有源层、设于所述有源层上的栅极绝缘层、设于所述栅极绝缘层上且与所述栅极绝缘层对齐的栅极、设于所述缓冲层上且覆盖所述栅极与有源层的层间绝缘层、设于所述层间绝缘层上的源极与漏极、以及设于所述层间绝缘层上且覆盖所述源极与漏极的钝化层;
所述有源层包括对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区,所述源极接触区与漏极接触区的材料为导体化的金属氧化物半导体材料,所述沟道区的材料为保持半导体特性的金属氧化物半导体材料;
所述层间绝缘层上设有分别对应于源极接触区与漏极接触区上方的源极接触孔与漏极接触孔,所述层间绝缘层与缓冲层上设有对应于遮光层上方的接信号过孔;
所述源极与漏极分别通过源极接触孔与漏极接触孔和有源层的源极接触区与漏极接触区电性连接,同时所述源极通过接信号过孔和遮光层电性连接。
所述遮光层的面积大于所述有源层的面积,且所述遮光层在衬底基板上的正投影覆盖所述有源层在衬底基板上的正投影;所述有源层的厚度为100
Figure PCTCN2017111969-appb-000003
-1000
Figure PCTCN2017111969-appb-000004
,所述金属氧化物半导体材料包括铟镓锌氧化物、铟锌锡氧化物、铟镓锌锡氧化物中的一种或多种。
所述金属氧化物半导体材料为铟镓锌氧化物时,所述有源层的源极接触区与漏极接触区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层的沟道区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
本发明还提供一种顶栅自对准金属氧化物半导体TFT的制作方法,在有源层的下方设置遮光层,并且,将遮光层连接至源极;
其中,包括:
提供衬底基板,在所述衬底基板上形成遮光层,在所述衬底基板上形成覆盖所述遮光层的缓冲层,在所述缓冲层上形成对应于所述遮光层上方的有源层,所述有源层的材料为金属氧化物半导体材料;
在所述缓冲层上形成覆盖所述有源层的栅极绝缘层,在所述栅极绝缘层上沉积栅极金属层;
在所述栅极金属层上形成光阻层,利用黄光制程对所述光阻层进行图形化处理,保留下来的光阻层在所述栅极金属层上定义出栅极图案;
以所述光阻层为阻挡层,对所述栅极金属层进行蚀刻,得到对应于有源层上方的栅极;
以所述光阻层与栅极为阻挡层,对栅极绝缘层进行蚀刻,仅保留对应于栅极下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层位于有源层上并与栅极上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
以光阻层、栅极与栅极绝缘层为阻挡层,对有源层进行导体化处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;导体化制程结束后,剥离光阻层;
在所述缓冲层上形成覆盖所述栅极与有源层的层间绝缘层;在所述层间绝缘层上形成分别对应于源极接触区与漏极接触区上方的源极接触孔与漏极接触孔,同时在所述层间绝缘层与缓冲层上形成对应于遮光层上方的 接信号过孔;
在所述层间绝缘层上形成源极与漏极,所述源极与漏极分别通过源极接触孔与漏极接触孔和有源层的源极接触区与漏极接触区电性连接,同时所述源极通过接信号过孔和遮光层电性连接;
在所述层间绝缘层上形成覆盖源极与漏极的钝化层;
其中,对有源层进行导体化处理的方法为等离子体处理,降低金属氧化物半导体材料中的氧元素含量,使金属氧化物半导体材料的电阻率下降,变为导体;
其中,所述等离子体包括氦气等离子体、氩气等离子体及氨气等离子体中的一种或多种;
其中,所述遮光层的面积大于所述有源层的面积,且所述遮光层在衬底基板上的正投影覆盖所述有源层在衬底基板上的正投影;所述有源层的厚度为100
Figure PCTCN2017111969-appb-000005
-1000
Figure PCTCN2017111969-appb-000006
,所述金属氧化物半导体材料包括铟镓锌氧化物、铟锌锡氧化物、铟镓锌锡氧化物中的一种或多种。
本发明的有益效果:本发明的顶栅自对准金属氧化物半导体TFT的制作方法通过在有源层下方设置遮光层,能够保护有源层不被光线照射,避免TFT产生阈值电压负漂现象;并且,通过将遮光层连接至源极,使所述遮光层上产生稳定的电压,避免产生浮栅效应,从而有效提升TFT的工作稳定性。本发明的顶栅自对准金属氧化物半导体TFT采用上述方法制得,不会产生阈值电压负漂现象和浮栅效应,具有较好的工作稳定性。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的流程图;
图2至图4为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的步骤1的示意图;
图5至图8为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的步骤2的示意图;
图9至图10为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的步骤3的示意图;
图11至图12为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的步骤4的示意图;
图13为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的步骤5的示意图;
图14为本发明的顶栅自对准金属氧化物半导体TFT的制作方法的步骤6的示意图及本发明的顶栅自对准金属氧化物半导体TFT的制作方法的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种顶栅自对准金属氧化物半导体TFT的制作方法,包括如下步骤:
步骤1、如图2所示,提供衬底基板10,在所述衬底基板10上形成遮光层20,如图3所示,在所述衬底基板10上形成覆盖所述遮光层20的缓冲层30,如图4所示,在所述缓冲层30上形成对应于所述遮光层20上方的有源层40,所述有源层40的材料为金属氧化物半导体材料。
具体的,在制作遮光层20之前,还需要对所述衬底基板10进行清洗。
具体的,所述遮光层20通过在衬底基板10上沉积金属层并蚀刻图形化得到。
具体的,所述有源层40通过在缓冲层30上沉积一层金属氧化物半导体材料并蚀刻图形化得到。
具体的,所述遮光层20的面积大于所述有源层40的面积,且所述遮光层20在衬底基板10上的正投影覆盖所述有源层40在衬底基板10上的正投影,从而使所述遮光层20能够对有源层40进行完全遮盖,防止有源层40受到光线照射造成TFT阈值电压负漂,提升TFT的工作稳定性。
具体的,所述衬底基板10为玻璃基板。
具体的,所述遮光层20的厚度为500
Figure PCTCN2017111969-appb-000007
-2000
Figure PCTCN2017111969-appb-000008
,所述遮光层20的材料为金属;优选的,所述遮光层20的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述缓冲层30的厚度为1000
Figure PCTCN2017111969-appb-000009
-5000
Figure PCTCN2017111969-appb-000010
,所述缓冲层30为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交 替层叠设置形成的复合薄膜。
具体的,所述有源层40的厚度为100
Figure PCTCN2017111969-appb-000011
-1000
Figure PCTCN2017111969-appb-000012
,所述金属氧化物半导体材料包括铟镓锌氧化物(IGZO)、铟锌锡氧化物(IZTO)、铟镓锌锡氧化物(IGZTO)中的一种或多种。
步骤2、如图5所示,在所述缓冲层30上形成覆盖所述有源层40的栅极绝缘层50,在所述栅极绝缘层50上沉积栅极金属层51;
如图6所示,在所述栅极金属层51上形成光阻层52,利用黄光制程对所述光阻层52进行图形化处理,保留下来的光阻层52在所述栅极金属层51上定义出栅极图案;
如图7所示,以所述光阻层52为阻挡层,对所述栅极金属层51进行蚀刻,得到对应于有源层40上方的栅极60;
如图8所示,以所述光阻层52与栅极60为阻挡层,对栅极绝缘层50进行蚀刻,仅保留对应于栅极60下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层50位于有源层40上并与栅极60上下对齐,所述栅极60与栅极绝缘层50在有源层40上限定出对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43。
具体的,所述栅极绝缘层50的厚度为1000
Figure PCTCN2017111969-appb-000013
-3000
Figure PCTCN2017111969-appb-000014
,所述栅极绝缘层50为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
具体的,所述栅极60的厚度为2000
Figure PCTCN2017111969-appb-000015
-8000
Figure PCTCN2017111969-appb-000016
,所述栅极60的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
步骤3、如图9所示,以光阻层52、栅极60与栅极绝缘层50为阻挡层,对有源层40进行导体化处理,使源极接触区42与漏极接触区43的金属氧化物半导体材料变为导体,沟道区41的金属氧化物半导体材料保持半导体特性;如图10所示,导体化制程结束后,剥离光阻层52。
具体的,对有源层40进行导体化处理的方法为等离子体处理,降低金属氧化物半导体材料中的氧元素含量,使金属氧化物半导体材料的电阻率下降,变为导体。具体的,所述等离子体包括氦气等离子体、氩气等离子体及氨气等离子体中的一种或多种。
具体的,所述金属氧化物半导体材料为铟镓锌氧化物(IGZO)时,等离子体处理之前,所述铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间,等离子体处理之后,所述铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1。因此,对有源层40进行导体化处理后,所述有源层40的源极接触 区42与漏极接触区43的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层40的沟道区41的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
本发明采用顶栅自对准结构,利用栅极60和栅极绝缘层50在有源层40上定义出对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43,在有源层40的导体化过程中,所述栅极60和栅极绝缘层50能够保护有源层40的沟道区41不被导体化。
步骤4、如图11所示,在所述缓冲层30上形成覆盖所述栅极60与有源层40的层间绝缘层70;如图12所示,在所述层间绝缘层70上形成分别对应于源极接触区42与漏极接触区43上方的源极接触孔71与漏极接触孔72,同时在所述层间绝缘层70与缓冲层30上形成对应于遮光层20上方的接信号过孔73。
具体的,所述层间绝缘层70的厚度为2000
Figure PCTCN2017111969-appb-000017
-10000
Figure PCTCN2017111969-appb-000018
,所述层间绝缘层70为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
具体的,所述源极接触孔71、漏极接触孔72及接信号过孔73在同一道光刻制程中形成。
步骤5、如图13所示,在所述层间绝缘层70上形成源极81与漏极82,所述源极81与漏极82分别通过源极接触孔71与漏极接触孔72和有源层40的源极接触区42与漏极接触区43电性连接,同时所述源极81通过接信号过孔73和遮光层20电性连接。
具体的,所述源极81与漏极82的厚度为2000
Figure PCTCN2017111969-appb-000019
-8000
Figure PCTCN2017111969-appb-000020
,所述源极81与漏极82的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述源极81与漏极82通过沉积金属层并进行图形化处理得到。
本发明通过将遮光层20连接至源极81,使所述遮光层20上产生稳定的电压,能够避免产生浮栅效应,保证TFT的工作稳定性。
步骤6、如图14所示,在所述层间绝缘层70上形成覆盖源极81与漏极82的钝化层90,完成顶栅自对准金属氧化物半导体TFT的制作。
具体的,所述钝化层90的厚度为1000
Figure PCTCN2017111969-appb-000021
-5000
Figure PCTCN2017111969-appb-000022
,所述钝化层90为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
本发明的顶栅自对准金属氧化物半导体TFT的制作方法通过在有源层40下方设置遮光层20,能够保护有源层40不被光线照射,避免TFT产生阈值电压负漂现象;并且,通过将遮光层20连接至源极81,使所述遮光层20上产生稳定的电压,避免产生浮栅效应,从而有效提升TFT的工作稳定性。
请参阅图14,基于上述顶栅自对准金属氧化物半导体TFT的制作方法,本发明还提供一种顶栅自对准金属氧化物半导体TFT,包括:衬底基板10、设于所述衬底基板10上的遮光层20、设于所述衬底基板10上且覆盖所述遮光层20的缓冲层30、设于所述缓冲层30上且对应于所述遮光层20上方的有源层40、设于所述有源层40上的栅极绝缘层50、设于所述栅极绝缘层50上且与所述栅极绝缘层50对齐的栅极60、设于所述缓冲层30上且覆盖所述栅极60与有源层40的层间绝缘层70、设于所述层间绝缘层70上的源极81与漏极82、以及设于所述层间绝缘层70上且覆盖所述源极81与漏极82的钝化层90;
所述有源层40包括对应于栅极绝缘层50下方的沟道区41以及分别位于沟道区41两侧的源极接触区42与漏极接触区43,所述源极接触区42与漏极接触区43的材料为导体化的金属氧化物半导体材料,所述沟道区41的材料为保持半导体特性的金属氧化物半导体材料;
所述层间绝缘层70上设有分别对应于源极接触区42与漏极接触区43上方的源极接触孔71与漏极接触孔72,所述层间绝缘层70与缓冲层30上设有对应于遮光层20上方的接信号过孔73;
所述源极81与漏极82分别通过源极接触孔71与漏极接触孔72和有源层40的源极接触区42与漏极接触区43电性连接,同时所述源极81通过接信号过孔73和遮光层20电性连接。
具体的,所述遮光层20的面积大于所述有源层40的面积,且所述遮光层20在衬底基板10上的正投影覆盖所述有源层40在衬底基板10上的正投影。
具体的,所述衬底基板10为玻璃基板。
具体的,所述遮光层20的厚度为500
Figure PCTCN2017111969-appb-000023
-2000
Figure PCTCN2017111969-appb-000024
,所述遮光层20的材料为金属;优选的,所述遮光层20的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述缓冲层30的厚度为1000
Figure PCTCN2017111969-appb-000025
-5000
Figure PCTCN2017111969-appb-000026
,所述缓冲层30为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
具体的,所述有源层40的厚度为100
Figure PCTCN2017111969-appb-000027
-1000
Figure PCTCN2017111969-appb-000028
,所述金属氧化物半导体材料包括铟镓锌氧化物(IGZO)、铟锌锡氧化物(IZTO)、铟镓锌锡氧化物(IGZTO)中的一种或多种。具体的,所述金属氧化物半导体材料为铟镓锌氧化物(IGZO)时,所述有源层40的源极接触区42与漏极接触区43的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层40的沟道区41的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
具体的,所述栅极绝缘层50的厚度为1000
Figure PCTCN2017111969-appb-000029
-3000
Figure PCTCN2017111969-appb-000030
,所述栅极绝缘层50为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
具体的,所述栅极60的厚度为2000
Figure PCTCN2017111969-appb-000031
-8000
Figure PCTCN2017111969-appb-000032
,所述栅极60的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述层间绝缘层70的厚度为2000
Figure PCTCN2017111969-appb-000033
-10000
Figure PCTCN2017111969-appb-000034
,所述层间绝缘层70为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
具体的,所述源极81与漏极82的厚度为2000
Figure PCTCN2017111969-appb-000035
-8000
Figure PCTCN2017111969-appb-000036
,所述源极81与漏极82的材料包括钼(Mo)、铝(Al)、铜(Cu)、钛(Ti)中的一种或多种的合金。
具体的,所述钝化层90的厚度为1000
Figure PCTCN2017111969-appb-000037
-5000
Figure PCTCN2017111969-appb-000038
,所述钝化层90为氧化硅(SiOx)薄膜、氮化硅(SiNx)薄膜、或者氧化硅薄膜与氮化硅薄膜交替层叠设置形成的复合薄膜。
本发明的顶栅自对准金属氧化物半导体TFT通过在有源层40下方设置遮光层20,能够保护有源层40不被光线照射,避免TFT产生阈值电压负漂现象;并且,通过将遮光层20连接至源极81,使所述遮光层20上产生稳定的电压,避免产生浮栅效应,从而有效提升TFT的工作稳定性。
综上所述,本发明提供一种顶栅自对准金属氧化物半导体TFT及其制作方法。本发明的顶栅自对准金属氧化物半导体TFT的制作方法通过在有源层下方设置遮光层,能够保护有源层不被光线照射,避免TFT产生阈值电压负漂现象;并且,通过将遮光层连接至源极,使所述遮光层上产生稳定的电压,避免产生浮栅效应,从而有效提升TFT的工作稳定性。本发明的顶栅自对准金属氧化物半导体TFT采用上述方法制得,不会产生阈值电压负漂现象和浮栅效应,具有较好的工作稳定性。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形 都应属于本发明权利要求的保护范围。

Claims (12)

  1. 一种顶栅自对准金属氧化物半导体TFT的制作方法,在有源层的下方设置遮光层,并且,将遮光层连接至源极。
  2. 如权利要求1所述的顶栅自对准金属氧化物半导体TFT的制作方法,其中,包括:
    提供衬底基板,在所述衬底基板上形成遮光层,在所述衬底基板上形成覆盖所述遮光层的缓冲层,在所述缓冲层上形成对应于所述遮光层上方的有源层,所述有源层的材料为金属氧化物半导体材料;
    在所述缓冲层上形成覆盖所述有源层的栅极绝缘层,在所述栅极绝缘层上沉积栅极金属层;
    在所述栅极金属层上形成光阻层,利用黄光制程对所述光阻层进行图形化处理,保留下来的光阻层在所述栅极金属层上定义出栅极图案;
    以所述光阻层为阻挡层,对所述栅极金属层进行蚀刻,得到对应于有源层上方的栅极;
    以所述光阻层与栅极为阻挡层,对栅极绝缘层进行蚀刻,仅保留对应于栅极下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层位于有源层上并与栅极上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
    以光阻层、栅极与栅极绝缘层为阻挡层,对有源层进行导体化处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;导体化制程结束后,剥离光阻层;
    在所述缓冲层上形成覆盖所述栅极与有源层的层间绝缘层;在所述层间绝缘层上形成分别对应于源极接触区与漏极接触区上方的源极接触孔与漏极接触孔,同时在所述层间绝缘层与缓冲层上形成对应于遮光层上方的接信号过孔;
    在所述层间绝缘层上形成源极与漏极,所述源极与漏极分别通过源极接触孔与漏极接触孔和有源层的源极接触区与漏极接触区电性连接,同时所述源极通过接信号过孔和遮光层电性连接;
    在所述层间绝缘层上形成覆盖源极与漏极的钝化层。
  3. 如权利要求2所述的顶栅自对准金属氧化物半导体TFT的制作方法,其中,对有源层进行导体化处理的方法为等离子体处理,降低金属氧化物 半导体材料中的氧元素含量,使金属氧化物半导体材料的电阻率下降,变为导体。
  4. 如权利要求3所述的顶栅自对准金属氧化物半导体TFT的制作方法,其中,所述等离子体包括氦气等离子体、氩气等离子体及氨气等离子体中的一种或多种。
  5. 如权利要求2所述的顶栅自对准金属氧化物半导体TFT的制作方法,其中,所述遮光层的面积大于所述有源层的面积,且所述遮光层在衬底基板上的正投影覆盖所述有源层在衬底基板上的正投影;所述有源层的厚度为
    Figure PCTCN2017111969-appb-100001
    所述金属氧化物半导体材料包括铟镓锌氧化物、铟锌锡氧化物、铟镓锌锡氧化物中的一种或多种。
  6. 如权利要求5所述的顶栅自对准金属氧化物半导体TFT的制作方法,其中,所述金属氧化物半导体材料为铟镓锌氧化物时,对有源层的源极接触区与漏极接触区进行导体化处理后,所述有源层的源极接触区与漏极接触区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层的沟道区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
  7. 一种顶栅自对准金属氧化物半导体TFT,包括:有源层、设于所述有源层下方的遮光层、以及连接至遮光层的源极。
  8. 如权利要求7所述的顶栅自对准金属氧化物半导体TFT,还包括:衬底基板、设于所述衬底基板上的遮光层、设于所述衬底基板上且覆盖所述遮光层的缓冲层、设于所述缓冲层上且对应于所述遮光层上方的有源层、设于所述有源层上的栅极绝缘层、设于所述栅极绝缘层上且与所述栅极绝缘层对齐的栅极、设于所述缓冲层上且覆盖所述栅极与有源层的层间绝缘层、设于所述层间绝缘层上的源极与漏极、以及设于所述层间绝缘层上且覆盖所述源极与漏极的钝化层;
    所述有源层包括对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区,所述源极接触区与漏极接触区的材料为导体化的金属氧化物半导体材料,所述沟道区的材料为保持半导体特性的金属氧化物半导体材料;
    所述层间绝缘层上设有分别对应于源极接触区与漏极接触区上方的源极接触孔与漏极接触孔,所述层间绝缘层与缓冲层上设有对应于遮光层上方的接信号过孔;
    所述源极与漏极分别通过源极接触孔与漏极接触孔和有源层的源极接触区与漏极接触区电性连接,同时所述源极通过接信号过孔和遮光层电性 连接。
  9. 如权利要求8所述的顶栅自对准金属氧化物半导体TFT,其中,所述遮光层的面积大于所述有源层的面积,且所述遮光层在衬底基板上的正投影覆盖所述有源层在衬底基板上的正投影;所述有源层的厚度为
    Figure PCTCN2017111969-appb-100002
    所述金属氧化物半导体材料包括铟镓锌氧化物、铟锌锡氧化物、铟镓锌锡氧化物中的一种或多种。
  10. 如权利要求9所述的顶栅自对准金属氧化物半导体TFT,其中,所述金属氧化物半导体材料为铟镓锌氧化物时,所述有源层的源极接触区与漏极接触区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层的沟道区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
  11. 一种顶栅自对准金属氧化物半导体TFT的制作方法,在有源层的下方设置遮光层,并且,将遮光层连接至源极;
    其中,包括:
    提供衬底基板,在所述衬底基板上形成遮光层,在所述衬底基板上形成覆盖所述遮光层的缓冲层,在所述缓冲层上形成对应于所述遮光层上方的有源层,所述有源层的材料为金属氧化物半导体材料;
    在所述缓冲层上形成覆盖所述有源层的栅极绝缘层,在所述栅极绝缘层上沉积栅极金属层;
    在所述栅极金属层上形成光阻层,利用黄光制程对所述光阻层进行图形化处理,保留下来的光阻层在所述栅极金属层上定义出栅极图案;
    以所述光阻层为阻挡层,对所述栅极金属层进行蚀刻,得到对应于有源层上方的栅极;
    以所述光阻层与栅极为阻挡层,对栅极绝缘层进行蚀刻,仅保留对应于栅极下方的部分,其余部分均被蚀刻去除,保留的栅极绝缘层位于有源层上并与栅极上下对齐,所述栅极与栅极绝缘层在有源层上限定出对应于栅极绝缘层下方的沟道区以及分别位于沟道区两侧的源极接触区与漏极接触区;
    以光阻层、栅极与栅极绝缘层为阻挡层,对有源层进行导体化处理,使源极接触区与漏极接触区的金属氧化物半导体材料变为导体,沟道区的金属氧化物半导体材料保持半导体特性;导体化制程结束后,剥离光阻层;
    在所述缓冲层上形成覆盖所述栅极与有源层的层间绝缘层;在所述层间绝缘层上形成分别对应于源极接触区与漏极接触区上方的源极接触孔与漏极接触孔,同时在所述层间绝缘层与缓冲层上形成对应于遮光层上方的 接信号过孔;
    在所述层间绝缘层上形成源极与漏极,所述源极与漏极分别通过源极接触孔与漏极接触孔和有源层的源极接触区与漏极接触区电性连接,同时所述源极通过接信号过孔和遮光层电性连接;
    在所述层间绝缘层上形成覆盖源极与漏极的钝化层;
    其中,对有源层进行导体化处理的方法为等离子体处理,降低金属氧化物半导体材料中的氧元素含量,使金属氧化物半导体材料的电阻率下降,变为导体;
    其中,所述等离子体包括氦气等离子体、氩气等离子体及氨气等离子体中的一种或多种;
    其中,所述遮光层的面积大于所述有源层的面积,且所述遮光层在衬底基板上的正投影覆盖所述有源层在衬底基板上的正投影;所述有源层的厚度为
    Figure PCTCN2017111969-appb-100003
    所述金属氧化物半导体材料包括铟镓锌氧化物、铟锌锡氧化物、铟镓锌锡氧化物中的一种或多种。
  12. 如权利要求11所述的顶栅自对准金属氧化物半导体TFT的制作方法,其中,所述金属氧化物半导体材料为铟镓锌氧化物时,对有源层的源极接触区与漏极接触区进行导体化处理后,所述有源层的源极接触区与漏极接触区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X2,其中X2小于1,所述有源层的沟道区的铟镓锌氧化物中铟镓锌氧的摩尔比为In:Ga:Zn:O=1:1:1:X1,其中X1介于1和10之间。
PCT/CN2017/111969 2017-10-09 2017-11-20 顶栅自对准金属氧化物半导体tft及其制作方法 WO2019071725A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,132 US10403757B2 (en) 2017-10-09 2017-11-20 Top-gate self-aligned metal oxide semiconductor TFT and method of making the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710931774.X 2017-10-09
CN201710931774.XA CN107799570A (zh) 2017-10-09 2017-10-09 顶栅自对准金属氧化物半导体tft及其制作方法

Publications (1)

Publication Number Publication Date
WO2019071725A1 true WO2019071725A1 (zh) 2019-04-18

Family

ID=61533095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111969 WO2019071725A1 (zh) 2017-10-09 2017-11-20 顶栅自对准金属氧化物半导体tft及其制作方法

Country Status (3)

Country Link
US (1) US10403757B2 (zh)
CN (1) CN107799570A (zh)
WO (1) WO2019071725A1 (zh)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102583770B1 (ko) * 2016-09-12 2023-10-06 삼성디스플레이 주식회사 메모리 트랜지스터 및 이를 갖는 표시장치
CN107946196B (zh) * 2017-11-28 2021-12-28 合肥鑫晟光电科技有限公司 氧化物薄膜晶体管及其制备方法、阵列基板和显示装置
CN108878449B (zh) 2018-06-28 2020-07-03 京东方科技集团股份有限公司 阵列基板的制作方法、阵列基板及显示装置
US10825765B2 (en) * 2018-07-26 2020-11-03 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
CN109037346B (zh) * 2018-07-27 2020-06-02 京东方科技集团股份有限公司 薄膜晶体管、显示基板及其制作方法、显示装置
CN110875363A (zh) * 2018-09-04 2020-03-10 京东方科技集团股份有限公司 阵列基板及其制备方法、以及显示面板
CN208848908U (zh) * 2018-09-13 2019-05-10 惠科股份有限公司 一种阵列基板及显示面板
CN109461763B (zh) * 2018-10-17 2021-04-27 Tcl华星光电技术有限公司 显示面板的制备方法及显示面板
CN109273365A (zh) * 2018-10-23 2019-01-25 惠科股份有限公司 薄膜晶体管的制备方法、薄膜晶体管及显示面板
US20200127141A1 (en) * 2018-10-23 2020-04-23 HKC Corporation Limited Method for manufacturing thin film transistor, thin film transistor, and display panel
CN109524475B (zh) * 2018-11-19 2022-06-14 合肥鑫晟光电科技有限公司 薄膜晶体管、其制备方法及显示装置
CN109585300B (zh) * 2018-12-17 2022-07-12 合肥鑫晟光电科技有限公司 薄膜晶体管及制备方法、像素结构、阵列基板和显示面板
CN109659325B (zh) * 2018-12-20 2021-03-23 Tcl华星光电技术有限公司 顶栅型薄膜晶体管基板及其制作方法
CN109755285B (zh) * 2019-02-01 2022-12-06 合肥鑫晟光电科技有限公司 显示面板及其制造方法和显示装置
CN110071176B (zh) * 2019-04-08 2021-11-02 深圳市华星光电半导体显示技术有限公司 顶栅自对准金属氧化物半导体tft及其制作方法、显示面板
CN110071147A (zh) * 2019-04-09 2019-07-30 深圳市华星光电半导体显示技术有限公司 显示面板和电子设备
CN110098227B (zh) * 2019-04-24 2021-07-06 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
KR20210010700A (ko) * 2019-07-17 2021-01-28 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR20210016111A (ko) * 2019-07-31 2021-02-15 삼성디스플레이 주식회사 표시 장치
CN110797355A (zh) * 2019-11-27 2020-02-14 深圳市华星光电半导体显示技术有限公司 一种阵列基板及其制作方法
CN110729313B (zh) * 2019-11-29 2024-06-18 京东方科技集团股份有限公司 显示面板、显示面板制备方法、显示装置
CN111211242B (zh) * 2020-01-07 2021-08-03 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN111244110B (zh) * 2020-01-19 2023-04-18 深圳市华星光电半导体显示技术有限公司 一种显示面板以及电子装置
CN111276493A (zh) * 2020-02-10 2020-06-12 深圳市华星光电半导体显示技术有限公司 显示面板及其制作方法
CN111370428B (zh) * 2020-03-19 2023-02-28 合肥鑫晟光电科技有限公司 显示基板及其制作方法、显示装置
CN111430371A (zh) * 2020-03-31 2020-07-17 京东方科技集团股份有限公司 阵列基板、显示面板、显示装置及制作方法
CN111430414A (zh) * 2020-03-31 2020-07-17 京东方科技集团股份有限公司 Oled显示面板及制备方法、显示装置
CN111446295A (zh) * 2020-04-08 2020-07-24 深圳市华星光电半导体显示技术有限公司 薄膜晶体管、阵列基板及显示面板
US11469319B2 (en) * 2020-04-10 2022-10-11 Nanya Technology Corporation Semiconductor device with recessed access transistor and method of manufacturing the same
CN111613664A (zh) * 2020-05-26 2020-09-01 深圳市华星光电半导体显示技术有限公司 薄膜晶体管及其制备方法、显示面板
US11217698B2 (en) 2020-05-26 2022-01-04 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method of manufacturing a thin film transistor
CN111710727A (zh) * 2020-06-12 2020-09-25 深圳市华星光电半导体显示技术有限公司 一种阵列基板及其制备方法以及显示面板
CN111682034A (zh) * 2020-07-10 2020-09-18 深圳市华星光电半导体显示技术有限公司 阵列基板及其制备方法、显示装置
CN112002733B (zh) * 2020-08-06 2023-12-01 武汉华星光电半导体显示技术有限公司 Oled显示装置及制备方法
CN112002763A (zh) * 2020-08-10 2020-11-27 深圳市华星光电半导体显示技术有限公司 一种tft基板及其制造方法、显示面板
CN112490282B (zh) * 2020-12-03 2022-07-12 Tcl华星光电技术有限公司 薄膜晶体管及其制备方法
CN112928127B (zh) * 2021-01-12 2022-11-04 武汉华星光电技术有限公司 阵列基板
CN112951848B (zh) * 2021-02-02 2023-04-07 Tcl华星光电技术有限公司 阵列基板及其制备方法
CN112968031A (zh) * 2021-02-02 2021-06-15 深圳市华星光电半导体显示技术有限公司 一种阵列基板及其制备方法与显示面板
CN113193010A (zh) * 2021-04-07 2021-07-30 武汉华星光电技术有限公司 一种阵列基板及其制备方法、oled显示面板
CN113571541A (zh) * 2021-07-07 2021-10-29 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN114089571B (zh) * 2021-11-30 2024-01-16 昆山龙腾光电股份有限公司 阵列基板及制作方法和显示面板
CN114188389B (zh) * 2021-12-09 2024-02-23 深圳市华星光电半导体显示技术有限公司 Tft阵列基板及其制作方法、oled显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130256652A1 (en) * 2012-04-02 2013-10-03 Yong Su LEE Thin film transistor, thin film transistor array panel including the same, and method of manufacturing the same
US20130300968A1 (en) * 2011-01-27 2013-11-14 Sharp Kabushiki Kaisha Substrate for liquid crystal display panel and liquid crystal display device
CN103681690A (zh) * 2012-09-06 2014-03-26 三星显示有限公司 薄膜晶体管基底及其制造方法
CN104752436A (zh) * 2013-12-26 2015-07-01 乐金显示有限公司 阵列基板
CN106486526A (zh) * 2015-08-31 2017-03-08 乐金显示有限公司 有机发光二极管显示器
CN107507867A (zh) * 2017-08-24 2017-12-22 京东方科技集团股份有限公司 顶栅自对准薄膜晶体管层叠结构及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746001B (zh) * 2009-12-04 2017-05-03 株式会社半导体能源研究所 显示装置
KR101258938B1 (ko) * 2011-07-25 2013-05-07 엘지전자 주식회사 태양 전지
JP6169005B2 (ja) * 2014-01-17 2017-07-26 株式会社ジャパンディスプレイ 発光素子表示装置
CN106129086B (zh) * 2016-07-21 2019-04-30 深圳市华星光电技术有限公司 Tft基板及其制作方法
KR20180046229A (ko) * 2016-10-27 2018-05-08 엘지디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130300968A1 (en) * 2011-01-27 2013-11-14 Sharp Kabushiki Kaisha Substrate for liquid crystal display panel and liquid crystal display device
US20130256652A1 (en) * 2012-04-02 2013-10-03 Yong Su LEE Thin film transistor, thin film transistor array panel including the same, and method of manufacturing the same
CN103681690A (zh) * 2012-09-06 2014-03-26 三星显示有限公司 薄膜晶体管基底及其制造方法
CN104752436A (zh) * 2013-12-26 2015-07-01 乐金显示有限公司 阵列基板
CN106486526A (zh) * 2015-08-31 2017-03-08 乐金显示有限公司 有机发光二极管显示器
CN107507867A (zh) * 2017-08-24 2017-12-22 京东方科技集团股份有限公司 顶栅自对准薄膜晶体管层叠结构及其制作方法

Also Published As

Publication number Publication date
CN107799570A (zh) 2018-03-13
US10403757B2 (en) 2019-09-03
US20190172954A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
WO2019071725A1 (zh) 顶栅自对准金属氧化物半导体tft及其制作方法
CN107689345B (zh) Tft基板及其制作方法与oled面板及其制作方法
US9793377B2 (en) Thin film transistor, thin film transistor array panel including the same, and manufacturing method thereof
US9748280B2 (en) Thin film transistor and method of fabricating the same, array substrate and method of fabricating the same, and display device
US10707236B2 (en) Array substrate, manufacturing method therefor and display device
US20200243566A1 (en) Array substrate and manufacturing method thereof, display panel and display device
JP2014131047A (ja) 薄膜トランジスタ、および薄膜トランジスタ表示板
US20120168743A1 (en) Thin film transistor and fabricating method thereof
WO2018010214A1 (zh) 金属氧化物薄膜晶体管阵列基板的制作方法
CN107658345B (zh) 氧化物薄膜晶体管及其制备方法、阵列基板和显示装置
US11362111B2 (en) Thin film transistor array panel and manufacturing method thereof
CN106128963A (zh) 薄膜晶体管及制备方法、阵列基板及制备方法、显示面板
WO2018176784A1 (zh) 薄膜晶体管及其制作方法、阵列基板、显示装置
WO2019061813A1 (zh) Esl型tft基板及其制作方法
WO2019080252A1 (zh) Oled背板的制作方法
WO2017049835A1 (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
TWI497689B (zh) 半導體元件及其製造方法
WO2022193657A1 (zh) 薄膜晶体管及其制备方法、显示面板、显示装置
WO2017219412A1 (zh) 顶栅型薄膜晶体管的制作方法
WO2017028493A1 (zh) 薄膜晶体管及其制作方法、显示器件
TW201503374A (zh) 氧化物半導體薄膜電晶體
WO2018196289A1 (zh) 薄膜晶体管及其制备方法
WO2020232946A1 (zh) 改善金属氧化物tft特性的结构与其制作方法
CN107808885B (zh) 背沟道蚀刻型氧化物半导体tft基板及其制作方法
US20150069401A1 (en) Thin film transistor substrate and method of manufacturing the thin film transistor substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928247

Country of ref document: EP

Kind code of ref document: A1