WO2019064923A1 - ロータコア、ロータ、回転電機、自動車用電動補機システム - Google Patents

ロータコア、ロータ、回転電機、自動車用電動補機システム Download PDF

Info

Publication number
WO2019064923A1
WO2019064923A1 PCT/JP2018/029172 JP2018029172W WO2019064923A1 WO 2019064923 A1 WO2019064923 A1 WO 2019064923A1 JP 2018029172 W JP2018029172 W JP 2018029172W WO 2019064923 A1 WO2019064923 A1 WO 2019064923A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
rotor core
protrusion
rotor
space
Prior art date
Application number
PCT/JP2018/029172
Other languages
English (en)
French (fr)
Inventor
一農 田子
金澤 宏至
中山 賢治
裕司 辻
貴行 近岡
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/648,958 priority Critical patent/US11394257B2/en
Publication of WO2019064923A1 publication Critical patent/WO2019064923A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Definitions

  • the present invention relates to a rotor core, a rotor using the same, a rotating electrical machine, and a motor vehicle accessory system.
  • Sources of vibration from the electric motor that lead to vibration and noise in the passenger compartment include torque fluctuation components (cogging torque and torque ripple) of the electric motor and electromagnetic excitation generated between the stator and rotor of the electric motor. is there.
  • torque fluctuation components cogging torque and torque ripple
  • vibrational energy due to torque fluctuation component is transmitted to the vehicle compartment through the output shaft of the electric motor
  • vibrational energy due to the electromagnetic excitation is transmitted to the vehicle compartment through the mechanical parts of the EPS device. .
  • the propagation of these vibrational energy into the cabin leads to vibrations and noise in the cabin.
  • the electric motor assists the steering wheel operation, the driver feels in hand the cogging torque and torque ripple of the electric motor via the steering wheel.
  • the electric motor used for the EPS device it is generally required to suppress the cogging torque to less than 1/1000 of the assist torque and to suppress the torque ripple to less than 1/100 of the assist torque.
  • the minimum order of the spatial mode of the electromagnetic excitation force is not 2 or less.
  • the price of the electric motor is composed of the cost of materials such as magnets and windings and the cost of manufacturing
  • the ratio of the price of the magnet is particularly high, suppression of the cost of the magnet is strongly demanded.
  • facilitation of manufacture, reduction of necessary manpower and manufacturing equipment are also desired.
  • the electric motor used for the motor-driven auxiliary machine system also needs to satisfy these demands.
  • a permanent magnet type brushless motor As an electric motor used for the EPS device, a permanent magnet type brushless motor (hereinafter, referred to as "permanent magnet type rotating electrical machine”) is usually used in terms of downsizing and reliability.
  • permanent magnet type rotating electrical machines There are two types of permanent magnet type rotating electrical machines: surface magnet type (SPM), which is excellent in output density, and embedded magnet type (IPM), which is excellent in magnet cost, but in any case, from the point of magnet cost reduction In many cases, magnets separated according to the number of poles are used.
  • an integral rotor core having a magnet storage space is generally used. Since the integral rotor core has high manufacturing accuracy of the rotor poles, the air gap length between the rotor poles and the stator can be shortened. Although the torque is reduced with respect to the surface magnet type due to the leakage of magnetic flux from the bridge portion of the magnet storage space, the reduction of the torque can be suppressed by shortening the air gap length. Moreover, since a rectangular magnet can be used, the magnet cost can be reduced. Furthermore, it is an advantage that the magnet cover which is required by the surface magnet type is not required.
  • the EPS device rotates in both forward and reverse directions, it is necessary to make the magnetic flux distribution around the magnetic pole symmetrical in both rotational directions, and a symmetrical magnetic pole is used.
  • FIG. The brushless motor 1 described in Patent Document 1 is an IPM type in which a magnet 16 is accommodated and fixed in a rotor 3.
  • the rotor 3 has a rotor core 15 formed by laminating steel plate materials.
  • the rotor core 15 has a core body portion 31, a magnet mounting hole 33 and a salient pole portion 32, and the magnet 16 is housed and fixed in the magnet mounting hole 33 while forming a gap 34.
  • Recesses 35 are provided between the adjacent salient pole portions 32.
  • each salient pole portion 32 collar portions 41 are provided in a protruding manner so as to extend the outer peripheral surface of the salient pole portion 32.
  • the collar portion 41 is provided on the outer peripheral side of the recess 35, and a gap 43 is formed between the facing collar portions 41.
  • a rotor core according to the present invention comprises a plurality of laminated plates and forms a storage space for magnets, and includes a magnetic pole part having a base formed on the outer peripheral side of the storage space, the magnetic pole part comprising A plurality of circumferentially provided magnetic pole portions are provided with a first projection projecting in one circumferential direction along the outer periphery of the rotor core from the base and the first projection sandwiching the base A second projection which is provided on the opposite side and which projects from the base in the other circumferential direction along the outer periphery of the rotor core, and at least one of the first projection and the second projection Is located outside the first line segment, which is a virtual line segment connecting the end of the first protrusion and the end of the second protrusion, and a space is formed between the first line and the first line segment.
  • a rotor according to the present invention comprises the above-described rotor core, a rotating shaft fixed to the rotor core, and a permanent magnet disposed in the storage space.
  • a rotating electrical machine according to the present invention includes the above-described rotor, and a stator having a plurality of windings and disposed to face the rotor via a predetermined air gap.
  • a motor vehicle accessory system according to the present invention includes the above-described rotating electric machine, and performs electric power steering or an electric brake using the rotating electric machine.
  • cogging torque can be sufficiently reduced.
  • FIG. 1 Figure showing a cover covering a rotor core according to a third embodiment of the present invention
  • An enlarged view in the vicinity of a magnetic pole of a cross section of a rotor according to a fourth embodiment of the present invention An enlarged view of the vicinity of the magnetic pole of the first plate in the rotor according to the fifth embodiment of the present invention
  • FIG. 1 is a cross-sectional view of the permanent magnet type rotary electric machine 1 according to the first embodiment in the rotation plane.
  • FIG. 2 is a cross-sectional view of the rotor 20 according to the first embodiment.
  • FIG. 3A is an enlarged view of the vicinity of the magnetic pole of the cross section of the rotor 20 according to the first embodiment, and is an enlarged view of a portion X surrounded by a dotted line in FIG.
  • FIG. 3B is an enlarged view of the vicinity of the projection end in the first embodiment.
  • the permanent magnet type rotating electrical machine 1 of the present embodiment has a substantially annular stator 10 disposed on the outer circumferential side and a substantially cylindrical rotor 20 disposed on the inner circumferential side. It is a permanent magnet type rotary electric machine with slot concentrated winding. An air gap 30 is provided between the stator 10 and the rotor 20.
  • the stator 10 includes a stator core 100, a core back 110, and a plurality of windings 140, and is disposed to face the rotor 20 via an air gap 30.
  • the stator 10 is formed, for example, as follows. First, T-shaped teeth 130 are formed by a laminated body in which separately punched cores of magnetic steel sheets are laminated. Next, after a wire is wound around the teeth 130 to form the winding 140, the plurality of teeth 130 and the winding 140 are assembled in a ring, and integrated by shrink fitting or press fitting into a housing (not shown). Thus, the stator 10 is formed.
  • the rotor 20 of this embodiment has the rotor core 200 which is an iron core which laminated
  • 14 soft magnetic pole portions 220 are provided on the outer periphery of the rotor core 200.
  • Each of the magnetic pole portions 220 forms an opposing surface to the stator 10 and is provided with protruding portions 222 at both ends of a magnetic pole arc 221 which is an outer peripheral surface of the magnetic pole, that is, an outer peripheral surface of the rotor core 200.
  • a V-shaped storage space 212 is provided to be stored. In the storage space 212, two rectangular permanent magnets 210 are inserted for each magnetic pole portion 220 and arranged.
  • a first space portion 240 having a shape recessed relative to the magnetic pole arc 221 is formed between the pair of magnetic pole portions 220 adjacent in the circumferential direction.
  • a bridge portion 242 is formed between the first space portion 240 and the storage space 212.
  • one of the two permanent magnets 210 stored in the storage space 212 is shown as a first permanent magnet 210a, and the other is shown as a second permanent magnet 210b.
  • the bridge portion 242 is connected to the magnetic pole portion 220 and is also connected to the outermost core portion 244 in the q-axis direction located at the bottom of the first space portion 240 (hereinafter referred to as the q-axis outer portion 244). . That is, the bridge portion 242 is formed to connect the magnetic pole portion 220 and the q-axis outer peripheral portion 244.
  • the magnetic pole portion 220 has a base 230 projecting radially outward from the housing space 212 and projections 222 projecting from the base 230 along the magnetic pole arc 221 on the opposite side in the circumferential direction.
  • the protrusion 222 protruding in one circumferential direction is provided on the opposite side of the first protrusion 222a and the first protrusion 222a with the first protrusion 222a and the base 230 interposed therebetween, and the protrusion protrudes in the other circumferential direction.
  • the portion 222 is shown as a second protrusion 222 b.
  • the base portion 230 includes a pair of connection portions 243 which are connection portions with the bridge portion 242, and a pair of side surface portions 241 in contact with the first space portion 240.
  • the side surface portion 241 is disposed radially inward of the protruding portion 222 (the first protruding portion 222 a and the second protruding portion 222 b).
  • the first space portion 240 faces the protrusion 222, the bridge portion 242, and the q-axis outer peripheral portion 244.
  • the q-axis outer peripheral portion 244 is located between the pair of magnetic pole portions 220 adjacent in the circumferential direction, and is provided radially inward of the base 230 in the radial direction.
  • the q-axis outer peripheral portion 244 is disposed between two bridge portions 242 respectively connected to the pair of magnetic pole portions 220 adjacent in the circumferential direction.
  • an imaginary line segment connecting an end of the first projection 222a and a second projection end 225b which is an end of the second projection 222b is defined as a first line segment 250.
  • the surface between the second protrusion end portion 225 b and the side surface portion 241 is located on the outer diameter side (outer periphery side) than the first line segment 250.
  • the second protrusion 222 b is formed so that a space 251 facing the first segment 250 is provided between the first line segment 250 and the second protrusion 222 b.
  • the first protrusion 222 a also has the same shape.
  • the cogging torque generated in a rotating electric machine having a rotor structure having a magnetic pole shape protruding in the radial direction in particular, the cogging torque of the order determined according to the slot combination, It can be reduced by making it smaller.
  • the cogging torque temporarily disappears at a certain pole arc radius A.
  • the phase of the cogging torque waveform tends to be reversed to increase the cogging torque.
  • Such a change in cogging torque occurs as the magnetic flux in the air gap near the pole tip decreases.
  • the shape of the magnetic pole arc radius is smaller than the above-mentioned magnetic pole arc radius A.
  • a magnetic pole circular arc radius B which is smaller than the magnetic pole circular arc radius A and in which the change in shape of the magnetic pole tip sufficiently affects the change in cogging torque is referred to as a magnetic pole circular arc radius B.
  • the magnetic pole width in the circumferential direction is increased while maintaining the magnetic pole circular arc radius B, the magnetic flux of the air gap near the magnetic pole tip is increased, and the same effect as increasing the magnetic pole circular arc radius is produced. As a result, the cogging torque temporarily disappears, and thereafter, the phase returns, and the cogging torque tends to increase.
  • the magnetic resistance is small even at the pole tip, so the change of the magnetic flux distribution of the air gap near the pole tip due to the change of the pole width is large.
  • the change in torque is large.
  • the magnetic flux passing through the tip of the projections decreases when the magnetic pole width or projection length changes. Therefore, it is expected that the change of the magnetic flux distribution of the air gap near the magnetic pole tip due to the change of the magnetic pole shape will be small, and the change of the cogging torque will also be small.
  • the residual magnetic flux density is specified for the magnet used in the permanent magnet type rotating electrical machine, and the magnetic flux passing through the magnetic pole increases as the surface having the polarity of the magnet is wider. Therefore, it is possible to increase the amount of magnetic flux passing through one magnetic pole by providing a rotor structure capable of increasing the area having the polarity, such as an embedded magnet (VIPM) rotary electric machine in which the magnets are embedded in a V shape. it can.
  • VIP embedded magnet
  • the cogging torque required in the EPS device is as small as less than 1/1000 of the assist torque, and thus, the cogging torque is susceptible to the change due to the protrusion shape of the magnetic pole end.
  • the tip portion of the protrusion needs to have a certain thickness or more, and therefore, a means for simply reducing the thickness of the protrusion can not be employed. Therefore, it is considered effective to reduce the magnetic flux reaching the tip of the projection by thinning the root of the projection.
  • the configuration of the permanent magnet type rotary electric machine 1 of the present embodiment described with reference to FIGS. 1 to 3B is determined based on the above examination results. That is, as described above, when an imaginary line segment connecting the end of the first projection 222a and the second projection end 225b which is the end of the second projection 222b is defined as the first line segment 250, the second The surface between the projection end 225 b and the side surface portion 241 is located on the outer diameter side (outer circumference side) than the first line segment 250. As a result, the second protrusion 222 b is formed so that a space 251 facing the first segment 250 is provided between the first line segment 250 and the second protrusion 222 b.
  • the first protrusion 222 a also has the same shape.
  • the change of the cogging torque with respect to the change of the magnetic pole width Wp shown in FIG. 3A can also be reduced. This is particularly suitable for a rotary electric machine having a VIPM structure that can increase the amount of magnetic flux passing through one magnetic pole, as in the permanent magnet type rotary electric machine 1 of the present embodiment.
  • the tip of the projection 222 needs to have a certain thickness or more due to restrictions in mass production.
  • the thickness on the base side of the protrusion 222 is preferably formed to be 40% or more of the thickness of the magnetic steel sheet.
  • the ends of both the first projection 222a and the second projection end 225b are located on the outer diameter side (outer circumference side) of the first line segment 250 as shown in FIG. 3B. It is assumed that the space 251 is provided between the first line segment 250 and the second line segment 250. However, only one of the first protrusion 222 a and the second protrusion end 225 b may be made this way. Even in such a case, it is possible to reduce the change of the cogging torque to the change of the magnetic pole width Wp to some extent while reducing the cogging torque itself.
  • the magnetic pole portion 220 having the shape as described above, it is possible to obtain the rotor core 200 which is a rotor core excellent in reduction of cogging torque, and the rotor 20 and the permanent magnet type rotating electrical machine 1 using the same. Can.
  • FIG. 6 is a view for explaining the difference in cogging torque between Example 1 according to the present invention, Comparative projection example A, and Comparative example 1.
  • a comparison projection example A the case where the comparison projection 222d having the shape as shown in FIG. 4 is formed on the magnetic pole 220 instead of the projection 222 is referred to as a comparison projection example A, and a wedge-shaped magnetic pole shape as shown in FIG.
  • the torque ripple and cogging torque of the comparative example and the example 1 according to the present invention are shown as the comparative example 1 with the IPM rotating electric machine having the general structure having the following, and the comparison when the torque of the example 1 is 1.
  • the torque ratio of Example 1 and comparative projection example A is shown.
  • the comparison projection 222d formed instead of the second projection 222b is shown enlarged in FIG. 4
  • the comparison projection 222d formed instead of the first projection 222a is also the same.
  • the root portion is thicker than the tip portion.
  • Example 1 corresponds to the permanent magnet type rotary electric machine 1 of the first embodiment having the magnetic pole structure shown in FIGS. 3A and 3B.
  • Example 1 Assuming that the air gap length is 0.5 mm, as shown in FIG. 6, in Example 1, when the cogging torque changes by 0.3 mN ⁇ m and the pole width Wp changes by 0.1 mm, the change in cogging torque is 1.3 mN ⁇ m, respectively. calculated. On the other hand, in the comparative projection example A, the change of the cogging torque when the cogging torque was changed by 0.4 mN ⁇ m and the magnetic pole width Wp was changed by 0.1 mm was calculated to be 2.5 mN ⁇ m. In Comparative Example 1, the change in cogging torque was calculated to be 0.1 mN ⁇ m when the cogging torque was 2.3 mN ⁇ m and the magnetic pole width changed by 0.1 mm with the width of the magnet storage space.
  • the magnet is substantially parallel to the circumferential direction in the structure as in Comparative Example 1, so that the area of the polar face of the magnet is smaller than in Example 1 and Comparative Example of projection A, and the magnetic flux passing through the magnetic pole portion Since the amount is small, the change in the magnetic pole width has little influence on the cogging torque.
  • the area of the polar face of the magnet per unit axial length can be increased as compared with the comparative example 1.
  • the area of the pole face of the magnet per unit axial length can be approximately twice that of Comparative Example 1. Therefore, the amount of magnetic flux passing through one magnetic pole can be made larger than that of Comparative Example 1.
  • the amount of magnetic flux passing through the magnetic pole is increased, the magnetic flux at the magnetic pole end also increases, so the cogging torque will be further increased as it is. Therefore, in the VIPM structured rotating electrical machine, it is an effective means to provide a protrusion at the pole tip in order to make the change of the flux at the pole tip gentler while increasing the flux.
  • comparison projections 222d having a shape as shown in FIG. 4 at both ends of the magnetic pole outer peripheral surface.
  • the thickness of the root portion connected to the base 230 is larger than that of the protrusion 222 of the present embodiment. Therefore, the magnetic flux reaching the tip of the comparison projection 222d is larger than that of the projection 222.
  • the pole width Wp changes and the tip position of the comparison projection 222d changes, the change in magnetic flux in the air gap near the pole tip becomes larger than that of the projection 222, and thus the change in cogging torque becomes large. Conceivable.
  • the change in cogging torque when the magnetic pole width Wp changes by 0.1 mm in Example 1 is 1.3 mN ⁇ m, it is as large as 2.5 mN ⁇ m in comparative projection example A. Is for this reason.
  • the cogging torque can be sufficiently reduced.
  • the variation in cogging torque with respect to the dimensional error of the magnetic pole can be sufficiently reduced, so that the dimensional accuracy required at the time of manufacturing can be reduced and the manufacturing cost can be reduced.
  • the permanent magnet type rotary electric machine 1 of the present embodiment for the EPS device, it is possible to suppress the vibration and noise transmitted to the vehicle interior.
  • the vibration and noise can also be suppressed by applying the present invention to other motor vehicle auxiliary devices, for example, motor vehicle auxiliary devices that perform electric brakes.
  • adoption of the permanent magnet type rotary electric machine 1 of the present embodiment is not limited to the automobile field, and is applicable to general industrial permanent magnet type rotary electric machines for which low vibration is preferable.
  • FIG. 7 is an enlarged view of the vicinity of the magnetic pole of the cross section of the rotor 20 according to the second embodiment, which corresponds to FIG. 3A described in the first embodiment. Note that portions common to the first embodiment will not be described in part.
  • the permanent magnet type rotating electrical machine 1 described in the first embodiment is a 14 pole 18 slot concentrated winding type rotating electrical machine, but the permanent magnet type rotating electrical machine 1 of this embodiment is a 10 pole 60 slot distributed winding It is an electric machine.
  • the stator 10 of the present embodiment is formed, for example, as follows. First, a plurality of radial teeth 130 are formed on the inner peripheral side by a stator core laminate in which integrally punched cores of magnetic steel sheets are laminated. Next, a winding is wound around each tooth 130 to form a winding 140, and then it is integrated by shrink fitting or press fitting into a housing (not shown). Thus, the stator 10 is formed.
  • the magnetic pole part 220 in the permanent magnet type rotary electric machine 1 of the present embodiment has the same structure as that of the first embodiment, as shown in FIG. That is, the magnetic pole part 220 has a first projection 222a and a second projection 222b, and as shown in FIG. 3B shown in the first embodiment, the ends of the first projection 222a and the second projection 222b
  • the surface between the side surface portion 241 and the first line segment 250 is located on the outer diameter side of the first line segment 250.
  • the first protrusion 222a and the second protrusion 222b are formed such that spaces are provided between the first line segment 250 and the first protrusion 222a and the second protrusion 222b.
  • only one of the first projection 222a and the second projection end 225b may be shaped as shown in FIG. 3B. Even in such a case, it is possible to reduce the change of the cogging torque to the change of the magnetic pole width Wp to some extent while reducing the cogging torque itself.
  • the cogging torque is 0.3 mN ⁇ m
  • the change in cogging torque when the pole width Wp changes by 0.1 mm is 0.6 mN ⁇ m Met.
  • the comparison projection 222d having the shape shown in FIG. 4 is formed on the magnetic pole 220 instead of the projection 222.
  • the change in cogging torque was calculated to be 1.6 mN ⁇ m when the cogging torque was changed by 0.8 mN ⁇ m and the pole width Wp was changed by 0.1 mm. Therefore, it has been confirmed that the effect is obtained also in a pole slot combination other than 14 poles and 18 slots concentrated winding and a winding system.
  • the torque ripple of this embodiment was 0.82%, and the torque ripple of Comparative Example B was 0.85%, and in either case, the torque ripple was sufficiently small. Furthermore, the torque ratio of comparative projection example B based on the present embodiment was approximately 1, and the torque was equal. The above torque ripple and cogging torque are calculated in the same manner as in FIG. 6 with an air gap length of 0.7 mm.
  • FIGS. 8A to 9 a permanent magnet type rotary electric machine 1 according to a third embodiment of the present invention will be described using FIGS. 8A to 9.
  • the permanent magnet type rotary electric machine 1 of the present embodiment is a 14-pole 18-slot concentrated winding rotary electric machine as in the first embodiment.
  • 8A, 8B, 8D, 8E, and 8F are enlarged views of the vicinity of the magnetic pole of the cross section of the rotor 20 according to the third embodiment, and FIGS. 3, 7 and 8 described in the first and second embodiments, respectively. It corresponds.
  • FIG. 8C is a cross-sectional view of an axial end surface of the rotor 20 according to the third embodiment. Note that portions common to the first and second embodiments will not be described in part.
  • the rotor core 200 in the permanent magnet type rotary electric machine 1 of the present embodiment is configured by laminating a plurality of electromagnetic steel plates in the axial direction.
  • the plurality of electromagnetic steel sheets are classified into those having the shape shown in FIG. 8A and those having the shape shown in FIG. 8B.
  • the electromagnetic steel plate of the shape shown to FIG. 8A is called a "1st board”
  • the electromagnetic steel plate of the shape shown to FIG. 8B is called a "2nd board”
  • the rotor core 200 of the present embodiment is configured by laminating a plurality of first plates and a plurality of second plates. The first plate and the second plate are axially fastened to each other by an axial fastening portion 261.
  • the first plate has a magnetic pole structure similar to that described in the first and second embodiments. That is, the magnetic pole part 220 of the first plate has the first protrusion 222a and the second protrusion 222b, and as shown in FIG. 3B shown in the first embodiment, the first protrusion 222a and the second protrusion 222b.
  • the surfaces between the end portion of the first and the side surface portions 241 are located on the outer diameter side of the first line segment 250, respectively.
  • the first protrusion 222a and the second protrusion 222b are formed such that spaces are provided between the first line segment 250 and the first protrusion 222a and the second protrusion 222b.
  • the magnetic pole portion 220 of the first plate is connected to the bridge portion 242 formed between the first space portion 240 and the storage space 212 at the connection portion 243.
  • the bridge portion 242 is not formed between the first space portion 240 and the storage space 212. Therefore, an opening penetrating between the storage space 212 and the first space portion 240 is formed between the magnetic pole portion 220 and the q-axis outer peripheral portion 244.
  • the first plate and the second plate may be manufactured in separate manufacturing steps, or the second plate may be manufactured by removing the bridge portion 242 from the first plate.
  • only one of the first projection 222a and the second projection end 225b may be shaped as shown in FIG. 3B. Even in such a case, it is possible to reduce the change of the cogging torque to the change of the magnetic pole width Wp to some extent while reducing the cogging torque itself.
  • the 1st board which has the bridge part 242 is arrange
  • the difference from the cross-sectional view of FIG. 2 described in the first embodiment is that the axial direction fastening portion 261 is provided in the magnetic pole portion 220.
  • the plurality of electromagnetic steel plates constituting the rotor core 200 that is, the plurality of first and second plates, are mutually fastened and stacked in the axial direction by a not-shown fastening shaft inserted into the axial direction fastening portion 261. . Therefore, the permanent magnet 210 housed in the housing space 212 is held in the rotation plane by the bridge portion 242 of the first plate, and is connected to the laminate of the rotor core 200.
  • the leakage of magnetic flux via the bridge portion 242 is reduced by reducing the number of first plates and increasing the number of second plates, as long as there is no problem in the strength at the time of rotation. Torque can be increased.
  • the number of laminated first plates at the axial end at the start of assembly is 2 at least at one end. It is desirable to be more than one sheet.
  • the rotor core 200 of the present embodiment has a structure in which a plurality of first and second plates are fastened and stacked in the axial direction.
  • the difference between the first plate and the second plate is only the presence or absence of the bridge portion 242. Therefore, in the rotor core 200 of the present embodiment, as shown in FIG. 8D, the bridge portions 242 are partially connected to form a three-dimensional structure having a thickness in the axial direction.
  • the projection to the axial direction of the bridge part 242 partially connected by the partial connection bridge part 242A shown with the broken line is represented.
  • the magnetic pole portion 220 is connected to the partial connection bridge portion 242A at the partial connection portion 243A.
  • the bridge portion 242 is the partial connection bridge portion 242A, the magnetic flux leakage in this portion is reduced. Therefore, when the same torque as in the first embodiment is obtained with the same lamination thickness, the width of the polar face of the permanent magnet 210 can be reduced, so the amount of magnets can be further reduced.
  • At least the second plate can cover the opening penetrating between the storage space 212 and the first space portion 240 for preventing the permanent magnet 210 from being shattered. It is preferable to provide a cover.
  • a cover 265 which covers the surface of the rotor core 200 including the magnetic pole portion 220 and the first space portion 240 in the entire circumferential direction can be used.
  • a material of the cover 265 for example, nonmagnetic metal or synthetic resin can be used.
  • an adhesive or a synthetic resin may be applied to the first space portion 240, and this may be used as the cover 265.
  • an adhesive or a synthetic resin also to the axial direction end portion of the rotor 20 adjacent to the first space portion 240, and to solidify it so as to cover the periphery of each magnetic pole portion 220.
  • peeling of the cover 265 made of an adhesive or synthetic resin can be prevented, and scattering of the permanent magnet 210 can be prevented.
  • at least one of the surface of the permanent magnet 210 or the surface of the cover 265 at the axial end face of the rotor 20 may be disposed to cover the end plate. This makes it possible to prevent further scattering of the permanent magnet 210.
  • FIG. 9 is a view for explaining the difference in cogging torque between Example 3 according to the present invention, Comparative projection Example C, and Comparative Example 1.
  • the comparison projection 222 d having the shape shown in FIG.
  • the case where the magnetic pole portion 220 is formed is referred to as a comparative projection example C, and an IPM electric rotating machine having a general structure having a wedge-shaped magnetic pole shape as shown in FIG.
  • the torque ripple and the cogging torque with Example 3 according to the invention are shown, and the torque ratio of Comparative Example 1 and Comparative Example C when the torque of Example 3 is 1 is shown.
  • the torque ripple and the cogging torque in each example shown in FIG. 9 are calculated by the same method as in FIG. 6 with an air gap length of 0.5 mm.
  • the cogging torque of the third example is 0.43 mN ⁇ m
  • the cogging torque of the comparative projection example C is 0.17 mN ⁇ m.
  • the change in cogging torque when the magnetic pole width Wp changes by 0.1 mm is as large as 2.4 mN ⁇ m in the comparative projection example C while it is 1.3 mN ⁇ m in the third example. Therefore, in consideration of the increase of the cogging torque due to the manufacturing error, in the comparative projection example C, the reduction of the cogging torque is somewhat insufficient.
  • the cogging torque is as large as 2.34 mN ⁇ m, and it is understood that it is difficult to achieve the object of the present invention of reducing the cogging torque.
  • the change in cogging torque is as small as 0.1 mN ⁇ m when the magnetic pole width changes by 0.1 mm with the width of the magnet storage space, but this is because the magnetic flux passing through the magnetic pole portion is Example 3 or Comparative projection example It is because it is less than C.
  • the rigidity of the rotor core 200 at the axial end is increased by reducing the leakage of the magnetic flux via the bridge portion 242 to increase the torque, and the rotor core 200 is integrated.
  • the strength can be secured.
  • the ratio of the number of laminations of the 1st board in all the laminated boards was set to 0.15 in this embodiment, it is good also as another ratio.
  • FIG. 10 is an enlarged view of the vicinity of the magnetic pole of the cross section of the rotor 20 according to the fourth embodiment, which corresponds to FIG. 7 described in the second embodiment.
  • the permanent magnet type rotating electrical machine 1 of this embodiment is a rotating electrical machine of 10 poles and 60 slots distributed winding as in the second embodiment.
  • the rotor core 200 of the present embodiment is configured by laminating a plurality of first plates and a plurality of second plates. That is, as shown in FIG. 10, the bridge portion 242 is partially formed by laminating a plurality of the first plate having the bridge portion 242 and the second plate having no bridge portion 242. It is connected and has a three-dimensional structure having an axial thickness. In addition, in FIG. 10, the projection to the axial direction of the bridge part 242 partially connected by the partial connection bridge part 242A shown by the broken line is shown.
  • the magnetic pole portion 220 is connected to the partial connection bridge portion 242A at the partial connection portion 243A.
  • the magnetic pole portion 220 has the same structure as that of the first to third embodiments, as shown in FIG. That is, the magnetic pole part 220 has a first projection 222a and a second projection 222b, and as shown in FIG. 3B shown in the first embodiment, the ends of the first projection 222a and the second projection 222b
  • the surface between the side surface portion 241 and the first line segment 250 is located on the outer diameter side of the first line segment 250.
  • the first protrusion 222a and the second protrusion 222b are formed such that spaces are provided between the first line segment 250 and the first protrusion 222a and the second protrusion 222b.
  • only one of the first projection 222a and the second projection end 225b may be shaped as shown in FIG. 3B. Even in such a case, it is possible to reduce the change of the cogging torque to the change of the magnetic pole width Wp to some extent while reducing the cogging torque itself.
  • the bridge portion 242 is the partial connection bridge portion 242A, the magnetic flux leakage in this portion is reduced. Therefore, when the same torque as in the second embodiment is obtained with the same product thickness, the width of the polar face of the permanent magnet 210 can be reduced, so the amount of magnet can be further reduced. Also in this embodiment, as in the third embodiment, it is preferable to provide the cover 265 as described in FIGS. 8E and 8F to prevent the permanent magnet 210 from being shattered.
  • the cogging torque is 0.4 mN ⁇ m
  • the change in cogging torque when the pole width Wp changes by 0.1 mm is 0.7 mN ⁇ m Met.
  • the comparison projection 222d having the shape shown in FIG. 4 is formed on the magnetic pole 220 instead of the projection 222.
  • the change in cogging torque was calculated to be 1.7 mN ⁇ m when the cogging torque was changed by 0.1 mN ⁇ m and the pole width Wp was changed by 0.1 mm. Therefore, it has been confirmed that the effect is obtained also in a pole slot combination other than 14 poles and 18 slots concentrated winding and a winding system.
  • the torque ripple of the present embodiment was 1.04%
  • the torque ripple of the comparative projection example D was 1.03%, and in either case, the torque ripple was sufficiently small.
  • the torque ratio of the comparative projection example D based on the present embodiment was approximately 1, and the torque was equal.
  • the above torque ripple and cogging torque are calculated in the same manner as in FIG. 6 with an air gap length of 0.7 mm.
  • FIGS. 11A and 11B a permanent magnet type rotary electric machine 1 according to a fifth embodiment of the present invention will be described using FIGS. 11A and 11B.
  • the first and second plates stacked in the axial direction are the same as those described in the third embodiment, as shown in FIGS. 11A and 11B.
  • Each has a different shape.
  • the bridge portion 242 is not formed, and instead, a magnet for holding the permanent magnet 210 in the storage space 212
  • the fastening portion 245 is formed.
  • the central portion of the magnetic pole portion 220 is connected to the rotor core 200 via the bridge portion 242 b.
  • the magnet fastening part 245 similar to a 1st board is formed in the 2nd board of this embodiment.
  • These first and second plates are axially fastened to each other by an axial fastening portion 261.
  • the central portion of the magnetic pole portion 220 is connected to the rotor core 200 via the bridge portion 242 b. Therefore, compared to the third embodiment in which both end portions of the magnetic pole portion 220 are connected to the rotor core 200 via the bridge portion 242, although it is stronger in radial tension, it is weak in circumferential displacement. Become. In the present embodiment, the width and number of the bridge portions 242b are determined in consideration of this point. In addition, compared with the third embodiment, in the present embodiment, the storage space 212 is divided into two by the bridge portion 242 b at the center, and the first permanent magnet 210 a and the second permanent magnet 210 b are the bridge portion 242 b and the magnet. It is disposed between the fastening portions 245. Therefore, the width of these magnets tends to be slightly smaller.
  • the configuration of the rotor core 200 according to each embodiment of the present invention is superior in any of torque ripple, cogging torque, and torque ratio as compared with the conventional configuration, and is effective. It was shown. It was also shown that the suppression of cogging torque fluctuation with respect to the dimensional error of the magnetic pole shape is also sufficiently effective. That is, the structure of the permanent magnet type rotary electric machine 1 described in each embodiment is a structure effective for reducing the cogging torque.
  • each of the second to fifth embodiments as in the first embodiment, by using the permanent magnet type rotary electric machine 1 of each embodiment for the EPS device, vibration and noise transmitted to the vehicle interior can be obtained. It can be suppressed. The vibration and noise can also be suppressed by applying the present invention to other motor vehicle auxiliary devices, for example, motor vehicle auxiliary devices that perform electric brakes. Furthermore, adoption of the permanent magnet type rotary electric machine 1 of each embodiment is not limited to the automobile field, and is applicable to general industrial permanent magnet type rotary electric machines for which low vibration is preferable.
  • the rotor core 200 is composed of a plurality of laminates and forms a storage space 212 for the permanent magnet 210.
  • the rotor core 200 includes a magnetic pole portion 220 having a base portion 230 formed on the outer peripheral side of the housing space 212.
  • a plurality of magnetic pole portions 220 are provided in the circumferential direction, and a first protrusion 222 a which protrudes from the base 230 in one circumferential direction along the outer periphery of the rotor core 200 and a first protrusion sandwiching the base 230 And a second protrusion 222b provided on the side opposite to the side 222a and protruding from the base 230 along the outer periphery of the rotor core 200 in the other circumferential direction.
  • At least one of the first protrusion 222a and the second protrusion 222b is an outer peripheral side of the first line segment 250, which is a virtual line connecting the end of the first protrusion 222a and the end of the second protrusion 222b. And the space 251 is provided between the first line segment 250 and the second line segment 250. As a result, cogging torque can be sufficiently reduced.
  • the plurality of laminated plates includes the magnetic pole portion 220 and the first plate having the bridge portion 242 or 242 b connected to the magnetic pole portion 220, and the magnetic pole portion 220 And a second plate not having the portions 242 and 242b.
  • the magnetic pole portion 220 of the first plate and the magnetic pole portion 220 of the second plate are mutually fastened in the axial direction. Since this is done, it is possible to reduce the width of the polar face of the permanent magnet 210 and reduce the amount of magnet.
  • the first space portion 240 is formed between the bases 230 of the pair of magnetic pole portions 220 adjacent in the circumferential direction, and the pair of magnetic poles adjacent in the circumferential direction is formed.
  • a q-axis outer peripheral portion 244 in contact with the first space portion 240 is formed.
  • the bridge portion 242 of the first plate is provided between the storage space 212 and the first space portion 240 by connecting the magnetic pole portion 220 and the q-axis outer peripheral portion 244.
  • an opening that penetrates between the storage space 212 and the first space 240 is formed between the magnetic pole 220 and the q-axis outer periphery 244 of the second plate. Since this is done, it is possible to reduce the amount of magnet while securely holding the permanent magnet 210 in the storage space 212.
  • the first space portion 240 is formed between the bases 230 of the pair of magnetic pole portions 220 adjacent in the circumferential direction, and the first space portion 240 is formed of the pair of magnetic poles 220 adjacent in the circumferential direction.
  • An q-axis outer peripheral portion 244 in contact with the first space portion 240 is formed in the middle.
  • the bridge portion 242 b of the first plate divides the housing space 212 and is connected to the magnetic pole portion 220.
  • an opening passing through between the storage space 212 and the first space portion 240 is formed between the magnetic pole portion 220 and the q-axis outer peripheral portion 244 of the first and second plates. As a result, an axially continuous opening is formed, and the amount of magnet can be further reduced.
  • the rotor 20 includes the rotor core 200 according to any one of the first to fifth embodiments, the shaft 300 fixed to the rotor core 200, and the permanent magnet 210 disposed in the housing space 212. It is configured with.
  • the permanent magnet type rotary electric machine 1 includes the rotor 20 and a stator 10 having a plurality of windings 140 and disposed to face the rotor 20 with a predetermined air gap 30 interposed therebetween. Configured Since it did in this way, the rotary electric machine which fully reduced cogging torque, and the rotor used for this rotary electric machine are realizable.
  • the rotor 20 includes the rotor core 200 according to any of the third to fifth embodiments, the shaft 300 fixed to the rotor core 200, and the permanent magnet disposed in the housing space 212. 210 and a cover 265 covering the above-mentioned opening may be provided. In this way, scattering of the permanent magnet 210 can be prevented while reducing the amount of magnet.
  • the permanent magnet type rotary electric machine 1 can be, for example, a motor for electric power steering of an automobile. Also, the 10-pole 60-slot distributed winding as described in the second and fourth embodiments or the 14-pole 18-slot concentrated winding as described in the first, third, and fifth embodiments It can have any configuration. Therefore, the present invention can be applied to various forms of rotating electrical machines.
  • the permanent magnet type rotary electric machine 1 as described above may be provided, and the permanent magnet type rotary electric machine 1 may be used to configure an electric motor auxiliary system for an automobile that performs electric power steering or electric brake. In this way, it is possible to realize a motor vehicle auxiliary system that suppresses vibration and noise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機におけるコギングトルクを十分に低減する。 回転子コアは、収納空間212よりも外周側に形成された基部230を有する磁極部220を備える。磁極部220は、周方向に複数設けられており、基部230から回転子コア200の外周に沿って周方向の一方方向に突出する第1突起部222aと、基部230を挟んで第1突起部222aとは反対側に設けられかつ基部230から回転子コア200の外周に沿って周方向の他方方向に突出する第2突起部222bと、を有する。第1突起部222aおよび第2突起部222bの少なくとも一方は、第1突起部222aの端部と第2突起部222bの端部とを結ぶ仮想線分である第1線分250よりも外周側に位置し、第1線分250との間に空間が設けられるように形成されている。

Description

ロータコア、ロータ、回転電機、自動車用電動補機システム
 本発明は、ロータコアと、これを用いたロータ、回転電機および自動車用電動補機システムとに関する。
 近年の自動車は、油圧システムから電動システムへの移行や、ハイブリッド自動車、電気自動車の市場拡大の流れを受けて、電動パワーステアリング(以下、EPS)装置や電動ブレーキ装置の装着率が急速に増大している。また、アイドリングストップやブレーキなどの運転操作の一部を自動化した車の普及を背景に、運転快適性の向上とともに車室内の静音化が進展している。
 車室内の振動、騒音に繋がる電気モータ起因の加振源としては、電気モータのトルク変動成分(コギングトルクやトルクリップル)と、電気モータのステータと回転子の間に発生する電磁加振力がある。これらのうちトルク変動成分による振動エネルギーは、電気モータの出力軸を介して車室内へ伝搬し、また、電磁加振力による振動エネルギーは、EPS装置の機械部品などを介して車室内へ伝搬する。これらの振動エネルギーが車室内へ伝搬することで、車室内の振動、騒音に繋がっている。
 例えば、EPS装置では、電気モータがステアリングホイール操作をアシストすることから、運転者はステアリングホイールを介して、電気モータのコギングトルクやトルクリップルを手に感じることになる。これを抑制するため、EPS装置に用いる電気モータでは、一般にコギングトルクをアシストトルクの1/1000未満に、トルクリップルをアシストトルクの1/100未満に抑制することが求められる。また、電磁加振力の空間モードの最小次数が2以下でないことがよいとされる。
 ここで、電気モータの価格は、磁石、巻線などの材料費用と、製造費用からなるが、磁石価格の比率が特に高いため、磁石コストの抑制が強く求められている。また、製造の容易化や、必要なマンパワー、製造装置の軽減も望まれている。このため、自動車用電動補機システムに用いられる電気モータも、これらの要望を満たす必要がある。
 EPS装置に用いられる電気モータとしては、通常、小型化および信頼性の点から、永久磁石式のブラシレスモータ(以下、「永久磁石式回転電機」と称する)が使用される。
永久磁石式回転電機には、大別して、出力密度で優れる表面磁石式(SPM)と、磁石コストで優れる埋め込み磁石式(IPM)とがあるが、何れの場合も、磁石コスト低減の点から、極数に応じた個数に分離された磁石が使用されることが多い。
 例えば、埋め込み磁石式では、通常、磁石収納空間を持つ一体ロータコアを用いる。一体ロータコアはロータ磁極の製造精度が高いため、ロータ磁極とステータ間のエアギャップ長を短縮できる。磁石収納空間のブリッジ部からの磁束漏れにより、表面磁石式に対してトルクが低下するが、エアギャップ長の短縮によりトルク低下を抑制できる。また、矩形の磁石を使用できるため、磁石コストを低減できる。さらに、表面磁石式で必要となる磁石カバーが不要になることも利点である。
 しかしながら、均一な磁化を持つ矩形磁石を周方向に配置するとき、一体ロータコアの外周を円環状にすると、磁束分布が正弦波状でなくなり、トルクリップルとコギングトルクを十分低減できないという問題が発生する。このため、磁極の外周側端部を突出させるなどの、磁極形状の工夫により、トルクリップルとコギングトルクを低減する必要が生じる。表面磁石式を採用する場合でも同様の問題が発生するため、同じく磁石の幅・外周曲率を工夫してトルクリップルとコギングトルクを低減する必要が生じる。ここで、巻線方式、極数、スロット数、磁石方式などが違うと磁束分布が違ってくるため、磁石の幅・外周曲率については、それぞれに異なる磁極形状となるが、磁極の突出は共通する特徴となる。
 また、EPS装置では正逆の両方に回転するため、磁極周囲の磁束分布を両回転方向に対称にする必要があり、対称な形状の磁極が用いられる。
 磁極形状を対称にしたブラシレスモータの先行技術として、特許文献1に記載されたものがある。特許文献1に記載されたブラシレスモータ1は、ロータ3内にマグネット16を収容固定したIPM型となっている。ロータ3は、鋼板材を積層してなるロータコア15を有する。ロータコア15は、コア本体部31と、マグネット取付孔33と、突極部32を有し、マグネット取付孔33には、空隙部34を形成しつつマグネット16が収容固定されている。隣接する突極部32間には凹部35が設けられている。各突極部32の周方向両端には、突極部32の外周面を延長させる形で鍔部41が突設されている。鍔部41は、凹部35の外周側に設けられており、対向する鍔部41の間には隙間43が形成されている。
特開2014-239633号公報
 特許文献1に開示されたブラシレスモータは、コギングトルクの低減に関して改良の余地が多く残されている。
 本発明によるロータコアは、複数の積層板により構成されかつ磁石の収納空間を形成するものであって、前記収納空間よりも外周側に形成された基部を有する磁極部を備え、前記磁極部は、周方向に複数設けられており、前記磁極部は、前記基部から前記ロータコアの外周に沿って前記周方向の一方方向に突出する第1突起部と、前記基部を挟んで前記第1突起部とは反対側に設けられかつ前記基部から前記ロータコアの外周に沿って前記周方向の他方方向に突出する第2突起部と、を有し、前記第1突起部および前記第2突起部の少なくとも一方は、前記第1突起部の端部と前記第2突起部の端部とを結ぶ仮想線分である第1線分よりも外周側に位置し、前記第1線分との間に空間が設けられるように形成されている。
 本発明によるロータは、上記のロータコアと、前記ロータコアに固定された回転シャフトと、前記収納空間に配置された永久磁石と、を備える。
 本発明による回転電機は、上記のロータと、複数の巻線を有し、所定のエアギャップを介して前記ロータと対向して配置されたステータと、を備える。
 本発明による自動車用電動補機システムは、上記の回転電機を備え、前記回転電機を用いて、電動パワーステアリングまたは電動ブレーキを行う。
 本発明によれば、コギングトルクを十分に低減することができる。
本発明の第1の実施形態に係る永久磁石式回転電機の回転面内断面図 本発明の第1の実施形態に係る回転子の断面図 本発明の第1の実施形態に係る回転子の断面の磁極付近の拡大図 本発明の第1の実施形態に係る回転子における突起端部付近の拡大図 比較突起例Aに係る回転子における突起端部付近の拡大図 比較例1に係る回転子の断面の磁極付近の拡大図 本発明による実施例1と比較例1、比較突起例Aとのコギングトルクの相違を説明する図 本発明の第2の実施形態に係る回転子の断面の磁極付近の拡大図 本発明の第3の実施形態に係る回転子における第1板の磁極付近の拡大図 本発明の第3の実施形態に係る回転子における第2板の磁極付近の拡大図 本発明の第3の実施形態に係る回転子の軸方向端面の断面図 本発明の第3の実施形態に係る回転子における部分連結ブリッジ部を示す図 本発明の第3の実施形態に係る回転子コアを覆うカバーを示す図 本発明の第3の実施形態に係る回転子コアを覆うカバーを示す図 本発明による実施例3と比較例1、比較突起例Cとのコギングトルクの相違を説明する図 本発明の第4の実施形態に係る回転子の断面の磁極付近の拡大図 本発明の第5の実施形態に係る回転子における第1板の磁極付近の拡大図 本発明の第5の実施形態に係る回転子における第2板の磁極付近の拡大図
 本発明の実施例について、適宜図面を参照しながら詳細に説明する。なお、各図面において、同様の構成要素については、同一の符号を付して説明を省略する。
(第1の実施形態)
 図1から図3Bを用いて、本発明の第1の実施形態に係る回転子コアを備えた永久磁石式回転電機1の構成を説明する。図1は、第1の実施形態に係る永久磁石式回転電機1の回転面内断面図である。図2は、第1の実施形態に係る回転子20の断面図である。図3Aは、第1の実施形態に係る回転子20の断面の磁極付近の拡大図であり、図1の点線で囲ったX部を拡大して示した図である。図3Bは、第1の実施形態における突起端部付近の拡大図である。
 図1に示すように、本実施形態の永久磁石式回転電機1は、外周側に略環状の固定子10を配置し、内周側に略円柱状の回転子20を配置した、14極18スロット集中巻の永久磁石式回転電機である。固定子10と回転子20の間にはエアギャップ30が設けられている。固定子10は、固定子コア100、コアバック110および複数の巻線140を有しており、エアギャップ30を介して回転子20と対向して配置されている。
 固定子10は、例えば次のようにして形成される。まず、電磁鋼板の分割打ち抜きコアを積層した積層体により、T形のティース130を形成する。次に、ティース130に電線を巻き回して巻線140を形成した後、複数のティース130および巻線140を円環に組み、図示しないハウジングに焼嵌めまたは圧入して一体化する。このようにして、固定子10が形成される。
 また、図2に示すように、本実施形態の回転子20は、電磁鋼板を積層した鉄心である回転子コア200と、回転軸となるシャフト300とを有する。回転子コア200の外周には、周方向に14極の軟磁性の磁極部220が設けられている。磁極部220の各々は、固定子10との対向面を形成して磁極外周面、すなわち回転子コア200の外周面となる磁極円弧221の両端に突起部222が設けられるとともに、永久磁石210が収納されるV字形の収納空間212が設けられている。収納空間212には、矩形の永久磁石210が各磁極部220について2個ずつ挿入されて配置されている。
 図3Aに示すように、周方向に隣接する一対の磁極部220の間には、磁極円弧221に対して窪んだ形状の第1空間部240が形成されている。第1空間部240と収納空間212の間には、ブリッジ部242が形成されている。なお図3Aでは、収納空間212に収納される2個の永久磁石210の一方を第1永久磁石210a、他方を第2永久磁石210bとして示している。ブリッジ部242は、磁極部220に接続されると共に、第1空間部240の底に位置するq軸方向のコア最外周部244(以下、q軸外周部244と称する)にも接続されている。すなわち、ブリッジ部242は、磁極部220とq軸外周部244とを繋ぐように形成されている。
 磁極部220は、収納空間212から外径側に向かって径方向に突出する基部230と、基部230から磁極円弧221に沿って周方向の反対側にそれぞれ突出する突起部222とを有する。なお図3Aでは、周方向の一方方向に突出する突起部222を第1突起部222a、基部230を挟んで第1突起部222aとは反対側に設けられて周方向の他方方向に突出する突起部222を第2突起部222bとして示している。さらに基部230は、ブリッジ部242との接続部分である一対の接続部243と、第1空間部240に接する一対の側面部241とを有している。側面部241は、突起部222(第1突起部222a、第2突起部222b)よりも径方向で内周側にそれぞれ配置されている。第1空間部240は、突起部222、ブリッジ部242およびq軸外周部244に面している。
 q軸外周部244は、周方向に隣接する一対の磁極部220の中間に位置しており、基部230よりも径方向で内周側に設けられている。q軸外周部244は、周方向に隣接する一対の磁極部220にそれぞれ接続されている2つのブリッジ部242の間に挟まれて配置されている。
 図3Aおよび図3Bに示すように、第1突起部222aの端部と第2突起部222bの端部である第2突起端部225bとを結ぶ仮想線分を第1線分250と定義すると、第2突起端部225bと側面部241との間の面は、第1線分250よりも外径側(外周側)に位置している。これにより、第1線分250と第2突起部222bの間に、第1線分250に面する空間251が設けられるように、第2突起部222bが形成されている。なお、図3Bでは第2突起部222bの形状のみを拡大して示しているが、第1突起部222aも同様の形状を有している。
 一般的に、径方向に突出した磁極形状のロータ構造を有する回転電機において発生するコギングトルク、特に、スロットコンビネーションに応じて定まる次数のコギングトルクは、磁極円弧半径をロータ外表面の回転半径よりも小さくすることで低減できる。磁極円弧半径を小さくしていくと、ある磁極円弧半径Aにおいてコギングトルクが一旦消える。ところが、さらに磁極円弧半径を小さくしていくと、コギングトルク波形の位相が逆転してコギングトルクが増大する傾向がある。このようなコギングトルクの変化は、磁極端部付近のエアギャップの磁束の減少に伴って生じる。
 また、磁極円弧半径が小さすぎると、磁極端部とステータ間の距離が大きくなり、その場所での磁束が少なくなるため、磁極端部の形状変化に対してコギングトルクが変化しにくくなる。したがって、磁極端部の形状を変化させてコギングトルクを低減させる場合には、磁極円弧半径が上記の磁極円弧半径Aよりも小さすぎる形状は好ましくない。以下では、磁極円弧半径Aより小さく、かつ、磁極端部の形状変化がコギングトルクの変化に十分影響する大きさの磁極円弧半径を、磁極円弧半径Bとする。この磁極円弧半径Bを維持しつつ、周方向の磁極幅を増加させると、磁極端部付近のエアギャップの磁束が増加するため、磁極円弧半径を大きくするのと同様の効果が生じる。その結果、コギングトルクが一旦消え、その後、位相が元に戻り、コギングトルクが増大する傾向になる。
 ここで、磁極の形状が一般的な蒲鉾状である場合は、磁極端部においても磁気抵抗が小さいため、磁極幅の変化に対する磁極端部付近でのエアギャップの磁束分布の変化が大きく、コギングトルクの変化が大きい。一方、磁極端部の形状として、図3Aのように磁極外周面の両端に突起を設けた構造の場合は、磁極幅あるいは突起長さが変化したときに、突起先端を通過する磁束が少なくなるので、磁極形状の変化に対する磁極端部付近でのエアギャップの磁束分布の変化が小さくなり、コギングトルクの変化も小さくなることが期待される。すなわち、単位軸長あたりの磁束量が大きい場合も、磁極が蒲鉾形状の場合と比較して、磁極幅の変化に対するコギングトルクの変化を抑制できる。そのため、ロータコアの積厚を短縮して回転電機を小型化できることを意味する。
 永久磁石式回転電機で用いられる磁石には残留磁束密度が規定されており、磁石の極性を有する面が広いほど磁極を通る磁束が多くなる。したがって、磁石がV字型に埋め込まれた埋め込み磁石式(VIPM)回転電機のように、極性を有する面積を大きくできるロータ構造とすることで、1つの磁極を通過する磁束量を多くすることができる。このように磁極を通過する磁束量が多くなると、磁極端部の突起形状によっては、磁極幅の変化に応じてエアギャップの磁束分布が変化し、コギングトルクに影響が生じる。すなわち、磁束が突起の先端に十分達していることから、磁極幅の変化によって突起先端の位置が変化すると、磁極端部付近でのエアギャップの磁束変化が大きくなり、その結果、磁極幅の変化に対するコギングトルクの変化が大きくなる。EPS装置において求められるコギングトルクは、前述のようにアシストトルクの1/1000未満と微小であるため、こうした磁極端部の突起形状による変化の影響を受けやすい。
 コギングトルクを小さくするためには、形状寸法のバラツキに起因するコギングトルクを低減する必要がある。そのため、上記のような磁極幅の変化に対するコギングトルクの変化をなるべく小さくすることが望ましく、適切な突起形状が求められる。しかしながら、量産製造性の制約等から、突起の先端部分には一定以上の厚さが必要であるため、単に突起の厚さを減らす手段は採用できない。そこで、突起の根本部分を薄くすることにより、突起の先端部分まで到達する磁束を減少させることが有効と考えられる。
 以上の検討から、永久磁石式回転電機におけるコギングトルクの低減には、次の構成の採用が有効であることが確認された。
(1)磁極端部のパーミアンスの急激な変化を抑制するため、磁極端部に、ロータコアの外周に沿って周方向の反対側にそれぞれ突出する一対の突起部を形成する。これにより、突起部の磁気抵抗が大きいことを利用して、磁極端部付近のエアギャップの磁界の変化を緩やかにすることができる。
(2)突起部の先端まで到達する磁束を減少させるため、突起部の根本側の厚さをなるべく薄くする。これにより、磁極幅の変化に対するコギングトルクの変化をなるべく小さくして、磁極の寸法誤差に対するコギングトルクの変動を小さくすることができる。
 図1~図3Bで説明した本実施形態の永久磁石式回転電機1の構成は、以上の検討結果を踏まえて決定されたものである。すなわち、前述のように、第1突起部222aの端部と第2突起部222bの端部である第2突起端部225bとを結ぶ仮想線分を第1線分250と定義すると、第2突起端部225bと側面部241との間の面は、第1線分250よりも外径側(外周側)に位置している。これにより、第1線分250と第2突起部222bの間に、第1線分250に面する空間251が設けられるように、第2突起部222bが形成されている。なお、図3Bでは第2突起部222bの形状のみを拡大して示しているが、第1突起部222aも同様の形状を有している。これにより、コギングトルク自体を低減しつつ、図3Aに示した磁極幅Wpの変化に対するコギングトルクの変化についても低減可能としている。これは、特に本実施形態の永久磁石式回転電機1のように、1つの磁極を通過する磁束量を多くできるVIPM構造の回転電機において好適である。
 なお、量産時の制約等により、突起部222の先端には一定以上の厚さが必要である。本実施形態では、例えば、突起部222の根本側の厚さを、電磁鋼板の厚さの40%以上になるように形成することが好ましい。
 また、本実施形態では、第1突起部222aと第2突起端部225bの両方について、その端部が図3Bのように第1線分250よりも外径側(外周側)に位置しており、第1線分250との間に空間251が設けられるように形成されているとした。しかしながら、第1突起部222aと第2突起端部225bのいずれか一方のみをこのようにしてもよい。その場合であっても、コギングトルク自体を低減しつつ、磁極幅Wpの変化に対するコギングトルクの変化をある程度は低減することが可能である。
 以上で説明したような形状の磁極部220を用いることにより、コギングトルクの低減に優れたロータコアである回転子コア200と、それを用いた回転子20および永久磁石式回転電機1とを得ることができる。
 図6は、本発明による実施例1と比較突起例A、比較例1とのコギングトルクの相違を説明する図である。図6では、図4に示したような形状の比較突起部222dを突起部222の代わりに磁極部220に形成した場合を比較突起例Aとし、図5に示したような蒲鉾型の磁極形状を有する一般的な構造のIPM回転電機を比較例1として、これらの比較例と本発明による実施例1とのトルクリップルおよびコギングトルクを示すと共に、実施例1のトルクを1としたときの比較例1および比較突起例Aのトルク比を示している。なお、図4では第2突起部222bの代わりに形成される比較突起部222dの形状のみを拡大して示しているが、第1突起部222aの代わりに形成される比較突起部222dも同様に、先端部分よりも根元部分の方が太い形状を有している。
 図6に示す各例でのトルクリップルおよびコギングトルクの値は、固定子10、回転子20、および、エアギャップ30の磁束分布と、エアギャップ30の電磁応力とを、有限要素法による磁界解析でそれぞれ計算し、回転角に対応するトルクを算出することにより得られたものである。なお、実施例1は、図3Aおよび図3Bに示した磁極構造を有する第1の実施形態の永久磁石式回転電機1に相当する。
 エアギャップ長を0.5mmとした場合、図6に示すように、実施例1ではコギングトルクが0.3mN・m、磁極幅Wpが0.1mm変化したときのコギングトルクの変化が1.3mN・mとそれぞれ計算された。これに対して、比較突起例Aではコギングトルクが0.4mN・m、磁極幅Wpが0.1mm変化したときのコギングトルクの変化が2.5mN・mとそれぞれ計算された。また、比較例1ではコギングトルクが2.3mN・m、磁極幅が磁石収納空間の幅と共に0.1mm変化したときのコギングトルクの変化が0.1mN・mとそれぞれ計算された。
 図6により、比較例1では、実施例1および比較突起例Aと比較してコギングトルクが大きいことが分かる。その理由は、比較例1のような磁極形状では磁極端部の周方向でパーミアンスが急激に変化するため、コギングトルクの基本次数に加えて高次成分が生じるためである。また、比較例1では、実施例1および比較突起例Aと比較して、磁極幅の変化に対するコギングトルクの変化が小さいことが分かる。その理由は、比較例1のような構造では磁石が周方向に略平行であることから、実施例1や比較突起例Aと比べて磁石の極性面の面積が小さく、磁極部を通る磁束が少ないので、磁極幅の変化がコギングトルクに与える影響が小さいためである。
 一方、実施例1や比較突起例AのようなVIPM構造では、比較例1と比べて、単位軸長あたりの磁石の極性面の面積を大きくできる。例えば実施例1では、単位軸長あたりの磁石の磁極面の面積を、比較例1の約2倍とすることができる。そのため、1つの磁極を通過する磁束量を比較例1よりも多くできる。しかしながら、磁極を通過する磁束量を多くすると、磁極端部の磁束も多くなるため、そのままではコギングトルクがさらに大きくなってしまう。そこで、VIPM構造の回転電機では、磁束量を増やしつつ磁極端部の磁束量の変化を緩やかにするため、磁極端部に突起を設けることが有効な手段である。
 例として、図4に示すような形状の比較突起部222dを磁極外周面の両端に設けることが考えられる。しかし、比較突起部222dは、本実施形態の突起部222と比較して、基部230と繋がっている根元部分の厚さが大きい。そのため、比較突起部222dでは突起部222よりも先端まで達する磁束が多くなる。その結果、磁極幅Wpが変化して比較突起部222dの先端位置が変化すると、それによる磁極端部付近のエアギャップの磁束変化は突起部222よりも大きくなるため、コギングトルクの変化が大きくなると考えられる。図6において、実施例1では磁極幅Wpが0.1mm変化したときのコギングトルクの変化が1.3mN・mであったのに対して、比較突起例Aでは2.5mN・mと大きくなっていたのは、こうした理由によるものである。
 以上説明したように、本実施形態の構成によれば、コギングトルクを十分に小さくできることが分かる。さらに加えて、磁極の寸法誤差に対するコギングトルクの変動を十分に低減できるため、製造時に要求される寸法精度を軽減し、製造コストの低減にも寄与できることが分かる。
 また、図6に示すように、実施例1ではトルクリップルが0.68%であるのに対して、比較突起例Aではトルクリップルが0.58%であり、実施例1を基準としたトルク比がほぼ1であった。一方、比較例1ではトルクリップルが1.9%であり、実施例1を基準としたトルク比が0.68であった。したがって、本実施形態や比較突起例Aの構成によれば、低トルクリップルであり、かつ小型でトルク出力が大きな永久磁石式回転電機を実現できることが分かる。
 なお、本実施形態の永久磁石式回転電機1をEPS装置に用いることで、車室内に伝搬する振動や騒音を抑制できる。また、その他の自動車用電動補機装置、たとえば電動ブレーキを行う自動車用電動補機装置に適用することでも、振動や騒音を抑制することが可能である。さらには、本実施形態の永久磁石式回転電機1の採用は自動車分野に限定されず、低振動化が好ましい産業用の永久磁石式回転電機全般にも適用可能である。
(第2の実施形態)
 次に、図7を用いて、本発明の第2の実施形態に係る永久磁石式回転電機1を説明する。図7は、第2の実施形態に係る回転子20の断面の磁極付近の拡大図であり、第1の実施形態で説明した図3Aと対応している。なお、第1の実施形態と共通の部分は説明を一部省略する。
 第1の実施形態で説明した永久磁石式回転電機1は、14極18スロット集中巻の回転電機であったが、本実施形態の永久磁石式回転電機1は、10極60スロット分布巻の回転電機である。本実施形態の固定子10は、例えば次のようにして形成される。まず、電磁鋼板の一体打ち抜きコアを積層したステータコア積層体により、内周側に放射状のティース130を複数形成する。次に、各ティース130に巻線を巻き回して巻線140を形成した後、図示しないハウジングに焼嵌めまたは圧入して一体化する。このようにして、固定子10が形成される。
 本実施形態の永久磁石式回転電機1における磁極部220は、図7に示すように、第1の実施形態と同様の構造を有している。すなわち、磁極部220は第1突起部222aと第2突起部222bを有し、第1の実施形態で示した図3Bのように、第1突起部222aおよび第2突起部222bの端部と側面部241との間の面は、第1線分250よりも外径側にそれぞれ位置している。これにより、第1線分250と第1突起部222aおよび第2突起部222bとの間にそれぞれ空間が設けられるように、第1突起部222aおよび第2突起部222bが形成されている。なお、本実施形態でも第1の実施形態と同様に、第1突起部222aと第2突起端部225bのいずれか一方のみを図3Bのような形状にしてもよい。その場合であっても、コギングトルク自体を低減しつつ、磁極幅Wpの変化に対するコギングトルクの変化をある程度は低減することが可能である。
 本実施形態の永久磁石式回転電機1の特性を磁場解析により計算すると、コギングトルクは0.3mN・mであり、また、磁極幅Wpが0.1mm変化したときのコギングトルクの変化は0.6mN・mであった。これに対して、図7に示したような10極60スロット分布巻の回転電機において、前述の図4に示した形状の比較突起部222dを突起部222の代わりに磁極部220に形成した場合を比較突起例Bとすると、この比較突起例Bでは、コギングトルクが0.8mN・m、磁極幅Wpが0.1mm変化したときのコギングトルクの変化が1.6mN・mとそれぞれ計算された。したがって、14極18スロット集中巻以外の極スロット組合せや巻線方式においても効果を有することが確認できた。
 また、本実施形態のトルクリップルは0.82%、比較突起例Bのトルクリップルは0.85%であり、いずれの場合でもトルクリップルは十分に小さかった。さらに、本実施形態を基準とした比較突起例Bのトルク比はほぼ1であり、トルクは同等であった。なお、上記のトルクリップルとコギングトルクは、エアギャップ長を0.7mmとして、図6と同じ方法で計算されたものである。
(第3の実施形態)
 次に、図8Aから図9を用いて、本発明の第3の実施形態に係る永久磁石式回転電機1を説明する。本実施形態の永久磁石式回転電機1は、第1の実施形態と同様に、14極18スロット集中巻の回転電機である。図8A、8B、8D、8Eおよび8Fは、第3の実施形態に係る回転子20の断面の磁極付近の拡大図であり、第1、第2の実施形態でそれぞれ説明した図3、7と対応している。図8Cは、第3の実施形態に係る回転子20の軸方向端面の断面図である。なお、第1、第2の実施形態と共通の部分は説明を一部省略する。
 本実施形態の永久磁石式回転電機1における回転子コア200は、第1の実施形態で説明したように、複数の電磁鋼板を軸方向に積層して構成される。この複数の電磁鋼板は、図8Aに示す形状のものと、図8Bに示す形状のものとに分類される。以下では、図8Aに示す形状の電磁鋼板を「第1板」、図8Bに示す形状の電磁鋼板を「第2板」とそれぞれ称する。すなわち、本実施形態の回転子コア200は、第1板および第2板がそれぞれ複数ずつ積層されて構成されている。第1板および第2板は、軸方向締結部261によって軸方向に互いに締結されている。
 図8Aに示すように、第1板は、第1、第2の実施形態で説明したのと同様の磁極構造を有している。すなわち、第1板の磁極部220は第1突起部222aと第2突起部222bを有し、第1の実施形態で示した図3Bのように、第1突起部222aおよび第2突起部222bの端部と側面部241との間の面は、第1線分250よりも外径側にそれぞれ位置している。これにより、第1線分250と第1突起部222aおよび第2突起部222bとの間にそれぞれ空間が設けられるように、第1突起部222aおよび第2突起部222bが形成されている。また、第1板の磁極部220は、第1空間部240と収納空間212の間に形成されたブリッジ部242と接続部243において接続されている。一方、図8Bに示すように、第2板では第1空間部240と収納空間212の間にブリッジ部242が形成されていない。そのため、磁極部220とq軸外周部244の間には、収納空間212と第1空間部240の間を貫通する開口部が形成されている。なお、第1板と第2板とは別々の製造工程で製造されるものであってもよいし、第1板からブリッジ部242を切除することで第2板を製造してもよい。また、本実施形態でも第1の実施形態と同様に、第1突起部222aと第2突起端部225bのいずれか一方のみを図3Bのような形状にしてもよい。その場合であっても、コギングトルク自体を低減しつつ、磁極幅Wpの変化に対するコギングトルクの変化をある程度は低減することが可能である。
 図8Cに示すように、本実施形態の回転子コア200の軸方向端面には、ブリッジ部242を有する第1板が配置されている。図8Cにおいて、第1の実施形態で説明した図2の断面図との違いは、磁極部220に軸方向締結部261がそれぞれ設けられている点である。回転子コア200を構成する複数の電磁鋼板、すなわち複数の第1板および第2板は、軸方向締結部261に挿入される図示しない締結シャフトにより、軸方向に互いに締結して積層されている。そのため、第1板のブリッジ部242により、収納空間212に収納された永久磁石210が回転面内で保持され、回転子コア200の積層体と連結されている。
 本実施形態の回転子コア200では、回転時の強度に問題のない範囲であれば、第1板を減らして第2板を増加することにより、ブリッジ部242を経由する磁束の漏れを低減して、トルクを増加させることができる。但し、組立て時の積厚調整のために軸方向端面の積層板を1枚取り除く場合があるため、組立て開始時の軸方向端部における第1板の積層数は、少なくとも一方の端部において2枚以上であることが望ましい。
 以上説明したように、本実施形態の回転子コア200は、複数の第1板および第2板が軸方向に締結積層された構造を有している。ここで、第1板と第2板の違いは、ブリッジ部242の有無のみである。そのため、本実施形態の回転子コア200では、図8Dに示すように、ブリッジ部242が部分的に連結されて、軸方向に厚さを持つ3次元的な構造になっている。なお、図8Dでは、破線で示した部分連結ブリッジ部242Aにより、部分連結されたブリッジ部242の軸方向への射影を表している。磁極部220は、部分接続部243Aにおいて、この部分連結ブリッジ部242Aと接続されている。
 本実施形態によれば、ブリッジ部242を部分連結ブリッジ部242Aとしたことで、この部分における磁束漏れが減少する。そのため、第1の実施形態と同じトルクを同じ積層厚で得る際に、永久磁石210の極性面の幅を小さくできるため、磁石量をより低減することが可能である。
 なお、本実施形態の回転子コア200では、永久磁石210の飛散防止のために、少なくとも第2板において収納空間212と第1空間部240の間を貫通している開口部を覆うことができるカバーを設けることが好ましい。例えば、図8Eに示すように、磁極部220および第1空間部240を含む回転子コア200の表面を全周方向に覆うカバー265を用いることができる。このカバー265の材質には、例えば非磁性の金属または合成樹脂を使用することができる。また、例えば図8Fに示すように、第1空間部240に接着剤や合成樹脂を塗布し、これをカバー265として用いることもできる。この場合、第1空間部240に隣接する回転子20の軸方向端部にも接着剤や合成樹脂を塗布し、各磁極部220の周囲を覆う形状として固化することが好ましい。これにより、接着剤や合成樹脂で構成されたカバー265のはく離を防止して、永久磁石210の飛散防止が可能になる。また、回転子20の軸方向端面における永久磁石210の表面またはカバー265の表面の少なくとも一方は、エンドプレートを配置して覆うこととしてもよい。これにより、さらなる永久磁石210の飛散防止が可能になる。
 図9は、本発明による実施例3と比較突起例C、比較例1とのコギングトルクの相違を説明する図である。図9では、前述の第1板および第2板で回転子コア200が構成される本実施形態の回転電機において、前述の図4に示した形状の比較突起部222dを突起部222の代わりに磁極部220に形成した場合を比較突起例Cとし、前述の図5に示したような蒲鉾型の磁極形状を有する一般的な構造のIPM回転電機を比較例1として、これらの比較例と本発明による実施例3とのトルクリップルおよびコギングトルクを示すと共に、実施例3のトルクを1としたときの比較例1および比較突起例Cのトルク比を示している。また、図9に示す各例でのトルクリップルとコギングトルクは、エアギャップ長を0.5mmとして、図6と同じ方法で計算されたものである。
 図9に示すように、実施例3のコギングトルクは0.43mN・m、比較突起例Cのコギングトルクは0.17mN・mであるため、いずれも十分に小さい。一方、磁極幅Wpが0.1mm変化したときのコギングトルクの変化は、実施例3では1.3mN・mであるのに対して、比較突起例Cでは2.4mN・mと大きい。したがって、製造誤差によるコギングトルクの増加を考慮すると、比較突起例Cではコギングトルクの低減がやや不十分である。また、比較例1ではコギングトルクが2.34mN・mと大きく、コギングトルクの低減という本発明の目的を達成することが困難であることが分かる。なお、比較例1では、磁極幅が磁石収納空間の幅と共に0.1mm変化したときのコギングトルクの変化は0.1mN・mと小さいが、これは磁極部を通る磁束が実施例3や比較突起例Cと比べて少ないためである。
 また、図9に示すように、実施例3ではトルクリップルが0.75%であるのに対して、比較突起例Cではトルクリップルが0.63%であり、実施例3を基準としたトルク比がほぼ1であった。一方、比較例1ではトルクリップルが1.9%であり、実施例3を基準としたトルク比が0.68であった。したがって、本実施形態や比較突起例Cの構成によれば、低トルクリップルであり、かつ小型でトルク出力が大きな永久磁石式回転電機を実現できることが分かる。
 本実施形態によれば、ブリッジ部242を経由する磁束の漏れを低減してトルクを増加させつつ、軸方向端部における回転子コア200の剛性を高めて、一体化された回転子コア200の強度を確保することができる。なお、本実施形態では全積層板中での第1板の積層数の比率を0.15としたが、他の比率としてもよい。
(第4の実施形態)
 次に、図10を用いて、本発明の第4の実施形態に係る永久磁石式回転電機1を説明する。図10は、第4の実施形態に係る回転子20の断面の磁極付近の拡大図であり、第2の実施形態で説明した図7と対応している。
 本実施形態の永久磁石式回転電機1は、第2の実施形態と同様に、10極60スロット分布巻の回転電機である。また、本実施形態の回転子コア200は、第3の実施形態と同様に、第1板および第2板がそれぞれ複数ずつ積層されて構成されている。すなわち、図10に示すように、ブリッジ部242を有する第1板と、ブリッジ部242を有しない第2板とが、それぞれ複数ずつ積層されて構成されることで、ブリッジ部242が部分的に連結されて、軸方向に厚さを持つ3次元的な構造になっている。なお、図10では、破線で示した部分連結ブリッジ部242Aにより、部分連結されたブリッジ部242の軸方向への射影を表している。磁極部220は、部分接続部243Aにおいて、この部分連結ブリッジ部242Aと接続されている。
 また、本実施形態の永久磁石式回転電機1において、磁極部220は、図10に示すように、第1~第3の実施形態と同様の構造を有している。すなわち、磁極部220は第1突起部222aと第2突起部222bを有し、第1の実施形態で示した図3Bのように、第1突起部222aおよび第2突起部222bの端部と側面部241との間の面は、第1線分250よりも外径側にそれぞれ位置している。これにより、第1線分250と第1突起部222aおよび第2突起部222bとの間にそれぞれ空間が設けられるように、第1突起部222aおよび第2突起部222bが形成されている。なお、本実施形態でも第1の実施形態と同様に、第1突起部222aと第2突起端部225bのいずれか一方のみを図3Bのような形状にしてもよい。その場合であっても、コギングトルク自体を低減しつつ、磁極幅Wpの変化に対するコギングトルクの変化をある程度は低減することが可能である。
 本実施形態の構成では、第3の実施形態と同様に、ブリッジ部242を部分連結ブリッジ部242Aとしたことで、この部分における磁束漏れが減少する。そのため、第2の実施形態と同じトルクを同じ積厚で得る際に、永久磁石210の極性面の幅を小さくできるため、磁石量をより低減することが可能である。なお、本実施形態でも第3の実施形態と同様に、図8E、図8Fで説明したようなカバー265を設けて、永久磁石210の飛散防止を図ることが好ましい。
 本実施形態の永久磁石式回転電機1の特性を磁場解析により計算すると、コギングトルクは0.4mN・mであり、また、磁極幅Wpが0.1mm変化したときのコギングトルクの変化は0.7mN・mであった。これに対して、図10に示したような10極60スロット分布巻の回転電機において、前述の図4に示した形状の比較突起部222dを突起部222の代わりに磁極部220に形成した場合を比較突起例Dとすると、この比較突起例Dでは、コギングトルクが0.1mN・m、磁極幅Wpが0.1mm変化したときのコギングトルクの変化が1.7mN・mとそれぞれ計算された。したがって、14極18スロット集中巻以外の極スロット組合せや巻線方式においても効果を有することが確認できた。
 また、本実施形態のトルクリップルは1.04%、比較突起例Dのトルクリップルは1.03%であり、いずれの場合でもトルクリップルは十分に小さかった。さらに、本実施形態を基準とした比較突起例Dのトルク比はほぼ1であり、トルクは同等であった。なお、上記のトルクリップルとコギングトルクは、エアギャップ長を0.7mmとして、図6と同じ方法で計算されたものである。
(第5の実施形態)
 次に、図11A、11Bを用いて、本発明の第5の実施形態に係る永久磁石式回転電機1を説明する。本実施形態の永久磁石式回転電機1における回転子コア200では、軸方向に積層された第1板および第2板が、図11A、図11Bに示すように、第3の実施形態で説明したのとは異なる形状をそれぞれ有している。具体的には、本実施形態の第1板には、図11Aに示すように、ブリッジ部242が形成されておらず、その代わりに、収納空間212内に永久磁石210を保持するための磁石留め部245が形成されている。磁極部220は、その中央部がブリッジ部242bを介して回転子コア200と接続されている。また、本実施形態の第2板には、図11Bに示すように、第1板と同様の磁石留め部245が形成されている。これらの第1板および第2板は、軸方向締結部261によって軸方向に互いに締結されている。
 本実施形態では、磁極部220の中央部分がブリッジ部242bを介して回転子コア200と接続されている。そのため、磁極部220の両端部分がブリッジ部242を介して回転子コア200と接続されている第3の実施形態と比べて、径方向の引っ張りには強くなるが、周方向の変位には弱くなる。本実施形態では、この点を考慮してブリッジ部242bの幅と数を決定することになる。なお、第3の実施形態と比較すると、本実施形態では収納空間212が中央のブリッジ部242bで二つに分断されており、第1永久磁石210aおよび第2永久磁石210bがブリッジ部242bと磁石留め部245に挟まれて配置される。そのため、これらの磁石の幅がやや小さくなる傾向になる。
 また、本実施形態では部分連結ブリッジ部242Aが存在しないため、第3の実施形態で説明した開口部とは異なり、第1空間部240と収納空間212の間に、軸方向に連続した開口部が形成される。したがって、本実施形態でも第3の実施形態と同様に、図8E、図8Fで説明したようなカバー265を開口部を覆うように設けて、永久磁石210の飛散防止を図ることが好ましい。
 以上説明したように、本発明の各実施形態による回転子コア200の構成は、従来の構成と比較して、トルクリップル、コギングトルク、トルク比、の何れの面でも優れており、効果のあることが示された。また、磁極形状の寸法誤差に対するコギングトルク変動の抑制についても、十分に効果のあることが示された。すなわち、各実施形態で説明した永久磁石式回転電機1の構造は、コギングトルク低減に有効な構造である。
 なお、第2~第5の各実施形態についても、第1の実施形態と同様に、各実施形態の永久磁石式回転電機1をEPS装置に用いることで、車室内に伝搬する振動や騒音を抑制できる。また、その他の自動車用電動補機装置、たとえば電動ブレーキを行う自動車用電動補機装置に適用することでも、振動や騒音を抑制することが可能である。さらには、各実施形態の永久磁石式回転電機1の採用は自動車分野に限定されず、低振動化が好ましい産業用の永久磁石式回転電機全般にも適用可能である。
 以上説明した本発明の実施形態によれば、以下の作用効果を奏する。
(1)回転子コア200は、複数の積層板により構成されかつ永久磁石210の収納空間212を形成する。回転子コア200は、収納空間212よりも外周側に形成された基部230を有する磁極部220を備える。磁極部220は、周方向に複数設けられており、基部230から回転子コア200の外周に沿って周方向の一方方向に突出する第1突起部222aと、基部230を挟んで第1突起部222aとは反対側に設けられかつ基部230から回転子コア200の外周に沿って周方向の他方方向に突出する第2突起部222bと、を有する。第1突起部222aおよび第2突起部222bの少なくとも一方は、第1突起部222aの端部と第2突起部222bの端部とを結ぶ仮想線分である第1線分250よりも外周側に位置し、第1線分250との間に空間251が設けられるように形成されている。このようにしたので、コギングトルクを十分に低減することができる。
(2)第3~第5の実施形態では、複数の積層板は、磁極部220および磁極部220に接続されたブリッジ部242または242bを有する第1板と、磁極部220を有してブリッジ部242、242bを有しない第2板とを含む。第1板の磁極部220と第2板の磁極部220とは、軸方向に互いに締結されている。このようにしたので、永久磁石210の極性面の幅を小さくし、磁石量を低減することが可能である。
(3)第3、第4の実施形態では、周方向に隣り合う一対の磁極部220の基部230の間には、第1空間部240が形成されており、周方向に隣り合う一対の磁極部220の中間に、第1空間部240に接するq軸外周部244が形成されている。第1板のブリッジ部242は、磁極部220とq軸外周部244を繋いで収納空間212と第1空間部240の間に設けられている。また、第2板の磁極部220とq軸外周部244の間には、収納空間212と第1空間部240の間を貫通する開口部が形成されている。このようにしたので、永久磁石210を収納空間212内に確実に保持しつつ、磁石量の低減が可能である。
(4)第5の実施形態では、周方向に隣り合う一対の磁極部220の基部230の間には、第1空間部240が形成されており、周方向に隣り合う一対の磁極部220の中間に、第1空間部240に接するq軸外周部244が形成されている。第1板のブリッジ部242bは、収納空間212を分断して磁極部220に接続されている。また、第1板および第2板の磁極部220とq軸外周部244の間には、収納空間212と第1空間部240の間を貫通する開口部が形成されている。このようにしたので、軸方向に連続した開口部が形成され、さらなる磁石量の低減が可能である。
(5)回転子20は、第1~第5のいずれかの実施形態による回転子コア200と、この回転子コア200に固定されたシャフト300と、収納空間212に配置された永久磁石210とを備えて構成される。また、永久磁石式回転電機1は、この回転子20と、複数の巻線140を有して所定のエアギャップ30を介して回転子20と対向して配置された固定子10とを備えて構成される。このようにしたので、コギングトルクを十分に低減した回転電機と、この回転電機に用いられるロータとを実現できる。
(6)なお、回転子20は、第3~第5のいずれかの実施形態による回転子コア200と、この回転子コア200に固定されたシャフト300と、収納空間212に配置された永久磁石210と、前述の開口部を覆うカバー265とを備えて構成してもよい。このようにすれば、磁石量を低減しつつ、永久磁石210の飛散を防止することができる。
(7)永久磁石式回転電機1は、たとえば自動車の電動パワーステアリング用モータとすることができる。また、第2、第4の各実施形態で説明したような10極60スロット分布巻、または、第1、第3、第5の各実施形態で説明したような14極18スロット集中巻の、いずれかの構成を有することができる。したがって、様々な形態の回転電機において本発明を適用可能である。
(8)上記のような永久磁石式回転電機1を備え、この永久磁石式回転電機1を用いて、電動パワーステアリングまたは電動ブレーキを行う自動車用電動補機システムを構成してもよい。このようにすれば、振動や騒音を抑制した自動車用電動補機システムを実現できる。
 以上説明した各実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1   永久磁石式回転電機
10  固定子
20  回転子
30  エアギャップ
100 固定子コア
110 コアバック
130 ティース
140 巻線
200 回転子コア
210 永久磁石
210a 第1永久磁石
210b 第2永久磁石
212 収納空間
220 磁極部
221 磁極円弧
222 突起部
222a 第1突起部
222b 第2突起部
230 基部
240 第1空間部
241 側面部
242、242b ブリッジ部
243 接続部
244 q軸方向のコア最外周部
245 磁石留め部
250 第1線分
251 第1線分に面する空間
261 軸方向締結部
262 第1板
263 第2板
264 開口部
265 カバー
300 シャフト

Claims (10)

  1.  複数の積層板により構成されかつ磁石の収納空間を形成するロータコアであって、
     前記収納空間よりも外周側に形成された基部を有する磁極部を備え、
     前記磁極部は、周方向に複数設けられており、
     前記磁極部は、前記基部から前記ロータコアの外周に沿って前記周方向の一方方向に突出する第1突起部と、前記基部を挟んで前記第1突起部とは反対側に設けられかつ前記基部から前記ロータコアの外周に沿って前記周方向の他方方向に突出する第2突起部と、を有し、
     前記第1突起部および前記第2突起部の少なくとも一方は、前記第1突起部の端部と前記第2突起部の端部とを結ぶ仮想線分である第1線分よりも外周側に位置し、前記第1線分との間に空間が設けられるように形成されているロータコア。
  2.  請求項1に記載のロータコアにおいて、
     前記複数の積層板は、前記磁極部および前記磁極部に接続されたブリッジ部を有する第1板と、前記磁極部を有して前記ブリッジ部を有しない第2板とを含み、
     前記第1板の前記磁極部と前記第2板の前記磁極部とは、軸方向に互いに締結されているロータコア。
  3.  請求項2に記載のロータコアにおいて、
     前記周方向に隣り合う一対の前記磁極部の前記基部の間には、第1空間部が形成されており、
     前記周方向に隣り合う一対の前記磁極部の中間に、前記第1空間部に接するq軸外周部が形成されており、
     前記第1板の前記ブリッジ部は、前記磁極部と前記q軸外周部を繋いで前記収納空間と前記第1空間部の間に設けられており、
     前記第2板の前記磁極部と前記q軸外周部の間には、前記収納空間と前記第1空間部の間を貫通する開口部が形成されているロータコア。
  4.  請求項2に記載のロータコアにおいて、
     前記周方向に隣り合う一対の前記磁極部の前記基部の間には、第1空間部が形成されており、
     前記周方向に隣り合う一対の前記磁極部の中間に、前記第1空間部に接するq軸外周部が形成されており、
     前記第1板の前記ブリッジ部は、前記収納空間を分断して前記磁極部に接続されており、
     前記第1板および前記第2板の前記磁極部と前記q軸外周部の間には、前記収納空間と前記第1空間部の間を貫通する開口部が形成されているロータコア。
  5.  請求項1から請求項4までのいずれか一項に記載のロータコアと、
     前記ロータコアに固定された回転シャフトと、
     前記収納空間に配置された永久磁石と、を備えるロータ。
  6.  請求項3または請求項4に記載のロータコアと、
     前記ロータコアに固定された回転シャフトと、
     前記収納空間に配置された永久磁石と、
     前記開口部を覆うカバーと、を備えるロータ。
  7.  請求項5または請求項6に記載のロータと、
     複数の巻線を有し、所定のエアギャップを介して前記ロータと対向して配置されたステータと、を備える回転電機。
  8.  請求項7に記載の回転電機において、
     前記回転電機は、自動車の電動パワーステアリング用モータである回転電機。
  9.  請求項7または請求項8に記載の回転電機において、
     前記回転電機は、10極60スロット分布巻、または、14極18スロット集中巻の構成を有する回転電機。
  10.  請求項7から請求項9までのいずれか一項に記載の回転電機を備え、
     前記回転電機を用いて、電動パワーステアリングまたは電動ブレーキを行う自動車用電動補機システム。
PCT/JP2018/029172 2017-09-29 2018-08-03 ロータコア、ロータ、回転電機、自動車用電動補機システム WO2019064923A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/648,958 US11394257B2 (en) 2017-09-29 2018-08-03 Rotor core, rotor of rotary electrical machine, rotary electrical machine, and automotive auxiliary electrical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191937A JP6869158B2 (ja) 2017-09-29 2017-09-29 ロータコア、ロータ、回転電機、自動車用電動補機システム
JP2017-191937 2017-09-29

Publications (1)

Publication Number Publication Date
WO2019064923A1 true WO2019064923A1 (ja) 2019-04-04

Family

ID=65901170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029172 WO2019064923A1 (ja) 2017-09-29 2018-08-03 ロータコア、ロータ、回転電機、自動車用電動補機システム

Country Status (3)

Country Link
US (1) US11394257B2 (ja)
JP (1) JP6869158B2 (ja)
WO (1) WO2019064923A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114651383B (zh) * 2019-11-13 2023-08-11 三菱电机株式会社 旋转电机
WO2021106395A1 (ja) * 2019-11-26 2021-06-03 株式会社安川電機 回転電機、回転子及び電磁鋼板
WO2021117176A1 (ja) * 2019-12-12 2021-06-17 三菱電機株式会社 ロータ、電動機、ファン、及び空気調和機
US20230170746A1 (en) * 2021-11-30 2023-06-01 GM Global Technology Operations LLC Bridgeless and webless rotor assembly using polymer composites

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189132A1 (en) * 2003-03-27 2004-09-30 Emerson Electric Company Modular flux controllable permanent magnet dynamoelectric machine
JP2010246301A (ja) * 2009-04-08 2010-10-28 Nissan Motor Co Ltd 永久磁石式電動機の回転子
JP2014079068A (ja) * 2012-10-10 2014-05-01 Daikin Ind Ltd ロータコア及びその製造方法
JP2014239633A (ja) * 2013-06-10 2014-12-18 株式会社ミツバ モータ用ロータコア及びブラシレスモータ
JP2016178863A (ja) * 2016-05-16 2016-10-06 アスモ株式会社 車両用ブラシレスモータ
WO2016170624A1 (ja) * 2015-04-22 2016-10-27 三菱電機株式会社 回転電機および電動パワーステアリング装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035520B2 (en) * 2012-05-24 2015-05-19 Kollmorgen Corporation Rotor lamination stress relief

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040189132A1 (en) * 2003-03-27 2004-09-30 Emerson Electric Company Modular flux controllable permanent magnet dynamoelectric machine
JP2010246301A (ja) * 2009-04-08 2010-10-28 Nissan Motor Co Ltd 永久磁石式電動機の回転子
JP2014079068A (ja) * 2012-10-10 2014-05-01 Daikin Ind Ltd ロータコア及びその製造方法
JP2014239633A (ja) * 2013-06-10 2014-12-18 株式会社ミツバ モータ用ロータコア及びブラシレスモータ
WO2016170624A1 (ja) * 2015-04-22 2016-10-27 三菱電機株式会社 回転電機および電動パワーステアリング装置
JP2016178863A (ja) * 2016-05-16 2016-10-06 アスモ株式会社 車両用ブラシレスモータ

Also Published As

Publication number Publication date
JP2019068620A (ja) 2019-04-25
US20200287430A1 (en) 2020-09-10
JP6869158B2 (ja) 2021-05-12
US11394257B2 (en) 2022-07-19

Similar Documents

Publication Publication Date Title
CN111108664B (zh) 转子铁心、转子、旋转电机、汽车用电动辅机***
US9490673B2 (en) Rotor of magnet-assisted reluctance motor and brushless motor
WO2019064923A1 (ja) ロータコア、ロータ、回転電機、自動車用電動補機システム
JP2018074767A (ja) 永久磁石同期モータ
US9793768B2 (en) Rotor and rotary electric machine having the same
WO2015019948A1 (ja) ブラシレスモータ
JP2002233122A (ja) アウターロータモータ、アウターロータモータの製造方法、及びアウターロータモータを組み込んだ電気自動車
JP2008113531A (ja) 回転電機
WO2015151344A1 (ja) 永久磁石式ブラシレスモータ
WO2018128043A1 (ja) 回転電機、および、それを用いた自動車用電動補機システム
JP6900846B2 (ja) ステータコア
JP5067365B2 (ja) モータ
JP2014107939A (ja) ブラシレスモータ
JP2010022088A (ja) 磁石回転型回転電機
JP5502533B2 (ja) 永久磁石型電動機
JP6695241B2 (ja) ブラシレスモータ
WO2017104436A1 (ja) 永久磁石同期モータ
JP5672149B2 (ja) 回転電機用ロータ、および、これを用いた回転電機
KR101757542B1 (ko) 차량용 전기 모터
WO2019044206A1 (ja) 回転電機
JP4671250B1 (ja) アキシャルギャップ型モータのロータ及びその製造方法
CN116472658A (zh) 旋转电机以及电动助力转向装置
JP2019208347A (ja) ロータコア、ロータ、回転電機、自動車用電動補機システム
JP6469563B2 (ja) 回転子およびブラシレスモータ
JP2019126139A (ja) ロータ及びモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18862575

Country of ref document: EP

Kind code of ref document: A1