WO2019056790A1 - 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法 - Google Patents

喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法 Download PDF

Info

Publication number
WO2019056790A1
WO2019056790A1 PCT/CN2018/088983 CN2018088983W WO2019056790A1 WO 2019056790 A1 WO2019056790 A1 WO 2019056790A1 CN 2018088983 W CN2018088983 W CN 2018088983W WO 2019056790 A1 WO2019056790 A1 WO 2019056790A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
inkjet
nozzle
ink droplets
magnetic field
Prior art date
Application number
PCT/CN2018/088983
Other languages
English (en)
French (fr)
Inventor
赵德江
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/327,093 priority Critical patent/US10751992B2/en
Publication of WO2019056790A1 publication Critical patent/WO2019056790A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • B41J2/2135Alignment of dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/10Ink jet characterised by jet control for many-valued deflection magnetic field-control type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • Embodiments of the present disclosure relate to the field of display technology and printing technology, and more particularly, to an inkjet printing head, an inkjet amount measuring system and method, and an inkjet amount control method.
  • an inkjet printhead comprising:
  • a nozzle that communicates with the cavity for inkjet printing
  • the inkjet printhead further comprises a powering device for applying a charge to the ink droplets passing through the nozzle.
  • the nozzle that communicates with the cavity for performing inkjet printing is a plurality of nozzles.
  • the plurality of nozzles are arranged in a row or a plurality of columns parallel to each other.
  • the inkjet printhead includes a registration mark.
  • an ink ejection amount measuring system comprising:
  • a powering device for applying a charge to ink droplets passing through a nozzle of the inkjet printing head
  • a magnetic field generating device for generating a magnetic field to deflect the charged ink droplet
  • test board having a surface that can carry ink drops
  • a processing unit configured to calculate the amount of ink droplets according to a drop position, a droplet charge amount, and a magnetic field strength of the ink droplet on the surface of the test board.
  • test panel has a reference position mark on its surface.
  • the powering device is disposed on the inkjet printhead.
  • the measurement system further includes an electric field generating means for generating an electric field to accelerate the dripping of the charged ink droplets.
  • the surface of the test board is provided with an alignment mark.
  • the reference position of the test board is marked as one or a plurality of reference lines parallel to each other.
  • the measurement system further includes a CCD lens for measuring the distance of the ink droplet drop point from the reference position mark.
  • the measurement system further includes a wind shield that isolates the charged ink droplets from the outside.
  • the powering device applies an equal amount of charge to each of the ink droplets passing through the nozzle.
  • an ink ejection amount measuring method comprising:
  • the amount of ink droplets is calculated based on the amount of ink charge, the strength of the magnetic field, and the position of the drop point.
  • the surface of the test board has a reference position mark, and the distance between the falling point of the charged ink droplet on the surface of the test board relative to the reference position mark is recorded, and the ink drop amount is calculated according to the ink charge amount, the magnetic field strength and the above distance. .
  • the method further includes applying an electric field to the charged ink droplets to cause the ink droplets to drip.
  • the method further includes: aligning the inkjet printhead and the test panel with an alignment mark on a surface of the test board and an alignment mark on the inkjet printhead.
  • the method further includes measuring the distance of the drop point from the reference position mark by the CCD lens.
  • an ink ejection amount control method comprising:
  • the charged ink droplets are dropped on the surface of the test board, and the falling points of the charged ink droplets are recorded;
  • An adjusted ink jet signal is applied to the nozzle to cause the ink drop to have a predetermined amount.
  • Figure 1 is a schematic view showing the structure of a nozzle having a plurality of rows of nozzles
  • FIG. 2 is a schematic diagram of the basic principle of an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a test state of a device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of an alignment mark according to an embodiment of the present disclosure.
  • Figure 5 is a schematic view showing the position of the ink droplet offset
  • Figure 6 is a schematic view of the drop drop test
  • Figure 7 is a schematic diagram of the processing flow of the test standard board.
  • the inkjet printing method requires relatively high positional accuracy and ink volume accuracy of the device. If the printing position accuracy is insufficient, the ink droplets cannot enter the pixel. If the volumetric accuracy of the printing is insufficient, uneven display may occur. Due to the difference in the volume of ink ejected, it is easy to cause uneven brightness of the display and various traces (mura).
  • mura using a shower head including a plurality of rows of nozzles, the droplet volume is slowed down by a method of combining ink droplets using a plurality of nozzles for one pixel. The problem with this approach is that multiple rows of nozzles are difficult to precisely align on a straight line, and accurate measurement of the droplet volume is difficult.
  • Embodiments of the present disclosure provide an inkjet printing head, an inkjet amount measuring system and a measuring method of a nozzle in a head, and a method of controlling a nozzle amount, in order to determine that one or more rows of nozzles on the head are sprayed in parallel with each other
  • the volume of the ink drops and the uniformity of the volume of the ink droplets.
  • FIG. 1 shows a head of an ink jet printing apparatus.
  • a plurality of nozzles 12 are disposed on the head 11, arranged in a matrix of a plurality of rows, and the OLED display substrate is moved by moving the heads 11 in parallel during printing.
  • Such a showerhead facilitates averaging the amount of ink in each pixel, increasing efficiency, and reducing the generation of random mura due to volumetric differences between different nozzles.
  • the plurality of nozzles in the same column on the nozzle have the same size, and the droplets of the nozzles are also the same in size, but the volume of the ink droplets ejected by each nozzle may be some for various reasons. Minor fluctuations that can cause variations in the thickness of the inkjet printed film.
  • the measuring system includes: a head 11 having a plurality of nozzles 12; a power-on device 14 for energizing the ink droplets ejected from the nozzle 12; and a magnetic field generating device, For generating a magnetic field 15; a test board 18 having a surface capable of carrying ink droplets; and a processing unit for calculating an ink droplet according to a drop position, a droplet charge amount, and a magnetic field strength of the ink drop on the surface of the test board the amount.
  • An inkjet print head 11 includes: a cavity 13 for accommodating ink; and a plurality of nozzles 12 communicating with the cavity 13 for performing inkjet printing.
  • a plurality of nozzles 12 are evenly disposed on the head 11, and the plurality of nozzles 12 are arranged in a row or a plurality of columns parallel to each other to improve printing efficiency.
  • the material of the nozzle is usually piezoelectric ceramic. As long as an inkjet signal is applied to the nozzle, the ink droplet can be discharged.
  • the inkjet signal can be an inkjet voltage pulse signal. By changing the inkjet voltage pulse signal, the nozzle can be changed. The amount of inkjet ink droplets and the inkjet frequency.
  • the measurement system of an embodiment of the present disclosure further includes a powering device 14 disposed at each nozzle outlet for applying a charge to the ink droplets passing through the nozzle.
  • the ink drop amount described in the embodiment of the present disclosure is the ink drop volume calculated by the ink drop mass.
  • the ink droplets passing through the nozzle are powered by the power-on device, and the power-on is controlled by the pulse current provided by the power-on device.
  • the ink droplets ejected from each nozzle on the nozzle are applied by the power-on device.
  • the charge ensures that all the ink droplets have the same charge level and improves the accuracy of the measurement.
  • the operation of the ink ejection amount measuring system will be described below.
  • the charged ink droplets fall behind the nozzle and enter the magnetic field. Due to the Lorentz force, the motion trajectory is deflected compared to the motion trajectory of the free fall.
  • the amount of charge given is the same, then q is also a constant value, and v is the initial velocity of the ink drop. Since the waveform is similar, this change is also small.
  • the mass m, m and the volume of the ink droplet can be derived.
  • the distance between the drop positions is used to calculate the volume of the ink drop. As shown in Fig.
  • ink drops 1 and 2 when different inkjet voltage pulse signals are applied to the same nozzle, if the mass and volume of the dropped ink droplets 2 are larger than the ink droplets 1, the ink droplets 2 are opposite on the test board. The offset is less than the ink drop 1.
  • the ink droplets dripped from the nozzle are energized, and by adding a magnetic field and a measuring device, the positions of the ink droplets ejected by different nozzles are measured, thereby calculating the corresponding ink droplets.
  • the size of the volume is simple and easy to implement, and the test accuracy is high.
  • the droplet volume of the ejected droplet can be precisely controlled. Applying this method to a plurality of nozzles of the nozzle can increase the uniformity of the volume of a plurality of ink droplets ejected from the nozzle.
  • an external electric field 16 may be disposed under the magnetic field, and the type of charge in the electric field 16 is opposite to the type of charge in the charged ink droplet, and the two are attracted to each other.
  • the movement speed of the ink droplets in the magnetic field is increased, the influence of the external environment on the drips of the ink droplets is reduced, and the measurement is facilitated, and the test efficiency is improved.
  • the electric field 16 can be generated by an electric field generating device to accelerate the dripping of the charged ink droplets.
  • the printhead 11 and the test plate 18 need to be aligned.
  • a first alignment mark 19 is set on the head 11
  • a second alignment mark 20 is set on the test board 18, and the head 11 is aligned with the test board 18 by, for example, a CCD (Charge Coupled Device) aligning lens 17.
  • the test height is 3 mm to 5 mm, and the alignment accuracy of 3 um is ensured.
  • a design of the alignment mark is also shown in FIG.
  • the alignment lens 17 is disposed above the head 11, and a certain position of the head 11 is provided with a circular first alignment mark 19, and the test board 18 is provided with a circle.
  • the second alignment mark 20 of the shape by moving the test board 18, the second alignment mark 20 is just in the first alignment mark 19, and the diameter of the second alignment mark 20 and the inner mark of the first alignment mark 19 The diameters are equal, and when the second alignment mark 20 is just filled in the inner ring of the first alignment mark 19, the nozzle is successfully aligned with the test board.
  • the micro-level alignment accuracy can be ensured, and the ink droplets ejected from the nozzles fall as close as possible to the expected position on the test board, facilitating subsequent measurement recording offset. Quantity, improving test efficiency and accuracy.
  • the test board 18 is provided with a reference line 21 having the same number of columns corresponding to the number of nozzle rows. According to the corresponding positional relationship between the alignment mark and the reference line of the test board, the test board is made into a test standard board; when the alignment is successful, the reference line can be set directly under the corresponding nozzle, or can be set at a predetermined amount of ink droplets through the measurement and The theoretical predetermined offset position is calculated.
  • a standard pulse voltage waveform is applied to each nozzle to cause each drop of ink to be sample tested in a predetermined amount, and a theoretical predetermined offset is obtained by measurement and calculation.
  • the present embodiment describes a test procedure for setting the reference line at a theoretical offset corresponding to each row of nozzles.
  • the test standard board is placed in parallel with the nozzle plane.
  • the reference line on the test standard board is arranged parallel to the column of the nozzle.
  • Each ink droplet is judged according to the principle of proximity, and the corresponding offset is determined. Which ink droplet drop point 23 is closest to the reference line is Using the reference line as a reference value, measure the offset between the corresponding ink drop and the standard value of the reference line. If there is a situation where it is impossible to judge by using the principle of proximity, it is possible to first judge that the corresponding nozzle is abnormal.
  • the drop point of the ink drop offset should fall on the reference line.
  • the volume of the ink droplets is different and the quality of the ink droplets is different.
  • the point position is offset and the size of the offset is different.
  • Fig. 5 it is assumed that the charged ink droplets of a certain column of nozzles are shifted to the left by the magnetic field, and the ink droplets located to the left of the reference line indicate that the offset is larger than the standard offset, indicating that the volume of the ink droplets is smaller than the predetermined volume.
  • the ink drop on the right side of the baseline indicates that the offset is less than the standard offset, indicating that the volume of the drop is larger than the predetermined volume. Accordingly, the voltage pulse signal for controlling the ejection of the ink droplets can be adjusted accordingly.
  • the ink droplets ejected from the nozzle can be finally made to have a predetermined volume by multiple measurements and adjustments. If the lower part of the test standard plate is provided with the scale 22, the offset of each drop of ink relative to the reference line can be accurately measured, and the difference between the volume of the dripped ink drop and the predetermined volume of the ink drop can be visually obtained.
  • the ink droplet is prevented from being disturbed by the surrounding airflow during the falling process, and the accuracy of the measurement result is affected, around the entire system.
  • a windproof device 24 is provided, and the spray head 11 and the test plate 18 are both located in the windproof device 24, and the air in the windproof device is regarded as being in a non-circulating state.
  • the test board is moved under the CCD lens (drop scanning lens) 25, and the CCD lens 25 is controlled by the robot arm, and can be moved in the three-dimensional space before and after the up, down, left, right, left, and right, and the scale is enlarged and recorded.
  • the offset of the center of the ink droplets relative to the baseline and the result of the recording is transmitted to the processing unit of the system.
  • the processing unit can calculate the radius of the circular motion of the ink droplets in the above formula by the offset of the ink droplets and the distance between the test standard plate and the nozzle, and calculate the mass of each droplet according to the ink droplet charge and the magnetic field strength. volume.
  • an inkjet signal corresponding to a predetermined amount of ink droplets is applied to the inkjet printhead to eject a known amount of ink droplets; an electric charge is applied to the ink droplets at the nozzle to charge the ink droplets.
  • the charged ink droplets pass through the magnetic field under the nozzle, and are subjected to a magnetic field during the falling process.
  • the falling trajectory is deflected relative to the free falling motion of the ink droplets, and is circularly moved to the previously set test board. If necessary, an electric field can be placed under the magnetic field to accelerate the drop.
  • the offset of the ink drop on the test board is recorded by a CCD lens, and the volume of the corresponding ink drop is calculated.
  • the volume of each drop of ink is obtained and compared with the volume of the predetermined amount of ink droplets, and the waveform of the ink jet pulse is adjusted according to the comparison result. Applying the adjusted inkjet pulse signal to each nozzle, the above steps are repeated until all the ink droplets have a predetermined volume, in particular, the ink droplets ejected from each nozzle fall on the reference line of the test standard board.
  • test standard board can be cleaned after all tests and adjustments have been completed.
  • the ink droplets on the test standard plate can be scrubbed by a volatile solvent such as isopropyl alcohol, scrubbed, dried, and then reused.
  • the technical solution described in the embodiments of the present disclosure uses the principle of deflection of charged particles in a magnetic field, by adding a device for applying electric charge to the nozzle, and by adding a magnetic field and a measuring device, calculating a drop point after the droplets of different masses are deflected
  • the position can be used to estimate the size of the drop volume.
  • the uniformity of the droplet volume can be finally ensured, and the thickness of the film formed by the inkjet printing can be accurately controlled. Improves the inkjet printing accuracy of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Ink Jet (AREA)
  • Coating Apparatus (AREA)

Abstract

一种喷墨打印头,包括:用于容纳墨水的腔体(13),与腔体连通用于进行喷墨打印的喷嘴(12),用于对通过喷嘴的墨滴施加电荷的加电装置(14),以及用于产生磁场的磁场发生装置(15)。通过对喷嘴施加对应预定墨滴量的喷墨信号,荷电墨滴通过磁场,使墨滴滴落轨迹发生偏转。根据墨滴落点位置、墨滴荷电量和磁场强度计算墨滴量;对计算得到的墨滴量与预定墨滴量进行比较,调整喷墨电压脉冲信号,从而可精确控制喷出墨滴的体积,并由此提高喷墨打印精度。

Description

喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法
相关申请的交叉引用
本申请要求于2017年9月22日递交的中国专利申请CN201710863543.X的权益,其全部内容通过参考并入本文中。
技术领域
本公开的实施例涉及显示技术领域和打印技术领域,更具体地,涉及一种喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法。
背景技术
采用打印的方法制作OLED产品被越来越多的厂家重视,成为各个工厂开发的重点,使用喷墨打印方法制作OLED显示产品具有材料利用率高,制程时间短等优点。
公开内容
根据本公开的实施例的第一方面,提供一种喷墨打印喷头,包括:
用于容纳墨水的腔体;和
与腔体连通用于进行喷墨打印的喷嘴,
其中,该喷墨打印喷头进一步包括用于对通过喷嘴的墨滴施加电荷的加电装置。
进一步地,与腔体连通用于进行喷墨打印的喷嘴为多个喷嘴。
进一步地,所述多个喷嘴排列成一列或相互平行的多列。
进一步地,所述喷墨打印喷头包括对位标记。
根据本公开的实施例的第二方面,提供一种喷墨量测量***,包括:
加电装置,用于对通过喷墨打印喷头的喷嘴的墨滴施加电荷;
磁场发生装置,用于产生磁场,以使荷电墨滴发生偏转;
测试板,具有可承载墨滴的表面;
处理单元,用于根据墨滴在所述测试板的表面上的落点位置、墨滴荷电量和磁场强度计算墨滴量。
进一步地,测试板的表面上具有参考位置标记。
进一步地,所述加电装置设置在喷墨打印喷头上。
进一步地,该测量***进一步包括电场发生装置,用于产生电场,以使荷电墨滴加速滴落。
进一步地,所述测试板的表面设置有对位标记。
进一步地,测试板的所述参考位置标记为一条或相互平行的多条基准线。
进一步地,该测量***进一步包括用于测量墨滴落点距离参考位置标记距离的CCD镜头。
进一步地,该测量***进一步包括将荷电墨滴与外界隔离的防风装置。
进一步地,所述加电装置对通过所述喷嘴的各墨滴施加等量的电荷。
根据本公开的实施例的第三方面,提供一种喷墨量测量方法,该方法包括:
对通过喷墨打印喷头的喷嘴的墨滴施加电荷;
产生磁场,使荷电墨滴通过磁场,并使墨滴滴落轨迹发生偏转;
使荷电墨滴滴落在测试板的表面上,并记录荷电墨滴的落点;以及
根据墨滴荷电量、磁场强度及落点位置计算墨滴量。
进一步地,测试板的表面上具有参考位置标记,记录荷电墨滴在测试板的表面上的落点相对于参考位置标记的距离,根据墨滴荷电量、磁场强度及上述距离计算墨滴量。
进一步地,该方法进一步包括:对荷电墨滴施加电场,以使墨滴加速滴落。
进一步地,该方法进一步包括:利用测试板的表面上的对位标记和喷墨打印喷头上的对位标记对位喷墨打印喷头和测试板。
进一步地,该方法进一步包括:通过CCD镜头测量墨滴落点距离参考位置标记距离。
根据本公开的实施例的第四方面,提供一种喷墨量控制方法,该方法包括:
对喷墨打印喷头的喷嘴施加对应预定墨滴量的喷墨信号;
对通过喷嘴的墨滴施加电荷;
产生磁场,使荷电墨滴通过磁场,并使墨滴滴落轨迹发生偏转;
使荷电墨滴滴落在测试板的表面上,并记录荷电墨滴的落点;
根据墨滴荷电量、磁场强度及落点位置计算墨滴量;
将计算得到的墨滴量与预定墨滴量进行比较,并根据比较结果调整喷墨 信号;以及
对喷嘴施加调整后的喷墨信号,以使墨滴具有预定量。
附图说明
下面结合附图对本公开的具体实施方式作进一步详细的说明;
图1为一种具有多排喷嘴的喷头结构示意图;
图2为本公开的实施例的基本原理示意图;
图3为本公开的实施例的设备测试状态示意图;
图4为本公开的实施例的对位标记示意图;
图5为墨滴偏移位置示意图;
图6为墨滴落点测试示意图;以及
图7为测试标准板处理流程示意图。
具体实施方式
为了更清楚地说明本公开,下面结合可选实施例和附图对本公开做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本公开的保护范围。
喷墨打印方法对设备打印的位置精度和墨水的体积精度要求比较高,如果打印位置精度不够,墨滴无法进入像素中,如果打印的体积精度不够,就会出现显示不均匀的情况。由于墨水吐出的体积上存在差异,所以很容易造成显示器亮度不均匀,出现各种痕迹的现象(mura)。为了防止mura,使用包括多排喷嘴的喷头,通过针对一个像素使用多个喷嘴组合墨滴的方法来控制墨滴体积减缓mura。这种方法带来的问题是多排喷嘴难于精确排列在一条直线上,且对墨滴体积的精确测量比较困难。
在通过打印制作OLED产品的方法中,能够精确的测量墨滴体积对于能否制作出优秀的产品至关重要。
本公开的实施例提供一种喷墨打印喷头、喷头内喷嘴的喷墨量测量***和测量方法及喷嘴喷墨量的控制方法,以便确定喷头上的一排或者多排彼此平行的喷嘴所喷出的墨滴体积和并保证墨滴体积的均一性。
如图1所示,图1示出了一种喷墨打印设备的喷头,在喷头11上设置有多个喷嘴12,排成多排矩阵型,打印时通过使喷头11平行移动进行OLED 显示基板上某个膜层的打印,来实现用不同的喷嘴打印相同规格的像素。这种喷头便于平均每个像素中的墨水量,提高效率,减少由于不同喷嘴存在的体积差异而导致的随机mura的产生。通常喷头上位于同一列中的多个喷嘴具有相同的规格尺寸,该多个喷嘴吐出的墨滴的体积也大小相同,但是由于各种原因会导致每个喷嘴吐出的墨滴的体积会有一些微小的波动,这些误差会导致喷墨打印的膜层厚度发生变化。
如图2和3所示,本公开的实施例所述的测量***包括:具有多个喷嘴12的喷头11;对喷嘴12喷出的墨滴进行加电的加电装置14;磁场发生装置,用于产生磁场15;测试板18,具有可承载墨滴的表面;和处理单元,用于根据墨滴在所述测试板的表面上的落点位置、墨滴荷电量和磁场强度计算墨滴量。根据本公开的实施例的一种喷墨打印喷头11,包括:用于容纳墨水的腔体13;和与腔体13连通用于进行喷墨打印的多个喷嘴12。喷头11上可均匀设有多个喷嘴12,多个喷嘴12排列成一列或相互平行的多列,提高打印效率。
喷嘴的材料通常用压电陶瓷,只要给喷嘴施加喷墨信号,就可以吐出墨滴,所述喷墨信号可以为喷墨电压脉冲信号,通过改变喷墨电压脉冲信号,可以改变喷嘴喷出的喷墨墨滴量和喷墨频率。
如前所述,本公开的实施例的测量***进一步包括设置在各喷嘴出口处的加电装置14,用于对通过喷嘴的墨滴施加电荷。
可选的,本公开的实施例所述的墨滴量为通过墨滴质量计算得到的墨滴体积。
通过加电装置对通过喷嘴的墨滴进行加电,加电量通过加电装置提供的脉冲电流控制,在本实施例中,喷头上的每个喷嘴喷出的墨滴通过加电装置施加等量电荷,保证所有墨滴的带电量一致,提高测量的准确性。
下面说明喷墨量测量***的工作原理。荷电墨滴从喷嘴处滴落后进入磁场,受洛伦兹力作用,运动轨迹相比于自由落体的运动轨迹发生偏转。根据洛伦兹力定则qB=mv/r可知,带点墨滴在磁场中做圆周运动,半径r=mv/qB,其中,磁场强度B恒定,q为墨滴所带的电荷量,每次给的电荷量一样,那么q也是恒定值,v是墨滴的初始速度,因为波形是相似的,所以这个变化也很小。所以只要测出墨滴圆周运动的半径r,就可推导出墨滴的质量m,m和体积有关,体积越大,m也就越大,相应的r也就越大。r越大,对应相同的高度,偏转量也就越少,由此可以根据墨滴的滴落位置算出墨滴的体积,例如墨滴的实际滴落位置相对于墨滴自由落体运动时的滴落位置之间的距离算 出墨滴的体积。如图2中墨滴1和2,当对于同一喷嘴施加不同的喷墨电压脉冲信号时,如果滴出的墨滴2的质量和体积大于墨滴1,墨滴2在测试板上的相对的偏移量就比墨滴1少。
通过运用带电粒子在磁场中的偏转原理,对喷头滴出的墨滴进行加电处理,并通过增加磁场和测量装置,测量出不同喷嘴喷出的墨滴落点位置,从而计算出相应墨滴体积的大小,方法简单容易实现,且测试精度高。将计算得到的墨滴体积与所希望喷出的墨滴体积进行比较并相应地调整喷墨电压脉冲信号,可以精确控制喷出墨滴的墨滴体积。将这种方法应用于喷头的多个喷嘴,可提高喷头喷出的多个墨滴体积的一致性。
在图3中,若墨滴进入磁场后的初速度较小,可在磁场下方设置一个外部电场16,电场16中的电荷种类与荷电墨滴中的电荷种类相反,两者相互吸引,可以使墨滴在磁场中运动速度增加,可减小外部环境对墨滴滴落轨迹的影响且方便测量,提高测试效率。该电场16可以通过电场发生装置产生,以使荷电墨滴加速滴落。
如图4所示,为了确定打印的稳定性和准直性,以及喷头中多个喷嘴之间的数据可靠性,需要将喷头11和测试板18进行对位。在喷头11上设定第一对位标记19,在测试板18上设定第二对位标记20,通过例如CCD(电荷耦合器件)对位镜头17将喷头11与测试板18进行对位,在根据本公开的实施例中,在测试高度为3mm-5mm,确保3um的对位精度。图4中也给出了一种对位标记的设计,其中对位镜头17设置于喷头11上方,喷头11的某个位置设置有环形的第一对位标记19,测试板18上设置有圆形的第二对位标记20,通过移动测试板18,使第二对位标记20正好处于第一对位标记19中,第二对位标记20的直径可与第一对位标记19内环的直径相等,当第二对位标记20恰好填充于第一对位标记19的内环时喷头与测试板对位成功。
通过在喷嘴和测试板上分别设置对应的对位标记,可确保微米级别的对位精度,并使喷嘴喷出的墨滴尽可能落在测试板上的预期位置附近,方便后续测量记录偏移量,提高了测试效率和准确性。
在喷头11与测试板18对位成功后,开始进行测试。如图5所示,测试板18上设有与喷嘴列数对应的列数相同的基准线21。根据对位标记与测试板的基准线的对应位置关系,将测试板制作成测试标准板;对位成功时基准线可以设置在对应喷嘴的正下方,也可设置在预定量墨滴通过测量和计算得到理论上的预定偏移位置。
对每个喷嘴施加标准脉冲电压波形以使每滴墨滴按照预定量进行样本测试,通过测量和计算得到理论上的预定偏移量。例如,本实施例描述了在每排喷嘴对应的理论偏移量处设置所述基准线的测试过程。测试标准板与喷嘴平面平行放置,测试标准板上的基准线平行于喷嘴的列设置,每个墨滴按照就近原则判断相应的偏移量,墨滴落点23距离哪条基准线最近,就以那条基准线作为参考值,测量对应的墨滴与那条基准线标准值之间的偏移量即可。如果出现无法利用就近原则进行判断的情况墨滴落点,可首先判断相应喷嘴出现异常。
正常情况下墨滴偏移的落点应该落在基准线上,但是,由于喷嘴结构、喷嘴致动等各种原因,导致墨滴体积存在差异并由此导致墨滴的质量存在差异,导致落点位置发生偏移,且偏移的大小存在差异。如图5中,假设某一列喷嘴的荷电墨滴落下时受磁场作用向左偏移,位于基准线左侧的墨滴表示偏移量大于标准偏移量,说明墨滴的体积小于预定体积;位于基准线右侧的墨滴表示偏移量小于标准偏移量,说明墨滴的体积大于预定体积。据此可相应调整控制吐出墨滴的电压脉冲信号。可通过多次测量和调整,最终实现喷嘴喷出的墨滴具有预定体积。若测试标准板下部设有标尺22,可以精确测量每滴墨滴相对于基准线的偏移量,直观地得到滴落墨滴体积与墨滴预定体积的不同。
通过在测试标准板上设置与每排喷嘴对应的基准线,可以快速测量排列成一列或多列的各喷嘴喷出的滴墨相对于标准值的偏移量,可实现多个喷嘴的同时测试和调整,节省了测试和调整时间,提高了记录、计算和调整效率,并提高了喷头各喷嘴喷墨体积的一致性。
根据本公开的实施例,如图6所示,在整个测试***中,为了保证测试结果的准确性,防止墨滴在下落过程中受到周边气流的扰动,影响测量结果的准确性,整个***周围设有防风装置24,喷头11和测试板18均位于防风装置24内,防风装置内空气视为不流通状态。通过在测试过程中设置防风装置,减少了外界因素对测试结果的影响,减小误差,提高了测试结果的准确性,保证墨滴体积的一致性,提高了设备的喷墨打印精度。
根据本公开的实施例,测试完成后将测试板移动到CCD镜头(落点扫描镜头)25下方,CCD镜头25由机械臂控制,可在上下左右前后三维空间内进行移动,放大标尺并记录每个墨滴的中心相对于基准线的偏移量,并将记录结果传送给***的处理单元。处理单元可以通过墨滴的偏移量和测试标准 板距喷嘴的距离等计算出上述公式中墨滴做圆周运动的半径,并根据墨滴荷电量和磁场强度计算出每滴墨滴的质量和体积。
下面具体说明根据本公开的实施例的墨滴量测量***的测试和调整方法。具体地:对喷墨打印喷头施加对应预定墨滴量的喷墨信号,使之喷出已知量的墨滴;对喷嘴处的墨滴施加电荷,使墨滴带电。荷电墨滴通过喷嘴下方的磁场,在下落过程中受到磁场作用,下落轨迹相对于墨滴的自由落体运动发生偏转,做圆周运动,落到事先设置好的测试板上。必要时可在磁场下方设置电场,使墨滴加速下落。通过CCD镜头记录墨滴在测试板上的偏移量,并计算对应墨滴的体积。得到每滴墨滴的体积后与预定墨滴量的体积进行比较,并根据比较结果调整喷墨脉冲的波形。对每个喷嘴施加调整后的喷墨脉冲信号,重复上述步骤,直到所有的墨滴都具有预定量体积,具体表现为各喷嘴喷出的墨滴均落在测试标准板的基准线上。
如图7所示,当所有测试和调整完成后,可对测试标准板进行清洁。例如可以通过异丙醇等易挥发的溶剂对测试标准板上的墨滴进行擦洗,擦洗后干燥,然后可以重新使用。
对测试标准板进行清洁再利用,节约资源并降低了成本,清洁方便快捷。
本公开的实施例的有益效果如下:
本公开的实施例所述技术方案使用带电粒子在磁场中的偏转原理,通过在喷头增加对施加电荷的装置,并通过增加磁场和测量装置,计算出不同质量的墨滴发生偏转后的落点位置,可推算出墨滴体积的大小。根据得到的墨滴体积与理想体积之间的差异,通过调整喷墨电压脉冲信号并进一步测量墨滴落点位置,可最终保证墨滴体积的均一性,精确控制喷墨打印形成的膜层厚度,提高了设备的喷墨打印精度。
显然,本公开的上述实施例仅仅是为清楚地说明本公开所作的举例,而并非是对本公开的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本公开的技术方案所引伸出的显而易见的变化或变动仍处于本公开的保护范围之列。

Claims (19)

  1. 一种喷墨打印喷头,包括:
    用于容纳墨水的腔体;和
    与腔体连通用于进行喷墨打印的喷嘴,
    其中,该喷墨打印喷头进一步包括用于对通过喷嘴的墨滴施加电荷的加电装置。
  2. 根据权利要求1所述的喷墨打印喷头,其中,与腔体连通用于进行喷墨打印的喷嘴为多个喷嘴。
  3. 根据权利要求2所述的喷墨打印喷头,其中,所述多个喷嘴排列成一列或相互平行的多列。
  4. 根据权利要求1所述的喷墨打印喷头,其中,所述喷墨打印喷头包括对位标记。
  5. 一种喷墨量测量***,包括:
    加电装置,用于对通过喷墨打印喷头的喷嘴的墨滴施加电荷;
    磁场发生装置,用于产生磁场,以使荷电墨滴发生偏转;
    测试板,具有可承载墨滴的表面;
    处理单元,用于根据墨滴在所述测试板的表面上的落点位置、墨滴荷电量和磁场强度计算墨滴量。
  6. 根据权利要求5所述的喷墨量测量***,其中,测试板的表面上具有参考位置标记。
  7. 根据权利要求5所述的喷墨量测量***,其中,所述加电装置设置在喷墨打印喷头上。
  8. 根据权利要求5所述的喷墨量测量***,其中,
    该测量***进一步包括电场发生装置,用于产生电场,以使荷电墨滴加速滴落。
  9. 根据权利要求5所述的喷墨量测量***,其中,所述测试板的表面设置有对位标记。
  10. 根据权利要求6所述的喷墨量测量***,其中,测试板的所述参考位置标记为一条或相互平行的多条基准线。
  11. 根据权利要求6所述的喷墨量测量***,其中,该测量***进一步包括用于测量墨滴落点距离参考位置标记距离的CCD镜头。
  12. 根据权利要求5所述的喷墨量测量***,其中,该测量***进一步包括将荷电墨滴与外界隔离的防风装置。
  13. 根据权利要求5所述的喷墨量测量***,其中,所述加电装置对通过所述喷嘴的各墨滴施加等量的电荷。
  14. 一种喷墨量测量方法,该方法包括:
    对通过喷墨打印喷头的喷嘴的墨滴施加电荷;
    产生磁场,使荷电墨滴通过磁场,并使墨滴滴落轨迹发生偏转;
    使荷电墨滴滴落在测试板的表面上,并记录荷电墨滴的落点;以及
    根据墨滴荷电量、磁场强度及落点位置计算墨滴量。
  15. 根据权利要求14所述的喷墨量测量方法,其中,测试板的表面上具有参考位置标记,记录荷电墨滴在测试板的表面上的落点相对于参考位置标记的距离,根据墨滴荷电量、磁场强度及上述距离计算墨滴量。
  16. 根据权利要求14所述的喷墨量测量方法,其中,该方法进一步包括:对荷电墨滴施加电场,以使墨滴加速滴落。
  17. 根据权利要求14所述的喷墨量测量方法,其中,该方法进一步包括:利用测试板的表面上的对位标记和喷墨打印喷头上的对位标记对位喷墨打印喷头和测试板。
  18. 根据权利要求15所述的喷墨量测量方法,其中,该方法进一步包括:通过CCD镜头测量墨滴落点距离参考位置标记距离。
  19. 一种喷墨量控制方法,该方法包括:
    对喷墨打印喷头的喷嘴施加对应预定墨滴量的喷墨信号;
    对通过喷嘴的墨滴施加电荷;
    产生磁场,使荷电墨滴通过磁场,并使墨滴滴落轨迹发生偏转;
    使荷电墨滴滴落在测试板的表面上,并记录荷电墨滴的落点;
    根据墨滴荷电量、磁场强度及落点位置计算墨滴量;
    将计算得到的墨滴量与预定墨滴量进行比较,并根据比较结果调整喷墨信号;以及
    对喷嘴施加调整后的喷墨信号,以使墨滴具有预定量。
PCT/CN2018/088983 2017-09-22 2018-05-30 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法 WO2019056790A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/327,093 US10751992B2 (en) 2017-09-22 2018-05-30 Inkjet printing spray head, inkjet amount measuring system and method and inkjet amount controlling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710863543.X 2017-09-22
CN201710863543.XA CN107685539B (zh) 2017-09-22 2017-09-22 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法

Publications (1)

Publication Number Publication Date
WO2019056790A1 true WO2019056790A1 (zh) 2019-03-28

Family

ID=61155433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088983 WO2019056790A1 (zh) 2017-09-22 2018-05-30 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法

Country Status (3)

Country Link
US (1) US10751992B2 (zh)
CN (1) CN107685539B (zh)
WO (1) WO2019056790A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107685539B (zh) 2017-09-22 2019-04-23 京东方科技集团股份有限公司 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法
CN108389965B (zh) * 2018-03-01 2021-03-23 京东方科技集团股份有限公司 成膜方法、显示基板及其制作方法、显示装置
CN109016915B (zh) * 2018-08-01 2021-04-09 北京赛腾标识***股份公司 一种喷印调整方法、装置及喷印设备
CN109708912B (zh) * 2019-02-19 2021-02-02 京东方科技集团股份有限公司 一种墨滴落点测试装置及其制备方法
CN110416411B (zh) * 2019-08-30 2022-11-01 昆山国显光电有限公司 一种喷墨打印对位基板和喷墨打印装置
CN110525048B (zh) * 2019-08-30 2020-10-09 合肥京东方卓印科技有限公司 一种测量墨滴体积的装置、***及方法
CN110571360B (zh) * 2019-09-11 2022-01-25 昆山国显光电有限公司 喷墨打印***和显示面板的制备方法
CN110843350B (zh) * 2019-11-26 2021-02-26 京东方科技集团股份有限公司 一种喷墨打印方法、喷墨打印装置及显示器件
CN113207311B (zh) * 2019-12-03 2023-05-16 重庆康佳光电技术研究院有限公司 一种半导体元件巨量转移方法和***
CN114734730B (zh) * 2021-01-07 2023-06-09 深圳市汉森软件有限公司 异常喷嘴补偿打印方法、装置、设备及存储介质
CN115476588B (zh) * 2021-05-31 2024-04-23 森大(深圳)技术有限公司 喷头驱动波形的优化方法、装置、设备及存储介质
CN114523780B (zh) * 2022-03-16 2023-04-21 北京航空航天大学 一种基于磁场调控的纳米颗粒自组装沉积方法
CN117268738B (zh) * 2023-11-20 2024-03-12 季华实验室 喷嘴检测方法、装置、设备以及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769631A (en) * 1972-10-13 1973-10-30 Ibm Increasing throughput in ink jet printing by drop skipping and reducing ink jet merging and splatter using a stairstep generator
JPH01195055A (ja) * 1988-01-29 1989-08-04 Nec Home Electron Ltd インクジェットプリンタ
JPH02147244A (ja) * 1988-11-29 1990-06-06 Nec Home Electron Ltd インクジェット・プリンタ
US20020075345A1 (en) * 2000-12-19 2002-06-20 Kazuo Shimizu Ink jet printer capable of adjusting deflection amount in accordance with positional shift of head modules
CN102076501A (zh) * 2008-06-02 2011-05-25 开普敦大学 纳米微粒功能墨水的喷墨印刷
CN107685539A (zh) * 2017-09-22 2018-02-13 京东方科技集团股份有限公司 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594310B2 (ja) * 1979-06-30 1984-01-28 株式会社リコー インクジェット記録装置
JPS62225355A (ja) * 1986-03-27 1987-10-03 Fuji Xerox Co Ltd 画像記録ヘツド
FR2763870B1 (fr) 1997-06-03 1999-08-20 Imaje Sa Systeme de commande de projection de liquide electriquement conducteur
US7080897B2 (en) 2003-10-31 2006-07-25 Hewlett-Packard Development Company, L.P. System for delivering material onto a substrate
CN100572071C (zh) * 2004-06-17 2009-12-23 录象射流技术公司 相位调整所用的阈值自动调节***及方法
JP4517766B2 (ja) * 2004-08-05 2010-08-04 ブラザー工業株式会社 ライン式インクジェットプリンタにおけるインク吐出量補正方法
FR2890596B1 (fr) 2005-09-13 2007-10-26 Imaje Sa Sa Dispositif de charge et deflexion de gouttes pour impression a jet d'encre
DE102007023014A1 (de) 2007-05-15 2008-11-27 Kba-Metronic Ag Verfahren und System zur Dosierung und zum Aufbringen einer Reagenzflüssigkeit
DE102011113664A1 (de) 2011-09-20 2013-03-21 Simaco GmbH Verfahren und Vorrichtung zur Homogenisierung von Tinte für Inkjet-Geräte
US8651632B2 (en) * 2012-03-20 2014-02-18 Eastman Kodak Company Drop placement error reduction in electrostatic printer
JP5946322B2 (ja) * 2012-05-22 2016-07-06 株式会社日立産機システム インクジェット記録装置
CN105398218A (zh) * 2015-12-14 2016-03-16 上海美创力罗特维尔电子机械科技有限公司 一种喷码机喷印***

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769631A (en) * 1972-10-13 1973-10-30 Ibm Increasing throughput in ink jet printing by drop skipping and reducing ink jet merging and splatter using a stairstep generator
JPH01195055A (ja) * 1988-01-29 1989-08-04 Nec Home Electron Ltd インクジェットプリンタ
JPH02147244A (ja) * 1988-11-29 1990-06-06 Nec Home Electron Ltd インクジェット・プリンタ
US20020075345A1 (en) * 2000-12-19 2002-06-20 Kazuo Shimizu Ink jet printer capable of adjusting deflection amount in accordance with positional shift of head modules
CN102076501A (zh) * 2008-06-02 2011-05-25 开普敦大学 纳米微粒功能墨水的喷墨印刷
CN107685539A (zh) * 2017-09-22 2018-02-13 京东方科技集团股份有限公司 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法

Also Published As

Publication number Publication date
US20200156371A1 (en) 2020-05-21
US10751992B2 (en) 2020-08-25
CN107685539B (zh) 2019-04-23
CN107685539A (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
WO2019056790A1 (zh) 喷墨打印喷头、喷墨量测量***和方法及喷墨量控制方法
CN109823050B (zh) 面向喷墨打印的液滴喷射多阶段定位误差补偿方法及设备
CN1939730B (zh) 用于喷墨液滴定位校准的方法和***
CN101407131B (zh) 框架移动型液材料涂布装置
CN1939731B (zh) 用于喷墨液滴定位的方法和***
JP2007256449A (ja) 液滴噴射検査装置、液滴噴射装置及び塗布体の製造方法
WO2023226294A1 (zh) 一种墨滴观测仪位置校准方法及***
JP2006047235A (ja) 液滴計測装置、液滴計測方法、液滴塗布装置及びデバイス製造装置並びに電子機器
JP6857807B2 (ja) インクジェット印刷方法
JPWO2010044429A1 (ja) 液滴塗布方法及び装置
CN110525048B (zh) 一种测量墨滴体积的装置、***及方法
JP2006167534A (ja) 液滴量測定方法、液滴吐出ヘッドの駆動信号適正化方法および液滴吐出装置
JP2007130536A (ja) 液滴吐出量測定方法、液滴吐出量測定用治具、液滴吐出量調整方法、液滴吐出量測定装置、描画装置、デバイス及び電気光学装置並びに電子機器
JP2006220539A (ja) 液滴吐出量測定方法、液滴吐出量測定用治具、液滴吐出量調整方法、液滴吐出量測定装置および描画装置
JP4871545B2 (ja) 液滴量測定装置および液体吐出ヘッドの製造方法
JP2006204964A (ja) パターン形成装置及び方法
JP6414888B2 (ja) 液滴吐出装置、着滴精度検査装置、及び、着滴精度検査方法
JP4848841B2 (ja) 成膜装置及び成膜方法
KR20080061776A (ko) 잉크젯 헤드에서 분사된 잉크의 드롭량을 균일하게 하는방법, 표시 기판의 패턴 형성 방법 및 장치
JP2005014453A (ja) インク液滴制御装置及びそれを備えたインクジェット記録装置
US11878509B2 (en) Liquid ejecting apparatus, inspection method, and storage medium
KR20240065902A (ko) 기판 처리 장치 및 방법
KR20060098304A (ko) 잉크젯 프린팅 시스템
Kipman et al. Drop Watcher Technology and Print Quality Analysis
JP5619536B2 (ja) 塗布方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 18858247

Country of ref document: EP

Kind code of ref document: A1