WO2017191801A1 - Resin composition, molded article, layered body, and adhesive - Google Patents

Resin composition, molded article, layered body, and adhesive Download PDF

Info

Publication number
WO2017191801A1
WO2017191801A1 PCT/JP2017/016715 JP2017016715W WO2017191801A1 WO 2017191801 A1 WO2017191801 A1 WO 2017191801A1 JP 2017016715 W JP2017016715 W JP 2017016715W WO 2017191801 A1 WO2017191801 A1 WO 2017191801A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
epoxy resin
resin composition
adhesive
present
Prior art date
Application number
PCT/JP2017/016715
Other languages
French (fr)
Japanese (ja)
Inventor
高田新吾
伊藤大介
永田寛知
松本広臣
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2017556765A priority Critical patent/JP7167441B2/en
Publication of WO2017191801A1 publication Critical patent/WO2017191801A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • the present invention relates to a resin composition excellent in heat resistance and flexibility, and a laminate and an adhesive using the resin composition.
  • a member having both high heat dissipation and heat resistance is required.
  • adhesives and adhesive sheets having thermal conductivity and heat resistance are particularly useful for downsizing electronic components, and thus development is required.
  • a composition having high thermal conductivity a composition in which an inorganic filler having high thermal conductivity is blended with a resin composition such as an epoxy resin is disclosed.
  • a resin composition such as an epoxy resin
  • a molded body such as a sheet becomes hard and brittle, and is used as a thermal conductive member.
  • Patent Document 1 discloses a heat-dissipating sheet containing an epoxy resin having an alkylene ether structure having 2 to 6 carbon atoms and a highly thermally conductive inorganic filler.
  • the composition has improved handling properties, the glass transition temperature is lowered, and there are problems regarding heat resistance and reliability.
  • An object of the present invention is to provide a resin composition having excellent thermal conductivity and handling properties and high heat resistance, a molded product formed by molding the resin composition, a laminate containing the composition, and an adhesive. There is.
  • the non-aromatic epoxy resin (A2) is Epoxy group-derived oxygen atom (number of moles) / oxygen atom other than epoxy group-derived oxygen atom (number of moles) ⁇ 1
  • a resin composition that is an aliphatic epoxy resin (A2-1) is provided.
  • a resin composition which is a polyfunctional aliphatic epoxy resin (A2-2), wherein the aliphatic epoxy resin (A2-1) contains three or more epoxy groups.
  • the present invention also provides a resin composition which is a polyfunctional polycyclic aromatic epoxy resin (A1-2), wherein the polycyclic aromatic epoxy resin (A1) contains 3 or more epoxy groups. is there.
  • the present invention provides a resin composition in which the thermally conductive filler (B) has a thermal conductivity of 10 W / mK or more.
  • the present invention provides an adhesive characterized by containing the resin composition.
  • the present invention also provides an electronic member and a heat conductive member characterized by having the molded article of the present invention.
  • the resin composition of the present invention includes a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure.
  • A1 polycyclic aromatic epoxy resin
  • A2 non-aromatic epoxy resin
  • the thermally conductive filler (B) can be highly filled, the resin composition of the present invention can be suitably used as a thermally conductive material.
  • a molded body and a laminate using the thermally conductive material are Since it has high heat conductivity and high handling, it can be suitably used as a heat conductive member. In particular, it can be suitably used as an electronic member that is increasingly miniaturized.
  • the present invention relates to a polycyclic aromatic epoxy resin (A1), a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and no aromatic ring structure, and thermal conductivity.
  • a resin composition containing the filler (B) is disclosed.
  • the polycyclic aromatic epoxy resin (A1) of the present invention is an epoxy resin having a plurality of aromatic rings and an epoxy group. Having a plurality of aromatic rings includes a case where the single rings form a direct bond or a condensed ring, and a case where the aromatic rings are further bonded directly or via a linking group. Since the polycyclic aromatic epoxy resin (A1) has a plurality of aromatic rings, since a rigid structure is introduced into the epoxy resin, the heat resistance of the entire resin composition is improved.
  • One type of polycyclic aromatic epoxy resin (A1) may be used, or a plurality of types may be used in combination.
  • a benzene ring is mentioned as a monocyclic aromatic ring in this invention.
  • the condensed aromatic ring include a naphthalene ring, an anthracene ring, a phenanthrene ring, a naphthacene ring, a pentacene ring, a pyrene ring, a chrysene ring, and a triphenylene ring.
  • the linking group is not particularly limited.
  • a divalent or higher valent atom such as oxygen, sulfur or nitrogen, a substituted or unsubstituted hydrocarbon group, a carbonyl group (—CO— group), an ester group (—COO— group).
  • Amide group (—CONH— group), imino group (—C ⁇ N— group), azo group (—N ⁇ N— group), sulfide group (—S— group), sulfone group (—SO 3 — group)
  • a linking group formed by combining these As a bond between aromatic rings, a direct bond or a substituted or unsubstituted hydrocarbon group having 1 carbon atom is preferably a linking group because heat resistance is further improved.
  • the epoxy group may be directly bonded to the aromatic ring or may be bonded via the linking group as described above.
  • the polycyclic aromatic epoxy resin (A1) of the present invention may have a plurality of structures having a plurality of aromatic rings.
  • polycyclic aromatic epoxy resin (A1) of the present invention it is preferable to have two or more epoxy groups.
  • a polyfunctional polycyclic aromatic epoxy resin (A1-2) characterized by containing 3 or more epoxy groups.
  • the polyfunctional polycyclic aromatic epoxy resin (A1-2) is preferable because the reactivity of the resin composition is improved and the heat resistance is improved because the network in the cured product becomes dense.
  • One type of non-aromatic epoxy resin (A2) may be used, or a plurality of types may be used in combination.
  • polycyclic aromatic epoxy resin (A1) of the present invention preferred structures include the following.
  • Non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and not having an aromatic ring structure The epoxy resin (A) of the present invention has a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and no aromatic ring structure (hereinafter referred to as a non-aromatic epoxy resin ( A2)). Since the non-aromatic epoxy resin (A2) of the present invention has an aliphatic hydrocarbon structure having 6 or more carbon atoms, the flexibility of the composition is improved and the handling property is improved.
  • non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and not having an aromatic ring structure examples include 1,6-hexanediol diglycidyl ether, neopentyl glycol glycidyl.
  • Ether trimethylolpropane triglycidyl ether, glycerol triglycidyl ether, pentaerythritol tetraglycidyl ether, hydrogenated bisphenol A diglycidyl ether, C10 to C18 alcohol glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ', 4'- epoxycyclohexane carboxylate, cyclohexanedimethanol diglycidyl ether, polyethylene glycol diglycidyl ether.
  • the non-aromatic epoxy resin (A2) of the present invention is an aliphatic epoxy resin (A2-1) in which the oxygen atom derived from the epoxy group (number of moles) / the oxygen atom other than derived from the epoxy group (number of moles) ⁇ 1,
  • An aliphatic epoxy resin (referred to as A2-1) is preferable. This is because there are few oxygen atoms other than those derived from an epoxy group (for example, structural origins such as ethers, esters, and amides), so that the resistance to decomposition by heat and moisture is improved.
  • it since it has an aliphatic hydrocarbon structure having 6 or more carbon atoms, the flexibility of the resin is improved and the handling property is improved.
  • the aliphatic epoxy resin (A2-1) of the present invention is preferred because both can be compatible.
  • Examples of the aliphatic epoxy resin (A2-1) of the present invention include 1,6-hexanediol diglycidyl ether, neopentyl glycol glycidyl ether, trimethylolpropane triglycidyl ether, glycerol triglycidyl ether, pentaerythritol tetraglycidyl ether, Examples thereof include hydrogenated bisphenol A diglycidyl ether, C10-C18 alcohol glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, cyclohexanedimethanol diglycidyl ether, and the like.
  • the aliphatic epoxy resin (A2-1) of the present invention is preferably a polyfunctional aliphatic epoxy resin (A2-2) characterized by having 3 or more epoxy groups. This is because in the case of the polyfunctional aliphatic epoxy resin (A2-2), the reactivity of the resin composition is improved, and the heat resistance is improved because the network in the cured product becomes dense. Examples of this are trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether.
  • the ratio between the theoretical value of epoxy equivalent and the actually measured value is preferably 1.00 to 1.30. If it is within 1.30, it is close to the theoretical structure, a dense cross-linked structure can be formed, and residual chlorine is small.
  • the resin composition of the present invention may contain an epoxy resin other than the polycyclic aromatic epoxy resin (A1) and the non-aromatic epoxy resin (A2).
  • the resin composition of the present invention can further contain a phenoxy resin which is a high molecular weight epoxy resin.
  • the phenoxy resin is a resin obtained by reacting a bisphenol compound and epihalohydrin in the presence of a strong alkali.
  • the phenoxy resin is produced from bisphenol A-modified phenoxy resin, bisphenol S and epihalohydrin produced from bisphenol A and epihalohydrin. And bisphenol S-modified phenoxy resin.
  • the epoxy equivalent of the phenoxy resin is 1,000 g / equivalent or more and 100,000 g / equivalent or less, the compatibility with the epoxy resin is improved, and the surface is smooth.
  • the epoxy equivalent of the phenoxy resin is more preferably 2,000 to 50,000 g / equivalent, and still more preferably 3,000 to 20,000 g / equivalent.
  • the total blending amount of the polycyclic aromatic epoxy resin (A1) and the non-aromatic epoxy resin (A2) is preferably 60% or more. It is because the heat resistance and flexibility of the resin composition will not be impaired if it is 60% or more. Particularly preferably, it is 70% or more.
  • the resin composition of the present invention contains a thermally conductive filler (B).
  • a thermally conductive filler (B) known and conventional ones may be used. For example, gold, platinum, silver, copper, nickel, palladium, iron, aluminum, stainless steel, graphite (graphite), silicon oxide, silicon nitride , Aluminum nitride, boron nitride, aluminum borate, aluminum oxide, magnesium oxide, diamond, and PBO (polyparaphenylene benzoxazole).
  • the shape of the thermally conductive filler (B) is not particularly limited, and may be spherical, polyhedral, particles having a high aspect ratio, fibers, or irregular shapes. Absent. Spherical or polyhedral particles are preferred because the resin composition can be highly filled.
  • the preferred 50% cumulative particle size is 500 ⁇ m to 5 nm, more preferably 100 ⁇ m to 100 nm.
  • a plurality of fillers (B) having different filler particle diameters may be blended. For example, it is preferable to mix three components having a small particle size, a medium particle size, and a large particle size because both high thermal conductivity and high filling can be achieved.
  • the three-component filler having a particle size of 3 components is a filler (B1) having a 50% cumulative particle size of 100 to 10 ⁇ m, 1 for the 50% cumulative particle size of the filler (B1) having a 50% cumulative particle size of 30 to 1 ⁇ m.
  • filler (B2) 50% cumulative particle diameter of 5 ⁇ m to 100 nm
  • filler (B2) 50% cumulative particle diameter of 1/100 or more and 1/2 or less filler
  • B3 the total volume of the fillers (B1), (B2), and (B3) is 100%
  • the filler (B1) is 50 to 80%
  • the filler (B2) is 10 to 40%
  • the filler (B3) is 10%. It is preferably ⁇ 40%.
  • the filler (B1) preferably has a 90% cumulative particle size of 1 ⁇ 2 or less of the dry thickness after coating or molding. (For those not listed above, cumulative particle size is based on volume-based measurements)
  • thermally conductive filler (B) of the present invention it is preferable to use a filler having a thermal conductivity of 10 W / mK or more because high thermal conductivity can be imparted to the resin composition.
  • a filler having a thermal conductivity of 10 W / mK or more because high thermal conductivity can be imparted to the resin composition.
  • aluminum oxide (alumina), aluminum nitride, boron nitride, silicon nitride, and magnesium oxide are preferable from the viewpoint of ensuring thermal conductivity and insulation, and alumina is particularly suitable for resin in addition to thermal conductivity and insulation. It is more preferable because the filling property is improved.
  • the thermal conductive filler (B) is 60 to 95% by volume in the entire resin composition. Particularly preferred is 70 to 95% by volume, and particularly preferred is 75 to 95% by volume.
  • the resin composition of the present invention may contain a compound other than the polycyclic aromatic epoxy resin (A1), the non-aromatic epoxy resin (A2), and the heat conductive filler (B).
  • the resin composition of the present invention contains an epoxy resin, it preferably contains a curing agent.
  • Any curing agent may be used as long as it is commonly used for epoxy resins, and examples thereof include amine curing agents, amide curing agents, acid anhydride curing agents, and phenol curing agents.
  • the amine curing agents include diaminodiphenylmethane, diaminodiphenylethane, diaminodiphenyl ether, diaminodiphenylsulfone, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine, metaxylenediamine, paraxylenediamine, diethyltoluenediamine, diethylenetriamine. , Triethylenetetramine, isophoronediamine, imidazole compound, BF3-amine complex, guanidine derivative, guanamine derivative and the like.
  • amide-based curing agent examples include polyamide resins synthesized from dicyandiamide and a dimer of linolenic acid and ethylenediamine.
  • acid anhydride curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
  • phenolic curing agents include bisphenol A, bisphenol F, bisphenol S, resorcin, catechol, hydroquinone, fluorene bisphenol, 4,4'-biphenol, 4,4 ', 4 "-trihydroxytriphenylmethane, naphthalenediol, 1 , 1,2,2-tetrakis (4-hydroxyphenyl) ethane, calixarene, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Xylok) Resin), polyhydric phenol novolak resin synthesized from formaldehyde and polyhydric hydroxy compound represented by resorcinol novolak resin, naphthol aralkyl resin, trimethylo Rumethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-
  • an amine-based or amide-based curing agent is preferable because adhesion with a heat conductive adhesive or a heat conductive adhesive sheet is improved.
  • a latent curing agent include dicyandiamide, imidazoles, hydrazides, boron trifluoride-amine complexes, amine imides, polyamine salts, modified products thereof, and microcapsules.
  • ⁇ Curing accelerator> You may mix
  • Various compounds that accelerate the curing reaction of the epoxy resin can be used as the curing accelerator, and examples thereof include phosphorus compounds, tertiary amine compounds, imidazole compounds, organic acid metal salts, Lewis acids, and amine complex salts. Among these, use of an imidazole compound, a phosphorus compound, and a tertiary amine compound is preferable. .
  • the resin composition of the present invention may be blended with other resins other than the epoxy resin as long as the effects of the present invention are not impaired.
  • other resins include thermosetting resins and thermoplastic resins.
  • thermosetting resin is a resin having characteristics that can be substantially insoluble and infusible when cured by heating or means such as radiation or a catalyst. Specific examples thereof include phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, heat Examples thereof include curable polyimide resins. These thermosetting resins can be used alone or in combination of two or more.
  • Thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone Fat, polyarylate resins, thermoplastic polyimide resins, polyamide
  • the resin composition of the present invention may contain a solvent depending on the intended use.
  • the solvent include organic solvents such as methyl ethyl ketone, acetone, ethyl acetate, butyl acetate, toluene, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like.
  • the selection and proper usage amount may be appropriately selected depending on the application.
  • the resin composition of the present invention is a reactive compound, an inorganic pigment, an organic pigment, an extender pigment, a clay mineral, a wax, a surfactant, a coupling agent, a stabilizer, a fluid, as long as the effects of the present invention are not impaired.
  • Conditioners, dyes, leveling agents, rheology control agents, UV absorbers, antioxidants, plasticizers, etc. may be added.
  • the molded body of the present invention is a molded body obtained by molding the above resin composition.
  • the molding method a known and commonly used method may be used, and it may be selected as appropriate depending on the type or use of the resin.
  • the shape of the molded body it may be a plate, a sheet or a film, may have a three-dimensional shape, even if it is applied to a substrate, You may shape
  • the resin composition of the present invention is suitable for producing a sheet because it has high handling properties even when highly filled with a filler.
  • an extrusion forming method for example, if a plate-like or sheet-like product is manufactured, an extrusion forming method is generally used, but a flat press is also possible.
  • a profile extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, and the like can be used.
  • the solution casting method can be used in addition to the melt extrusion method.
  • the melt molding method inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding are used.
  • cured with an active energy ray a molded object can be manufactured using the various hardening methods using an active energy ray.
  • the resin composition is liquid, it can be formed by coating.
  • the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, and an ink jet method.
  • the resin composition of the present invention is excellent in adhesiveness, it can be used as an adhesive.
  • the form of the adhesive there are no particular limitations on the form of the adhesive, and it may be a liquid or paste adhesive, or a solid adhesive.
  • the resin composition of the present invention contains a heat conductive filler (B), it can be suitably used as a heat conductive adhesive.
  • a liquid or paste-like adhesive it may be a one-component adhesive or a two-component adhesive separately from a curing agent.
  • the method of use is not particularly limited, but a liquid or paste-like resin composition may be injected into the interface of the bonding surface, and then bonded and cured.
  • an adhesive formed into a powder, chip, or sheet may be installed at the interface of the adhesive surface, bonded by heat melting, and cured.
  • the resin composition of the present invention is excellent in flexibility, it is very suitable for use as an adhesive sheet.
  • the heat conductive filler (B) is highly filled, both heat resistance and flexibility (handling property) can be achieved, and therefore, it can be suitably used as a heat conductive adhesive sheet.
  • a laminated body can be obtained by laminating the molded body of the present invention on a substrate.
  • the laminate may be two layers or three or more layers.
  • the material of the base material is not particularly limited and may be appropriately selected depending on the application, and examples thereof include wood, metal, plastic, paper, silicon, or modified silicon. It doesn't matter.
  • the shape of the substrate is not particularly limited, and may be any shape according to the purpose, such as a flat plate, a sheet, or a three-dimensional shape having an entire surface or a part of the curvature.
  • the molded body may be formed directly on the base material by coating or molding, or already molded products may be laminated.
  • the coating method is not particularly limited, spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, A screen printing method, an inkjet method, etc. are mentioned.
  • direct molding in-mold molding, insert molding, vacuum molding, extrusion lamination molding, press molding and the like can be mentioned.
  • laminating a molded resin composition an uncured or semi-cured composition layer may be laminated and then cured, or a cured layer obtained by completely curing the composition may be laminated on a substrate. Also good.
  • the cured product of the present invention may be laminated by applying and curing a precursor that can be a substrate, and the precursor that can be a substrate or the composition of the present invention is uncured or semi-cured. You may make it harden
  • the resin composition of the present invention includes a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure.
  • A1 polycyclic aromatic epoxy resin
  • A2 non-aromatic epoxy resin
  • the thermally conductive filler (B1) the resin composition of the present invention can be suitably used as a thermally conductive material, and a molded body and a laminate using the thermally conductive material are thermally conductive. Since it has high properties and high handling, it can be suitably used as a heat conductive member. In particular, it can be suitably used as an electronic member that is increasingly miniaturized.
  • Epoxy equivalent (g / eq.) (1000 ⁇ W) / [(Vs ⁇ Vb) ⁇ 0.1 ⁇ [F20 / ⁇ 1 + 0.011 (t ⁇ 20) ⁇ ]]
  • W Amount of epoxy resin sample
  • Vs Appropriate amount of 0.1 mol / l HClO4 required for this test
  • Vb Appropriate amount of 0.1 mol / l HClO4 required for the blank test
  • t liquid temperature of 0.1 mol / l HClO4 during titration (° C.)
  • Epoxy resin (EP-1) Synthesis of 2,2 ', 7,7'-tetraglycidyloxy-1,1'-binaphthalene Thermometer, stirrer, reflux condenser A flask equipped with a nitrogen gas purge was charged with iron (III) chloride hexahydrate A solution in which 278 g (1.0 mol) of the Japanese product and 2660 mL of water were charged and the inside of the reaction vessel was purged with nitrogen while stirring, and then 164 g (1.0 mol) of naphthalene-2,7-diol was dissolved in 380 mL of isopropyl alcohol in advance. And stirred at 40 ° C. for 30 minutes.
  • aluminum hydroxide manufactured by Nippon Light Metal Co., Ltd., average particle size 45 ⁇ m
  • molybdenum oxide manufactured by Wako Pure Chemical Industries, Ltd.
  • a polyhedron having a 50% cumulative particle size of 5 ⁇ m, a 90% cumulative particle size of 7 ⁇ m, a density of 3.95, a crystal plane other than the [001] plane as the main crystal plane, and a crystal plane with a larger area than the [001] plane It was confirmed that the particles were shaped alumina (aluminum oxide) particles.
  • the resin composition 1 is dried to a thickness of 120 ⁇ m using a rod-shaped metal applicator. It was applied to become.
  • the coated product was dried at 50 ° C. for 10 minutes, then dried at 70 ° C. for 10 minutes, and further dried at 100 ° C. for 20 minutes to form a laminate having a 120 ⁇ m thick sheet on the release film.
  • the laminate was cut into 10 mm ⁇ 100 mm, the sheet was directed outward, wound around a cylinder having a diameter of 5 mm or 20 mm, and bent 180 degrees.
  • the presence or absence of cracks in the folded sheet was visually evaluated according to the following criteria.
  • X Cracks were observed in a 20 mm cylinder.
  • Examples and Comparative Examples> In the same manner as in Example 1, resin compositions and sheets were prepared at the blending ratios shown in Table 1-1 and Table 1-2 below, and sheet flexibility, glass transition temperature, and thermal conductivity were measured.
  • the resin composition of the present invention includes a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure.
  • A1 polycyclic aromatic epoxy resin
  • A2 non-aromatic epoxy resin
  • the resin composition of the present invention can be suitably used as a heat conductive material, and a molded body and a laminate using the heat conductive material.
  • it can be suitably used as an electronic member that is increasingly miniaturized.

Abstract

The present invention provides a resin composition characterized by containing a polycyclic aromatic epoxy resin (A1), a non-aromatic epoxy resin (A2) having a C6 or higher aliphatic hydrocarbon structure and not having an aromatic ring structure, and a thermoconductive filler (B). The present invention also provides the aforementioned resin composition wherein the non-aromatic epoxy resin (A2) is an aliphatic epoxy resin (A2-1) in which the ratio of oxygen atoms (number of moles thereof) originating from epoxy groups to oxygen atoms (number of moles thereof) other than those originating from epoxy groups is greater than or equal to 1. The present invention also provides an adhesive and a layered body containing the resin composition.

Description

樹脂組成物、成形体、積層体及び接着剤Resin composition, molded body, laminate and adhesive
 本発明は、耐熱性と柔軟性に優れた樹脂組成物、及びそれを用いた積層体及び接着剤に関する。 The present invention relates to a resin composition excellent in heat resistance and flexibility, and a laminate and an adhesive using the resin composition.
 電子部品の小型化、高集積化に伴い、発熱とそれによる動作不良が問題となっている。そのため、電子部品を正常に作動させるためには、高い放熱性と耐熱性を両立した部材が求められている。特に熱伝導性と耐熱性を有する接着剤や接着シートは電子部品の小型化には特に有用であるため、開発が求められている。
 高い熱伝導性を有する組成物としては、エポキシ樹脂などの樹脂組成物に、高熱伝導の無機フィラーを配合した組成物が開示されている。高い熱伝導性を発揮するには、高熱伝導性のフィラーを大量に配合する必要があるが、フィラー配合量が多くなるとシート等の成形体が硬脆くなり、熱伝導性部材として使用するためのハンドリング性が悪くなり、ハンドリングの際にクラックなどが発生するという課題があった。この課題に対し、特許文献1では炭素数が2~6であるアルキレンエーテル構造を有するエポキシ樹脂と高熱伝導性無機フィラーとを含有する放熱シートが開示されている。しかし、当該組成物はハンドリング性が改善されているものの、ガラス転移温度が低下し、耐熱性及び信頼性についての課題があった。
With the miniaturization and high integration of electronic components, heat generation and malfunction due to it are becoming problems. Therefore, in order to operate the electronic component normally, a member having both high heat dissipation and heat resistance is required. In particular, adhesives and adhesive sheets having thermal conductivity and heat resistance are particularly useful for downsizing electronic components, and thus development is required.
As a composition having high thermal conductivity, a composition in which an inorganic filler having high thermal conductivity is blended with a resin composition such as an epoxy resin is disclosed. In order to exhibit high thermal conductivity, it is necessary to blend a large amount of high thermal conductivity filler. However, when the filler content is increased, a molded body such as a sheet becomes hard and brittle, and is used as a thermal conductive member. There was a problem that handling properties deteriorated and cracks and the like occurred during handling. In response to this problem, Patent Document 1 discloses a heat-dissipating sheet containing an epoxy resin having an alkylene ether structure having 2 to 6 carbon atoms and a highly thermally conductive inorganic filler. However, although the composition has improved handling properties, the glass transition temperature is lowered, and there are problems regarding heat resistance and reliability.
特開2012-69425号公報JP 2012-69425 A
 本発明の課題は、熱伝導性とハンドリング性に優れ、なおかつ耐熱性も高い樹脂組成物、該樹脂組成物を成形してなる成形体、該組成物を含有する積層体及び接着剤を提供することにある。 An object of the present invention is to provide a resin composition having excellent thermal conductivity and handling properties and high heat resistance, a molded product formed by molding the resin composition, a laminate containing the composition, and an adhesive. There is.
 本発明者らは鋭意検討した結果、多環芳香族エポキシ樹脂(A1)及び、炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)と熱伝導性フィラー(B)とを含有することを特徴とする樹脂組成物を提供することで、上記課題を解決できることを見出した。 As a result of intensive studies, the present inventors have found that a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure ( It has been found that the above problem can be solved by providing a resin composition comprising A2) and a thermally conductive filler (B).
 また、前記樹脂組成物において、非芳香族エポキシ樹脂(A2)が、
 エポキシ基由来酸素原子(モル数)/エポキシ基由来以外の酸素原子(モル数)≧1
である脂肪族エポキシ樹脂(A2-1)である樹脂組成物を提供するものである。
In the resin composition, the non-aromatic epoxy resin (A2) is
Epoxy group-derived oxygen atom (number of moles) / oxygen atom other than epoxy group-derived oxygen atom (number of moles) ≧ 1
A resin composition that is an aliphatic epoxy resin (A2-1) is provided.
 また、前記脂肪族エポキシ樹脂(A2-1)が、エポキシ基を3個以上含有することを特徴とする多官能脂肪族エポキシ樹脂(A2-2)である樹脂組成物を提供するものである。 Also provided is a resin composition which is a polyfunctional aliphatic epoxy resin (A2-2), wherein the aliphatic epoxy resin (A2-1) contains three or more epoxy groups.
 また、前記多環芳香族エポキシ樹脂(A1)が、エポキシ基を3個以上含有することを特徴とする多官能多環芳香族エポキシ樹脂(A1-2)である樹脂組成物を提供するものである。 The present invention also provides a resin composition which is a polyfunctional polycyclic aromatic epoxy resin (A1-2), wherein the polycyclic aromatic epoxy resin (A1) contains 3 or more epoxy groups. is there.
 また、前記熱伝導性フィラー(B)が、10W/mK以上の熱伝導率を有するものである樹脂組成物を提供するものである。 Further, the present invention provides a resin composition in which the thermally conductive filler (B) has a thermal conductivity of 10 W / mK or more.
 また、前記樹脂組成物を成形してなる成形体、および基材と該成形体とを積層してなる積層体を提供するものである。 Also provided are a molded body formed by molding the resin composition, and a laminated body formed by laminating a base material and the molded body.
 また、前記樹脂組成物を含有することを特徴とする接着剤を提供するものである。 Further, the present invention provides an adhesive characterized by containing the resin composition.
 また、本発明の成形体を有することを特徴とする電子部材および熱伝導性部材を提供するものである。 The present invention also provides an electronic member and a heat conductive member characterized by having the molded article of the present invention.
 本発明の樹脂組成物は、多環芳香族エポキシ樹脂(A1)及び、炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)を含有することで、高い耐熱性とハンドリング性を両立することができる。また、熱伝導性フィラー(B)が高充填可能なため、本発明の樹脂組成物は、熱伝導性材料として好適に使用可能であり、該熱伝導性材料を用いた成形体及び積層体は熱伝導性が高い上にハンドリングが高いため、熱伝導性部材として好適に使用できる。特に小型化が進む電子部材として好適に使用できる。 The resin composition of the present invention includes a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure. By containing, high heat resistance and handling property can be made compatible. In addition, since the thermally conductive filler (B) can be highly filled, the resin composition of the present invention can be suitably used as a thermally conductive material. A molded body and a laminate using the thermally conductive material are Since it has high heat conductivity and high handling, it can be suitably used as a heat conductive member. In particular, it can be suitably used as an electronic member that is increasingly miniaturized.
 本発明は、多環芳香族エポキシ樹脂(A1)及び、炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)と熱伝導性フィラー(B)とを含有する樹脂組成物を開示するものである。 The present invention relates to a polycyclic aromatic epoxy resin (A1), a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and no aromatic ring structure, and thermal conductivity. A resin composition containing the filler (B) is disclosed.
<多環芳香族エポキシ樹脂(A1)>
 本発明の多環芳香族エポキシ樹脂(A1)とは、芳香環を複数有しかつエポキシ基を有することを特徴とするエポキシ樹脂である。芳香環を複数有するとは、単環同士が直接結合あるいは縮合環を形成する場合と、前記の芳香環が更に直接結合あるいは連結基を介して結合した場合とが挙げられる。
 多環芳香族エポキシ樹脂(A1)は、芳香環を複数有することから、エポキシ樹脂中に剛直な構造が導入されるため、樹脂組成物全体の耐熱性が向上する。多環芳香族エポキシ樹脂(A1)は、一種類でも良いし複数種を組み合わせて使用してもかまわない。
<Polycyclic aromatic epoxy resin (A1)>
The polycyclic aromatic epoxy resin (A1) of the present invention is an epoxy resin having a plurality of aromatic rings and an epoxy group. Having a plurality of aromatic rings includes a case where the single rings form a direct bond or a condensed ring, and a case where the aromatic rings are further bonded directly or via a linking group.
Since the polycyclic aromatic epoxy resin (A1) has a plurality of aromatic rings, since a rigid structure is introduced into the epoxy resin, the heat resistance of the entire resin composition is improved. One type of polycyclic aromatic epoxy resin (A1) may be used, or a plurality of types may be used in combination.
 本発明での単環の芳香環としては、ベンゼン環が挙げられる。
 縮合環の芳香環としては、ナフタレン環、アントラセン環、フェナントレン環、ナフタセン環、ペンタセン環、ピレン環、クリセン環、トリフェニレン環等が挙げられる。
A benzene ring is mentioned as a monocyclic aromatic ring in this invention.
Examples of the condensed aromatic ring include a naphthalene ring, an anthracene ring, a phenanthrene ring, a naphthacene ring, a pentacene ring, a pyrene ring, a chrysene ring, and a triphenylene ring.
 連結基としては特に限定は無いが、例えば酸素、硫黄、窒素等の2価以上の原子、置換又は無置換の炭化水素基、カルボニル基(-CO-基)、エステル基(-COO-基)、アミド基(-CONH-基)、イミノ基(-C=N-基)、アゾ基(-N=N-基)、スルフィド基(-S-基)、スルホン基(-SO-基)、及びこれらを組み合わせてなる連結基が挙げられる。
 芳香環同士の結合としては、直接結合、または、置換または無置換の炭素数が1である炭化水素基が連結基であると、耐熱性がより向上するため好ましい。
The linking group is not particularly limited. For example, a divalent or higher valent atom such as oxygen, sulfur or nitrogen, a substituted or unsubstituted hydrocarbon group, a carbonyl group (—CO— group), an ester group (—COO— group). Amide group (—CONH— group), imino group (—C═N— group), azo group (—N═N— group), sulfide group (—S— group), sulfone group (—SO 3 — group) And a linking group formed by combining these.
As a bond between aromatic rings, a direct bond or a substituted or unsubstituted hydrocarbon group having 1 carbon atom is preferably a linking group because heat resistance is further improved.
 本発明の多環芳香族エポキシ樹脂(A1)において、エポキシ基は芳香環に直接結合していても良いし、上記で述べたような連結基を介して結合しても良い。 In the polycyclic aromatic epoxy resin (A1) of the present invention, the epoxy group may be directly bonded to the aromatic ring or may be bonded via the linking group as described above.
 芳香環を複数有する構造としては、具体的には以下のような構造が挙げられる。 Specific examples of the structure having a plurality of aromatic rings include the following structures.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 また、本発明の多環芳香族エポキシ樹脂(A1)においては、芳香環を複数有する構造自体を複数有していても良い。 The polycyclic aromatic epoxy resin (A1) of the present invention may have a plurality of structures having a plurality of aromatic rings.
 本発明の多環芳香族エポキシ樹脂(A1)において、エポキシ基は2個以上有することが好ましい。とくに好ましくは、エポキシ基を3個以上含有することを特徴とする多官能多環芳香族エポキシ樹脂(A1-2)である。多官能多環芳香族エポキシ樹脂(A1-2)である場合、樹脂組成物の反応性が向上し、なおかつ硬化物中のネットワークが密となるため耐熱性が向上するため好ましい。非芳香族エポキシ樹脂(A2)は、一種類でも良いし複数種を組み合わせて使用してもかまわない。 In the polycyclic aromatic epoxy resin (A1) of the present invention, it is preferable to have two or more epoxy groups. Particularly preferred is a polyfunctional polycyclic aromatic epoxy resin (A1-2) characterized by containing 3 or more epoxy groups. The polyfunctional polycyclic aromatic epoxy resin (A1-2) is preferable because the reactivity of the resin composition is improved and the heat resistance is improved because the network in the cured product becomes dense. One type of non-aromatic epoxy resin (A2) may be used, or a plurality of types may be used in combination.
 本発明の多環芳香族エポキシ樹脂(A1)において、好ましい構造は以下のようなものが挙げられる。

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
In the polycyclic aromatic epoxy resin (A1) of the present invention, preferred structures include the following.

Figure JPOXMLDOC01-appb-I000002

Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
<炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)>
 本発明のエポキシ樹脂(A)は、炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)(以下、非芳香族エポキシ樹脂(A2)とする)を含有する。
 本発明の非芳香族エポキシ樹脂(A2)は、炭素数が6以上である脂肪族炭化水素構造を有することから、組成物の柔軟性が向上しハンドリング性が良好となる。
<Non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and not having an aromatic ring structure>
The epoxy resin (A) of the present invention has a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and no aromatic ring structure (hereinafter referred to as a non-aromatic epoxy resin ( A2)).
Since the non-aromatic epoxy resin (A2) of the present invention has an aliphatic hydrocarbon structure having 6 or more carbon atoms, the flexibility of the composition is improved and the handling property is improved.
 炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)としては、例えば、1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、C10~C18アルコールグリシジルエーテル、3,4-エポキシシクロヘキシメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、シクロヘキサンジメタノールジグリシジルエーテル、ポリエチレングリコールグリシジルエーテル等が挙げられる。 Examples of the non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and not having an aromatic ring structure include 1,6-hexanediol diglycidyl ether, neopentyl glycol glycidyl. Ether, trimethylolpropane triglycidyl ether, glycerol triglycidyl ether, pentaerythritol tetraglycidyl ether, hydrogenated bisphenol A diglycidyl ether, C10 to C18 alcohol glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ', 4'- epoxycyclohexane carboxylate, cyclohexanedimethanol diglycidyl ether, polyethylene glycol diglycidyl ether.
 本発明の非芳香族エポキシ樹脂(A2)は、エポキシ基由来酸素原子(モル数)/エポキシ基由来以外の酸素原子(モル数)≧1である脂肪族エポキシ樹脂(A2-1)(以下、脂肪族エポキシ樹脂(A2-1)とする)であることが好ましい。エポキシ基以外由来以外の酸素原子(例えばエーテルやエステル、アミドといった構造由来)が少ないことで、熱や水分による耐分解性が良好となるためである。また、炭素数が6以上である脂肪族炭化水素構造を有することから、樹脂の柔軟性が向上しハンドリング性が良好となるためである。本発明の脂肪族エポキシ樹脂(A2-1)は、両者を両立できることから好ましい。本発明の脂肪族エポキシ樹脂(A2-1)としては、例えば1,6-ヘキサンジオールジグリシジルエーテル、ネオペンチルグリコールグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセロールトリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、C10~C18アルコールグリシジルエーテル、3,4-エポキシシクロヘキシメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、シクロヘキサンジメタノールジグリシジルエーテル等が挙げられる。 The non-aromatic epoxy resin (A2) of the present invention is an aliphatic epoxy resin (A2-1) in which the oxygen atom derived from the epoxy group (number of moles) / the oxygen atom other than derived from the epoxy group (number of moles) ≧ 1, An aliphatic epoxy resin (referred to as A2-1) is preferable. This is because there are few oxygen atoms other than those derived from an epoxy group (for example, structural origins such as ethers, esters, and amides), so that the resistance to decomposition by heat and moisture is improved. Moreover, since it has an aliphatic hydrocarbon structure having 6 or more carbon atoms, the flexibility of the resin is improved and the handling property is improved. The aliphatic epoxy resin (A2-1) of the present invention is preferred because both can be compatible. Examples of the aliphatic epoxy resin (A2-1) of the present invention include 1,6-hexanediol diglycidyl ether, neopentyl glycol glycidyl ether, trimethylolpropane triglycidyl ether, glycerol triglycidyl ether, pentaerythritol tetraglycidyl ether, Examples thereof include hydrogenated bisphenol A diglycidyl ether, C10-C18 alcohol glycidyl ether, 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexanecarboxylate, cyclohexanedimethanol diglycidyl ether, and the like.
 また、本発明の脂肪族エポキシ樹脂(A2-1)が、エポキシ基を3個以上有することを特徴とする多官能脂肪族エポキシ樹脂(A2-2)であることが好ましい。多官能脂肪族エポキシ樹脂(A2-2)である場合、樹脂組成物の反応性が向上し、なおかつ硬化物中のネットワークが密となるため耐熱性が向上するためである。
この例としては、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルである。
The aliphatic epoxy resin (A2-1) of the present invention is preferably a polyfunctional aliphatic epoxy resin (A2-2) characterized by having 3 or more epoxy groups. This is because in the case of the polyfunctional aliphatic epoxy resin (A2-2), the reactivity of the resin composition is improved, and the heat resistance is improved because the network in the cured product becomes dense.
Examples of this are trimethylolpropane triglycidyl ether and pentaerythritol tetraglycidyl ether.
 本発明の非芳香族エポキシ樹脂(A2)は、エポキシ当量の理論値と実測値との比率が1.00から1.30であることが好ましい。1.30以内であれば、理論構造に近く、密な架橋構造を形成でき、且つ残留塩素が少ないからである。 In the non-aromatic epoxy resin (A2) of the present invention, the ratio between the theoretical value of epoxy equivalent and the actually measured value is preferably 1.00 to 1.30. If it is within 1.30, it is close to the theoretical structure, a dense cross-linked structure can be formed, and residual chlorine is small.
<多環芳香族エポキシ樹脂(A1)と非芳香族エポキシ樹脂(A2)の含有量>
 本発明の多環芳香族エポキシ樹脂(A1)と非芳香族エポキシ樹脂(A2)の含有量の比率としては、多環芳香族エポキシ樹脂(A1):非芳香族エポキシ樹脂(A2)=50:50~90:10が好ましい。この範囲であると、耐熱性と柔軟性が両立できるため好ましい。特に好ましくはA1:A2=70:30~90:10である。
<Contents of polycyclic aromatic epoxy resin (A1) and non-aromatic epoxy resin (A2)>
As a ratio of the content of the polycyclic aromatic epoxy resin (A1) and the non-aromatic epoxy resin (A2) of the present invention, the polycyclic aromatic epoxy resin (A1): non-aromatic epoxy resin (A2) = 50: 50 to 90:10 is preferred. This range is preferable because both heat resistance and flexibility can be achieved. Particularly preferably, A1: A2 = 70: 30 to 90:10.
<その他のエポキシ樹脂>
 本発明の樹脂組成物は、多環芳香族エポキシ樹脂(A1)と非芳香族エポキシ樹脂(A2)以外のエポキシ樹脂を含有してもかまわない。
 具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、レゾルシン型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、カテコール型エポキシ樹脂、ビスフェノールA、ビスフェノールF、ビスフェノールSの構造を有する3官能以上のエポキシ化合物、固形ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニル変性ノボラック型エポキシ樹脂等が挙げられる。
<Other epoxy resins>
The resin composition of the present invention may contain an epoxy resin other than the polycyclic aromatic epoxy resin (A1) and the non-aromatic epoxy resin (A2).
Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin, resorcin type epoxy resin, hydroquinone type epoxy resin, catechol type epoxy resin, bisphenol A, bisphenol F, Trifunctional or higher functional epoxy compound having the structure of bisphenol S, solid bisphenol A type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene- Phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, aromatic hydrocarbon formaldehyde resin modified phenolic resin type epoxy resin, biphenyl Sex novolac type epoxy resins.
<フェノキシ樹脂>
本発明の樹脂組成物は、更に、高分子量のエポキシ樹脂であるフェノキシ樹脂を含有することができる。フェノキシ樹脂とは、ビスフェノール化合物とエピハロヒドリンとを強アルカリ存在下で反応させて得られる樹脂であり、例えば、ビスフェノールAとエピハロヒドリンとから製造されるビスフェノールA変性フェノキシ樹脂、ビスフェノールSとエピハロヒドリンとから製造されるビスフェノールS変性フェノキシ樹脂などが挙げられる。
 本発明の樹脂組成物にフェノキシ樹脂を配合する場合、フェノキシ樹脂のエポキシ当量は、1,000g/当量以上100,000g/当量以下であると、エポキシ樹脂との相溶性が向上し、表面が平滑な成形体、特にシート状の成形体を得られるので好ましい。フェノキシ樹脂のエポキシ当量は、より好ましくは2,000~50,000g/当量であり、さらに好ましくは3,000~20,000g/当量である。
<Phenoxy resin>
The resin composition of the present invention can further contain a phenoxy resin which is a high molecular weight epoxy resin. The phenoxy resin is a resin obtained by reacting a bisphenol compound and epihalohydrin in the presence of a strong alkali. For example, the phenoxy resin is produced from bisphenol A-modified phenoxy resin, bisphenol S and epihalohydrin produced from bisphenol A and epihalohydrin. And bisphenol S-modified phenoxy resin.
When the phenoxy resin is blended in the resin composition of the present invention, the epoxy equivalent of the phenoxy resin is 1,000 g / equivalent or more and 100,000 g / equivalent or less, the compatibility with the epoxy resin is improved, and the surface is smooth. It is preferable because a molded product, particularly a sheet-shaped molded product can be obtained. The epoxy equivalent of the phenoxy resin is more preferably 2,000 to 50,000 g / equivalent, and still more preferably 3,000 to 20,000 g / equivalent.
 本発明のエポキシ樹脂とフェノキシ樹脂の合計中、多環芳香族エポキシ樹脂(A1)と非芳香族エポキシ樹脂(A2)の合計の配合量は60%以上であることが好ましい。60%以上であれば、樹脂組成物の耐熱性と柔軟性が損なわれないからである。特に好ましくは70%以上である。 In the total of the epoxy resin and the phenoxy resin of the present invention, the total blending amount of the polycyclic aromatic epoxy resin (A1) and the non-aromatic epoxy resin (A2) is preferably 60% or more. It is because the heat resistance and flexibility of the resin composition will not be impaired if it is 60% or more. Particularly preferably, it is 70% or more.
<熱伝導性フィラー(B)>
 本発明の樹脂組成物は、熱伝導性フィラー(B)を含有する。熱伝導性フィラー(B)としては、公知慣用のものを使用すればよく、例えば、金、白金、銀、銅、ニッケル、パラジウム、鉄、アルミニウム、ステンレス、グラファイト(黒鉛)、酸化珪素、窒化珪素、窒化アルミニウム、窒化硼素、硼酸アルミニウム、酸化アルミニウム、酸化マグネシウム、ダイヤモンド、PBO(ポリパラフェニレンベンズオキサゾール)等が挙げられる。熱伝導性フィラー(B)としては、形状に特に限定は無く、球状であっても多面体形状であっても、アスペクト比が高い粒子であっても繊維であっても不定形であってもかまわない。球状または多面体形状の粒子であると、樹脂組成物に高充填が可能であるため好ましい。
<Thermal conductive filler (B)>
The resin composition of the present invention contains a thermally conductive filler (B). As the heat conductive filler (B), known and conventional ones may be used. For example, gold, platinum, silver, copper, nickel, palladium, iron, aluminum, stainless steel, graphite (graphite), silicon oxide, silicon nitride , Aluminum nitride, boron nitride, aluminum borate, aluminum oxide, magnesium oxide, diamond, and PBO (polyparaphenylene benzoxazole). The shape of the thermally conductive filler (B) is not particularly limited, and may be spherical, polyhedral, particles having a high aspect ratio, fibers, or irregular shapes. Absent. Spherical or polyhedral particles are preferred because the resin composition can be highly filled.
 熱伝導性フィラー(B)が粒子状である場合、好ましい50%累積粒子径は500μm~5nmであって、より好ましくは100μm~100nmである。
 フィラー(B)は、フィラー粒子径が異なるものを複数配合してもよい。例えば、小粒径、中粒径、大粒径の3成分を配合すると、高熱伝導と高充填を両立できるため好ましい。3成分の粒子径のフィラーとしては、50%累積粒子径が100~10μmのフィラー(B1)、50%累積粒子径が30~1μmでかつフィラー(B1)の50%累積粒子径に対して1/10以上1/2以下であるフィラー(B2)、50%累積粒子径が5μm~100nmでかつフィラー(B2)の50%累積粒子径に対して1/100以上1/2以下であるフィラー(B3)を配合することが好ましい。配合比率としては、フィラー(B1)(B2)(B3)の合計体積量を100%として、フィラー(B1)が50~80%、フィラー(B2)が10~40%、フィラー(B3)が10~40%であることが好ましい。更に、フィラー(B1)は90%累積粒子径が、塗工あるいは成形後の乾燥厚みの1/2以下であることが好ましい。(以上、記載のないものは、累積粒子径は体積基準の測定による)
When the heat conductive filler (B) is in the form of particles, the preferred 50% cumulative particle size is 500 μm to 5 nm, more preferably 100 μm to 100 nm.
A plurality of fillers (B) having different filler particle diameters may be blended. For example, it is preferable to mix three components having a small particle size, a medium particle size, and a large particle size because both high thermal conductivity and high filling can be achieved. The three-component filler having a particle size of 3 components is a filler (B1) having a 50% cumulative particle size of 100 to 10 μm, 1 for the 50% cumulative particle size of the filler (B1) having a 50% cumulative particle size of 30 to 1 μm. / 10 or more and 1/2 or less filler (B2), 50% cumulative particle diameter of 5 μm to 100 nm, and filler (B2) 50% cumulative particle diameter of 1/100 or more and 1/2 or less filler ( It is preferable to blend B3). As the blending ratio, the total volume of the fillers (B1), (B2), and (B3) is 100%, the filler (B1) is 50 to 80%, the filler (B2) is 10 to 40%, and the filler (B3) is 10%. It is preferably ˜40%. Furthermore, the filler (B1) preferably has a 90% cumulative particle size of ½ or less of the dry thickness after coating or molding. (For those not listed above, cumulative particle size is based on volume-based measurements)
 本発明の熱伝導性フィラー(B)としては、特に10W/mK以上の熱伝導率を有するものをもちいると、樹脂組成物に高い熱伝導性が付与できるためが好ましい。具体的には、酸化アルミニウム(アルミナ)、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化マグネシウムが熱伝導性と絶縁性の確保の点で好ましく、特にアルミナが熱伝導性と絶縁性に加えて樹脂に対する充填性が良くなるのでより好ましい。 As the thermally conductive filler (B) of the present invention, it is preferable to use a filler having a thermal conductivity of 10 W / mK or more because high thermal conductivity can be imparted to the resin composition. Specifically, aluminum oxide (alumina), aluminum nitride, boron nitride, silicon nitride, and magnesium oxide are preferable from the viewpoint of ensuring thermal conductivity and insulation, and alumina is particularly suitable for resin in addition to thermal conductivity and insulation. It is more preferable because the filling property is improved.
 得られる成形体に高熱伝導性を付与するには、樹脂組成物全体のうち熱伝導性フィラー(B)が60~95体積%であることが好ましい。特に好ましくは70~95体積%であり、75~95体積%が特に好ましい。 In order to impart high thermal conductivity to the obtained molded body, it is preferable that the thermal conductive filler (B) is 60 to 95% by volume in the entire resin composition. Particularly preferred is 70 to 95% by volume, and particularly preferred is 75 to 95% by volume.
<その他の配合物>
 本発明の樹脂組成物は、多環芳香族エポキシ樹脂(A1)と非芳香族エポキシ樹脂(A2)と熱伝導性フィラー(B)以外の配合物を含有していても良い。
<Other compounds>
The resin composition of the present invention may contain a compound other than the polycyclic aromatic epoxy resin (A1), the non-aromatic epoxy resin (A2), and the heat conductive filler (B).
<硬化剤>
 本発明の樹脂組成物は、エポキシ樹脂を含有することから、硬化剤を含有することが好ましい。硬化剤としてはエポキシ樹脂用として公知慣用に用いられるものであればよく、例えば、アミン系硬化剤、アミド系硬化剤、酸無水物系硬化剤、フェノール系硬化剤などが挙げられる。
<Curing agent>
Since the resin composition of the present invention contains an epoxy resin, it preferably contains a curing agent. Any curing agent may be used as long as it is commonly used for epoxy resins, and examples thereof include amine curing agents, amide curing agents, acid anhydride curing agents, and phenol curing agents.
 具体的には、アミン系硬化剤としてはジアミノジフェニルメタン、ジアミノジフェニルエタン、ジアミノジフェニルエーテル、ジアミノジフェニルスルホン、オルトフェニレンジアミン、メタフェニレンジアミン、パラフェニレンジアミン、メタキシレンジアミン、パラキシレンジアミン、ジエチルトルエンジアミン、ジエチレントリアミン、トリエチレンテトラミン、イソホロンジアミン、イミダゾ-ル化合物、BF3-アミン錯体、グアニジン誘導体、グアナミン誘導体等が挙げられる。 Specifically, the amine curing agents include diaminodiphenylmethane, diaminodiphenylethane, diaminodiphenyl ether, diaminodiphenylsulfone, orthophenylenediamine, metaphenylenediamine, paraphenylenediamine, metaxylenediamine, paraxylenediamine, diethyltoluenediamine, diethylenetriamine. , Triethylenetetramine, isophoronediamine, imidazole compound, BF3-amine complex, guanidine derivative, guanamine derivative and the like.
 アミド系硬化剤としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられる。
 酸無水物系硬化剤としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられる。
Examples of the amide-based curing agent include polyamide resins synthesized from dicyandiamide and a dimer of linolenic acid and ethylenediamine.
Examples of acid anhydride curing agents include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydrophthalic anhydride, methylhexa And hydrophthalic anhydride.
 フェノール系硬化剤としては、ビスフェノールA、ビスフェノールF、ビスフェノールS、レゾルシン、カテコール、ハイドロキノン、フルオレンビスフェノール、4,4’-ビフェノール、4,4’,4”-トリヒドロキシトリフェニルメタン、ナフタレンジオール、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、カリックスアレーン、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(ザイロック樹脂)、レゾルシンノボラック樹脂に代表される多価ヒドロキシ化合物とホルムアルデヒドから合成される多価フェノールノボラック樹脂、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール-フェノール共縮ノボラック樹脂、ナフトール-クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミン、ベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)やアルコキシ基含有芳香環変性ノボラック樹脂(ホルムアルデヒドでフェノール核及びアルコキシ基含有芳香環が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
 これらの硬化剤は、単独でも2種類以上の併用でも構わない。
Examples of phenolic curing agents include bisphenol A, bisphenol F, bisphenol S, resorcin, catechol, hydroquinone, fluorene bisphenol, 4,4'-biphenol, 4,4 ', 4 "-trihydroxytriphenylmethane, naphthalenediol, 1 , 1,2,2-tetrakis (4-hydroxyphenyl) ethane, calixarene, phenol novolac resin, cresol novolac resin, aromatic hydrocarbon formaldehyde resin-modified phenol resin, dicyclopentadiene phenol addition type resin, phenol aralkyl resin (Xylok) Resin), polyhydric phenol novolak resin synthesized from formaldehyde and polyhydric hydroxy compound represented by resorcinol novolak resin, naphthol aralkyl resin, trimethylo Rumethane resin, tetraphenylolethane resin, naphthol novolak resin, naphthol-phenol co-condensed novolak resin, naphthol-cresol co-condensed novolak resin, biphenyl-modified phenol resin (polyhydric phenol compound in which phenol nucleus is linked by bismethylene group), biphenyl Modified naphthol resin (polyvalent naphthol compound with phenol nucleus linked by bismethylene group), aminotriazine modified phenolic resin (polyvalent phenol compound with phenol nucleus linked by melamine, benzoguanamine, etc.) or alkoxy group-containing aromatic ring modified novolak resin Examples thereof include polyhydric phenol compounds such as (polyhydric phenol compounds in which a phenol nucleus and an alkoxy group-containing aromatic ring are linked with formaldehyde).
These curing agents may be used alone or in combination of two or more.
 硬化剤の中でも、アミン系又はアミド系の硬化剤は、熱伝導性接着剤又は熱伝導性接着シートでの接着性が向上するため好ましい。
 長期間の保存安定性が求められる場合には、潜在性硬化剤を選択することが好ましい。潜在性硬化剤としては、具体的には、ジシアンジアミド、イミダゾール類、ヒドラジド類、三弗化ホウ素-アミン錯体、アミンイミド、ポリアミン塩、及びこれらの変性物やマイクロカプセル型のものを挙げることができる。
Among the curing agents, an amine-based or amide-based curing agent is preferable because adhesion with a heat conductive adhesive or a heat conductive adhesive sheet is improved.
When long-term storage stability is required, it is preferable to select a latent curing agent. Specific examples of the latent curing agent include dicyandiamide, imidazoles, hydrazides, boron trifluoride-amine complexes, amine imides, polyamine salts, modified products thereof, and microcapsules.
<硬化促進剤>
 本発明の樹脂組成物に対し硬化促進剤を配合してもよい。硬化促進剤としてエポキシ樹脂の硬化反応を促す種々の化合物が使用でき、例えば、リン系化合物、第3級アミン化合物、イミダゾール化合物、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。この中でも、イミダゾール化合物、リン系化合物、第3級アミン化合物の使用が好ましい。。
<Curing accelerator>
You may mix | blend a hardening accelerator with respect to the resin composition of this invention. Various compounds that accelerate the curing reaction of the epoxy resin can be used as the curing accelerator, and examples thereof include phosphorus compounds, tertiary amine compounds, imidazole compounds, organic acid metal salts, Lewis acids, and amine complex salts. Among these, use of an imidazole compound, a phosphorus compound, and a tertiary amine compound is preferable. .
<その他樹脂>
 本発明の樹脂組成物は、本発明の効果を損ねない範囲で、エポキシ樹脂以外のその他の樹脂を配合してもかまわない。その他の樹脂としては、熱硬化性樹脂や熱可塑性樹脂が挙げられる。
<Other resins>
The resin composition of the present invention may be blended with other resins other than the epoxy resin as long as the effects of the present invention are not impaired. Examples of other resins include thermosetting resins and thermoplastic resins.
 熱硬化性樹脂とは、加熱または放射線や触媒などの手段によって硬化される際に実質的に不溶かつ不融性に変化し得る特性を持った樹脂である。その具体例としては、フェノール樹脂、ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ジアリルテレフタレート樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂などが挙げられる。これらの熱硬化性樹脂は1種または2種以上を併用して用いることができる。 A thermosetting resin is a resin having characteristics that can be substantially insoluble and infusible when cured by heating or means such as radiation or a catalyst. Specific examples thereof include phenol resin, urea resin, melamine resin, benzoguanamine resin, alkyd resin, unsaturated polyester resin, vinyl ester resin, diallyl terephthalate resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, heat Examples thereof include curable polyimide resins. These thermosetting resins can be used alone or in combination of two or more.
 熱可塑性樹脂とは、加熱により溶融成形可能な樹脂を言う。その具体例としてはポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ゴム変性ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、アクリロニトリル-スチレン(AS)樹脂、ポリメチルメタクリレート樹脂、アクリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリエチレンテレフタレート樹脂、エチレンビニルアルコール樹脂、酢酸セルロース樹脂、アイオノマー樹脂、ポリアクリロニトリル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリブチレンテレフタレート樹脂、ポリ乳酸樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリサルホン樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリアリレート樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルエーテルケトン樹脂、ポリケトン樹脂、液晶ポリエステル樹脂、フッ素樹脂、シンジオタクチックポリスチレン樹脂、環状ポリオレフィン樹脂などが挙げられる。これらの熱可塑性樹脂は1種または2種以上を併用して用いることができる。 Thermoplastic resin refers to a resin that can be melt-molded by heating. Specific examples thereof include polyethylene resin, polypropylene resin, polystyrene resin, rubber-modified polystyrene resin, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, polymethyl methacrylate resin, acrylic resin, polyvinyl chloride resin, Polyvinylidene chloride resin, polyethylene terephthalate resin, ethylene vinyl alcohol resin, cellulose acetate resin, ionomer resin, polyacrylonitrile resin, polyamide resin, polyacetal resin, polybutylene terephthalate resin, polylactic acid resin, polyphenylene ether resin, modified polyphenylene ether resin, polycarbonate Resin, polysulfone resin, polyphenylene sulfide resin, polyetherimide resin, polyethersulfone Fat, polyarylate resins, thermoplastic polyimide resins, polyamideimide resins, polyether ether ketone resin, polyketone resin, liquid crystal polyester resins, fluorine resins, syndiotactic polystyrene resin, cyclic polyolefin resin. These thermoplastic resins can be used alone or in combination of two or more.
<溶剤>
 本発明の樹脂組成物は、使用用途に応じて溶剤を配合してもかまわない。溶剤としては有機溶剤が挙げられ、例えばメチルエチルケトン、アセトン、酢酸エチル、酢酸ブチル、トルエン、ジメチルホルムアミド、メチルイソブチルケトン、メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、エチルジグリコールアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられ、その選択や適正な使用量は用途によって適宜選択すればよい。
<Solvent>
The resin composition of the present invention may contain a solvent depending on the intended use. Examples of the solvent include organic solvents such as methyl ethyl ketone, acetone, ethyl acetate, butyl acetate, toluene, dimethylformamide, methyl isobutyl ketone, methoxypropanol, cyclohexanone, methyl cellosolve, ethyl diglycol acetate, propylene glycol monomethyl ether acetate and the like. The selection and proper usage amount may be appropriately selected depending on the application.
<その他の配合物>
 本発明の樹脂組成物は、本発明の効果を損ねない範囲であれば、反応性化合物、無機顔料、有機顔料、体質顔料、粘土鉱物、ワックス、界面活性剤、カップリング剤、安定剤、流動調整剤、染料、レベリング剤、レオロジーコントロール剤、紫外線吸収剤、酸化防止剤、可塑剤等を配合してもかまわない
<Other compounds>
The resin composition of the present invention is a reactive compound, an inorganic pigment, an organic pigment, an extender pigment, a clay mineral, a wax, a surfactant, a coupling agent, a stabilizer, a fluid, as long as the effects of the present invention are not impaired. Conditioners, dyes, leveling agents, rheology control agents, UV absorbers, antioxidants, plasticizers, etc. may be added.
<成形体>
 本発明の成形体は、上記樹脂組成物を成形して得られる成形体である。成形方法は公知慣用の方法を用いればよく、樹脂の種類あるいは用途によって適時選択すればよい。成形体の形状に制限はなく、板状であってもシート状であってもフィルムであっても良く、立体形状を有していてもよく、基材に塗布されたものであっても、基材と基材の間に存在する形で成形されてもかまわない。本発明の樹脂組成物は、フィラーを高充填していてもハンドリング性が高いため、シートを製造することに適している。
 成形方法としては、例えば板状やシート状の製品を製造するのであれば、押し出し成形法が一般的であるが、平面プレスによっても可能である。この他、異形押し出し成形法、ブロー成形法、圧縮成形法、真空成形法、射出成形法等を用いることが可能である。またフィルム状の製品を製造するのであれば、溶融押出法の他、溶液キャスト法を用いることができ、溶融成形方法を用いる場合、インフレーションフィルム成形、キャスト成形、押出ラミネーション成形、カレンダー成形、シート成形、繊維成形、ブロー成形、射出成形、回転成形、被覆成形等が挙げられる。また、活性エネルギー線で硬化する樹脂の場合、活性エネルギー線を用いた各種硬化方法を用いて成形体を製造する事ができる。
<Molded body>
The molded body of the present invention is a molded body obtained by molding the above resin composition. As the molding method, a known and commonly used method may be used, and it may be selected as appropriate depending on the type or use of the resin. There is no limitation on the shape of the molded body, it may be a plate, a sheet or a film, may have a three-dimensional shape, even if it is applied to a substrate, You may shape | mold in the form which exists between a base material. The resin composition of the present invention is suitable for producing a sheet because it has high handling properties even when highly filled with a filler.
As a forming method, for example, if a plate-like or sheet-like product is manufactured, an extrusion forming method is generally used, but a flat press is also possible. In addition, a profile extrusion molding method, a blow molding method, a compression molding method, a vacuum molding method, an injection molding method, and the like can be used. If a film-like product is manufactured, the solution casting method can be used in addition to the melt extrusion method. When the melt molding method is used, inflation film molding, cast molding, extrusion lamination molding, calendar molding, sheet molding are used. , Fiber molding, blow molding, injection molding, rotational molding, coating molding, and the like. Moreover, in the case of resin hardened | cured with an active energy ray, a molded object can be manufactured using the various hardening methods using an active energy ray.
 また、樹脂組成物が液状であれば、塗工により成形することも可能である。塗工方法としては、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。 If the resin composition is liquid, it can be formed by coating. Examples of the coating method include a spray method, a spin coating method, a dip method, a roll coating method, a blade coating method, a doctor roll method, a doctor blade method, a curtain coating method, a slit coating method, a screen printing method, and an ink jet method. .
<接着剤>
 本発明の樹脂組成物は、接着性に優れるため、接着剤として用いることができる。接着剤の形態には特に限定は無く、液状あるいはペースト状の接着剤としても良いし、固形状の接着剤としても良い。本発明の樹脂組成物は、熱伝導性フィラー(B)を含有することから、熱伝導性接着剤として好適に利用可能である。
 液状あるいはペースト状の接着剤の場合、1液タイプの接着剤としても良いし、硬化剤を別にした2液型の接着剤としてもよい。使用方法としては特に限定は無いが、液状あるいはペースト状の樹脂組成物を接着面の界面に注入後、接着し、硬化させれば良い。
 固形状の接着剤の場合、粉末状、チップ状、あるいはシート状に成形した接着剤を、接着面の界面に設置し、熱溶解させることで接着し、硬化させればよい。特に、本発明の樹脂組成物は、柔軟性に優れることから、接着シートとして使用するのに非常に適している。特に、熱伝導性フィラー(B)を高充填した場合であっても、耐熱性と柔軟性(ハンドリング性)を両立できることから、熱伝導性接着シートとして好適に使用可能である。
<Adhesive>
Since the resin composition of the present invention is excellent in adhesiveness, it can be used as an adhesive. There are no particular limitations on the form of the adhesive, and it may be a liquid or paste adhesive, or a solid adhesive. Since the resin composition of the present invention contains a heat conductive filler (B), it can be suitably used as a heat conductive adhesive.
In the case of a liquid or paste-like adhesive, it may be a one-component adhesive or a two-component adhesive separately from a curing agent. The method of use is not particularly limited, but a liquid or paste-like resin composition may be injected into the interface of the bonding surface, and then bonded and cured.
In the case of a solid adhesive, an adhesive formed into a powder, chip, or sheet may be installed at the interface of the adhesive surface, bonded by heat melting, and cured. In particular, since the resin composition of the present invention is excellent in flexibility, it is very suitable for use as an adhesive sheet. In particular, even when the heat conductive filler (B) is highly filled, both heat resistance and flexibility (handling property) can be achieved, and therefore, it can be suitably used as a heat conductive adhesive sheet.
<積層体>
 基材にたいし本発明の成形体を積層することで積層体を得ることができる。積層体は2層でも3層以上でもかまわない。
基材の材質は特に限定はなく、用途に応じて適宜選択すればよく、例えば木材、金属、プラスチック、紙、シリコン又は変性シリコン等が挙げられ、異素材が接合したような材料であってもかまわない。また、基材の形状も特に制限はなく、平板、シート状、あるいは3次元形状全面にまたは一部に曲率を有するもの等目的に応じた任意の形状であってよい。また、基材の硬度、厚み等にも制限はない。
 成形体は、基材に対し直接塗工や成形により形成してもよく、すでに成形したものを積層させてもかまわない。直接塗工する場合、塗工方法としては特に限定は無く、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、スクリーン印刷法、インクジェット法等が挙げられる。直接成形する場合は、インモールド成形、インサート成形、真空成形、押出ラミネート成形、プレス成形等が挙げられる。
 成形された樹脂組成物を積層する場合、未硬化または半硬化された組成物層を積層してから硬化させてもよいし、組成物を完全硬化した硬化物層を基材に対し積層してもよい。
 また、本発明の硬化物に対して、基材となりうる前駆体を塗工して硬化させることで積層させてもよく、基材となりうる前駆体または本発明の組成物が未硬化あるいは半硬化の状態で接着させた後に硬化させてもよい。基材となりうる前駆体としては特に限定はなく、各種硬化性樹脂組成物等が挙げられる。
 また、本発明の樹脂組成物を接着剤として用いることで積層体を作成しても良い。
<Laminate>
A laminated body can be obtained by laminating the molded body of the present invention on a substrate. The laminate may be two layers or three or more layers.
The material of the base material is not particularly limited and may be appropriately selected depending on the application, and examples thereof include wood, metal, plastic, paper, silicon, or modified silicon. It doesn't matter. Further, the shape of the substrate is not particularly limited, and may be any shape according to the purpose, such as a flat plate, a sheet, or a three-dimensional shape having an entire surface or a part of the curvature. Moreover, there is no restriction | limiting also in the hardness of a base material, thickness, etc.
The molded body may be formed directly on the base material by coating or molding, or already molded products may be laminated. When coating directly, the coating method is not particularly limited, spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, A screen printing method, an inkjet method, etc. are mentioned. In the case of direct molding, in-mold molding, insert molding, vacuum molding, extrusion lamination molding, press molding and the like can be mentioned.
When laminating a molded resin composition, an uncured or semi-cured composition layer may be laminated and then cured, or a cured layer obtained by completely curing the composition may be laminated on a substrate. Also good.
In addition, the cured product of the present invention may be laminated by applying and curing a precursor that can be a substrate, and the precursor that can be a substrate or the composition of the present invention is uncured or semi-cured. You may make it harden | cure after making it adhere in this state. There is no limitation in particular as a precursor which can become a base material, Various curable resin compositions etc. are mentioned.
Moreover, you may create a laminated body by using the resin composition of this invention as an adhesive agent.
 本発明の樹脂組成物は、多環芳香族エポキシ樹脂(A1)及び、炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)を含有することで、高い耐熱性とハンドリング性を両立することができる。また、熱伝導性フィラー(B1)を用いることで、本発明の樹脂組成物は、熱伝導性材料として好適に使用可能であり、該熱伝導性材料を用いた成形体及び積層体は熱伝導性が高い上にハンドリングが高いため、熱伝導性部材として好適に使用できる。特に小型化が進む電子部材として好適に使用できる。 The resin composition of the present invention includes a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure. By containing, high heat resistance and handling property can be made compatible. Further, by using the thermally conductive filler (B1), the resin composition of the present invention can be suitably used as a thermally conductive material, and a molded body and a laminate using the thermally conductive material are thermally conductive. Since it has high properties and high handling, it can be suitably used as a heat conductive member. In particular, it can be suitably used as an electronic member that is increasingly miniaturized.
以下、本発明を実施例に基づいて更に詳述するが、本記述は本発明を限定するものではない。実施例中、特に言及のない場合は質量換算である。 EXAMPLES Hereinafter, although this invention is explained in full detail based on an Example, this description does not limit this invention. In the examples, unless otherwise specified, the mass is converted.
(エポキシ当量の測定方法)
エポキシ樹脂試料(1±0.3ミリモル当量)をメチルエチルケトン20mlに溶解させ、セチルトリメチルアンモニウムブロマイドの20質量%酢酸溶液(CTMAB)5mlを加え、クリスタルバイオレット指示薬(酢酸溶液)4~6滴加え、スターラーでかき混ぜながら0.1mol/l過塩素酸酢酸溶液(0.1mol/l HClO4)で滴定した。0.1mol/l過塩素酸酢酸溶液を1滴加えて青紫色から青色に変化し、青色を1分間持続したところを終点として滴定量を得た。また、溶剤の体積膨張係数は、温度による補正が必要のため、過塩素酸酢酸溶液の温度を記録した。同時に試料を用いない空試験を行って同様に滴定量を測定し、得られた滴定量を用いて下式(1)にしたがってエポキシ当量を求めた。

エポキシ当量(g/eq.)=(1000×W)/[(Vs-Vb)×0.1×[F20/{1+0.011(t-20)}]]・・・(1)

W :エポキシ樹脂試料量(g)
  Vs:本試験に要する0.1mol/l HClO4の適定量(ml)
  Vb:空試験に要する0.1mol/l HClO4の適定量(ml)
  F20:0.1mol/l HClO4の20℃における力価
  t :滴定時の0.1mol/l HClO4の液温(℃)
(Measurement method of epoxy equivalent)
An epoxy resin sample (1 ± 0.3 mmol equivalent) is dissolved in 20 ml of methyl ethyl ketone, 5 ml of 20% by mass acetic acid solution (CTMAB) of cetyltrimethylammonium bromide is added, 4 to 6 drops of crystal violet indicator (acetic acid solution) are added, and a stirrer is added. The mixture was titrated with a 0.1 mol / l perchloric acid acetic acid solution (0.1 mol / l HClO4) while stirring. One drop of 0.1 mol / l perchloric acid acetic acid solution was added to change the color from blue-violet to blue, and the titration was obtained with the end point being blue for 1 minute. Moreover, since the volume expansion coefficient of the solvent needs to be corrected by temperature, the temperature of the perchloric acid acetic acid solution was recorded. At the same time, a blank test without using a sample was performed to measure the titration amount in the same manner, and the epoxy equivalent was determined according to the following formula (1) using the obtained titration amount.

Epoxy equivalent (g / eq.) = (1000 × W) / [(Vs−Vb) × 0.1 × [F20 / {1 + 0.011 (t−20)}]] (1)

W: Amount of epoxy resin sample (g)
Vs: Appropriate amount of 0.1 mol / l HClO4 required for this test (ml)
Vb: Appropriate amount of 0.1 mol / l HClO4 required for the blank test (ml)
F20: 0.1 mol / l HClO4 titer at 20 ° C. t: liquid temperature of 0.1 mol / l HClO4 during titration (° C.)
〈合成例1〉エポキシ樹脂(EP-1)
2,2‘,7,7’-テトラグリシジルオキシ-1,1‘-ビナフタレンの合成
温度計、撹拌機、還流冷却器を取り付けたフラスコに、窒素ガスパージを施しながら、塩化鉄(III)六水和物278g(1.0モル)、水2660mLを仕込み、攪拌しながら反応容器内を窒素置換した後、ナフタレン-2,7-ジオール164g(1.0モル)をイソプロピルアルコール380mLにあらかじめ溶解した溶液を加え、40℃で30分撹拌した。塩化鉄(III)六水和物278g(1.0モル)及び水1328mL、イソプロピルアルコール188mLの混合溶液を加え、40℃まで昇温してから、さらに1時間撹拌した。反応液に酢酸エチル1000mLを加え、撹拌した。反応液を分液漏斗で有機層を分離した後、さらに、水層を酢酸エチルで抽出した。合わせた有機層を飽和食塩水で洗浄した。真空下で溶媒を400mL程度になるまで留去した後、溶液を温度計、攪拌機、ディーンスタークトラップを備えたSUS容器に移し、トルエン10Lを加えた後、酢酸エチル及び水からトルエンに置換した。トルエン溶液を室温まで冷却した後、不溶物をろ別した。ろ液を沸点以上の温度に加熱し、トルエンを1000mL程度になるまで留去することで濃縮し、[1,1’-ビナフタレン]-2,2’,7,7’-テトラオールの結晶を析出させた。析出物と溶媒を80℃以上の温度での熱時ろ過でろ取した後、110℃で5時間乾燥させ、フェノール化合物1として、[1,1’-ビナフタレン]-2,2’,7,7’-テトラオールを収量106g(収率68%)で得た。
次に、温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、上記フェノール化合物1の79.5g(0.25モル)、エピクロルヒドリンの462g(5.0モル)、n-ブタノールの126gを仕込み溶解させた。40℃に昇温した後に、48%水酸化ナトリウム水溶液の100g(1.20モル)を8時間要して添加し、その後更に50℃に昇温し更に1時間反応させた。反応終了後、水150gを加えて静置した後、下層を棄却した。その後、150℃減圧下で未反応エピクロルヒドリンを留去した。それで得られた粗エポキシ樹脂にメチルイソブチルケトンの230gを加え溶解した。更にこの溶液に10質量%水酸化ナトリウム水溶液の100gを添加して80℃で2時間反応させた後に洗浄液のpHが中性となるまで水洗を繰り返した。次いで系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、エポキシ樹脂(EP-1)として2,2’,7,7’-テトラグリシジルオキシ-1,1’-ビナフタレンの135gを得た。得られたエポキシ樹脂(EP-1)の軟化点は61℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.1dPa・s、エポキシ当量は144g/当量であった。
<Synthesis Example 1> Epoxy resin (EP-1)
Synthesis of 2,2 ', 7,7'-tetraglycidyloxy-1,1'-binaphthalene Thermometer, stirrer, reflux condenser A flask equipped with a nitrogen gas purge was charged with iron (III) chloride hexahydrate A solution in which 278 g (1.0 mol) of the Japanese product and 2660 mL of water were charged and the inside of the reaction vessel was purged with nitrogen while stirring, and then 164 g (1.0 mol) of naphthalene-2,7-diol was dissolved in 380 mL of isopropyl alcohol in advance. And stirred at 40 ° C. for 30 minutes. A mixed solution of 278 g (1.0 mol) of iron (III) chloride hexahydrate, 1328 mL of water and 188 mL of isopropyl alcohol was added, the temperature was raised to 40 ° C., and the mixture was further stirred for 1 hour. To the reaction solution, 1000 mL of ethyl acetate was added and stirred. After separating the organic layer from the reaction solution with a separatory funnel, the aqueous layer was further extracted with ethyl acetate. The combined organic layers were washed with saturated brine. After the solvent was distilled off to about 400 mL under vacuum, the solution was transferred to a SUS vessel equipped with a thermometer, a stirrer, and a Dean-Stark trap, 10 L of toluene was added, and the ethyl acetate and water were replaced with toluene. After cooling the toluene solution to room temperature, insoluble matters were filtered off. The filtrate is heated to a temperature equal to or higher than the boiling point, and concentrated by distilling off toluene to about 1000 mL to obtain crystals of [1,1′-binaphthalene] -2,2 ′, 7,7′-tetraol. Precipitated. The precipitate and the solvent were filtered by hot filtration at a temperature of 80 ° C. or higher and then dried at 110 ° C. for 5 hours to obtain [1,1′-binaphthalene] -2,2 ′, 7,7 as phenol compound 1. '-Tetraol was obtained in a yield of 106 g (68% yield).
Next, 79.5 g (0.25 mol) of the above-mentioned phenol compound 1 and 462 g (5.0 mol) of epichlorohydrin were added to a flask equipped with a thermometer, a dropping funnel, a condenser, and a stirrer while purging with nitrogen gas. , 126 g of n-butanol was charged and dissolved. After the temperature was raised to 40 ° C., 100 g (1.20 mol) of a 48% aqueous sodium hydroxide solution was added over 8 hours, and then the temperature was further raised to 50 ° C. and reacted for another 1 hour. After completion of the reaction, 150 g of water was added and allowed to stand, and then the lower layer was discarded. Thereafter, unreacted epichlorohydrin was distilled off under reduced pressure at 150 ° C. Then, 230 g of methyl isobutyl ketone was added to the crude epoxy resin thus obtained and dissolved. Further, 100 g of a 10% by mass aqueous sodium hydroxide solution was added to this solution and reacted at 80 ° C. for 2 hours, and then washing with water was repeated until the pH of the washing solution became neutral. Next, the system was dehydrated, and after passing through microfiltration, the solvent was distilled off under reduced pressure to obtain 2,2 ′, 7,7′-tetraglycidyloxy-1,1′- as an epoxy resin (EP-1). 135 g of binaphthalene was obtained. The resulting epoxy resin (EP-1) had a softening point of 61 ° C. (B & R method), a melt viscosity (measurement method: ICI viscometer method, measurement temperature: 150 ° C.) of 1.1 dPa · s, and an epoxy equivalent of 144 g / Equivalent.
〈合成例2〉フェノキシ樹脂溶液
温度計、冷却管、攪拌器を取り付けたフラスコにビスフェノールAを114g、ビスフェノールA型エポキシ樹脂(DIC(株)製EPCLON-850S)を191.6g(エポキシ当量:188)、シクロヘキサノンを130.9g(不揮発分:70%)仕込み、系内を窒素置換し、窒素をゆっくりフローし、攪拌しながら80℃まで昇温し、2E4MZ(四国工業化成(株)製)120mg(理論樹脂固型分に対して400ppm)を
加え、さらに150℃まで昇温した。その後、150℃で20時間攪拌し、不揮発分(N.V.)が30%(MEK:シクロヘキサノン=1:1)となるようにMEK、シクロヘキサノンを加えて調整した。得られたフェノキシ樹脂溶液の粘度は5200mPa・s、不揮発分のエポキシ当量は12500g/当量であった。
<Synthesis Example 2> 114 g of bisphenol A and 191.6 g of bisphenol A type epoxy resin (EPCLON-850S manufactured by DIC Corporation) were added to a flask equipped with a phenoxy resin solution thermometer, a condenser, and a stirrer (epoxy equivalent: 188). ), 130.9 g (nonvolatile content: 70%) of cyclohexanone was charged, the inside of the system was purged with nitrogen, the nitrogen was slowly flowed, the temperature was raised to 80 ° C. with stirring, and 2E4MZ (manufactured by Shikoku Industrial Chemical Co., Ltd.) 120 mg (400 ppm with respect to the theoretical resin solid content) was added, and the temperature was further increased to 150 ° C. Thereafter, the mixture was stirred at 150 ° C. for 20 hours, and adjusted by adding MEK and cyclohexanone so that the non-volatile content (NV) was 30% (MEK: cyclohexanone = 1: 1). The viscosity of the obtained phenoxy resin solution was 5200 mPa · s, and the epoxy equivalent of the nonvolatile content was 12500 g / equivalent.
<合成例3>アルミナ1
 水酸化アルミニウム(日本軽金属株式会社製、平均粒子径45μm)300質量部と酸化モリブデン(和光純薬工業株式会社製)75質量部を乳鉢で混合した。得られた混合物をセラミック電気炉で、1100℃で10時間焼成を行なった。降温後、坩堝を取り出し、内容物を10%アンモニア水およびイオン交換水で洗浄後、150℃で2時間乾燥を行い、190質量部の青色の粉末を得た。50%累積粒子径が5μm、90%累積粒子径7μm、密度3.95、で、[001]面以外の結晶面を主結晶面とし、[001]面よりも大きな面積の結晶面を持つ多面体形状のアルミナ(酸化アルミニウム)粒子であることを確認した。
<Synthesis Example 3> Alumina 1
300 parts by mass of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., average particle size 45 μm) and 75 parts by mass of molybdenum oxide (manufactured by Wako Pure Chemical Industries, Ltd.) were mixed in a mortar. The obtained mixture was fired at 1100 ° C. for 10 hours in a ceramic electric furnace. After lowering the temperature, the crucible was taken out and the contents were washed with 10% ammonia water and ion-exchanged water and dried at 150 ° C. for 2 hours to obtain 190 parts by weight of a blue powder. A polyhedron having a 50% cumulative particle size of 5 μm, a 90% cumulative particle size of 7 μm, a density of 3.95, a crystal plane other than the [001] plane as the main crystal plane, and a crystal plane with a larger area than the [001] plane It was confirmed that the particles were shaped alumina (aluminum oxide) particles.
<実施例1> 樹脂組成物1
 合成例1で得られたエポキシ樹脂(EP-1)を60質量部、トリメチロールプロパントリグリシジルエーテル(ナガセケムテックス(株)製、EX321L)を10質量部、合成例2で得られたフェノキシ樹脂溶液(NV30%)を100質量部、表1記載のアルミナ3種を合計1267質量部、シランカップリング剤(信越化学(株)製、KBM4803)を6.73部を配合した後、自転-公転型混練装置で混練し、2P4MHZ-PW(イミダゾール系硬化剤、四国化成(株)製)1.3質量部、AH-154(ジシアンジアミド、味の素ファインテクノ(株)製)1.7質量部、および、メチルエチルケトン(MEK)140質量部を配合し、自転-公転型混練装置で混練したものを、常温下、0.1MPaの減圧下で5分、減圧器を用いて脱泡することによって、樹脂組成物1を得た。
<Example 1> Resin composition 1
60 parts by mass of the epoxy resin (EP-1) obtained in Synthesis Example 1, 10 parts by mass of trimethylolpropane triglycidyl ether (manufactured by Nagase ChemteX Corporation, EX321L), and the phenoxy resin obtained in Synthesis Example 2 After blending 100 parts by mass of the solution (NV 30%), 1267 parts by mass of the three types of alumina listed in Table 1, and 6.73 parts of silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM4803), rotation-revolution Kneaded with a mold kneader, 1.3 parts by mass of 2P4MHZ-PW (imidazole curing agent, manufactured by Shikoku Kasei Co., Ltd.), 1.7 parts by mass of AH-154 (dicyandiamide, manufactured by Ajinomoto Fine Techno Co., Ltd.), and A mixture of 140 parts by mass of methyl ethyl ketone (MEK) and kneaded by a rotation-revolution kneading apparatus was used at room temperature under a reduced pressure of 0.1 MPa for 5 minutes. The resin composition 1 was obtained by defoaming using.
 次に、厚さ75μmのポリエチレンテレフタレートフィルムの片面がシリコーン化合物で剥離処理された離型フィルムの表面に、前記樹脂組成物1を、棒状の金属アプリケータを用いて、乾燥後の厚さが120μmになるように塗工した。 Next, on the surface of a release film obtained by peeling one side of a 75 μm thick polyethylene terephthalate film with a silicone compound, the resin composition 1 is dried to a thickness of 120 μm using a rod-shaped metal applicator. It was applied to become.
 次に、前記塗工物を50℃で10分間乾燥した後、70℃で10分間乾燥し、更に100℃で20分間乾燥して、離型フィルム上に厚さ120μmのシートを形成した積層体を得た。 Next, the coated product was dried at 50 ° C. for 10 minutes, then dried at 70 ° C. for 10 minutes, and further dried at 100 ° C. for 20 minutes to form a laminate having a 120 μm thick sheet on the release film. Got.
(ガラス転移温度の測定方法)
前記積層体から離型フィルムを除去して得たシートを加熱プレスで温度180℃、圧力5MPaで15分間成型した後、200℃で2時間硬化して硬化物試料を作製した。
この硬化物試料に対して、固体粘弾性測定装置DMA(レオメトリックス社製RSAIII)を用いて、周波数1Hz、昇温速度3℃/minで0~300℃の動的粘弾性を測定した。貯蔵弾性率E‘と損失弾性率E“の比である損失正接(tanδ)が極大を示し、主鎖がガラス状態からゴム状態に変化する温度をガラス転移温度とした。
(Measurement method of glass transition temperature)
A sheet obtained by removing the release film from the laminate was molded with a hot press at a temperature of 180 ° C. and a pressure of 5 MPa for 15 minutes, and then cured at 200 ° C. for 2 hours to prepare a cured product sample.
With respect to this cured product sample, the dynamic viscoelasticity of 0 to 300 ° C. was measured at a frequency of 1 Hz and a heating rate of 3 ° C./min using a solid viscoelasticity measuring device DMA (RSAIII manufactured by Rheometrics). The loss tangent (tan δ), which is the ratio between the storage elastic modulus E ′ and the loss elastic modulus E ″, shows a maximum, and the temperature at which the main chain changes from the glass state to the rubber state is defined as the glass transition temperature.
(シート柔軟性の測定方法)
前記積層体を10mmx100mmに切り、シートを外側に向け、直径5mmまたは20mmの円筒の周囲に巻き、180度折り曲げた。折り曲げたシートの亀裂の有無を目視で下記基準により評価した。
◎:5mmの円筒で亀裂が認められなかった
〇:5mmの円筒では亀裂があったが、20mmの円筒では亀裂がなかった。
×:20mmの円筒で亀裂が認められた。
(Measuring method of sheet flexibility)
The laminate was cut into 10 mm × 100 mm, the sheet was directed outward, wound around a cylinder having a diameter of 5 mm or 20 mm, and bent 180 degrees. The presence or absence of cracks in the folded sheet was visually evaluated according to the following criteria.
A: No crack was observed in a 5 mm cylinder. ○: There was a crack in a 5 mm cylinder, but there was no crack in a 20 mm cylinder.
X: Cracks were observed in a 20 mm cylinder.
(シートの熱伝導率の測定方法)
 前記積層体から離型フィルムを除去して得たシートを加熱プレスで温度180℃、圧力5MPaで15分間成型した後、200℃で2時間硬化して硬化物試料を作製した。
得られた硬化物を10mm角に裁断したものを試験サンプルとし、熱伝導率測定装置(Xeフラッシュ型LFA467、NETZSCH社製)を用いて、25℃における熱伝導率の測定を行った。
(Measurement method of thermal conductivity of sheet)
A sheet obtained by removing the release film from the laminate was molded with a hot press at a temperature of 180 ° C. and a pressure of 5 MPa for 15 minutes, and then cured at 200 ° C. for 2 hours to prepare a cured product sample.
The obtained cured product was cut into a 10 mm square and used as a test sample, and the thermal conductivity at 25 ° C. was measured using a thermal conductivity measuring device (Xe flash type LFA467, manufactured by NETZSCH).
〈実施例及び比較例〉
 実施例1と同様にして、下記表1-1および表1-2の配合率にて樹脂組成物およびシートを作成し、シート柔軟性、ガラス転移温度、熱伝導率の測定を行った。
<Examples and Comparative Examples>
In the same manner as in Example 1, resin compositions and sheets were prepared at the blending ratios shown in Table 1-1 and Table 1-2 below, and sheet flexibility, glass transition temperature, and thermal conductivity were measured.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 本実施例で用いた材料は以下の通り。
多環芳香族エポキシ樹脂(A1):
・HP-4700 ナフタレン型エポキシ樹脂 DIC(株)製
炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2):
・EX-321L トリメチロールプロパントリグリシジエーテル低塩素品 ナガセケムテックス(株)製
・EX-216L シクロヘキサンジメタノールジグリシジルエーテル低塩素品 ナガセケムテックス(株)製
・EX-321 トリメチロールプロパントリグリシジルエーテル ナガセケムテックス(株)製
・SR-16HL ヘキサンジオールジグリシジルエーテル低塩素品 阪本薬品工業(株)
・SR-16 ヘキサンジオールジグリシジルエーテル 阪本薬品工業(株)
・EX-830 ポリエチレングリコールジグリシジルエーテル ナガセケムテックス(株)製
その他エポキシ樹脂:
・エピクロン850S ビスフェノールA型エポキシ樹脂 DIC(株)製
・mp-CGE mp-クレジルグリシジルエーテル 阪本薬品工業(株)
熱伝導性フィラー(B):
・DAW45(55μm篩処理)酸化アルミニウム 50%累積粒子径33μm、90%累積粒子径50μm、密度3.90、 電気化学工業(株)製
・AA-04 酸化アルミニウム 50%累積粒子径0.3μm、90%累積粒子径1μm、密度3.95、住友化学(株)製
その他:
・イミダゾール系硬化剤2P4MHZ-PW 四国化成(株)製
・ジシアンジアミド系硬化剤AH-154 味の素ファインテクノ(株)製
・シランカップリング剤 KBM-4803 信越化学工業(株)製
The materials used in this example are as follows.
Polycyclic aromatic epoxy resin (A1):
HP-4700 Naphthalene type epoxy resin DIC Corporation Non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and no aromatic ring structure:
・ EX-321L Trimethylolpropane triglycidyl ether low chlorine product manufactured by Nagase ChemteX Corporation ・ EX-216L Cyclohexanedimethanol diglycidyl ether low chlorine product manufactured by Nagase ChemteX Corporation ・ EX-321 trimethylolpropane triglycidyl ether SR-16HL hexanediol diglycidyl ether low chlorine product manufactured by Nagase ChemteX Corporation Sakamoto Pharmaceutical Co., Ltd.
・ SR-16 Hexanediol diglycidyl ether Sakamoto Pharmaceutical Co., Ltd.
EX-830 Polyethylene glycol diglycidyl ether Other epoxy resin manufactured by Nagase ChemteX Corporation:
・ Epicron 850S Bisphenol A type epoxy resin DIC Corporation ・ mp-CGE mp-cresyl glycidyl ether Sakamoto Pharmaceutical Co., Ltd.
Thermally conductive filler (B):
・ DAW45 (55μm sieve treatment) Aluminum oxide 50% cumulative particle size 33μm, 90% cumulative particle size 50μm, density 3.90, manufactured by Denki Kagaku Kogyo Co., Ltd. ・ AA-04 aluminum oxide 50% cumulative particle size 0.3μm, 90% cumulative particle size 1 μm, density 3.95, manufactured by Sumitomo Chemical Co., Ltd. and others:
・ Imidazole-based curing agent 2P4MHZ-PW Shikoku Kasei Co., Ltd. ・ Dicyandiamide-based curing agent AH-154 Ajinomoto Fine Techno Co., Ltd. ・ Silane coupling agent KBM-4803 Shin-Etsu Chemical Co., Ltd.
 本発明の樹脂組成物は、多環芳香族エポキシ樹脂(A1)及び、炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)を含有することで、高い耐熱性とハンドリング性を両立することができる。また、熱伝導性フィラー(B)を高充填可能なことから、本発明の樹脂組成物は、熱伝導性材料として好適に使用可能であり、該熱伝導性材料を用いた成形体及び積層体は熱伝導性が高い上にハンドリングが高いため、熱伝導性部材として好適に使用できる。特に小型化が進む電子部材として好適に使用できる。 The resin composition of the present invention includes a polycyclic aromatic epoxy resin (A1) and a non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure. By containing, high heat resistance and handling property can be made compatible. In addition, since the heat conductive filler (B) can be highly filled, the resin composition of the present invention can be suitably used as a heat conductive material, and a molded body and a laminate using the heat conductive material. Can be suitably used as a thermally conductive member because of its high thermal conductivity and high handling. In particular, it can be suitably used as an electronic member that is increasingly miniaturized.

Claims (11)

  1. 多環芳香族エポキシ樹脂(A1)と、
    炭素数が6以上である脂肪族炭化水素構造を有し、芳香環構造を有さない非芳香族エポキシ樹脂(A2)と、
    熱伝導性フィラー(B)とを含有することを特徴とする、樹脂組成物。
    A polycyclic aromatic epoxy resin (A1);
    A non-aromatic epoxy resin (A2) having an aliphatic hydrocarbon structure having 6 or more carbon atoms and having no aromatic ring structure;
    A resin composition comprising a thermally conductive filler (B).
  2.  前記非芳香族エポキシ樹脂(A2)が、
     エポキシ基由来酸素原子(モル数)/エポキシ基由来以外の酸素原子(モル数)≧1
    である脂肪族エポキシ樹脂(A2-1)である、
    請求項1に記載の樹脂組成物。
    The non-aromatic epoxy resin (A2) is
    Epoxy group-derived oxygen atom (number of moles) / oxygen atom other than epoxy group-derived oxygen atom (number of moles) ≧ 1
    Is an aliphatic epoxy resin (A2-1),
    The resin composition according to claim 1.
  3.  前記脂肪族エポキシ樹脂(A2-1)が、エポキシ基を3個以上含有することを特徴とする多官能脂肪族エポキシ樹脂(A2-2)である、請求項2に記載の樹脂組成物。 3. The resin composition according to claim 2, wherein the aliphatic epoxy resin (A2-1) is a polyfunctional aliphatic epoxy resin (A2-2) characterized by containing three or more epoxy groups.
  4.  前記多環芳香族エポキシ樹脂(A1)が、エポキシ基を3個以上含有することを特徴とする多官能多環芳香族エポキシ樹脂(A1-2)である、請求項1~3のいずれかに記載の樹脂組成物。 4. The polyfunctional polycyclic aromatic epoxy resin (A1-2), wherein the polycyclic aromatic epoxy resin (A1) contains three or more epoxy groups. The resin composition as described.
  5.  前記熱伝導性フィラー(B)が、10W/mK以上の熱伝導率を有するものである、請求項1~4のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 1 to 4, wherein the thermally conductive filler (B) has a thermal conductivity of 10 W / mK or more.
  6.  請求項1~5のいずれかに記載の樹脂組成物を成形してなる成形体。 A molded article formed by molding the resin composition according to any one of claims 1 to 5.
  7.  基材と請求項6に記載の成形体とを積層してなる積層体。 A laminate formed by laminating a base material and the molded product according to claim 6.
  8.  請求項1~5のいずれかに記載の樹脂組成物を含有することを特徴とする接着剤。 An adhesive comprising the resin composition according to any one of claims 1 to 5.
  9.  接着シートである、請求項8に記載の接着剤。 The adhesive according to claim 8, which is an adhesive sheet.
  10.  請求項6に記載の成形体を有することを特徴とする電子部材。 An electronic member comprising the molded body according to claim 6.
  11.  請求項6に記載の成形体を有することを特徴とする熱伝導性部材。 A heat conductive member comprising the molded body according to claim 6.
PCT/JP2017/016715 2016-05-06 2017-04-27 Resin composition, molded article, layered body, and adhesive WO2017191801A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556765A JP7167441B2 (en) 2016-05-06 2017-04-27 Resin composition, molding, laminate and adhesive

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-093211 2016-05-06
JP2016093211 2016-05-06

Publications (1)

Publication Number Publication Date
WO2017191801A1 true WO2017191801A1 (en) 2017-11-09

Family

ID=60202996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016715 WO2017191801A1 (en) 2016-05-06 2017-04-27 Resin composition, molded article, layered body, and adhesive

Country Status (2)

Country Link
JP (1) JP7167441B2 (en)
WO (1) WO2017191801A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019147940A (en) * 2018-01-08 2019-09-05 財團法人工業技術研究院Industrial Technology Research Institute Resin composition and method for manufacturing thermally conductive material
WO2020137339A1 (en) * 2018-12-26 2020-07-02 住友ベークライト株式会社 Resin composition and metal base copper-clad laminate
JPWO2019054217A1 (en) * 2017-09-15 2020-10-29 日立化成株式会社 Epoxy resin composition and electronic component equipment
WO2022085522A1 (en) * 2020-10-21 2022-04-28 パナソニックIpマネジメント株式会社 Liquid resin composition and cured object obtained therefrom
WO2023190321A1 (en) * 2022-03-30 2023-10-05 古河電気工業株式会社 Composition for thermally conductive film-like adhesives, thermally conductive film-like adhesive, semiconductor package using thermally conductive film-like adhesive and method for producing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512278A (en) * 1998-04-22 2002-04-23 マルチコア ソルダーズ リミテッド Adhesive sealing material with flux properties
JP2011026383A (en) * 2009-07-22 2011-02-10 Sony Chemical & Information Device Corp Heat curing type thermally conductive adhesive composition
JP2012012585A (en) * 2010-05-31 2012-01-19 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment
JP2015007214A (en) * 2013-05-27 2015-01-15 Dic株式会社 Curable resin composition, cured product of the same, and heat-conductive adhesive
JP2015174906A (en) * 2014-03-14 2015-10-05 Dic株式会社 Resin composition, heat-conductive adhesive and laminate
JP2015224329A (en) * 2014-05-29 2015-12-14 田中貴金属工業株式会社 Thermally conductive electrically conductive adhesive composition
WO2016002833A1 (en) * 2014-07-02 2016-01-07 Dic株式会社 Epoxy resin composition for electronic material, cured product thereof and electronic member
JP2017071707A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Liquid thermally conductive resin composition and electronic component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792327B2 (en) * 1996-12-24 2006-07-05 日立化成工業株式会社 Thermally conductive adhesive composition and thermally conductive adhesive film using the composition
JP2009245715A (en) * 2008-03-31 2009-10-22 Sekisui Chem Co Ltd Insulating sheet and laminated structure
WO2010016480A1 (en) * 2008-08-07 2010-02-11 積水化学工業株式会社 Insulating sheet and multilayer structure
JP5761639B2 (en) * 2010-09-30 2015-08-12 日本発條株式会社 Adhesive resin composition, cured product thereof, and adhesive film
JP5622267B2 (en) * 2010-09-30 2014-11-12 新日鉄住金化学株式会社 Adhesive resin composition, cured product thereof, and adhesive film
JP2015209477A (en) * 2014-04-25 2015-11-24 東レ株式会社 Semiconductor mounting resin composition and semiconductor mounting resin composition sheet comprising the same, and semiconductor device using the same and production method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002512278A (en) * 1998-04-22 2002-04-23 マルチコア ソルダーズ リミテッド Adhesive sealing material with flux properties
JP2011026383A (en) * 2009-07-22 2011-02-10 Sony Chemical & Information Device Corp Heat curing type thermally conductive adhesive composition
JP2012012585A (en) * 2010-05-31 2012-01-19 Toray Ind Inc Adhesive composition for electronic equipment and adhesive sheet for electronic equipment
JP2015007214A (en) * 2013-05-27 2015-01-15 Dic株式会社 Curable resin composition, cured product of the same, and heat-conductive adhesive
JP2015174906A (en) * 2014-03-14 2015-10-05 Dic株式会社 Resin composition, heat-conductive adhesive and laminate
JP2015224329A (en) * 2014-05-29 2015-12-14 田中貴金属工業株式会社 Thermally conductive electrically conductive adhesive composition
WO2016002833A1 (en) * 2014-07-02 2016-01-07 Dic株式会社 Epoxy resin composition for electronic material, cured product thereof and electronic member
JP2017071707A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Liquid thermally conductive resin composition and electronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019054217A1 (en) * 2017-09-15 2020-10-29 日立化成株式会社 Epoxy resin composition and electronic component equipment
JP7375541B2 (en) 2017-09-15 2023-11-08 株式会社レゾナック Epoxy resin composition and electronic component equipment
JP2019147940A (en) * 2018-01-08 2019-09-05 財團法人工業技術研究院Industrial Technology Research Institute Resin composition and method for manufacturing thermally conductive material
US11015018B2 (en) 2018-01-08 2021-05-25 Industrial Technology Research Institute Resin composition and method for manufacturing thermally conductive material
WO2020137339A1 (en) * 2018-12-26 2020-07-02 住友ベークライト株式会社 Resin composition and metal base copper-clad laminate
JP6769586B1 (en) * 2018-12-26 2020-10-14 住友ベークライト株式会社 Resin composition and metal-based copper-clad laminate
WO2022085522A1 (en) * 2020-10-21 2022-04-28 パナソニックIpマネジメント株式会社 Liquid resin composition and cured object obtained therefrom
WO2023190321A1 (en) * 2022-03-30 2023-10-05 古河電気工業株式会社 Composition for thermally conductive film-like adhesives, thermally conductive film-like adhesive, semiconductor package using thermally conductive film-like adhesive and method for producing same
JP7383206B1 (en) 2022-03-30 2023-11-17 古河電気工業株式会社 Composition for thermally conductive film adhesive, thermally conductive film adhesive, semiconductor package using thermally conductive film adhesive, and manufacturing method thereof

Also Published As

Publication number Publication date
JPWO2017191801A1 (en) 2019-03-07
JP7167441B2 (en) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2017191801A1 (en) Resin composition, molded article, layered body, and adhesive
JP5741742B2 (en) Curable resin composition, cured product thereof and thermally conductive adhesive
TWI502016B (en) Epoxy resin compositions, epoxy resins and hardened products
JP6460365B2 (en) Resin composition, heat conductive adhesive and laminate
JP5312447B2 (en) Epoxy resin composition and molded article
JP2016104832A (en) Resin composition, thermally conductive adhesive, thermally conductive adhesive sheet, and laminate
JP6536882B2 (en) Resin composition, cured product and thermally conductive material
JP2009051937A (en) Epoxy resin composition, cured product thereof, and new epoxy resin
JP2022135942A (en) Epoxy resin, epoxy resin cured product, method for producing epoxy resin cured product, and epoxy resin composition
JPWO2008050879A1 (en) Epoxy resin composition and cured product
JP2018069708A (en) Laminate, electronic member and thermally conductive member
JP2004137425A (en) Epoxy resin composition and its molded and cured product
JP5314912B2 (en) Epoxy resin composition and molded article
JP6926423B2 (en) Curable resin composition, thermally conductive adhesive, thermally conductive adhesive sheet and laminate
JP2009173728A (en) Epoxy resin composition and cured product
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
TW201437254A (en) Method for manufacturing polyhydroxy polyether resin, polyhydroxy polyether resin, its resin composition and its cured product
JP2013119608A (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2006045261A (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP3907140B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP2007297529A (en) Thermosetting resin composition, cured material, prepreg, and fiber-reinforced composite material
JP2004231790A (en) Epoxy resin composition and cured product of the same
JP6508508B2 (en) Resin composition, thermally conductive adhesive and laminate
JP2002187933A (en) Modified epoxy resin, epoxy resin composition and its cured material
JP4509539B2 (en) Epoxy resin composition sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017556765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17792734

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17792734

Country of ref document: EP

Kind code of ref document: A1