WO2019053935A1 - 放射線撮影装置 - Google Patents

放射線撮影装置 Download PDF

Info

Publication number
WO2019053935A1
WO2019053935A1 PCT/JP2018/016136 JP2018016136W WO2019053935A1 WO 2019053935 A1 WO2019053935 A1 WO 2019053935A1 JP 2018016136 W JP2018016136 W JP 2018016136W WO 2019053935 A1 WO2019053935 A1 WO 2019053935A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
pixel
movement
pixels
pixel value
Prior art date
Application number
PCT/JP2018/016136
Other languages
English (en)
French (fr)
Inventor
ペルティエ ダヴィッド ティボー
祥太 佐藤
翔平 大久保
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US16/635,700 priority Critical patent/US11751835B2/en
Priority to CN201880052689.9A priority patent/CN111050648B/zh
Priority to JP2019541632A priority patent/JP6879376B2/ja
Publication of WO2019053935A1 publication Critical patent/WO2019053935A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20224Image subtraction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the present invention relates to a radiation imaging apparatus.
  • JP 2007-215930 A a mask image (first image) before contrast agent injection and a contrast image (second image) after contrast agent injection by imaging an object before and after injection of a projection agent
  • a radiation imaging apparatus includes an imaging unit that captures and.
  • one of the mask image and the contrast image is uniformly distributed over the entire arbitrary area in accordance with the pixel shift amount indicating the positional deviation between the mask image and the contrast image in the arbitrary area. It is configured to perform pixel shift (generate a deformed image) so as to translate.
  • the radiation imaging apparatus of Japanese Patent Application Laid-Open No. 2007-215930 is configured to perform subtraction processing (generate a composite image) of a mask image and a contrast image, one of which is pixel-shifted.
  • a composite image is generated between two images captured at different points in time by generating a deformed image over an arbitrary region.
  • the artifact caused by the motion of the subject occurring in the Here, in the subject, twisting and local movement may occur as well as movement in which the whole moves in parallel.
  • a deformed image is generated such that one of the first image or the second image is translated in parallel over an arbitrary region. Therefore, in a radiation imaging apparatus such as Japanese Patent Application Laid-Open No. 2007-215930, a non-linear operation of the subject such that the entire region such as torsion and local movement is not uniformly translated (linear image processing in the entire region is It is considered difficult to appropriately generate a deformed image for an impossible operation. For this reason, in a radiation imaging apparatus such as Japanese Patent Application Laid-Open No. 2007-215930, when there is a non-linear operation of the object, the first image and the second image are appropriately synthesized (appropriate synthesized image It is considered difficult to generate
  • the present invention has been made to solve the problems as described above, and one object of the present invention is to provide not only linear movement of an object between two images taken at different times but also nonlinearity.
  • An object of the present invention is to provide a radiation imaging apparatus capable of appropriately combining two images in consideration of operation.
  • a radiation imaging apparatus is the same as an imaging unit that irradiates radiation to a subject and detects radiation transmitted through the subject to capture an image of the subject.
  • the image generation unit that generates the first and second images captured at different points in time with respect to the sample
  • the first image and the second image A movement map generation unit that generates a movement map that represents the movement direction and movement amount of at least a part of pixels, and a smoothed movement map generation that generates a smoothed movement map by suppressing high frequency components in the space direction of the movement map
  • a pixel movement processing unit that generates a deformed image by moving pixels of the first image based on the smoothed movement map, and a composite image that generates a composite image obtained by combining the deformed image and the second image With the processing unit Obtain.
  • the “movement map” is a concept that means a vector representing the movement direction and the movement amount of a pixel.
  • “high frequency component in the space direction of the movement map” means a portion largely separated from the average value due to an error or the like. That is, “suppressing the high frequency component in the space direction of the movement map” reduces (smoothing) the occurrence of the movement map which is largely separated from the average value, and the movement direction and the movement amount represented by the movement map are largely disjointed. It means to suppress the sticking.
  • a movement map of pixels belonging to a first image is generated based on the first image and the second image captured at different times.
  • the method is configured to move the pixels of the first image based on the movement map to generate a deformed image.
  • the movement map can be generated for each pixel belonging to the first image, and the deformed image can be generated. Therefore, unlike the case where the entire region is uniformly translated to generate the deformed image, the first image can be generated. It is possible to generate a deformed image in which only a part of the region at is deformed.
  • the deformed image is generated based on the smoothed movement map in which the high frequency component in the space direction of the movement map is suppressed.
  • the two images can be appropriately synthesized in consideration of not only the linear motion of the subject but also the non-linear motion between the two images captured at different times.
  • the movement map generation unit is configured to set a pixel value of a pixel of the second image, a pixel corresponding to the pixel in the first image, and a pixel belonging to a predetermined peripheral region. Based on the pixel value difference with the pixel value, a movement map representing the movement direction and movement amount of the pixels of the first image is generated.
  • the pixel value is a quantitative value which varies depending on the position of the subject, it becomes an index of a specific position of the subject in the first image and the second image.
  • the pixel value difference between the pixel value of the pixel of the second image and the pixel value of the pixel corresponding to the pixel in the first image and the pixel belonging to the predetermined peripheral region is the predetermined value of the second image. It is quantitatively indicated whether the pixels and the pixels of the first image for which the pixel value difference has been obtained correspond to the specific position of the subject. Thus, based on the first image and the second image, it is possible to easily generate a movement map that represents the movement direction and movement amount of each pixel belonging to the first image.
  • the movement map generation unit is configured to reduce the pixel value difference between the pixel value of the pixel of the second image and the pixel in the first image having the smallest pixel value difference with respect to the pixels of the second image.
  • the movement map representing the movement direction and movement amount of the pixels of the first image is configured to be generated based on the pixel values of the pixels.
  • the pixel value difference minimum pixel in the first image corresponds to the pixel as the reference of the second image among the pixels in the first image and the pixels belonging to the predetermined peripheral region. Since the probability of being a pixel is the highest, the movement map can be generated with high accuracy by using the pixel value difference minimum pixel.
  • the pixel movement processing unit determines a difference between the pixel value of the pixel of the second image and the pixel value of the pixel corresponding to the pixel in the first image.
  • the movement amount of the pixels of the first image is configured to be 0 when it is less than or equal to the predetermined first threshold. According to this configuration, the pixels of the second image and the pixels corresponding to the pixels in the first image are hardly moved, and the pixels of the first image that need not be moved are moved. Can be suppressed.
  • a collimator for narrowing an irradiation region of radiation to a subject and a non-irradiation region extraction unit for extracting a non-irradiation region of radiation generated by the operation of the collimator in the first image
  • the pixel movement processing unit is configured to set the movement amount of the pixels of the first image in the non-irradiation area extracted by the non-irradiation area extraction unit to zero.
  • the non-irradiation area extraction unit sets the border pixel as a border pixel, in the vicinity of the upper, lower, left, and right ends of the first image, with the pixel value of the adjacent pixel outside being the predetermined second threshold or more.
  • a region of the first image outside the pixel is configured to be determined as a non-irradiation region.
  • the pixels of the non-irradiated area in the first image can be easily determined.
  • the radiation imaging apparatus further comprises a direct line area extraction unit for extracting a direct line area in the first image
  • the pixel movement processing unit is a direct line extracted by the direct line area extraction unit.
  • the movement amount of the pixels of the first image in the area is set to zero. According to this structure, it is possible to suppress movement of the pixels in the direct line area in the first image which is an area where the object does not exist in the first image and which does not need to be moved. As a result, it is possible to effectively reduce the control load on the pixel movement processing unit when the direct line area is large.
  • the direct line area extraction unit is configured to determine the direct line area when the pixel value of the pixel forming the first image is equal to or more than a predetermined third threshold.
  • the predetermined value third threshold value
  • the radiation is a direct line area directly detected without transmitting through the object. Because it is high, the pixels of the direct line area in the first image can be easily determined.
  • the first image is a non-contrast image, which is a radiation image obtained by imaging the subject without administering a contrast agent to the blood vessel of the subject
  • the second image is It is a contrast image which is a radiation image which image
  • the contrast image and the non-contrast image are synthesized in consideration of not only the linear motion of the subject between the contrast image and the non-contrast image captured at different time points but also the non-linear motion.
  • the blood vessel image pixel extraction unit for extracting pixels forming the blood vessel image in the contrast image is further provided, and the pixel movement processing unit determines the movement amount of pixels in the non-contrast image corresponding to the pixels forming the blood vessel image. Is configured to be 0. According to this structure, the blood vessel image in the composite image obtained by combining the contrast image and the non-contrast image is unclear due to the movement of the pixels corresponding to the pixels constituting the blood vessel image in the non-contrast image. Can be suppressed.
  • the blood vessel image pixel extraction unit is configured such that a pixel value difference between a pixel value of a pixel forming the contrast image and a pixel value of the pixel in the non-contrast image is predetermined. In the case of four or more threshold values, it is configured to determine that the pixels constituting the contrast image are the pixels constituting the blood vessel image.
  • the pixels in the contrast image are likely to be pixels that constitute the blood vessel image, the pixels of the blood vessel image in the contrast image can be easily determined.
  • the pixel movement processing unit is a pixel of the pixels forming the contrast image
  • the pixel value difference between the value and the pixel value of the pixel in the non-contrast image is smaller than a predetermined fourth threshold, the movement amount of the pixel in the non-contrast image is gradually increased as the pixel value difference decreases.
  • the pixel value difference between the pixel value of the pixel forming the contrast image and the pixel value of the pixel corresponding to the pixel in the non-contrast image is predetermined due to the presence of density in the pixel forming the blood vessel image. Even if the value is smaller than the fourth threshold value (the fourth threshold value), the pixels in the contrast image may be pixels constituting a blood vessel image. Further, as the pixel value difference between the pixel value of the pixel constituting the contrast image and the pixel value of the pixel corresponding to the pixel in the non-contrast image is closer to the predetermined value (fourth threshold), the pixel in the contrast image is There is a high possibility that the pixel constitutes a blood vessel image.
  • the pixel movement processing unit is configured to select a pixel of the non-contrast image corresponding to a pixel determined to be a pixel constituting the blood vessel image in the contrast image by the blood vessel image pixel extraction unit.
  • the pixel whose pixel value is equal to or less than a predetermined fifth threshold is configured not to set the movement amount to zero.
  • the pixel value is equal to or less than the predetermined value (fifth threshold)
  • the pixel corresponds to a portion of the subject other than the blood vessel image. It is believed that there is.
  • the pixels determined to be the pixels forming the blood vessel image that correspond to the pixels forming the contrast image the pixels having a high probability of being pixels other than the pixels forming the blood vessel image It is possible to suppress the generation of the deformed image without moving the pixels in the non-contrast image.
  • FIG. 1 is a diagram showing an overall configuration of a radiation imaging apparatus according to an embodiment of the present invention. It is a block diagram showing composition of an image processing part of a radiation imaging device by one embodiment of the present invention. It is a figure for demonstrating the production
  • the configuration of an X-ray imaging apparatus 100 according to an embodiment of the present invention will be described with reference to FIG.
  • the X-ray imaging apparatus 100 is an example of the “radiation imaging apparatus” in the claims.
  • the X-ray imaging apparatus 100 includes a top 1 for placing a subject P, an imaging unit 2 for performing X-ray imaging of the subject P, and X-ray imaging.
  • a control unit 3 for controlling various configurations of the apparatus 100, a storage unit 4 for storing an X-ray image and the like, and a display unit 5 for displaying the X-ray image and the like There is.
  • the imaging unit 2 includes an X-ray source, and includes an X-ray tube device 2 a disposed on one side of the top plate 1 and an X-ray receiver 2 b disposed on the other side of the top plate 1.
  • the X-ray tube apparatus 2a has an X-ray source, and can apply X-rays by applying a voltage by an X-ray tube driving unit (not shown).
  • the X-ray receiver 2 b includes an FPD (flat panel detector) and is configured to be able to detect X-rays.
  • the X-ray imaging apparatus 100 irradiates X-rays with the X-ray tube apparatus 2a in a state where the subject P is placed on the top plate 1, and X-ray receiver transmits X-rays transmitted through the subject P
  • the object P can be radiographed by detecting at 2b.
  • a collimator 2c for adjusting the irradiation field of the X-ray irradiated from the X-ray tube device 2a is provided.
  • the control unit 3 is a computer including a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), and the like.
  • the control unit 3 is an image processing unit capable of generating an X-ray image 10 (see FIG. 3) obtained by X-ray imaging the internal structure of the subject P based on the detection signal sent from the X-ray receiver 2b. Including six.
  • the X-ray image 10 is an example of the “radiographic image” in the claims.
  • the image processing unit 6 is a computer configured to include a processor such as a graphics processing unit (GPU) or a field-programmable gate array (FPGA) configured for image processing.
  • the image processing unit 6 functions as an image processing apparatus by executing an image processing program stored in the storage unit 4.
  • the image processing unit 6 is configured to be able to generate a mask image 11, a live image 12 and a DSA (Digital Subtraction Angiography) image 13 as the X-ray image 10.
  • the mask image 11 is an X-ray image 10 obtained by radiographing the subject P in a state where a contrast agent is not administered to the subject P.
  • the live image 12 is an X-ray image 10 obtained by radiographing the subject P in a state in which a contrast agent is administered to the subject P. That is, the mask image 11 and the live image 12 are X-ray images 10 captured at different points in time for the same subject P.
  • the DSA image 13 is an X-ray image 10 based on the difference between the pixel value of the mask image 11 and the pixel value of the live image 12.
  • the mask image 11 is an example of the “first image” and the “non-contrast image” in the claims.
  • the live image 12 is an example of the “second image” and the “contrast image” in the claims.
  • the DSA image 13 is an example of the “composite image” in the claims.
  • the blood vessels of the subject P are only unclear. It is drawn not to be reflected).
  • the blood vessel of the subject P is clearly reflected as a blood vessel image B because X-ray imaging is performed in a state where a contrast agent is administered to the subject P.
  • an X-ray image 10 in which only the blood vessel image B is reflected is obtained. It is the DSA image 13 that is generated.
  • Storage unit 4 includes, for example, a non-volatile memory.
  • the storage unit 4 stores a program used for the processing of the control unit 3 and also generates the X-ray image 10 (the mask image 11, the deformed image 11a, the live image 12 and the DSA image generated by the image processing unit 6). 13) It is comprised so that a memory etc. can be memorized.
  • the display unit 5 is configured, for example, as a liquid crystal display.
  • the display unit 5 is configured to be able to display the X-ray image 10 generated by the image processing unit 6. In addition, by displaying a plurality of X-ray images 10 continuously, it is possible to display as a moving image.
  • the X-ray imaging apparatus 100 can visualize blood vessels clearly.
  • the DSA image 13 is generated simply by the difference (pixel value difference) between the pixel value of the mask image 11 and the pixel value in the live image 12, the time of capturing the mask image 11 and the live image
  • the subject P moves with time at the time of imaging 12
  • a mismatch occurs between the position of the subject P in the mask image 11 and the position of the subject P in the live image 12.
  • an artifact motion artifact caused by the motion of the subject P occurs in the DSA image 13, and the visibility of the blood vessel is degraded.
  • the subject P may perform not only linear motion such as translation but also non-linear motion such as torsion and local motion.
  • the image processing unit 6 determines the position of the subject P in the live image 12 and the subject in the mask image 11 based on the pixel values in the live image 12 and the pixel values in the mask image 11.
  • the positional deviation with the position of the specimen P is corrected for each pixel 20 (see FIG. 6) (a movement of the pixel 20 of the mask image 11) to generate a deformed image 11a. That is, the image processing unit 6 is configured to be able to generate the deformed image 11 a based on the mask image 11 and the live image 12.
  • the image processing unit 6 is configured to generate a DSA image 13 obtained by combining the deformed image 11 a and the live image 12.
  • the positional displacement of the subject P in the live image 12 and the mask image 11 is corrected for each pixel 20, so that the subject P has a non-linear motion before and after administration of the contrast agent. Even in this case, it is possible to suppress an artifact generated in the DSA image 13.
  • the mask image 11 and the live image 12 are generated separately.
  • a movement vector 30 representing the movement direction and movement amount of the pixel 20 (see FIG. 6) between the mask image 11 and the live image 12 is generated.
  • the smoothed movement vector 30a in which the high frequency component in the space direction of the movement vector 30 is suppressed is generated.
  • a deformed image 11a in which the mask image 11 is deformed to the smoothed movement vector 30a is generated.
  • a DSA image in which the deformed image 11a and the live image 12 are combined is generated.
  • the movement vector 30 is an example of the “movement map” in the claims.
  • the smoothed movement vector 30a is an example of the "smoothed movement map" in the claims.
  • the image processing unit 6 includes an image generation unit 61, a movement map generation unit 62, and the like.
  • an image generation unit 61 a movement map generation unit 62, and the like.
  • a smoothed movement map generation unit 63 an image movement processing unit 64, a combined image processing unit 65, a non-irradiation area extraction unit 66, a direct line area extraction unit 67, and a blood vessel image pixel extraction unit 68.
  • the image generation unit 61 generates the X-ray image 10 at a predetermined frame rate by imaging the X-ray detection signal sequentially output from the X-ray receiver 2 b.
  • the frame rate is, for example, about 15 FPS to 30 FPS.
  • the X-ray image 10 is an image having pixel values of, for example, a predetermined number of gradations (such as 10 to 12 bits) in gray scale.
  • the movement map generation unit 62 detects the pixel value of the pixel 22 of the live image 12, the pixel 21 corresponding to the pixel 22 in the mask image 11, and the pixels 21 belonging to a predetermined peripheral area.
  • the movement vector 30 representing the movement direction and movement amount of the pixel 21 of the mask image 11 is generated based on the pixel value and the pixel value difference with the pixel value.
  • the movement map generation unit 62 sets the pixel value of the pixel 22 of the live image 12 and the pixel value difference minimum pixel which is the pixel 21 in the mask image 11 with the smallest pixel value difference to the pixels 22 of the live image 12
  • the movement vector 30 representing the movement direction and movement amount of the pixel 21 of the mask image 11 is generated based on the pixel value of 21 a.
  • the movement map generation unit 62 corresponds the pixel 22 of the live image 12 to the pixel 21 of the mask image 11 corresponding to the pixel 22 (having the same coordinates), and Of a total of nine pixels 21 of a predetermined peripheral region of the pixel 21 (total eight pixels of upper, upper right, right, lower right, lower, lower left, upper left and upper left of corresponding pixel 21) and each pixel Compare by value. Then, the movement map generation unit 62 specifies, from among the nine pixels 21 of the mask image 11, a pixel (pixel value difference minimum pixel 21 a) having the smallest difference in pixel value from the pixel 22 of the live image 12.
  • the pixel value is a quantitative value which varies depending on the position of the subject P
  • the pixel value is an index of the position of the subject P in the live image 12 and the mask image 11. Therefore, as described above, comparing a pixel 22 of the live image 12 with nine pixels 21 in the mask image 11 at the same coordinates as the pixel 22 and its surroundings is a mask image for the pixel 22 of the live image 12 It corresponds to examining 11 misalignments. Further, the pixel value difference minimum pixel 21a of the mask image 11 can be regarded as the pixel 20 having the highest possibility that the pixel 22 of the live image 12 is misaligned. Then, as shown in FIG.
  • the movement map generation unit 62 moves the pixel value difference minimum pixel 21 a to the position of the pixel 21 of the mask image 11 corresponding to the pixel 22 of the live image 12 (having the same coordinates).
  • the moving direction and the amount of movement of the pixel value difference minimum pixel 21a in this case are set as a movement vector 30 corresponding to the pixel 21 of the mask image 11.
  • the smoothed movement map generation unit 63 is configured to generate a smoothed movement vector 30a by suppressing high frequency components in the spatial direction of the movement vector 30, as shown in FIG.
  • the smoothed movement map generation unit 63 moves the movement vector 30 around the pixels 21 in the mask image 11 and the pixels 21 in the mask image 11 for each pixel 21 in the mask image 11.
  • the smoothed movement vector 30a smoothed by the pixel 21 is calculated. That is, the smoothed movement map generation unit 63 smoothes the smoothed movement vector 30 a obtained by smoothing the movement vector 30 associated with each pixel 21 in the mask image 11 with the pixel 21 and the eight surrounding pixels 21. calculate.
  • the smoothing can be performed, for example, by simply averaging the movement vector 30 with nine pixels 21. As a result, as shown in FIG.
  • the movement vectors 30 are averaged.
  • the effects of overly different motion vectors 30x are reduced.
  • high frequency components in the spatial direction of the movement vector 30 are suppressed.
  • the smoothing movement vector 30a is drawn with a vector having the same direction and magnitude as the movement vector 30 before smoothing, for convenience of the paper surface. Note that smoothing is not limited to the case where the movement vector 30 is simply averaged by nine pixels 21. For example, after the movement vector 30 of nine pixels 21 is graphed with movement amounts for each movement direction, high-frequency components are extracted by performing Fourier transform. Then, high frequency components in the spatial direction of the movement vector 30 may be suppressed by removing high frequency components.
  • the smoothing movement map generation unit 63 associates the generated smoothing movement vector 30 a with the pixel 21 of the mask image 11 corresponding to the pixel 22 of the live image 12. Then, the smoothed movement map generation unit 63 performs this correspondence on all the pixels 21 of the mask image 11 so that the smoothed movement vector 30 a is associated with all the pixels 21 of the mask image 11. It becomes.
  • the image movement processing unit 64 is configured to move the pixels 21 of the mask image 11 based on the smoothed movement vector 30 a to generate a deformed image 11 a.
  • the image movement processing unit 64 moves the pixels 21 of the mask image 11 based on the smoothed movement vector 30a. That is, the image movement processing unit 64 moves the pixel 21 on the mask image 11 by the movement direction and movement amount of the smoothing movement vector 30 a associated with a certain pixel 21 in the mask image 11.
  • the mask image 11 performs the movement of the pixels 21 based on the smoothed movement vector 30 a for the entire mask image 11 for each pixel 21 of the mask image 11 (a mask image on which the positional deviation correction has been performed) a deformed image It becomes 11a.
  • the image movement processing unit 64 has a first pixel value difference between the pixel value of the pixel 22 of the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11.
  • the movement amount of the pixel 21 of the mask image 11 (the magnitude of the movement vector 30) is set to 0 when the threshold value T1 or less.
  • the image movement processing unit 64 When the pixel value difference between the pixel 22 of the live image 12 and the pixel 21 corresponding to the pixel 22 in the mask image 11 is equal to or less than the preset first threshold T1, the image movement processing unit 64 The pixel 21 of the mask image 11 is not moved, assuming that the pixel 22 of the live image 12 and the pixel 21 corresponding to the pixel 22 in the mask image 11 are hardly misaligned.
  • the image movement processing unit 64 is configured to set the movement amount of the pixels 21 of the mask image 11 in the non-irradiation area extracted by the non-irradiation area extraction unit 66 to zero. Specifically, the image movement processing unit 64 causes the movement map generation unit 62 to generate the movement vector 30 for the pixels 21 of the mask image 11 in the non-irradiation area extracted by the non-irradiation area extraction unit 66. By not including, the non-irradiation area is excluded from the target of the correction process of the positional deviation correction (the exclusion pixel is determined).
  • the non-irradiation area is an area where the X-ray irradiation field is adjusted by a collimator (not shown), and is an area in which substantially nothing is captured in the X-ray image 10.
  • the image movement processing unit 64 is configured to set the movement amount of the pixels 21 of the mask image 11 in the direct line area extracted by the direct line area extraction unit 67 to zero. Specifically, the image movement processing unit 64 causes the movement map generation unit 62 to generate the movement vector 30 for the pixels 21 of the mask image 11 in the direct line area extracted by the direct line area extraction unit 67. If not, the direct line area is excluded from the target of the correction process of the positional deviation correction (an exclusion pixel is determined).
  • the direct ray region is a region in which the X-ray irradiated from the X-ray tube device 2a is directly detected by the X-ray receiver 2b.
  • the image movement processing unit 64 sets the movement amount of the pixel 21 in the mask image 11 corresponding to the pixel 22 constituting the blood vessel image B extracted by the blood vessel image pixel extraction unit 68 to 0. Is configured as. Specifically, the image movement processing unit 64 moves the pixel 21 in the mask image 11 corresponding to the pixel 22 determined to be the pixel 22 constituting the blood vessel image B extracted by the blood vessel image pixel extraction unit 68. By setting the size of the movement vector 30 generated by the map generation unit 62 to 0, the pixels 21 of the mask image 11 are not moved.
  • the image movement processing unit 64 has a difference in pixel value between the pixel value of the pixel 22 constituting the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11.
  • the difference is smaller than the fourth threshold T4
  • the movement amount of the pixels 21 of the mask image 11 is gradually increased as the pixel value difference decreases.
  • the image movement processing unit 64 determines that the pixel value difference between the pixel value of the pixel 22 constituting the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11 is the fourth threshold T4. If the pixel value is smaller than the fourth threshold T4, the mask image is determined depending on whether the pixel 22 of the live image 12 is likely to form the blood vessel image B or not. The amount of movement of the eleven pixels 21 (the magnitude of the movement vector 30) is adjusted.
  • the image movement processing unit 64 selects the pixel 22 of the mask image 11 corresponding to the pixel 22 determined to be the pixel 22 constituting the blood vessel image B in the live image 12 by the blood vessel image pixel extraction unit 68.
  • the pixel 21 corresponding to the pixel 22 having a pixel value equal to or less than the fifth threshold is configured not to set the movement amount to zero. Specifically, even if the image movement processing unit 64 determines that the blood vessel image pixel extraction unit 68 determines that the live image 12 is a pixel 22 that constitutes the blood vessel image B, the pixel value of the pixel 22 is the fifth.
  • the movement map generation unit 62 generates the movement vector 30 with respect to the pixels 21 of the mask image 11 corresponding to the pixels 22 which are less than the threshold value and which are not likely to constitute the blood vessel image B.
  • a portion S (see FIG. 3) having a relatively low pixel value (equal to or less than the fifth threshold) corresponds to the blood vessel image B of the subject P. It is considered to be a portion (eg, a portion of a skeleton).
  • the image movement processing unit 64 averages the pixel values of the plurality of pixels 21 and makes the smoothing movement vector, when the plurality of pixels 21 overlap by moving the pixel 21 based on the smoothing movement vector 30 a. It is configured to correct 30a. Specifically, when there is no movement of the pixel 21 due to the movement amount of the smoothing movement vector 30a being 0 at the movement destination of the pixel 21 based on the smoothing movement vector 30a, and the smoothing movement vector When the moving destinations of the plurality of pixels 21 based on 30a are the same, the pixel value obtained by averaging the pixel values of the plurality of overlapping pixels 21 is set as the pixel value of the moving destination.
  • the image shift processing unit 64 interpolates the blank pixel 21 by the pixel 21 around the blank pixel 21.
  • the smoothing movement vector 30a is configured to be corrected. Specifically, when a blank pixel 21 is generated due to the other pixel 21 not moving at the movement source of the pixel 21 based on the smoothing movement vector 30a, the blank pixel 21 is set to be blank Interpolation is performed by a known image interpolation method by surrounding pixels (near eight) adjacent to the pixel 21.
  • the image movement processing unit 64 smoothes the pixel value of the pixel 21 of the mask image 11 when the smoothed movement vector 30a is not an integer value.
  • the smoothed movement vector 30a is configured to be corrected by moving at a rate according to the movement vector 30a. Specifically, for example, when the direction and the magnitude of the smoothing movement vector 30a are rightward and 0.5, respectively, the pixel value of the left pixel 21 of the pixel 21 to which the smoothing movement vector 30a is associated The pixel value 0.5 times the value of is moved to the pixel 21 associated with the smoothing movement vector 30a.
  • the pixel value of the left pixel 21 of the pixel 21 associated with the smoothed movement vector 30a corresponds to a ratio of 0.5 times the pixel value of the left pixel 21 (1. 5)) pixel values are not moved from the position of the left pixel 21).
  • the composite image processing unit 65 is configured to generate a DSA image 13 in which the deformed image 11 a and the live image 12 are combined. Specifically, as shown in FIG. 4, the composite image processing unit 65 generates the deformed image 11 a and the live image 12 based on the movement vector 30 (smoothed movement vector) generated based on the mask image 11 and the live image 12. And
  • the non-irradiation area extraction unit 66 is configured to extract the non-irradiation area of the radiation generated by the operation of the collimator in the mask image 11, as shown in FIG. Then, in the vicinity of the upper, lower, right, and left ends of the mask image 11, the non-irradiation area extraction unit 66 sets the pixel 21 having the pixel value of the adjacent pixel outside the second threshold or more as the boundary pixel and is outside the boundary pixel.
  • the area of the mask image 11 is determined to be a non-irradiation area.
  • the non-irradiation area extraction unit 66 Is determined to be the boundary of the non-irradiated area close to 0 (zero). That is, the non-irradiation area extraction unit 66 extracts the boundary between the irradiation area and the non-irradiation area by the difference calculation (first derivative calculation) of the pixel values of the adjacent pixels 21.
  • collimator areas are drawn only on the left and right of the X-ray image 10.
  • the image processing unit 6 is configured to perform blurring processing with the boundary between the non-irradiation region of X-rays and the region (irradiation region) inside the non-irradiation region as a blurring region.
  • the blurring process is a boundary between the non-irradiated area and the irradiated area because the DSA image 13 in which the blood vessels are clearly visualized has a poor appearance when a boundary line is reflected between the non-irradiated area and the irradiated area.
  • the purpose is to make the The blurring process is performed, for example, by smoothing the pixel value of the boundary pixel with the pixel value of the pixel adjacent to the boundary pixel.
  • the direct line area extraction unit 67 is configured to extract a direct line area in the mask image 11 as shown in FIG. Then, when the pixel value of the pixel 21 constituting the mask image 11 is equal to or more than the third threshold value, it is determined to be a direct line area. Specifically, the direct line area corresponds to a portion where the object P does not exist in the X-ray image 10. Therefore, the direct line area can be recognized as a pixel value equal to or higher than a predetermined third threshold close to the upper limit (2 n in the case of an n-bit image) of the pixel value.
  • the blood vessel image pixel extraction unit 68 is configured to extract the pixels 22 constituting the blood vessel image B in the live image 12. Then, the blood vessel image pixel extraction unit 68 determines that the pixel value difference between the pixel value of the pixel 22 constituting the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11 is the fourth threshold T4 or more In the case of FIG. 4), the pixels 22 constituting the live image 12 are configured to be judged as the pixels 22 constituting the blood vessel image B.
  • the image processing unit 6 is configured to perform the blurring process with the boundary between the non-irradiation area of X-rays and the area inside the non-irradiation area (irradiation area) as a blurring area.
  • the blurring process is a boundary between the non-irradiated area and the irradiated area because the DSA image 13 in which the blood vessels are clearly visualized has a poor appearance when a boundary line is reflected between the non-irradiated area and the irradiated area.
  • the purpose is to make the The blurring process is performed, for example, by smoothing the pixel value of the boundary pixel with the pixel value of the pixel adjacent to the boundary pixel.
  • step S101 the non-irradiation area extraction unit 66 extracts the non-irradiation area in the mask image 11.
  • step S102 the direct line area extraction unit 67 extracts the direct line area in the mask image 11.
  • step S103 the blood vessel image pixel extraction unit 68 extracts the pixels 22 constituting the blood vessel image B in the live image 12.
  • step S104 the image movement processing unit 64 determines excluded pixels for generation of the movement vector 30 by the movement map generation unit 62 based on the non-irradiation area and the direct line area.
  • step S105 the movement map generation unit 62 calculates the pixel value of the pixel 22 of the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11 and the pixel 21 belonging to a predetermined peripheral area.
  • the movement vector 30 of the pixel 21 of the mask image 11 is generated based on the pixel value difference of
  • step S106 the image movement processing unit 64 adjusts the movement vector 30 based on the pixel 22 constituting the blood vessel image B and the pixel value of the pixel 21 corresponding to the pixel 22 in the live image 12. .
  • step S107 the smoothing movement map generation unit 63 generates the smoothing movement vector 30a by suppressing the high frequency component of the movement vector 30 in the space direction.
  • step S108 the image movement processing unit 64 moves the pixels 21 of the mask image 11 based on the smoothed movement vector 30a to generate a deformed image 11a.
  • step S109 the composite image processing unit 65 generates a DSA image 13 in which the deformed image 11a and the live image 12 are combined.
  • step S101, step S102 and step S103 can be interchanged.
  • the X-ray imaging apparatus 100 generates the movement vector 30 of the pixels 21 belonging to the mask image 11 based on the mask image 11 and the live image 12 captured at different times.
  • the pixel 21 of the mask image 11 is moved based on the movement vector 30 to generate the deformed image 11 a.
  • the movement vector 30 can be generated for each pixel 21 belonging to the mask image 11 and the deformed image 11a can be generated. Therefore, unlike the case where the entire area is uniformly translated to generate the deformed image 11a, the mask It is possible to generate a deformed image 11a in which only a part of the area in the image 11 is deformed.
  • the deformed image 11a is generated based on the smoothed movement vector 30a in which the high frequency component in the space direction of the movement vector 30 is suppressed.
  • the influence of the error can be reduced by suppressing the high frequency component in the space direction.
  • the movement map generation unit 62 includes the pixel value of the pixel 22 of the live image 12, the pixel 21 corresponding to the pixel 22 in the mask image 11, and the pixels belonging to a predetermined peripheral region.
  • the movement vector 30 representing the movement direction and movement amount of the pixel 21 of the mask image 11 is generated based on the pixel value difference from the pixel value of 21.
  • the movement vector 30 representing the movement direction and movement amount of each pixel 21 belonging to the mask image 11 is easily generated. be able to.
  • the movement map generation unit 62 determines the pixel value of the pixel 22 of the live image 12 and the pixel in the mask image 11 with the smallest pixel value difference with respect to the pixel 22 of the live image 12.
  • the movement vector 30 representing the movement direction and movement amount of the pixel 21 of the mask image 11 is generated based on the pixel value of the pixel value difference minimum pixel 21 a which is 21.
  • the movement vector 30 can be generated with high accuracy by using the pixel value difference minimum pixel 21a.
  • the image movement processing unit 64 determines the pixel value difference between the pixel value of the pixel 22 of the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11. Is configured to set the movement amount of the pixel 21 of the mask image 11 to 0 when the first threshold value T1 or less. Thereby, the pixel 22 of the live image 12 and the pixel 21 corresponding to the pixel 22 in the mask image 11 are hardly moved, and it is suppressed that the pixel 21 of the mask image 11 which is not required to be moved is moved. can do.
  • the X-ray imaging apparatus 100 extracts the non-irradiated area of radiation generated by the operation of the collimator in the mask image 11 and the collimator that narrows the irradiated area of the object P.
  • a non-irradiation area extraction unit 66 is configured, and the image movement processing unit 64 is configured to set the movement amount of the pixels 21 of the mask image 11 in the non-irradiation area extracted by the non-irradiation area extraction unit 66 to zero.
  • the image movement processing unit 64 is configured to set the movement amount of the pixels 21 of the mask image 11 in the non-irradiation area extracted by the non-irradiation area extraction unit 66 to zero.
  • the pixel 21 of the pixel 21 adjacent to the outside has the second threshold or more.
  • the area of the mask image 11 outside the boundary pixel is determined as a non-irradiation area, with As a result, when the pixel value difference between adjacent pixels 21 is equal to or greater than the second threshold in the vicinity of the upper, lower, left, and right end portions of the image, the irradiation region having a high pixel value and the pixel value close to 0 (zero) Since the possibility of being the boundary of the irradiation area is high, the pixels 21 in the non-irradiation area in the mask image 11 can be easily identified.
  • the X-ray imaging apparatus 100 includes the direct line area extraction unit 67 that extracts the direct line area in the mask image 11, and the image movement processing unit 64 includes the direct line area extraction unit
  • the movement amount of the pixel 21 of the mask image 11 in the direct line area extracted by 67 is set to be zero. As a result, it is an area where the object P does not exist in the mask image 11, and it is possible to suppress movement of the pixels 21 in the direct line area in the mask image 11 which does not need to be moved. As a result, it is possible to effectively reduce the control load of the image movement processing unit 64 when the direct line area is large.
  • the direct line area extraction unit 67 is configured to determine that the direct image area is a direct line area when the pixel value of the pixels 21 constituting the mask image 11 is equal to or greater than the third threshold. Thereby, when the pixel value in the mask image 11 is equal to or more than the third threshold, there is a high possibility that the radiation is a direct line area directly detected without transmitting the object P. The pixels 21 of the area can be easily determined.
  • the mask image 11 is a non-contrast image which is a radiation image (X-ray image 10) obtained by imaging the subject P in a state where the contrast agent is not administered to the blood vessel of the subject P.
  • the live image 12 is a contrast image which is a radiation image (X-ray image 10) obtained by imaging the subject P in a state where a contrast agent is administered to the blood vessel of the subject P.
  • the contrast image (live) is considered taking into account not only the linear motion of the subject P but also the non-linear motion between the contrast image (live image 12) and the non-contrast image (mask image 11) captured at different times.
  • the image 12) and the non-contrast image (mask image 11) can be combined.
  • the X-ray imaging apparatus 100 includes the blood vessel image pixel extraction unit 68 which extracts the pixels 22 constituting the blood vessel image B in the live image 12, and the image movement processing unit 64
  • the movement amount of the pixel 21 in the mask image 11 corresponding to the pixel 22 constituting the blood vessel image B is configured to be zero.
  • the blood vessel image B in the DSA image 13 in which the live image 12 and the mask image 11 are synthesized is caused by moving the pixel 21 corresponding to the pixel 22 constituting the blood vessel image B in the mask image 11. It is possible to suppress blurring.
  • the blood vessel image pixel extraction unit 68 includes the pixel value of the pixel 22 constituting the live image 12 and the pixel value of the pixel 21 corresponding to the pixel 22 in the mask image 11.
  • the pixels 22 constituting the live image 12 are determined to be the pixels 22 constituting the blood vessel image B.
  • the pixel 22 in the live image 12 is a blood vessel image Since there is a high possibility that the pixel B constitutes a pixel, the pixel 22 of the blood vessel image B in the live image 12 can be easily identified.
  • the image movement processing unit 64 the pixel of the pixel 22 of the live image 12 and the pixel of the pixel 21 corresponding to the pixel 22 in the mask image 11
  • the moving amount of the pixels 21 of the mask image 11 is gradually increased as the pixel value difference decreases.
  • the pixel 22 in the live image 12 caused by the concentration of the pixel 22 constituting the blood vessel image B corresponds to the pixel 22 according to the possibility that the pixel 22 is not the pixel 22 constituting the blood vessel image B.
  • the movement amount of the pixel 21 in the mask image 11 can be adjusted.
  • the image movement processing unit 64 is configured to use the mask image 11 corresponding to the pixel 22 determined as the pixel 22 constituting the blood vessel image B in the live image 12 by the blood vessel image pixel extraction unit 68.
  • the pixel 21 corresponding to the pixel 22 of which the pixel value of the pixel 22 is equal to or less than the fifth threshold among the pixels 21 is configured not to set the movement amount to zero.
  • the pixels 22 determined to be the pixels 22 constituting the live image 12 as the pixels 22 constituting the blood vessel image B the pixels 22 having a pixel value equal to or less than the fifth threshold and other than the pixels 22 constituting the blood vessel image B It is possible to suppress the generation of the deformed image 11 a without moving the pixel 21 in the mask image 11 corresponding to the pixel 22 that is likely to be.
  • the image movement processing unit 64 averages the movement vector 30 for eight pixels 21 in the mask image 11 and eight pixels 21 in the vicinity of the pixel 21 in the mask image 11 for each pixel 21 in the mask image 11.
  • this invention is not limited to this.
  • the image movement processing unit 64 may generate the deformed image 11a based on the movement vector 30 before being averaged, not based on the smoothed movement vector 30a.
  • the movement map generation unit 62 includes the pixels 22 of the live image 12, the pixels 21 of the mask image 11 corresponding to the pixels 22 of the live image 12, and the pixels 21 in the vicinity of eight pixels 21 of the mask image 11.
  • the movement map generation unit 62 may calculate the movement vector 30 based on the pixel value difference with the number of pixels 21 other than nine. In this case, for example, the number of pixels 21 may be reduced as in the case of five pixels 21 including four adjacent pixels 21 in the upper, lower, left, and right of the pixels 21 of the mask image 11.
  • 25 pixels which added the pixel 21 vicinity (of the pixel 21 of 3 each of upper and lower and right and lower right, lower left, lower left, upper left pixel 21) around the pixel 21 of 8 vicinity are further added
  • the number may be increased as in 21.
  • the calculation accuracy of the movement vector 30 can be improved by calculating the movement vector 30 based on the pixel value difference with the large number of pixels 21.
  • the image movement processing unit 64 sets the movement vector 30 to the pixels 21 in the mask image 11 and the pixels 21 in the vicinity of eight pixels 21 in the mask image 11 (total 9
  • the image movement processing unit 64 may generate the deformed image 11a based on the smoothed movement vector 30a obtained by averaging the pixels 21 other than nine.
  • the number of pixels 21 may be reduced as in the case of five pixels 21 including four adjacent pixels 21 in the upper, lower, left, and right of the pixels 21 of the mask image 11.
  • 25 pixels which added the pixel 21 vicinity (of the pixel 21 of 3 each of upper and lower and right and lower right, lower left, lower left, upper left pixel 21) around the pixel 21 of 8 vicinity are further added
  • the number may be increased as in 21.
  • the non-irradiation area extraction unit 66 determines that the irradiation area has a high pixel value if the pixel value difference between the adjacent pixels 21 is equal to or greater than the second threshold in the upper, lower, left, and right neighborhoods of the X-ray image 10.
  • the present invention is not limited to this. In the present invention, not only the method based on the difference calculation (first-order differentiation calculation) of the pixel values of the adjacent pixels 21 as described above, but also the second-order differentiation calculation further performing difference calculation of pixel values. It may be configured to use a boundary extraction method according to
  • the processing of the generation of the DSA image 13 by the image processing unit 6 has been described using a flow-driven flow in which processing is sequentially performed along the processing flow, but the present invention It is not limited to.
  • the process of generating the DSA image 13 by the image processing unit 6 may be performed by an event-driven (event-driven) process of executing the process on an event basis.
  • the operation may be completely event driven, or the combination of event driving and flow driving may be performed.
  • the image processing unit 6 includes the image generation unit 61, the movement map generation unit 62, the smoothed movement map generation unit 63, the image movement processing unit 64, the composite image processing unit 65, and
  • an example configured to include the irradiation region extraction unit 66, the direct line region extraction unit 67, and the blood vessel image pixel extraction unit 68 has been shown, the present invention is not limited to this.
  • configurations of the image processing unit 6 other than the image generation unit 61, the movement map generation unit 62, the smoothed movement map generation unit 63, the image movement processing unit 64, and the composite image processing unit 65 can be omitted. .
  • the present invention is not limited to this.
  • positional deviation correction using the movement vector 30 (and the smoothed movement vector 30a) when combining two images captured in different time zones with respect to the same subject can apply.
  • the present invention can be applied to generation of a long image, generation of an integrated image, and the like.
  • Imaging unit 10 X-ray image (radiographic image) 11 Mask image (first image, non-contrast image) 11a Modified image 12 Live image (second image, contrast image) 13 DSA image (composite image) 20 (21, 22) pixel 21a pixel value difference minimum pixel 30 movement vector (movement map) 30a Smoothing movement vector (Smoothing movement map) 61 image generation unit 62 movement map generation unit 63 smoothing movement map generation unit 64 image movement processing unit 65 composite image processing unit 66 non-irradiation area extraction unit 67 direct line area extraction unit 68 blood vessel image pixel extraction unit 100 X-ray imaging apparatus ( Radiography equipment) B blood vessel image P subject T1 first threshold T4 fourth threshold

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Vascular Medicine (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Multimedia (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

この放射線撮影装置(100)は、異なる時点で撮影された第一の画像(11)と第二の画像(12)とに基づいて、第一の画像(11)に属する画素(21)の移動マップ(30)を生成し、移動マップ(30)の空間方向の高周波成分を抑制した平滑化後移動マップ(30a)に基づいて、第一の画像(11)の画素(21)を移動させて変形画像(11a)を生成し、変形画像(11a)と第二の画像(12)とを合成するように構成する。

Description

放射線撮影装置
 本発明は、放射線撮影装置に関する。
 従来、同一の被検体に対して、異なる時点で撮影された第一及び第二の画像を生成し、第一の画像の画素を移動させた変形画像と第二の画像とを合成した合成画像を生成する放射線撮影装置が知られている。このような放射線撮影装置は、たとえば、特開2007-215930号公報に開示されている。
 特開2007-215930号公報には、投影剤注入の前後にわたって被検体を撮影することにより造影剤注入前のマスク画像(第一の画像)と造影剤注入後のコントラスト画像(第二の画像)とを撮影する撮影部を備えた、放射線撮影装置が開示されている。特開2007-215930号公報の放射線撮影装置は、任意の領域においてマスク画像とコントラスト画像との間の位置ずれを示すピクセルシフト量に従ってマスク画像とコントラスト画像との一方を任意の領域全体で一律に平行移動するようにピクセルシフト(変形画像を生成)するように構成されている。そして、特開2007-215930号公報の放射線撮影装置は、一方がピクセルシフトされたマスク画像とコントラスト画像との引き算処理を行う(合成画像を生成する)ように構成されている。
特開2007-215930号公報
 特開2007-215930号公報のような放射線撮影装置では、上記のように、任意の領域全体で変形画像を生成することにより、異なる時点で撮影された2つの画像間で合成画像を生成する際に生じる被検体の動作に起因したアーチファクトを軽減させている。ここで、被検体には、全体が一律に平行移動するような動きだけでなく、捩れおよび局所的な動きが起こる場合がある。
 しかしながら、特開2007-215930号公報のような放射線撮影装置では、第一の画像または第二の画像の一方を任意の領域全体で一律に平行移動するように変形画像を生成させている。したがって、特開2007-215930号公報のような放射線撮影装置では、捩れおよび局所的な動き等の領域全体が一律に平行移動しないような被検体の非線形な動作(領域全体で線形な画像処理が不可能な動作)に対して適切に変形画像の生成を行うことが困難であると考えられる。このため、特開2007-215930号公報のような放射線撮影装置では、被検体の非線形な動作がある場合に、第一の画像と第二の画像とを適切に合成すること(適切な合成画像を生成すること)が難しいと考えられる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、異なる時点で撮影された2つの画像間における被検体の線形な動作だけでなく非線形な動作を考慮して、2つの画像を適切に合成することが可能な放射線撮影装置を提供することである。
 上記目的を達成するために、この発明の一の局面における放射線撮影装置は、被検体に放射線を照射するとともに被検体を透過した放射線を検出して被検体を撮影する撮影部と、同一の被検体に対して、異なる時点で撮影された第一及び第二の画像を生成する画像生成部と、第一の画像と第二の画像とに基づいて、第一の画像に属する各画素のうち少なくとも一部の画素の移動方向及び移動量を表す移動マップを生成する移動マップ生成部と、移動マップの空間方向の高周波成分を抑制することにより、平滑化移動マップを生成する平滑化移動マップ生成部と、平滑化移動マップに基づいて第一の画像の画素を移動させて変形画像を生成する画素移動処理部と、変形画像と、第二の画像とを合成した合成画像を生成する合成画像処理部とを備える。なお、「移動マップ」とは、画素の移動方向および移動量を表したベクトルを意味する概念である。また、「移動マップの空間方向の高周波成分」とは、誤差等に起因して平均値から大きく離れた部分を意味する。すなわち、「移動マップの空間方向の高周波成分を抑制する」とは、平均値から大きく離れた移動マップが生じるのを低減(平滑化)させて、移動マップが表す移動方向および移動量が大きくバラつくのを抑制することを意味する。
 この発明の一の局面による放射線撮影装置を、上記のように、異なる時点で撮影された第一の画像と第二の画像とに基づいて、第一の画像に属する画素の移動マップを生成し、移動マップに基づいて第一の画像の画素を移動させて変形画像を生成するように構成する。これにより、第一の画像に属する画素毎に移動マップを生成するとともに変形画像を生成することができるので、領域全体を一律に平行移動して変形画像を生成する場合と異なり、第一の画像における領域の一部分だけが変形された変形画像を生成することができる。さらに、上記のように、移動マップの空間方向の高周波成分を抑制した平滑化移動マップに基づいて変形画像を生成するように構成する。これにより、画素毎に移動マップを生成することに起因して移動マップに誤差が生じたとしても、空間方向の高周波成分を抑制することにより、誤差の影響を小さくすることができる。これらの結果、異なる時間で撮影された2つの画像間における被検体の線形な動作だけでなく非線形な動作を考慮して、2つの画像を適切に合成することができる。
 上記一の局面による放射線撮影装置において、好ましくは、移動マップ生成部は、第二の画像の画素の画素値と、第一の画像における当該画素に対応する画素および所定の周辺領域に属する画素の画素値との画素値差に基づいて、第一の画像の画素の移動方向および移動量を表す移動マップを生成するように構成されている。ここで、画素値は、被検体の位置によって異なる定量的な値であるため、第一の画像および第二の画像において被検体の特定の位置の指標となる。したがって、第二の画像の画素の画素値と、第一の画像における当該画素に対応する画素および所定の周辺領域に属する画素の画素値との画素値差には、第二の画像の所定の画素と画素値差を求めた第一の画像の画素とが、被検体の特定の位置に対応しているか否かが定量的に示される。これにより、第一の画像と第二の画像とに基づいて、第一の画像に属する各画素の移動方向および移動量を表す移動マップを容易に生成することができる。
 この場合、好ましくは、移動マップ生成部は、第二の画像の画素の画素値と、第二の画像の画素に対して画素値差が最も小さい第一の画像における画素である画素値差最小画素の画素値とに基づいて、第一の画像の画素の移動方向および移動量を表す移動マップを生成するように構成されている。このように構成すれば、第一の画像における画素値差最小画素は、第一の画像における当該画素および所定の周辺領域に属する画素の中で、第二の画像の基準とした画素に該当する画素である確率が最も高いので、画素値差最小画素を用いることによって、移動マップを精度良く生成することができる。
 上記一の局面による放射線撮影装置において、好ましくは、画素移動処理部は、第二の画像の画素の画素値と、第一の画像における当該画素に対応する画素の画素値との画素値差が所定の第1閾値以下の場合に、第一の画像の画素の移動量を0とするように構成されている。このように構成すれば、第二の画像の画素と第一の画像における当該画素に対応する画素とが殆ど移動しておらず、移動させる必要のない第一の画像の画素を移動させてしまうのを抑制することができる。
 上記一の局面による放射線撮影装置において、好ましくは、被検体への放射線の照射領域を絞るコリメータと、第一の画像におけるコリメータの動作により生じる放射線の非照射領域を抽出する非照射領域抽出部と、をさらに備え、画素移動処理部は、非照射領域抽出部により抽出された非照射領域における第一の画像の画素の移動量を0とするように構成されている。このように構成すれば、第一の画像において放射線が照射されておらず、移動させる必要のない第一の画像における非照射領域の画素を移動させてしまうのを抑制することができる。その結果、非照射領域が大きい場合における画素移動処理部の制御負担を効果的に低減させることができる。
 この場合、好ましくは、非照射領域抽出部は、第一の画像の上下左右の端部近傍において、外側に隣接する画素の画素値が所定の第2閾値以上である画素を境界画素として、境界画素よりも外側の第一の画像の領域を非照射領域と判断するように構成されている。このように構成すれば、画像の上下左右の端部近傍において、隣接する画素同士の画素値差が所定の値(第2閾値)以上である場合には、画素値が高い照射領域と画素値が0(ゼロ)に近い非照射領域の境界である可能性が高いので、第一の画像における非照射領域の画素を容易に判別することができる。
 上記一の局面による放射線撮影装置において、好ましくは、第一の画像における直接線領域を抽出する直接線領域抽出部をさらに備え、画素移動処理部は、直接線領域抽出部により抽出された直接線領域における第一の画像の画素の移動量を0とするように構成されている。このように構成すれば、第一の画像において被検体が存在しない領域であり、移動させる必要のない第一の画像における直接線領域の画素を移動させてしまうのを抑制することができる。その結果、直接線領域が大きい場合における画素移動処理部の制御負担を効果的に低減させることができる。
 この場合、好ましくは、直接線領域抽出部は、第一の画像を構成する画素の画素値が所定の第3閾値以上の場合に直接線領域と判断するように構成されている。このように構成すれば、第一の画像において画素値が所定の値(第3閾値)以上の場合には、放射線が被検体を透過せずに直接検出された直接線領域である可能性が高いので、第一の画像における直接線領域の画素を容易に判別することができる。
 上記一の局面による放射線撮影装置において、好ましくは、第一の画像は被検体の血管に造影剤を投与しない状態で被検体を撮影した放射線画像である非造影画像であり、第二の画像は被検体の血管に造影剤を投与した状態で被検体を撮影した放射線画像である造影画像である。このように構成すれば、異なる時点で撮影された造影画像と非造影画像との間における被検体の線形な動作だけでなく非線形な動作を考慮して造影画像と非造影画像とを合成することができる。
 この場合、好ましくは、造影画像において血管像を構成する画素を抽出する血管像画素抽出部をさらに備え、画素移動処理部は、血管像を構成する画素に対応する非造影画像における画素の移動量を0とするように構成されている。このように構成すれば、非造影画像において血管像を構成する画素に対応する画素を移動させてしまうことに起因して、造影画像と非造影画像とを合成した合成画像における血管像が不鮮明になるのを抑制することができる。
 上記血管像画素抽出部を備える構成において、好ましくは、血管像画素抽出部は、造影画像を構成する画素の画素値と、非造影画像における当該画素の画素値との画素値差が所定の第4閾値以上の場合に、造影画像を構成する画素が血管像を構成する画素と判断するように構成されている。このように構成すれば、造影画像を構成する画素の画素値と、非造影画像における当該画素に対応する画素の画素値との画素値差が所定の値(第4閾値)以上の場合、その造影画像における画素は血管像を構成する画素である可能性が高いので、造影画像における血管像の画素を容易に判別することができる。
 上記画素値差が所定の第4閾値以上の場合に造影画像を構成する画素が血管像を構成する画素と判断する構成において、好ましくは、画素移動処理部は、造影画像を構成する画素の画素値と、非造影画像における当該画素の画素値との画素値差が所定の第4閾値より小さい場合に、当該画素値差が小さくなるにしたがって、非造影画像の画素の移動量を徐々に大きくするように構成されている。ここで、血管像を構成する画素に濃淡があることに起因して、造影画像を構成する画素の画素値と、非造影画像における当該画素に対応する画素の画素値との画素値差が所定の値(第4閾値)より小さい場合でも、その造影画像における画素が血管像を構成する画素である可能性がある。また、造影画像を構成する画素の画素値と、非造影画像における当該画素に対応する画素の画素値との画素値差が所定の値(第4閾値)に近い程、その造影画像における画素が血管像を構成する画素である可能性が高い。したがって、上記のように構成することによって、造影画像における画素が血管像を構成する画素でない可能性の大きさに応じて、当該画素に対応する非造影画像における画素の移動量を調整することができる。
 上記血管像画素抽出部を備える構成において、好ましくは、画素移動処理部は、血管像画素抽出部によって造影画像において血管像を構成する画素と判断された画素に対応する非造影画像の画素のうち、当該画素の画素値が所定の第5閾値以下の画素は移動量を0としないように構成されている。ここで、血管像を構成する画素が含まれない非造影画像において、画素値が所定の値(第5閾値)以下の場合、その画素は、血管像以外の被検体の部分に相当する画素であると考えられる。したがって、上記のように構成することによって、造影画像を構成する画素が血管像を構成する画素と判断された画素の内、血管像を構成する画素以外の画素である可能性の高い画素に対応する非造影画像における画素が移動されずに変形画像が生成されるのを抑制することができる。
 本発明によれば、上記のように、異なる時点で撮影された2つの画像間における被検体の線形な動作だけでなく非線形な動作を考慮して、2つの画像を適切に合成することが可能な放射線撮影装置を提供することができる。
本発明の一実施形態による放射線撮影装置の全体構成を示す図である。 本発明の一実施形態による放射線撮影装置の画像処理部の構成を示すブロック図である。 マスク画像とライブ画像とを合成したDSA画像の生成を説明するための図である。 移動ベクトルを用いたDSA画像生成の流れを説明するための図である。 非照射領域および直接線領域を説明するための図である。 ライブ画像の画素とマスクにおける当該画素に対応する画素との比較を説明するための図である。 移動ベクトルの生成を説明するための図である。 ライブ画像の画素の画素値とマスク画像における当該画素に対応する画素の画素値との画素値差に基づくマスク画像の画素の移動量(移動ベクトル)の調整を説明するための図である。 平滑化移動ベクトルの生成を説明するための図である。 移動ベクトルの平滑化による高周波成分の抑制を説明するための図である。 移動ベクトルを用いたDSA画像の生成処理のフローチャートである。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 図1を参照して、本発明の一実施形態によるX線撮影装置100の構成について説明する。なお、X線撮影装置100は、特許請求の範囲の「放射線撮影装置」の一例である。
 (X線撮影装置の構成)
 図1に示すように、本実施形態のX線撮影装置100は、被検体Pを載置するための天板1と、被検体PをX線撮影するための撮影部2と、X線撮影装置100の各種構成を制御するための制御部3と、X線撮影した画像等を記憶するための記憶部4と、X線撮影した画像等を表示するための表示部5と、を備えている。
 撮影部2は、X線源を有し、天板1の一方側に配置されたX線管装置2aと、天板1の他方側に配置されたX線受像器2bと、を有する。
 X線管装置2aは、X線源を有しており、図示しないX線管駆動部によって電圧が印加されることにより、X線を照射することが可能である。X線受像器2bは、FPD(フラットパネルディテクタ)を含み、X線を検出することができるように構成されている。これにより、X線撮影装置100は、天板1に被検体Pを載置した状態で、X線管装置2aによりX線を照射して、被検体Pを透過したX線をX線受像器2bで検出することによって、被検体PをX線撮影することが可能である。なお、X線管装置2aの近傍には、X線管装置2aから照射されるX線の照射野を調整するためのコリメータ2cが設けられている。
 制御部3は、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含んで構成されたコンピュータである。制御部3は、X線受像器2bから送られた検出信号に基づいて、被検体Pの内部構造をX線撮影したX線画像10(図3参照)を生成することが可能な画像処理部6を含む。なお、X線画像10は、特許請求の範囲の「放射線画像」の一例である。
 画像処理部6は、GPU(Graphics Processing Unit)や画像処理用に構成されたFPGA(Field-Programmable Gate Array)などのプロセッサを含んで構成されたコンピュータである。画像処理部6は、記憶部4に記憶された画像処理プログラム実行することにより、画像処理装置として機能する。
 本実施形態では、図3に示すように、画像処理部6は、X線画像10として、マスク画像11、ライブ画像12およびDSA(Digital Subtraction Angiography)画像13を生成することが可能に構成されている。マスク画像11は、被検体Pに造影剤を投与しない状態で被検体PをX線撮影したX線画像10である。また、ライブ画像12は、被検体Pに造影剤を投与した状態で被検体PをX線撮影したX線画像10である。すなわち、マスク画像11およびライブ画像12は、同一の被検体Pに対して、異なる時点で撮影されたX線画像10である。また、DSA画像13は、マスク画像11における画素値とライブ画像12の画素値との差分によるX線画像10である。なお、マスク画像11は、特許請求の範囲の「第一の画像」および「非造影画像」一例である。また、ライブ画像12は、特許請求の範囲の「第二の画像」および「造影画像」の一例である。また、DSA画像13は、特許請求の範囲の「合成画像」の一例である。
 図3に示すように、マスク画像11では、被検体Pに造影剤を投与しない状態でX線撮影されているため、被検体Pの血管は不鮮明にしか写り込んでいない(図中では、全く写り込んでいないように描いている)。一方、ライブ画像12では、被検体Pに造影剤を投与した状態でX線撮影されているため、被検体Pの血管が血管像Bとして鮮明に写り込んでいる。そして、マスク画像11における画素値と、ライブ画像12における画素値との差分を取る(マスク画像11とライブ画像12とを合成する)ことにより、血管像Bだけが写り込んだX線画像10として生成されるのが、DSA画像13である。
 記憶部4は、たとえば、不揮発メモリを含む。そして、記憶部4には、制御部3の処理に用いられるプログラムが記憶されているとともに、画像処理部6で生成したX線画像10(マスク画像11、変形画像11a、ライブ画像12およびDSA画像13)等を記憶できるように構成されている。
 表示部5は、たとえば、液晶ディスプレイとして構成されている。そして、表示部5は、画像処理部6により生成されたX線画像10を表示することが可能に構成されている。また、複数枚のX線画像10を連続的に表示することで、動画として表示することも可能に構成されている。
 上記の構成により、X線撮影装置100では、血管を鮮明に可視化することが可能である。
 ここで、上記のように、単純にマスク画像11の画素値とライブ画像12における画素値との差分(画素値差)によりDSA画像13を生成した場合、マスク画像11の撮影時と、ライブ画像12の撮影時とで、経時的に被検体Pが動くことにより、マスク画像11における被検体Pの位置とライブ画像12における被検体Pの位置とに不一致が生じる。このとき、DSA画像13には、被検体Pの動作に起因するアーチファクト(モーションアーチファクト)が発生し、血管の視認性が悪化する。また、造影剤の投与前後で、被検体Pは平行移動のような線形な動きだけでなく、捩れおよび局所的な動き等の非線形な動きをする場合がある。
 そこで、画像処理部6は、DSA画像13を生成する際に、ライブ画像12における画素値とマスク画像11における画素値とに基づいて、ライブ画像12における被検体Pの位置とマスク画像11における被検体Pの位置との位置ずれを画素20(図6参照)毎に補正する(マスク画像11の画素20を移動させる)ことにより変形させた変形画像11aを生成するように構成されている。つまり、画像処理部6は、マスク画像11とライブ画像12とに基づいて、変形画像11aを生成することが可能に構成されている。そして、画像処理部6は、変形画像11aとライブ画像12とを合成したDSA画像13を生成するように構成されている。したがって、X線撮影装置100では、ライブ画像12とマスク画像11における被検体Pの位置ずれを画素20毎に補正することにより、造影剤の投与前後で、被検体Pに非線形な動きがあった場合でも、DSA画像13に発生するアーチファクトを抑制することが可能である。
 (画像処理部による被検体の非線形な動きを考慮したDSA画像の生成)
 まず、図4を参照して、画像処理部6によるマスク画像11およびライブ画像12間の被検体Pの非線形な動きを考慮したDSA画像の生成の大まかな流れを説明する。
 図4に示すように、まず、画像処理部6では、マスク画像11およびライブ画像12が別々に生成される。次に、マスク画像11およびライブ画像12に基づいて、マスク画像11とライブ画像12との間における画素20(図6参照)の移動方向および移動量を表す移動ベクトル30が生成される。次に、移動ベクトル30の空間方向の高周波成分が抑制された平滑化移動ベクトル30aが生成される。次に、平滑化移動ベクトル30aにマスク画像11が変形された変形画像11aが生成される。そして、変形画像11aとライブ画像12とが合成されたDSA画像が生成される。なお、移動ベクトル30は、特許請求の範囲の「移動マップ」の一例である。また、平滑化移動ベクトル30aは、特許請求の範囲の「平滑化移動マップ」の一例である。
 (画像処理部の構成)
 次に、図2~図10を参照して、画像処理部6の具体的な構成を説明する。
 画像処理部6は、図2に示すように、画像生成部61と、移動マップ生成部62と、
平滑化移動マップ生成部63と、画像移動処理部64と、合成画像処理部65と、非照射領域抽出部66と、直接線領域抽出部67と、血管像画素抽出部68と、を備えている。
 画像生成部61は、X線受像器2bから順次出力されるX線検出信号を画像化することにより、X線画像10を所定のフレームレートで生成する。フレームレートは、たとえば15FPS~30FPS程度である。X線画像10は、たとえばグレースケールで所定の階調数(10~12ビットなど)の画素値を有する画像である。
 移動マップ生成部62は、図6および図7に示すように、ライブ画像12の画素22の画素値と、マスク画像11における当該画素22に対応する画素21および所定の周辺領域に属する画素21の画素値との画素値差とに基づいて、マスク画像11の画素21の移動方向および移動量を表す移動ベクトル30を生成するように構成されている。より詳しくは、移動マップ生成部62は、ライブ画像12の画素22の画素値と、ライブ画像12の画素22に対して画素値差が最も小さいマスク画像11における画素21である画素値差最小画素21aの画素値とに基づいて、マスク画像11の画素21の移動方向および移動量を表す移動ベクトル30を生成するように構成されている。
 具体的には、移動マップ生成部62は、図6に示すように、ライブ画像12のある画素22と、当該画素22に対応する(同一座標である)マスク画像11の画素21、および、対応する画素21の所定の周辺領域(対応する画素21の上、右上、右、右下、下、左下、左および左上の計8つ)の画素21の計9つの画素21とを、各々の画素値で比較する。そして、移動マップ生成部62は、マスク画像11の9つの画素21の中から、ライブ画像12のある画素22との画素値の差が最小の画素(画素値差最小画素21a)を特定する。ここで、画素値は、被検体Pの位置によって異なる定量的な値であるため、ライブ画像12およびマスク画像11において被検体Pの位置の指標となる。したがって、上記のように、ライブ画像12のある画素22と、その画素22と同一座標およびその周囲のマスク画像11における9つの画素21とを比較することは、ライブ画像12の画素22に対するマスク画像11の位置ずれを調べることに相当する。また、マスク画像11の画素値差最小画素21aは、ライブ画像12の画素22が位置ずれした可能性が最も高い画素20と見なすことができる。そして、移動マップ生成部62は、図7に示すように、画素値差最小画素21aを、ライブ画像12の画素22に対応する(同一座標である)マスク画像11の画素21の位置に移動させた場合の画素値差最小画素21aの移動方向および移動量を、マスク画像11の画素21に対応する移動ベクトル30とする。
 平滑化移動マップ生成部63は、図9に示すように、移動ベクトル30の空間方向の高周波成分を抑制することにより、平滑化移動ベクトル30aを生成するように構成されている。
 具体的には、平滑化移動マップ生成部63は、図9に示すように、移動ベクトル30を、マスク画像11における画素21毎に、マスク画像11における画素21およびマスク画像11における画素21の周囲の画素21で平滑化した平滑化移動ベクトル30aを算出する。すなわち、平滑化移動マップ生成部63は、マスク画像11における各々の画素21に対応付けられた移動ベクトル30を、その画素21と周囲の8つの画素21とで平滑化した平滑化移動ベクトル30aを算出する。なお、平滑化は、たとえば、9つの画素21で単純に移動ベクトル30を平均することによって行うことが可能である。これにより、図10に示すように、9つの画素21内に移動ベクトル30が過度に異なるもの(移動ベクトル30x)が含まれていた場合であっても、移動ベクトル30が平均されることにより、過度に異なる移動ベクトル30xの影響が低減される。この結果、移動ベクトル30の空間方向の高周波成分が抑制される。なお、図9では、紙面の都合上、平滑化移動ベクトル30aを平滑化前の移動ベクトル30と同じ方向および大きさのベクトルで描いている。なお、平滑化は、9つの画素21で単純に移動ベクトル30を平均する場合に限られない。たとえば、9つの画素21の移動ベクトル30を移動方向毎に移動量でグラフ化した後、フーリエ変換を行うことによって高周波成分を抽出する。そして、高周波成分を除去することによって、移動ベクトル30の空間方向の高周波成分を抑制してもよい。
 そして、平滑化移動マップ生成部63は、生成された平滑化移動ベクトル30aを、ライブ画像12の画素22に対応するマスク画像11の画素21に対応付ける。そして、平滑化移動マップ生成部63が、この対応付けをマスク画像11の全ての画素21に対して行うことにより、マスク画像11の全ての画素21に平滑化移動ベクトル30aが対応付けられた状態となる。
 画像移動処理部64は、図4に示すように、平滑化移動ベクトル30aに基づいてマスク画像11の画素21を移動させて変形画像11aを生成するように構成されている。
 具体的には、画像移動処理部64は、平滑化移動ベクトル30aに基づいて、マスク画像11の画素21を移動させる。すなわち、画像移動処理部64は、マスク画像11において、ある画素21に対応付けられた平滑化移動ベクトル30aの移動方向および移動量の分だけ、その画素21をマスク画像11上で移動させる。マスク画像11は、この平滑化移動ベクトル30aに基づく画素21の移動を、マスク画像11の画素21毎に、マスク画像11全体で行うことにより、(位置ずれ補正が行われたマスク画像)変形画像11aとなる。
 また、画像移動処理部64は、図8に示すように、ライブ画像12の画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第1閾値T1以下の場合に、マスク画像11の画素21の移動量(移動ベクトル30の大きさ)を0とするように構成されている。すなわち、画像移動処理部64は、ライブ画像12の画素22とマスク画像11における当該画素22に対応する画素21との間の画素値差が、予め設定された第1閾値T1以下の場合は、ライブ画像12の画素22とマスク画像11における当該画素22に対応する画素21との間で殆ど位置ずれしていないと見なして、マスク画像11の画素21を移動させない。
 また、画像移動処理部64は、図5に示すように、非照射領域抽出部66により抽出された非照射領域におけるマスク画像11の画素21の移動量を0とするように構成されている。具体的には、画像移動処理部64は、非照射領域抽出部66により抽出された非照射領域におけるマスク画像11の画素21に対して、移動マップ生成部62に移動ベクトル30の生成を行わせないことにより、位置ずれ補正の補正処理の対象から非照射領域を除外する(除外画素を決定する)。ここで、非照射領域は、コリメータ(図示せず)によりX線の照射野が調整される領域であり、X線画像10において実質的に何も撮影されていない領域である。
 また、画像移動処理部64は、直接線領域抽出部67により抽出された直接線領域におけるマスク画像11の画素21の移動量を0とするように構成されている。具体的には、画像移動処理部64は、直接線領域抽出部67により抽出された直接線領域におけるマスク画像11の画素21に対して、移動マップ生成部62に移動ベクトル30の生成を行わせないことにより、位置ずれ補正の補正処理の対象から直接線領域を除外する(除外画素を決定する)。直接線領域は、X線管装置2aから照射されたX線をX線受像器2bにより直接検出される領域である。
 また、画像移動処理部64は、図8に示すように、血管像画素抽出部68により抽出された血管像Bを構成する画素22に対応するマスク画像11における画素21の移動量を0とするように構成されている。具体的には、画像移動処理部64は、血管像画素抽出部68により抽出された血管像Bを構成する画素22と判断された画素22に対応するマスク画像11における画素21に対して、移動マップ生成部62により生成された移動ベクトル30の大きさを0とすることにより、マスク画像11の画素21を移動させない。 
 また、画像移動処理部64は、図8に示すように、ライブ画像12を構成する画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第4閾値T4より小さい場合に、当該画素値差が小さくなるにしたがって、マスク画像11の画素21の移動量を徐々に大きくするように構成されている。具体的には、画像移動処理部64は、ライブ画像12を構成する画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第4閾値T4より小さい場合に、当該画素値が第4閾値T4に近い値である場合は、ライブ画像12の画素22が血管像Bを構成する画素22の可能性が高いか否かに応じて、マスク画像11の画素21の移動量(移動ベクトル30の大きさ)を調整する。
 また、画像移動処理部64は、血管像画素抽出部68によってライブ画像12において血管像Bを構成する画素22と判断された画素22に対応するマスク画像11の画素21のうち、当該画素22の画素値が第5閾値以下の画素22に対応する画素21は移動量を0としないように構成されている。具体的には、画像移動処理部64は、血管像画素抽出部68によってライブ画像12において血管像Bを構成する画素22と判断された場合であっても、当該画素22の画素値が第5閾値以下であり、血管像Bを構成する画素でない可能性の高い画素22に対応するマスク画像11の画素21に対して、移動マップ生成部62に移動ベクトル30の生成を行わせる。なお、血管像Bが含まれないマスク画像11において、画素値が相対的に低い(第5閾値以下である)部分S(図3参照)は、被検体Pの血管像Bに相当する以外の部分(たとえば、骨格の部分)であると見なす。
 なお、画像移動処理部64は、平滑化移動ベクトル30aに基づいて画素21を移動させることにより、複数の画素21の重複が生じる場合、複数の画素21における画素値を平均化して平滑化移動ベクトル30aを補正するように構成されている。具体的には、平滑化移動ベクトル30aに基づく画素21の移動先において、平滑化移動ベクトル30aの移動量が0であることに起因して画素21の移動がない場合、および、平滑化移動ベクトル30aに基づく複数の画素21の移動先が同じ場合に、重複した複数の画素21の画素値を平均化した画素値をその移動先の画素値とするように構成されている。
 また、画像移動処理部64は、平滑化移動ベクトル30aに基づいて画素21を移動させることにより、空白の画素21が生じる場合、空白の画素21を空白の画素21の周囲の画素21によって補間することによって平滑化移動ベクトル30aを補正するように構成されている。具体的には、平滑化移動ベクトル30aに基づく画素21の移動元に、他の画素21が移動してこないことに起因して空白の画素21が生じた場合、その空白の画素21を空白の画素21に隣接する周囲(8近傍)の画素21によって周知の画像補間法により補間する。
 また、画像移動処理部64は、平滑化移動ベクトル30aに基づいて画素21を移動させた場合に、平滑化移動ベクトル30aが整数値でない場合、マスク画像11の画素21の画素値を、平滑化移動ベクトル30aに応じた割合だけ移動することによって、平滑化移動ベクトル30aを補正するように構成されている。具体的には、たとえば、平滑化移動ベクトル30aの方向および大きさが、それぞれ、右方向および0.5の場合、平滑化移動ベクトル30aが対応付けられた画素21の左の画素21の画素値の0.5倍の画素値を平滑化移動ベクトル30aが対応付けられた画素21に移動させる。そして、平滑化移動ベクトル30aが対応付けられた画素21の左の画素21の画素値の移動させていない割合に相当する(左の画素21の画素値の0.5倍(1倍-0.5倍)の)画素値は、左の画素21の位置から移動させない。
 合成画像処理部65は、変形画像11aと、ライブ画像12とを合成したDSA画像13を生成するように構成されている。具体的には、合成画像処理部65は、図4に示すように、マスク画像11およびライブ画像12に基づいて生成された移動ベクトル30(平滑化移動ベクトル)に基づく変形画像11aとライブ画像12とを合成する。
 非照射領域抽出部66は、図4に示すように、マスク画像11におけるコリメータの動作により生じる放射線の非照射領域を抽出するように構成されている。そして、非照射領域抽出部66は、マスク画像11の上下左右の端部近傍において、外側に隣接する画素21の画素値が第2閾値以上である画素21を境界画素として、境界画素よりも外側のマスク画像11の領域を非照射領域と判断するように構成されている。具体的には、非照射領域抽出部66は、X線画像10の上下左右の近傍において、隣接する画素21同士の画素値差が第二閾以上の場合、画素値が高い照射領域と画素値が0(ゼロ)に近い非照射領域の境界であると判断する。すなわち、非照射領域抽出部66は、隣接する画素21同士の画素値の差分演算(一次微分演算)により照射領域と非照射領域との境界を抽出している。なお、図4では、便宜上、X線画像10の左右のみにコリメータ領域を描いている。
 なお、画像処理部6では、X線の非照射領域と非照射領域の内側の領域(照射領域)との境界を、ぼかし領域として、ぼかし処理が行うように構成されている。ぼかし処理は、鮮明に血管を可視化したDSA画像13において、非照射領域と照射領域との間に境界の線が写り込むと見栄えがよくない等の理由で、非照射領域と照射領域との境界を目立たなくすることを目的としている。ぼかし処理は、たとえば、境界画素の画素値を、境界画素に隣接する画素の画素値によって平滑化することによって行われる。
 直接線領域抽出部67は、図4に示すように、マスク画像11における直接線領域を抽出するように構成されている。そして、マスク画像11を構成する画素21の画素値が第3閾値以上の場合に直接線領域と判断するように構成されている。具体的には、直接線領域は、X線画像10において、被検体Pが存在しない部分に相当する。したがって、直接線領域は、画素値の上限(nビット画像の場合、2n)に近い所定の第3閾値以上の画素値として認識することが可能である。
 血管像画素抽出部68は、ライブ画像12において血管像Bを構成する画素22を抽出するように構成されている。そして、血管像画素抽出部68は、ライブ画像12を構成する画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第4閾値T4以上(図4参照)の場合に、ライブ画像12を構成する画素22が血管像Bを構成する画素22と判断するように構成されている。
 なお、画像処理部6は、X線の非照射領域と非照射領域の内側の領域(照射領域)との境界を、ぼかし領域として、ぼかし処理が行うように構成されている。ぼかし処理は、鮮明に血管を可視化したDSA画像13において、非照射領域と照射領域との間に境界の線が写り込むと見栄えがよくない等の理由で、非照射領域と照射領域との境界を目立たなくすることを目的としている。ぼかし処理は、たとえば、境界画素の画素値を、境界画素に隣接する画素の画素値によって平滑化することによって行われる。
 (移動ベクトルを用いた合成画像の生成処理のフロー)
 次に、図11を参照して、画像処理部6による移動ベクトル30を用いたDSA画像13の生成処理のフローについて説明する。なお、このフローに先立って、マスク画像11およびライブ画像12が生成されているものとする。
 まず、ステップS101において、非照射領域抽出部66は、マスク画像11における非照射領域を抽出する。
 次に、ステップS102において、直接線領域抽出部67は、マスク画像11における直接線領域を抽出する。
 次に、ステップS103において、血管像画素抽出部68は、ライブ画像12における血管像Bを構成する画素22を抽出する。
 次に、ステップS104において、画像移動処理部64が、非照射領域および直接線領域に基づいて、移動マップ生成部62による移動ベクトル30の生成の除外画素を決定する。
 次に、ステップS105において、移動マップ生成部62は、ライブ画像12の画素22の画素値と、マスク画像11における当該画素22に対応する画素21および所定の周辺領域に属する画素21の画素値との画素値差とに基づいて、マスク画像11の画素21の移動ベクトル30を生成する。
 次に、ステップS106において、画像移動処理部64は、血管像Bを構成する画素22、および、ライブ画像12における当該画素22に対応する画素21の画素値に基づいて、移動ベクトル30を調整する。
 次に、ステップS107において、平滑化移動マップ生成部63は、移動ベクトル30の空間方向の高周波成分を抑制することにより、平滑化移動ベクトル30aを生成する。
 次に、ステップS108において、画像移動処理部64が、平滑化移動ベクトル30aに基づいて、マスク画像11の画素21を移動させて変形画像11aを生成する。
 次に、ステップS109において、合成画像処理部65が、変形画像11aと、ライブ画像12とを合成したDSA画像13を生成する。
 なお、上記のフローでは、ステップS101、ステップS102およびステップS103の順序は互いに入れ替えることが可能である。
 (実施形態の効果)
 本実施形態では、以下のような効果を得ることができる。
 本実施形態では、上記のように、X線撮影装置100を、異なる時点で撮影されたマスク画像11とライブ画像12とに基づいて、マスク画像11に属する画素21の移動ベクトル30を生成し、移動ベクトル30に基づいてマスク画像11の画素21を移動させて変形画像11aを生成するように構成する。これにより、マスク画像11に属する画素21毎に移動ベクトル30を生成するとともに変形画像11aを生成することができるので、領域全体を一律に平行移動して変形画像11aを生成する場合と異なり、マスク画像11における領域の一部分だけが変形された変形画像11aを生成することができる。さらに、上記のように、移動ベクトル30の空間方向の高周波成分を抑制した平滑化移動ベクトル30aに基づいて変形画像11aを生成するように構成する。これにより、画素21毎に移動ベクトル30を生成することに起因して移動ベクトル30に誤差が生じたとしても、空間方向の高周波成分を抑制することにより、誤差の影響を小さくすることができる。これらの結果、異なる時間で撮影された2つの画像間における被検体Pの線形な動作だけでなく非線形な動作を考慮して、2つの画像を適切に合成することができる。
 また、本実施形態では、上記のように、移動マップ生成部62を、ライブ画像12の画素22の画素値と、マスク画像11における当該画素22に対応する画素21および所定の周辺領域に属する画素21の画素値との画素値差に基づいて、マスク画像11の画素21の移動方向および移動量を表す移動ベクトル30を生成するように構成する。これにより、被検体Pの特定の位置の指標となるマスク画像11とライブ画像12とに基づいて、マスク画像11に属する各画素21の移動方向および移動量を表す移動ベクトル30を容易に生成することができる。
 また、本実施形態では、上記のように、移動マップ生成部62を、ライブ画像12の画素22の画素値と、ライブ画像12の画素22に対して画素値差が最も小さいマスク画像11における画素21である画素値差最小画素21aの画素値とに基づいて、マスク画像11の画素21の移動方向および移動量を表す移動ベクトル30を生成するように構成する。これにより、マスク画像11における画素値差最小画素21aは、マスク画像11における当該画素21および所定の周辺領域に属する画素21の中で、ライブ画像12の画素22の基準とした画素21である確率が最も高いので、画素値差最小画素21aを用いることによって、移動ベクトル30を精度良く生成することができる。
 また、本実施形態では、上記のように、画像移動処理部64を、ライブ画像12の画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第1閾値T1以下の場合に、マスク画像11の画素21の移動量を0とするように構成する。これにより、ライブ画像12の画素22とマスク画像11における当該画素22に対応する画素21とが殆ど移動しておらず、移動させる必要のないマスク画像11の画素21を移動させてしまうのを抑制することができる。
 また、本実施形態では、上記のように、X線撮影装置100は、被検体Pへの放射線の照射領域を絞るコリメータと、マスク画像11におけるコリメータの動作により生じる放射線の非照射領域を抽出する非照射領域抽出部66と、を備え、画像移動処理部64を、非照射領域抽出部66により抽出された非照射領域におけるマスク画像11の画素21の移動量を0とするように構成する。これにより、マスク画像11において放射線が照射されておらず、移動させる必要のないマスク画像11における非照射領域の画素21を移動させてしまうのを抑制することができる。その結果、非照射領域が大きい場合における画像移動処理部64の制御負担を効果的に低減させることができる。
 また、本実施形態では、上記のように、非照射領域抽出部66を、マスク画像11の上下左右の端部近傍において、外側に隣接する画素21の画素値が第2閾値以上である画素21を境界画素として、境界画素よりも外側のマスク画像11の領域を非照射領域と判断するように構成する。これにより、画像の上下左右の端部近傍において、隣接する画素21同士の画素値差が第2閾値以上である場合には、画素値が高い照射領域と画素値が0(ゼロ)に近い非照射領域の境界である可能性が高いので、マスク画像11における非照射領域の画素21を容易に判別することができる。
 また、本実施形態では、上記のように、X線撮影装置100は、マスク画像11における直接線領域を抽出する直接線領域抽出部67を備え、画像移動処理部64は、直接線領域抽出部67により抽出された直接線領域におけるマスク画像11の画素21の移動量を0とするように構成する。これにより、マスク画像11において被検体Pが存在しない領域であり、移動させる必要のないマスク画像11における直接線領域の画素21を移動させてしまうのを抑制することができる。その結果、直接線領域が大きい場合における画像移動処理部64の制御負担を効果的に低減させることができる。
 また、本実施形態では、上記のように、直接線領域抽出部67を、マスク画像11を構成する画素21の画素値が第3閾値以上の場合に直接線領域と判断するように構成する。これにより、マスク画像11において画素値が第3閾値以上の場合には、放射線が被検体Pを透過せずに直接検出された直接線領域である可能性が高いので、マスク画像11における直接線領域の画素21を容易に判別することができる。
 また、本実施形態では、上記のように、マスク画像11を、被検体Pの血管に造影剤を投与しない状態で被検体Pを撮影した放射線画像(X線画像10)である非造影画像とし、ライブ画像12を、被検体Pの血管に造影剤を投与した状態で被検体Pを撮影した放射線画像(X線画像10)である造影画像とする。これにより、異なる時点で撮影された造影画像(ライブ画像12)と非造影画像(マスク画像11)との間における被検体Pの線形な動作だけでなく非線形な動作を考慮して造影画像(ライブ画像12)と非造影画像(マスク画像11)とを合成することができる。
 また、本実施形態では、上記のように、X線撮影装置100は、ライブ画像12において血管像Bを構成する画素22を抽出する血管像画素抽出部68を備え、画像移動処理部64を、血管像Bを構成する画素22に対応するマスク画像11における画素21の移動量を0とするように構成する。これにより、マスク画像11において血管像Bを構成する画素22に対応する画素21を移動させてしまうことに起因して、ライブ画像12とマスク画像11とを合成したDSA画像13における血管像Bが不鮮明になるのを抑制することができる。
 また、本実施形態では、上記のように、血管像画素抽出部68を、ライブ画像12を構成する画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第4閾値T4以上の場合に、ライブ画像12を構成する画素22が血管像Bを構成する画素22と判断するように構成する。これにより、ライブ画像12を構成する画素22の画素値と、マスク画像11における当該画素21の画素値との画素値差が第4閾値T4以上の場合、そのライブ画像12における画素22は血管像Bを構成する画素である可能性が高いので、ライブ画像12における血管像Bの画素22を容易に判別することができる。
 また、本実施形態では、上記のように、画像移動処理部64を、ライブ画像12を構成する画素22の画素値と、マスク画像11における当該画素22に対応する画素21の画素値との画素値差が第4閾値T4より小さい場合に、当該画素値差が小さくなるにしたがって、マスク画像11の画素21の移動量を徐々に大きくするように構成する。これにより、血管像Bを構成する画素22に濃淡があることに起因するライブ画像12における画素22が血管像Bを構成する画素22でない可能性の大きさに応じて、当該画素22に対応するマスク画像11における画素21の移動量を調整することができる。
 また、本実施形態では、上記のように、画像移動処理部64を、血管像画素抽出部68によってライブ画像12において血管像Bを構成する画素22と判断された画素22に対応するマスク画像11の画素21のうち、当該画素22の画素値が第5閾値以下の画素22に対応する画素21は移動量を0としないように構成する。これにより、ライブ画像12を構成する画素22が血管像Bを構成する画素22と判断された画素22の内、画素値が第5閾値以下であり血管像Bを構成する画素22以外の画素22である可能性の高い画素22に対応するマスク画像11における画素21が移動されずに変形画像11aが生成されるのを抑制することができる。
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、画像移動処理部64は、移動ベクトル30を、マスク画像11における画素21毎に、マスク画像11における画素21およびマスク画像11における画素21の8近傍の画素21で平均した平滑化移動ベクトル30aに基づいて変形画像11aを生成する例を示したが、本発明はこれに限られない。本発明では、画像移動処理部64を、この平滑化移動ベクトル30aに基づかずに、平均化する前の移動ベクトル30に基づいて変形画像11aを生成してもよい。
 また、上記実施形態では、移動マップ生成部62は、ライブ画像12の画素22と、ライブ画像12の画素22に対応するマスク画像11の画素21およびマスク画像11の画素21の8近傍の画素21(合計9つの画素)との画素値の差である画素値差に基づいて、移動ベクトル30を算出する例を示したが、本発明はこれに限られない。本発明では、移動マップ生成部62を、9つ以外の個数の画素21との画素値差に基づいて、移動ベクトル30を算出してもよい。この場合、たとえば、マスク画像11の画素21の上下左右の4近傍の画素21を加えた5個の画素21のように個数を少なくしてもよい。また、8近傍の画素21の周囲の(上下左右のそれぞれ3つずつの画素21、および、右上、右下、左下、左上の画素21の)12近傍の画素21をさらに加えた25個の画素21のように個数を多くしてもよい。このように、多くの個数の画素21との画素値差に基づいて移動ベクトル30を算出することにより、移動ベクトル30を算出の精度を向上させることができる。
 また、上記実施形態では、画像移動処理部64は、移動ベクトル30を、マスク画像11における画素21毎に、マスク画像11における画素21およびマスク画像11における画素21の8近傍の画素21(合計9つの画素)で平均した平滑化移動ベクトル30aに基づいて変形画像11aを生成する例を示したが、本発明はこれに限られない。本発明では、画像移動処理部64を、9つ以外の個数の画素21を平均した平滑化移動ベクトル30aに基づいて変形画像11aを生成してもよい。この場合、たとえば、マスク画像11の画素21の上下左右の4近傍の画素21を加えた5個の画素21のように個数を少なくしてもよい。また、8近傍の画素21の周囲の(上下左右のそれぞれ3つずつの画素21、および、右上、右下、左下、左上の画素21の)12近傍の画素21をさらに加えた25個の画素21のように個数を多くしてもよい。このように、多くの個数の画素21との画素値差を平均した平滑化移動ベクトル30aに基づいて変形画像11aを生成することにより、変形画像11aを生成の精度を向上させることができる。
 また、上記実施形態では、非照射領域抽出部66を、X線画像10の上下左右の近傍において、隣接する画素21同士の画素値差が第二閾以上の場合、画素値が高い照射領域と画素値が0(ゼロ)に近い非照射領域の境界であると判断するように構成した例を示したが、本発明はこれに限られない。本発明では、非照射領域抽出部66を、上記のような隣接する画素21同士の画素値の差分演算(一次微分演算)による手法のみならず、画素値の差分演算をさらに行う二次微分演算による境界抽出手法を用いるように構成してもよい。
 また、上記実施形態では、説明の便宜上、画像処理部6によるDSA画像13の生成の処理を処理フローに沿って順番に処理を行うフロー駆動型のフローを用いて説明したが、本発明はこれに限られない。本発明では、の画像処理部6によるDSA画像13の生成の処理を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。
 また、上記実施形態では、画像処理部6を、画像生成部61と、移動マップ生成部62と、平滑化移動マップ生成部63と、画像移動処理部64と、合成画像処理部65と、非照射領域抽出部66と、直接線領域抽出部67と、血管像画素抽出部68と、を備えるように構成した例を示したが、本発明はこれに限られない。本発明では、画像生成部61、移動マップ生成部62、平滑化移動マップ生成部63、画像移動処理部64および合成画像処理部65以外の画像処理部6の構成を省略することが可能である。
 また、上記実施形態では、非造影画像であるマスク画像11と造影画像であるライブ画像12とに基づいてDSA画像13を生成する際の移動ベクトル30(および平滑化移動ベクトル30a)を用いた位置ずれ補正の例を示したが、本発明はこれに限られない。本発明は、同一の被検体に対して、異なる時間帯で撮影された2つの画像を合成する際の移動ベクトル30(および平滑化移動ベクトル30a)を用いた位置ずれ補正のいずれの場合にも適用することができる。たとえば、長尺画像の生成、積算画像の生成等に適用することができる。
 2 撮影部
 10 X線画像(放射線画像)
 11 マスク画像(第一の画像、非造影画像)
 11a 変形画像
 12 ライブ画像(第二の画像、造影画像)
 13 DSA画像(合成画像)
 20(21、22) 画素
 21a 画素値差最小画素
 30 移動ベクトル(移動マップ)
 30a 平滑化移動ベクトル(平滑化移動マップ)
 61 画像生成部
 62 移動マップ生成部
 63 平滑化移動マップ生成部
 64 画像移動処理部
 65 合成画像処理部
 66 非照射領域抽出部
 67 直接線領域抽出部
 68 血管像画素抽出部
 100 X線撮影装置(放射線撮影装置)
 B 血管像
 P 被検体
 T1 第1閾値
 T4 第4閾値

Claims (13)

  1.  被検体に放射線を照射するとともに被検体を透過した放射線を検出して被検体を撮影する撮影部と、
     同一の被検体に対して、異なる時点で撮影された第一及び第二の画像を生成する画像生成部と、
     前記第一の画像と前記第二の画像とに基づいて、前記第一の画像に属する各画素のうち少なくとも一部の画素の移動方向及び移動量を表す移動マップを生成する移動マップ生成部と、
     前記移動マップの空間方向の高周波成分を抑制することにより、平滑化移動マップを生成する平滑化移動マップ生成部と、
     前記平滑化移動マップに基づいて前記第一の画像の画素を移動させて変形画像を生成する画素移動処理部と、
     前記変形画像と、前記第二の画像とを合成した合成画像を生成する合成画像処理部とを備える、放射線撮影装置。
  2.  前記移動マップ生成部は、前記第二の画像の画素の画素値と、前記第一の画像における当該画素に対応する画素および所定の周辺領域に属する画素の画素値との画素値差に基づいて、前記第一の画像の画素の移動方向および移動量を表す前記移動マップを生成するように構成されている、請求項1に記載の放射線撮影装置。
  3.  前記移動マップ生成部は、前記第二の画像の画素の画素値と、前記第二の画像の画素に対して前記画素値差が最も小さい前記第一の画像における画素である画素値差最小画素の画素値とに基づいて、前記第一の画像の画素の移動方向および移動量を表す前記移動マップを生成するように構成されている、請求項2に記載の放射線撮影装置。
  4.  前記画素移動処理部は、前記第二の画像の画素の画素値と、前記第一の画像における当該画素に対応する画素の画素値との画素値差が所定の第1閾値以下の場合に、前記第一の画像の画素の移動量を0とするように構成されている、請求項1に記載の放射線撮影装置。
  5.  前記被検体への放射線の照射領域を絞るコリメータと、
     前記第一の画像における前記コリメータの動作により生じる放射線の非照射領域を抽出する非照射領域抽出部と、をさらに備え、
    前記画素移動処理部は、前記非照射領域抽出部により抽出された前記非照射領域における前記第一の画像の画素の移動量を0とするように構成されている、請求項1に記載の放射線撮影装置。
  6.  前記非照射領域抽出部は、前記第一の画像の上下左右の端部近傍において、外側に隣接する画素の画素値が所定の第2閾値以上である画素を境界画素として、前記境界画素よりも外側の前記第一の画像の領域を前記非照射領域と判断するように構成されている、請求項5に記載の放射線撮影装置。
  7.  前記第一の画像における直接線領域を抽出する直接線領域抽出部をさらに備え、
     前記画素移動処理部は、前記直接線領域抽出部により抽出された前記直接線領域における前記第一の画像の画素の移動量を0とするように構成されている、請求項1に記載の放射線撮影装置。
  8.  前記直接線領域抽出部は、前記第一の画像を構成する画素の画素値が所定の第3閾値以上の場合に前記直接線領域と判断するように構成されている、請求項7に記載の放射線撮影装置。
  9. 前記第一の画像は前記被検体の血管に造影剤を投与しない状態で前記被検体を撮影した放射線画像である非造影画像であり、前記第二の画像は前記被検体の血管に造影剤を投与した状態で前記被検体を撮影した前記放射線画像である造影画像である、請求項1に記載の放射線撮影装置。
  10.  前記造影画像において血管像を構成する画素を抽出する血管像画素抽出部をさらに備え、前記画素移動処理部は、前記血管像を構成する画素に対応する前記非造影画像における画素の移動量を0とするように構成されている、請求項9に記載の放射線撮影装置。
  11.  前記血管像画素抽出部は、前記造影画像を構成する画素の画素値と、前記非造影画像における当該画素に対応する画素の画素値との画素値差が所定の第4閾値以上の場合に、前記造影画像を構成する画素が前記血管像を構成する画素と判断するように構成されている、請求項10に記載の放射線撮影装置。
  12.  前記画素移動処理部は、前記造影画像を構成する画素の画素値と、前記非造影画像における当該画素に対応する画素の画素値との画素値差が前記所定の第4閾値より小さい場合に、当該画素値差が小さくなるにしたがって、前記非造影画像における画素の移動量を徐々に大きくするように構成されている、請求項11に記載の放射線撮影装置。
  13.  前記画素移動処理部は、前記血管像画素抽出部によって前記造影画像において前記血管像を構成する画素と判断された画素に対応する前記非造影画像の画素のうち、当該画素の画素値が所定の第5閾値以下の画素は移動量を0としないように構成されている、請求項10に記載の放射線撮影装置。
PCT/JP2018/016136 2017-09-14 2018-04-19 放射線撮影装置 WO2019053935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/635,700 US11751835B2 (en) 2017-09-14 2018-04-19 Radiographic imaging apparatus
CN201880052689.9A CN111050648B (zh) 2017-09-14 2018-04-19 放射线摄影装置
JP2019541632A JP6879376B2 (ja) 2017-09-14 2018-04-19 放射線撮影装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-177004 2017-09-14
JP2017177004 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019053935A1 true WO2019053935A1 (ja) 2019-03-21

Family

ID=65723537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016136 WO2019053935A1 (ja) 2017-09-14 2018-04-19 放射線撮影装置

Country Status (4)

Country Link
US (1) US11751835B2 (ja)
JP (1) JP6879376B2 (ja)
CN (1) CN111050648B (ja)
WO (1) WO2019053935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576638B2 (en) 2018-09-05 2023-02-14 Shimadzu Corporation X-ray imaging apparatus and X-ray image processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7159160B2 (ja) * 2016-12-15 2022-10-24 コーニンクレッカ フィリップス エヌ ヴェ 血管構造の可視化

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247268A (ja) * 2005-03-14 2006-09-21 Hitachi Ltd 患者位置決めシステム及び患者位置決め方法
WO2016087271A1 (en) * 2014-12-03 2016-06-09 Koninklijke Philips N.V. Device-based motion-compensated digital subtraction angiography
JP2016120060A (ja) * 2014-12-25 2016-07-07 株式会社東芝 医用画像処理装置及び医用画像処理方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4542459A (en) * 1982-11-26 1985-09-17 General Electric Company Matched filter for x-ray hybrid subtraction
US5892840A (en) * 1996-02-29 1999-04-06 Eastman Kodak Company Method and apparatus for irradiation field detection in digital radiographic images
EP0864999A3 (de) * 1997-03-13 1999-09-08 Philips Patentverwaltung GmbH Bildverarbeitungs-Verfahren für die medizinische Diagnostik
US6004270A (en) * 1998-06-24 1999-12-21 Ecton, Inc. Ultrasound system for contrast agent imaging and quantification in echocardiography using template image for image alignment
US6532380B1 (en) * 2000-06-30 2003-03-11 Cedars Sinai Medical Center Image guidance for coronary stent deployment
US6754522B2 (en) * 2001-09-05 2004-06-22 Medimag C.V.I., Inc. Imaging methods and apparatus particularly useful for two and three-dimensional angiography
JP4171833B2 (ja) * 2002-03-19 2008-10-29 国立大学法人東京工業大学 内視鏡誘導装置および方法
US7545967B1 (en) * 2002-09-18 2009-06-09 Cornell Research Foundation Inc. System and method for generating composite subtraction images for magnetic resonance imaging
JP2005292017A (ja) * 2004-04-02 2005-10-20 Dainippon Screen Mfg Co Ltd 位置ずれ量取得装置および欠陥検出装置
EP1751572A1 (en) * 2004-05-14 2007-02-14 Koninklijke Philips Electronics N.V. Contrast prepared mri involving non-cartesian trajectories with oversampling of the center of k-space
US7327865B2 (en) * 2004-06-30 2008-02-05 Accuray, Inc. Fiducial-less tracking with non-rigid image registration
JP2006087631A (ja) 2004-09-22 2006-04-06 Sangaku Renkei Kiko Kyushu:Kk 画像診断装置、画像処理装置、及び画像処理プログラムを記録した記録媒体
JP5161427B2 (ja) 2006-02-20 2013-03-13 株式会社東芝 画像撮影装置、画像処理装置及びプログラム
JP4745080B2 (ja) * 2006-02-20 2011-08-10 猛 中浦 X線診断装置、画像処理装置及びプログラム
US7783118B2 (en) * 2006-07-13 2010-08-24 Seiko Epson Corporation Method and apparatus for determining motion in images
US8023732B2 (en) * 2006-07-26 2011-09-20 Siemens Aktiengesellschaft Accelerated image registration by means of parallel processors
US8144778B2 (en) * 2007-02-22 2012-03-27 Sigma Designs, Inc. Motion compensated frame rate conversion system and method
US9804245B2 (en) * 2007-06-29 2017-10-31 Toshiba Medical Systems Corporation Magnetic resonance imaging apparatus and magnetic resonance imaging method
US8130907B2 (en) * 2008-09-12 2012-03-06 Accuray Incorporated Controlling X-ray imaging based on target motion
EP2189112A1 (en) * 2008-11-24 2010-05-26 Bracco Research S.A. Real-time perfusion imaging and quantification
US8971600B2 (en) * 2009-04-10 2015-03-03 Hitachi Medical Corporation Ultrasonic diagnosis apparatus and method for constructing distribution image of blood flow dynamic state
US8411750B2 (en) * 2009-10-30 2013-04-02 Qualcomm Incorporated Global motion parameter estimation using block-based motion vectors
US9361706B2 (en) * 2009-11-30 2016-06-07 Brigham Young University Real-time optical flow sensor design and its application to obstacle detection
US8224056B2 (en) * 2009-12-15 2012-07-17 General Electronic Company Method for computed tomography motion estimation and compensation
JP5543194B2 (ja) * 2009-12-24 2014-07-09 キヤノン株式会社 情報処理装置、処理方法及びプログラム
JP5897020B2 (ja) * 2011-09-27 2016-03-30 富士フイルム株式会社 放射線撮影システムおよびその作動方法、並びに放射線画像検出装置
CN103974661B (zh) * 2011-12-21 2016-08-24 株式会社日立制作所 医用图像诊断装置以及使用了医用图像诊断装置的相位决定方法
JP6016061B2 (ja) * 2012-04-20 2016-10-26 Nltテクノロジー株式会社 画像生成装置、画像表示装置及び画像生成方法並びに画像生成プログラム
JP5981220B2 (ja) * 2012-05-21 2016-08-31 東芝メディカルシステムズ株式会社 医用画像処理装置及びx線撮影装置
JP6222807B2 (ja) * 2013-04-01 2017-11-01 東芝メディカルシステムズ株式会社 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JPWO2015107963A1 (ja) * 2014-01-15 2017-03-23 株式会社日立製作所 X線ct装置及び造影撮影方法
US10013779B2 (en) * 2015-06-22 2018-07-03 Toshiba Medical Systems Corporation Metal artifact reduction for 3D-digtial subtraction angiography
JP6293713B2 (ja) * 2015-08-27 2018-03-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 画像処理装置、放射線断層撮影装置並びにプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247268A (ja) * 2005-03-14 2006-09-21 Hitachi Ltd 患者位置決めシステム及び患者位置決め方法
WO2016087271A1 (en) * 2014-12-03 2016-06-09 Koninklijke Philips N.V. Device-based motion-compensated digital subtraction angiography
JP2016120060A (ja) * 2014-12-25 2016-07-07 株式会社東芝 医用画像処理装置及び医用画像処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11576638B2 (en) 2018-09-05 2023-02-14 Shimadzu Corporation X-ray imaging apparatus and X-ray image processing method

Also Published As

Publication number Publication date
JP6879376B2 (ja) 2021-06-02
CN111050648B (zh) 2024-02-20
JPWO2019053935A1 (ja) 2020-04-02
US20200330063A1 (en) 2020-10-22
US11751835B2 (en) 2023-09-12
CN111050648A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
US11839501B2 (en) Image creation device
KR101576703B1 (ko) 화상 처리 장치, 화상 처리 방법 및 컴퓨터 판독 가능 저장 매체
US8184765B2 (en) Radiography apparatus
JP2006175213A (ja) 3次元画像処理装置
JPWO2013035255A1 (ja) 画像処理装置およびそれを備えた放射線撮影装置
JP2013017511A (ja) 画像処理装置および方法、x線診断装置
WO2013175982A1 (ja) 医用画像処理装置、x線診断装置、医用画像処理方法及びx線診断方法
JP6485278B2 (ja) 画像処理方法およびx線透視撮影装置
CN110876627B (zh) X射线摄影装置和x射线图像处理方法
WO2019053935A1 (ja) 放射線撮影装置
JP6394082B2 (ja) X線検査装置
JP6002324B2 (ja) 放射線画像生成装置及び画像処理方法
US11426139B2 (en) Radiographic imaging apparatus
JP7242397B2 (ja) 医用画像処理装置及びx線診断装置
CN107205710B (zh) 放射线图像生成方法以及图像处理装置
JP5238296B2 (ja) X線装置および回転撮影方法
US20220319072A1 (en) Medical image processing apparatus and medical image processing method
US20220414832A1 (en) X-ray imaging restoration using deep learning algorithms
JP7187217B2 (ja) 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JP6167841B2 (ja) 医用画像処理装置及びプログラム
US10159457B2 (en) X-ray diagnostic apparatus
JP2002153454A (ja) X線ct装置
WO2020012520A1 (ja) 医用x線画像処理装置およびx線画像撮影装置
JP2014136127A (ja) 医用画像処理装置、x線診断装置及び医用画像処理プログラム
JP2024037308A (ja) 医用画像処理装置および医用画像処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857104

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541632

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857104

Country of ref document: EP

Kind code of ref document: A1