WO2019052441A1 - 一种用于生成扩展符号的方法及装置 - Google Patents

一种用于生成扩展符号的方法及装置 Download PDF

Info

Publication number
WO2019052441A1
WO2019052441A1 PCT/CN2018/105028 CN2018105028W WO2019052441A1 WO 2019052441 A1 WO2019052441 A1 WO 2019052441A1 CN 2018105028 W CN2018105028 W CN 2018105028W WO 2019052441 A1 WO2019052441 A1 WO 2019052441A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
user terminal
user terminals
extended sequence
power
Prior art date
Application number
PCT/CN2018/105028
Other languages
English (en)
French (fr)
Inventor
刘文佳
侯晓林
牟勤
刘柳
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to US16/647,172 priority Critical patent/US11411789B2/en
Priority to CN201880059661.8A priority patent/CN111279736B/zh
Publication of WO2019052441A1 publication Critical patent/WO2019052441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0003Code application, i.e. aspects relating to how codes are applied to form multiplexed channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0466Wireless resource allocation based on the type of the allocated resource the resource being a scrambling code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to the field of wireless communications, and in particular to a method and apparatus for generating extended symbols for a Non-Orthogonal Multiple Access (NOMA) system.
  • NOMA Non-Orthogonal Multiple Access
  • a spreading sequence used by a user terminal or a base station is generated for a plurality of user terminals having the same average received power.
  • a matrix may be generated according to a spreading factor of the spreading sequence by a predetermined rule, and then the user terminal or the base station selects a column from the matrix as its own spreading sequence.
  • the spreading sequence may be randomly generated, and then the spreading sequence may be used by the user terminal or the base station.
  • the average received power of a plurality of user terminals is usually different.
  • the performance parameters of the user terminal are not limited to the average received power.
  • a method for generating an extended symbol comprising: determining an extended sequence according to a matrix of extended sequences, wherein the extended sequence matrix is generated according to performance parameters of a plurality of user terminals; and using The determined spreading sequence extends the initial symbol to generate an extended symbol.
  • an apparatus for generating an extended symbol comprising: a processing unit configured to determine a spread sequence for a device according to a matrix of extended sequences, wherein the matrix of extended sequences is based on a plurality of Generating a performance parameter of the user terminal; and generating a unit configured to extend the initial symbol using the determined spreading sequence to generate an extended symbol.
  • a method and apparatus for generating an extended symbol for a NOMA system according to the above aspect of the present invention, generating a spreading sequence for a plurality of user terminals having different average received powers, and generating an extended sequence according to a signal to interference and noise ratio of the plurality of user terminals, Thereby the interference between the user terminals is minimized.
  • FIG. 1 shows a flow chart of a method of generating an extended symbol in accordance with one embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of an apparatus for performing the method shown in FIG. 1 according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of a hardware structure of a user equipment involved in accordance with an embodiment of the present invention.
  • the method of the present invention may be performed by a base station or by a user terminal. Accordingly, the apparatus of the present invention may be a base station or a user terminal.
  • the base station described herein may be a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a receiving point, a femto cell, a small cell, etc., which are not limited herein.
  • the user equipment (UE) described herein may include various types of user terminals, such as mobile terminals (or mobile stations) or fixed terminals, however, for convenience, sometimes interchangeable in the following. The UE and the mobile station are used.
  • a method and apparatus for generating an extended symbol for a NOMA system according to an embodiment of the present invention, generating a spreading sequence for a plurality of user terminals having different average received powers, and generating a spreading sequence according to a signal to interference and noise ratio of the plurality of user terminals , thereby minimizing interference between user terminals.
  • FIG. 1 shows a flow chart of a method 100 of generating an extended symbol.
  • the method 100 of generating extended symbols shown in FIG. 1 may be performed by a communication device such as a base station, a user terminal, or the like.
  • the method 100 of generating extended symbols shown in FIG. 1 can be performed by a communication device in a NOMA system.
  • a spreading sequence is determined according to a spreading sequence matrix, wherein the extended sequence matrix is generated according to performance parameters of a plurality of user terminals.
  • the spreading sequence of the communication device for performing the method 100 is determined according to the extended sequence matrix in step S101.
  • the performance parameter may include a power parameter.
  • the power parameter may indicate the transmit power or receive power of the communication device performing method 100.
  • the power parameter may be a Signal to Interference plus Noise Ratio (SINR) of the communication device performing method 100.
  • SINR Signal to Interference plus Noise Ratio
  • the performance parameters may be at least partially different.
  • the performance parameter when the performance parameter is a signal to interference and noise ratio, the performance parameters may be at least partially different or the same.
  • the communication device performing method 100 can generate a spreading sequence matrix based on performance parameters of a plurality of user terminals.
  • the communication device performing method 100 is a base station
  • an extended sequence matrix can be generated based on performance parameters of a plurality of user terminals in communication with the base station.
  • the communication device performing method 100 can determine the extended sequence matrix by the received signaling. For example, when the communication device performing method 100 is a user terminal, the extended sequence matrix can be determined based on the signaling received from the base station.
  • the extended sequence matrix used to determine the extended sequence may also be referred to as a codebook of the extended sequence.
  • the extended sequence matrix used to determine the spreading sequence may also be referred to as a codebook of the extended sequence or a Codebook or extended sequence pool or Sequence pool.
  • the spreading sequence determined from the extended sequence matrix may also be referred to as a codeword or a Codeword or Spreading sequence.
  • the extended sequence matrix is based on a first extended sequence matrix with respect to a first partial user terminal of the plurality of user terminals and a second extension with respect to a second partial user terminal of the plurality of user terminals
  • the sequence matrix is composed of.
  • the first part of the user terminal and the second part of the user terminal may be determined according to the performance parameter, the first extended sequence matrix is generated according to the performance parameter of the first part of the user terminal, and the second extended sequence matrix is generated according to the performance parameter of the second part of the user terminal.
  • some of the plurality of user terminals may be the first partial user terminal, and the remaining partial user terminals may be the second partial user terminal.
  • each of the plurality of user terminals may be the second partial user terminal.
  • whether the user terminal belongs to the first partial user terminal or the second partial user terminal may be determined according to the performance parameter of the user terminal and the performance parameters of the multiple user terminals.
  • the first value may be generated according to the performance parameter of the user terminal, and the second value may be generated according to the performance parameters of the plurality of user terminals. Then, comparing the size of the first value and the second value, when the first value is greater than the second value, determining the user terminal as the first partial user terminal; when the first value is less than or equal to the second value, determining the user terminal For the second part of the user terminal.
  • the first value may be equal to the performance parameter of the user terminal, or may be a value obtained by mathematically calculating the performance parameter of the user terminal.
  • the second value may be a summation of performance parameters of the user terminal that is smaller than the performance parameters of the user terminal in other user terminals, a spreading factor of the extended sequence, and a ratio among the plurality of user terminals (ie, all user terminals) The numerical value obtained by mathematically calculating the performance parameter of the user terminal or the number of user terminals equal thereto.
  • the performance parameter is the average received power of the user terminal
  • the number of the plurality of user terminals is K
  • the average received power of the K user terminals are ⁇ P 1 , . . . P i , . . . P K ⁇
  • the expansion factor Is N K is a positive integer
  • i is a positive integer
  • the physical meaning means that the average received power of less than P i is averaged among the average received powers ⁇ P 1 , . . . P i , . . . P k ⁇ of all user terminals.
  • the physical meaning refers to the difference between the spreading factor N and the number of user terminals greater than or equal to P i in the average received power ⁇ P 1 , . . . P i , . . . P k ⁇ of all user terminals. Then compare P i and Size when Determining the i-th user terminal as the first part of the user terminal; The i-th user terminal is determined as the second part of the user terminal.
  • the performance parameter is the SINR of the user terminal
  • the number of the plurality of user terminals is K
  • the SINRs of the K user terminals are ⁇ 1 , . . . , ⁇ i , . . . ⁇ K ⁇
  • the expansion factor is N
  • K is a positive integer
  • i is a positive integer
  • the physical meaning refers to summing the first values of less than e i among the first values of all user terminals.
  • the physical meaning refers to the difference between the spreading factor N and the number of user terminals greater than or equal to e i among the first values of all user terminals. Then compare e i and Size when Determining the i-th user terminal as the first part of the user terminal; The i-th user terminal is determined as the second part of the user terminal.
  • the SINRs of the K user terminals may satisfy the condition of ⁇ 1 ⁇ ... ⁇ ⁇ K .
  • the SINR of the K user terminals can also meet other restrictions. The present invention does not limit this.
  • first partial user terminal and the second partial user terminal may also have more specific names.
  • the performance parameter is the average received power of the user terminal
  • the first part of the user terminal may be referred to as an oversized user terminal
  • the second part of the user terminal may be referred to as a non-oversized user terminal.
  • the performance parameter is the SINR of the user terminal
  • the first part of the user terminal may be referred to as an overloading user terminal
  • the second part of the user terminal may be referred to as a non-overloading user terminal.
  • the first extended sequence matrix can be generated according to the performance parameters of the first part of the user terminal. For example, suppose that m user terminals are determined to be the first partial user terminals, (Km) user terminals are the second partial user terminals, m is a positive integer and 1 ⁇ m ⁇ (N-1), and then, according to the m The performance parameters of the user terminal generate a first extended sequence matrix.
  • a 2 ⁇ 2 identity matrix I 2 can be generated according to the performance parameters of the first and second user terminals:
  • the first extended sequence matrix is a 2 ⁇ 2 unit matrix I 2 .
  • the first column of the first spreading sequence matrix corresponds to the first user terminal, and the second column corresponds to the second user terminal.
  • the transmit power may also be determined according to the power matrix, wherein the power matrix is generated according to the first power matrix and the second power matrix, and the first power matrix is based on the performance of the first part of the user terminal.
  • the parameter and the noise parameter of the communication system including the plurality of user terminals are generated, and the second power matrix is generated according to the performance parameter of the second part of the user terminal and the noise parameter of the communication system including the plurality of user terminals, and then in the following steps
  • the extended symbol is transmitted in S102 using the determined transmission power.
  • the second power matrix is described in detail later, and the first power matrix will be described first.
  • the first sum may be The SINR of the second user terminal and the noise (eg, white Gaussian noise) parameter of the communication system including the plurality of user terminals determine that the received powers of the first and second user terminals are respectively P according to the following equation (1). 1 and P 2 :
  • ⁇ 2 refers to the variance of Gaussian white noise.
  • the first power matrix diag ⁇ 2 ⁇ i ⁇ 1 ⁇ i ⁇ m can be generated based on the received powers P 1 and P 2 of the first and second user terminals.
  • a second extended sequence matrix can be generated according to the performance parameters of the second part of the user terminal. For example, suppose that m user terminals are determined to be the first partial user terminals, and (K-m) user terminals are the second partial user terminals, and then the second extended sequence matrix can be generated according to the performance parameters of the (K-m) user terminals.
  • the second extended sequence matrix may be generated according to the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the performance parameter is the SINR of the user terminal
  • the second extended sequence matrix may be generated according to the SINR of the second partial user terminal and the system power parameter of the communication system including the plurality of user terminals.
  • the performance parameter is the average received power of the user terminal, and how to generate the second extended sequence matrix according to the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the matrix Q may be constructed based on the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • An example of building a matrix Q is given here.
  • the system capacity parameter can be channel capacity C.
  • the channel capacity C can be obtained by the following equation (2):
  • I is an identity matrix
  • S is a spreading sequence matrix corresponding to a plurality of user terminals
  • D is a diagonal matrix diag ⁇ P 1 , generated according to an average received power of a plurality of user terminals.
  • S H is a conjugate transposed matrix of the matrix S.
  • ⁇ n (S) is an eigenvalue of the matrix SDS H
  • n is a positive integer and 1 ⁇ n ⁇ N. Therefore, when the channel capacity C satisfies the optimal value as shown in the following equation (4), the values of ⁇ n (S) and C(S) are as shown in the following equations (5A) and ( 5B):
  • the eigenvalue matrix ⁇ related to the second partial user terminal is determined according to ⁇ *(S), which is a diagonal matrix as shown in the following equation (6):
  • the number of elements having a value of 0 on the diagonal is equal to (K-N).
  • the matrix Q can then be constructed from the eigenvalue matrix ⁇ and the diagonal element ⁇ P j
  • the constructed matrix Q is not unique.
  • the constructed matrix Q is decomposed to obtain a eigenvector matrix U, as shown in the following equation (7):
  • U H is a conjugate transpose matrix of the eigenvector matrix U.
  • the power matrix It is a diagonal array diag (P j
  • S non is generated according to the following equation (8):
  • Equation (8) Representation of eigenvalue matrix
  • the element in the element performs the arithmetic square root operation, Representing the power matrix
  • the elements in the matrix after the inverse operation perform the arithmetic square root operation.
  • the performance parameter is the average received power of the user terminal
  • the second extended sequence matrix is generated according to the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the third and fourth may be used first.
  • the average received power and system capacity parameters of the 5th, 6th, and 6th user terminals are constructed in a matrix Q.
  • the channel capacity C is as shown in the above equation (2), where I is a 4 ⁇ 4 identity matrix, S is a 4 ⁇ 6 matrix, and D is an average received power of 6 user terminals.
  • the eigenvalue matrix ⁇ related to the second partial user terminal is determined according to ⁇ *(S), and the eigenvalue matrix ⁇ is a 4 ⁇ 4 diagonal matrix
  • a matrix Q is constructed based on the eigenvalue matrix ⁇ and the diagonal elements ⁇ P 3 , P 4 , P 5 , P 6 ⁇ , which is a 4 ⁇ 4 matrix.
  • the matrix Q is decomposed to obtain a feature vector matrix U, which is a 4 ⁇ 4 matrix.
  • the column vector of the first column and the second column is selected from the feature vector matrix U to generate a modified eigenvector matrix.
  • Modified feature vector matrix It is a 4 ⁇ 2 matrix.
  • the power matrix It is a 4 ⁇ 4 diagonal array.
  • a second extended sequence matrix S non is generated according to the above equation (8), and the S non is a 2 ⁇ 4 matrix.
  • the first column of the S non corresponds to the third user terminal, the second column corresponds to the fourth user terminal, the third column corresponds to the fifth user terminal, and the fourth column corresponds to the sixth user terminal.
  • the performance parameter is the average received power of the user terminal, how to generate the second extended sequence matrix based on the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the performance parameter is the SINR of the user terminal, and how to generate the second extended sequence matrix according to the SINR of the second partial user terminal and the system power parameter of the communication system including the plurality of user terminals.
  • the matrix Q may be constructed based on the SINR of the second partial user terminal and the system power parameters of the communication system including the plurality of user terminals.
  • An example of building a matrix Q is given here.
  • the SINR of each user terminal can be expressed as the following equation (9), which is formula-derived and can be expressed as the following equation (10):
  • P i is the average received power of the i-th user terminal
  • S i is the i-th column vector of the extended sequence matrix S corresponding to the plurality of user terminals, a conjugate transpose vector for S i , matrix To perform an inverse operation on Z i
  • D is a diagonal matrix diag ⁇ P 1 , . . . , P i , . . . P K ⁇ generated based on the average received power of a plurality of user terminals.
  • the diagonal element is Its eigenvalue
  • ⁇ n (S) is the eigenvalue of the matrix SDS H .
  • the system power parameter can be the sum of the average received power of all user terminals, ie
  • the value of the eigenvalue ⁇ n (Q) of the matrix Q is as shown in the following equation (13), where n is Positive integer and 1 ⁇ n ⁇ N:
  • the number of elements having a value of 0 on the diagonal is equal to (K-N).
  • D non diag(U ⁇ U H ) Equation (17) where diag(U ⁇ U H ) represents a diagonal matrix composed of diagonal elements of the matrix U ⁇ U H .
  • Equation (18) Representing diagonal array
  • the element in the element performs the arithmetic square root operation, Representation matrix Conjugate transposed matrix, An arithmetic square root operation is performed on an element in a matrix after the power matrix D non is inversed.
  • the third and fourth may be used first.
  • the SINR and system power parameters of the 5th, 6th, and 6th user terminals are constructed into a matrix Q.
  • the defined matrix Q is as shown in the above equation (11), where I is a 4 ⁇ 4 identity matrix, S is a 4 ⁇ 6 matrix, and D is an average received power generation of 6 user terminals. 6 ⁇ 6 diagonal array diag ⁇ P 1 , P 2 , P 3 , P 4 , P 5 , P 6 ⁇ .
  • a feature value matrix V related to the second partial user terminal is determined according to ⁇ *(Q), and the feature value matrix V is a 4 ⁇ 4 diagonal matrix.
  • the matrix Q non matrix is a 4 ⁇ 4.
  • the matrix Q non is decomposed to obtain a feature vector matrix U, which is a 4 ⁇ 4 matrix.
  • the diagonal matrix is a 4 x 4 diagonal array.
  • the D non is a diagonal matrix of 4 ⁇ 4.
  • the column vector of the first column and the second column is selected from the feature vector matrix U to generate a modified eigenvector matrix.
  • Modified feature vector matrix It is a 4 ⁇ 2 matrix.
  • a second power matrix D non generates a second spread sequence S non matrix according to the above equation (18), which is S non of 2 ⁇ 4 matrix.
  • the first column of the S non corresponds to the third user terminal
  • the second column corresponds to the fourth user terminal
  • the third column corresponds to the fifth user terminal
  • the fourth column corresponds to the sixth user terminal.
  • the first extended sequence matrix may be generated according to the performance parameter of the first partial user terminal
  • the second extended sequence may be generated according to the performance parameter of the second partial user terminal. matrix.
  • the extended sequence matrix can be generated from the first extended sequence matrix and the second extended sequence matrix.
  • m user terminals are determined to be the first partial user terminals
  • (Km) user terminals are the second partial user terminals
  • m is a positive integer and 1 ⁇ m ⁇ (N-1)
  • the performance parameters of the user terminal generate a first extended sequence matrix and generate a second extended sequence matrix according to the performance parameters of the (Km) user terminals.
  • the extended sequence matrix can be generated from the first extended sequence matrix and the second extended sequence matrix.
  • the performance parameters of one and the second user terminal generate a first extended sequence matrix I 2
  • the second extended sequence matrix S non can be generated according to performance parameters of the third, fourth, fifth and sixth user terminals .
  • the extended sequence matrix S can be generated according to the first extended sequence matrix I 2 and the second extended sequence matrix S non , as shown in the following equation (19):
  • the extended sequence matrix S is a 4 ⁇ 6 matrix, and the first column corresponds to the first user terminal, the second column corresponds to the second user terminal, and the third column corresponds to the third user terminal, the fourth column Corresponding to the fourth user terminal, the fifth column corresponds to the fifth user terminal, and the sixth column corresponds to the sixth user terminal.
  • the first and second user terminals of the plurality of user terminals are the first partial user terminals, and the third, fourth, fifth, and sixth user terminals are determined to be extended when the second partial user terminal is the second partial user terminal.
  • An example of a sequence matrix S when each of the plurality of user terminals is the second partial user terminal, that is, the first, second, third, fourth, fifth, and sixth user terminals are For the second part of the user terminal, the extended sequence matrix S can be determined according to S non .
  • the transmit power may also be determined according to the power matrix, wherein the power matrix is generated according to the first power matrix and the second power matrix, and the first power matrix is according to the first
  • the performance parameter of a part of the user terminal and the noise parameter of the communication system including the plurality of user terminals are generated according to the performance parameter of the second part of the user terminal and the noise parameter of the communication system including the plurality of user terminals.
  • the first sum may be The SINR of the second user terminal and the Gaussian white noise parameter generate a first power matrix diag ⁇ 2 ⁇ i ⁇ 1 ⁇ i ⁇ m , which can be based on the third, fourth, fifth and sixth user terminals
  • the SINR and Gaussian white noise parameters generate a second power matrix D non .
  • the power matrix P can be generated according to the first power matrix diag ⁇ 2 ⁇ i ⁇ 1 ⁇ i ⁇ m and the second power matrix D non , as shown in the following equation (20):
  • the transmission power of the first user terminal is determined according to the first diagonal element of the power matrix P
  • the transmission power of the second user terminal is determined according to the second diagonal element of the power matrix P, according to the third of the power matrix P.
  • the diagonal elements determine the transmission power of the third user terminal, determine the transmission power of the fourth user terminal according to the fourth diagonal element of the power matrix P, and determine the fifth according to the fifth diagonal element of the power matrix P.
  • the transmission power of the user terminal determines the transmission power of the sixth user terminal based on the sixth diagonal element of the power matrix P.
  • the first and second user terminals of the plurality of user terminals are the first partial user terminals
  • the power is determined when the third, fourth, fifth, and sixth user terminals are the second partial user terminals.
  • the power matrix P can be determined according to D non .
  • the base station can perform the processes described above. For example, the base station may determine the first partial user terminal and the second partial user terminal according to the performance parameter, generate a first extended sequence matrix according to the performance parameter of the first partial user terminal, and generate a second extended sequence matrix according to the performance parameter of the second partial user terminal, And generating an extended sequence matrix according to the first extended sequence matrix and the second extended sequence matrix.
  • the base station may determine, according to performance parameters of the user terminal and performance parameters of other user terminals other than the user terminal, that the user terminal belongs to the first part.
  • the user terminal is also the second part of the user terminal.
  • the base station may generate a second extended sequence matrix according to performance parameters of the second partial user terminal and system capacity parameters of the communication system including the plurality of user terminals.
  • the base station may further generate a second extended sequence matrix according to performance parameters of the second partial user terminal and system power parameters of the communication system including the plurality of user terminals.
  • the base station may generate a power matrix according to the first power matrix and the second power matrix, and generate a first power matrix according to the performance parameter of the first part of the user terminal and the noise parameter of the communication system that includes the multiple user terminals, and according to the second part.
  • a performance parameter of the user terminal and a noise parameter of the communication system including the plurality of user terminals generate a second power matrix.
  • the user terminal when the communication device performing the method 100 is a user terminal, in an unlicensed uplink of the NOMA system, the user terminal may randomly select a column from the extended sequence matrix as an extended sequence. And in the uplink of the NOMA system to be authorized, the user terminal may receive the indication information from the base station, and select a column from the extended sequence matrix as the extended sequence according to the indication information.
  • the extended sequence matrix according to which the extended sequence is determined in step S101 may be a matrix generated by multiplying the unit orthogonal matrix by the extended sequence matrix. Specifically, after the extended sequence matrix S is generated in step S101, a unit orthogonal matrix having the same first dimension (ie, the number of rows) of the extended sequence matrix S may be determined, and then the unit orthogonal matrix and the extended sequence matrix S are phased. Multiply to obtain the orthogonal extended sequence matrix S orth .
  • the orthogonal extended sequence matrix S orth can also be quantized.
  • elements in the orthogonal extended sequence matrix S orth may be mapped in a complex plane coordinate system.
  • the coordinates closest to the element are determined and quantized to the value represented by the coordinates.
  • the real and imaginary parts of the numerical value represented by the coordinates may be ⁇ 0, ⁇ 1 ⁇ , ⁇ 0, ⁇ 1, ⁇ 2 ⁇ , ⁇ 0, ⁇ 1, ⁇ 2, ⁇ 3 ⁇ , and the like.
  • elements in the orthogonal extended sequence matrix S orth may also be mapped in a constellation diagram in the prior art. Then, for each element, the constellation point closest to the element is determined and quantized to the value represented by the constellation point.
  • the real and imaginary parts of the numerical value represented by the constellation points may be ⁇ 1 ⁇ , ⁇ 1, ⁇ 3 ⁇ , ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7 ⁇ , and the like.
  • the constellation diagram in the prior art can also be corrected.
  • the constellation diagram in the prior art is expanded to include the origin ⁇ 0 ⁇ , and then the elements in the orthogonal extension sequence matrix S orth are mapped in the modified constellation including the origin ⁇ 0 ⁇ . Then, for each element, the constellation point or origin closest to the element is determined and quantized to the value represented by the constellation point or origin.
  • the elements in the orthogonal extended sequence matrix Soth may be synchronously expanded to further improve the quantization precision.
  • orthogonal extension sequence matrix S orth obtained in step S101 is:
  • the elements in the orthogonal extended sequence matrix S orth may be mapped in the modified constellation diagram 9-QAM for quantization, and then the quantized extended sequence matrix S quan is obtained :
  • the quantized extended sequence matrix S quan can also be power normalized to ensure that the power of each column is 1. For example, a normalization matrix identical to the second dimension (ie, the number of columns) of the quantized extended sequence matrix S quan can be determined, and then the normalized matrix and the quantized extended sequence matrix S quan are multiplied to obtain a final extension. Sequence matrix S final . Therefore, the spreading sequence can be determined based on the final extended sequence matrix S final .
  • the extended sequence matrix may be generated according to quantization performance parameters of a plurality of user terminals, wherein the quantization performance parameters of the plurality of user terminals are generated according to quantizing performance parameters of the plurality of user terminals.
  • the performance parameter is the average received power of the user terminal
  • the average received power of the user terminal may be quantized first, and then the extended sequence matrix is generated according to the quantized average received power.
  • the signal to noise ratio (SNR) of the user terminal in dB may be first generated according to the average received power of the user terminal, and then predetermined according to a predetermined rule.
  • the quantization step size quantizes the SNR of the user terminal to obtain a quantized SNR.
  • the quantized average received power in watts of the user terminal is generated based on the quantized SNR.
  • the extended sequence matrix is generated according to the quantized average received power of the user terminal.
  • the signal-to-noise ratios of the six user terminals generated according to the average received power of the six user terminals are ⁇ -2.3, -1, -0.5, 3.6, 6.4, 7.5 ⁇ (in dB).
  • the SNR of the six user terminals is quantized by a quantization step of 5 dB, and the quantized SNRs are respectively generated as ⁇ 0, 0, 0, 5, 10, 10 ⁇ .
  • the quantized average received power is generated based on the quantized SNR ⁇ 0, 0, 0, 5, 10, 10 ⁇ .
  • an extended sequence matrix is generated based on the quantized average received power of the six user terminals.
  • Step S101 has been described above, and after step S101, step S102 can also be performed.
  • step S102 the initial symbols are expanded using the determined spreading sequence to generate an extended symbol.
  • the transmission power can be determined using the power matrix described above, and then the spread symbol is transmitted using the determined transmit power after step S102.
  • the measured transmission power may also be determined, wherein the measured transmission power is generated based on actual measurement of a user terminal. .
  • the extended symbol is then transmitted using the determined measured transmit power to generate a measured performance parameter. Then, the performance parameters used to generate the extended sequence matrix are adjusted according to the measured performance parameters.
  • the user terminal may extend the initial symbol using the extended sequence in the extended sequence matrix to generate an extended symbol, and transmit the extended symbols of the plurality of user terminals in the measured power matrix to generate the user.
  • the measured SINR of the terminal Then, the measured SINR and the SINR used to generate the extended sequence matrix are compared.
  • the SINR of the user terminal for generating the extended sequence matrix may be adjusted, for example, the SINR for generating the extended sequence matrix is increased.
  • the invention is not limited thereto.
  • the measured SINR of a user terminal is smaller than the SINR used to generate the extended sequence matrix
  • one or more user terminals whose measured SINR is not less than the SINR for generating the extended sequence matrix may be searched for, and then the one or more user terminals are reduced.
  • the SINR used to generate the extended sequence matrix may be searched for, and then the one or more user terminals are reduced.
  • the adjusted SINR can be used to generate the extended sequence matrix next time.
  • an extended sequence is generated when a system capacity parameter obtains an optimal value under a certain constraint condition, and
  • an extended sequence is generated when the system power parameter obtains an optimal value under certain constraint conditions, thereby minimizing interference between user terminals.
  • FIG. 2 shows a block diagram of the apparatus 200 for performing the method 100 of FIG.
  • the apparatus 200 for generating extended symbols shown in FIG. 2 may be a communication device such as a base station, a user terminal, or the like.
  • the apparatus 200 for generating extended symbols shown in FIG. 2 may be a communication device in a NOMA system.
  • apparatus 200 includes a processing unit 201 configured to determine a spreading sequence for a device based on a spreading sequence matrix, wherein the extended sequence matrix is generated from performance parameters of a plurality of user terminals.
  • Apparatus 200 also includes a generating unit 202 configured to extend the initial symbols using the determined spreading sequence to generate an extended symbol.
  • the apparatus 200 may include other components in addition to the two units, however, since these components are not related to the content of the embodiment of the present invention, the illustration and description thereof are omitted herein. Further, since the specific details of the operations described below performed by the apparatus 200 according to the embodiment of the present invention are the same as those described above with reference to the equations 1-20, the repeated description of the same details is omitted here to avoid repetition.
  • the processing unit 201 determines an extended sequence for the device 200 based on the extended sequence matrix.
  • the performance parameter may include a power parameter.
  • the power parameter can indicate the transmit power or receive power of device 200.
  • the power parameter may be the Signal to Interference plus Noise Ratio (SINR) of the device 200.
  • SINR Signal to Interference plus Noise Ratio
  • the performance parameters may be at least partially different.
  • the performance parameter is a signal to interference and noise ratio
  • the performance parameters may be at least partially different or the same.
  • the apparatus 200 may generate an extended sequence matrix according to performance parameters of a plurality of user terminals.
  • the extended sequence matrix can be generated based on performance parameters of a plurality of user terminals that communicate with the base station.
  • the apparatus 200 can determine the extended sequence matrix by the received signaling. For example, when the device 200 is a user terminal, the extended sequence matrix can be determined based on the signaling received from the base station.
  • the extended sequence matrix used to determine the extended sequence may also be referred to as a codebook of the extended sequence.
  • the extended sequence matrix used to determine the spreading sequence may also be referred to as a codebook of the extended sequence or a Codebook or extended sequence pool or Sequence pool.
  • the spreading sequence determined from the extended sequence matrix may also be referred to as a codeword or a Codeword or Spreading sequence.
  • the extended sequence matrix is based on a first extended sequence matrix with respect to a first partial user terminal of the plurality of user terminals and a second extension with respect to a second partial user terminal of the plurality of user terminals
  • the sequence matrix is composed of.
  • the first part of the user terminal and the second part of the user terminal may be determined according to the performance parameter, the first extended sequence matrix is generated according to the performance parameter of the first part of the user terminal, and the second extended sequence matrix is generated according to the performance parameter of the second part of the user terminal.
  • some of the plurality of user terminals may be the first partial user terminal, and the remaining partial user terminals may be the second partial user terminal.
  • each of the plurality of user terminals may be the second partial user terminal.
  • whether the user terminal belongs to the first partial user terminal or the second partial user terminal may be determined according to the performance parameter of the user terminal and the performance parameters of the multiple user terminals.
  • the first value may be generated according to the performance parameter of the user terminal, and the second value may be generated according to the performance parameters of the plurality of user terminals. Then, comparing the size of the first value and the second value, when the first value is greater than the second value, determining the user terminal as the first partial user terminal; when the first value is less than or equal to the second value, determining the user terminal For the second part of the user terminal.
  • the first value may be equal to the performance parameter of the user terminal, or may be a value obtained by mathematically calculating the performance parameter of the user terminal.
  • the second value may be a summation of performance parameters of the user terminal that is smaller than the performance parameters of the user terminal in other user terminals, a spreading factor of the extended sequence, and a ratio among the plurality of user terminals (ie, all user terminals) The numerical value obtained by mathematically calculating the performance parameter of the user terminal or the number of user terminals equal thereto.
  • the performance parameter is the average received power of the user terminal
  • the number of the plurality of user terminals is K
  • the average received power of the K user terminals are ⁇ P 1 , . . . P i , . . . P K ⁇
  • the expansion factor Is N K is a positive integer
  • i is a positive integer
  • the physical meaning means that the average received power of less than P i is averaged among the average received powers ⁇ P 1 , . . . P i , . . . P K ⁇ of all user terminals.
  • the physical meaning refers to the difference between the spreading factor N and the number of user terminals greater than or equal to P i in the average received power ⁇ P 1 , . . . P i , . . . P K ⁇ of all user terminals. Then compare P i and Size when Determining the i-th user terminal as the first part of the user terminal; The i-th user terminal is determined as the second part of the user terminal.
  • the performance parameter is the SINR of the user terminal
  • the number of the plurality of user terminals is K
  • the SINRs of the K user terminals are ⁇ 1 , . . . , ⁇ i , . . . ⁇ K ⁇
  • the expansion factor is N
  • K is a positive integer
  • i is a positive integer
  • the physical meaning refers to summing the first values of less than e i among the first values of all user terminals.
  • the physical meaning refers to the difference between the number of user terminals whose spreading factor N and the first value of all user terminals is greater than or equal to e i . Then compare e i and Size when Determining the i-th user terminal as the first part of the user terminal; The i-th user terminal is determined as the second part of the user terminal.
  • the SINRs of the K user terminals may satisfy the condition of ⁇ 1 ⁇ ... ⁇ ⁇ K .
  • the SINR of the K user terminals can also meet other restrictions. The present invention does not limit this.
  • first partial user terminal and the second partial user terminal may also have more specific names.
  • the performance parameter is the average received power of the user terminal
  • the first part of the user terminal may be referred to as an oversized user terminal
  • the second part of the user terminal may be referred to as a non-oversized user terminal.
  • the performance parameter is the SINR of the user terminal
  • the first part of the user terminal may be referred to as an overloading user terminal
  • the second part of the user terminal may be referred to as a non-overloading user terminal.
  • the first extended sequence matrix can be generated according to the performance parameters of the first part of the user terminal. For example, suppose that m user terminals are determined to be the first partial user terminals, (Km) user terminals are the second partial user terminals, m is a positive integer and 1 ⁇ m ⁇ (N-1), and then, according to the m The performance parameters of the user terminal generate a first extended sequence matrix.
  • a 2 ⁇ 2 identity matrix I 2 can be generated according to the performance parameters of the first and second user terminals:
  • the first extended sequence matrix is a 2 ⁇ 2 unit matrix I 2 .
  • the first column of the first spreading sequence matrix corresponds to the first user terminal, and the second column corresponds to the second user terminal.
  • the transmit power may also be determined according to the power matrix, wherein the power matrix is generated according to the first power matrix and the second power matrix, and the first power matrix is based on the performance of the first part of the user terminal.
  • the parameter and the noise parameter of the communication system including the plurality of user terminals are generated, and the second power matrix is generated according to the performance parameter of the second part of the user terminal and the noise parameter of the communication system including the plurality of user terminals, and then can be used later
  • the determined transmit power is sent to the extended symbol.
  • the second power matrix is described in detail later, and the first power matrix will be described first.
  • the first sum may be The SINR of the second user terminal and the noise (eg, white Gaussian noise) parameter of the communication system including the plurality of user terminals determine that the received powers of the first and second user terminals are respectively P 1 according to the above equation (1). And P 2 . Then, the first power matrix diag ⁇ 2 ⁇ i ⁇ 1 ⁇ i ⁇ m can be generated based on the received powers P 1 and P 2 of the first and second user terminals.
  • the noise eg, white Gaussian noise
  • a second extended sequence matrix can be generated according to the performance parameters of the second part of the user terminal. For example, suppose that m user terminals are determined to be the first partial user terminals, and (K-m) user terminals are the second partial user terminals, and then the second extended sequence matrix can be generated according to the performance parameters of the (K-m) user terminals.
  • the second extended sequence matrix may be generated according to the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the performance parameter is the SINR of the user terminal
  • the second extended sequence matrix may be generated according to the SINR of the second partial user terminal and the system power parameter of the communication system including the plurality of user terminals.
  • the performance parameter is the average received power of the user terminal, and how to generate the second extended sequence matrix according to the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the matrix Q may be constructed based on the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • An example of building a matrix Q is given here.
  • the system capacity parameter can be channel capacity C.
  • the channel capacity C can be obtained by the above equation (2).
  • the equation (2) can be transformed into the above equation (3) by a formula. Therefore, when the channel capacity C satisfies the optimal condition as shown in the above equation (4), the values of ⁇ n (S) and C(S) are as shown in the above equations (5A) and (5B). Shown.
  • the eigenvalue matrix ⁇ related to the second partial user terminal is determined according to ⁇ *(S), which is a diagonal matrix as shown in the above equation (6).
  • ⁇ *(S) is a diagonal matrix as shown in the above equation (6).
  • the number of elements having a value of 0 on the diagonal is equal to (K-N).
  • the matrix Q can then be constructed from the eigenvalue matrix ⁇ and the diagonal element ⁇ P j
  • the constructed matrix Q is not unique.
  • the constructed matrix Q is decomposed to obtain a feature vector matrix U, as shown in the above equation (7).
  • U H is a conjugate transposed matrix of the eigenvector matrix U.
  • the power matrix It is a diagonal array diag (P j
  • the performance parameter is the average received power of the user terminal
  • the second extended sequence matrix is generated according to the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the third and fourth may be used first.
  • the average received power and system capacity parameters of the 5th, 6th, and 6th user terminals are constructed in a matrix Q.
  • the channel capacity C is as shown in the above equation (2), where I is a 4 ⁇ 4 identity matrix, S is a 4 ⁇ 6 matrix, and D is an average received power of 6 user terminals.
  • the eigenvalue matrix ⁇ related to the second partial user terminal is determined according to ⁇ *(S), and the eigenvalue matrix ⁇ is a 4 ⁇ 4 diagonal matrix
  • a matrix Q is constructed based on the eigenvalue matrix ⁇ and the diagonal elements ⁇ P 3 , P 4 , P 5 , P 6 ⁇ , which is a 4 ⁇ 4 matrix.
  • the matrix Q is decomposed to obtain a feature vector matrix U, which is a 4 ⁇ 4 matrix.
  • the column vector of the first column and the second column is selected from the feature vector matrix U to generate a modified eigenvector matrix.
  • Modified feature vector matrix It is a 4 ⁇ 2 matrix.
  • the power matrix It is a 4 ⁇ 4 diagonal array.
  • a second extended sequence matrix S non is generated according to the above equation (8), and the S non is a 2 ⁇ 4 matrix.
  • the first column of the S non corresponds to the third user terminal, the second column corresponds to the fourth user terminal, the third column corresponds to the fifth user terminal, and the fourth column corresponds to the sixth user terminal.
  • the performance parameter is the average received power of the user terminal, how to generate the second extended sequence matrix based on the average received power of the second partial user terminal and the system capacity parameter of the communication system including the plurality of user terminals.
  • the performance parameter is the SINR of the user terminal, and how to generate the second extended sequence matrix according to the SINR of the second partial user terminal and the system power parameter of the communication system including the plurality of user terminals.
  • the matrix Q may be constructed based on the SINR of the second partial user terminal and the system power parameters of the communication system including the plurality of user terminals.
  • An example of building a matrix Q is given here.
  • the SINR of each user terminal can be expressed as the above equation (9), which is formula-derived and can be expressed as the above equation (10). Then, the matrix Q is defined in accordance with the above equation (11).
  • the system power parameter can be the sum of the average received power of all user terminals, ie
  • the value of the eigenvalue ⁇ n (Q) of the matrix Q is as shown in the above equation (13).
  • the eigenvalue matrix V related to the second partial user is determined according to ⁇ *(Q), and V is the diagonal matrix shown in the above equation (14).
  • the number of elements having a value of 0 on the diagonal is equal to (K-N).
  • the constructed matrix Q non is decomposed to obtain a feature vector matrix U, as shown in the above equation (15).
  • the diagonal matrix is determined as shown in the above equation (16).
  • a second power matrix D non is generated according to the eigenvector matrix U and the diagonal matrix ⁇ according to the above equation (17).
  • the second power matrix D non generates a second extended sequence matrix S non according to the above equation (18).
  • the third and fourth may be used first.
  • the SINR and system power parameters of the 5th, 6th, and 6th user terminals are constructed into a matrix Q.
  • the defined matrix Q is as shown in the above equation (11), where I is a 4 ⁇ 4 identity matrix, S is a 4 ⁇ 6 matrix, and D is an average received power generation of 6 user terminals. 6 ⁇ 6 diagonal array diag ⁇ P 1 , P 2 , P 3 , P 4 , P 5 , P 6 ⁇ .
  • a feature value matrix V related to the second partial user terminal is determined according to ⁇ *(Q), and the feature value matrix V is a 4 ⁇ 4 diagonal matrix.
  • the matrix Q non matrix is a 4 ⁇ 4.
  • the matrix Q non is decomposed to obtain a feature vector matrix U, which is a 4 ⁇ 4 matrix.
  • the diagonal matrix is a 4 x 4 diagonal array.
  • the D non is a diagonal matrix of 4 ⁇ 4.
  • the column vector of the first column and the second column is selected from the feature vector matrix U to generate a modified eigenvector matrix.
  • Modified feature vector matrix It is a 4 ⁇ 2 matrix.
  • a second power matrix D non generates a second spread sequence S non matrix according to the above equation (18), which is S non of 2 ⁇ 4 matrix.
  • the first column of the S non corresponds to the third user terminal
  • the second column corresponds to the fourth user terminal
  • the third column corresponds to the fifth user terminal
  • the fourth column corresponds to the sixth user terminal.
  • the first extended sequence matrix may be generated according to the performance parameter of the first partial user terminal
  • the second extended sequence may be generated according to the performance parameter of the second partial user terminal. matrix.
  • the extended sequence matrix can be generated from the first extended sequence matrix and the second extended sequence matrix.
  • m user terminals are determined to be the first partial user terminals
  • (Km) user terminals are the second partial user terminals
  • m is a positive integer and 1 ⁇ m ⁇ (N-1)
  • the performance parameters of the user terminal generate a first extended sequence matrix and generate a second extended sequence matrix according to the performance parameters of the (Km) user terminals.
  • the extended sequence matrix can be generated from the first extended sequence matrix and the second extended sequence matrix.
  • the performance parameters of one and the second user terminal generate a first extended sequence matrix I 2
  • the second extended sequence matrix S non can be generated according to performance parameters of the third, fourth, fifth and sixth user terminals .
  • the extended sequence matrix S can be generated from the first extended sequence matrix I 2 and the second extended sequence matrix S non as shown in the above equation (19).
  • the extended sequence matrix S is a 4 ⁇ 6 matrix, and the first column corresponds to the first user terminal, the second column corresponds to the second user terminal, and the third column corresponds to the third user terminal, the fourth column Corresponding to the fourth user terminal, the fifth column corresponds to the fifth user terminal, and the sixth column corresponds to the sixth user terminal.
  • the first and second user terminals of the plurality of user terminals are the first partial user terminals, and the third, fourth, fifth, and sixth user terminals are determined to be extended when the second partial user terminal is the second partial user terminal.
  • An example of a sequence matrix S when each of the plurality of user terminals is the second partial user terminal, that is, the first, second, third, fourth, fifth, and sixth user terminals are For the second part of the user terminal, the extended sequence matrix S can be determined according to S non .
  • the processing unit 201 may further determine the transmit power according to the power matrix, wherein the power matrix is generated according to the first power matrix and the second power matrix, the first power matrix The second power matrix is generated according to the performance parameter of the first part of the user terminal and the noise parameter of the communication system including the plurality of user terminals, and the second power matrix is based on the performance parameter of the second part of the user terminal and the noise parameter of the communication system including the plurality of user terminals. Generated.
  • the first sum may be
  • the SINR of the second user terminal and the Gaussian white noise parameter generate a first power matrix diag ⁇ 2 ⁇ i ⁇ 1 ⁇ i ⁇ m , which can be based on the third, fourth, fifth and sixth user terminals
  • the SINR and Gaussian white noise parameters generate a second power matrix D non .
  • the power matrix P can be generated according to the first power matrix diag ⁇ 2 ⁇ i ⁇ 1 ⁇ i ⁇ m and the second power matrix D non , as shown in the above equation (20). Then, the transmission power of the first user terminal is determined according to the first diagonal element of the power matrix P, and the transmission power of the second user terminal is determined according to the second diagonal element of the power matrix P, according to the third of the power matrix P.
  • the diagonal elements determine the transmission power of the third user terminal, determine the transmission power of the fourth user terminal according to the fourth diagonal element of the power matrix P, and determine the fifth according to the fifth diagonal element of the power matrix P.
  • the transmission power of the user terminal determines the transmission power of the sixth user terminal based on the sixth diagonal element of the power matrix P.
  • the first and second user terminals of the plurality of user terminals are the first partial user terminals
  • the power is determined when the third, fourth, fifth, and sixth user terminals are the second partial user terminals.
  • the power matrix P can be determined according to D non .
  • the base station can perform the processes described above. For example, the base station may determine the first partial user terminal and the second partial user terminal according to the performance parameter, generate a first extended sequence matrix according to the performance parameter of the first partial user terminal, and generate a second extended sequence matrix according to the performance parameter of the second partial user terminal, And generating an extended sequence matrix according to the first extended sequence matrix and the second extended sequence matrix.
  • the base station may determine, according to performance parameters of the user terminal and performance parameters of the plurality of user terminals, whether the user terminal belongs to the first partial user terminal or the second partial user terminal.
  • the base station may generate a second extended sequence matrix according to performance parameters of the second partial user terminal and system capacity parameters of the communication system including the plurality of user terminals.
  • the base station may further generate a second extended sequence matrix according to performance parameters of the second partial user terminal and system power parameters of the communication system including the plurality of user terminals.
  • the base station may generate a power matrix according to the first power matrix and the second power matrix, and generate a first power matrix according to the performance parameter of the first part of the user terminal and the noise parameter of the communication system that includes the multiple user terminals, and according to the second part.
  • a performance parameter of the user terminal and a noise parameter of the communication system including the plurality of user terminals generate a second power matrix.
  • the processing unit 201 may randomly select a column from the extended sequence matrix as an extended sequence; In the uplink of the NOMA system to be authorized, the processing unit 201 may receive the indication information from the base station, and select a column from the extended sequence matrix as the extended sequence according to the indication information.
  • the extended sequence matrix according to which the processing unit 201 determines the spreading sequence may be a matrix generated by multiplying the unit orthogonal matrix by the extended sequence matrix. Specifically, after generating the extended sequence matrix S, a unit orthogonal matrix having the same first dimension (ie, the number of rows) of the extended sequence matrix S may be determined, and then the unit orthogonal matrix and the extended sequence matrix S are multiplied to Obtain the orthogonal extended sequence matrix S orth .
  • the processing unit 201 may also quantize the orthogonal extended sequence matrix S orth .
  • elements in the orthogonal extended sequence matrix S orth may be mapped in a complex plane coordinate system. Then, for each element, the coordinates closest to the element are determined and quantized to the value represented by the coordinates.
  • the real and imaginary parts of the numerical value represented by the coordinates may be ⁇ 0, ⁇ 1 ⁇ , ⁇ 0, ⁇ 1, ⁇ 2 ⁇ , ⁇ 0, ⁇ 1, ⁇ 2, ⁇ 3 ⁇ , and the like.
  • the processing unit 201 may also map elements in the orthogonal extended sequence matrix S orth in a constellation diagram in the prior art. Then, for each element, the constellation point closest to the element is determined and quantized to the value represented by the constellation point.
  • the real and imaginary parts of the numerical value represented by the constellation points may be ⁇ 1 ⁇ , ⁇ 1, ⁇ 3 ⁇ , ⁇ 1, ⁇ 3, ⁇ 5, ⁇ 7 ⁇ , and the like.
  • processing unit 201 may also modify the constellation diagrams of the prior art.
  • the constellation diagram in the prior art is expanded to include the origin ⁇ 0 ⁇ , and then the elements in the orthogonal extension sequence matrix S orth are mapped in the modified constellation including the origin ⁇ 0 ⁇ . Then, for each element, the constellation point or origin closest to the element is determined and quantized to the value represented by the constellation point or origin.
  • the processing unit 201 may first synchronously expand the elements in the orthogonal extended sequence matrix S orth to further improve the quantization precision.
  • the processing unit 201 maps elements in the orthogonal spread sequence matrix S orth to the modified constellation diagram 9-QAM including the origin ⁇ 0 ⁇ for quantization is given below.
  • the processing unit 201 obtains the orthogonal extended sequence matrix S orth as:
  • the elements in the orthogonal extended sequence matrix S orth may be mapped in the modified constellation diagram 9-QAM for quantization, and then the quantized extended sequence matrix S quan is obtained :
  • the processing unit 201 can also perform power normalization on the quantized extended sequence matrix S quan to ensure that the power of each column is 1. For example, processing unit 201 may determine a normalized same dimension quantization matrix and a second matrix S quan spreading sequence (i.e., columns), then the normalization matrix and the quantization matrix S quan spreading sequences are multiplied, to obtain The final extended sequence matrix S final . Therefore, the processing unit 201 can determine the spreading sequence based on the final spreading sequence matrix S final .
  • the extended sequence matrix may be generated according to quantization performance parameters of a plurality of user terminals, wherein the quantization performance parameters of the plurality of user terminals are generated according to quantizing performance parameters of the plurality of user terminals.
  • the performance parameter is the average received power of the user terminal
  • the average received power of the user terminal may be quantized first, and then the extended sequence matrix is generated according to the quantized average received power.
  • the signal to noise ratio (SNR) of the user terminal in dB may be first generated according to the average received power of the user terminal, and then predetermined according to a predetermined rule.
  • the quantization step size quantizes the SNR of the user terminal to obtain a quantized SNR.
  • the quantized average received power in watts of the user terminal is generated based on the quantized SNR.
  • the extended sequence matrix is generated according to the quantized average received power of the user terminal.
  • the signal-to-noise ratios of the six user terminals generated according to the average received power of the six user terminals are ⁇ -2.3, -1, -0.5, 3.6, 6.4, 7.5 ⁇ (in dB).
  • the SNR of the six user terminals is quantized by a quantization step of 5 dB, and the quantized SNRs are respectively generated as ⁇ 0, 0, 0, 5, 10, 10 ⁇ .
  • the quantized average received power is generated based on the quantized SNR ⁇ 0, 0, 0, 5, 10, 10 ⁇ .
  • an extended sequence matrix is generated based on the quantized average received power of the six user terminals.
  • the processing unit 201 can determine the transmission power using the power matrix described above, and then transmit the spreading symbol using the determined transmission power.
  • the measured transmission power may also be determined, wherein the measured transmission power is generated based on an actual measurement of a user terminal.
  • the extended symbol is then transmitted using the determined measured transmit power to generate a measured performance parameter.
  • the performance parameters used to generate the extended sequence matrix are adjusted according to the measured performance parameters.
  • the generating unit 202 may expand the initial symbol using the extended sequence in the extended sequence matrix to generate the extended symbol, and transmit the extended symbols of the plurality of user terminals in the measured power matrix to generate the The measured SINR of the user terminal. Then, the measured SINR and the SINR used to generate the extended sequence matrix are compared. When the measured SINR of a user terminal is smaller than the SINR used to generate the extended sequence matrix, the SINR of the user terminal for generating the extended sequence matrix may be adjusted, for example, the SINR for generating the extended sequence matrix is increased.
  • the invention is not limited thereto.
  • the measured SINR of a user terminal is smaller than the SINR used to generate the extended sequence matrix
  • one or more user terminals whose measured SINR is not less than the SINR for generating the extended sequence matrix may be searched for, and then the one or more user terminals are reduced.
  • the SINR used to generate the extended sequence matrix may be searched for, and then the one or more user terminals are reduced.
  • the adjusted SINR can be used to generate the extended sequence matrix next time.
  • An apparatus for generating an extended symbol for a NOMA system for a plurality of user terminals having different average received powers, generating an extended sequence when a system capacity parameter obtains an optimal value under a certain constraint condition, and According to the SINR of multiple user terminals, an extended sequence is generated when the system power parameter obtains an optimal value under certain constraint conditions, thereby minimizing interference between user terminals.
  • each structural unit can be implemented by any combination of hardware and/or software.
  • the means for realizing each structural unit is not particularly limited. That is, each structural unit may be implemented by one device that is physically and/or logically combined, or two or more devices that are physically and/or logically separated, directly and/or indirectly (eg, This is achieved by a plurality of devices as described above by a wired and/or wireless connection.
  • the user equipment in the embodiment of the present invention can function as a computer that executes the processing of the reference signal transmitting method for beam management of the present invention.
  • FIG. 3 shows a schematic diagram of the hardware structure of the user equipment 300 involved in accordance with one embodiment of the present invention.
  • the user equipment 300 described above may be configured as a computer device that physically includes a processor 301, a memory 302, a memory 303, a communication device 304, an input device 305, an output device 306, a bus 307, and the like.
  • the hardware structure of the user device 300 may include one or more of the devices shown in the figures, or may not include some of the devices.
  • processor 301 is only illustrated as one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 301 can be installed by more than one chip.
  • Each function in the user device 300 is realized, for example, by reading a predetermined software (program) into hardware such as the processor 301 or the memory 302, thereby causing the processor 301 to perform an operation to perform communication by the communication device 304. Control is performed and control of reading and/or writing of data in the memory 302 and the memory 303 is performed.
  • a predetermined software program
  • control is performed and control of reading and/or writing of data in the memory 302 and the memory 303 is performed.
  • the processor 301 causes the operating system to operate to control the entire computer.
  • the processor 301 may be constituted by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the above-described baseband signal processing unit, call processing unit, and the like can be implemented by the processor 301.
  • the processor 301 reads out programs (program codes), software modules, data, and the like from the memory 303 and/or the communication device 304 to the memory 302, and executes various processes in accordance therewith.
  • programs program codes
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the control unit of the user device 300 can be implemented by a control program stored in the memory 302 and operated by the processor 301, and can be implemented similarly for other functional blocks.
  • the memory 302 is a computer readable recording medium, and may be, for example, a read only memory (ROM), an EEPROM (Erasable Programmable ROM), an electrically programmable read only memory (EEPROM), or an electrically programmable read only memory (EEPROM). At least one of a random access memory (RAM) and other suitable storage medium is used.
  • Memory 302 may also be referred to as a register, a cache, a main memory (primary storage device), or the like.
  • the memory 302 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 303 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact Disc ROM), etc.). Digital Versatile Disc, Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database At least one of a server, a server, and other suitable storage medium. Memory 303 may also be referred to as an auxiliary storage device.
  • the communication device 304 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 304 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the above-described transmitting and receiving antenna, amplifying unit, transmitting and receiving unit, transmission path interface, and the like can be realized by the communication device 304.
  • the input device 305 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 306 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 305 and the output device 306 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 301, the memory 302, and the like is connected via a bus 307 for communicating information.
  • the bus 307 may be composed of a single bus or a different bus between devices.
  • the user equipment 300 may include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD, Programmable Logic Device), and field programmable.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA Field Programmable Gate Array
  • the processor 301 can be installed by at least one of these hardwares.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as an RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier may also be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may have one or more symbols in the time domain (Orthogonal Frequency Division Multiplexing (OFDM), Single Carrier Frequency Division Multiple Access (SC-FDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA) Symbols, etc.).
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a Transmission Time Interval (TTI), and a plurality of consecutive subframes may also be referred to as a TTI.
  • TTI Transmission Time Interval
  • One slot or one minislot may also be referred to as a TTI. That is to say, the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. usable in each user terminal) in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • a TTI and a subframe may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like. .
  • the resource block may also be composed of one or more resource elements (REs, Resource Elements).
  • REs resource elements
  • Resource Elements For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), and upper layer signaling (for example, radio resource control).
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Media Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) from a website, server, or other remote source
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • base station (BS, Base Station)", “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier”, and “component carrier”
  • BS Base Station
  • radio base station eNB
  • gNB gNodeB
  • cell a cell
  • cell group a carrier
  • component carrier a component carrier
  • the base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also referred to as sectors). When the base station accommodates multiple cells, the entire coverage area of the base station can be divided into a plurality of smaller areas, and each smaller area can also pass through the base station subsystem (for example, a small indoor base station (RFH, remote head (RRH), Remote Radio Head))) to provide communication services.
  • the term "cell” or “sector” refers to a portion or the entirety of the coverage area of a base station and/or base station subsystem that performs communication services in the coverage.
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the wireless base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • D2D user-to-device
  • the function of the above-described wireless base station can be regarded as a function of the user terminal.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user terminal in this specification can also be replaced with a wireless base station.
  • the function of the above-described user terminal can be regarded as a function of the wireless base station.
  • a specific operation performed by a base station is also performed by an upper node depending on the situation.
  • various actions performed for communication with the terminal can pass through the base station and more than one network other than the base station.
  • the node may be considered, for example, but not limited to, a Mobility Management Entity (MME), a Serving-Gateway (S-GW, etc.), or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long-Term Evolution
  • LTE-Beyond Long-Term Evolution
  • Super 3rd generation mobile communication system SUPER 3G
  • IMT-Advanced advanced international mobile communication
  • 4th generation mobile communication system (4G, 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • future radio access FAA
  • new radio access technology New-RAT, Radio Access Technology
  • NR New Radio Access Technology
  • NX new radio access
  • FX Next Generation Wireless Access
  • GSM Registered trademark
  • GSM Global System for Mobile Communications
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 Ultra Wideband
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, looking up (eg, table, database, or other) may be performed. Search in the data structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, receiving information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种用于生成扩展符号的方法和装置,其中,所述方法包括:根据扩展序列矩阵确定扩展序列,其中,所述扩展序列矩阵是根据多个用户终端的性能参数生成的;以及使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。

Description

一种用于生成扩展符号的方法及装置 技术领域
本发明涉及无线通信领域,并且具体涉及用于非正交多址接入(Non-Orthogonal Multiple Access,NOMA)***的生成扩展符号的方法及装置。
背景技术
为了提高通信***的抗干扰性,已经提出了在NOMA***中采用扩展序列对符号进行符号扩展。现有技术中,用户终端或基站所使用的扩展序列是针对多个具有相同的平均接收功率的用户终端而生成的。
例如,对于多个具有相同的平均接收功率的用户终端,可以根据扩展序列的扩展因子以预定的规则生成一个矩阵,然后用户终端或基站从该矩阵中选择一列作为自身的扩展序列来使用。又例如,对于多个具有相同的平均接收功率的用户终端,可以随机生成扩展序列,然后用户终端或基站可以使用该扩展序列。
然而,在通信***中,多个用户终端的平均接收功率通常是不相同的。而且,用户终端的性能参数不局限于平均接收功率。
发明内容
根据本发明的一个方面,提供了一种用于生成扩展符号的方法,方法包括:根据扩展序列矩阵确定扩展序列,其中,扩展序列矩阵是根据多个用户终端的性能参数生成的;以及使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。
根据本发明的另一方面,提供了一种用于生成扩展符号的装置,装置包括:处理单元,被配置为根据扩展序列矩阵确定用于装置的扩展序列,其中,扩展序列矩阵是根据多个用户终端的性能参数生成的;以及生成单元,被配置为使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。
根据本发明上述方面的用于NOMA***的生成扩展符号的方法及装置,针对多个具有不同的平均接收功率的用户终端生成扩展序列,以及根据多个用户终端的信干噪比生成扩展序列,从而最小化了用户终端之间的干扰。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1示出了根据本发明一个实施例的生成扩展符号的方法的流程图;
图2示出了根据本发明实施例的执行图1所示的方法的装置的结构示意图;
图3示出了根据本发明实施例的所涉及的用户设备的硬件结构的示意图。
具体实施方式
下面将参照附图来描述根据本发明实施例的用于NOMA***的生成扩展符号的方法及装置。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。本发明的方法可以由基站执行,也可以由用户终端执行。相应地,本发明的装置可以是基站,也可以在用户终端。此外,这里所述的基站可以为固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等,在此不做限定。此外,这里所述的用户终端(User Equipment,UE)可以包括各种类型的用户终端,例如移动终端(或称为移动台)或者固定终端,然而,为方便起见,在下文中有时候可互换地使用UE和移动台。
根据本发明实施例提供的用于NOMA***的生成扩展符号的方 法及装置,针对多个具有不同的平均接收功率的用户终端生成扩展序列,以及根据多个用户终端的信干噪比生成扩展序列,从而最小化了用户终端之间的干扰。
以下,参照图1描述根据本发明一个实施例的生成扩展符号的方法。图1示出了生成扩展符号的方法100的流程图。在图1中所示的生成扩展符号的方法100可以由例如基站、用户终端等的通信设备执行。例如,在图1中所示的生成扩展符号的方法100可以由NOMA***中的通信设备执行。
如图1所示,在步骤S101中,根据扩展序列矩阵确定扩展序列,其中,扩展序列矩阵是根据多个用户终端的性能参数生成的。本实施例中,在步骤S101中根据扩展序列矩阵确定用于执行方法100的通信设备的扩展序列。而且,本实施例中,性能参数可以包括功率参数。
例如,功率参数可以指示执行方法100的通信设备的发送功率或接收功率。可替换地,功率参数可以是执行方法100的通信设备的信干噪比(Signal to Interference plus Noise Ratio,SINR)。在本实施例中,对于多个用户终端,性能参数为发送功率或接收功率时,性能参数可以至少部分不同。可替换地,对于多个用户终端,性能参数为信干噪比时,性能参数可以至少部分不同,也可以相同。
根据本实施例的一个示例,执行方法100的通信设备可以根据多个用户终端的性能参数生成扩展序列矩阵。例如,当执行方法100的通信设备为基站时,可以根据与该基站进行通信的多个用户终端的性能参数生成扩展序列矩阵。
根据本实施例的另一示例,执行方法100的通信设备可以通过所接收的信令来确定扩展序列矩阵。例如,当执行方法100的通信设备为用户终端时,可以根据从基站接收到的信令来确定扩展序列矩阵。
本实施例中,用于确定扩展序列的扩展序列矩阵也可以称为扩展序列的码本。可替换地,用于确定扩展序列的扩展序列矩阵还可以称为扩展序列的码书或者Codebook或者扩展序列池或Sequence pool。相应地,根据扩展序列矩阵确定的扩展序列也可以称为码字或Codeword或Spreading sequence。
此外,根据本实施例的另一示例,扩展序列矩阵是根据关于多个用户终端中的第一部分用户终端的第一扩展序列矩阵和关于多个用户终端中的第二部分用户终端的第二扩展序列矩阵构成的。可以根据性能参数确定第一部分用户终端和第二部分用户终端,根据第一部分用户终端的性能参数生成第一扩展序列矩阵,并且根据第二部分用户终端的性能参数生成第二扩展序列矩阵。
在该示例中,多个用户终端中的部分用户终端可以为第一部分用户终端,剩余部分用户终端可以为第二部分用户终端。可替换地,多个用户终端中的每个用户终端可以均为第二部分用户终端。
具体地,对于多个用户终端中的一用户终端,可以根据该用户终端的性能参数和多个用户终端的性能参数,确定该用户终端属于第一部分用户终端还是第二部分用户终端。
例如,对于多个用户终端中的一用户终端,可以根据该用户终端的性能参数生成第一数值,并根据多个用户终端的性能参数生成第二数值。然后,比较第一数值和第二数值的大小,当第一数值大于第二数值时,将该用户终端确定为第一部分用户终端;当第一数值小于等于第二数值时,将该用户终端确定为第二部分用户终端。
根据本实施例的一个示例,第一数值可以等于该用户终端的性能参数,也可以是对该用户终端的性能参数进行数学运算得到的数值。第二数值可以是对在其他用户终端中且比该用户终端的性能参数小的用户终端的性能参数求和、扩展序列的扩展因子、以及在多个用户终端(即所有的用户终端)中比该用户终端的性能参数大或者与其相等的用户终端的数目进行数学运算得到的数值。
比如,假设性能参数为用户终端的平均接收功率,多个用户终端的数目为K,该K个用户终端的平均接收功率分别为{P 1,……P i,……P K},扩展因子为N,K为正整数,i为正整数且1≤i≤K。对于第i个用户终端,根据第i个用户终端的平均接收功率P i生成第一数值P i,并根据所有用户终端的平均接收功率{P 1,……P i,……P K}生成第二数值:
Figure PCTCN2018105028-appb-000001
在该第二数值中,
Figure PCTCN2018105028-appb-000002
的物理含义是指对所有用户终端的平均接收功率{P 1,……P i,……P k}中小于P i的平均接收功率进行求和,
Figure PCTCN2018105028-appb-000003
的物理含义是指对扩展因子N与所有用户终端的平均接收功率{P 1,……P i,……P k}中大于或等于P i的用户终端的数目求差。然后,比较P i
Figure PCTCN2018105028-appb-000004
的大小,当
Figure PCTCN2018105028-appb-000005
时,将第i个用户终端确定为第一部分用户终端;当
Figure PCTCN2018105028-appb-000006
时,将第i个用户终端确定为第二部分用户终端。
又比如,假设性能参数为用户终端的SINR,多个用户终端的数目为K,该K个用户终端的SINR分别为{β 1,……β i,……β K},扩展因子为N,K为正整数,i为正整数且1≤i≤K。对于第i个用户终端,根据第i个用户终端的SINRβ i生成第一数值
Figure PCTCN2018105028-appb-000007
并根据所有用户终端的SINR{β 1,……β i,……β K}生成第二数值:
Figure PCTCN2018105028-appb-000008
在该第二数值中,
Figure PCTCN2018105028-appb-000009
的物理含义是指对所有用户终端的第一数值中小于e i的第一数值进行求和,
Figure PCTCN2018105028-appb-000010
的物理含义是指对扩展因子N与所有用户终端的第一数值中大于或等于e i的用户终端的数目求差。然后,比较e i
Figure PCTCN2018105028-appb-000011
的大小,当
Figure PCTCN2018105028-appb-000012
Figure PCTCN2018105028-appb-000013
时,将第i个用户终端确定为第一部分用户终端;当
Figure PCTCN2018105028-appb-000014
Figure PCTCN2018105028-appb-000015
时,将第i个用户终端确定为第二部分用户终端。
在该示例中,K个用户终端的SINR可以满足β 1≥…≥β K的条件。当然,K个用户终端的SINR也可以满足其他的限定条件,本发明对此不作限定。
此外,第一部分用户终端和第二部分用户终端也可以具有更具体的名称。例如,假设性能参数为用户终端的平均接收功率,则可以将第一部分用户终端称为oversized用户终端,而将第二部分用户终端称为non-oversized用户终端。又例如,假设性能参数为用户终端的SINR时,则可以将第一部分用户终端称为overloading用户终端,而将第二部分用户终端称为non-overloading用户终端。
然后,可以根据第一部分用户终端的性能参数生成第一扩展序列矩阵。例如,假设确定了m个用户终端为第一部分用户终端,(K-m)个用户终端为第二部分用户终端,m为正整数且1≤m≤(N-1),然后,可以根据该m个用户终端的性能参数生成第一扩展序列矩阵。
具体地,比如,假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6,确定了第1个和第2个用户终端为第一部分用户终端(即m=2),第3个、第4个、第5个和第6个用户终端为第二部分用户终端(即(K-m)=4)。然后,可以根据第1个和第2个用户终端的性能参数生成2×2的单位矩阵I 2
Figure PCTCN2018105028-appb-000016
即第一扩展序列矩阵为2×2的单位矩阵I 2。该第一扩展序列矩阵的第1列与第1个用户终端相对应,第2列与第2个用户终端相对应。
此外,假设性能参数为用户终端的SINR,还可以根据功率矩阵确定发送功率,其中,功率矩阵是根据第一功率矩阵和第二功率矩阵生成的,第一功率矩阵是根据第一部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的,第二功率矩阵是根据第二部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的,然后在后面的步骤S102中使用所确定的发送功率发送扩展符号。第二功率矩阵在后续进行详细描述,在此先描述第一功率矩 阵。
比如,在上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以根据第1个和第2个用户终端的SINR以及包括多个用户终端的通信***的噪声(例如,高斯白噪声)参数按照下面的等式(1)确定第1个和第2个用户终端的接收功率分别为P 1和P 2
P i=σ 2β i          等式(1)
在等式(1)中,σ 2指高斯白噪声的方差。然后,可以根据第1个和第2个用户终端的接收功率P 1和P 2生成第一功率矩阵diag{σ 2β i} 1≤i≤m
然后,可以根据第二部分用户终端的性能参数生成第二扩展序列矩阵。例如,假设确定了m个用户终端为第一部分用户终端,(K-m)个用户终端为第二部分用户终端,然后,可以根据该(K-m)个用户终端的性能参数生成第二扩展序列矩阵。
具体地,假设性能参数为用户终端的平均接收功率,可以根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。可替换地,假设性能参数为用户终端的SINR,可以根据第二部分用户终端的SINR以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
下面描述假设性能参数为用户终端的平均接收功率,如何根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。
可以先根据第二部分用户终端的平均接收功率和包括多个用户终端的通信***的***容量参数构建矩阵Q。在此给出构建矩阵Q的一个示例。
在该示例中,***容量参数可以为信道容量C。信道容量C可以通过下面的等式(2)获得:
Figure PCTCN2018105028-appb-000017
在等式(2)中,I为单位矩阵,S为与多个用户终端相对应的扩展序列矩阵,D为根据多个用户终端的平均接收功率生成的对角阵diag{P 1,……P i,……P k},S H为矩阵S的共轭转置矩阵。
经过公式推导,上述等式(2)可以变形为下面的等式(3):
Figure PCTCN2018105028-appb-000018
在等式(3)中,λ n(S)为矩阵SDS H的特征值,n为正整数且1≤n≤N。因此,当信道容量C在满足如下面的等式(4)所示的约束条件取得最优值时,λ n(S)和C(S)的取值如下面的等式(5A)和(5B)所示:
Figure PCTCN2018105028-appb-000019
Figure PCTCN2018105028-appb-000020
Figure PCTCN2018105028-appb-000021
然后,根据λ*(S)确定与第二部分用户终端有关的特征值矩阵Λ,Λ为如下面的等式(6)所示的对角阵:
Figure PCTCN2018105028-appb-000022
在特征值矩阵Λ中,对角线上取值为0的元素的数目等于(K-N)。
然后可以根据特征值矩阵Λ和对角线元素{P j|(m+1)≤j≤K}构建矩阵Q。此处,所构建的矩阵Q并不是唯一的。
在构建完矩阵Q后,对所构建的矩阵Q进行分解获得特征向量矩阵U,如下面的等式(7)所示:
Q=UΛU H        等式(7)
在等式(7)中,U H为特征向量矩阵U的共轭转置矩阵。
在获得特征向量矩阵U后,从特征向量矩阵U中选择所对应的特征值不为零的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000023
从特征值矩阵Λ中选择非零特征值构成对角矩阵作为修正特征值矩阵
Figure PCTCN2018105028-appb-000024
然后,确定第二部分用户终端的功率矩阵
Figure PCTCN2018105028-appb-000025
该功率矩阵
Figure PCTCN2018105028-appb-000026
为对角阵diag(P j|(m+1)≤j≤K)。然后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000027
修 正特征值矩阵
Figure PCTCN2018105028-appb-000028
功率矩阵
Figure PCTCN2018105028-appb-000029
按照下面的等式(8)生成第二扩展序列矩阵S non
Figure PCTCN2018105028-appb-000030
在等式(8)中,
Figure PCTCN2018105028-appb-000031
表示对特征值矩阵
Figure PCTCN2018105028-appb-000032
中的元素进行算术平方根运算,
Figure PCTCN2018105028-appb-000033
表示对功率矩阵
Figure PCTCN2018105028-appb-000034
求逆运算后的矩阵中的元素进行算术平方根运算,
Figure PCTCN2018105028-appb-000035
表示矩阵
Figure PCTCN2018105028-appb-000036
的共轭转置矩阵。
至此已经描述了假设性能参数为用户终端的平均接收功率,根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵的具体过程。为了更清楚地描述上述具体过程所涉及的各种矩阵,在此以上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例对上述具体过程所涉及的各种矩阵进行说明。
具体地,在“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以先根据第3个、第4个、第5个和第6个用户终端的平均接收功率和***容量参数构建矩阵Q。
在该示例中,信道容量C如上述等式(2)所示,其中,I为4×4的单位矩阵,S为4×6的矩阵,D为6个用户终端的平均接收功率生成6×6的对角阵diag{P 1,P 2,P 3,P 4,P 5,P 6}。
经过公式推导,当信道容量C在满足如上述等式(4)所示的约束条件取得最优值时,λ n(S)的取值为:
Figure PCTCN2018105028-appb-000037
Figure PCTCN2018105028-appb-000038
然后,根据λ*(S)确定与第二部分用户终端有关的特征值矩阵Λ,该特征值矩阵Λ为4×4的对角阵
Figure PCTCN2018105028-appb-000039
Figure PCTCN2018105028-appb-000040
然后,根据特征值矩阵Λ和对角线元素{P 3,P 4,P 5,P 6}构建矩 阵Q,该矩阵Q为4×4的矩阵。在构建完矩阵Q后,对矩阵Q进行分解获得特征向量矩阵U,该特征向量矩阵U为4×4的矩阵。
然后,从特征向量矩阵U中选择第1列和第2列的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000041
该修正特征向量矩阵
Figure PCTCN2018105028-appb-000042
为4×2的矩阵。将特征值矩阵Λ的非零特征值作为对角元素生成修正特征值矩阵
Figure PCTCN2018105028-appb-000043
Figure PCTCN2018105028-appb-000044
然后,确定第二部分用户终端的功率矩阵
Figure PCTCN2018105028-appb-000045
Figure PCTCN2018105028-appb-000046
该功率矩阵
Figure PCTCN2018105028-appb-000047
为4×4的对角阵。
最后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000048
修正特征值矩阵
Figure PCTCN2018105028-appb-000049
功率矩阵
Figure PCTCN2018105028-appb-000050
按照上述等式(8)生成第二扩展序列矩阵S non,该S non为2×4的矩阵。该S non的第1列对应于第3个用户终端,第2列对应于第4个用户终端,第3列对应于第5个用户终端,第4列对应于第6个用户终端。
上面已经描述了假设性能参数为用户终端的平均接收功率,如何根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。下面描述假设性能参数为用户终端的SINR,如何根据第二部分用户终端的SINR以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
可以先根据第二部分用户终端的SINR和包括多个用户终端的通信***的***功率参数构建矩阵Q。在此给出构建矩阵Q的一个示例。
在该示例中,每个用户终端的SINR可以表示为下面的等式(9),对其进行公式推导,可以表示为下面的等式(10):
Figure PCTCN2018105028-appb-000051
Figure PCTCN2018105028-appb-000052
在等式(9)和(10)中,P i为第i个用户终端的平均接收功率,S i为与多个用户终端相对应的扩展序列矩阵S的第i个列向量,
Figure PCTCN2018105028-appb-000053
为S i的 共轭转置向量,
Figure PCTCN2018105028-appb-000054
矩阵
Figure PCTCN2018105028-appb-000055
为对Z i进行求逆运算,且
Figure PCTCN2018105028-appb-000056
D为根据多个用户终端的平均接收功率生成的对角阵diag{P 1,……P i,……P K}。
然后,按照下面的等式(11)定义矩阵Q:
Figure PCTCN2018105028-appb-000057
对于通过等式(11)定义的矩阵Q,其对角线元素为
Figure PCTCN2018105028-appb-000058
其特征值为
Figure PCTCN2018105028-appb-000059
其中,λ n(S)为矩阵SDS H的特征值。
在该示例中,***功率参数可以为所有用户终端的平均接收功率的求和,即
Figure PCTCN2018105028-appb-000060
当***功率参数在满足如下面的等式(12)所示的约束条件取得最小值时,矩阵Q的特征值λ n(Q)的取值如下面的等式(13)所示,n为正整数且1≤n≤N:
Figure PCTCN2018105028-appb-000061
Figure PCTCN2018105028-appb-000062
然后,根据λ*(Q)确定与第二部分用户有关的特征值矩阵V,V为如下面的等式(14)所示的对角阵:
Figure PCTCN2018105028-appb-000063
在特征值矩阵V中,对角线上取值为0的元素的数目等于(K-N)。
然后可以根据特征值矩阵V和对角线元素
Figure PCTCN2018105028-appb-000064
构建矩阵Q non。此处,所构建的矩阵Q non并不是唯一的。
在构建完矩阵Q non后,对所构建的矩阵Q non进行分解获得特征向量矩阵U,如下面的等式(15)所示:
Q non=UVU H       等式(15)在等式(15)中,U H为特征向量矩阵U的共轭转置矩阵。
然后,确定对角阵Λ,如下面的等式(16)所示:
Figure PCTCN2018105028-appb-000065
然后,根据特征向量矩阵U和对角阵Λ按照下面的等式(17)生成第二功率矩阵D non
D non=diag(UΛU H)     等式(17)其中diag(UΛU H)表示由矩阵UΛU H的对角元素构成的对角矩阵。
然后,从特征向量矩阵U中选择所对应的特征值不为零的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000066
从特征值矩阵Λ中选择非零特征值构成对角矩阵作为修正特征值矩阵
Figure PCTCN2018105028-appb-000067
然后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000068
修正特征值矩阵
Figure PCTCN2018105028-appb-000069
和第二功率
Figure PCTCN2018105028-appb-000070
在等式(18)中,
Figure PCTCN2018105028-appb-000071
表示对对角阵
Figure PCTCN2018105028-appb-000072
中的元素进行算术平方根运算,
Figure PCTCN2018105028-appb-000073
表示矩阵
Figure PCTCN2018105028-appb-000074
的共轭转置矩阵,
Figure PCTCN2018105028-appb-000075
表示对功率矩阵D non求逆运算后的矩阵中的元素进行算术平方根运算。
至此已经描述了假设性能参数为用户终端的SINR,根据第二部分用户终端的SINR以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵的具体过程。为了更清楚地描述上述具体过 程所涉及的各种矩阵,在此以上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例对上述具体过程所涉及的各种矩阵进行说明。
具体地,在“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以先根据第3个、第4个、第5个和第6个用户终端的SINR和***功率参数构建矩阵Q。
在该示例中,所定义的矩阵Q如上述等式(11)所示,其中,I为4×4的单位矩阵,S为4×6的矩阵,D为6个用户终端的平均接收功率生成6×6的对角阵diag{P 1,P 2,P 3,P 4,P 5,P 6}。
经过推导,当***功率参数在满足如上述等式(12)所示的约束条件取得最小值时,λ n(Q)的取值为:
Figure PCTCN2018105028-appb-000076
Figure PCTCN2018105028-appb-000077
然后,根据λ*(Q)确定与第二部分用户终端有关的特征值矩阵V,该特征值矩阵V为4×4的对角阵
Figure PCTCN2018105028-appb-000078
Figure PCTCN2018105028-appb-000079
然后,根据特征值矩阵V和对角线元素
Figure PCTCN2018105028-appb-000080
构建矩阵Q non,该矩阵Q non是4×4的矩阵。在构建完矩阵Q non后,对矩阵Q non进行分解获得特征向量矩阵U,该特征向量矩阵U是4×4的矩阵。
然后,确定对角阵
Figure PCTCN2018105028-appb-000081
Figure PCTCN2018105028-appb-000082
该对角阵Λ是4×4的对角阵。
然后,根据特征向量矩阵U和对角阵Λ按照上述等式(17)生成 第二功率矩阵D non,该D non是4×4的对角矩阵。
然后,从特征向量矩阵U中选择第1列和第2列的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000083
该修正特征向量矩阵
Figure PCTCN2018105028-appb-000084
为4×2的矩阵。将特征值矩阵Λ的非零特征值作为对角元素生成修正特征值矩阵
Figure PCTCN2018105028-appb-000085
Figure PCTCN2018105028-appb-000086
然后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000087
修正特征值矩阵
Figure PCTCN2018105028-appb-000088
和第二功率矩阵D non按照上述等式(18)生成第二扩展序列矩阵S non,该S non是2×4的矩阵。该S non的第1列对应于第3个用户终端,第2列对应于第4个用户终端,第3列对应于第5个用户终端,第4列对应于第6个用户终端。
另外,在根据性能参数确定第一部分用户终端和第二部分用户终端后,可以同时根据第一部分用户终端的性能参数生成第一扩展序列矩阵以及根据第二部分用户终端的性能参数生成第二扩展序列矩阵。
然后,可以根据第一扩展序列矩阵和第二扩展序列矩阵生成扩展序列矩阵。例如,假设确定了m个用户终端为第一部分用户终端,(K-m)个用户终端为第二部分用户终端,m为正整数且1≤m≤(N-1),然后,可以根据该m个用户终端的性能参数生成第一扩展序列矩阵以及根据该(K-m)个用户终端的性能参数生成第二扩展序列矩阵。然后,可以根据第一扩展序列矩阵和第二扩展序列矩阵生成扩展序列矩阵。
具体地,比如,在上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以根据第1个和第2个用户终端的性能参数生成第一扩展序列矩阵I 2,可以根据第3个、第4个、第5个和第6个用户终端的性能参数生成第二扩展序列矩阵S non。然后,可以根据第一扩展序列矩阵I 2和第二扩展序列矩阵S non生成扩展序列矩阵S,如下面的等式(19)所示:
Figure PCTCN2018105028-appb-000089
则该扩展序列矩阵S为4×6的矩阵,并且第1列对应于第1个用户终端,第2列对应于第2个用户终端,第3列对应于第3个用户终端,第4列对应于第4个用户终端,第5列对应于第5个用户终端,第6列对应于第6个用户终端。
上面描述了多个用户终端中的第1个和第2个用户终端为第一部分用户终端,第3个、第4个、第5个和第6个用户终端为第二部分用户终端时确定扩展序列矩阵S的示例。可替换地,多个用户终端中的每个用户终端均为第二部分用户终端时,即第1个、第2个、第3个、第4个、第5个和第6个用户终端均为第二部分用户终端时,根据S non就可以确定扩展序列矩阵S。
此外,上面已经描述过,假设性能参数为用户终端的SINR,还可以根据功率矩阵确定发送功率,其中,功率矩阵是根据第一功率矩阵和第二功率矩阵生成的,第一功率矩阵是根据第一部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的,第二功率矩阵是根据第二部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的。
比如,在上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以根据第1个和第2个用户终端的SINR以及高斯白噪声参数生成第一功率矩阵diag{σ 2β i} 1≤i≤m,可以根据第3个、第4个、第5个和第6个用户终端的SINR以及高斯白噪声参数生成第二功率矩阵D non。然后,可以根据第一功率矩阵diag{σ 2β i} 1≤i≤m和第二功率矩阵D non生成功率矩阵P,如下面的等式(20)所示:
Figure PCTCN2018105028-appb-000090
则根据功率矩阵P的第1个对角元素确定第1个用户终端的发送功率,根据功率矩阵P的第2个对角元素确定第2个用户终端的发送功率,根据功率矩阵P的第3个对角元素确定第3个用户终端的发送功率,根据功率矩阵P的第4个对角元素确定第4个用户终端的发送功率,根据功率矩阵P的第5个对角元素确定第5个用户终端 的发送功率,根据功率矩阵P的第6个对角元素确定第6个用户终端的发送功率。
上面描述了多个用户终端中的第1个和第2个用户终端为第一部分用户终端,第3个、第4个、第5个和第6个用户终端为第二部分用户终端时确定功率矩阵P的示例。可替换地,多个用户终端中的每个用户终端均为第二部分用户终端时,即第1个、第2个、第3个、第4个、第5个和第6个用户终端均为第二部分用户终端时,根据D non就可以确定功率矩阵P。
此外,当执行方法100的通信设备为基站时,基站可以执行上面所描述的过程。例如,基站可以根据性能参数确定第一部分用户终端和第二部分用户终端,根据第一部分用户终端的性能参数生成第一扩展序列矩阵,根据第二部分用户终端的性能参数生成第二扩展序列矩阵,以及根据第一扩展序列矩阵和第二扩展序列矩阵生成扩展序列矩阵。
又例如,对于多个用户终端中的一用户终端,基站可以根据该用户终端的性能参数和多个用户终端中的除了该用户终端以外的其他用户终端的性能参数,确定该用户终端属于第一部分用户终端还是第二部分用户终端。
再例如,基站可以根据第二部分用户终端的性能参数以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。可替换地,基站还可以根据第二部分用户终端的性能参数以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
再例如,基站可以根据第一功率矩阵和第二功率矩阵生成功率矩阵,根据第一部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成第一功率矩阵,以及根据第二部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成第二功率矩阵。
此外,根据本实施例的另一示例,当执行方法100的通信设备为用户终端时,在NOMA***的免授权的上行链路中,用户终端可以从扩展序列矩阵中随机地选择一列作为扩展序列;而在NOMA***的需授权的上行链路中,用户终端可以从基站接收指示信息,并根据 指示信息从扩展序列矩阵中选择一列作为扩展序列。
另外,根据本实施例的另一示例,在步骤S101中确定扩展序列时所根据的扩展序列矩阵可以是单位正交矩阵与扩展序列矩阵相乘后生成的矩阵。具体地,在步骤S101中生成扩展序列矩阵S后,可以确定一个与扩展序列矩阵S的第一维度(即行数)相同的单位正交矩阵,然后将该单位正交矩阵和扩展序列矩阵S相乘,以获得正交扩展序列矩阵S orth
在该示例中,在获得正交扩展序列矩阵S orth后,还可以对正交扩展序列矩阵S orth进行量化。例如,可以将正交扩展序列矩阵S orth中的元素映射在复平面坐标系中。然后,对于每个元素,确定距离该元素最近的坐标,并把该元素量化为该坐标所表示的数值。比如,坐标所表示的数值的实部和虚部可以为{0,±1}、{0,±1,±2}、{0,±1,±2,±3}等。
又例如,还可以将正交扩展序列矩阵S orth中的元素映射在现有技术中的星座图中。然后,对于每个元素,确定距离该元素最近的星座点,并把该元素量化为该星座点所表示的数值。比如,星座点所表示的数值的实部和虚部可以为{±1}、{±1,±3}、{±1,±3,±5,±7}等。
可替换地,还可以对现有技术中的星座图进行修正。例如,将现有技术中的星座图扩大为包括原点{0},然后将正交扩展序列矩阵S orth中的元素映射在包括原点{0}的修正星座图中。然后,对于每个元素,确定距离该元素最近的星座点或原点,并把该元素量化为该星座点或原点所表示的数值。
在该示例中,在将正交扩展序列矩阵S orth映射在复平面坐标系或星座图之前,可以先将正交扩展序列矩阵S orth中的元素同步扩大,以进一步提高量化精度。
下面给出将正交扩展序列矩阵S orth中的元素映射到包括原点{0}的修正星座图9-QAM中进行量化的示例。例如,在步骤S101中获得正交扩展序列矩阵S orth为:
Figure PCTCN2018105028-appb-000091
可以将正交扩展序列矩阵S orth中的元素映射在修正星座图9-QAM中进行量化,然后得到量化扩展序列矩阵S quan
Figure PCTCN2018105028-appb-000092
在该示例中,在获得量化扩展序列矩阵S quan后,还可以对量化扩展序列矩阵S quan进行功率归一化,保证每列的功率为1。例如,可以确定一个与量化扩展序列矩阵S quan的第二维度(即列数)相同的归一化矩阵,然后将该归一化矩阵和量化扩展序列矩阵S quan相乘,以获得最终的扩展序列矩阵S final。因此,可以根据最终的扩展序列矩阵S final确定扩展序列。
根据本实施例的另一示例,扩展序列矩阵可以是根据多个用户终端的量化性能参数生成的,其中,多个用户终端的量化性能参数是根据对多个用户终端的性能参数进行量化生成的。例如,假设性能参数为用户终端的平均接收功率,可以先对用户终端的平均接收功率进行量化,然后再根据量化后的平均接收功率生成扩展序列矩阵。
具体地,假设性能参数为用户终端的平均接收功率,可以先根据用户终端的平均接收功率生成用户终端的以dB为单位的信噪比(Signal to Noise Ratio,SNR),然后根据预定规则以预定量化步长对用户终端的SNR进行量化得到量化后的SNR。然后,根据量化后的SNR生成用户终端的量化后的以瓦为单位的平均接收功率。最后,根据用户终端的量化后的平均接收功率生成扩展序列矩阵。
比如,根据6个用户终端的平均接收功率生成6个用户终端的信噪比分别为{-2.3,-1,-0.5,3.6,6.4,7.5}(单位为dB)。然后,根据向上取整的规则以量化步长为5dB对该6个用户终端的SNR进行量化,生成量化后的SNR分别为{0,0,0,5,10,10}。然后,根据量化后的SNR{0,0,0,5,10,10}生成量化后的平均接收 功率。最后,根据6个用户终端的量化后的平均接收功率生成扩展序列矩阵。
上文已经介绍完步骤S101,在步骤S101后,还可以执行步骤S102。在步骤S102中,使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。
在本实施例中,使用扩展序列对初始符号进行扩展时可以生成多个扩展符号,并且多个扩展符号的数目和扩展序列的扩展因子是相同的。例如,扩展因子N=4时,使用扩展序列对初始符号进行扩展时可以生成4个扩展符号。
根据本实施例的一个示例,假设性能参数为用户终端的SINR,可以使用上面所描述的功率矩阵确定发送功率,然后在步骤S102后使用所确定的发送功率发送扩展符号。
根据本实施例的另一示例,在步骤S102中使用扩展序列对初始符号进行扩展以生成扩展符号后,还可以确定实测发送功率,其中,实测发送功率是根据对一用户终端的实际测量生成的。然后,使用所确定的实测发送功率发送扩展符号,以生成实测性能参数。然后,根据实测性能参数调整用于生成扩展序列矩阵的性能参数。
例如,假设性能参数为用户终端的SINR,用户终端可以使用扩展序列矩阵中的扩展序列对初始符号进行扩展以生成扩展符号,并且以实测功率矩阵发送多个用户终端的扩展符号,以生成该用户终端的实测SINR。然后,比较实测SINR和用于生成扩展序列矩阵的SINR。当一用户终端的实测SINR小于用于生成扩展序列矩阵的SINR时,可以调整该用户终端的用于生成扩展序列矩阵的SINR,比如,增大用于生成扩展序列矩阵的SINR。
然而本发明并不限于此。当一用户终端的实测SINR小于用于生成扩展序列矩阵的SINR时,可以查找实测SINR不小于用于生成扩展序列矩阵的SINR的一个或多个用户终端,然后减小该一个或多个用户终端的用于生成扩展序列矩阵的SINR。
此外,在调整用于生成扩展序列矩阵的SINR之后,可以将调整后的SINR用于下一次生成扩展序列矩阵。
根据本实施例提供的用于NOMA***的生成扩展符号的方法,针对多个具有不同的平均接收功率的用户终端,在***容量参数在满足一定约束条件下取得最优值时生成扩展序列,以及根据多个用户终端的SINR,在***功率参数在满足一定约束条件下取得最优值时生成扩展序列,从而最小化了用户终端之间的干扰。
以下,参照图2描述根据本发明一个实施例的执行图1所示的方法100装置。图2示出了执行图1所示的方法100的装置200的结构示意图。在图2中所示的生成扩展符号的装置200可以是例如基站、用户终端等的通信设备。例如,在图2中所示的生成扩展符号的装置200可以是NOMA***中的通信设备。
如图2所示,装置200包括处理单元201,被配置为根据扩展序列矩阵确定用于装置的扩展序列,其中,扩展序列矩阵是根据多个用户终端的性能参数生成的。装置200还包括生成单元202,被配置为使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。除了这两个单元以外,装置200还可以包括其他部件,然而,由于这些部件与本发明实施例的内容无关,因此在这里省略其图示和描述。此外,由于根据本发明实施例的装置200执行的下述操作的具体细节与在上文中参照等式1-20描述的细节相同,因此在这里为了避免重复而省略对相同细节的重复描述。
本实施例中,处理单元201根据扩展序列矩阵确定用于装置200的扩展序列。而且,本实施例中,性能参数可以包括功率参数。
例如,功率参数可以指示装置200的发送功率或接收功率。可替换地,功率参数可以是装置200的信干噪比(Signal to Interference plus Noise Ratio,SINR)。在本实施例中,对于多个用户终端,性能参数为发送功率或接收功率时,性能参数可以至少部分不同。可替换地,性能参数为信干噪比时,性能参数可以至少部分不同,也可以相同。
根据本实施例的一个示例,装置200可以根据多个用户终端的性能参数生成扩展序列矩阵。例如,当装置200为基站时,可以根据与该基站进行通信的多个用户终端的性能参数生成扩展序列矩阵。
根据本实施例的另一示例,装置200可以通过所接收的信令来 确定扩展序列矩阵。例如,当装置200为用户终端时,可以根据从基站接收到的信令来确定扩展序列矩阵。
本实施例中,用于确定扩展序列的扩展序列矩阵也可以称为扩展序列的码本。可替换地,用于确定扩展序列的扩展序列矩阵还可以称为扩展序列的码书或者Codebook或者扩展序列池或Sequence pool。相应地,根据扩展序列矩阵确定的扩展序列也可以称为码字或Codeword或Spreading sequence。
此外,根据本实施例的另一示例,扩展序列矩阵是根据关于多个用户终端中的第一部分用户终端的第一扩展序列矩阵和关于多个用户终端中的第二部分用户终端的第二扩展序列矩阵构成的。可以根据性能参数确定第一部分用户终端和第二部分用户终端,根据第一部分用户终端的性能参数生成第一扩展序列矩阵,并且根据第二部分用户终端的性能参数生成第二扩展序列矩阵。
在该示例中,多个用户终端中的部分用户终端可以为第一部分用户终端,剩余部分用户终端可以为第二部分用户终端。可替换地,多个用户终端中的每个用户终端可以均为第二部分用户终端。
具体地,对于多个用户终端中的一用户终端,可以根据该用户终端的性能参数和多个用户终端的性能参数,确定该用户终端属于第一部分用户终端还是第二部分用户终端。
例如,对于多个用户终端中的一用户终端,可以根据该用户终端的性能参数生成第一数值,并根据多个用户终端的性能参数生成第二数值。然后,比较第一数值和第二数值的大小,当第一数值大于第二数值时,将该用户终端确定为第一部分用户终端;当第一数值小于等于第二数值时,将该用户终端确定为第二部分用户终端。
根据本实施例的一个示例,第一数值可以等于该用户终端的性能参数,也可以是对该用户终端的性能参数进行数学运算得到的数值。第二数值可以是对在其他用户终端中且比该用户终端的性能参数小的用户终端的性能参数求和、扩展序列的扩展因子、以及在多个用户终端(即所有的用户终端)中比该用户终端的性能参数大或者与其相等的用户终端的数目进行数学运算得到的数值。
比如,假设性能参数为用户终端的平均接收功率,多个用户终端的数目为K,该K个用户终端的平均接收功率分别为{P 1,……P i,……P K},扩展因子为N,K为正整数,i为正整数且1≤i≤K。对于第i个用户终端,根据第i个用户终端的平均接收功率P i生成第一数值P i,并根据所有用户终端的平均接收功率{P 1,……P i,……P K}生成第二数值:
Figure PCTCN2018105028-appb-000093
在该第二数值中,
Figure PCTCN2018105028-appb-000094
的物理含义是指对所有用户终端的平均接收功率{P 1,……P i,……P K}中小于P i的平均接收功率进行求和,
Figure PCTCN2018105028-appb-000095
的物理含义是指对扩展因子N与所有个用户终端的平均接收功率{P 1,……P i,……P K}中大于或等于P i的用户终端的数目求差。然后,比较P i
Figure PCTCN2018105028-appb-000096
的大小,当
Figure PCTCN2018105028-appb-000097
时,将第i个用户终端确定为第一部分用户终端;当
Figure PCTCN2018105028-appb-000098
时,将第i个用户终端确定为第二部分用户终端。
又比如,假设性能参数为用户终端的SINR,多个用户终端的数目为K,该K个用户终端的SINR分别为{β 1,……β i,……β K},扩展因子为N,K为正整数,i为正整数且1≤i≤K。对于第i个用户终端,根据第i个用户终端的SINRβ i生成第一数值
Figure PCTCN2018105028-appb-000099
并根据所有用户终端的SINR{β 1,……β i,……β K}生成第二数值:
Figure PCTCN2018105028-appb-000100
在该第二数值中,
Figure PCTCN2018105028-appb-000101
的物理含义是指对所有用户终端的第一数值中小于e i的第一数值进行求和,
Figure PCTCN2018105028-appb-000102
的物理含义是 指对扩展因子N与所有用户终端的第一数值大于或等于e i的用户终端的数目求差。然后,比较e i
Figure PCTCN2018105028-appb-000103
的大小,当
Figure PCTCN2018105028-appb-000104
Figure PCTCN2018105028-appb-000105
时,将第i个用户终端确定为第一部分用户终端;当
Figure PCTCN2018105028-appb-000106
Figure PCTCN2018105028-appb-000107
时,将第i个用户终端确定为第二部分用户终端。
在该示例中,K个用户终端的SINR可以满足β 1≥…≥β K的条件。当然,K个用户终端的SINR也可以满足其他的限定条件,本发明对此不作限定。
此外,第一部分用户终端和第二部分用户终端也可以具有更具体的名称。例如,假设性能参数为用户终端的平均接收功率,则可以将第一部分用户终端称为oversized用户终端,而将第二部分用户终端称为non-oversized用户终端。又例如,假设性能参数为用户终端的SINR时,则可以将第一部分用户终端称为overloading用户终端,而将第二部分用户终端称为non-overloading用户终端。
然后,可以根据第一部分用户终端的性能参数生成第一扩展序列矩阵。例如,假设确定了m个用户终端为第一部分用户终端,(K-m)个用户终端为第二部分用户终端,m为正整数且1≤m≤(N-1),然后,可以根据该m个用户终端的性能参数生成第一扩展序列矩阵。
具体地,比如,假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6,确定了第1个和第2个用户终端为第一部分用户终端(即m=2),第3个、第4个、第5个和第6个用户终端为第二部分用户终端(即(K-m)=4)。然后,可以根据第1个和第2个用户终端的性能参数生成2×2的单位矩阵I 2
Figure PCTCN2018105028-appb-000108
即第一扩展序列矩阵为2×2的单位矩阵I 2。该第一扩展序列矩阵的第1列与第1个用户终端相对应,第2列与第2个用户终端相对应。
此外,假设性能参数为用户终端的SINR,还可以根据功率矩阵确定发送功率,其中,功率矩阵是根据第一功率矩阵和第二功率矩阵生成的,第一功率矩阵是根据第一部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的,第二功率矩阵是根据第二部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的,然后后续可以使用所确定的发送功率发送扩展符号。第二功率矩阵在后续进行详细描述,在此先描述第一功率矩阵。
比如,在上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以根据第1个和第2个用户终端的SINR以及包括多个用户终端的通信***的噪声(例如,高斯白噪声)参数按照上述等式(1)确定第1个和第2个用户终端的接收功率分别为P 1和P 2。然后,可以根据第1个和第2个用户终端的接收功率P 1和P 2生成第一功率矩阵diag{σ 2β i} 1≤i≤m
然后,可以根据第二部分用户终端的性能参数生成第二扩展序列矩阵。例如,假设确定了m个用户终端为第一部分用户终端,(K-m)个用户终端为第二部分用户终端,然后,可以根据该(K-m)个用户终端的性能参数生成第二扩展序列矩阵。
具体地,假设性能参数为用户终端的平均接收功率,可以根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。可替换地,假设性能参数为用户终端的SINR,可以根据第二部分用户终端的SINR以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
下面描述假设性能参数为用户终端的平均接收功率,如何根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。
可以先根据第二部分用户终端的平均接收功率和包括多个用户终端的通信***的***容量参数构建矩阵Q。在此给出构建矩阵Q的一个示例。
在该示例中,***容量参数可以为信道容量C。信道容量C可以 通过上述等式(2)获得。
经过公式推导,上述等式(2)可以变形为上述等式(3)。因此,当信道容量C在满足如上述等式(4)所示的约束条件取得最优值时,λ n(S)和C(S)的取值如上述等式(5A)和(5B)所示。
然后,根据λ*(S)确定与第二部分用户终端有关的特征值矩阵Λ,Λ为如上述等式(6)所示的对角阵。在特征值矩阵Λ中,对角线上取值为0的元素的数目等于(K-N)。
然后可以根据特征值矩阵Λ和对角线元素{P j|(m+1)≤j≤K}构建矩阵Q。此处,所构建的矩阵Q并不是唯一的。
在构建完矩阵Q后,对所构建的矩阵Q进行分解获得特征向量矩阵U,如上述等式(7)所示。在上述等式(7)中,U H为特征向量矩阵U的共轭转置矩阵。
在获得特征向量矩阵U后,从特征向量矩阵U中选择所对应的特征值不为零的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000109
从特征值矩阵Λ中选择非零特征值构成对角矩阵作为修正特征值矩阵
Figure PCTCN2018105028-appb-000110
然后,确定第二部分用户终端的功率矩阵
Figure PCTCN2018105028-appb-000111
该功率矩阵
Figure PCTCN2018105028-appb-000112
为对角阵diag(P j|(m+1)≤j≤K)。然后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000113
修正特征值矩阵
Figure PCTCN2018105028-appb-000114
功率矩阵
Figure PCTCN2018105028-appb-000115
按照上述等式(8)生成第二扩展序列矩阵S non
至此已经描述了假设性能参数为用户终端的平均接收功率,根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵的具体过程。为了更清楚地描述上述具体过程所涉及的各种矩阵,在此以上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例对上述具体过程所涉及的各种矩阵进行说明。
具体地,在“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以先根据第3个、第4个、第5个和第6个用户终端的平均接收功率和***容量参数构建矩阵Q。
在该示例中,信道容量C如上述等式(2)所示,其中,I为4×4的单位矩阵,S为4×6的矩阵,D为6个用户终端的平均接收功率生成6×6的对角阵diag{P 1,P 2,P 3,P 4,P 5,P 6}。
经过公式推导,当信道容量C在满足如上述等式(4)所示的约束条件取得最优值时,λ n(S)的取值为:
Figure PCTCN2018105028-appb-000116
Figure PCTCN2018105028-appb-000117
然后,根据λ*(S)确定与第二部分用户终端有关的特征值矩阵Λ,该特征值矩阵Λ为4×4的对角阵
Figure PCTCN2018105028-appb-000118
Figure PCTCN2018105028-appb-000119
然后,根据特征值矩阵Λ和对角线元素{P 3,P 4,P 5,P 6}构建矩阵Q,该矩阵Q为4×4的矩阵。在构建完矩阵Q后,对矩阵Q进行分解获得特征向量矩阵U,该特征向量矩阵U为4×4的矩阵。
然后,从特征向量矩阵U中选择第1列和第2列的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000120
该修正特征向量矩阵
Figure PCTCN2018105028-appb-000121
为4×2的矩阵。将特征值矩阵Λ的非零特征值作为对角元素生成修正特征值矩阵
Figure PCTCN2018105028-appb-000122
Figure PCTCN2018105028-appb-000123
然后,确定第二部分用户终端的功率矩阵
Figure PCTCN2018105028-appb-000124
Figure PCTCN2018105028-appb-000125
该功率矩阵
Figure PCTCN2018105028-appb-000126
为4×4的对角阵。
最后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000127
修正特征值矩阵
Figure PCTCN2018105028-appb-000128
功率矩阵
Figure PCTCN2018105028-appb-000129
按照上述等式(8)生成第二扩展序列矩阵S non,该S non为2×4的矩阵。该S non的第1列对应于第3个用户终端,第2列对应于第4个用户终端,第3列对应于第5个用户终端,第4列对应于第6个用户终端。
上面已经描述了假设性能参数为用户终端的平均接收功率,如何根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。下面描述假设性能参 数为用户终端的SINR,如何根据第二部分用户终端的SINR以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
可以先根据第二部分用户终端的SINR和包括多个用户终端的通信***的***功率参数构建矩阵Q。在此给出构建矩阵Q的一个示例。
在该示例中,每个用户终端的SINR可以表示为上述等式(9),对其进行公式推导,可以表示为上述等式(10)。然后,按照上述等式(11)定义矩阵Q。
在该示例中,***功率参数可以为所有用户终端的平均接收功率的求和,即
Figure PCTCN2018105028-appb-000130
当***功率参数在满足如上述等式(12)所示的约束条件取得最小值时,矩阵Q的特征值λ n(Q)的取值如上述等式(13)所示。
然后,根据λ*(Q)确定与第二部分用户有关的特征值矩阵V,V为上述等式(14)所示的对角阵。
在特征值矩阵V中,对角线上取值为0的元素的数目等于(K-N)。
然后可以根据特征值矩阵V和对角线元素
Figure PCTCN2018105028-appb-000131
构建矩阵Q non。此处,所构建的矩阵Q non并不是唯一的。
在构建完矩阵Q non后,对所构建的矩阵Q non进行分解获得特征向量矩阵U,如上述等式(15)所示。
然后,确定对角阵Λ,如上述等式(16)所示。然后,根据特征向量矩阵U和对角阵Λ按照上述等式(17)生成第二功率矩阵D non。然后,从特征向量矩阵U中选择所对应的特征值不为零的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000132
从特征值矩阵Λ中选择非零特征值构成对角矩阵作为修正特征值矩阵
Figure PCTCN2018105028-appb-000133
最后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000134
修正特征值矩阵
Figure PCTCN2018105028-appb-000135
和第二功率矩阵D non按照上述等式(18)生成第二扩展序列矩阵S non
至此已经描述了假设性能参数为用户终端的SINR,根据第二部分用户终端的平均接收功率以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵的具体过程。为了更清楚地描述上 述具体过程所涉及的各种矩阵,在此以上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例对上述具体过程所涉及的各种矩阵进行说明。
具体地,在“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以先根据第3个、第4个、第5个和第6个用户终端的SINR和***功率参数构建矩阵Q。
在该示例中,所定义的矩阵Q如上述等式(11)所示,其中,I为4×4的单位矩阵,S为4×6的矩阵,D为6个用户终端的平均接收功率生成6×6的对角阵diag{P 1,P 2,P 3,P 4,P 5,P 6}。
经过推导,当***功率参数在满足如上述等式(12)所示的约束条件取得最小值时,λ n(Q)的取值为:
Figure PCTCN2018105028-appb-000136
Figure PCTCN2018105028-appb-000137
然后,根据λ*(Q)确定与第二部分用户终端有关的特征值矩阵V,该特征值矩阵V为4×4的对角阵
Figure PCTCN2018105028-appb-000138
Figure PCTCN2018105028-appb-000139
然后,根据特征值矩阵V和对角线元素
Figure PCTCN2018105028-appb-000140
构建矩阵Q non,该矩阵Q non是4×4的矩阵。在构建完矩阵Q non后,对矩阵Q non进行分解获得特征向量矩阵U,该特征向量矩阵U是4×4的矩阵。
然后,确定对角阵
Figure PCTCN2018105028-appb-000141
Figure PCTCN2018105028-appb-000142
该对角阵Λ是4×4的对角阵。
然后,根据特征向量矩阵U和对角阵Λ按照上述等式(17)生成第二功率矩阵D non,该D non是4×4的对角矩阵。
然后,从特征向量矩阵U中选择第1列和第2列的列向量生成修正特征向量矩阵
Figure PCTCN2018105028-appb-000143
该修正特征向量矩阵
Figure PCTCN2018105028-appb-000144
为4×2的矩阵。将特征值矩阵A的非零特征值作为对角元素生成修正特征值矩阵
Figure PCTCN2018105028-appb-000145
Figure PCTCN2018105028-appb-000146
然后,根据修正特征向量矩阵
Figure PCTCN2018105028-appb-000147
修正特征值矩阵
Figure PCTCN2018105028-appb-000148
和第二功率矩阵D non按照上述等式(18)生成第二扩展序列矩阵S non,该S non是2×4的矩阵。该S non的第1列对应于第3个用户终端,第2列对应于第4个用户终端,第3列对应于第5个用户终端,第4列对应于第6个用户终端。
另外,在根据性能参数确定第一部分用户终端和第二部分用户终端后,可以同时根据第一部分用户终端的性能参数生成第一扩展序列矩阵以及根据第二部分用户终端的性能参数生成第二扩展序列矩阵。
然后,可以根据第一扩展序列矩阵和第二扩展序列矩阵生成扩展序列矩阵。例如,假设确定了m个用户终端为第一部分用户终端,(K-m)个用户终端为第二部分用户终端,m为正整数且1≤m≤(N-1),然后,可以根据该m个用户终端的性能参数生成第一扩展序列矩阵以及根据该(K-m)个用户终端的性能参数生成第二扩展序列矩阵。然后,可以根据第一扩展序列矩阵和第二扩展序列矩阵生成扩展序列矩阵。
具体地,比如,在上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以根据第1个和第2个用户终端的性能参数生成第一扩展序列矩阵I 2,可以根据第3个、第4个、第5个和第6个用户终端的性能参数生成第二扩展序列矩阵S non。然后,可以根据第一扩展序列矩阵I 2和第二扩展序列矩阵S non生成扩展序列矩阵S,如上述等式(19)所示。则该扩展序列矩阵S为4×6的矩阵,并且第 1列对应于第1个用户终端,第2列对应于第2个用户终端,第3列对应于第3个用户终端,第4列对应于第4个用户终端,第5列对应于第5个用户终端,第6列对应于第6个用户终端。
上面描述了多个用户终端中的第1个和第2个用户终端为第一部分用户终端,第3个、第4个、第5个和第6个用户终端为第二部分用户终端时确定扩展序列矩阵S的示例。可替换地,多个用户终端中的每个用户终端均为第二部分用户终端时,即第1个、第2个、第3个、第4个、第5个和第6个用户终端均为第二部分用户终端时,根据S non就可以确定扩展序列矩阵S。
此外,上面已经描述过,假设性能参数为用户终端的SINR,处理单元201还可以根据功率矩阵确定发送功率,其中,功率矩阵是根据第一功率矩阵和第二功率矩阵生成的,第一功率矩阵是根据第一部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的,第二功率矩阵是根据第二部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成的。
比如,在上面所描述的“假设性能参数为用户终端的平均接收功率或者用户终端的SINR、扩展因子N=4、多个用户终端的数目K=6”的示例中,可以根据第1个和第2个用户终端的SINR以及高斯白噪声参数生成第一功率矩阵diag{σ 2β i} 1≤i≤m,可以根据第3个、第4个、第5个和第6个用户终端的SINR以及高斯白噪声参数生成第二功率矩阵D non。然后,可以根据第一功率矩阵diag{σ 2β i} 1≤i≤m和第二功率矩阵D non生成功率矩阵P,如上述等式(20)所示。则根据功率矩阵P的第1个对角元素确定第1个用户终端的发送功率,根据功率矩阵P的第2个对角元素确定第2个用户终端的发送功率,根据功率矩阵P的第3个对角元素确定第3个用户终端的发送功率,根据功率矩阵P的第4个对角元素确定第4个用户终端的发送功率,根据功率矩阵P的第5个对角元素确定第5个用户终端的发送功率,根据功率矩阵P的第6个对角元素确定第6个用户终端的发送功率。
上面描述了多个用户终端中的第1个和第2个用户终端为第一部分用户终端,第3个、第4个、第5个和第6个用户终端为第二部 分用户终端时确定功率矩阵P的示例。可替换地,多个用户终端中的每个用户终端均为第二部分用户终端时,即第1个、第2个、第3个、第4个、第5个和第6个用户终端均为第二部分用户终端时,根据D non就可以确定功率矩阵P。
此外,当装置200为基站时,基站可以执行上面所描述的过程。例如,基站可以根据性能参数确定第一部分用户终端和第二部分用户终端,根据第一部分用户终端的性能参数生成第一扩展序列矩阵,根据第二部分用户终端的性能参数生成第二扩展序列矩阵,以及根据第一扩展序列矩阵和第二扩展序列矩阵生成扩展序列矩阵。
又例如,对于多个用户终端中的一用户终端,基站可以根据该用户终端的性能参数和多个用户终端的性能参数,确定该用户终端属于第一部分用户终端还是第二部分用户终端。
再例如,基站可以根据第二部分用户终端的性能参数以及包括多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。可替换地,基站还可以根据第二部分用户终端的性能参数以及包括多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
再例如,基站可以根据第一功率矩阵和第二功率矩阵生成功率矩阵,根据第一部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成第一功率矩阵,以及根据第二部分用户终端的性能参数和包括多个用户终端的通信***的噪声参数生成第二功率矩阵。
此外,根据本实施例的另一示例,当装置200为用户终端时,在NOMA***的免授权的上行链路中,处理单元201可以从扩展序列矩阵中随机地选择一列作为扩展序列;而在NOMA***的需授权的上行链路中,处理单元201可以从基站接收指示信息,并根据指示信息从扩展序列矩阵中选择一列作为扩展序列。
另外,根据本实施例的另一示例,处理单元201确定扩展序列时所根据的扩展序列矩阵可以是单位正交矩阵与扩展序列矩阵相乘后生成的矩阵。具体地,在生成扩展序列矩阵S后,可以确定一个与扩展序列矩阵S的第一维度(即行数)相同的单位正交矩阵,然后将该单位正交矩阵和扩展序列矩阵S相乘,以获得正交扩展序列矩阵S orth
在该示例中,在获得正交扩展序列矩阵S orth后,处理单元201还可以对正交扩展序列矩阵S orth进行量化。例如,可以将正交扩展序列矩阵S orth中的元素映射在复平面坐标系中。然后,对于每个元素,确定距离该元素最近的坐标,并把该元素量化为该坐标所表示的数值。比如,坐标所表示的数值的实部和虚部可以为{0,±1}、{0,±1,±2}、{0,±1,±2,±3}等。
又例如,处理单元201还可以将正交扩展序列矩阵S orth中的元素映射在现有技术中的星座图中。然后,对于每个元素,确定距离该元素最近的星座点,并把该元素量化为该星座点所表示的数值。比如,星座点所表示的数值的实部和虚部可以为{±1}、{±1,±3}、{±1,±3,±5,±7}等。
可替换地,处理单元201还可以对现有技术中的星座图进行修正。例如,将现有技术中的星座图扩大为包括原点{0},然后将正交扩展序列矩阵S orth中的元素映射在包括原点{0}的修正星座图中。然后,对于每个元素,确定距离该元素最近的星座点或原点,并把该元素量化为该星座点或原点所表示的数值。
在该示例中,在将正交扩展序列矩阵S orth映射在复平面坐标系或星座图之前,处理单元201可以先将正交扩展序列矩阵S orth中的元素同步扩大,以进一步提高量化精度。
下面给出处理单元201将正交扩展序列矩阵S orth中的元素映射到包括原点{0}的修正星座图9-QAM中进行量化的示例。例如,处理单元201获得正交扩展序列矩阵S orth为:
Figure PCTCN2018105028-appb-000149
可以将正交扩展序列矩阵S orth中的元素映射在修正星座图9-QAM中进行量化,然后得到量化扩展序列矩阵S quan
Figure PCTCN2018105028-appb-000150
在该示例中,在获得量化扩展序列矩阵S quan后,处理单元201还可以对量化扩展序列矩阵S quan进行功率归一化,保证每列的功率为1。例如,处理单元201可以确定一个与量化扩展序列矩阵S quan的第二维度(即列数)相同的归一化矩阵,然后将该归一化矩阵和量化扩展序列矩阵S quan相乘,以获得最终的扩展序列矩阵S final。因此,处理单元201可以根据最终的扩展序列矩阵S final确定扩展序列。
根据本实施例的另一示例,扩展序列矩阵可以是根据多个用户终端的量化性能参数生成的,其中,多个用户终端的量化性能参数是根据对多个用户终端的性能参数进行量化生成的。例如,假设性能参数为用户终端的平均接收功率,可以先对用户终端的平均接收功率进行量化,然后再根据量化后的平均接收功率生成扩展序列矩阵。
具体地,假设性能参数为用户终端的平均接收功率,可以先根据用户终端的平均接收功率生成用户终端的以dB为单位的信噪比(Signal to Noise Ratio,SNR),然后根据预定规则以预定量化步长对用户终端的SNR进行量化得到量化后的SNR。然后,根据量化后的SNR生成用户终端的量化后的以瓦为单位的平均接收功率。最后,根据用户终端的量化后的平均接收功率生成扩展序列矩阵。
比如,根据6个用户终端的平均接收功率生成6个用户终端的信噪比分别为{-2.3,-1,-0.5,3.6,6.4,7.5}(单位为dB)。然后,根据向上取整的规则以量化步长为5dB对该6个用户终端的SNR进行量化,生成量化后的SNR分别为{0,0,0,5,10,10}。然后,根据量化后的SNR{0,0,0,5,10,10}生成量化后的平均接收功率。最后,根据6个用户终端的量化后的平均接收功率生成扩展序列矩阵。
在本实施例中,使用扩展序列对初始符号进行扩展时可以生成多个扩展符号,并且多个扩展符号的数目和扩展序列的扩展因子是相同的。例如,扩展因子N=4时,使用扩展序列对初始符号进行扩展时可以生成4个扩展符号。
根据本实施例的一个示例,假设性能参数为用户终端的SINR,处理单元201可以使用上面所描述的功率矩阵确定发送功率,然后使 用所确定的发送功率发送扩展符号。
根据本实施例的另一示例,生成单元202使用扩展序列对初始符号进行扩展以生成扩展符号后,还可以确定实测发送功率,其中,实测发送功率是根据对一用户终端的实际测量生成的。然后,使用所确定的实测发送功率发送扩展符号,以生成实测性能参数。然后,根据实测性能参数调整用于生成扩展序列矩阵的性能参数。
例如,假设性能参数为用户终端的SINR,生成单元202可以使用扩展序列矩阵中的扩展序列对初始符号进行扩展以生成扩展符号,并且以实测功率矩阵发送多个用户终端的扩展符号,以生成该用户终端的实测SINR。然后,比较实测SINR和用于生成扩展序列矩阵的SINR。当一用户终端的实测SINR小于用于生成扩展序列矩阵的SINR时,可以调整该用户终端的用于生成扩展序列矩阵的SINR,比如,增大用于生成扩展序列矩阵的SINR。
然而本发明并不限于此。当一用户终端的实测SINR小于用于生成扩展序列矩阵的SINR时,可以查找实测SINR不小于用于生成扩展序列矩阵的SINR的一个或多个用户终端,然后减小该一个或多个用户终端的用于生成扩展序列矩阵的SINR。
此外,在调整用于生成扩展序列矩阵的SINR之后,可以将调整后的SINR用于下一次生成扩展序列矩阵。
根据本实施例提供的用于NOMA***的生成扩展符号的装置,针对多个具有不同的平均接收功率的用户终端,在***容量参数在满足一定约束条件下取得最优值时生成扩展序列,以及根据多个用户终端的SINR,在***功率参数在满足一定约束条件下取得最优值时生成扩展序列,从而最小化了用户终端之间的干扰。
另外,上述实施例的说明中使用的框图示出了以单元为单位的块。这些结构单元可以通过硬件和/或软件的任意组合来实现。此外,各结构单元的实现手段并不特别限定。即,各结构单元可以通过在物理上和/或逻辑上相结合的一个装置来实现,也可以将在物理上和/或逻辑上相分离的两个以上装置直接地和/或间接地(例如通过有线和/或无线)连接从而通过上述多个装置来实现。
例如,本发明实施例中的用户设备可以作为执行本发明的用于波束管理的参考信号发送方法的处理的计算机来发挥功能。图3示出了根据本发明一个实施例,所涉及的用户设备300的硬件结构的示意图。上述的用户设备300可以作为在物理上包括处理器301、内存302、存储器303、通信装置304、输入装置305、输出装置306、总线307等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户设备300的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器301仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器301可以通过一个以上的芯片来安装。
用户设备300中的各功能例如通过如下方式实现:通过将规定的软件(程序)读入到处理器301、内存302等硬件上,从而使处理器301进行运算,对由通信装置304进行的通信进行控制,并对内存302和存储器303中的数据的读出和/或写入进行控制。
处理器301例如使操作***进行工作从而对计算机整体进行控制。处理器301可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。例如,上述的基带信号处理单元、呼叫处理单元等可以通过处理器301实现。
此外,处理器301将程序(程序代码)、软件模块、数据等从存储器303和/或通信装置304读出到内存302,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。例如,用户设备300的控制单元可以通过保存在内存302中并通过处理器301来工作的控制程序来实现,对于其它功能块,也可以同样地来实现。
内存302是计算机可读取记录介质,例如可以由只读存储器(ROM,Read Only Memory)、可编程只读存储器(EPROM,Erasable  Programmable ROM)、电可编程只读存储器(EEPROM,Electrically EPROM)、随机存取存储器(RAM,Random Access Memory)、其它适当的存储介质中的至少一个来构成。内存302也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存302可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器303是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(Compact Disc ROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器303也可以称为辅助存储装置。
通信装置304是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置304为了实现例如频分双工(FDD,Frequency Division Duplex)和/或时分双工(TDD,Time Division Duplex),可以包括高频开关、双工器、滤波器、频率合成器等。例如,上述的发送接收天线、放大单元、发送接收单元、传输路径接口等可以通过通信装置304来实现。
输入装置305是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置306是实施向外部的输出的输出设备(例如,显示器、扬声器、发光二极管(LED,Light Emitting Diode)灯等)。另外,输入装置305和输出装置306也可以为一体的结构(例如触控面板)。
此外,处理器301、内存302等各装置通过用于对信息进行通信的总线307连接。总线307可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,用户设备300可以包括微处理器、数字信号处理器(DSP,Digital Signal Processor)、专用集成电路(ASIC,Application Specific  Integrated Circuit)、可编程逻辑器件(PLD,Programmable Logic Device)、现场可编程门阵列(FPGA,Field Programmable Gate Array)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器301可以通过这些硬件中的至少一个来安装。
关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(Reference Signal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,Component Carrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号、单载波频分多址(SC-FDMA,Single Carrier Frequency Division Multiple Access)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,Transmission Time Interval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE***中,无线基站对各用户终端进行以TTI为单位分配无线资源 (在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,Resource Block)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,Physical RB)、子载波组(SCG,Sub-Carrier Group)、资源单元组(REG,Resource Element Group)、PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,Resource Element)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数 目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(PUCCH、PDCCH等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制信息(DCI,Downlink Control Information)、上行链路控制信息(UCI,Uplink Control Information))、上层信令(例如,无线资源控制(RRC,Radio Resource Control)信令、广播信息(主信息块(MIB,Master Information Block)、***信息块(SIB,System Information Block)等)、媒体存取控制(MAC,Medium Access Control)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信 令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,Digital Subscriber Line)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“***”和“网络”这样的用语可以互换使用。
在本说明书中,“基站(BS,Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。基站有时也以固定台(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小小区等用语来称呼。
基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当基站容纳多个小区时,基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过基站子***(例如,室内用小型基站(射频拉远头(RRH,Remote Radio Head)))来提供通信服务。“小 区”或“扇区”这样的用语是指在该覆盖中进行通信服务的基站和/或基站子***的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE,User Equipment)”以及“终端”这样的用语可以互换使用。移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的无线基站所具有的功能当作用户终端所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用无线基站来替换。此时,可以将上述的用户终端所具有的功能当作无线基站所具有的功能。
在本说明书中,设为通过基站进行的特定动作根据情况有时也通过其上级节点(upper node)来进行。显然,在具有基站的由一个或多个网络节点(network nodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过基站、除基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,Mobility Management Entity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进 (LTE,Long Term Evolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信***(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信***(4G,4th generation mobile communication system)、第5代移动通信***(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信***(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的***和/或基于它们而扩展的下一代***。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(looking up)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确 定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括”、“包含”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (18)

  1. 一种用于生成扩展符号的方法,所述方法包括:
    根据扩展序列矩阵确定扩展序列,其中,所述扩展序列矩阵是根据多个用户终端的性能参数生成的;以及
    使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。
  2. 如权利要求1所述的方法,其中:
    所述扩展序列矩阵是根据关于所述多个用户终端中的第一部分用户终端的第一扩展序列矩阵和关于所述多个用户终端中的第二部分用户终端的第二扩展序列矩阵构成的,其中
    根据所述性能参数确定第一部分用户终端和第二部分用户终端;
    根据所述第一部分用户终端的性能参数生成第一扩展序列矩阵;
    根据所述第二部分用户终端的性能参数生成第二扩展序列矩阵;以及
    根据所述第一扩展序列矩阵和所述第二扩展序列矩阵生成扩展序列矩阵。
  3. 如权利要求1或2所述的方法,其中:
    所述性能参数包括功率参数。
  4. 如权利要求1或2所述的方法,其中根据所述性能参数在所述多个用户终端中确定第一部分用户终端和第二部分用户终端包括:
    对于所述多个用户终端中的一用户终端,根据该用户终端的性能参数和所述多个用户终端的性能参数,确定该用户终端属于第一部分用户终端还是第二部分用户终端。
  5. 如权利要求4所述的方法,其中根据所述第二部分用户终端的性能参数生成第二扩展序列矩阵包括:
    根据第二部分用户终端的性能参数以及包括所述多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。
  6. 如权利要求4所述的方法,其中所述根据第二部分用户终端的性能参数生成第二扩展序列矩阵包括:
    根据第二部分用户终端的性能参数以及包括所述多个用户终端 的通信***的***功率参数生成第二扩展序列矩阵。
  7. 如权利要求4所述的方法,还包括:
    根据功率矩阵确定发送功率,其中,所述功率矩阵是根据第一功率矩阵和第二功率矩阵生成的,所述第一功率矩阵是根据所述第一部分用户终端的性能参数和包括所述多个用户终端的通信***的噪声参数生成的,所述第二功率矩阵是根据所述第二部分用户终端的性能参数和包括所述多个用户终端的通信***的噪声参数生成的;
    使用所确定的发送功率发送所述扩展符号。
  8. 如权利要求6所述的方法,还包括:
    确定实测发送功率,其中,所述实测发送功率是根据对一用户终端的实际测量生成的;
    使用所确定的实测发送功率发送所述扩展符号,以生成实测性能参数;
    根据所述实测性能参数调整用于生成所述扩展序列矩阵的性能参数。
  9. 如权利要求1或2所述的方法,其中:
    所述扩展序列矩阵是根据多个用户终端的量化性能参数生成的,其中,所述多个用户终端的量化性能参数是根据对所述多个用户终端的性能参数进行量化生成的。
  10. 一种用于生成扩展符号的装置,所述装置包括:
    处理单元,被配置为根据扩展序列矩阵确定用于所述装置的扩展序列,其中,所述扩展序列矩阵是根据多个用户终端的性能参数生成的;以及
    生成单元,被配置为使用所确定的扩展序列对初始符号进行扩展,以生成扩展符号。
  11. 如权利要求10所述的装置,其中:
    所述扩展序列矩阵是根据关于所述多个用户终端中的第一部分用户终端的第一扩展序列矩阵和关于所述多个用户终端中的第二部分用户终端的第二扩展序列矩阵构成的,其中
    根据所述性能参数确定第一部分用户终端和第二部分用户终端;
    根据所述第一部分用户终端的性能参数生成第一扩展序列矩阵;
    根据所述第二部分用户终端的性能参数生成第二扩展序列矩阵;以及
    根据所述第一扩展序列矩阵和所述第二扩展序列矩阵生成扩展序列矩阵。
  12. 如权利要求10所述的装置,其中:
    所述性能参数包括功率参数。
  13. 如权利要求10所述的装置,其中:
    对于所述多个用户终端中的一用户终端,根据该用户终端的性能参数和所述多个用户终端的性能参数,确定该用户终端属于第一部分用户终端还是第二部分用户终端。
  14. 如权利要求13所述的装置,其中:
    根据第二部分用户终端的性能参数以及包括所述多个用户终端的通信***的***容量参数生成第二扩展序列矩阵。
  15. 如权利要求13所述的装置,其中:
    根据第二部分用户终端的性能参数以及包括所述多个用户终端的通信***的***功率参数生成第二扩展序列矩阵。
  16. 如权利要求13所述的装置,其中所述处理单元还被配置为:
    根据功率矩阵确定发送功率,其中,所述功率矩阵是根据第一功率矩阵和第二功率矩阵生成的,所述第一功率矩阵是根据所述第一部分用户终端的性能参数和包括所述多个用户终端的通信***的噪声参数生成的,所述第二功率矩阵是根据所述第二部分用户终端的性能参数和包括所述多个用户终端的通信***的噪声参数生成的;
    使用所确定的发送功率发送所述扩展符号。
  17. 如权利要求15所述的装置,其中所述处理单元还被配置为:
    确定实测发送功率,其中,所述实测发送功率是根据对一用户终端的实际测量生成的;
    使用所确定的实测发送功率发送所述扩展符号,以生成实测性能参数;
    根据所述实测性能参数调整用于生成所述扩展序列矩阵的性能 参数。
  18. 如权利要求10或11所述的装置,其中:
    所述扩展序列矩阵是根据多个用户终端的量化性能参数生成的,其中,所述多个用户终端的量化性能参数是根据对所述多个用户终端的性能参数进行量化生成的。
PCT/CN2018/105028 2017-09-18 2018-09-11 一种用于生成扩展符号的方法及装置 WO2019052441A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/647,172 US11411789B2 (en) 2017-09-18 2018-09-11 Method and apparatus for generating spread symbols
CN201880059661.8A CN111279736B (zh) 2017-09-18 2018-09-11 一种用于生成扩展符号的方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710842765.3A CN109526057A (zh) 2017-09-18 2017-09-18 一种用于生成扩展符号的方法及装置
CN201710842765.3 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019052441A1 true WO2019052441A1 (zh) 2019-03-21

Family

ID=65723223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105028 WO2019052441A1 (zh) 2017-09-18 2018-09-11 一种用于生成扩展符号的方法及装置

Country Status (3)

Country Link
US (1) US11411789B2 (zh)
CN (2) CN109526057A (zh)
WO (1) WO2019052441A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047402A (zh) * 2006-03-28 2007-10-03 华为技术有限公司 扩展拉丁方族序列产生方法/装置和通信控制方法/***
CN101388683A (zh) * 2007-09-14 2009-03-18 中兴通讯股份有限公司 一种码分多址***中码道检测的方法
CN106941688A (zh) * 2017-03-28 2017-07-11 重庆邮电大学 基于历史信息的pdma***功率分配方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887754B2 (en) * 2010-05-04 2018-02-06 Qualcomm Incorporated Method and apparatus for optimizing power distribution between symbols
WO2014077749A1 (en) * 2012-11-16 2014-05-22 Telefonaktiebolaget L M Ericsson (Publ) Efficient generation of spreading sequence correlations using lookup tables
US9356748B2 (en) * 2013-08-07 2016-05-31 Huawei Technologies Co., Ltd. System and method for scalable digital communications with adaptive system parameters
JP6374166B2 (ja) * 2014-01-17 2018-08-15 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US20150282185A1 (en) * 2014-03-28 2015-10-01 Futurewei Technologies, Inc. Multi-user, multiple access, systems, methods, and devices
CN105227273B (zh) * 2014-07-02 2019-09-17 电信科学技术研究院 一种数据传输的方法、***和设备
US20160105896A1 (en) * 2014-10-10 2016-04-14 Huawei Technologies Co., Ltd. System and Method for Link Adaptation
JP6380071B2 (ja) * 2014-12-11 2018-08-29 ソニー株式会社 通信制御装置、無線通信装置、通信制御方法及び無線通信方法
CN105991235B (zh) * 2015-03-04 2020-10-30 株式会社Ntt都科摩 一种调整编码调制方案的方法、用户设备及基站
CN106161291B (zh) * 2015-04-07 2019-09-17 电信科学技术研究院 一种数据的发送方法、接收方法及装置
CN106160971B (zh) * 2015-04-07 2019-05-28 电信科学技术研究院 一种数据传输、接收信号检测的方法和设备
CN107431556A (zh) * 2015-04-16 2017-12-01 富士通株式会社 信道质量指示的反馈和接收方法、装置以及通信***
CN106160827B (zh) * 2015-04-21 2020-12-25 中兴通讯股份有限公司 一种多用户信息处理方法及装置
WO2016182228A1 (ko) * 2015-05-10 2016-11-17 엘지전자 주식회사 대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치
CN106411456B (zh) * 2015-07-31 2020-11-24 索尼公司 信号处理***及方法、基站和用户设备
CN105207745A (zh) * 2015-08-31 2015-12-30 清华大学 一种多址接入信道的多用户编码调制传输方法
WO2017201704A1 (en) * 2016-05-26 2017-11-30 Nokia Technologies Oy Codeword adaptation for non-orthogonal coded access
US10660122B2 (en) * 2016-06-27 2020-05-19 Sharp Kabushiki Kaisha Base station apparatus, terminal apparatus, and communication method thereof
EP3273736B1 (en) * 2016-07-19 2020-08-26 Institut Mines Telecom / Telecom Bretagne Method and apparatus for power and user distribution to sub-bands in noma systems
CN107645784A (zh) * 2016-07-22 2018-01-30 电信科学技术研究院 选择用户签名矢量的方法及装置
CN107666364A (zh) * 2016-07-27 2018-02-06 北京三星通信技术研究有限公司 选择和确定调制编码方式的方法、相应的终端设备、基站设备
US10771205B2 (en) * 2016-08-12 2020-09-08 Lg Electronics Inc. Method and device for performing communication by using non-orthogonal code multiple access scheme in wireless communication system
WO2018038410A1 (ko) * 2016-08-22 2018-03-01 엘지전자 주식회사 비직교 다중 접속 방식에 기초하여 데이터를 전송/검출하는 방법 및 이를 위한 장치
US10736081B2 (en) * 2016-09-14 2020-08-04 Huawei Technologies Co., Ltd. Non-orthogonal multiple access transmission
US20180083666A1 (en) * 2016-09-21 2018-03-22 Huawei Technologies Co., Ltd. Methods for multiple access transmission
WO2018058543A1 (en) * 2016-09-30 2018-04-05 Lenovo Innovations Limited (Hong Kong) Retransmission indication
CN107889267B (zh) * 2016-11-30 2019-08-23 电信科学技术研究院有限公司 上行基于非正交免调度的方法和装置
TWI628969B (zh) * 2017-02-14 2018-07-01 國立清華大學 聯合用戶分組與功率分配方法以及使用所述方法的基地台
WO2018174686A1 (en) * 2017-03-24 2018-09-27 Samsung Electronics Co., Ltd. Apparatus and method for in multiple access in wireless communication
US10700912B2 (en) * 2017-05-19 2020-06-30 Huawei Technologies Co., Ltd. Method and system for non-orthogonal multiple access communication
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置
US11089598B2 (en) * 2018-08-30 2021-08-10 Qualcomm Incorporated Multiple access signatures for non-orthogonal multiple access (NOMA) wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047402A (zh) * 2006-03-28 2007-10-03 华为技术有限公司 扩展拉丁方族序列产生方法/装置和通信控制方法/***
CN101388683A (zh) * 2007-09-14 2009-03-18 中兴通讯股份有限公司 一种码分多址***中码道检测的方法
CN106941688A (zh) * 2017-03-28 2017-07-11 重庆邮电大学 基于历史信息的pdma***功率分配方法

Also Published As

Publication number Publication date
CN111279736A (zh) 2020-06-12
US11411789B2 (en) 2022-08-09
US20210184907A1 (en) 2021-06-17
CN109526057A (zh) 2019-03-26
CN111279736B (zh) 2023-07-18

Similar Documents

Publication Publication Date Title
US11357009B2 (en) Beam selection method, base station, and user equipment
US11324018B2 (en) Terminal and a base station
JP6912458B2 (ja) 無線ユニット(ru)及び干渉波電力報告方法
WO2018171655A1 (zh) 参考信号发送方法、信道测量方法、无线基站及用户终端
WO2018128039A1 (ja) ユーザ装置及び基地局
US20210400508A1 (en) User device and base station device
WO2019029632A1 (zh) 一种用于波束管理的参考信号发送与接收方法及装置
WO2020164517A1 (zh) 用于测量信号的方法和通信装置
WO2018084118A1 (ja) ユーザ装置及び基地局
WO2018202137A1 (zh) 一种通信方法及装置
WO2018171426A1 (zh) 波束配置方法、移动台和基站
US11362879B2 (en) Constellation rotation method and base station
WO2018201910A1 (zh) 波束信息反馈方法及用户装置
WO2019222907A1 (zh) 预编码方法、解码方法、发送设备和接收设备
US11510213B2 (en) Method for signal transmission, and corresponding user terminals and base stations
WO2018201786A1 (zh) 一种多波束的csi反馈信息的传输方法和装置
WO2019213934A1 (zh) 用于传输信号的方法及相应的用户终端、基站
US11211970B2 (en) Communication method and corresponding user terminal, and base station
US11917438B2 (en) User device and base station device
WO2020227866A1 (zh) 终端以及发送方法
WO2019052441A1 (zh) 一种用于生成扩展符号的方法及装置
WO2019062535A1 (zh) 比特到符号的映射方法和通信装置
WO2020147133A1 (zh) 用户设备和基站以及由用户设备、基站执行的方法
JP2019186923A (ja) アンテナポートを割り当てる方法及び基地局
WO2023092360A1 (zh) 通信***中的终端以及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856208

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856208

Country of ref document: EP

Kind code of ref document: A1